Artifact
Evaluated

ANDss

Available

Functional

Beyond Raw Bytes: Towards Large Malware
Language Models

Luke Kurlandski*, Harel Berger“, Yin Pan*, and Matthew Wright*
* Rochester Institute of Technology, Rochester New York USA
Email: [1k3591|yin.pan|matthew.wright] @rit.edu
' Ariel University, Israel
Email: harelb@ariel.ac.il

Abstract—Malware poses an increasing threat to critical
computing infrastructure, driving demand for more advanced
detection and analysis methods. Although raw-binary malware
classifiers show promise, they are limited in their capabilities
and struggle with the challenges of modeling long sequences.
Meanwhile, the rise of large language models (LLMs) in nat-
ural language processing showcases the power of massive, self-
supervised models trained on heterogeneous datasets, offering
flexible representations for numerous downstream tasks. The
success behind these models is rooted in the size and quality
of their training data, the expressiveness and scalability of their
neural architecture, and their ability to learn from unlabeled
data in a self-supervised manner.

In this work, we take the first steps toward developing large
malware language models (LMLMs), the malware analog to
LLMs. We tackle the core aspects of this objective, namely,
questions about data, models, pretraining, and finetuning. By
pretraining a malware classification model with language model-
ing objectives, we were able to improve downstream performance
on diverse practical malware classification tasks on average by
1.1% and up to 28.6%, indicating that these models could serve
to succeed raw-binary malware classifiers.

I. INTRODUCTION

Raw-binary malware classifiers, such as MalConv [1], have
gained significant attention in recent years [2], [3], [4], [5],
[6]. Instead of relying on hand-engineered features extracted
from the binary, these models learn representations directly
from the file’s raw bytes using a deep neural network (DNN).
This approach is attractive for its minimal reliance on domain-
specific heuristics and its ability to potentially detect subtle
cues of maliciousness that handcrafted features might not be
capable of representing. Yet, despite encouraging results, the
raw-binary modeling paradigm has been confined to relatively
small, lightweight architectures. These constraints stem from
the inherent difficulty of processing extremely long sequences
of bytes with neural networks and the enormous computational
resources needed to store, process, and learn from large
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malware corpora [2]. In effect, while raw-binary classifiers
hint at a future of flexible, completely autonomous malware
classification, they are still far from achieving the breadth and
versatility that large DNNs have offered in other domains.

The machine learning community is now witnessing a
paradigm shift driven by large language models (LLMs),
large neural networks trained in a self-supervised manner
on massive, heterogeneous text corpora that can then be
adapted to a variety of downstream tasks. The success of
these models in natural language processing (NLP) is primarily
rooted in the sheer scale of the models themselves [7],
but also the size and quality of their training corpora. By
contrast, today’s raw-binary malware classifiers contain orders
of magnitude fewer parameters. LLMs not only integrate
diverse information sources but also learn powerful, general-
purpose representations with minimal reliance on hand-crafted
features or domain-specific engineering. If these benefits can
be transferred to the malware domain, where each file can
span millions of bytes and subtle cues of maliciousness emerge
from complex global patterns, we could substantially advance
the state of malware analysis.

Adapting this paradigm to the malware domain introduces
unique challenges. At its core, this is a task of represen-
tation learning on code. Unlike other code representation
learning tasks, however, these large malware language models
(LMLMs) will need to ‘eat’ the entire program. Prior appli-
cations of DNNs for binary-code analysis, such as performing
binary code similarity detection at the function level [8], can
make do with examining code in smaller structured units.
In contrast, malware needs to be examined holistically, as
malicious behavior often arises from complex interactions
between disparate blocks of code. To this end, an LMLM
requires representations to be constructed from the entire
program, which can be as large as hundreds of megabytes [2],
far exceeding the context window of industrial-grade LLMs
such as GPT-4 [9]. Since training large neural networks on
long sequences is challenging, the question becomes: How
can we create large malware language models?

Developing an LMLM consists of four main aspects: data,
architecture, pretraining, and finetuning. We aim to provide
insight along each of these axes.

Regarding the data the model is trained upon, we assess
the ability of LMLMs to learn program semantics using three



different views of a binary: raw-byte code, disassembled code,
and decompiled code. In conjunction with NLP-style tokeniza-
tion, we show that these approaches can reduce sequence
lengths by 159x compared to simply using bytes from the
beginning of the binary [1], [2], [3], [4]. While still long, this
reduction in sequence length allows us to use larger, more
capable model architectures with linear [10]—as opposed
to constant [2]—time and memory complexity. When scaling
such models, several works have concluded that the shape
of the model is of little import compared to its size [11].
We show this belief does not hold for networks processing
long sequences, an insight that allows us to use networks with
60x more non-embedding parameters than previous works [3].
After selecting two state-of-the-art architectures, we enhance
them to perform both unidirectional and bidirectional sequence
processing. Next, during pretraining, we investigate how
these architectures perform at different language modeling
tasks, namely, masked and causal language modeling. Malware
is complex, and malicious signals may be sparse and spatially
distant, so the capability of the architecture to model long-
range dependencies is critical. Finally, after pretraining, we
finetune the LMLMs for three downstream tasks: malware
detection, family classification, and behavioral tagging. We
not only explore the performance of different settings but also
seek to determine whether or not pretraining provides tangible
benefits for practical malware analysis tasks.

In this paper, we explore these questions, bridging the gap
between promising raw-binary classifiers and the scale offered
by LLMs. In doing so, we make several publicly available (see
Appendix I) contributions to the security landscape:

(C1) We propose and compare three code-only represen-
tations of PE malware for raw-byte-style malware clas-
sifiers: bytes from executable sections of a binary file,
disassembly, and decompiled code.

(C,) We show that the length of these inputs can be reduced
using NLP-style tokenization by up to 7.7x. Compared
to standard raw-byte classifiers, our sequences are 159x
shorter, enormously reducing computation costs.

(C3) We discover and correct a profound degree of sample
redundancy in PE malware datasets causing train/test
leakage. Uncorrected, the redundancy can lead to overes-
timating classifier performance by up to 35.6%.

(C4) We conduct an architectural analysis of two state-of-
the-art neural networks for long-sequence modeling, il-
lustrating that long-sequence processing networks should
be deep, not wide. Our insights allow us to use models
with 60x more learnable parameters than previous work.

(Cs) We pretrain a suite of LMLMs using long sequences
(4x longer than the Long Range Arena [12]) for language
modeling tasks. We show that high-level representations
of code are easier to model than low-level ones.

(C¢) We conduct extensive and diverse malware classifi-
cation experiments. We demonstrate that pretraining an
LMLM on language modeling can improve classification
performance up to 28.6%.

II. DATA COLLECTION, PROCESSING, & VECTORIZATION

Data is arguably the most critical component of any machine
learning model [13], [14], and especially for LLMs [11], [15].
Much of the design and usage of LMLMs will center around
our ability to reliably represent malware to the model. Unlike
conventional LLMs, however, the data processing pipeline for
LMLMs is entirely unexplored. In this section, we explain our
data collection and preprocessing approach.

A. Collection

Since Windows PE malware is by far the most widespread
type of malware [16], we constrain our study to only consider
PE binaries. We started with over ten million PE binaries from
the Assemblage [17], Bodmas [18], and Sorel [19] datasets.
We then searched a Windows 10 machine for files ending in
‘.exe’ or “.dll’ and added them to our corpus. Next, we used
the Linux file utility to review the collected files and select
samples compiled for 32-bit x86 platforms. At all stages, we
carefully tracked the source and digest of each binary.

Finally, we used diec (Detect-It-Easy [20]) to remove
samples that have been obfuscated by using encryption or
compression. We remove such samples for three reasons:
(1) One of our primary goals is to train statistical language
models on malware. Encrypted and compressed data resembles
random noise, so consequently, a model will degenerate to
random guessing when exposed to such inputs. (i) We are
interested in comparing how networks learn to model the
semantics of the same code represented at different levels of
abstraction. These packed samples cannot be lifted correctly
without de-obfuscation, so including them does not aid our
objective; and (iii) We found that disassembling or decompil-
ing these samples with Ghidra [21] could result in severely
malformed outputs without warning. Unknowingly including
malformed data could impact our learning experiments and
the conclusions we draw from them. In reality, any real anti-
virus organization (AV) would unpack [22] such software
before analysis [23], as this improves the quality of extracted
features [24]. We thus argue that our study approximates the
status of a malware analysis pipeline after de-obfuscation.

After this procedure, we were left with just under two
million files: 31K from the Assemblage corpus, 5.7K from
the Bodmas corpus, 1.9M from the Sorel corpus, and 49K
from the Windows machine.

B. Processing

Malware ultimately exerts its malicious effect through
instructions executed at runtime, making executable code
the most critical component of a binary for analysis. Note
that classifiers based on control-flow [25], [26] or function-
call [27], [28] graphs can accurately detect malware using only
code. Other parts of a binary can often be heavily obfuscated,
trivially manipulated, or even irrelevant to the core logic of the
malware. Focusing just on code thus reduces the likelihood
of the model learning non-robust representations [29]. It
also greatly reduces the number of features that need to be
considered, reducing computational cost. For these reasons, we
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5pb ¢c9 c2 0c 00 POP EBX
LEAVE
RET Oxc

PUSH dword ptr
MOV EAX, [0x10003000]

DIS DEC

[EBP + 0x8] if (param_2 == 1) {

FUN_100011c4();

}

FUN_10001517¢() ;

(* (code *)PTR_FUN_10003000) (
param_1l,param_2,param_3);

return;

Fig. 1: A subset of the same snippet of code using our three basal representations of malware.

propose training our LMLM:s solely on the executable portions
of binaries, in contrast to the standard practice [1], [2] of using
raw bytes from the beginning of a binary (RAW).

