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Abstract—We present PhishLang, the first fully client-side
anti-phishing framework implemented as a Chromium-based
browser extension. PhishLang enables real-time, on-device detec-
tion of phishing websites by utilizing a lightweight language model
(MobileBERT). Unlike traditional heuristic or static feature-based
models that struggle with evasive threats, and deep learning
approaches that are too resource-intensive for client-side use,
PhishLang analyzes the contextual structure of a page’s source
code, achieving detection performance on par with several state-
of-the-art models while consuming up to 7 times less memory than
comparable architectures. Over a 3.5-month period, we deployed
the framework in real-time, successfully identifying approxi-
mately 26k phishing URLs, many of which were undetected by
popular antiphishing blocklists, thus demonstrating PhishLang’s
potential to aid current detection measures. On the other hand,
the browser extension outperformed several anti-phishing tools,
detecting over 91% of the threats during zero-day. PhishLang
also showed strong adversarial robustness, resisting 16 categories
of realistic problem space evasions through a combination of
parser-level defenses and adversarial retraining. To aid both end-
users and the research community, we have open-sourced both
the PhishLang framework and the browser extension.

I. INTRODUCTION

Phishing attacks have led to numerous data breaches and
credential theft incidents, resulting in financial losses surpass-
ing $52 million and affecting over 300,000 users in the past
year alone [4], [81]. These scams are particularly effective
due to sophisticated social engineering techniques [24] that
allow attackers to imitate legitimate websites. In response,
researchers have explored the various techniques employed
by attackers [17], [6], [31], using them to develop counter-
measures that utilize distinctive phishing indicators, such as
URL characteristics, network behavior, and heuristic features
in source code [54], [77]. A key advantage of feature-based
phishing detection models is their resource efficiency. These
models are lightweight and easily scalable, making them well-
suited for real-world deployment where millions of URLs must
be analyzed daily [57]. As a result, they continue to be favored
by security vendors for their in-house detection pipelines,
where fast inference is essential for identifying malicious
URLs early [55], [61]. However, the effectiveness of these
models is highly reliant on their feature sets, which become

outdated [56], unavailable [55], or adversarially exploited by
attackers over time [93], [71]. Updating the models requires
not only engineering new detection rules or strategies but
also collecting revised groundtruth datasets. This creates a
significant lag in detection, during which novel phishing cam-
paigns go undetected or are caught too late [57], leaving end-
users exposed to attacks. Thus, recent efforts have focused on
models that rely on unsupervised or readily available features.
Among these, several screenshot-based detection approaches
have gained prominence [5], [47], that utilize the visual
appearance of websites to flag suspicious activity. While these
models report high accuracy in controlled settings, they are
rarely deployed at scale due to significant resource demands,
both in terms of memory and computational load of processing
images, coupled with the ease with which adversaries can
manipulate visual elements to evade detection [93], [90].

Another line of work involves using similarity-based algo-
rithms to detect phishing by identifying structural or content-
level overlap with known malicious websites [50], [65], [95].
For instance, PhishSim [65] classifies websites based on the
compressibility patterns of HTML DOMs. However, such
methods implicitly assume that future phishing pages will
resemble past ones, an assumption that fails against zero-day
attacks or novel phishing kits with unseen templates [57].
Moreover, because these approaches lack semantic understand-
ing, they often misclassify benign but structurally similar pages
and struggle to detect cleverly obfuscated threats [91], [92].

A more promising direction approach involves the use
of language models (LM), which offer a deeper semantic
understanding of webpage content, while relying on a much
lighter modality, i.e., text. However, existing LM-based ap-
proaches face several critical limitations that prevent real-time
deployment. For example, models fine-tuned on static features
such as BERT-based frameworks [27], [32] suffer from the
same limitations of traditional feature-based models. Prompt-
based methods using commercial LLMs such as ChatGPT [39],
[15] offer a feature-agnostic alternative and have demonstrated
strong performance in phishing detection. However, these mod-
els are proprietary and accessed via paid APIs, making them
cost-prohibitive for large-scale, real-time deployment. Some
hybrid frameworks, such as PhishLLM [48], further combine
commercial LLMs with vision-based components, compound-
ing both the computational burden and financial cost. While
a few efforts have explored using open-source LLMs, such as
Llama for phishing detection [34], [84], these models typically
require significantly more computational resources and are
slow at scale. Moreover, they often underperform compared
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to their commercial LLM counterparts [41].

Compounding these issues, many of these academic mod-
els [49], [47], [45], [39], [65] have not been evaluated un-
der adversarial conditions or benchmarked against operational
baselines like anti-phishing blocklists. As a result, their perfor-
mance in real-world threat landscapes remains largely untested.

