
Achieving Interpretable DL-based Web Attack
Detection through Malicious Payload Localization

Peiyang Li∗†, Fukun Mei∗, Ye Wang∗, Zhuotao Liu∗, Ke Xu‡§, Chao Shen¶, Qian Wang∥, Qi Li∗§�
∗INSC and the State Key Laboratory of Internet Architecture, Tsinghua University, †Ant Group

‡DCST and the State Key Laboratory of Internet Architecture, Tsinghua University
§Zhongguancun Laboratory, ¶Xi’an Jiaotong University, ∥Wuhan University

peiyangli.20@gmail.com, {mfk25, wangye22}@mails.tsinghua.edu.cn, {zhuotaoliu, xuke}@tsinghua.edu.cn,
chaoshen@mail.xjtu.edu.cn, qianwang@whu.edu.cn, qli01@tsinghua.edu.cn

when deploying these systems in production. In particular, se-
curity operators typically need to analyze the detected attacks
to take appropriate actions, such as configuring new firewall
rules. Uninterpretable detection results require them to spend
a significant amount of time and manual effort in analyzing
the attacks. Moreover, the lack of interpretability could cause
attack desensitization [5], i.e., security operators lose their trust
in the effectiveness of the detection.

The interpretability of DL models has been extensively stud-
ied [6], [7], [8], [9], [10], [11], [12]. Nevertheless, these meth-
ods are not applicable to Web attack detection because they
are unable to consider the structural information embedded in
HTTP requests. Specifically, HTTP requests have well-defined
structures and contain various fields, including the request
method, multiple path segments, query parameters, etc. Exist-
ing interpretability methods overlook these structures and only
analyze the numerical features of DL models, which have very
limited contributions to explain the maliciousness of requests.

In this paper, we propose WebSpotter, a novel framework
that enhances existing DL-based Web attack detection models
by enabling detection interpretability. WebSpotter achieves in-
terpretable detection by identifying the locations of malicious
payloads within attack requests, thereby allowing security
operators to gain insights into attack behaviors and apply
targeted defense strategies. We observe that malicious pay-
loads often exert a considerable influence on the predictions
of detection models. Building upon this insight, WebSpotter
utilizes gradient-based analysis to quantify the importance of
individual fields within HTTP requests, as perceived by the de-
tection models. Subsequently, we leverage a machine learning
model to learn the correlation between these importance scores
and the presence of malicious payloads. Note that, WebSpotter
is orthogonal to existing DL-based Web detection methods and
can be applied to enhance them.

At a high level, WebSpotter consists of three modules.
First, the embedding attribution module is responsible for
assessing the importance of embedding vectors in existing
Web attack detection models. It can reflect the contribution of
each embedding value to the model predictions through gra-
dient analysis and mitigate the interference of gradient noises
through interpolation. Second, the HTTP-structure alignment
module evaluates the importance of each field in a request

Abstract—Web attacks pose a significant threat to Web ap-
plications. While deep learning-based systems have emerged
as promising solutions for detecting Web attacks, the lack of
interpretability hinders their deployment in production. Existing
interpretability methods are unable to explain Web attacks be-
cause they overlook the structure information of HTTP requests.
They merely identify some important features, which are not
understandable by security operators and fail to guide them
toward effective responses.

In this paper, we propose WebSpotter that achieves inter-
pretable Web attack detection, which enhances existing deep
learning-based detection methods by locating malicious payloads
of the HTTP requests. It is inspired by the observation that mali-
cious payloads often have a significant impact on the predictions
of detection models. WebSpotter identifies the importance of each
field of HTTP requests, and then utilizes a machine learning
model to learn the correlation between the importance and
malicious payloads. In addition, we demonstrate how WebSpotter
can assist security operators in mitigating attacks by automati-
cally generating WAF rules. Extensive evaluations on two public
datasets and our newly constructed dataset demonstrate that
WebSpotter significantly outperforms existing methods, achieving
at least a 22% improvement in localization accuracy compared to
baselines. We also conduct evaluations on real-world attacks col-
lected from CVEs and real-world Web applications to illustrate
the effectiveness of WebSpotter in practical scenarios.

I. INTRODUCTION

Web applications are vulnerable to various Web attacks.
Attackers can insert malicious payloads into specific fields
of HTTP requests to launch the attacks, resulting in severe
consequences such as malicious code execution. Recently,
a number of methods [1], [2], [3] propose to apply deep
learning (DL) to detect Web attacks. These methods achieve
various advantages over conventional rule-based Web Appli-
cation Firewalls (WAFs), such as eliminating manual rule
configurations and detecting unknown a ttacks [4].

However, existing DL-based methods only output a label
(e.g., normal or abnormal) and cannot produce interpretable
results. This causes practical concerns for security operators

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231029
www.ndss-symposium.org

based on the embedding importance. It consolidates em-
bedding importance across embedding dimensions to obtain
token importance and derives importance of HTTP fields by
identifying the association between these fields and tokens.
Third, the malicious payload localization module establishes
a robust connection between the location of the malicious
payload and the importance of each HTTP field. This module
constructs specialized location features by integrating the
textual semantics with the importance of HTTP fields, and
trains a lightweight localization model using a small number
of location-labeled attack requests, which effectively mitigates
the problem of spurious correlations.

We evaluate WebSpotter using two public datasets and
one newly constructed dataset. To measure the localization
accuracy, we annotate these datasets with the location labels
of malicious payloads. We conduct a comparative analysis of
WebSpotter against four state-of-the-art methods specifically
designed for localization tasks. Experimental results show
that WebSpotter significantly outperforms existing methods,
achieving at least a 22% improvement in localization accuracy
compared to all baselines. We perform an ablation study to
assess the impact of each module in WebSpotter on overall
performance. We also test WebSpotter on real-world scenarios.
Specifically, we collect attacks from i) CVEs reported between
2021 and 2024 and ii) two real-world Web applications, and
perform evaluations on these attacks. Our method achieves
an F1 score of 0.945 at most on these real-world attacks,
demonstrating its effectiveness in practical scenarios.

To further demonstrate how WebSpotter can assist security
operators in mitigating attacks, we introduce a method for
automated generation of WAF rules. We consider the scenario
where security operators need to generate new WAF rules
based on the detection results of DL-based Web attack de-
tection methods to enhance the capabilities of existing WAFs.
Specifically, we first categorize the attacks with similar seman-
tics based on the localization results produced by WebSpotter,
and derive effective rules for each attack group by extracting
the common payload pattern. We evaluate the effectiveness
of the generated rules on a widely used WAF. Experimental
results show that our generated rules improve the attack
detection rate of this WAF by 26%.

Our contributions are summarized below:
• We design WebSpotter, a framework to achieve interpretable

deep learning-based Web attack detection by localizing
malicious payloads within HTTP requests. WebSpotter ob-
tains the importance of each field within HTTP requests
from the detection model according to gradient analysis,
and employs a lightweight localization model to identify
malicious payloads.

• We build a new Web attack detection dataset. Compared
with public datasets, our dataset (i) incorporates contempo-
rary attack techniques, (ii) provides precise location labels
of malicious payloads and (iii) includes an additional out-
of-distribution testing set, which enables us to assess the
performance of WebSpotter more comprehensively.

• We evaluate WebSpotter on two public datasets and our

POST /tienda1/miembros/editar.jsp HTTP/1.1
User-Agent: Mozilla/5.0 (compatible; Konqueror/3.5; Linux) KHTML/3.5.
8 (like Gecko)
Pragma: no-cache
Cache-control: no-cache
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,te
xt/plain;q=0.8,image/png,*/*;q=0.5
Accept-Encoding: x-gzip, x-deflate, gzip, deflate
Host: localhost:8080
Cookie: JSESSIONID=D8B2A8778565BCF42799D84360295207
Content-Type: application/x-www-form-urlencoded
Content-Length: 335
…

modo=registro&login=sawyers&password=encUmb2ad3%27%3B+DRO
P+TABLE+usuarios&nombre=Max&apellidos=Sj%F6strand+Ampurias&
email=tamburi%40hispadis.ar&dni=30293636Z&direccion=C%2F+Virge
n+De+Las+Angustias+122+4%3FA&ciudad=Fuentespina&cp=48220&pr
ovincia=Asturias&ntc=8898020239162472&B1=Registrar

Fig. 1: Example of an attack request with malicious payload
locations indicated in red.

newly constructed dataset. The results demonstrate that
WebSpotter significantly outperforms existing baselines.
We also conduct evaluations on real-world attacks collected
from CVEs and real-world Web applications, showing the
effectiveness of WebSpotter in practical scenarios.

• We demonstrate how WebSpotter can assist security
operators in responding to attacks. We propose a method to
automatically generate WAF rules based on the localization
results produced by WebSpotter. We also conduct an
empirical evaluation leveraging a popular WAF, and the
results show that our generated rules can improve the attack
detection rate of the WAF by 26%.

II. BACKGROUND

A. Web Attacks

Web attacks target Web applications deployed on servers.
Attackers exploit vulnerabilities in Web applications by
crafting malicious payloads in specific fields of HTTP
requests. These attacks can take various forms, such as SQL
injection and cross-site scripting (XSS). Figure 1 shows an
example of SQL injection attacks sourced from the CSIC
dataset. In this request, the malicious payload is located at
the password parameter of the request body. The attacker
inserted malicious SQL code into this field, which decodes to
“encUmb2ad3’; DROP TABLE usuarios”. Note that
the malicious payload does not necessarily reside in only
one location within the HTTP request. Many attacks require
multiple fields to work together. Take the Jorani RCE attack
(CVE-2023-26469 [13]) as an example: the attacker needs to
perform directory traversal using the language parameter
to access unauthorized directories, while simultaneously
injecting malicious PHP code through the login field.

B. Deep learning for Web Attack Detection

Existing deep learning-based Web attack detection methods
aim to construct a function that maps input HTTP requests to

2

discrete labels, such as benign or anomalous. These methods
typically consist of three key modules: preprocessing, em-
bedding, and detection. The preprocessing module is mainly
responsible for segmenting the raw HTTP requests into a
sequence of tokens to facilitate semantic analysis. The embed-
ding module is responsible for converting text into numerical
feature vectors. Each token is mapped to feature vectors based
on an embedding matrix whose parameters are learned during
model training. Finally, the detection module trains a neural
network model, such as TextCNN [14], FastText [15], and Bi-
LSTM [16], to learn the patterns in the training data. The
trained model is then deployed for detecting Web attacks.

Current methods only classify an entire request as either an
anomaly or a specific type of attacks. In contrast, we focus on
pinpointing the exact location of the malicious payload within
the request. For example, with the attack request illustrated
in Figure 1, our approach would alert the security operator
that the attack payload is specifically located within the
password parameter of the request body. A formal definition
of our objective will be presented in Section III.

III. PROBLEM DEFINITION

Our goal is to achieve interpretable DL-based Web attack
detection by locating malicious payloads in HTTP requests. To
establish a formal definition for “locating malicious payloads”,
we begin by introducing the concept of minimal semantic units
(MSUs) of an HTTP request.

Definition 1 (MSU). An HTTP request can be decomposed
into multiple units based on the HTTP protocol specification
[17], where each unit represents an indivisible piece of
semantic information. These units, referred to as minimal
semantic units (MSUs), are defined as follows: (i) The request
method itself is considered a single unit. (ii) For the URL in
the request line, each path segment and query [18] are treated
as an individual unit. (iii) Each HTTP header is treated as
an individual unit. (iv) For the body field, if its content type
follows the key-value structure or can be converted into this
structure, each key-value pair constitutes a separate unit.

The above definition considers the request body that fol-
lows the key-value structure (e.g., when the content type is
“application/x-www-form-urlencoded”), or can be transformed
into such a structure, such as by flattening the JSON object
[19] to obtain key-value pairs. This is a common practice in
existing detection systems [4], [14] and can cover the majority
of Web attacks [20]. For other formats, the body field is not
analyzed. The reason is that the HTTP protocol does not
strictly define body formats. For example, an application could
transmit an encrypted binary stream in the body field, making
it impractical to extract meaningful semantics.

After defining the MSUs of an HTTP request, locating the
malicious payloads is regarded as a retrieval task, i.e., deter-
mining which MSUs contain the malicious payload. Formally,
let the input space be U , where each u ∈ U is an MSU
list of an HTTP request. Specifically, u = [u1, u2, . . . , uL],
where ui represents the i-th MSU in the HTTP request, and

L is the length of the MSU list. Our goal is to build a
function g that maps each u ∈ U to the location output vector
y = [y1, y2, . . . , yL], where yi ∈ {0, 1} indicates whether the
corresponding MSU contains the malicious payload. Finally,
we assume that a small set of location-labeled attack requests
R can be obtained in advance through manual investigation
for constructing the function g. Similar to the definition of y,
the location labels for an attack request can also be formulated
as a 0-1 vector with the length of L.