We consider three basal representations of malware: bytes
extracted from the executable sections of malware (EXE),
disassembled instructions (DIS), and decompiled code (DEC)
(see Appendix A for a symbol table). The EXE representation
can be attained by applying very basic binary analysis. We
use LIEF [30] to locate sections marked as ‘executable’
or ‘containing code’ and concatenate the bytes from these
sections into a single contiguous block. DIS requires basic
reverse engineering of the binary. We use Ghidra in headless
mode to disassemble raw binaries. We discard the function
signatures, as these require additional inference engines, and
simply consider the instruction stream. DEC requires complete
decompilation of the binary. Again, we use Ghidra in headless
mode, this time keeping all information returned by the decom-
pilation engine, including function names, arguments, return
types, and calling conventions. Each representation offers an
increasing amount of semantically dense information, but it
comes at the cost of introducing more noise, since disassembly
is imperfect [31] and decompilation is often convoluted [32].
Figure 1 presents an example of the output of this process.

Automating reverse engineering in this manner is far from
infallible, especially when considering malware that is inten-
tionally designed to be difficult to analyze. These challenges
are compounded in the context of LMLMs, where — unlike
typical LLM training — obtaining quality data can be costly,
time-consuming, and error-prone. Using a combined 256 cores
and 2TB of memory, our Ghidra scripts took over two weeks
on our computing cluster, with the majority of this effort taken
up by decompilation. In contrast, we can parse the PE headers
to extract the location of the executable sections in under a day
on a single machine. If the efforts required to prepare data for
LMLMs using one representation are too costly or prone to
misrepresentation, then there is a strong incentive to choose a
different representation. Appendix B details the computational
cost of attaining each representation. In brief, on a multicore
server, EXE can be extracted in about a millisecond while
DIS and DEC take 8 and 14 seconds/sample, respectively, on
average. Weighing the benefits of using higher-level represen-
tations is a decision implementers need to make based on their
ability to automate the binary analysis process. To encourage
reproducibility, we release our system for cluster-scale binary
analysis. The 4.11TB of binary, assembly, and decompiled
code we attained using it is available upon request.

Preprocessing malware binaries can be either fast and
easy or slow and arduous, depending on the chosen
representation. Low-level representations are easier to
obtain but are likely harder for models to learn from.

C. Vectorization

After attaining data (bytes and text) representing malware,
we need a way to represent it numerically to the model,
that is, to vectorize it. Many ML applications have found
success representing such data as discrete tokens and mapping
each token to a unique dense embedding vector [33]. For
binary code, numerous approaches to defining a token have
been proposed, including schemes that consider each opcode,
mnemonic, and/or instruction to be a token [34], [8], [35],
or more simply, considering each byte (BYT), as raw-byte
classifiers do [1].

Given our diverse EXE, DIS, and DEC representations, rather
than devise custom tokenization schemes for each, we propose
to use subword tokenization [36] for all three. Subword
tokenization begins with a coarse pre-tokenization [37] phase
that breaks text into larger units called words. We perform pre-
tokenization as follows: (i) for EXE, we model every sixteen
consecutive bytes as a word; (ii) for DIS, we model each
instruction as a word; and (iii) for DEC, we model each
line of code as a word. After this, the larger word units
are broken down into smaller components, e.g., using the
byte pair encoding [36] (BPE) algorithm or unigram language
models [38] (UNI).

Subword tokenization comes with several compelling bene-
fits. First, by modeling subword units, we can circumvent out-
of-vocabulary issues without turning to handcrafted normaliza-
tion procedures, all while maintaining a relatively small vo-
cabulary size. This eliminates the risk of accidentally stripping
away critical information before the model has a chance to
process it. Second, tokenization is a form of compression [39];
since we reserve one token for each byte/character instead of
using an [OOV] token, this compression is lossless. This side
effect is compelling for our use case, as the overwhelming
length of malware has long been a barrier to the direct ap-
plication of sequence learning models [2]. To our knowledge,
only Rudd et al. [40] have previously considered tokenization
as the vectorization step for raw-byte classifiers, but their study
did not explore vocabularies larger than 396 tokens.
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Fig. 2: Impact of vocabulary on sequence length. We trim the longest 5% of samples to make the violin plots more interpretable.
The yellow dot and black bar display the median and quartiles, respectively, including the longest 5%.

The consequences of long sequences are discussed in greater
detail in Section IV, but we briefly discuss some basic
measurements of sequence lengths for our different input
representations (EXE, DIS, DEC, and RAW) and vectorization
strategies (BPE, UNI, and BYT). For each configuration, we
trained a tokenizer on 5K samples (the raw-byte approach,
BYT, does not require training). In Figure 2, we plot the
distribution of sequence lengths after tokenization on a set of
10K samples. Appendix C provides exact compression ratios.

We see that selecting code sections from binaries greatly
reduces the number of tokens that need to be processed,
even before tokenizing, by up to 20.7x. After tokenizing,
our code-only sequences are up to 159x shorter than those
used in contemporary works [1], [2]. In general, we see that
using larger vocabulary sizes results in shorter sequences, as
expected, with BPE slightly edging out the UNI tokenizer.
Interestingly, we see that the disassembled and decompiled
code can be compressed much further than the byte-based
inputs, perhaps indicating a smoothness in high-level code.
Based on these results, we opt to use byte-pair encoding
tokenizers with a vocabulary size of 16,384 tokens, as these
always achieve the highest compression ratios. In Appendix E,
we further demonstrate that malware language models trained
using this vocabulary achieve better performance than those
using unigram or smaller vocabularies.

Code-only representations are out-of-the-box much
shorter than full binaries. Tokenization is a powerful,
data-driven form of lossless compression that can uni-
versally reduce malware sequence lengths even further.

III. RECONCILING DATA REDUNDANCY

Since executables commonly perform similar operations,
we expect there to be a large amount of redundancy (or
duplication) within samples, e.g., many C projects may contain
an implementation of a linked list, so these structures might
exist in many malware samples. Since our objective is to
develop a representation for an entire program, we do not em-
ploy any de-duplication within each sample, as is often done
when training LLMs for natural language understanding [41].
However, after preprocessing our binaries, we discovered a

remarkable number of binaries have entirely identical code,
as determined by comparing the MD5 digests of the binaries’
EXE, DIS, and DEC representations.

Let us define a malware species as a group of binaries that
share identical executable code. Out of our collection of 1.9M
malware samples from the Sorel corpus, we found there are
only 720K unique species; moreover, 10% of the binaries from
this collection belong to only four species. Contrast this with
our benign corpus sampled from Assemblage, where 95% of
the corpus consists of singletons. We display the full extent
of this phenomenon in Figure 3. Here, we measure what we
term the individual redundancy and the cumulative redundancy
within the Sorel and Assemblage corpora. The individual
redundancy depicts each species’ proportional representation
in the dataset. For example, in the Sorel plot, we see that a little
more than 4% of the dataset consists of samples belonging to
the most common species. The cumulative redundancy depicts
the proportion of the dataset that is made up of the £ most
common species. In the Sorel plot, we see that just under 20%
of the corpus consists of the ten most frequent species. From
these figures, we see that a profound degree of redundancy
exists in the malware corpus, but not in the benign corpus.
Although Sorel is the largest publicly available dataset that
provides PE binaries, its internal homogeneity has apparently
been unknown to the community before now.

The power of LLMs arises from not only the size of
the model but also the quality of the training data [42].
Therefore, we are particularly concerned about redundancy
leading to train-test leakage and overly optimistic performance
evaluations of malware detection systems. To mitigate this, we
discard all but one sample whose decompiled code is identical.
If malicious and benign samples produce identical decompiled
code, both samples are discarded, as the true nature of these
samples becomes ambiguous. Similarly, if multiple samples
within the same malware species have differing labels (e.g.,
family or behavior), we retain only the sample with the
most common label. These steps ensure our dataset remains
heterogeneous and our evaluations are unbiased.

To assess the impact of these duplicate samples on down-
stream models, we conduct malware classification experi-
ments with (Cleaned = No) and without (Cleaned = Yes)
the duplicate samples present in the dataset. The uncleaned
dataset represents the standard practice in the literature. The
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Cleaned | Detection Family Behavior
| ROCT ACC+ MCCT BACT JACT HAM |
No 0.998 0.976 0.790 0.592 0.678 0.018
Yes 0.996 0.970 0.600 0.407 0.322 0.033

TABLE I: Classification results for MalConvGCT using raw
bytes (RAW and BYT) with and without the removal of
redundant samples (‘Cleaned’). The best value is highlighted.

details of the classification tasks are discussed at length in
Section VI, but in short, we perform malware detection,
family classification, and behavioral tagging, which are binary,
multiclass, and multilabel tasks, respectively. We conduct
these experiments using raw binaries (RAW), as this is the
scenario where the leakage is almost certain to go unnoticed
by practitioners. We use the state-of-the-art raw-byte malware
classifier, MalConvGCT [2], with the first IM bytes taken from
the beginning of the file (BYT). The results are displayed in
Table I, where we see that the model trained on the cleaned
dataset achieves much lower performance than the uncleaned
one, up to 35.6%. It’s evident that these redundant samples
can improve classification performance. The gain is illusory,
however, as it overestimates the model’s ability to classify
truly unseen data. We hypothesize that the impact of this
redundancy has inflated the performance of models proposed
in previously published work, especially within the raw-binary
domain, and we encourage future work to take more care to
ensure that their training and testing datasets are truly disjoint.