Another major challenge faced by security vendors stems
from the sheer volume of URLs that must be processed to find
malicious ones that can be added to blocklists [56]. This often
results in situations where a vendor is capable of detecting
a malicious URL, but has not been able to evaluate it yet,
leaving end users temporarily unprotected [57]. One promising
solution is to shift detection to the client side, enabling instant
decisions at the point of user interaction. However, client-side
environments are heavily resource-constrained and require a
delicate balance between detection accuracy and computational
efficiency. For example, Google’s client-side phishing detector,
while optimized for speed, relies on significantly weaker
models and has been evaluated to have a detection rate of only
14% against real-world threats [64], highlighting the trade-offs
currently required in such settings.

To address these limitations, we introduce PhishLang, an
efficient and transparent phishing detection framework utiliz-
ing MobileBERT, a lightweight language model. Instead of
relying on static feature sets, PhishLang uses linguistic patterns
in the website source code by focusing on the actionable
portions of the page, such as forms, links, and scripts, capturing
subtle structural and textual cues attackers use, while avoiding
resource-heavy or redundant artifacts from the website. This
allows the model to operate with significantly lower resource
requirements, using up to almost seven times less memory
than prevalent open-source phishing detection models, while
also outperforming them in detection efficiency. Deploying the
framework in real-time over 3.5 months, PhishLang identified
25,796 phishing URLs, many of which were missed by popular
anti-phishing systems, thus highlighting its potential to signif-
icantly improve threat coverage. It also successfully detected
evasive phishing attacks across five major threat families with
an average detection accuracy of 94.7%.

Crucially, PhishLang is not only efficient but also resilient.
We evaluate its robustness against 16 realistic adversarial
attacks that simulate problem-space perturbations. We found
that PhishLang demonstrates strong out-of-the-box protection
against the majority of the adversarial attacks. And for those
that were initially successful in evading detection, we con-
ducted a systematic analysis of their evasion strategies and
developed targeted countermeasures, either by enhancing the
HTML parser or incorporating adversarial training, resulting
in further improvement of the tool’s robustness.

Thus, not only can PhishLang be easily deployed on a
real-time system, but to the best of our knowledge, we have
also developed the first open-source, Chromium-based browser
extension that operates entirely on the client side, running
locally on the user’s device without relying on an online
blocklist. It is designed to be highly efficient, with minimal
memory usage, allowing it to run smoothly even on low-end
hardware without compromising detection performance. By
benchmarking the extension against popular anti-phishing
tools, we find that it significantly surpasses these tools in
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Fig. 1: Overview of the PhishLang pipeline

identifying new zero-day threats. Figure 1 provides a high-level
overview of the PhishLang pipeline, illustrating the end-to-end
flow of our framework, including model construction and
evaluation, real-world deployment for live threat detection,
comparison with security blocklists, adversarial robustness
analysis, and fully client-side implementation.

The primary contributions of our work are:

1) We built a lightweight open-source phishing detection
framework that can not only outperform several pop-
ular machine learning-based models, but also provide
a better trade-off between inference speed, space
complexity, and performance, making it more viable
for real-world implementations.

2) Running PhishLang on a live URL stream of URLs
from 28th September 2023 to January 11th, 2024,
we identified 25,796 unique phishing websites. Lower
coverage of these attacks by both blocklists and
URL hosting providers, especially for evasive attacks,
led to PhishLang reporting and successfully bringing
down 74% of these threats, indicating its usefulness
to the anti-phishing ecosystem.

3) We evaluate PhishLang against 16 realistic adversar-
ial attacks that make perturbations in the problem
space without modifying the layout of the website,
developing six countermeasures (patches) that further
improve the model’s robustness.

4) We implement PhishLang as a client-side Chromium
browser extension that can be run on low-end hard-
ware. By benchmarking against widely used anti-
phishing tools, we find that PhishLang significantly
outperforms all of them in detecting zero-day phish-
ing attacks directly within the user’s browser, achiev-
ing a 91.4% detection rate - more than double that of
the next-best performing tool.

5) To aid end-users and the research community,
we open-source both the PhishLang framework
and browser extension at: https://github.com/UTA-
SPRLab/phishlang.
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Fig. 2: Example of a parsed snippet for a phishing website, with the parsed features mapped. The parsing focuses on extracting
actionable features from the website.

II. BUILDING THE MODEL

Language Models (LMs) are highly effective at capturing
the semantics of natural language, enabling them to recognize
subtle linguistic cues and structural patterns in text [94], [74].
Importantly, this capability extends beyond human language:
researchers have successfully applied models like BERT for
source code analysis, where contextual embeddings between
tokens support tasks such as code completion [18] and malware
detection [68], [89].