IV. OVERVIEW

We propose a novel framework, WebSpotter, which achieves
interpretable Web attack detection by locating malicious pay-
loads. We observe that malicious payloads often have a sig-
nificant impact on the predictions of the detection models.
Inspired by this observation, we identify the importance of
each MSU within HTTP requests detected by the trained
detection model via gradient analysis, and utilize a machine
learning model (i.e., the localization model) to learn the rela-
tionship between the importance and the location of malicious
payloads. Note that WebSpotter is orthogonal to existing DL-
based Web attack detection methods [2], [21], [20] that capture
attack requests, and can be applied to these methods to locate
malicious payloads. Based on our localization results, Web-
Spotter helps security operators understand attack behaviors
and automatically generate WAF rules to defend against the
attacks. As shown in Figure 2, WebSpotter contains three
modules below.
• Embedding attribution assesses the importance scores of

embedding vectors in existing Web attack detection models.
It utilizes a gradient-based method to evaluate the contribu-
tion of each embedding value to the model prediction results
and performs linear interpolation to mitigate the interference
of gradient noise.

• HTTP-structure alignment evaluates the importance of
each MSU within HTTP requests based on embedding
importance. We leverage a two-stage aggregation method to
align embedding importance with MSUs. Specifically, it first
consolidates importance scores across different embedding
dimensions into a single score for each token and then
derives importance scores of MSUs by identifying the
association between these units and tokens.

• Malicious payload localization constructs specialized lo-
cation features by integrating the textual semantics and
importance scores of each MSU within HTTP requests,
and trains a lightweight localization model using a very
limited number of location-labeled attack requests. The
location features are finally fed into the localization model
to determine the locations of malicious payloads.

V. DESIGN DETAILS

A. Embedding Attribution

The embedding attribution module aims to analyze the be-
havior of a trained detection model by assessing the influence
of each embedding value of the model on its predictions.
The module needs to i) provide insights into how changes in

3

Importance scores of each semantic unit

W
ei

gh
t-

ba
se

d
co

ns
ol

id
at

io
n

Importance
scores of
each token

… …

2
HTTP-Structure Alignment

...

PATH QUERY-1 QUERY-2
...... ...

...

Token grouping

...
Linear interpolation

Detected
request

Empty
request

Request
embedding

Importance scores
of embedding

Gradient
analysis

1
Embedding Attribution

……

“ Malicious payload
is located at ? ”

3
Malicious Payload Localization

...

...

Importance feature extraction

Textual feature extraction

Payloads of semantic units

Fig. 2: The overview of WebSpotter.

embedding values affect the output, and ii) be computationally
efficient, considering that the number of embedding values is
typically quite large.

We perform gradient analysis to achieve this goal. Gener-
ally, a larger absolute value of the gradient indicates a greater
influence of the corresponding feature on the predictions.
Therefore, for a request that has been identified as an attack
by detection models, we compute the gradients of the output
labels with respect to each embedding value. Such a gradient-
based approach has two benefits. First, it can reflect how
much each feature contributes to the output more faithfully
compared to methods that approximate feature importance
through perturbations [22], [23] or surrogate models [6], [24],
since the internal parameters and mathematical properties of
the model are directly utilized. Second, the importance of each
embedding value can be calculated efficiently and concurrently
in a single backpropagation process, unlike existing methods
that introduce substantial time overhead for additional model
training [7] or inference [22].

Nevertheless, the embedding importance calculated via gra-
dients is highly susceptible to noise because of the local nature
of gradients. For example, when the model is overfitted to
some embedding values, these values may exhibit a gradient
of 0, even though they are salient with regard to the prediction
[25]. To deal with the issue, we choose to perform linear inter-
polation between the embedding of the original HTTP request
and an empty request (i.e., zero embeddings), and aggregate
the gradients of these interpolation points, following the idea
of integrated gradients [26]. Such a method avoids relying on
the gradients at a single point and provides a global view of
embedding importance to mitigate the problem of noise.

The detailed procedure for obtaining the importance of the
embedding values is described below. We first utilize the
existing Web attack detection system (see Section II-B for
details) to process the raw HTTP requests, thereby yielding the
token sequences, embeddings, and predictions, respectively.
We represent token sequences as t = [t1, t2, . . .], where ti
denotes the ith token of the sequence. The symbol e represents
the embedding matrix of the detection model, with eij refer-
ring to the value in the jth dimension of the embedding for the

token ti. The symbol ŷ is used to denote the predicted label.
Then, we perform backpropagation to obtain the gradient-
based embedding importance. Specifically, the importance of
eij , denoted as Gij , is computed as follows:

Gij =
1

m
·

m∑
k=1

∂fθ(ŷ | αk · e)
∂eij

, (1)

where m represents the number of interpolation points and
serves as a hyperparameter that will be discussed and evaluated
later, αk equals to k

m and represents the step intervals of
interpolations, fθ is the detection model.

B. HTTP-structure Alignment

HTTP-structure alignment module aims to align the
embedding importance with MSUs of HTTP requests, and
obtain the importance of these units. This module is necessary
because, as mentioned earlier, we need to judge which HTTP
semantic units contain the malicious payload instead of simply
attributing attacks to embedding values. Specifically, given
the importance scores of embeddings of an HTTP request,
we process them through a two-stage aggregation to perform
the alignment. First, we perform token-level aggregation
to consolidate embedding values of each token into the
token importance score. Second, we identify the tokens
corresponding to each MSU and aggregate the importance of
these tokens, namely protocol-level aggregation. During these
two stages, distinct aggregation techniques are employed to
accommodate the variability in data types.
Token-level Aggregation. A simple way to obtain an impor-
tance score for each token is to compute the average or sum of
the importance scores of the corresponding embedding values.
However, such a method is imprecise because embedding
values at different dimensions have different semantics and
therefore their importance is at different scales.

A mathematically sound approach would be to compute
the gradient of each token according to the chain rule to
evaluate its importance. Unfortunately, the look-up operation
of the embedding layer is not differentiable because the inputs
to the embedding layer (i.e., the index of the corresponding
token) are discrete variables. To address this, we treat the

4

−5 0 5 10 15 20 25
Token Importance

10−3

10−2

10−1

100

F
re

qu
en

cy
Malicious

Normal

Fig. 3: Token importance distribution of MSUs with malicious
and normal payloads (using the FPAD dataset).

Algorithm 1 Constructing the location features

Input: MSU list u = [u1, u2, . . . , um] of a HTTP request, m is the
number of MSUs; Importance scores U = [U1, U2, . . . , Um] of
u; index i of the target MSU, sentence embedding model g(·),
size dI of importance features, size dS of sentence embeddings.

Output: Location features xi of the ith MSU ui.
1: Initialize a dI -dimensional zero vector zI ;
2: zI [0]← Ui;
3: U ← Remove Ui from U ;
4: U ← Sort U in descending order;
5: if m ≥ d1 then
6: zI [1 : dI]← U [0 : dI − 1];
7: else
8: zI [1 : m− 2]← U [0 : m− 1];
9: end if

10: zS ← g(ui, dS);
11: xi ← Concatenate (zI , zS);
12: return xi

word embedding look-up operation as a dot product between
the weight of embedding layer and a one-hot encoding vector
[27]. Then, we can approximate the importance of each token
by calculating the gradient of the 1-entry in the one-hot
vector, considering the other 0-entries do not include valid
information. Specifically, according to the chain rule, the
importance Si of the token ti is computed as follows:

Si = vec(Gi ·
∂ei
∂vi

)i = Gi · ei , (2)

where vec(·)i represents the operation of indexing the ith
element of a vector, vi is the one-hot encoding vector
of the token ti, ei = [ei1, ei1, . . . , eid] is the embedding
vector of the token ti and d is the embedding size, and
Gi = [Gi1, Gi1, . . . , Gid] is the importance of ei.
Protocol-level Aggregation. To align token importance
scores with MSUs, we first identify which tokens are contained
within a specific MSU. To achieve this, a leave-one-out
approach is utilized. Specifically, for each MSU, we remove
it from the entire HTTP request individually and then execute
the preprocessing algorithm for the MSU-removed requests.
The tokens associated with it are determined by the difference
between the original token sequence and the MSU-removed
token sequence. Note that for some existing preprocessing
techniques, applying them to each MSU individually is also

a logical approach to establish the correspondence between
tokens and MSUs. However, certain preprocessing approaches
may require considering the HTTP request as a whole, e.g.,
[20]. Thus, our leave-one-out approach, which regards prepro-
cessing as a black box, is more broadly applicable.

Next, we determine the importance score for each MSU
by summing the importance scores of its constituent tokens.
Formally, the importance score Ui of the ith MSU is computed
as follows:

Ui =
∑
j∈Mi

Sj , (3)

where Mi denotes the index set of tokens contained
within the MSU ui. The rationale behind the summation
operation is based on the observation that, for MSUs not
containing malicious payloads, the importance of their tokens
approximately follows a normal distribution with a mean of
zero. Consequently, the expected value of their sum remains
zero. In contrast, malicious MSUs typically contain multiple
tokens with high importance. Therefore, the summation
operation can maximize the difference in importance scores
between malicious and normal payloads, which is beneficial
for achieving more precise localization in subsequent steps.
Figure 3 provides an example of the distribution of token
importance to further illustrate this issue.

C. Malicious Payload Localization

The malicious payload localization module utilizes the MSU
importance scores derived from previous steps to identify
which MSUs contain malicious payloads. A straightforward
strategy is to set a threshold, where MSUs with importance
scores above this threshold are considered malicious. How-
ever, this strategy is susceptible to the spurious correlation
problem [28]. While malicious payloads often exert a signif-
icant influence on model predictions, not all highly impactful
payloads are necessarily malicious. Due to limitations in the
training data or model capabilities, deep learning models may
inadvertently learn spurious correlations, leading some non-
malicious payloads to be also deemed highly impactful by the
model. For example, in the training data, attack requests may
only appear on a specific webpage, which can cause the model
to infer a spurious correlation between the URL path of this
webpage and the malicious intent.

To mitigate the risk of the localization being misled by de-
tection models, we incorporate the textual semantics of MSUs
and train a lightweight machine learning-based localization
model to establish a robust connection between the location of
malicious payloads and the MSU importance. Intuitively, the
textual semantics of malicious payloads typically differ from
those of normal payloads. Thus, leveraging textual semantics
offers an additional perspective to complement MSU
importance and enhance localization robustness. Specifically,
we first construct a hybrid location feature that integrates both
the importance and textual semantics for each MSU. Then, we
train a localization model based on the location features and
a small number of location-labeled attack requests, and apply

5

Algorithm 2 Training the localization model

Input: Attack requests R = {(u1, c1), (u2, c2), · · · , (un, cn)}, n is
the number of requests, ui = [ui

1, u
i
2, .., u

i
mi] denotes the MSU

list of the ith request, mi is the number of MSUs of the ith
request, ci = [ci1, c

i
2, .., c

i
mi] is a 0-1 vector that indicates the

location of malicious payloads; training algorthim T (·).
Output: Localization model gθ .

1: D ← ϕ;
2: for i = 1, 2, ..., n do
3: for j = 1, 2, ...,mi do
4: x← Building location features for ui

j based on Alg. 1;
5: D ← D ∪ {(x, cij)};
6: end for
7: end for
8: Dr ← BalanceSample(D)
9: gθ ← T (Dr)

10: return gθ

the trained localization model to each MSU within an HTTP
request to determine whether it contains malicious payloads.
Constructing the Location Features. We construct the
location features from two aspects, i.e., importance features
and textual features. First, the importance features of an MSU
are determined by its own importance score as well as the
importance scores of its sibling MSUs, where sibling MSUs
refer to all other MSUs in the same HTTP request. Note that
considering the importance scores of sibling MSUs is crucial,
as this enables the localization model to assess the relative
importance of each MSU within its original HTTP request.
Second, the textual features are extracted using a sentence
embedding model. Here, we adopt the Nomic-embed tech-
nique [29], which trains a BERT-like encoder model through
contrastive learning and utilizes Matryoshka representation
learning [30] to obtain resizable embeddings.

Algorithm 1 demonstrates the detailed process of construct-
ing location features. Let dI and dS denote the numbers
of dimensions of importance features and textual features,
respectively. For the importance feature, the first dimension
is set to the importance score of the target MSU (line 2). The
remaining dI -1 dimensions are the importance scores of its
siblings MSUs in descending order (line 4). If the number
of sibling MSUs exceeds dI -1, we only select the top dI -1
scores. Otherwise, we pad zeros to the end of the importance
features (lines 5-8). For the textual feature, it is computed
using the Nomic-embed model (line 10). We then concatenate
two features together (line 11).
Training the Localization Model. The localization model
is essentially a lightweight binary classification machine
learning model. It takes the location features of an MSU
as input and outputs either 0 or 1, where 0 indicates that
the MSU does not contain malicious payloads, and 1 means
otherwise. We train the localization model using a small
number of location-labeled attack requests. Location features
of MSUs are extracted from these attack requests and paired
with their corresponding labels to form the training dataset.
We adjust the number of normal and malicious samples in the
training dataset to avoid class imbalance. This is necessary

because malicious payloads generally make up only a small
fraction of the HTTP requests, resulting in a disproportionate
amount of normal data. By addressing the class imbalance,
we prevent the model from favoring the majority class and
incorrectly identifying inputs as normal. With the dataset, we
train a random forest model, which is an efficient non-deep
learning model and often used in security tasks [31].