Open-source PE malware datasets suffer from a prolif-
eration of redundant, or duplicate, samples. Failure to
account for this redundancy leads to train-test leakage
and significantly inflates classification performance.

IV. DESIGNING A LARGE MALWARE LANGUAGE MODEL

With data in hand, we need to choose a neural network to
learn from it. We now discuss the design of our LMLM, in-
cluding its core architecture, size and shape, and directedness.

A. Backbone Neural Architecture

Training LLMs is a computationally intensive task, es-
pecially when considering long sequences. When training a
neural network, there needs to be sufficient memory to handle
model states—the optimizer, parameters, and gradients—as
well as residual states, such as activations and temporary
buffers [43]. For the model states alone, training a network
with Adam [44] in mixed precision on a single GPU requires
approximately 16 GB of memory for every billion parameters
in the model [43]. Unlike model states, residual states are a
function of the input and the computations performed within
the network. While Transformers [45] are widely used as the
core architecture of LLMs, the memory required for their
activations scales quadratically with respect to the length of
the input, making them poorly suited for our LMLMs.

To learn representations for an entire binary, we need an
architecture whose space and time complexities scale linearly
with the input length. Linear self-attention mechanisms [46]
do this by replacing the quadratic self-attention module with a
simpler, albeit less expressive, component. Another approach
uses State Space Models [10] (SSMs), which are conceptually
similar to Recurrent Neural Networks (RNNs), with the main
difference being that the transition between hidden states is
linear, making them more easily parallelized.

For our work, we’ve selected HRRFormer [3], which uses
a clever ‘re-casting’ of self-attention to achieve linear space
and time complexity, and a recently proposed SSM called
Mamba [10], which rivals Transformers at key language under-
standing tasks, especially on long sequences. Critically, both of
these backbones offer the ability to propagate each and every
input signal selectively. While effective for classifying long
sequences, architectures like MalConv [2] rely on convolutions
to capture and propagate information from a fixed local
context, making them less capable for complex tasks where
every input signal is salient, e.g., language modeling.

Like most Transformers, HRRFormer does not have any
built-in concept of positionality [45]. The original authors
used learned positional embeddings for the malware detection
task [3], but these require an enormous number of parame-
ters for long sequences. Since the absolute position of any
token of code within a binary is mostly irrelevant to its
function, it stands to reason that absolute positional embed-
dings provide little value. We instead implement HRRFormer
with lightweight rotary positional embeddings (ROPE) [47],
which do not add any additional parameters and require little
additional computation. Mamba does not require a positional
encoding component because of its recurrent structure, which
provides implicit positional knowledge.

Using HRRFormer or Mamba blocks as a sequence pro-
cessing unit, we can succinctly define our LMLM. Let x =
T1,Ts,...,T7 be an input sequence consisting of 1" discrete



tokens from a vocabulary V with size V. First, each sequence
is embedded into an H-dimensional space using a token
embedding table £. The embeddings are processed by @,
a multilayer network consisting of L consecutive sequence
processing blocks (either HRRFormer or Mamba blocks),
o1, P2, ..., ¢r. Due to the design of HRRFormer and Mamba,
each layer ¢ has some ability to discriminately utilize infor-
mation from every token in the input sequence, a property
that most raw-byte malware classification approaches lack [1],
[2], [4]. The latent representation of x is then given by
z = ®(E(x)) = z1,22,...,2r. Keeping other architectural
details at their defaults, we are left with two hyperparameters,
H and L, that determine the size and shape of the LMLM.

B. Scaling Long-Sequence Processing Networks

Even though we’re using linear sequence processing al-
gorithms, for long sequence processing, it would turn out
that the memory requirements for activations far outweigh the
requirements for the model states. Note that this section only
outlines the key complexity terms of HRRFormer’s [3] and
Mamba’s [10] activations; for full details, we refer the reader
to the original papers as well as Korthikanti et al.’s activation
analysis of Transformers [48].

In HRRFormer’s attention mechanism, the parameters are
dominated by the linear projections for key, query, value,
and output matrices with around H? parameters each; the
feedforward layers then contribute two linear projections with
~IH parameters each, where typically I = 4H [45]. In total,
we have ~12H? parameters per HRRFormer block. Similarly,
each Mamba block’s parameters are dominated by input and
output projections, with about ~4H? and ~2H? parameters,
respectively [10], resulting in a total of ~6H? parameters per
Mamba block. Assuming sixteen bytes per parameter when
training with Adam in mixed precision [43], the memory
required for model states to train multilayer HRRFormer
and Mamba networks is then approximately ~192LH? and
~96LH? bytes, respectively.

Analyzing residual states is much harder, as deep learn-
ing frameworks apply non-trivial optimizations to reduce the
impact of intermediary buffers and the like. Nonetheless,
concerning activations, HRRFormer requires at least: TH
activations for each key, query, and value projection; T H
activations for its superposition and value approximations; 7' H
for softmax; T'H for weighted values; ~19T H for the feed-
forward layers [48]; and ~4T H for layer normalization [48].
In total, a multilayer HRRFormer requires ~480LT H bytes
to process a single input with 16-bit activations. For Mamba,
the largest source of activations is in the SSM expansion,
where using the default SSM expansion factor S = 16 and
intermediate size [ = 2H [10] results in ~327T H activations.
Accounting for the relatively small activations from other
projections and RMSNorm, we can say that Mamba requires
at least ~35T' H activations per block. Therefore, in a similar
setup as the multilayer HRRFormer, a multilayer Mamba
requires ~560LT H bytes for activations alone.

Suppose we select a shape for the LMLM similar to that
of BERT [49], with H = 768 and L = 12. The memory for
HRRFormer’s model states is then approximately 1.27 GB.
However, if learning from malware sequences that are 2'6
tokens long (65.5K), the activation memory is much larger, at
270 GB. For reference, NVIDIA’s 2024 Hopper 200 barely has
half that much memory. While HRRFormer was envisioned
with extreme sequence processing in mind, the authors used a
very small model: L = 1, H = 256, and less than one million
non-embedding parameters for malware detection. Evidently,
the explosion of activation memory is a critical bottleneck
when it comes to scaling malware-processing neural networks.

Across multiple domains, a body of work has demonstrated
that the number of parameters in large foundational models
is more important than the model’s shape [7], [50], [51]. If
we presume the same to be true for malware, our objective
is then to maximize the parameter count in our models while
minimizing computational expense, particularly the problem
of handling a large number of activations. To do this, we can
utilize activation recomputation [52], which roughly reduces
the activation memory across layers from O(L) to O(v/L) by
recomputing the activations during the backward pass instead
of storing them. At the expense of around 30% additional com-
pute time [52], using activation recomputation, the activation
memory requirements for HRRFormer and Mamba are roughly
given by ~ 480v/LTH and ~ 560/LT H. Returning to our
example with HRRFormer, the activation memory becomes
much more manageable at 77.9 GB.

Assuming 7' > H > L, due to the sub-linear complexity
of L, it’s clear that the best way to increase the number of
parameters in the model while modulating activation memory
is using a large L and a moderate H. Modern LLMs usu-
ally have a width-to-depth ratio of around H/L = 64 (or
H/L = 32 for Mamba). Given our goal of long sequence
modeling, we propose to use much deeper networks with a
relatively meager hidden dimension. To use similarly-sized
models, we’ll employ causal and bidirectional HRRFormer
models with H = 384 and L = 32, causal Mamba models
with H = 384 and L = 64, and bidirectional Mamba models
with H = 384 and L = 32. Each of these models has roughly
60 million non-embedding parameters, making them roughly
the size of smaller LLMs, e.g., ALBERT [53], which is all we
are capable of training on our available hardware. Note that
this is 24x more learnable non-embedding parameters than
the enhanced MalConvGCT architecture [2] and 60x more
than the original HRRFormer implementation [3], all while
providing each and every layer access to each and every token
(no downsampling along the temporal dimension).

We provide a visualization of this width-depth tradeoff in
Figure 4 for T = 2'6. The shape of the contours in the memory
plot, growing more rapidly when increasing [ compared to
L, compared to the shape of the contours in the parameter
plot, which grow nearly equally with regard to H and L,
demonstrate that it’s more efficient to increase L rather than
H to maximize parameter count. In each sub-figure, we draw
a line representing the value of H/L commonly seen in the



literature for that model and a line representing our ratio of
H/L, as well as a star indicating our chosen hyperparameters.
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Fig. 4: Memory requirements (model states and activations)
and parameter counts of HRRFormer- and Mamba-based
LMLMs for long sequence processing.

Remark 4

Activation memory is the critical bottleneck when it
comes to scaling malware-processing neural networks.
To maximize the number of parameters in an LMLM,
we recommend a deep and narrow architecture shape.

C. Architectural Modifications for Differing Directedness

Causal architectures process inputs sequentially from be-
ginning to end, forwarding a hidden state at each time step t.
Bidirectional architectures process inputs from all time steps
simultaneously or process inputs from both directions. While
causal language models [54] are popular in NLP for generative
tasks, we are focusing on classification, so causal architec-
tures are not required. We nevertheless believe it is worth
experimenting with both causal and bidirectional LMLMs. The
original implementation of HRRFormer, however, is deeply
bidirectional, while Mamba is inherently unidirectional. Here,
we present architectural modifications to use both of these
models in a causal (—) and bidirectional (¢*) manner.