Building on this foundation, our goal was to develop
a model that surpasses prior code-similarity-based phishing
detection approaches, which typically depend on low-level
syntactic matching [69], [50] or unsupervised clustering of
raw HTML [65], [52]. In a way, these methods operate more
like pattern-matching tools, flagging phishing pages based
on superficial resemblance to previously observed structures
without truly understanding the intent or function of the
underlying code. Consequently, their learned representations
are tightly coupled to surface-level artifacts in the training
data, including specific tag sequences, layout conventions, or
boilerplate components commonly reused across phishing kits.
As prior adversarial studies have shown [90], [91], [26], even
modest changes, such as reordering elements, inserting incon-
sequential filler content, or obfuscating tags, can effectively
bypass detection. These approaches also often fail to generalize
to zero-day phishing campaigns or novel attack templates that
depart from familiar patterns [56].

In contrast, our approach utilized the deeper semantic
representations produced by language models to focus on
actionable components in the source code where phishing
behaviors most often manifest. Specifically, PhishLang is
not concerned with matching entire code templates or page
layouts, but instead focuses on understanding what types of
content are typically stored within specific HTML tags and
how those contents interact across tags in both phishing versus
benign websites. The goal is to capture behavioral intent and
contextual relationships, for example, how a deceptive login
prompt in a <form> tag might be paired with a misleading

<title> or a suspicious <a> link.

To enable this, we needed to train PhishLang on a large
corpus of real-world website source code, for which we
utilized Lin at el’s PhishPedia dataset [47], which includes
30K phishing and 30K benign websites. PhishPedia is not
only the largest publicly available phishing dataset but is also
notable for its reliability, having been used in several prior lit-
erature [49], [30]. Each entry in this dataset typically includes
associated metadata, such as HTML source code, screenshots,
and OCR text. The phishing websites in this dataset were
originally obtained from OpenPhish [58], a widely recognized
antiphishing blocklist. These websites were preprocessed to
eliminate inactive sites and false positives, and the researchers
also implemented strategies to counteract evasive tactics like
cloaking and conducted manual verifications to correct any
inaccuracies in target brand representations. Conversely, the
benign URLs were sourced from the Alexa Rankings list [3],
a (now defunct) online database that ranked websites based on
popularity. For training PhishLang, we only used the HTML
source code of each site. Among the 30,000 phishing samples
in the PhishPedia dataset, 22,419 included valid HTML files.
For the benign set, 26,000 out of 30,000 entries had usable
HTML.

However, a key constraint of language models is their
limited input token budget; exceeding this limit leads to
dropped information and loss of context. As such, we needed
to parse the source code input in such a way so as to retain
only the most semantically relevant components.

A. Parsing the source code

A key design challenge in building PhishLang was to
represent the HTML input in a way that retained the most
semantically meaningful content while staying within the input
token budget of modern language models. Much of a website’s
source code contains aesthetic or structural elements - such
as layout containers, styling directives, and formatting tags-
that are not useful for phishing detection [35]. Prior work has
also shown that phishing websites can be visually polished [5],
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sometimes even reusing templates from legitimate sites [72],
making visual fidelity an unreliable signal [16].

To address this, we aimed to isolate HTML tags that
consistently convey user-facing or interactive content, while
excluding those used purely for styling or layout. For instance,
tags like <form>, <input>, <a>, and <button> often
reflect a site’s behavioral intent, while tags like <style> or
<span> rarely contribute meaningful signals. To determine
which tags to retain, two researchers with expertise in phishing
and web security manually analyzed a randomly selected
subset of 500 phishing websites from the PhishPedia dataset.
For each site, they cross-referenced the HTML with the
rendered view and screenshot to identify tags that consistently
carried semantically rich or interactive content. Going through
benign websites was not strictly necessary, as the goal was
not to find phishing-specific cues but to select general-purpose
tags that typically contain meaningful content across websites.
Forms, links, buttons, and headings are foundational to web
interaction and appear in both benign and malicious contexts.
By analyzing phishing sites alone, we ensured that the retained
tags were sufficient for phishing detection, while still being
general-purpose.