The detailed steps are shown in Algorithm 2. For each
attack request, we construct location features for all MSUs
(lines 2-7). Balancing is achieved by randomly removing 0-
class samples until the number of 0-class samples matches the
number of 1-class samples (line 8). Finally, we conduct the
training algorithm to obtain localization models (line 9).

VI. GENERATING WAF RULES

In this section, we demonstrate how security operators can
leverage the localization results produced by WebSpotter to
automatically generate WAF rules. Specifically, we consider a
common scenario where security operators deploy a traditional
rule-based WAF for real-time attack blocking, and meanwhile
use a machine learning model to offline detect potential attacks
that the WAF may fail to cover. To efficiently and promptly
mitigate these WAF-uncovered threats, new WAF rules should
be generated. We clarify that our objective in automatically
generating rules is not to deploy them directly in WAFs,
but rather to facilitate security operations. Specifically, these
generated rules serve as initial references for the security
operators to derive the final rules.

A. Rule Format

We select SecLang [32] as the configuration language for
WAF rules to ensure that the generated rules are deployable
and broadly applicable across different WAF engines. SecLang
was originally implemented by ModSecurity [33] which is a
widely adopted open-source WAF, and has been supported
by the majority of other open-source and commercial WAF
solutions (e.g., Coraza [34], HAProxy WAF [35], IBM SVA
WAF [36], and VMware Avi WAF [37]).

Each SecLang rule consists of three fields: Variable,
Operator, and Action. The Variable is an enumerated
type value that specifies the scope of rule matching. For exam-
ple, the value ARGS GET means the corresponding rule will
inspect the payloads of all query parameters. The Operator
functions as a conditional expression, defining the conditions
under which the rule will be triggered. Typically, a regular
expression is defined in this field to detect patterns associated
with specific malicious payloads. The Action determines the
behavior executed upon successful rule matching. For instance,
a common strategy involves rejecting the request and returning
an HTTP 403 status code. Readers can refer to the official
document [32] for detailed syntax of SecLang rules. In this
work, we primarily focus on how to generate the appropriate
Variable and Operator fields. The Action field is not
considered because it is not related to attack detection and
is usually configured according to the specific needs of Web
applications in practice.

6

id=admin") or "1"="1"

id=admin") or "user"="user"/*

qr=<x%09onmousedown=1

pwd=<x%0Aonload=1

doc=<x%0Donhelp=1

Localization results (MSUs)Attack
Requests

Clustering

Match scope and LCS

Match scope: parameter "id" of URL
LCS: admin") or " <seg> "=" <seg> "

... …

Group1

Group2
Match scope: all parameters of URL
LCS: <x%0 <seg> on <seg> =1

SecLang Rules

…

SecRule ARGS_GET:id
"@rx admin\"\) or \".*\"=\".*\".*"

"id:1000129, deny, status:403"

SecRule ARGS_GET
"@rx <x%0.*on.*=1"

" id:1000130, deny, status:403"

WebSpotter

...

Fig. 4: An illustrative example showing how to generate SecLang rules based on the localization results produced by WebSpotter.

B. Rule Generation

Inspired by existing work [38], [39], [6] on generating de-
tection rules for network intrusion detection systems, we pro-
pose an automated method to derive effective WAF rules from
the localization results generated by WebSpotter. Our design
consists of two steps. First, we employ payload clustering to
categorize MSUs that exhibit similar semantics based on tex-
tual similarity. Then, for each cluster, we generate a SecLang
rule by determining the match scope and extracting the regular
expressions that reflect their common pattern. This clustering-
then-generation scheme facilitates the extraction of common
malicious patterns, ensuring that the generated rules can match
a certain type of attacks sharing similar characteristics rather
than being constrained to specific individual requests. An
illustrative example of this process is shown in Figure 4.

We leverage the idea of hierarchical clustering algorithm
[40] to categorize MSUs with similar semantics. The clustering
algorithm operates iteratively. Initially, each MSU payload is
treated as a separate group, with the payload itself serving
as the group representative. In each iteration, we obtain the
distances between all pairs of groups based on the distance
between their representatives. The two groups with the shortest
distances are merged, and the representative of the new group
is the payload with the smallest average distance to other
elements in the group. Here, we choose the edit distance as
the distance metric, given its ability to quantify the similarity
between two strings. To ensure high intra-group similarity,
we impose conditions that prevent merging highly dissimilar
groups. Specifically, two groups are deemed non-mergeable if
their edit distance surpasses a proportion threshold (set to 0.25
in our evaluations) of their combined length. The clustering
process terminates when no groups can be merged.

After obtaining groups with similar MSUs, we propose
to automatically generate one WAF rule tailored to each
group. As mentioned earlier, we need to determine the
Variable and Operator fields of the SecLang rules.
For the Variable field, we determine its value based
on the location of MSUs in the group. We use the RE-
QUEST FILENAME, ARGS GET, REQUEST HEADERS,
and ARGS POST to inspect request paths, query parameters,
request headers, and body parameters, respectively. For the
Operator field, we generate regular expressions that define
the common pattern within the group. Initially, we extract the
longest common subsequence (LCS) among all payloads in

the group, representing shared characters. Subsequently, the
LCS is divided into segments when non-matching characters
exist within the LCS across different payloads in the same
group. These segments are concatenated using the Kleene star
operator * to form a regular expression. The operator allows
for zero or more repetitions of characters between segments,
ensuring that payloads with the segments in relative order are
matched, despite variation in the presence of obfuscation.

VII. EVALUATION

A. Settings

Datasets. We use two widely used public datasets [21], [14],
[3] and a newly constructed dataset for evaluations. Each item
of these datasets contains the original HTTP request, attack
category label, and the location label for malicious payloads.
The statistics of these datasets are shown in Appendix A.
• The CSIC dataset [41] is collected from an e-commerce

Web application and includes two categories: benign and
attack HTTP requests. Note that the original CSIC dataset
does not contain the location labels of attack requests. To
address this, we ask two PhD students in the field to perform
manual annotation.

• The PKDD dataset [42] is the only publicly available dataset
known to include location labels of malicious payloads. It is
generated by recording real traffic and comprises one benign
category and seven attack categories (e.g., XSS). In this
dataset, some non-malicious fields of requests are replaced
by random strings. This reflects the characteristics of certain
real-world Web applications that generate requests including
a number of fields without semantic meaning, e.g., some
parameters consist of randomly generated IDs.

• We also construct the new FPAD (Fusion Payload Web
Attack Detection) dataset. The FPAD dataset offers the
following key advancements over existing datasets: (i) it
incorporates advanced and contemporary attack techniques,
such as the 2021 Log4j2 vulnerability exploit [43]. (ii) It
provides precise location labels of malicious payloads. (iii)
Beyond the standard training and testing sets, it includes
an additional OOD (out-of-distribution) attack testing set,
enabling evaluation of the model performance in handling
unknown attacks. For example, the OOD testing set includes
SQL injection attacks targeting specific databases (e.g., Or-
acle), whereas the training set only contains common SQL
blind injection attacks. FPAD includes one benign and four

7

attack categories. We construct the dataset using the method
similar to the one used for creating the CSIC dataset [41].
For benign requests, we directly use the benign data from
CSIC. To generate attack requests, we collect attack tech-
niques from multiple sources (e.g., PayloadsAllTheThings
[44] and xray [45]) and then leverage Burp Bounty [46], a
Web security tool, to construct valid attack requests. Further
construction details of FPAD are provided in Appendix B.

Baselines. We select four state-of-the-art methods specifically
designed for localization tasks as baselines.
• LTD [47] employs the Xception model [48] to generate the

feature maps of HTTP requests. Then, it applies a sliding
window mechanism to generate a set of candidate regions on
the feature maps, and utilizes a specifically designed neural
network to predict the position of malicious payloads.

• SSD [49] applies multiple down-sampling blocks to extract
multi-scale feature maps from HTTP requests, and then
locates malicious payloads in a manner similar to LTD.

• REG [50] constructs a regression task to predict the posi-
tions of malicious payloads. It employs a dual-head neural
network to simultaneously handle both the regression task
and the original attack detection task.

• CLS [51] treats each MSU as an independent entity and
assesses its potential maliciousness. It analyzes the textual
semantics of each MSU and trains a machine learning model
to determine whether the MSU contains malicious payloads.
LTD, SSD, and REG output a set of string indices rep-

resenting the start and end positions of malicious payloads
within the HTTP request. We map the predicted positions to
MSUs by calculating the intersection over union (IoU), which
is a common strategy used in localization tasks. Additional
implementation details of baselines are presented in Appendix
D. It is also noteworthy that we exclude existing interpretable
machine learning methods for network security (e.g., Lemna
[7]) because, as mentioned previously, they fail to produce ef-
fective interpretability for Web attack detection. Nevertheless,
these methods or their variants could potentially be used within
our framework as replacements for the embedding attribution
module to derive importance scores. In Section VII-C, we
conduct ablation experiments to evaluate these alternatives.
Metrics. We evaluate the localization performance using
the widely used multi-label classification metrics: precision
(Pre), recall (Rec), F1-score (F1), and Jaccard Index (Jac)
[52]. We first calculate these metrics for each individual attack
request. As described in Section III, for each attack request,
we output a binary vector y = [y1, y2, . . . , yL] to indicate the
location of malicious payloads. Suppose that the correspond-
ing ground truth location is represented as a binary vector
z = [z1, z2, . . . , zL], these metrics are computed by comparing
y and z. Then, we compute the average performance across
the dataset to obtain an overall evaluation.
Configuration. We select TextCNN [14] as the basic DL-
based Web attack detection model because it demonstrates the
best overall detection performance in comparative testing with
various models. We also show the generality and effectiveness
of our approach on other models in Appendix C. Regarding

POST /tienda1/miembros/editar.jsp HTTP/1.1
…

modo=entrar&login=hodgson&password=d68as4o&nombre=Evangelino
&apellidos=De Len Pizano&email=leuwerik@white-pearl-resort.tt&dni=3
0293636Z&direccion=Calle Perez Galdos, 167&ciudad=Tapia de Casarie
go&cp=49660&provincia=A Corua&ntc=4997441125317554&B1=..../%5
c..../%5cetc%5cissue

Fig. 5: An example showing the limitation of LTD, where the
malicious payloads located by LTD are highlighted in red and
the ntc parameter is incorrectly identified.

the hyperparameters of WebSpotter, we set m to 50, dI to
10, dS to 256. We evaluate the hyperparameter sensitivity
in Appendix E. Moreover, our method and baselines require
some location-labeled attack requests for training. Considering
that manual labeling incurs significant costs, we limit the
labeling overhead to 1%, i.e. randomly using only 1% of
attack requests in the training set. We believe that this level
of overhead (e.g., labeling only 117 requests for the CSIC
dataset) is acceptable in practice. The impact of labeling
overheads is evaluated in Section VII-B.
Implementation. Our evaluations are conducted on a GPU
server equipped with NVIDIA GeForce RTX 4090 GPUs
and 384GB of memory. We implement the deep learning
models with PyTorch 2.1.2 and CUDA 12.1 toolkit and use the
Sentence Transformers library to obtain the Nomic embedding.
We run each experiment three times with varying random
seeds and report average results.

B. Localization Performance

First, we evaluate whether our method outperforms base-
lines with limited location-labeled training data. We set the
labeling overhead to 1% and the results are shown in Table I.
Compared to all baselines across different datasets, WebSpot-
ter achieves at least a 16.3% and 22.2% relative improvement
in F1-score and Jaccard index, respectively. For example, on
the FPAD dataset, WebSpotter improves the F1-score from
0.828 to 0.988, which corresponds to 721 additional malicious
payloads being correctly identified and 4333 fewer false pos-
itives. In most cases, the F1-score of WebSpotter approaches
1.0, demonstrating the effectiveness of our method in accu-
rately identifying the location of the malicious payloads within
the attack requests. Moreover, despite a slight performance
degradation, our method still achieves the F1-score of 0.970
on the FPAD-OOD dataset, which illustrates the generalization
of WebSpotter in handling unseen attack patterns. Among the
baselines, CLS achieves the best performance in most cases,
suggesting that employing a binary classification strategy for
each MSU offers significant advantages over methods that
directly generate the string indices of malicious payloads, es-
pecially in scenarios with limited training data. One exception
is that CLS performs poorly on the PKDD dataset. The main
reason is that the PKDD dataset replaces some non-malicious
fields with random strings, and thus the model is unable to
extract their textual semantics effectively.

8

TABLE I: Overall performance comparisons of malicious payload localization when the labeling overhead is set to 1%.