1) Causal Implementation of HRRFormer: HRRFormer [3]
replaces the Transformer’s costly self-attention module with an
alternative token-mixer based on symbolic Al. The first step
in HRR attention is to create a superposition () between key

(k) and value (v) vectors using a special binding operation (&)
based on Holographic Reduced Representations (HRRs) [55]:

T
B=> ki®uv (1)
=1

The binding mixes information from each key and value
together; due to the properties of HRRs, the summation
preserves much of that information while being extremely
compact. Next, inverse (f) query (q) vectors are bound with
the superposition to create value approximations (0) for every
time step t:

b =q ®P )

The cosine distance between these approximations and each
original value vector is computed to create a pseudo-attention
vector, replacing the standard dot product between keys and
queries seen in vanilla attention [45]. This vector is then
normalized and used to weight the value vectors.

Due to the early interaction between every key and value
when forming the superposition, every step after that contains
information from all time steps. There is no way of masking
out illegal information from future tokens immediately before
combining the attention scores with the values, as we can with
self-attention [45]. Instead, to create a causal implementation
of HRR attention, we create 1" superpositions, one for each
time step, containing only interactions between keys and
values associated with the tokens preceding that time step.
Our superposition associated with time step ¢ is given by:

t
Bi=> ki®uv 3)
=1

Critically, this operation can still be computed with the
same time complexity, O(TH log H), as the original super-
position using simple dynamic programming techniques. The
space complexity required to store the superpositions increases
from O(H) to O(TH), but the spatial complexity of other
operations in HRR attention is already O(TH), so this is of
little consequence. Following that, each value query is only
allowed to unbind with superpositions containing information
from preceding tokens (replacing S with 3; in Eq. 2):

o =g ® B 4)

Again, this operation incurs no additional space or time
complexities compared to the original. Since each value ap-
proximation is causal, the pseudo-attention scores are also
causal, as is the final output of the HRR attention mechanism.

2) Bidirectional Implementation of Mamba: Our bidirec-
tional implementation of Mamba is much simpler and heav-
ily inspired by bidirectional RNNs. Concretely, we train
two Mamba backbones concurrently, ®rorw and Ppack,
which process Xporw = 21,Z2,...,27 and Xpack =
Tp,T7—1 ...T1, respectively. At this point, most bidirectional
RNNs would concatenate the forward and backward models’
hidden states, resulting in a cumulative latent representation
z = [ZFORW7 ZBACK] with hidden size 2H. To keep the hidden



size small and avoid the activation memory bottleneck, we
sum them along the hidden dimension: z = [Zrorw D ZBACK]-

V. LEARNING FROM UNLABELED DATA

As in most LLMs, we propose to pretrain our LMLMsS using
self-supervised learning. Self-supervised learning is a learning
paradigm where a supervised learning objective is formulated
directly from data itself without relying on externally provided
labels, e.g., reconstructing perturbed input data [56]. This
allows us to learn representations from large quantities of data
without the need for quality labels, or any label at all. In
the malware space, this is extremely valuable, since attaining
accurate malware labels is difficult [57] and automatically
labeling malware can be inaccurate [58].

A. Language Modeling

We pretrain our causal models on next token prediction, also
referred to as causal language modeling (CLM) [54]. At each
time step, the model is provided tokens from all previous time
steps and tasked to predict the token at the current time step.
The model parameterized by © is trained on the cross entropy
between the model’s predicted probability distribution over all
tokens in the vocabulary and the ground truth value:

Lam=Eyx ) — xi-1) ()

i<|z|

log Po(x;|xo, 1, - - .

We pretrain our bidirectional models using masked language
modeling (MLM) [49]. Here, the model is presented with an
input sequence and a boolean mask, m, masking out a random
p% of tokens in the input. While the original authors of MLM
pretraining masked p = 15% of tokens, follow-up studies have
shown that very large models can benefit from more aggressive
masking, as high as 40% [59]. Based on these findings and
the size of our models, we use p = 25%. The model is tasked
to predict the original value of the masked tokens in the same
manner as the causal task. Formally, the model is trained to
minimize this loss function:

Lyiv =Exm Y —log Po (@il m) 6)

iim;=1

Causal language models are commonly evaluated using
perplexity (PPL), an intrinsic measurement of the model’s
‘surprise’ over an unseen distribution. This metric has also
been applied to evaluate masked language models [60]. For a
sequence of tokens w that the model was tasked to predict,
the perplexity is given by Equation 7 where c; is the context
given to the model for token w;.

PPL(w) = exp —% Z log Pe (wj]c;) @)

Unfortunately, a model’s perplexity is particularly impacted
by the size of the vocabulary. Models with larger vocabularies
need to be able to predict a more diverse set of tokens and
thus will naturally be more surprised. To fairly evaluate models

with different vocabularies, Tao et al. [61] propose to normal-
ize the model’s surprise on any given token by the probability
of each token occurring within the given vocabulary, Py (-).
The normalized perplexity (NPPL) is given by:

NPPL(w) = PPL(w) X exp

|Zlong wi)|.  (8)

The NPPL provides future works with an opportunity for
fair comparison and is critical to compare the LMLMs in our
vocabulary ablation experiments (Appendix E).

B. Experiment

We train our LMLMs on the first 7' bytes from a little
over 800k samples (filtered for redundancy). We use the
AdamW optimizer from PyTorch with high weight decay
(A = 0.1) to promote generalization during finetuning. To
speed up convergence, we warm the learning rate up linearly
to v = 0.001 over the first 5% of training, then decrease it
linearly until training finishes. We use a microbatch size of
1 — the largest that fits on an A100 with 40GB of memory
— and accumulate the gradients over 1024 samples before
clipping to a norm of 1.0 and updating the model weights.
We train in mixed precision with 16-bit brainfloats, but keep
Mamba’s residuals and HRRFormer’s self-attention in 32-
bit precision to prevent numerical overflow. To assess long-
sequence modeling, we train models with 7" = 212 15 216 and
evaluate each on a hold-out set of 4096 samples.

C. Results

The results are shown in Figure 5. We found Mamba to
outperform HRRFormer across both CLM and MLM tasks on
the EXE, DIS, and DEC representations, as evidenced by lower
PPL and NPPL (lower is better). This is increasingly apparent
for longer sequences (larger values of 7T"). We suspect that the
superposition described in Equations 1 and 3 cannot properly
model interactions from all tokens when T is large relative to
H, which is compounded by the deep/narrow shape.

More interestingly, we found differences between the per-
formance of these networks modeling the EXE, DIS, and
DEC representations, even though they are learning from the
same binaries. In particular, the models had an easier time
learning from decompiled samples than disassembled ones
and an easier time learning from disassembled samples than
binary ones. Despite the risk of errors in the disassembly
and decompilation processes, the models learned better from
higher-level representations.

Deep SSM-based LMLMs outperformed Transformer-
based ones at language modeling, especially at longer
sequence lengths, and high-level code representations
of malware are easier to model than low-level ones.
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Fig. 5: Performance of causal and masked language models trained to model malware at different sequence lengths.

VI. APPLICATIONS FOR PRACTICAL MALWARE ANALYSIS

Following pretraining, we can finetune a pretrained model
for downstream tasks, such as malware detection, family
classification, or malware behavioral tagging.

A. Threat and System Models

We build our threat model based on how industry-grade anti-
virus systems accumulate and process software binaries [23].
Malware binaries are often packed to make initial analyses less
effective. We remove packed samples, but many of these can
be easily unpacked (the most prevalent packer, UPX, comes
with an unpacking switch), or unpacked via a growing body of
sophisticated generic software unpackers [62] [63] [64]. Some
malware would likely not be able to be unpacked and thus
would remain inaccessible to static analysis. Finally, as our
core focus is on malware modeling, we do not consider an ac-
tive attacker who can modify their software in direct response
to our system’s behavior, creating adversarial examples [65].

For our system model, we consider a defender who per-
forms static analysis on Windows PE executables after routine
transport-layer decoding and commodity unpacking, so the
model receives a complete on-disk binary but no dynamic
traces, kernel hooks, or network telemetry. This sits at the
stage immediately following software unpacking in multi-tier
detection pipelines, where samples flow through increasingly
sophisticated analyses, and lets us quantify the benefit of
progressively richer static views (EXE, DIS, DEC) once a file
is analyzable. Because a static classifier can inspect only the
bytes present in that image, it cannot reason about threats that
never materialize statically, such as downloaders that stream
a DLL into memory, or samples that remain fully obfuscated
by strong encryption.

Researchers have shown that the apparent success of ML
on packed malware usually stems from spurious surface cues
(e.g., packer stubs, anomalous import tables, high-entropy
sections), rather than semantic properties [24] [66]. Requiring
binaries to be unpacked into a canonical PE form, there-
fore, removes these questionable signals and yields evalua-
tions that better reflect a detector’s true capabilities. In Ap-
pendix G, we show that when packed and unpacked samples
are re-introduced at validation time, accuracy drops on packed
files but is fully restored once they are unpacked, underscoring
the practical relevance of our threat and system models.