The inspection revealed that <h1>, <h2>, and <h3>
heading tags were typically used to capture user attention
with alarming or misleading statements. The <p> tag, which
holds paragraph text, frequently contained deceptive narratives
or persuasive prompts. Hyperlink tags (<a>) were identified
as critical indicators due to their use in redirecting users to
malicious domains or spoofed URLs. List tags such as <ul>,
<ol>, and <li> were often used to structure fraudulent
instructions or outline fake benefits, while <form> tags served
as the main mechanism for capturing sensitive user data,
making them highly indicative of phishing intent. Similarly,
<input> elements embedded within forms were frequently
used to solicit credentials under false pretenses. The coders
also highlighted the importance of the <title> tag, which
appears in the browser tab and can be manipulated to mimic
trusted services, for example, a phishing site might display
“Secure Banking Login” to appear legitimate. They also in-
cluded <footer> tags in their analysis as well, noting that
phishing sites tend to leave this section sparse or empty [92].
Other selected tags included <script> (used to execute
malicious behaviors like keylogging or dynamic content in-
jection), <button> (triggering phishing actions such as fake
logins or downloads), and <iframe> (embedding concealed
or external phishing content). Additionally, <meta> tags in-
volved in auto-redirection, <a> tags with JavaScript handlers
(e.g., onclick), and image-based navigation elements like
<map> and <area> were included for their role in facilitating
deception through interactivity or obfuscation.

We use these tags to build a custom parser, which, for
a given website’s source code, extracts the textual content
and selected attributes of each tag, converting them into
a structured representation. Each element is represented by
its tag type, followed by its content and relevant attributes.
Figure 2 illustrates a phishing website and its subsequently
generated parsed representation. Even tags that do not contain
any elements are preserved with < EMPTY > tag notations.
This is because phishing sites frequently utilize empty < div >
or < a > tags to simulate legitimacy, misleading the users.

TABLE I: Performance of various language models. Time and
Memory denote median time and Memory (DRAM/VRAM
based on model) required for inference.

Model Accuracy Precision Recall F1 Score Time (s) Memory
MobileBERT 0.96 0.95 0.96 0.96 0.39 74MB
DistilBERT 0.94 0.94 0.94 0.94 0.85 502MB
DeBERTa 0.83 0.83 0.84 0.84 1.02 1,341MB
FastText 0.62 0.65 0.63 0.63 1.43 201MB
GPT-2 0.68 0.64 0.69 0.68 1.81 922MB
TinyBERT 0.85 0.88 0.82 0.84 0.78 495MB
Llama2 (7B) 0.97 0.96 0.96 0.96 33.71 4,873MB
T5-base 0.89 0.88 0.88 0.88 12.40 1,279MB
Bloom (560M) 0.75 0.74 0.74 0.74 7.49 7,352MB

Text inside the tags is converted to lowercased to reduce the
vocabulary size for the LLM.

B. Choosing the optimum model

We trained and tested several language models on the
(parsed) training data to identify the one that would be most
suitable for building our classifier with respect to detection
performance, resource consumption, and speed. Specifically,
these included nine language models that are considered to
provide good performance in binary classification tasks (the
number of parameters for the models in parenthesis): Dis-
tilBERT(66M) [73], TinyBERT(15M) [37], DeBERTA-base
(100M) [33], MobileBERT (25M) [79], FastText (10M) [29],
and GPT-2 (117M) [66], Llama2 (7B) [83], Bloom (1.1B) [43]
and T5-Base (220M) [67]. Our aim was to choose the model
that provides the best trade-off between performance, speed,
and memory usage. Each model was fine-tuned using 5-fold
cross-validation on 70% of our labeled phishing dataset, with
the remaining 30% held out as the test set. Within each fold,
models were trained for 10 epochs, and performance was av-
eraged across the folds. For consistency, we used a maximum
sequence length of 512 tokens and trained all Transformer-
based models using the AdamW optimizer with a learning
rate of 2e-5, batch size of 32, and binary cross-entropy loss.
AdamW was configured with weight_decay=0.01 and
eps=1e-8. All models used their corresponding pretrained
tokenizers from HuggingFace Transformers [87], with vocabu-
lary sizes ranging from approximately 30,000 to 50,000 tokens
depending on the architecture. FastText was trained using
its native implementation with stochastic gradient descent
(SGD). Sequences were right-padded and truncated to the fixed
maximum length, and a fixed random seed (42) was used to
ensure consistency across experiments.

The performance of the models is illustrated in Table I.
We found Llama2 to have the best performance out of all the
models tested, with an F1 score of 0.96. However, its median
inference time of 34 seconds is impractical for real-world
usage, where a phishing detection tool would need to process
hundreds of thousands of URLs every day, and it also has
the highest median memory usage at 4,873.47MB. While the
other two LLMs, Bloom and T5, had lower median inference
times of 7.49 and 12.40 seconds, respectively, they also per-
formed worse (F1 scores of 0.88 and 0.74, respectively) and
had high memory requirements (7351.89MB for Bloom and
1,279.49MB for T5). GPT-2 had the lowest median inference
time (1.81 seconds) but also had the worst performance among
the LLMs (F1 0.68) and required 922.41MB of memory.
Moreover, all four LLMs required inference over GPUs (while
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they can be used for inference using the CPU, the prediction
times will be much slower), and consequently required a large
amount of VRAM for said inference per sample. Requiring
GPU to provide good inference time is not ideal in a practical
setting, as most consumer-end devices might not have access
to a GPU.