Method† CSIC PKDD FPAD FPAD-OOD
Pre Rec F1 Jac Pre Rec F1 Jac Pre Rec F1 Jac Pre Rec F1 Jac

LTD 0.269 0.638 0.361 0.269 0.388 0.883 0.507 0.391 0.467 0.870 0.581 0.462 0.497 0.878 0.606 0.491
SSD 0.179 0.999 0.292 0.187 0.125 0.807 0.211 0.136 0.265 0.929 0.381 0.264 0.282 0.932 0.398 0.284
CLS 0.392 0.831 0.499 0.392 0.098 0.966 0.171 0.096 0.781 0.929 0.828 0.780 0.788 0.932 0.834 0.785
Ours 0.968 0.980 0.972 0.968 0.990 0.986 0.986 0.983 0.987 0.993 0.988 0.983 0.966 0.982 0.970 0.959

† REG is not shown due to its excessively poor performance in this setting.

TABLE II: Overall performance comparisons of malicious payload localization when the labeling overhead is set to 100%.

Method CSIC PKDD FPAD FPAD-OOD
Pre Rec F1 Jac Pre Rec F1 Jac Pre Rec F1 Jac Pre Rec F1 Jac

LTD 0.420 0.776 0.520 0.420 0.771 0.947 0.826 0.761 0.787 0.944 0.837 0.781 0.803 0.940 0.845 0.795
SSD 0.266 0.998 0.401 0.271 0.369 0.964 0.501 0.377 0.309 0.981 0.448 0.309 0.325 0.974 0.459 0.327
REG 0.102 0.235 0.129 0.102 0.148 0.334 0.185 0.143 0.376 0.587 0.430 0.369 0.333 0.602 0.392 0.321
CLS 0.867 0.969 0.900 0.867 0.462 0.972 0.589 0.460 0.989 0.995 0.991 0.989 0.984 0.991 0.986 0.954
Ours 0.980 0.987 0.982 0.980 0.991 0.992 0.991 0.990 0.997 0.997 0.997 0.997 0.993 0.987 0.988 0.984

Second, we evaluate WebSpotter when the labeling
overhead is 100%, i.e., all attack requests in the training set
are used to train the localization model. As shown in Table II,
our method also surpasses all baselines, which indicates that
our method is still advantageous even without considering
the constraints of labeling overhead. The performance of
LTD improves significantly when the labeling overhead is
increased from 1% to 100%. However, its overall performance
remains inferior to that of CLS, with a particularly large gap
in the precision metric. The main reason we identified is that
LTD only considers fixed character intervals when generating
candidate regions and fails to incorporate the HTTP structural
information. Consequently, it often recognizes some normal
payloads surrounding malicious payloads as malicious. Figure
5 shows a representative example where LTD incorrectly
identifies the normal ntc parameter adjacent to the malicious
B1 parameter as malicious.

Moreover, CLS does not perform as well as our method
because it only considers textual semantic features of MSUs,
while we additionally consider the importance features that
provide a more effective criterion to identify MSUs with
malicious payloads. We validate this claim by visualizing the
feature distribution. We randomly select 1% of the attack re-
quests from the FPAD dataset and project their textual features
and importance features into 2-dimension using the principal
component analysis (PCA). Figure 6 shows the results. It can
be observed that textual features significantly overlap between
benign and malicious MSUs, while the importance features ex-
tracted by WebSpotter have a more distinct category boundary,
illustrating the effectiveness of our importance features.

Figure 7 further shows the trend of F1-score for each
method as the labeling overhead changes. It can be seen that
WebSpotter is stable and consistently maintains a significant
performance advantage across all datasets. With only 1%
labeling overhead, WebSpotter can achieve results comparable
to, or even better than, existing methods that impose 100%
labeling overhead, demonstrating that WebSpotter can signifi-
cantly reduce the labeling costs. In contrast, baselines perform

Benign

Malicious

(a) Textual features

Benign

Malicious

(b) Importance features

Fig. 6: PCA Visualization of different types of features.

0.5 1 10 50 100
Sample Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

LTD SSD REG CLS Ours

0.5 1 10 50 100
Labeling Overhead (%)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(a) CSIC

0.5 1 10 50 100
Labeling Overhead (%)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(b) PKDD

0.5 1 10 50 100
Labeling Overhead (%)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(c) FPAD

0.5 1 10 50 100
Labeling Overhead (%)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(d) FPAD-OOD

Fig. 7: Localization performance w.r.t. the labeling overhead.

poorly under low labeling overhead, although their F1-scores
improve as the labeling overhead increases.

C. Ablation Study

We construct several variants of WebSpotter to validate
the effectiveness of each individual module. First, we replace
our embedding attribution module with existing interpretable

9

TABLE III: Performance comparison of various variants of WebSpotter. S.S., T.F., and L.M. are abbreviations for single-stage
summation, textual features, and localization models, respectively.

Method CSIC PKDD FPAD FPAD-OOD
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

WebSpotter w/ CADE 0.884 0.962 0.907 0.983 0.985 0.982 0.959 0.991 0.969 0.947 0.984 0.958
WebSpotter w/ SHAP 0.439 0.817 0.537 0.958 0.996 0.964 0.927 0.976 0.942 0.907 0.961 0.923
WebSpotter w/ Lemna 0.817 0.939 0.855 0.900 0.977 0.921 0.950 0.990 0.963 0.938 0.978 0.949
WebSpotter w/ VG 0.876 0.960 0.903 0.912 0.981 0.930 0.961 0.994 0.971 0.958 0.985 0.963

WebSpotter w/ S.S. 0.755 0.923 0.804 0.898 0.987 0.915 0.963 0.990 0.972 0.894 0.943 0.953
WebSpotter w/ FINER 0.867 0.952 0.890 0.917 0.983 0.933 0.975 0.995 0.981 0.961 0.983 0.966

WebSpotter w/o T.F. 0.965 0.978 0.970 0.977 0.990 0.975 0.940 0.976 0.944 0.923 0.952 0.917
WebSpotter w/o L.M. 0.948 0.982 0.959 0.969 0.983 0.971 0.989 0.935 0.947 0.976 0.904 0.921

Original WebSpotter 0.968 0.980 0.972 0.990 0.986 0.986 0.987 0.993 0.988 0.966 0.982 0.970

† The results of the Jaccard Index exhibit a trend similar to that of the F1 score, and those results are presented in Appendix F.

machine learning methods, including CADE [22], LEMNA
[7], SHAP [53], and vanilla gradients (VG) [54]. We im-
plement these methods following the settings described in
prior works, and the details are provided in Appendix D.
Table III presents the comparison results, demonstrating that
the original WebSpotter consistently achieves the best perfor-
mance across all datasets. The improvements are particularly
significant on the CSIC dataset. For instance, the F1-score
of the original WebSpotter reaches 0.972, whereas the F1-
score of WebSpotter with SHAP drops significantly to 0.537.
This occurs because the CSIC dataset is relatively simple, and
detection models tend to be overfitting on it. As a result, the
outputs produced by these interpretability methods are biased.
In contrast, our method effectively mitigates this issue by
performing linear interpolation. A similar overfitting issue is
also observed on the PKDD dataset. However, the localization
performance on the PKDD dataset remains relatively high for
baselines, since in the PKDD dataset, some non-malicious
payloads are replaced with random strings, which introduces
a shortcut for identifying malicious payloads.

Second, we consider alternative designs for the HTTP-
structure alignment module. This module deploys a two-stage
aggregation scheme, applying different aggregation techniques
at each stage. To assess the effectiveness of this design, we
first consider a simple single-stage aggregation strategy that
sums the embedding importance scores directly to obtain the
MSU importance. In addition, we also consider FINER [9]
which proposes to aggregate low-level interpretability results
by calculating their L1 norm. These two variants are denoted
as WebSpotter with Single-stage Summation and WebSpotter
with Finer, respectively. As shown in Table III, both variants
perform worse than the original WebSpotter. Specifically, our
method improves the F1-score by at most 21% compared to the
single-stage summation approach and 9% compared to FINER.
These results demonstrate that our two-stage aggregation
scheme is better suited for computing the MSU importance.

Third, we evaluate the malicious payload localization
module. We consider two variants for this module: i)
WebSpotter without textual features, which only builds the
importance features of MSUs for the localization model.
ii) WebSpotter without localization models, which directly

uses the MSU importance scores to perform localization,
bypassing the localization model. Specifically, we calculate
importance scores for all MSUs within an HTTP request and
determine a threshold by summing the average and standard
deviation of these scores. MSUs with importance scores
above this threshold are considered as malicious. The original
WebSpotter effectively improves the localization accuracy
compared with only considering the importance features,
showing that the textual features provide valid information to
complement the MSU importance. Compared with WebSpotter
without localization models, our scheme also provides valid
improvements in all datasets. This is because not all MSUs
with high importance scores are necessarily malicious, and
only relying on a threshold-based strategy is inadequate for
precise localization. We present a representative example in
Appendix F to further illustrate this issue.

D. Robustness under Data Poisoning

We evaluate the robustness of WebSpotter against data
poisoning attacks by considering poisoning both the detection
model and the localization model. Specifically, we simulate
poisoning by manipulating samples in the training dataset of
both models. For the detection model poisoning, we replace
the class labels of requests with incorrect labels. For the
localization model poisoning, we modify the location ground
truth of requests, reassigning malicious labels to random
MSUs in the request. We vary the poisoning ratios over [0.1%,
1%, 5%, 10%] and conduct experiments for both models when
the labeling overhead is set to 1% and 100%. Note that, both
kinds of poisoning attacks are hard to launch in practice,
especially the localization model poisoning, as the ground truth
is mainly provided by security operators.

Figure 8 presents the localization performance under de-
tection model poisoning and localization model poisoning.
Under detection model poisoning in Figures 8a and 8b, it can
be seen that, except for PKDD, the localization performance
only degrades slightly when the ratio increases. On the PKDD
dataset, the localization performance drops significantly with
a larger poisoning ratio, especially when the labeling overhead
is 1%. This is because, in the PKDD dataset, benign payloads
are anonymized into random strings. The detection model is

10

5 10 15 20
K

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
1-

S
co

re

CSIC PKDD FPAD FPAD-OOD

0 0.1 1 5 10

Poisoning Ratio (%)

0.80

0.85

0.90

0.95

1.00

F
1-

S
co

re

(a) Detection model - 1%

0 0.1 1 5 10

Poisoning Ratio (%)

0.80

0.85

0.90

0.95

1.00

F
1-

S
co

re

(b) Detection model - 100%

0 0.1 1 5 10

Poisoning Ratio (%)

0.80

0.85

0.90

0.95

1.00

F
1-

S
co

re

(c) Localization model - 1%

0 0.1 1 5 10

Poisoning Ratio (%)

0.80

0.85

0.90

0.95

1.00

F
1-

S
co

re

(d) Localization model - 100%

Fig. 8: Localization performance under detection and localiza-
tion model poisoning with 1% and 100% labeling overhead.

more likely to incorrectly capture the relationship between
features and maliciousness when learning from poisoning
samples created from these payloads. Under localization model
poisoning in Figures 8c and 8d, the performance generally
remains stable compared to detection model poisoning, with
the exception of the 1% data poisoning on the CSIC dataset.
Moreover, when the labeling overhead is 100%, the impact
of poisoning is less significant; e.g., the performance only
drops by 1.3% on the CSIC dataset even if the poisoning
ratio is 10%. We argue that more training data enables the
localization model to learn robust features instead of spurious
ones from clean samples, thereby reducing the interference
from poisoned samples. Overall, WebSpotter demonstrates
robustness against poisoning. Additionally, a larger training
dataset can enhance the robustness of the WebSpotter.

E. Evaluations on Real-world Attacks

We also evaluate WebSpotter on real-world Web attacks
collected from recently reported CVEs and two real-world
Web applications sourced from a cloud provider to investigate
the effectiveness of WebSpotter in practical scenarios.
Collection from CVEs. We collect over 750 exploits from
CVEs reported between 2021 and 2024, and perform eval-
uation on these attacks. We manually annotate the collected
attacks to determine the ground-truth locations of malicious
payloads and construct the CVE dataset. Specifically, the
collected CVE attacks are divided into two groups: the first
group comprises CVEs reported in 2021, while the second
group consists of remaining CVEs. The data of the first group
is combined with all training data of FPAD to form the CVE
training set. We train the attack detection model and the
localization model based on this CVE training set. Finally,

TABLE IV: Localization performance on CVE attacks.

Labeling
Overhead Method Pre Rec F1 Jac

100%

LTD 0.365 0.849 0.470 0.356
SSD 0.241 0.891 0.355 0.239
REG 0.241 0.320 0.254 0.224
CLS 0.433 0.977 0.550 0.429
Ours 0.895 0.920 0.891 0.861

1%

LTD 0.357 0.821 0.456 0.350
SSD 0.212 0.886 0.315 0.209
CLS 0.430 0.967 0.544 0.422
Ours 0.861 0.926 0.868 0.827

TABLE V: Classification performance and localization perfor-
mance of WebSpotter on two real-world applications.

Application Classification Localization
Pre Rec F1 Pre Rec F1 Jac

G1 0.930 0.845 0.872 0.923 0.984 0.945 0.930
G2 0.981 0.960 0.970 0.913 0.976 0.928 0.912

we evaluate the localization performance on the second group,
i.e., those CVEs reported between 2022 and 2024.