B. Leveraging Multiple Inputs

Building on our findings from pretraining, we introduce an
ensemble model that leverages all three code representations
simultaneously. While lifting binaries to higher-level forms
simplifies structural complexity, it can also introduce noise due
to the limitations of binary analysis. To balance these trade-
offs, our ensemble approach processes each representation
independently using an LMLM pretrained on that input type.
The resulting latent vectors are then concatenated and passed
through a combiner network (a linear layer) to produce a
classification decision. Each LMLM extracts detailed latent
features from the EXE, DIS, and DEC views, while the com-
biner learns to weigh and integrate these perspectives for
downstream tasks. We refer to this multi-view input as ALL
(EXE + DIS + DEC). Figure 6 illustrates the architecture.

C. Malware Detection

Malware detection is the binary task of determining whether
or not a sample is malicious. This is arguably the most critical
application of malware analysis, but also one of the most
challenging to train machine learning systems to perform in
an unbiased manner. Pendlebury et al. [67] stress that when
training and evaluating machine learning malware detection
systems, we should: (i) ensure that the ratio of malware in our
validation sets matches the ratio of malware in the wild, and
(i1) ensure that the samples in the validation sets come from
a later point in time than the samples in the training set.

Several sources estimate the ratio of Android applications
in the wild that are malicious to be roughly 10% [67], but to
our knowledge, there are no analogous studies for PE malware.
We thus conduct our experiments using balanced train and test
sets with 50% malware and 50% goodware, as is done in other
recent work that uses PE files [68], [5]. We provide an ablation
experiment with different ratios in Appendix F. With regard to
the temporal constraints, we use the timestamps provided by
the original curators of the Assemblage, Bodmas, and Sorel
datasets, and the Linux ob jdump tool to attain timestamps for
our Windows collection. We discard samples with timestamps
that are anomalous and then select only samples from 2010 to
2020. Finally, we split the files into temporally disjoint train
and test sets with 25K and 8K samples, respectively, such that
each split has an equal ratio of malware and goodware.
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To evaluate models on binary malware detection, we use
both the area under the receiver operating characteristic curve
(ROC) and the accuracy (ACC). ROC gives a broad view of
discriminative capability, while ACC provides a more intuitive
measure of the classifier’s capabilities.

D. Family Classification

In addition to knowing whether or not a sample is malicious
or benign, knowing more about how a malware sample relates
to other malware can improve an organization’s incident
response and understanding of its adversaries. Malware family
classification is the multiclass task of determining the granular
family that a malware sample belongs to. We use VirusTo-
tal [69] to attain threat reports for our samples and then use
AVClass2 [70] to consolidate the reports from an ensemble of
antivirus vendors into a single classification label.

After attaining family labels, we are left with a long-
tailed distribution, where some malware families are extremely
common and others are extremely rare. For example, out of
262K samples (after filtering for redundancy), there were 107K
samples from the ‘virlock’ family, while 1092 families had
only a single sample. In addition to learning representations
that differentiate malware families with few labeled samples,
we also need to ensure that these less common classes are not
ignored, given the more common ones. In this experiment,
we use the simple class re-weighting approach from Cui
et al. [71], as used by the MORSE authors [58], setting
the weighting hyperparameter 5 = 0.99 (here, 8 does not
refer to HRRFormer’s superposition). Before applying the re-
weighting, we remove classes with fewer than 10 samples and
randomly downsample 23 especially common families such
that the imbalance factor is 100, leaving us with 522 unique
malware families to differentiate between. When creating the
train/test split, we allocate one sample from every class to
each split and then distribute the remaining samples between
the sets randomly. The outcome is a dataset with 49K training
samples and 13K testing samples. In the security discipline,
especially, it is critical to train models using data representative
of real-world distributions [72], so using a highly imbalanced
dataset improves the realism of our experiments and the
certainty of the conclusions we may draw from them.

To evaluate models on multiclass malware family clas-
sification, we employ the Matthews correlation coefficient
(MCC) and the arithmetic mean of class recalls, also known as
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balanced accuracy (BAC). MCC is a single-value assessment
of classification quality that is more informative than accuracy
in imbalanced scenarios. BAC, on the other hand, aggregates
per-class recalls, ensuring that poor performance on even a
single minority class lowers the final score.

E. Behavioral Tagging

For our final task, we consider the perspective of a malware
analyst: what if we encounter a new sample of malware that
falls outside of known families? We may know that it is
malware, but how does it work? Behavioral tagging is the
process of determining which malicious behaviors a sample
exhibits. We get behavioral tags from the same VirusTotal
reports we used for family classification. We process the
reports using ClarAVy [73], which fills a similar role as
AVClass2, except that it aggregates behavioral tags across
AV vendors rather than family labels. For each sample, we
consider behaviors identified by at least two different AVs as
valid labels.

For each behavior, the goal of the classifier is to assess
whether or not a sample exhibits that behavior. The classifi-
cation of each behavior is thus binary, but there are dozens
of behaviors to test. Since most malware only exhibits a
small number of behaviors, there is a strong bias towards
negative labels within the dataset. This general property of
multilabel classification often pushes models to be overly
cautious when predicting the presence of a label [74]. To
promote the identification of behaviors, i.e., encourage the
model to predict that a sample exhibits some behavior, we
use focal loss [75]. Compared to binary cross entropy, focal
loss dynamically weights the loss per sample to provide
greater learning value to samples that are classified with low
confidence. We use the hyperparameters proposed by Ross et
al. (a = 0.25,~v = 2.0) [75].

In addition to coping with a disproportionate amount of
negative labels, multilabel classification also results in an
extremely complex label surface, since the number of possible
labels scales exponentially with the number of classes. To
reduce the complexity somewhat, we only include the 50 mal-
ware behaviors with at least 100 representative samples, and
we downsample samples from particularly common classes to
attain an approximate imbalance factor of 10. We create train
and test splits using the same approach as for family classifi-
cation, resulting in 13K training and 3K testing samples.



To evaluate models on multilabel behavioral tagging, we use
the Jaccard index (JAC) and Hamming loss (HAM). JAC, also
known as intersection over union [76], measures the overlap
between predicted and actual sets of labels, computed as the
size of their intersection divided by the size of their union.
HAM quantifies the fraction of incorrectly predicted labels.
These metrics provide complementary views: the Jaccard
index focuses on how well the predicted set matches the true
set as a whole, while Hamming loss assesses the rate of errors.

F. Experiment

For each task, we compare each finetuned model against
a network trained from scratch with the same architecture as
well as the MalConvGCT (MalConv) architecture from [2]. We
train every classifier for five epochs with the same learning
rate scheduler we used for pretraining (Section V-B). We
use a peak learning rate of 10~3 for MalConv, 10~% when
training HRRFormer and Mamba from scratch, and 10~° when
finetuning the pretrained HRRFormer and Mamba models
(models trained from scratch benefit from higher learning
rates than those being finetuned). We use AdamW with the
typical weight decay (A = 0.01) and a minibatch size of
64 using gradient accumulation. Each model is trained in
mixed precision as done in pretraining, except MalConv, which
is lightweight enough to train in full precision. Again, all
samples in these datasets have been filtered for redundancy
(Section III). Appendix B details our comparison of each
architecture’s computational cost.

G. Results

The classification experiment results are displayed in Ta-
ble II, highlighting performance differences across inputs,
architectures, directedness, and pretraining. We now discuss
trends among each of these aspects in detail. To aid this
discussion, Table III displays the average performance of the
models within each of these experimental parameters.

1) Input: The difference in classification performance be-
tween EXE, DIS, and DEC representations is less significant
than it was for language modeling. For malware detection and
behavioral tagging, leveraging ALL inputs tends to result in
the best performance. Family classification seems to work fine
with EXE or DEC.

2) Architecture: While competitive at binary malware clas-
sification, large, deep, and narrow HRRFormer configurations
were not useful for complex malware analysis tasks like family
classification and behavioral tagging. In many cases, the model
degenerated to essentially random guessing or refusing to
identify any behaviors. At any given task, the best Mamba-
based models beat both HRRFormer and MalConvGCT.

3) Directedness: Although a few counterexamples exist,
bidirectional models typically outperform their unidirectional
counterparts by a substantial margin. For example, bidirec-
tional Mamba pretrained on the combined ALL representation
has a 0.454 Jaccard index for behavioral tagging, while
the unidirectional model only achieves 0.382. Based on the
average trends, bidirectional context appears to be valuable
for all classification tasks and all input representations.
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4) Pretrained: Pretrained models outperform their counter-
parts trained from scratch more often than not, on average by
1.1% across all tasks and metrics. The largest difference was
for the unidirectional HRRFormer on EXE, which was 28.6%
more accurate when pretrained. On average, pretraining is
more beneficial for malware detection and behavioral tagging
than it is for family classification, and furthermore, is more
beneficial for models using DEC and ALL inputs than those
using EXE and DIS inputs. Most importantly, unidirectional
models tend to benefit more from pretraining than their bidi-
rectional counterparts.

H. Computational Costs

The time required for a forward pass during inference per
sample for each HRRFormer/Mamba is roughly similar —
the fastest architecture (bidirectional HRRFormer) is 75.8%
faster than the slowest architecture (bidirectional Mamba). By
contrast, the difference between MalConv and the LMLM-
based architectures is more extreme, being between 3.82x and
6.72x faster. As a rule of thumb, we allocated an order of
magnitude more GPU time to pretraining than classification.

Remark 6

Pretrained LMLM:s usually outperform the same model
trained from scratch. Malware classifiers can benefit
from differing views of the same file, i.e., using byte-
level code, disassembly, and decompiled code together.