When considering the Small Language Models (SLMs),
MobileBERT had the highest accuracy level at 0.96, with
both precision and recall scores of 0.95 and 0.96, respectively.
It also demonstrated the fastest prediction times among the
SLMs, with a median of 0.39 seconds per prediction, and
required the least memory usage at 74MB among all models
tested. These attributes make MobileBERT highly suitable for
real-time phishing detection, balancing high performance with
low computational resource requirements, which is ideal for
deployment on devices with limited hardware capabilities, such
as mobile and portable systems. Its efficient use of DRAM
instead of requiring a GPU makes it even more attractive for
widespread, scalable deployment. In comparison, DistilBERT
achieved an accuracy of 0.94, with both precision and recall
scoring 0.94. While not the quickest, its prediction times
were reasonably efficient, with a median of 0.85 seconds per
prediction and significantly higher memory usage of 502MB
compared to MobileBERT. DeBERTa-base, another SLM, de-
livered lower precision and recall, also fell short in time
efficiency, and had a higher memory usage of 1,341MB. Fast-
Text, though more compact with a memory usage of 201MB,
suffered from reduced accuracy (0.62) and had a median
prediction time of 1.43 seconds. Meanwhile, TinyBERT, the
smallest model tested, offered quicker results at 0.78 seconds
but at the cost of lower performance metrics, requiring 495MB
of memory. All SLMs could provide inference over CPUs,
making them suitable for deployment on various platforms.
Also, due to the unavailability of commercial LLMs such as
ChatGPT and Claude as local implementations, fine-tuning
and testing on these models would incur significant costs for
training and, especially for inference, given the millions of
URLs an anti-phishing tool needs to process daily. However,
we compare ChatGPT (3.5 Turbo) and GPT 4 with our model
and other ML-based phishing detection tools in the next sec-
tion. Thus, considering all the tested language models, based
on a combination of high precision and recall, fast prediction
times, and efficient memory usage, MobileBERT was the most
suitable choice for our framework and was thus chosen as the
language model used for our PhishLang framework.

C. Comparison with other ML models

We compared the performance of PhishLang (Mobile-
BERT) with other popular open-source ML-based phishing
detection models. Two of these models rely on the visual
features of the website: VisualPhishNet [5] and PhishInten-
tion [49], one relies on both the URL string and HTML
representation of the website: StackModel [45], and one that
relies on the semantic representation of the URL string only:
URLNet [42]. Each of these models was tested on 5k websites:
2.5k randomly selected phishing samples from the PhishPedia
dataset and 2.5k randomly sampled benign websites from
the same dataset. We also include the commercially available
models of ChatGPT (GPT 3.5T and GPT 4) in this comparison.
Also, since GPT 3.5T and 4 are general LLM models that can

predict any text content, we pass both the full HTML and the
parsed versions as artifacts for evaluation.

Prior work on phishing detection frequently reports only
the inference time of the proposed models, omitting the often
substantial overhead associated with data acquisition (i.e.,
capturing the website artifacts) and preprocessing, especially
in the case of multi-modal models. For instance, Liu et
al. [49] report an inference time of up to 0.7 seconds for
their PhishIntention framework, without accounting for the
significant time and memory space required to capture and
store website screenshots and pre-processing them. However,
in real-world deployments where phishing detectors may need
to process hundreds of thousands of webpages per day, the total
operational overhead is governed not only by inference time
but by the entire end-to-end pipeline, i.e., the data collection,
preprocessing, and ultimately inference. Additionally, the size
of the input artifact (e.g., HTML source, URL string, DOM
content, image) plays a critical role in memory and bandwidth
efficiency. Thus, to provide a more comprehensive and prac-
tical evaluation, we report median artifact size as well as the
median time required at each stage of the detection pipeline.