Table IV shows the results. Our method achieves F1-scores
of 0.87 and 0.89 when the labeling overhead is 1% and 100%,
both significantly outperforming the baselines. These results
demonstrate the effectiveness of our method in handling real-
world attacks. Interestingly, we observe that the performance
of CLS does not exhibit a significant improvement when
the labeling overhead increases from 1% to 100%. The
performance difference between CLS and WebSpotter is
also larger compared to those results on public datasets or
the FPAD dataset.The main reason is that the distribution
of testing data and training data presents a more significant
difference, whereas CLS is not robust in this case. Specifically,
different CVEs may target different Web components and
their requests exhibit high variability, leading to the presence
of numerous unseen but normal payload patterns in the testing
set. However, CLS only relies on the textual features of MSUs
to locate malicious payloads, which makes it ineffective in
handling these unseen patterns of normal payloads.
Collection from Real-world Web applications. We collab-
orate with one of the three major ISPs in China, and collect
HTTP requests of two Web applications (denoted as G1 and
G2) for more than four days based on its cloud services.
G1 and G2 are applications for e-government services hosted
by the service provider. Security experts of the cloud service
provider manually label all attack requests within the data and
identify the positions of malicious payloads. The statistics of
the data collected from these two applications are presented in
Appendix A. For each application, the collected attack requests
are divided into two subsets. The first subset, comprising
attack requests collected on the first day, is combined with the
FPAD training set to train the detection model. The remaining
attack requests are then used as testing requests to evaluate
the localization performance of WebSpotter.

We report both the classification and localization perfor-

11

TABLE VI: Detection performance of WAFs before and after
generating new WAF rules.

Dataset Pre Rec F1
Before After Before After Before After

FPAD 0.999 0.996 0.742 0.934 0.852 0.964
CVE 0.999 0.992 0.840 0.947 0.913 0.969
G1 0.998 0.999 0.358 0.983 0.527 0.991
G2 0.999 0.999 0.744 0.996 0.853 0.998

mance on these testing requests in Table V. It can be ob-
served that WebSpotter still demonstrates high localization
performance when dealing with attacks on real-world web
applications, achieving F1 scores of 0.945 and 0.928 on
the two applications, respectively. Interestingly, although the
detection model demonstrates relatively weak classification
performance on G1, WebSpotter still demonstrates effective
localization capabilities on the same dataset. This is primarily
because the testing requests contain previously unseen attack
patterns, causing the model to misclassify the attack types.
Nevertheless, WebSpotter is still capable of accurately locating
the malicious payloads under such conditions, as the MSU
importance scores of malicious payloads remain markedly
distinct from those of benign payloads.

F. Comparison with LLMs

Recently, some research shows the potential of large lan-
guage models (LLMs) [55] in various security tasks [56], [57],
[58], including Web security [59], [60]. We evaluate whether
LLMs can achieve goals similar to WebSpotter, i.e., locating
malicious payloads in HTTP requests. To this end, we craft a
prompt to guide the LLMs and apply in-context learning [61]
to incorporate the location-labeled training data. The details of
our prompt is available in Appendix H. We use 10 in-context
examples to perform evaluations considering the constraints of
LLM context length and computational overhead. Note that,
we also explore the use of more in-context examples, such as
1% of the attack requests from the training set, but observe
negligible performance improvements, which is also consistent
with the observation of existing studies [62].

The evaluation results are shown in Figure 9. Our method
achieves the best overall performance compared to LLMs
across all datasets. On the FPAD and FPAD-OOD datasets,
GPT4o-mini performs the best among the LLMs and its F1-
score is close to WebSpotter. On the CSIC and PKDD datasets,
LLMs perform significantly worse. We observe that, compared
to WebSpotter, LLMs demonstrate inferior localization perfor-
mance on non-injection attacks (e.g., forceful browsing [63]).
We attribute this to two reasons. First, non-injection attacks
are less prevalent than injection attacks (e.g., SQL injection
and XSS) and consequently appear less frequently in the
training corpora of LLMs. This limits the capability of LLMs
to identify such attacks. Second, LLMs lack the knowledge
of benign request patterns which are helpful for locating the
malicious payloads. Our experimental results demonstrate that
even when equipping LLMs with in-context learning to learn
these patterns, their performance is still inadequate. Effectively

enabling LLMs to learn these patterns remains an open chal-
lenge. Moreover, LLMs are notably slower during inference.
For example, on the FPAD dataset, our method processes each
request in 0.1011 seconds, while Qwen2-72B, and LLaMA3-
70B require 12.3907 and 15.8604 seconds, respectively.

G. Effectiveness of the Rule Generation

In this section, we evaluate the effectiveness of the generated
WAF rules on the FPAD, CVE, G1 and G2 datasets. We select
the Coraza WAF [34], a widely used open-source WAF engine,
for the experiments. The WAF is configured with the OWASP
Core Rule Set (CRS) which is a generic WAF rule set and has
been adopted by many commercial cloud services [64], [65],
[66] as their fundamental configurations.

We conduct the experiments according to the following
procedure. First, we employ the machine learning model and
the WAF separately to detect attacks. Then we identify the
attack requests that are detected by the machine learning
methods but missed by the WAF. Subsequently, new WAF
rules are generated based on these attack requests. Finally, we
add these newly generated rules to the rule set and report the
detection performance of the WAF before and after adding
the new rules. Note that the labeling overhead is set to 1% for
rule generation, and the normal requests of FPAD are added
into the CVE, G1 and G2 dataset for detection performance
evaluation because these datasets only contain attack requests.
As shown in Table VI, the results show that the generated
rules can significantly improve the attack detection rate of the
WAF. For example, on the FPAD dataset, the generated rules
improve the recall by 26% (from 0.741 to 0.934). It can also
be observed that the generated rules may incur a small number
of false positives (FPs) for WAFs. For example, the precision
on the FPAD dataset drops from 0.999 to 0.996. These FPs
arise from limitations in the localization method. Specifically,
the localization method occasionally misclassifies some be-
nign payloads as malicious. Consequently, our rule generation
method is unable to extract effective malicious patterns from
these incorrectly labeled benign payloads, resulting in rules
that produce false positives. As mentioned in Section VI, the
generated rules are not directly deployed into WAFs. Instead,
they serve as the references for the security operators who will
address this small number of FPs when deriving the final rules.

VIII. DISCUSSION

Robustness against adversarial inputs. Some research [67],
[68], [69], [70], [71] proposes to craft adversarial inputs to
evade Web attack detectors. We evaluate two state-of-the-art
methods, i.e., WAF-A-MoLE [70] and AdvSQLi [71], that
generate adversarial SQL injection requests to evade DL-based
detection. We select 194 and 500 SQL injection requests from
the CSIC and FPAD datasets, respectively, and leverage the
two methods to generate the adversarial inputs. The results
show that none of these adversarial inputs can evade our detec-
tor, and WebSpotter remains effective in identifying malicious
payloads. The reason is that both methods attack detectors

12

Precision Recall F1-score Jaccard Index

GPT4-mini Qwen LLaMA Ours

Methods

0.0

0.2

0.4

0.6

0.8

1.0

(a) CSIC

GPT4-mini Qwen LLaMA Ours

Methods

0.0

0.2

0.4

0.6

0.8

1.0

(b) PKDD

GPT4-mini Qwen LLaMA Ours

Methods

0.0

0.2

0.4

0.6

0.8

1.0

(c) FPAD

GPT4-mini Qwen LLaMA Ours

Methods

0.0

0.2

0.4

0.6

0.8

1.0

(d) FPAD-OOD

Fig. 9: Localization performance of LLMs.

that analyze each HTTP field independently. In contrast, Web-
Spotter adopts the end-to-end detection architecture, which can
learn and analyze richer semantics of HTTP requests (e.g., the
interactions and dependencies between HTTP fields) and thus
is more robust against adversarial inputs.
Applicability of WebSpotter. WebSpotter requires white-
box access to the DL-based detector to perform gradient-
based embedding attribution. This requirement is justified,
as localization is designed to complement detection, and
typically both functions are managed by the same operational
team. Nevertheless, WebSpotter can be adapted for black-
box scenarios by substituting the gradient-based attribution
with perturbation-based or surrogate model-based methods
that rely solely on the detector’s output. We have evaluated
such adaptations in our ablation study (Section VII-C), ex-
amining two specific variants: “WebSpotter w/ CADE”, a
perturbation-based method, and “WebSpotter w/ LEMNA”,
a surrogate model-based method. The experimental results
show that, although both alternative approaches slightly reduce
localization accuracy compared to the original WebSpotter,
they consistently outperform baseline methods.

Moreover, WebSpotter is compatible with DL-based detec-
tors that process the entire HTTP request as a unified input
and utilize preprocessing and embedding modules to derive
numerical features. This architecture is common in existing
literature [20], [3], facilitating computing the MSU importance
score through the two-stage aggregation method. Conversely,
a minority of detectors (e.g., [72]) analyze HTTP fields
independently rather than modeling them collectively, which
places them outside the scope of our study. Such methods com-
promise the semantic coherence of HTTP requests and have
been shown to be susceptible to adversarial attacks [70], [71].
Labeling overhead. We assume that a small set of location-

labeled attack requests (e.g., 1% of the training dataset) are
available to train the localization model. This is because
labeling of security-related data imposes significant costs [31].
For instance, the G1 dataset, collected from real-world
environments across five days, requires two security experts
to invest over 16 working hours to analyze attacks and generate
the corresponding location labels. WebSpotter can significantly
reduce this labeling effort by a factor of 100, while maintaining
performance comparable to or even surpassing existing
methods (see Figure 7). Note that this example pertains to a
single Web application, whereas in practice, an organization
typically manages multiple applications. Furthermore,
considering the dynamic nature of Web applications and
continuously evolving attack behaviors, regular labeling of
newly collected samples is critical to ensure model accuracy
and relevancy. Both of these factors significantly amplify the
labeling cost in real-world environments.

Moreover, several studies published in top-tier security
venues also relied on labeled samples with a similar size to
ours. For example, existing works [73], [74], [75] utilized a
minimum of 20, 50, and 250 labeled samples, respectively.

IX. RELATED WORK

Web attack detection. Many machine learning-based meth-
ods have been proposed for detecting Web attacks. These
methods extract features from HTTP requests in an end-to-
end manner [4], [20], [76], [77], [78], [3], and then perform
predictions using either supervised or unsupervised models.
Unsupervised models [79], [4], [20], [80], [81] learn the
patterns of benign HTTP requests and identify requests that
deviate from these patterns, while supervised methods [14],
[82], [83], [77], [76] separately learn the patterns of benign
requests and various types of attack requests.
Classification with localization. Classification with localiza-
tion is a machine learning task. It has been widely studied in
the field of computer vision [84], [85], [86], [87], [49], to not
only classify objects within an image but also accurately de-
termine their locations. The key idea of existing methods is to
add an additional regression model to the original classification
model, which outputs a set of values to indicate the object loca-
tion. To the best of our knowledge, LTD [21] is the only related
method for Web attack detection with localization. LTD adopts
a method similar to Faster R-CNN [86] to identify suspicious
regions in HTTP requests, and then classifies the payloads of
these regions to detect attacks. All these methods require a
large number of location annotations, which are challenging
to obtain due to substantial time and expertise required.
Interpretable deep learning. Recently, many works have
been proposed to improve the interpretability of deep learning
models [9], [88]. A common goal of these studies is to identify
the contribution of each input feature to the prediction of
a model. These methods can be grouped into the following
categories. Back-propagation-based methods [54], [89], [10]
propagate the prediction scores of the models back to the
input features through layers to assess their importance. A
common and simple method is to calculate the gradient at

13

each layer. and propagate it using the chain rule. However,
such methods are hard to be extended to the problem space
because the feature extraction is often not differentiable. We
address this issue in our HTTP-structure alignment module.
Surrogate model-based methods [7], [24], [11] attempt to fit
the original model by training a simpler model. The main
drawback of these methods is that the surrogate models may
not accurately capture the complex behavior of the original
models. Although some studies [7] advocate for increasing the
complexity of surrogate models, their performance remains
inferior to that of the original models. Perturbation-based
methods [12], [90], [91] modify each feature and compute
the changes in model prediction. Intuitively, modifying critical
features will significantly impact the output. How to perturb
the features is a key question considered in existing works.
Common techniques include replacing features with a refer-
ence value [22] or permuting input features [23]. However,
these techniques were initially developed for images or text
and are not well-suited for HTTP requests.

X. CONCLUSION

We propose WebSpotter, a novel framework that achieves
interpretable deep learning-based Web attack detection by
localizing malicious payloads within HTTP requests. We de-
velop a series of novel designs to achieve precise localization.
We also demonstrate how to automatically generate WAF rules
based on the localization results produced by WebSpotter.
We evaluate WebSpotter on two public datasets and our
newly constructed dataset, demonstrating its effectiveness and
practical applications in mitigating attacks.