VII. DISCUSSION

While LMLMs can learn sophisticated patterns from code-
only representations of malware, obtaining high-quality data
is nontrivial for some of the proposed input representations.
Reverse engineering pipelines remain fragile, computationally
expensive processes that depend on expert systems engineers.
To some degree, this reintroduces the human into the detection
workflow, an aspect of malware analysis that raw-byte clas-
sifiers had hoped to eliminate. Nonetheless, simply feeding
an entire disassembly file to a model requires far less human
involvement than developing manually engineered feature sets
such as the Ember features [77].

Despite advancements, LMLMs continue to exhibit limi-
tations intrinsic to static analysis, such as vulnerability to
obfuscation techniques like reflection and packing [24]. Rather
than replacing other techniques, LMLMs can be a useful
addition to a comprehensive malware classification system
that incorporates heuristic- as well as learning-based identifi-
cation methodologies using both static and dynamic analysis.
More broadly, LMLMs and other ML-based malware detection
methods degrade over time and need frequent retraining with
the latest strains of malware to remain performant [78][63].

For future work, several major directions stand out. In terms
of data, a deeper exploration of vocabulary formation could
substantially impact the compression efficiency, expressive-
ness, and flexibility of LMLMs. For the model, alternative
pretraining methodologies beyond causal or masked language



Input  Architecture Directedness Pretrained Detection Family Behavior

ROCT ACCtT MCCT BACT JACT HAMJ|

- v 0.901 0.571 0.049 0.007  0.000 0.056

HRREr - X 0.988 0.808 0.077 0.011 0.000 0.056

A v 0.977 0.699 0.208 0.028  0.003 0.055

EXE And X 0.977 0.898 0.284 0.041 0.000 0.056
- v 0.995 0.973 0.558 0.346  0.381 0.033

Mamba - X 0.962 0.902 0.412 0.286  0.296 0.040

And v 0.996 0.968 0.613 0.399  0.356 0.033

A X 0.966 0.898 0.585 0.409 0.453 0.031

- v 0.810 0.786 0.054 0.007  0.000 0.057

HRREr - X 0.639 0.500 0.251 0.032 0.019 0.052

And v 0.985 0.914 0.193 0.026  0.000 0.057

DIS A X 0.982 0.912 0.291 0.045 0.003 0.056
- v 0.995 0.964 0.509 0.298  0.366 0.036

Mamb - X 0.943 0.874 0.412 0.270  0.342 0.039

amba - v 0996 0967 0.609 0.401 0.356  0.035

A X 0.980 0.923 0.593 0.398  0.446 0.032

- v 0.991 0.950 0.327 0.050  0.058 0.048

HRREr - X 0.986 0.939 0.182 0.023  0.002 0.055

And v 0.984 0.936 0.168 0.022 0.003 0.054

DEC A X 0.982 0.941 0.282 0.044  0.000 0.055
- v 0.996 0.965 0.512 0.288  0.367 0.034

Mamba - X 0.890 0.810 0.382 0.244  0.331 0.038

And v 0.994 0.960 0.608 0.402 0.346 0.034

A X 0.978 0.922 0.614 0.406  0.430 0.031

- v 0.993 0.955 0.268 0.035 0.065 0.047

HRREr - X 0.995 0.968 0.062 0.009  0.027 0.049

A v 0.994 0.966 0.268 0.038  0.060 0.048

ALL A X 0.975 0.923 0.237 0.033  0.131 0.043
- v 0.994 0.957 0.475 0.197  0.382 0.032

Mamba - X 0.990 0.951 0.452 0.279  0.294 0.038

Amd v 0.996 0.968 0.584 0.346 0.454 0.028

And X 0.990 0.942 0.633 0.409 0.426 0.031

RAW MalConv And X 0.996 0.970 0.600 0.407  0.322 0.033

TABLE II: Classification results, including malware detection, family classification, and behavioral tagging. The best value
within each input group is highlighted; the best value across all inputs is boldfaced.

modeling could uncover more robust, general-purpose repre-
sentations. Beyond the LMLM itself, the striking levels of
redundancy we identified in malware corpora warrant an in-
depth investigation to better understand the impact of this
phenomenon on existing malware benchmarks. Also, to bridge
the gap between human and machine, developing explainable
Al techniques tailored to LMLMs remains an open area. Such
techniques provide the transparency needed for security practi-
tioners to trust model decisions and integrate them effectively
into their threat analysis processes. Finally, adapting LMLMs
for generative tasks would be intriguing.
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VIII. RELATED WORK

Due to its high performance in practice, many ML models
for static malware analysis use handcrafted feature sets, such
as the Drebin [79] (APK) and Ember (PE) [77] features. As
DNNs have grown in popularity, we have observed a shift
toward methods with reduced human involvement, such as
classifiers based on control flow graphs like MalGraph [26]
and MaMaDroid [28]. Principal among these are the raw-
byte classifiers that detect malware by ‘eating’ entire files.
MalConv [1], and its successors MalConvGCT [2] and CAG-
MalConv [4], run inputs through 1-D convolutions to reduce
the length of the input. This step reduces the richness of the



| Input Architecture Directedness Pretrained

| EXE  DIS  DEC  ALL | HRRFr Mamba | — o | v X
Detection ROC 1 | 0970 0.916 0.975 0.991 | 0.948 0.979 | 0.942 0.985 | 0.975 0.952
ACC 1 | 0.840 0.855 0.928 0.954 | 0.854 0.934 | 0.867 0.921 | 0.906 0.882
Famil MCC 1 | 0.348 0.364 0.384 0.372 0.200 0.534 0.311 0.423 | 0.375 0.359
¥ BAC 1 | 0.191 0.185 0.185 0.168 0.028 0.336 0.149 0.215 | 0.181 0.184
Behavior A€ 1t 0.18 0.191 0.192 0.230 | 0.023 0.377 | 0.183 0.217 | 0.200 0.200
HAM | | 0.045 0.046 0.044 0.039 0.053 0.034 0.044 0.042 | 0.043 0.044

TABLE III: Average of classification results between experiments with different experimental parameters. The best value within
each category (Input, Architecture, Directedness, Pretraining) is highlighted; the best value across categories is boldfaced.

signal, as critical information is inevitably lost and inaccessible
to deeper layers within the network. On the whole, this
makes these architectures less capable of scaling by adding
consecutive layers and also makes them less capable of per-
forming the complex pretraining as used in LLMs. In contrast,
our code-only representations extract the important parts of
binaries as a preprocessing step, so our inputs are much
smaller to begin with, and our tokenization strategy losslessly
compresses sequences even further. This, in conjunction with
the findings of our scaling analysis, allows us to employ
advanced architectures with up to 60x more non-embedding
parameters than proposed by the original authors.
Orthogonal to how to represent malware for learning is
the question of how to retain classification performance as
malware evolves. Foundational works like TESSERACT [67]
establish a strict framework for the evaluation of malware
detection systems over time. Rahman et al. [78] found that
existing continual learning techniques fall short in the malware
domain, and in response, strategies have been proposed to
keep malware systems up to date, such as active learn-
ing [63]. In addition to the natural evolution of malware
as computer infrastructure changes, model designers need to
contend with intentional obfuscation by malware creators. One
approach centers around first detecting the presence and type
of obfuscation a binary might have [80], and then removing
said obfuscation before making a classification decision [81].
Another strategy is to simply use classifiers and feature
sets that are more robust to obfuscation, e.g., by training
models with obfuscated binaries [82]. Finally, the potential
for carefully crafted adversarial malware [65], [83], [84] is a
growing concern. It appears that all malware classifiers are
susceptible to adversarial examples [5], so researchers are
investing substantially in adversarial hardening techniques [6].
The broader area of binary analysis has also seen many ad-
vancements with the introduction of machine learning. Binary
analysis often goes hand-in-hand with malware analysis, but
serves other purposes as well, such as protecting intellectual
property or finding bugs. Earlier works trained models in
an end-to-end manner for a specific task, such as Gemini
for binary code similarity [85], EKLAVYA for function type
signature inference [86], and DEEPVSA for value-set analy-
sis [87]. The success of task-agnostic pretraining in the NLP
domain, particularly BERT [49], inspired generic models for
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binary code understanding like PalmTree [8] that could be
finetuned for a variety of tasks. In contrast to our work, these
methods are only applicable for building representations of
small segments of code, such as functions, and it would not be
computationally feasible to apply them to long-sequence mal-
ware analysis due to non-linear scaling properties. Active areas
of research in this field include dealing with diverse instruction
architecture sets [35] and automated binary lifting [88].
Finally, LLMs have recently shown promise within a variety
of areas in security, for example, to improve performance
at very hard binary analysis tasks like variable name recov-
ery [89]. Within malware, some works have assessed LLMs’
ability to analyze malware and perform categorization [90].
Considering the scale at which malware detection models need
to be deployed, we argue that natural language LLMs are
wasteful and impractical, as much of their knowledge has no
bearing on malware understanding. We are the first to propose
training large malware language models from scratch that can
actually be utilized in a realistic malware analysis pipeline.