Table II illustrates the performance and resource require-
ments of each model in terms of detection quality, artifact size,
and timing overhead across the different stages of the detection
pipeline. We find that PhishLang delivers an effective balance
of accuracy and efficiency, achieving an F1 score of 0.94 while
requiring just 7KB of input and a total median processing
time of 0.88 seconds. Its time is evenly distributed across
data collection (0.24s), preprocessing (0.31s), and inference
(0.39s), making it well-suited for low-latency, client-side de-
ployment. PhishIntention on the other hand, despite achieving
the highest F1 score (0.95), requires a substantially higher
total time (median) of 9.9 seconds and a large artifact size
of 348KB due to its reliance on full-page screenshots. While
it’s detection stage remains relatively quick (1.08s), most of its
time is consumed in data collection (6.52s) and preprocessing
(3.27s). Importantly, this total time is significantly higher than
the inference only latency ( 0.7s) reported in its original
paper [49]. Visual PhishNet follows a similar pattern. It shows
moderate performance (F1 = 0.85) but a large artifact size
(217KB) and total latency of 4.51s, again dominated by the
data collection (2.51s) and preprocessing (1.38s) stages. This
demonstrates that visual models, while performant, introduce
hidden costs that must be factored into practical deployment
scenarios. Meanwhile, StackModel and URLNet both prioritize
lightweight text feature inputs but differ in trade-offs. Stack-
Model, using both the URL and HTML DOM, requires only
1KB of input and completes detection in 1.58s, with most of
the time spent in inference. URLNet, relying solely on the
URL string, is the fastest (0.71s total) and its artifact size is
also the smallest (0.2KB), but its detection performance is the
weakest (F1 = 0.73) among the group.

Turning to the general-purpose LLMs, GPT-3.5 and GPT-
4, despite not being fine-tuned for phishing detection, show
surprisingly strong results. GPT-4, when provided with parsed
HTML inputs, achieves an F1 score of 0.93, nearly on par with
PhishLang, while having low computational overhead. That
being said, these models are constrained by token limits: GPT-
3.5 processed only 822 phishing and 1,031 benign samples
using full HTML, while GPT-4 handled 1,469 phishing and
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TABLE II: Comparison of ML-based approaches across multiple dimensions, including artifact size, performance metrics and
median processing times for each stage in the detection pipeline.

Model Artifact Size Accuracy Precision / Recall F1 Data (s) Preproc (s) Detect (s) Total (s)
PhishLang 7 KB 0.94 0.93 / 0.95 0.94 0.24 0.31 0.39 0.88
PhishIntention 348 KB 0.96 0.94 / 0.96 0.95 6.52 3.27 1.08 9.93
Visual PhishNet 217 KB 0.85 0.83 / 0.86 0.85 2.51 1.38 1.14 4.51
URLNet 0.2 KB 0.73 0.72 / 0.74 0.73 0.14 0.19 0.45 0.71
StackModel 1 KB 0.83 0.85 / 0.81 0.82 0.32 0.44 0.97 1.58
GPT-3.5T (HTML)* 42 KB 0.87 0.88 / 0.86 0.87 0.37 0.79 1.42 2.30
GPT-4 (HTML)* 42 KB 0.92 0.93 / 0.91 0.92 0.55 0.85 1.81 2.85
GPT-3.5T (Parsed)* 7 KB 0.90 0.90 / 0.88 0.88 0.28 0.37 0.72 1.22
GPT-4 (Parsed)* 7 KB 0.94 0.93 / 0.93 0.93 0.32 0.58 0.51 1.26

2,147 benign. Additionally, their high computational costs,
API dependencies, and commercial restrictions make them less
suitable for scalable or real-time deployments without substan-
tial adaptation. Overall, these results not only underscore the
detection and computational efficiency of PhishLang, but also
the need to evaluate phishing detection models holistically, not
just by accuracy, but by artifact size, latency, and scalability.

III. REAL-TIME FRAMEWORK

We implement our model as a framework that continuously
identifies new phishing websites and reports them to various
antiphishing entities, including browser protection tools, com-
mercial blocklists, scanners, and hosting providers.

A. Identifying new URLs

We run our model on Certstream [14], a Certificate Trans-
parency Log that streams newly registered SSL-certified URLs.
This platform is extensively utilized to detect new phishing
URLs [49], [72]. As of 2024, over 80% of phishing sites
now use SSL certification [40]. To our knowledge, there exists
no open-source real-time feed for non-SSL URLs. Moreover,
since PhishLang’s detection is based on the content of the
website, rather than the URL, the use of SSL URLs only in the
evaluation will not impact PhishLang’s performance against
non-SSL URLs.

If a website is flagged as benign with low confidence
(<0.5), the model investigates the first five links in the
website’s source to detect phishing attacks that might not be
apparent on the landing page, such as hidden phishing elements
or image-based links. We observed an average of 27 domains
per second on Certstream, and despite occasional delays in
processing due to network bottlenecks, the model provided
predictions within a median time of 9 minutes. From Septem-
ber 28, 2023, to January 11, 2024, PhishLang scanned 42.7M
domains (172M websites through links), flagging 25,796 as
phishing (0.057%).