ETHICS CONSIDERATIONS

This paper aims to defend against Web attacks, and does
not introduce any security risks. To ensure a comprehensive
evaluation of our method, we utilized data collected from real-
world Web applications. The data collection was conducted by
our industrial partner, and all personally identifiable informa-
tion has been removed. We processed the data in an isolated
environment and used it only for research purposes.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments. This work is supported in part by the National
Key Research and Development Program of China under
Grant 2023YFB3107400, the National Natural Science Foun-
dation of China under Grant 62132011, 62472247, 62425201,
62521002, U24B20185, T2442014, U21B2018, U2441240
(“Ye Qisun” Science Foundation) and 62441238, the Shaanxi
Province Key Industry Innovation Program under Grant 2023-
ZDLGY-38 and 2021ZDLGY01-02, and the Ant Group Post-
doctoral Programme. Qi Li is the corresponding author.

REFERENCES

[1] L. U. Maheswari, G. Srivalli, G. Shivani, G. S. Nikitha, and K. Kaveri,
“A novel web attack detection system for internet of things via ensemble
classification,” Turkish Journal of Computer and Mathematics Education
(TURCOMAT), vol. 14, no. 03, pp. 834–845, 2023.

[2] Z. Tian, C. Luo, J. Qiu, X. Du, and M. Guizani, “A distributed
deep learning system for web attack detection on edge devices,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1963–1971,
2019.

[3] Z. Guo, Q. Shang, X. Li, C. Li, Z. Zhang, Z. Zhang, J. Hu, J. An,
C. Huang, Y. Chen et al., “Web-ftp: A feature transferring-based
pre-trained model for web attack detection,” IEEE Transactions on
Knowledge and Data Engineering, vol. 37, no. 3, pp. 1495–1507, 2025.

[4] R. Tang, Z. Yang, Z. Li, W. Meng, H. Wang, Q. Li, Y. Sun, D. Pei,
T. Wei, Y. Xu et al., “Zerowall: Detecting zero-day web attacks through
encoder-decoder recurrent neural networks,” in IEEE INFOCOM, 2020.

[5] B. A. Alahmadi, L. Axon, and I. Martinovic, “99% false positives: A
qualitative study of SOC analysts’ perspectives on security alarms,” in
USENIX Security, 2022, pp. 2783–2800.

[6] F. Wei, H. Li, Z. Zhao, and H. Hu, “xNIDS: Explaining deep learning-
based network intrusion detection systems for active intrusion re-
sponses,” in USENIX Security, 2023, pp. 4337–4354.

[7] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemna: Explaining
deep learning based security applications,” in ACM CCS, 2018, pp. 364–
379.

[8] D. Han, Z. Wang, W. Chen, Y. Zhong, S. Wang, H. Zhang, J. Yang,
X. Shi, and X. Yin, “Deepaid: Interpreting and improving deep learning-
based anomaly detection in security applications,” in ACM CCS, 2021.

[9] Y. He, J. Lou, Z. Qin, and K. Ren, “Finer: Enhancing state-of-the-art
classifiers with feature attribution to facilitate security analysis,” in ACM
CCS, 2023, pp. 416–430.

[10] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in International
conference on machine learning. PMLR, 2017, pp. 3145–3153.

[11] A. S. Jacobs, R. Beltiukov, W. Willinger, R. A. Ferreira, A. Gupta,
and L. Z. Granville, “Ai/ml for network security: The emperor has no
clothes,” in ACM CCS, 2022, pp. 1537–1551.

[12] R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes
by meaningful perturbation,” in CVPR, 2017, pp. 3429–3437.

[13] (2023) Cve-2023-26469. [Online]. Available: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2023-26469

[14] M. Zhang, B. Xu, S. Bai, S. Lu, and Z. Lin, “A deep learning method
to detect web attacks using a specially designed cnn,” in Neural Infor-
mation Processing: 24th International Conference (ICONIP). Springer,
2017, pp. 828–836.

[15] Y. Fang, Y. Qiu, L. Liu, and C. Huang, “Detecting webshell based on
random forest with fasttext,” in Proceedings of the 2018 International
Conference on Computing and Artificial Intelligence, 2018, pp. 52–56.

[16] S. Hao, J. Long, and Y. Yang, “Bl-ids: Detecting web attacks using
bi-lstm model based on deep learning,” in International conference on
security and privacy in new computing environments. Springer, 2019,
pp. 551–563.

[17] R. Fielding, M. Nottingham, and J. Reschke, “Rfc 9112: Http/1.1,” 2022.
[18] T. Berners-Lee, R. Fielding, and L. Masinter, “Rfc 3986: Uniform

resource identifier (uri): Generic syntax,” 2005.
[19] Flatten json. [Online]. Available: https://github.com/amirziai/flatten
[20] P. Li, Y. Wang, Q. Li, Z. Liu, K. Xu, J. Ren, Z. Liu, and R. Lin,

“Learning from limited heterogeneous training data: Meta-learning for
unsupervised zero-day web attack detection across web domains,” in
ACM CCS, 2023, pp. 1020–1034.

[21] T. Liu, Y. Qi, L. Shi, and J. Yan, “Locate-then-detect: Real-time web
attack detection via attention-based deep neural networks.” in IJCAI,
2019, pp. 4725–4731.

[22] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and explaining concept drift samples for
security applications,” in USENIX Security, 2021, pp. 2327–2344.

[23] A. Fisher, C. Rudin, and F. Dominici, “All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class
of prediction models simultaneously,” Journal of Machine Learning
Research, vol. 20, no. 177, pp. 1–81, 2019.

[24] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”
explaining the predictions of any classifier,” in ACM SIGKDD, 2016,
pp. 1135–1144.

[25] B. Jin, Z. Zhou, and J. Zou, “On the saturation phenomenon of stochastic
gradient descent for linear inverse problems,” SIAM/ASA Journal on
Uncertainty Quantification, vol. 9, no. 4, pp. 1553–1588, 2021.

[26] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in International conference on machine learning. PMLR,
2017, pp. 3319–3328.

14

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-26469
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-26469
https://github.com/amirziai/flatten

[27] S. Ding, H. Xu, and P. Koehn, “Saliency-driven word alignment inter-
pretation for neural machine translation,” in Proceedings of the Fourth
Conference on Machine Translation, 2019, pp. 1–12.

[28] M. Srivastava, T. Hashimoto, and P. Liang, “Robustness to spurious
correlations via human annotations,” in International Conference on
Machine Learning. PMLR, 2020, pp. 9109–9119.

[29] Z. Nussbaum, J. X. Morris, B. Duderstadt, and A. Mulyar, “Nomic
embed: Training a reproducible long context text embedder,” arXiv
preprint arXiv:2402.01613, 2024.

[30] A. Kusupati, G. Bhatt, A. Rege, M. Wallingford, A. Sinha, V. Ramanu-
jan, W. Howard-Snyder, K. Chen, S. Kakade, P. Jain et al., “Matryoshka
representation learning,” NeurIPS, vol. 35, pp. 30 233–30 249, 2022.

[31] S. T. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath,
“Throwing darts in the dark? detecting bots with limited data using
neural data augmentation,” in IEEE S&P. IEEE, 2020, pp. 1190–1206.

[32] (2024) SecLang syntax. [Online]. Available: https://coraza.io/docs/
seclang/syntax

[33] (2024) Modsecurity. [Online]. Available: https://modsecurity.org
[34] (2024) Coraza. [Online]. Available: https://coraza.io
[35] (2024) Haproxy waf. [Online]. Available: https://www.haproxy.com/

solutions/web-application-firewall
[36] (2024) Ibm security verify access waf. [Online]. Available: https:

//www.ibm.com/docs/en/sva/10.0.8?topic=firewall-overview
[37] (2024) Vmware avi load balancer waf. [Online]. Available: https:

//docs.vmware.com/en/VMware-Avi-Load-Balancer/30.2/WAF-Guide/
GUID-0BB09D0C-D2A0-459F-9402-EE1485DFEBA1.html

[38] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting.” in OSDI, vol. 4, 2004, pp. 4–4.

[39] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection
signatures using honeypots,” ACM SIGCOMM computer communication
review, vol. 34, no. 1, pp. 51–56, 2004.

[40] F. Nielsen and F. Nielsen, “Hierarchical clustering,” Introduction to HPC
with MPI for Data Science, pp. 195–211, 2016.

[41] (2024) Http dataset csic 2010. [Online]. Available: https://web.archive.
org/web/20220106004901/http://www.isi.csic.es/dataset/

[42] C. Raıssi, J. Brissaud, G. Dray, P. Poncelet, M. Roche, and M. Teisseire,
“Web analyzing traffic challenge: description and results,” in Proceed-
ings of the ECML/PKDD, 2007, pp. 47–52.

[43] (2024) Cve-2021-44228. [Online]. Available: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-44228

[44] (2024) Payloadsallthethings. [Online]. Available: https://github.com/
swisskyrepo/PayloadsAllThe-Things

[45] (2024) xray. [Online]. Available: https://github.com/chaitin/xray
[46] (2024) Burp bounty. [Online]. Available: https://burpbounty.net
[47] T. Liu, Y. Qi, L. Shi, and J. Yan, “Locate-then-detect: Real-time

web attack detection via attention-based deep neural networks,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, 2019.

[48] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in CVPR, 2017, pp. 1251–1258.

[49] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in ECCV. Springer,
2016, pp. 21–37.

[50] J. M. H. Noothout, B. D. D. Vos, J. M. Wolterink, E. M. Postma,
and I. Igum, “Deep learning-based regression and classification for
automatic landmark localization in medical images,” IEEE Transactions
on Medical Imaging, 2020.

[51] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Beyond sliding
windows: Object localization by efficient subwindow search,” in CVPR.
IEEE, 2008, pp. 1–8.

[52] O. O. Koyejo, N. Natarajan, P. K. Ravikumar, and I. S. Dhillon,
“Consistent multilabel classification,” NeurIPS, 2015.

[53] M. Scott, L. Su-In et al., “A unified approach to interpreting model
predictions,” NeurIPS, vol. 30, pp. 4765–4774, 2017.

[54] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

[55] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” NeurIPS, pp.
27 730–27 744, 2022.

[56] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” in NDSS, 2024.

[57] J. He and M. Vechev, “Large language models for code: Security
hardening and adversarial testing,” in ACM CCS, 2023, pp. 1865–1879.

[58] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
zero-shot vulnerability repair with large language models,” in IEEE S&P.
IEEE, 2023, pp. 2339–2356.

[59] R. Fang, R. Bindu, A. Gupta, Q. Zhan, and D. Kang, “Llm agents can
autonomously hack websites,” arXiv preprint arXiv:2402.06664, 2024.

[60] ——, “Teams of LLM agents can exploit zero-day vulnerabilities,” arXiv
preprint arXiv:2406.01637, 2024.

[61] Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu,
B. Chang et al., “A survey on in-context learning,” in EMNLP, 2024,
pp. 1107–1128.

[62] Y. Hao, Y. Sun, L. Dong, Z. Han, Y. Gu, and F. Wei, “Structured prompt-
ing: Scaling in-context learning to 1,000 examples,” arXiv preprint
arXiv:2212.06713, 2022.

[63] (2018) Forceful browsing. [Online]. Available: https://capec.mitre.org/
data/definitions/87.html

[64] (2024) Cloudflare waf. [Online]. Available: https://developers.cloudflare.
com/waf/managed-rules/reference/owasp-core-ruleset/

[65] (2024) Cloud armor. [Online]. Available: https://cloud.google.com/
armor/docs/rule-tuning

[66] (2024) Microsoft azure waf. [Online]. Avail-
able: https://learn.microsoft.com/en-us/azure/web-application-firewall/
ag/application-gateway-crs-rulegroups-rules

[67] M. Hemmati and M. A. Hadavi, “Bypassing web application firewalls
using deep reinforcement learning.” ISeCure, vol. 14, no. 2, 2022.

[68] D. Appelt, C. D. Nguyen, A. Panichella, and L. C. Briand, “A machine-
learning-driven evolutionary approach for testing web application fire-
walls,” IEEE Transactions on Reliability, 2018.

[69] M. Amouei, M. Rezvani, and M. Fateh, “Rat: Reinforcement-learning-
driven and adaptive testing for vulnerability discovery in web application
firewalls,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 5, pp. 3371–3386, 2021.

[70] L. Demetrio, A. Valenza, G. Costa, and G. Lagorio, “Waf-a-mole: evad-
ing web application firewalls through adversarial machine learning,” in
Proceedings of the 35th Annual ACM Symposium on Applied Computing,
2020, pp. 1745–1752.

[71] Z. Qu, X. Ling, T. Wang, X. Chen, S. Ji, and C. Wu, “Advsqli: Gen-
erating adversarial sql injections against real-world waf-as-a-service,”
IEEE Transactions on Information Forensics and Security, vol. 19, pp.
2623–2638, 2024.

[72] Waf-brain. [Online]. Available: https://github.com/BBVA/waf-brain
[73] A. S. Li, A. Iyengar, A. Kundu, and E. Bertino, “Revisiting concept

drift in windows malware detection: Adaptation to real drifted malware
with minimal samples,” in NDSS, 2025.

[74] Y. Chen, Z. Ding, and D. Wagner, “Continuous learning for android
malware detection,” in USENIX Security, 2023, pp. 1127–1144.