IX. CONCLUSION

In this work, we have taken an important step toward
establishing large-scale representation learning in the malware
domain. By examining every stage of the LMLM pipeline—
data, architecture, pretraining, and finetuning—we have
demonstrated a practical methodology for end-to-end learning
from PE binaries at scale. Our experimental results underscore
the promise of these approaches. Of these, our most critical
novel finding is as follows: pretraining models on unlabeled
data using language modeling objectives improves downstream
malware classification performance. While we have only begun
to scratch the surface of the language modeling paradigm in
the malware context, this paper lays a solid groundwork upon
which future research can build. Ultimately, by looking beyond
raw bytes and embracing end-to-end learning scale, we move
closer to a new generation of malware analysis.
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ETHICS CONSIDERATIONS

As generative models, LMLMs could be used to create new
malware code. At the moment, the severity of this threat does

not

exceed that posed by existing code generation models,

which have already been shown capable of generating malware
C code. Nevertheless, the techniques explored in this work
could be enhanced with the goal of generating novel malware
variants in a completely end-to-end manner. LMLMs also give
adversaries the opportunity to explore unprecedented attack
vectors. For example, an adversary could drop an LMLM to a
victim then remotely query it to create and execute a malware
binary. Our current method and code are not easy to adapt
to this end, so we believe that the benefits to the security
community of making our code open source outweigh any
risks. As future work on LMLMSs advances, this tradeoff will
need to be continually revisited.
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APPENDIX A
SYMBOL TABLE

Sym. | Sec. | Definition
NLP I Natural Language Processing
DNN I Deep Neural Network
LLM I Large Language Model
LMLM I Large Malware Language Model
SSM IV-A [Neural] State Space Model
RNN IV-A | Recurrent Neural Network
CLM V-A | Causal Language Modeling
MLM V-A | Masked Language Modeling
RAW II-B Raw bytes of a binary
EXE 1I-B Bytes extracted from the .text section
DIS 1I-B Stream of disassembled instructions
DEC 1I-B Decompiled, C-like code
ALL VI-B | Combination of EXE, DIS, and DEC
BPE II-C Byte pair encoding tokenization
UNI II-C Unigram language model tokenization
BYT 1I-C No tokenization (raw-bytes or ASCII)
T IV-A | Length of a malware sequence
H IV-A | Hidden size of a neural network
L IV-A | Number of layers in a neural network
I IV-B | Intermediary size of linear projections
S IV-B | Size of Mamba’s state space model
v,V IV-A | Vocabulary of discrete tokens and its size
P, ¢ IV-A | Sequence processing network and blocks
X, T IV-A | Sequence of (and one) token(s) for sample
Z,z IV-A | Sequence of (and one) latent vector(s)
E IV-A | Embedding table for V
k IV-C | Transformer key vectors
q IV-C | Transformer query vectors
v IV-C | Transformer value vectors
B IV-C | HRRFormer superposition
? IV-C | HRRFormer value approximations
® IV-C | HRR binding operation
T IV-C | HRR unbinding operation
(C] V-A | Parameters of model
Po(+) V-A | Pseudo class probability given by ©
Py(-) V-A | Unigram probability of token in V
m V-A | Boolean mask for pretraining
W, w V-A Sequence of (and one) token(s)
c V-A Context, i.e., a subset of w
PPL V-A Perplexity
NPPL V-A | Normalized Perplexity
ROC VI-C | Area under the receiver operator curve
ACC VI-C | Accuracy
MCC VI-D | Matthews correlation coefficient
BAC VI-D | Balanced accuracy
JAC VI-E | Jaccard index
HAM VI-E | Hamming loss
A V-B AdamW optimizer weight decay
v V-B AdamW optimizer learning rate
B VI-D | Sample reweighting’s weighting factor
«@ VI-E | Focal loss’s weighting factor
¥ VI-E | Focal loss’s modulating factor
i IV-C | Unidirectional architecture
And IV-C | Bidirectional architecture
v VI Model was pretrained
X VI Model wasn’t pretrained
TABLE IV: Symbols and abbreviations used in this work.

16

APPENDIX B
COMPUTATIONAL COSTS

Automated malware analysis needs to take place in a
timely manner. Exactly how timely is necessary can vary by
organization and by use case. Compared to dynamic analysis,
statically extracted features are almost always going to be
more efficient to attain. Our preprocessing/tokenization is
performed with LIEF, Ghidra, tokenizers, and Cython kernels.
To measure the cost of the proposed preprocessing routines,
we run 2000 randomly selected malware samples from the
Sorel corpus and 2000 randomly selected goodware samples
from the Assemblage corpus through our preprocessing and
tokenization pipeline on a server with twenty SMT-enabled
physical cores @2.40GHz and 256GB RAM. We compare the
results with the time required to extract Ember features [77].
The average time (in seconds) taken per sample is recorded
in Table V. We provide similar statistics about the time each
network takes to process a single sample, averaged over the
entire pretraining run, and the number of GPU hours required
to train the models for each task in Table VI and Table VII,
respectively. All models were trained on NVIDIA PCle A100s
using data parallelism implemented with transformers and
PyTorch. The amount of memory and processors allocated
through SLURM varies per task, but did not exceed 16 SMT-
enabled physical cores @2.70GHz and 360GB RAM.

| EXE DIS DEC  Ember

Preprocess Malware | 0.002  8.01 14.0  0.014

P Benign | 0.001 257 544  0.007
Tokenize Malware | 0.004 0.002 0.002 —
Benign 0.002 0.002 0.002 —

TABLE V: Time taken (in seconds) to prepare a single binary
using the preprocessing and tokenization routines.

Architecture Directedness \ Train Inference
- 1.32 0.357
HRRET - ‘ 0.852  0.260
- 1.21 0.456
Mamba - ‘ 122 0.457
MalConv Lad | 0.087 0.068

TABLE VI: Time taken (in seconds) for each architecture to
process a single sample when training and during inference.

Architecture  Direct. | CLM MLM DET FAM BEH
- 558  — 451 964  25.3

HRREY - ‘ — 230 291 630 159
Mamba - 376 — 414 905 244
o — 382 417 910 244

MalConv - | — — 281 527 139

TABLE VII: GPU hours (#GPUs x #hours) for each architec-
ture to be trained for each task (excludes model validation).



APPENDIX C
TOKENIZATION COMPRESSION

In Table VIII, we display the lengths and compression
ratios of each configuration. On each input, we measure
the compression ratio compared to the byte-level baseline
within that input (Comp-1). Across all inputs, we measure
the compression ratio compared to the byte-level approach
utilizing the entire binary (Comp-2).

Input Vec. Vocab \ Length () Comp-1 (1) Comp-2 (1)
BYT 256 | 57.3 — 18.2
1024 36.4 1.58 28.7
EXE BPE 4096 322 1.78 325
16384 27.4 2.09 38.1
1024 38.8 1.48 26.9
UNI 4096 342 1.68 30.6
16384 28.8 1.99 36.2
BYT 256 | 50.5 — 20.7
1024 8.90 5.70 118
DIS BPE 4096 7.50 6.75 140.
16384 6.60 7.66 159
1024 9.70 5.23 108
UNI 4096 8.60 5.86 121
16384 7.80 6.438 134
BYT 256 | 160. — 6.52
1024 42.8 3.74 24.4
DEC BPE 4096 29.8 5.38 35.1
16384 23.3 6.87 44.8
1024 42.8 3.74 24.4
UNI 4096 30.9 5.19 33.8
16384 24.5 6.54 42.7
BYT 256 | 1040 — —
1024 708 1.48 —
BPE 4096 612 1.71 —
RAW 16384 475 2.20 -
1024 784 1.33 —
UNI 4096 597 1.75 —
16384 479 2.18 —

TABLE VIII: Impact

of vocabulary on the sequence length.

‘Length’ shows the median length in units of 10® tokens. The
best value within each input representation is highlighted; the
best value across all inputs is boldfaced.

APPENDIX D
DATASET DETAILS

In Figure 7, we display the distribution of malware families
in our preprocessed datasets, after removing packed and redun-
dant samples. We categorize the families into broader groups
using the ‘class’ field returned by AVClass2 [70]. We display
similar information for the distribution of malware behaviors
defined by ClarAVy [73]. Here, we categorize behaviors into
one of the malware ‘objectives’ defined under the MITRE Mal-
ware Behavior Catalog (MBC)?. Note that these distributions
represent the corpus as a whole, but not necessarily each split
in the finetuning datasets.

Zhttps://github.com/MBCProject/mbc-markdown
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Fig. 7: Thirty most frequent malware families and behaviors.
Note the multilabel behavioral tags will not add to 100%.

APPENDIX E
VOCABULARY ABLATIONS

To explore the impact of vocabulary on the model’s abil-
ity to learn, we conduct an ablation study using BPE and
UNI tokenizers with vocabularies of 1024, 4096, and 16384
tokens for language modeling on EXE inputs with Mamba.
For computational feasibility, we use a smaller network with
H = 192 and L = 32/16, which contains approximately
8M non-embedding parameters (we’ll refer to this as a ‘mini’
LMLM in the following appendices). We train each network on
400K samples. Since we’re dealing with different vocabularies,
we only report the normalized perplexity (lower is better).
The results are displayed in Figure 8. Here we see that i)
models trained with BPE vocabularies achieve lower NPPL
than those trained with UNI vocabularies; ii) models trained
with larger vocabulary sizes tend to achieve lower NPPL than
those trained with smaller vocabularies; and iii) these smaller
models achieve significantly worse performance than the large
models trained in our main experiments (Figure 5).