To manually verify the correctness of PhishLang’s detec-
tions, we randomly sampled 2,500 URLs from the set of
detected websites for manual evaluation by the two coders.
A second motivation for this analysis was to assess whether
PhishLang could effectively identify evasive phishing websites
in addition to regular ones. Evasive phishing websites have
recently become an increasingly prominent threat vector, as
they are not only harder for end-users to identify [56] but are
also known to bypass existing anti-phishing tools with a far

TABLE III: Performance of PhishLang against evasive attacks

Attack Type Samples Accuracy Precision Recall
Regular attacks 1,623 94.2% 94.5% 95.7%
Behaviour based JS 280 92.9% 93.3% 92.6%
Clickjacking 313 91.3% 92.1% 90.5%
DOM Manipulations 94 88.4% 89.0% 87.1%
Text encoding 78 90.7% 91.2% 89.9%

higher frequency than regular attacks [57]. The coders used 18
distinct technical features derived from prior literature [56],
[80], [9], [46], [85] to help their annotation. These features
represent concrete indicators of evasive phishing behaviors,
and the coders used them to classify each phishing website
into one of four evasion categories: JavaScript (JS) evasions,
Clickjacking, DOM manipulations, and Text encoding attacks.
Appendix A outlines the structural and behavioral indicators
derived from prior literature.

For each sampled website, the coders first verified whether
it impersonated any of the 409 known phishing target brands
listed by OpenPhish as of August 2022 [59]. They then per-
formed static analysis on both the website’s HTML/JavaScript
source code and its visual screenshot to identify matches to
the 18 evasive features. The manual analysis confirmed that
2,388 of the 2,500 evaluated websites were indeed phishing,
resulting in a precision of 95.5% for PhishLang. Among these
true positives, the coders identified 1,623 regular phishing
attacks, 280 JS evasions, 313 Clickjacking attacks, 94 DOM
manipulations, and 78 Text encoding attacks. PhishLang’s
performance across these categories is summarized in Ta-
ble III. Disagreements between coders were resolved through
collaborative review of the underlying code until consensus
was reached. It is worth noting that benign websites may
occasionally exhibit isolated features from this list; therefore,
the coders had to agree on threshold criteria, such as requiring
multiple co-occurring signals or contextual indicators to avoid
misclassification. Establishing these thresholds was a key part
of the annotation guideline refinement and the coder discussion
process. The resulting inter-rater reliability was 0.82 (Cohen’s
Kappa), indicating strong agreement. Due to space constraints,
we dedicate Table X in Appendix A to provide detailed
technical descriptions of all the features used.

To extend this categorization to the remaining 23,296 de-
tected phishing websites, we implemented a rule-based scanner
that applied the same evasive feature set on the website source
code. We discuss this detector in detail in Appendix A. Overall,
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Confidence Score: 0.41 Confidence Score: 0.98

Fig. 3: Example of an Instagram attack where the seemingly
benign landing page (which was missed by PhishLang) led to
a phishing page.

we found 17,396 (74.7%) regular, 3,159 JS evasion (13.6%),
3,349 Clickjacking (14.4%), 1,057 (4.5%) DOM manipulation,
and 835 (3.6%) Text encoding cases.

B. Evaluating misdetections

Now, we evaluate the misdetections (False Positives and
False Negatives) that were identified in the previous paragraph
from our manual evaluation of the random sample of 2,500
URLs that were detected by PhishLang in real-time.

C. False Positives

Upon evaluating the 112 false positives, we identified 42
malformed websites with poorly structured text and input fields
soliciting sensitive information. For example, Figure 5 shows a
website with invalid characters and poorly designed input fields
for personal information like name, email, and phone number,
lacking clear instructions or context. These issues likely caused
the site to resemble phishing samples, leading to incorrect
classification by PhishLang. Additionally, 23 websites featured
multiple empty links and malformed meta tags with several
redirections. Figure 10 in Appendix C illustrates an example
where poorly rendered input fields and empty links indicated
an incomplete population of the website. Addressing these
false positives without compromising PhishLang’s detection
features is challenging. We also discovered 14 websites with
simple login fields that did not transmit data and contained
no other information. These sites were classified as false
positives because they neither imitated any organization nor
had a deceptive motive, despite fitting traditional phishing
profiles. Our crawler detects websites as soon as they appear
on Certstream, so attackers could later add more details to
these sites.

We found 21 websites with domain parking pages, likely
detected due to their lack of substantial content, presence of
multiple advertising links, and frequent redirections. Figure 9
in Appendix C shows one such example. To assess PhishLang’s
robustness against parked pages, we used keywords typical of
parked pages to select 1,000 parked websites from our total
sample of 42.7 million domains. PhishLang flagged only 5 of
them as phishing (median confidence of 0.27).