[75] Y. Qing, Q. Yin, X. Deng, Y. Chen, Z. Liu, K. Sun, K. Xu, J. Zhang, and
Q. Li, “Low-quality training data only? a robust framework for detecting
encrypted malicious network traffic,” in NDSS, 2024.

[76] J. Liang, W. Zhao, and W. Ye, “Anomaly-based web attack detection:
a deep learning approach,” in Proceedings of the 2017 VI International
Conference on Network, Communication and Computing, 2017.

[77] M. Gniewkowski, H. Maciejewski, T. R. Surmacz, and W. Walentynow-
icz, “Http2vec: Embedding of http requests for detection of anomalous
traffic,” arXiv preprint arXiv:2108.01763, 2021.

[78] G. Betarte, Á. Pardo, and R. Martı́nez, “Web application attacks de-
tection using machine learning techniques,” in 2018 17th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA).
IEEE, 2018, pp. 1065–1072.

[79] A. M. Vartouni, S. S. Kashi, and M. Teshnehlab, “An anomaly detection
method to detect web attacks using stacked auto-encoder,” in 2018 6th
Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE,
2018, pp. 131–134.

[80] S. Park, M. Kim, and S. Lee, “Anomaly detection for http using
convolutional autoencoders,” IEEE Access, 2018.

[81] A. Moradi Vartouni, M. Teshnehlab, and S. Sedighian Kashi, “Leverag-
ing deep neural networks for anomaly-based web application firewall,”
IET Information Security, vol. 13, no. 4, pp. 352–361, 2019.

[82] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, “Detecting
android malware leveraging text semantics of network flows,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 5, pp.
1096–1109, 2017.

15

https://coraza.io/docs/seclang/syntax
https://coraza.io/docs/seclang/syntax
https://modsecurity.org
https://coraza.io
https://www.haproxy.com/solutions/web-application-firewall
https://www.haproxy.com/solutions/web-application-firewall
https://www.ibm.com/docs/en/sva/10.0.8?topic=firewall-overview
https://www.ibm.com/docs/en/sva/10.0.8?topic=firewall-overview
https://docs.vmware.com/en/VMware-Avi-Load-Balancer/30.2/WAF-Guide/GUID-0BB09D0C-D2A0-459F-9402-EE1485DFEBA1.html
https://docs.vmware.com/en/VMware-Avi-Load-Balancer/30.2/WAF-Guide/GUID-0BB09D0C-D2A0-459F-9402-EE1485DFEBA1.html
https://docs.vmware.com/en/VMware-Avi-Load-Balancer/30.2/WAF-Guide/GUID-0BB09D0C-D2A0-459F-9402-EE1485DFEBA1.html
https://web.archive.org/web/20220106004901/http://www.isi.csic.es/dataset/
https://web.archive.org/web/20220106004901/http://www.isi.csic.es/dataset/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://github.com/swisskyrepo/PayloadsAllThe-Things
https://github.com/swisskyrepo/PayloadsAllThe-Things
https://github.com/chaitin/xray
https://burpbounty.net
https://capec.mitre.org/data/definitions/87.html
https://capec.mitre.org/data/definitions/87.html
https://developers.cloudflare.com/waf/managed-rules/reference/owasp-core-ruleset/
https://developers.cloudflare.com/waf/managed-rules/reference/owasp-core-ruleset/
https://cloud.google.com/armor/docs/rule-tuning
https://cloud.google.com/armor/docs/rule-tuning
https://learn.microsoft.com/en-us/azure/web-application-firewall/ag/application-gateway-crs-rulegroups-rules
https://learn.microsoft.com/en-us/azure/web-application-firewall/ag/application-gateway-crs-rulegroups-rules
https://github.com/BBVA/waf-brain

[83] J. Liu, X. Song, Y. Zhou, X. Peng, Y. Zhang, P. Liu, D. Wu, and C. Zhu,
“Deep anomaly detection in packet payload,” Neurocomputing, vol. 485,
pp. 205–218, 2022.

[84] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, 2014.

[85] R. Girshick, “Fast r-cnn,” in CVPR, 2015, pp. 1440–1448.
[86] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” NeurIPS, vol. 28, 2015.
[87] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” in CVPR, 2016, pp. 779–788.
[88] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on

explainable artificial intelligence (xai),” IEEE access, vol. 6, pp. 52 138–
52 160, 2018.

[89] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and understanding
neural models in nlp,” arXiv preprint arXiv:1506.01066, 2015.

[90] J. Li, W. Monroe, and D. Jurafsky, “Understanding neural networks
through representation erasure,” arXiv preprint arXiv:1612.08220, 2016.

[91] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV. Springer, 2014, pp. 818–833.

[92] J. He, K. Chen, G. Meng, J. Zhang, and C. Li, “Good-looking but lacking
faithfulness: Understanding local explanation methods through trend-
based testing,” in ACM CCS, 2023, pp. 431–445.

APPENDIX

A. Dataset Statistics

The statistics of datasets are shown in Table VII. Note
that, FPAD-OOD involves only the testing set and does not
contain normal requests. We test the localization performance
on FPAD-OOD based on the training data of FPAD.

The statistics of real-world attacks collected from two Web
applications are shown in Table VIII.

TABLE VII: Statistics of our experimental datasets.

Dataset Class # Training # Testing # Testing
Attacks

CSIC 2 25701 8576 3935
PKDD 8 40092 10024 3041
FPAD 5 38179 16363 10771

FPAD-OOD 4 - 21306 21306

TABLE VIII: Statistics of the real-world attacks collected from
two Web applications.

Application Collection Time # Attack requests

G1 5 Days 5.87K
G2 18 Days 1.83K

B. Construction Details of the FPAD Dataset

The FPAD dataset directly inherits the normal requests from
the CSIC dataset, while the attack requests are regenerated. To
generate valid attacks, we collect more than 1580 malicious
payloads from existing Web attack scanners and open-source
projects. These malicious payloads can be applied to normal
requests through various techniques, such as concatenation
and substitution, to form new attack requests. We utilize an
existing Web security tool, Burp Bounty, which provides off-
the-shelf implementations for this purpose. Moreover, data
transformation techniques are applied to enhance the diversity
of attack requests. Specifically, all parameters along with their
potential values are extracted from the non-malicious fields in

TABLE IX: Detection performance with different structures.

Model # Params Dataset Pre Rec F1

TextCNN 1.37M FPAD 0.999 0.999 0.999
FPAD-OOD 0.973 0.967 0.970

Bi-LSTM 4.26M FPAD 0.999 0.999 0.999
FPAD-OOD 0.951 0.935 0.943

FastText 0.06M FPAD 0.955 0.955 0.954
FPAD-OOD 0.932 0.895 0.913

TABLE X: Localization performance of WebSpotter with
different model structures.

Method FPAD FPAD-OOD
Pre Rec F1 Pre Rec F1

TextCNN 1% 0.987 0.993 0.988 0.962 0.981 0.964
Bi-LSTM 1% 0.947 0.988 0.960 0.934 0.974 0.944

FastText 1% 0.948 0.986 0.960 0.946 0.977 0.954

TextCNN 100% 0.997 0.997 0.997 0.993 0.987 0.988
Bi-LSTM 100% 0.995 0.997 0.996 0.985 0.986 0.985

FastText 100% 0.995 0.996 0.995 0.990 0.989 0.989

both CSIC normal and abnormal requests, and assigned to the
generated attack requests. Finally, we perform dataset splitting
and create the FPAD training set, FPAD testing set, and FPAD-
OOD set. In the training set and testing set, the attack requests
are generated based on the same set of malicious payloads, but
they differ in their normal payloads. For the OOD dataset,
we use a separate collection of malicious payloads. These
payloads are carefully selected based on expert experience
and exhibit greater complexity and distinct characteristics
compared to those in the training set.

C. Selection of the Detection Model

We also evaluate two other DL-based Web attack detection
models in addition to TextCNN, i.e., Bi-LSTM [16] and
FastText [15]. Table IX shows their attack detection perfor-
mance on FPAD and FPAD-OOD datasets. It can be seen that
TextCNN achieves the best detection performance, especially
on the FPAD-OOD dataset. Consequently, we select TextCNN
for evaluations in Section VII. Table X further shows the local-
ization performance of WebSpotter on these detection models.
It can be observed that our method consistently demonstrates
high localization performance across various models, which
confirms its generality and effectiveness.

D. Implementation details of Existing methods

This section provides the implementation details of existing
methods mentioned in our work. We first describe the imple-
mentation details of baseline methods, including LTD, SSD,
REG and CLS.
LTD. LTD [47] proposes a payload locating network (PLN)
to identify malicious payloads within HTTP requests. PLN is
inspired by the region proposal techniques in image processing
[86]. It utilizes a sliding window mechanism to generate a
set of candidate regions (namely anchors) on the feature map
and employs two sibling convolutional layers to predict the

16

position and classification confidence of each region. The
output includes the coordinates of candidate regions and their
corresponding probabilities of containing a malicious payload.
We follow the core settings of the original paper. Each input is
embedded into a tensor of shape 1000×8×1 and processed to
generate a 32× 8 feature map. Then, 32× 75 = 2400 anchors
are generated based on the feature map. During the training
phase, we also balance the data by limiting the proportion of
negative to positive anchors to a maximum ratio of 3:1.
SSD. SSD [49] is originally designed for object localization,
and we adapt it for Web attack detection based on the design
of LTD. SSD generates multi-scale feature maps by applying
a series of down-sampling blocks and then produces anchors
on each feature map. Unlike LTD, SSD directly predicts
the final class label for each anchor, rather than performing
a binary classification to determine whether it contains
malicious payloads.
REG. REG[50] formulates a regression task to predict the
locations of malicious payloads as a set of string indices. We
enhance TextCNN with two fully connected heads, enabling it
to simultaneously perform the regression task for malicious
payload localization and the classification task for attack
detection.
CLS. CLS[51] treats each MSU as an independent entity and
assesses its potential maliciousness. It first segments the HTTP
request into MSUs and extracts textual semantic features for
each MSU using the Nomic-embed technique. A random forest
classifier is then trained based on these features to predict
whether each MSU contains a malicious payload. The model
architecture and hyperparameters used in CLS are identical to
those in WebSpotter.

The localization results of LTD, SSD, and REG consist of a
set of string indices representing the start and end positions of
malicious payloads within the HTTP request. To process these
predicted regions, we first apply Non-Maximum Suppression
(NMS) to eliminate overlapping and redundant regions. These
regions are then mapped to minimal semantic units (MSUs).
Specifically, an MSU is identified as malicious if its inter-
section over union (IoU) with a predicted region exceeds a
predefined threshold, which is set at 0.7. If a predicted region
does not sufficiently overlap any MSU, the MSU with the
highest IoU to this region is identified as malicious. Moreover,
considering that WebSpotter leverages full classification labels
during training the detection model, we replace the embedding
layers of these three baselines with the trained embedding
layer from the detection model to ensure a fair comparison.

Next, we elaborate on the implementation details of inter-
pretability methods referenced in our ablation study.
SHAP. SHAP[53] uses Shapley values from cooperative game
theory to quantify feature contributions. We use KernelSHAP,
which is a model-agnostic method that approximates Shapley
values using synthetic samples, and set the number of synthetic
samples to 500. We follow the previous studies [92] to perturb
all embedding features associated with each token and obtain
token importance scores. Then, we utilize the protocol-level

5 10 15 20
K

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
1-

S
co

re

CSIC PKDD FPAD FPAD-OOD

5 10 15 20
dI(size of the importance features)

0.90

0.92

0.94

0.96

0.98

1.00

F
1-

S
co

re

(a) dI - 1%

5 10 15 20
dI(size of the importance features)

0.90

0.92

0.94

0.96

0.98

1.00

F
1-

S
co

re

(b) dI - 100%

64 128 256 512
dS(size of the textual features)

0.90

0.92

0.94

0.96

0.98

1.00

F
1-

S
co

re

(c) dS - 1%

64 128 256 512
dS(size of the textual features)

0.90

0.92

0.94

0.96

0.98

1.00

F
1-

S
co

re

(d) dS - 100%

Fig. 10: Impact of dI and dS on localization performance with
1% and 100% labeling overhead.

aggregation from our method to further compute the MSU
importance score.
LEMNA. LEMNA[7] is a surrogate model-based method that
uses a mixture regression model with fused lasso to approxi-
mate local decision boundaries of deep learning models. We
follow the original paper and set the number of synthesized
samples to 500. The fused lasso regression is implemented
using the genlasso package in R. Additionally, we group all
embedding features associated with each token into a unit and
calculate an importance score for each token.
CADE. CADE[22] identifies important features by modifying
the features of samples and observing the output changes.
Following this idea, we replace each original token of a request
with a padding token and compute the importance score of
each token by measuring the differences in the model’s output
category prediction probabilities.

E. Hyperparameter Sensitivity

To evaluate the hyperparameter sensitivity of WebSpotter,
we analyze the impact of two key parameters on localization
performance: the size dI of the importance features and the
size dS of the textual semantic features.