APPENDIX F
DETECTION ABLATIONS

As previously discussed, there is no widely agreed upon
value representing the ratio of PE malware to goodware in
the wild. In this section, we perform an ablation using ratios
of 10%, 30%, 50%, 70%, and 90% malware for malware
detection on EXE inputs with ‘mini’ Mamba. We train each
network for 2048 steps with a batch size of 64. Since the
data is imbalanced, we report the F-1 score, which is defined
as the harmonic mean of precision and recall. The results
are displayed in Figure 9. Here, we see that pretraining is
especially beneficial in scenarios where goodware is more
prevalent than malware.
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Fig. 8: Performance of causal and masked language models
trained to model malware with different vocabularies.
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APPENDIX G
PACKING ABLATIONS

As previously discussed, to quantify models’ ability to learn
from byte-level, disassembly, and decompiled code, we filtered
encrypted and compressed samples from our training corpora
since packed binaries cannot be lifted. To demonstrate that our
approach is applicable for malware detection post-unpacking,
we perform an ablation with not-packed, packed, and unpacked
samples for malware detection on EXE inputs with ‘mini’
bidirectional Mamba. In these experiments, the validation set
contains an equal distribution of samples that are either not
packed, packed with UPX, or packed and then unpacked with
UPX, while the training sets are configured to exclude some
of these types of samples. The results in Table IX indicate that
EXE preprocessing with Mamba is robust to packed samples
when included in the training corpus, but that unpacking is
key to unlocking the full potential of LMLMs.
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Train | Test
No-Pack Pack Un-Pack \ No-Pack Pack Un-Pack
v X X 0.893 0.512 0.889
X v X 0.634 0.939 0.647
X X v 0.904 0.634 0.832
v v X 0.855 0.919 0.844
v X v 0.879 0.614 0.898
X v v 0.803 0.909 0.853
v v v 0.857 0.913 0.864

TABLE IX: Accuracy of malware detector when trained with
and without packed and unpacked samples. A green check-
mark (v') indicates that data is included in the training set,
while a red x-mark (X) indicates that data is excluded from
the training set. The right-hand portion of the table details the
accuracy over each portion of the test set.

APPENDIX H
ENSEMBLE ANALYSIS

To provide further insight into the mechanisms of the
ensemble model, we conduct a post-hoc explanation analysis
on 1000 samples from the test set of the detection task. We use
Integrated Gradients [91] to assess the impact of the EXE, DIS,
and DEC token embeddings toward the desired classification
result. We normalize the attribution scores for each sample
and compute the average contribution of each input type.
The results are displayed in Figure 10. Here we see that i)
different architectures consider different inputs more salient;
ii) pretraining changes how the same architecture arrives at
a classification decision; and iii) aside from the unidirectional
model trained from scratch, the input type most useful for each
architecture is more or less consistent across different tasks.

Malware Detection

100%
9% E#E EXE BN DIS XX DEC

1 s 20% 46% 46%
0 26% 31% . 24% 30% 920, 31%
3

Family Classification

50%

0%

100%

%

i a2
37% 309, 33% 32% 329% 36% 33% s, 34%

Behavioral Tagging

50%

Contribution

0%

100%

48%
43%
33% 38% oo

19%

50% 1 339% 33% 34% 260 35% 3%

19%

0% -
Bidrectional (&)
Standard (X)

Unidirectional (=)
Standard (X)

Bidrectional (&)
Finetuned (v)

Unidirectional (=)
Finetuned (v)

Fig. 10: Average contribution of each input type to the true
classification label for the ensemble classifiers.



APPENDIX I
ARTIFACT APPENDIX

To promote open-source science, we make available our
code along with a collection of experiments demonstrating its
functionality. At this moment, it is not feasible to make our
results completely reproducible due to the extensive compu-
tational requirements to do so. Due to licensing, we cannot
release our data, but it is publicly available elsewhere.

A. Description & Requirements

1) How to access: Our artifact is accessible via a GitHub
repository® and archived permanently using Zenodo* (DOI:
10.5281/zenodo.17047102).

2) Hardware dependencies: A functional demonstration
requiring no specialized hardware is available. To reproduce
our work, one would need access to a large server with
multiple GPUs, multiple CPUs, a few hundred GBs RAM,
and several TBs persistent storage.

3) Software dependencies: A functional demonstration re-
quiring only Docker (containerization) and Zstandard (decom-
pression) is available. In short, our core dependencies revolve
around the CUDA, PyTorch and Huggingface ecosystems. A
complete list of software packages and installation instructions
using Anaconda is available on our repository. A Linux
machine is recommended.

4) Benchmarks: Our work used data from the Assemblage,
Bodmas, and Sorel corpora along with binaries from a Win-
dows installation. Our functional demonstration includes a
small sample of preprocessed samples derived from these
datasets. Our code can be used with any PE binaries.

B. Artifact Installation & Configuration

To run the functional demonstration, navigate to the repos-
itory. Detailed instructions are available in the README file.
Download the docker image from the Google Drive folder or
Zenodo and setup the Docker container. Run the preliminary
processes (building caches, training tokenizers, generating
experiment configurations) before training and evaluating deep
learning models.

C. Experiment Workflow

The workflow is embedded in the Evaluation section.

D. Major Claims

Below are claims to be substantiated by our artifact:

(C1) We propose and compare three code-only represen-
tations of PE malware for malware classification.

(C,) We use subword tokenization to reduce the length
of malware sequences without loss of information.

(C3) We discover and correct previously unrealized sam-
ple redundancy in PE malware datasets.

(Cs) We pretrain a suite of malware language models on
causal and masked language modeling objectives.

(Ce) We conduct classification experiments including de-
tection, family classification, and behavioral tagging.

3https://github.com/Ikurlandski/RawByteCIf
“https://doi.org/10.5281/zenodo.17047102
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E. Evaluation

Here we describe the evaluation to be performed using our
demo. As previously stated, it is not feasible to reproduce
our results in a short period of time. The objective of this
evaluation to demonstrate that our code base is capable of
running our experiments and producing our results.

1) Prerequisites: [10 minutes] To run the functional
demonstration, navigate to the repository. The README file
contains detailed instructions to run each step of the functional
demonstration. The only software required is Docker and
the Zstandard. Docker commands require root-level (sudo)
access. If these requirements are met, the demo can be run.

2) Setup: [S minutes] First, download each shard of the
Docker image (demo.tar.zst.part-+) from the Google
Drive folder linked in the README or from Zenodo. Con-
catenate them together. Since it contains a small prepro-
cessed dataset, the image is relatively large (9GB decom-
pressed). As a consequence, the default Docker mount in
/var/lib/docker/ may not be large enough to run the
image. To attain additional space, we provide instructions to
either cleanup existing Docker artifacts or switch Docker’s
mount to a device with more storage capacity (20GB required).
After the image is successfully created, sudo docker run
——rm demo:latest should print ‘Hello World!’.

3) Preparation: [S5 minutes] Next, start the Docker dae-
mon. All subsequent sudo docker exec commands will
execute inside of the currently running daemon. Before con-
ducting experiments, allocate samples to train and test splits
for each experiment by running the gencaches. sh script.
Also, prepare a batch of .sh files to drive deep learning
experiments later on using the create.py script.

4) Exploration: [5 minutes] (C;) At any stage, data
within the container can be copied to a local destination
and inspected. At this moment, the only items of inter-
est are the preprocessed samples, which are located in
/home/appuser/app/data/. Here the directories ass/,
bod/, sor/, and win/ contain data from the Assemblage,
Bodmas, Sorel, and Windows corpora, respectively. The subdi-
rectories nop/, raw/, dis/, and dec/ contain full binaries
(RAW), bytes from executable sections (EXE), disassembly
(p1S), and decompiled code (DEC), respectively®. To explore
the preprocessed data, copy archives locally, extract samples,
and inspect their contents with a text/hex editor.

5) Tokenization: [15 minutes] (C,) Next, train tokenizers
to tokenize each type of input with the tokenize.sh
script. The vocabularies are saved in plaintext JSON
files in /home/appuser/app/output/tokenizers/.
Copy them locally and view the mapping between tokens
and token ids. Note that each raw byte in the EXE input is
first mapped to a UTF-8 symbol before tokenizing, so the
tokens here are not recognizable as a subsequence of bytes.
The vocabularies for DIS and DEC will contain common,
recognizable instructions and C-code constructs.

5The codebase uses ‘nop’ to refer to RAW and ‘raw’ to refer to EXE.



6) Redundancy: [5 minutes] (C;3) For each dataset
directory (ass/, bod/, sor/, and win/) and each
representation subdirectory (raw/, dis/, and dec/),
in /home/appuser/app/data/, there exists a
digests. json file that maps the digest of the source
PE binary to the digest of its corresponding EXE, DIS, or
DEC representation. For each digests.json file, the
redundancy.py script counts the number of unique
binaries and compares this to the number of unique inputs
within a specific representation. The results printed indicate
that much of the malware corpora consist of samples with
identical code whereas most of the goodware samples are
more unique.

7) Pretraining: [10 minutes] (Cs) The
create.py  script creates 87 .sh files in
/home/appuser/app/demo/sbatch/. Each file,
when run, trains and evaluates a distinct model for a distinct
learning task. These scripts contain ‘toy’ configurations
(smaller models, less data, shorter sequence lengths, and
only cursory training time) but are representative of the main
body of experiments conducted in our paper. The README
contains instruction to pretrain three malware masked/causal
language HRRFormer/Mamba models on EXE, DIS, and DEC
inputs. A total of twelve different configurations can be run
by running the relevant bash script.

8) Classification: [10 minutes] (C¢) Following pretraining,
a pretrained LMLM can be finetuned for a practical malware
analysis task, such as malware detection, family classification,
or behavioral tagging. Each pretrained model from the pre-
vious experiments can be finetuned for any of these tasks.
The same architecture can be trained from scratch — without
having been pretrained — and their performance compared.

9) Cleanup: When finished, terminate the Docker deamon
and cleanup its state. Remove data copied locally.
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