We vary dI from 5 to 20 in Figures 10a and 10b. dI has
a negligible influence on the localization performance. For
example, the CSIC dataset showed the largest performance
change, with only a 0.02 difference between the best and
worst cases. Increasing dI does not always result in improved
localization performance, since the localization model
primarily depends on the importance score of the target
MSU, with sibling MSU scores providing supplementary
information. The performance remains stable as long as dI is
sufficiently large to include the most relevant sibling MSUs.

17

TABLE XI: Jaccard Index of various variants of WebSpotter.

Method CSIC PKDD FPAD FPAD-OOD

WebSpotter w/ CADE 0.884 0.978 0.957 0.941
WebSpotter w/ SHAP 0.439 0.956 0.925 0.902
WebSpotter w/ Lemna 0.817 0.897 0.948 0.932
WebSpotter w/ VG 0.876 0.906 0.957 0.947

WebSpotter w/ S.S. 0.755 0.894 0.961 0.938
WebSpotter w/ FINER 0.867 0.910 0.973 0.955

WebSpotter w/o T.F. 0.965 0.970 0.923 0.890
WebSpotter w/o L.M. 0.948 0.961 0.930 0.898

Original WebSpotter 0.968 0.983 0.983 0.959

GET /tienda1/miembros/editar.jsp?modo=registro&login=%22+AND+
%221%22%3D%221&password=trariloNgO&nombre=Gelsomino&apell
idos=Zuazo+Suela&email=gopi_belcher%40bahiadelasirenas.mq&dni=15
074727K&direccion=Baixada+Can+Llobet+124%2C+&ciudad=San+Mig
uel+de+Bernuy&cp=32089&provincia=Baleares+%28Illes%29&ntc=128
5539651029120&B1=Registrar HTTP/1.1
…

Fig. 11: An example showing the limitation of “WebSpotter
without localization models (L.M.)”, where the malicious pay-
loads located by “WebSpotter without L.M.” are highlighted in
red and the email parameter is incorrectly identified.

We vary dS from 64 to 512 in Figures 10c and 10d.
When the labeling overhead is 100%, the localization perfor-
mance remains stable. At 1% labeling overhead, stability is
maintained for embedding sizes below 256, but performance
degrades as dS increases to 512. This is because machine
learning models with high complexity require more training
data. If the labeling overhead is too low, the available training
data becomes insufficient to effectively optimize the models.

F. Additional Results of the Ablation Study

We provide the results of Jaccard Index of ablation study in
Table XI. These results exhibit a trend similar to that of the F1-
scores shown in Table III, and demonstrate the effectiveness
of each individual module of WebSpotter.

We present a representative example in Figure 11 to further
illustrate why “WebSpotter without localization models” is in-
adequate for precise localization. In this example, although the
detection model correctly identifies the request as an attack,
it considers the email field to have a significant impact on
the prediction, which is mainly because the content of email
parameter is unknown for the detection model and contains
some special characters. Consequently, the email parameter
is incorrectly identified as malicious. In contrast, the original
WebSpotter successfully recognizes the email parameter as
benign by incorporating the textual semantics of MSUs.

G. Computational Overhead

We evaluate the training and inference time of different
methods when the labeling overhead is set to 1%. As shown in
Figure 12, our method and CLS have computational overheads
of the same order of magnitude, while SSD and LTD incur

Training Time Inference Time

LTD SSD CLS Ours

101

102

103

104

T
im

e
(s

ec
on

d
s)

(a) CSIC

LTD SSD CLS Ours

101

102

103

104

T
im

e
(s

ec
on

d
s)

(b) PKDD

LTD SSD CLS Ours

101

102

103

104

105

T
im

e
(s

ec
on

d
s)

(c) FPAD

LTD SSD CLS Ours

101

102

103

104

105

T
im

e
(s

ec
on

d
s)

(d) FPAD-OOD

Fig. 12: Computational overhead of different methods.

Definition: Your task is to locate malicious payloads in an HTTP
request. The HTTP request will be divided into minimal semantic units
(MSUs), and the input is an array of strings, where each string
represents an MSU of the HTTP request. The output should be a
dictionary in JSON format, where the key is a string from the input
array, and the value is 0 or 1. A value of 0 indicates that the unit does
not contain malicious payloads, and a value of 1 means otherwise.

Example-1:
Input: ["POST", "/tienda1", "/<marquee loop=1 width=0
onfinish=alert(1)>", "/anadir.jsp", "id=2", "nombre=Iber",
"precio=5003",
"cantidad=64", "B1=Entrar"]
Output: {"POST": 0, "/tienda1": 0, "/<marquee loop=1 width=0
onfinish=alert(1)>": 1, "/anadir.jsp": 0, "id=2": 0, "nombre=Iber": 0,
"precio=5003": 0, "cantidad=64": 0, "B1=Entrar": 0}

Example-2 :
…

User Input : {input}

Prompt

Fig. 13: Prompt for LLM-based malicious payload localiza-
tion.

costs at least one order of magnitude higher. For example,
on the FPAD dataset, the inference time per attack request
is 0.1011 seconds for our method, 0.0413 seconds for CLS,
1.1659 seconds for LTD, and 6.7864 seconds for SSD. Com-
pared to CLS, our method requires additional time to compute
the MSU importance. The higher computational cost of SSD
and LTD can be attributed to the need to handle a large number
of candidate regions, e.g., LTD generates approximately 2400
candidate regions per request.

H. LLM Prompt

The prompt for LLM-based malicious payload localization
is shown in Figure 13.

18

APPENDIX A
ARTIFACT APPENDIX

Our artifact includes the source code for WebSpotter, along
with the scripts for setting up the environment, the datasets
used in the experiments (including our newly constructed
datasets), and detailed instructions for reproducing the main
results presented in the paper.

A. Description & Requirements

1) How to access: The source code and datasets used in
our study are publicly available at (i) our GitHub repos-
itory: https://github.com/Sec-AI-research/WebSpotter and (ii)
Zenodo: https://doi.org/10.5281/zenodo.16978408.

2) Hardware dependencies: Our artifact needs a machine
with at least 16GB RAM. Although the experiment can be
run directly on the CPU, it is highly recommended to use a
system with an NVIDIA GPU. We used the NVIDIA GeForce
RTX 4090 GPU with 24GB VRAM. This artifact is compatible
with other NVIDIA GPUs that provide sufficient memory
(approximately 12GB VRAM).

3) Software dependencies: The artifact uses Python 3.9.
All required packages are listed in our GitHub repository at
requirements.txt, which can be used to directly construct the
Python environment via pip.

4) Benchmarks: This artifact uses the TextCNN model to-
gether with the FPAD and FPAD-OOD datasets for evaluation.
We have made all datasets publicly available. For more details,
please refer to Section VII.A of the paper.

B. Artifact Installation & Configuration

To streamline the setup process, we provide a script for au-
tomatic environment configuration. After cloning the GitHub
repository, navigate to the project root directory and run the
following commands to create the environment:

conda create -n webspotter python=3.9
conda activate webspotter
pip install -r requirements.txt

C. Experiment Workflow

The experiments of our artifact consists of three main
stages: (i) training a Web attack detection model, (ii) comput-
ing the importance scores of minimal semantic units (MSUs)
within HTTP requests, and (iii) training a localization model
to identify the locations of malicious payloads.

D. Major Claims

• (C1): WebSpotter achieves highly accurate malicious
payload localization when the labeling overhead is set
to 1%. This is supported by experiment (E1), with eval-
uation results reported in Table I of the paper.

• (C2): WebSpotter maintains stable localization perfor-
mance as the labeling overhead changes. This is demon-
strated in experiment (E2), with trends shown in Figure
7 of the paper.

• (C3): WebSpotter exhibits strong generalization capabil-
ity in handling unseen attack patterns. This is validated

through experiment (E3), with detailed results provided
in Table I and Table II of the paper.

E. Evaluation

1) Experiment (E1): [Localization Performance of Web-
Spotter with 1% Labeling Overhead] [2 human-minutes + 40
compute-minutes]: This experiment demonstrates WebSpot-
ter’s ability to achieve accurate malicious payload localization
using only 1% of location-labeled attack requests for training.
The evaluation results are reported in Table I.

[Preparation] First, train a basic DL-based Web attack
detection model. We provide a TextCNN model for this
purpose. The training command is:

python classification/run.py --tmp_dir
datasets/FPAD --tmp_model tmp_model --
dataset fpad

Then, compute the importance scores of minimal semantic
units (MSUs), which are required for training and evaluating
the localization model. The following two commands generate
the importance scores for the training and testing sets, respec-
tively:

python localization/post_explain/
run_explain.py --model_path tmp_model/
textcnn-700-FPAD-512-None-42.pth --
outputdir post_explain_result/fpad/
train --dataset fpad --test_path
datasets/FPAD/train.jsonl

python localization/post_explain/
run_explain.py --model_path tmp_model/
textcnn-700-FPAD-512-None-42.pth --
outputdir post_explain_result/fpad/
test --dataset fpad --test_path
datasets/FPAD/test.jsonl

[Execution] Train the localization model using 1% of
location-labeled attack requests, and evaluate its localization
performance. The command is as follows:

python localization/binary_based/run.py --
feature_method score_sort_with_textemb
--dataset fpad --train_path

post_explain_result/fpad/train/train.
jsonl_withscore --test_path
post_explain_result/fpad/test/test.
jsonl_withscore --output_path
binary_result/fpad_0.01 --sample_rate
0.01

[Results] The evaluation metrics will be printed in the
terminal and the localization results for each request will be
saved in binary_result/fpad_0.01. Expected metrics
for FPAD dataset include Precision > 0.98, Recall > 0.98,
and F1-score > 0.98.

19

2) Experiment (E2): [Localization Performance under
Varying Labeling Overhead] [2 human-minutes + 40 compute-
minutes]: This experiment evaluates WebSpotter’s perfor-
mance when the labeling overhead changes. The results are
reported in Figure 7 of the paper.

[Preparation] Evaluators can reuse the detection model and
MSU importance scores generated in (E1).

[Execution] Train the localization model using different
proportions of location-labeled attack requests, and evaluate
its localization performance. The labeling overhead can be
controlled via the --sample_rate argument, such as 0.01,
0.1, 0.5, and 1. An example command is as follows:

python localization/binary_based/run.py --
feature_method score_sort_with_textemb
--dataset fpad --train_path

post_explain_result/fpad/train/train.
jsonl_withscore --test_path
post_explain_result/fpad/test/test.
jsonl_withscore --output_path
binary_result/fpad_0.5 --sample_rate
0.5

[Results] The evaluation metrics will be printed in the
terminal and the localization results for each request will be
saved in output_path. Expected metrics for above example
include Precision > 0.99, Recall > 0.99, and F1-score > 0.99.

3) Experiment (E3): [Localization Performance of Web-
Spotter on Unseen Attacks] [1 human-minutes + 20 compute-
minutes]: This experiment reproduces the WebSpotter on the
FPAD-OOD dataset to evaluate its generalization capability
when applied to unseen attack patterns. The results are shown
in Table I and Table II of the paper.

[Preparation] Evaluators can reuse the detection model
trained in (E1).

[Execution] First, compute the importance scores of mini-
mal semantic units (MSUs) on the FPAD-OOD dataset. Run
the following command:

python localization/post_explain/
run_explain.py --model_path tmp_model/
textcnn-700-FPAD-512-None-42.pth --
outputdir post_explain_result/fpad-ood
/test --dataset fpad-ood --test_path
datasets/FPAD-OOD/test.jsonl

Then, run WebSpotter on the FPAD-OOD dataset using the
following command:

python localization/binary_based/run.py --
feature_method score_sort_with_textemb
--dataset fpad-ood --train_path

post_explain_result/fpad/train/train.
jsonl_withscore --test_path
post_explain_result/fpad-ood/test/test
.jsonl_withscore --output_path
binary_result/fpad_ood --sample_rate
0.01

[Results] The evaluation metrics will be printed in the termi-
nal and the localization results for each request will be saved in
binary_result/fpad_ood. Expected metrics for FPAD-
OOD dataset include Precision > 0.96, Recall > 0.96, and
F1-score > 0.96.

F. Customization

The above experiments are conducted using the FPAD
dataset. To switch to other dataset, evaluators can mod-
ify the corresponding command-line arguments, such as
--dataset, --train_path, and --test_path, along
with the relevant file or directory paths. Also, the proportion of
location-labeled training data used for the localization model
can be adjusted via the --sample_rate argument.

20

	Introduction
	Background
	Web Attacks
	Deep learning for Web Attack Detection

	Problem Definition
	Overview
	Design Details
	Embedding Attribution
	HTTP-structure Alignment
	Malicious Payload Localization

	Generating WAF Rules
	Rule Format
	Rule Generation

	Evaluation
	Settings
	Localization Performance
	Ablation Study
	Robustness under Data Poisoning
	Evaluations on Real-world Attacks
	Comparison with LLMs
	Effectiveness of the Rule Generation

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Dataset Statistics
	Construction Details of the FPAD Dataset
	Selection of the Detection Model
	Implementation details of Existing methods
	Hyperparameter Sensitivity
	Additional Results of the Ablation Study
	Computational Overhead
	LLM Prompt

	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)

	Customization