D. False Negatives:

We assessed all URLs processed by PhishLang (42.7
million domains) using VirusTotal. We identified 261 websites
missed by PhishLang but flagged as phishing by VirusTotal
(i.e., having two or more detections, a threshold established
in prior literature for identifying true positive phishing sam-
ples [61]) and confirmed them as true positives through manual
inspection. Manually evaluating these websites, we found 82
had CAPTCHAs and 36 had QR codes, both common phishing
evasion tactics [86], [38]. However, once the URLs were manu-
ally extracted from the QR codes and provided to PhishLang, it
was able to detect all of these attempts. The same was also true
for all except two CAPTCHA-protected sites. Thus, to address
these issues, we have implemented the pyzbar[36] library to
let PhishLang automatically scan QR codes. However, solving
CAPTCHAs programmatically can violate many websites’
terms of service [76], so no modifications were added to
address this issue. We also found 25 sites that mimicked
legitimate brands but initially only had input fields without
malicious behavior. PhishLang’s confidence was low on these
landing pages, resulting in false negatives, but it detected
phishing on the subsequent pages. Figure 3 shows an Instagram
phishing page where PhishLang’s confidence increased from
0.41 on the first page to 0.98 on the second. To address
this, our framework now inputs placeholder data on benign-
marked sites, submits it, and reassesses the destination, which
helps detect all previously missed sites. Additionally, 118
undetected websites were in non-English languages: Japanese
(57), Spanish (36), German (18), and Italian (7). Figure 4
shows an example in Japanese. Using langdetect, we found
our training data was predominantly in English (n=18,683)
with minimal coverage of these languages (Japanese=500,
German=660, Spanish=403, and Italian=85). This lack of di-
versity likely caused misclassifications. While most phishing
websites are written in English, non-English phishing scams
are an emerging threat [20]. Thus, to address this issue, we
added the Argos Translate library [8], a fully offline translation
tool supporting English translation for 32 languages, to the
framework. For each URL, PhishLang now applies Langdetect
to determine if the content is non-English, and if so, the
content is translated using Argos and PhishLang reattempts
the detection. These additions add minimal overhead to the
pipeline, with checking if the content is non-English taking
a median runtime of just 0.3 seconds, and translation of
non-English content using Argos taking a median time of
0.5 seconds and 270MB more memory. This enhancement
led to PhishLang correctly identifying 115 out of the 118
previously missed non-English phishing websites. Figure 11
in Appendix C shows how the example previously shown in
Figure 4, which initially went undetected, was translated into
English using Argos, and then detected by PhishLang.

Implementing the adversarial patches from Section IV
and aforementioned modifications significantly improved
performance against these false negatives. Only 2 out of
36 QR-code attacks, 5 out of 25 multi-page attacks, and 7
true-positive detections were misclassified as benign, despite
a median confidence score of 0.44.

Lastly, we noted 12 websites lacking noticeable phishing
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Fig. 4: Example of a non-English (Japanese) false negative
sample

Fig. 5: Example of a poorly designed (benign)website that was
detected as a false positive

artifacts, with low confidence scores (Median=0.52). The small
number of such samples might not significantly impact the
training outcome if included in the dataset. We plan to retrain
the model after gathering enough samples matching this crite-
rion. After implementing the adversarial patches discussed in
Section IV, PhishLang correctly identified 28 of the websites
with poor structural design as benign. Out of the 2.5k manually
observed true positives, no new samples were changed from
phishing to benign, increasing the true positive rate of our
model (on the initial dataset) to 96.6%.

E. Comparing detection with commercial Phishing blocklists

In this section, we evaluate the effectiveness of four popular
anti-phishing blocklists against websites identified by Phish-
Lang. These include Google Safe Browsing [1], Microsoft
SmartScreen [51], PhishTank [2] and OpenPhish [58]. We also
include the domain providers, i.e, the registrars or infrastruc-
ture providers (e.g., Namecheap, GoDaddy, Cloudflare) that the
websites are hosted on, in this analysis, as they are often the
only entities with the authority to directly take down malicious
sites [57].

We evaluate the extent to which phishing websites flagged
by PhishLang are covered by existing tools and blocklists,
and whether our reporting leads to their subsequent detection.
Upon identifying a new phishing site, PhishLang immediately
queries the four blocklists in real time to determine if the URL

is already flagged. If the site is not listed, it is automatically
reported. We then track its detection status at 10-minute
intervals for up to seven days to monitor if and when it is added
to the respective blocklists. Considering ethical implications,
we report all 26k identified websites immediately (if it was
not already detected) to ensure user protection, despite our
97% accuracy rate suggesting a potential 3% false positives
being reported. This trade-off is acceptable given the typically
higher noise in blocklist data [72], [70], [57]. . To monitor
domain-level takedowns, we used the Python requests library
and Selenium [23] to periodically access each phishing URL
every 10 minutes for up to seven days. We recorded whether
the website returned an HTTP error code, failed to load, or
displayed a generic parking page - any of which would indicate
that the hosting provider had suspended, removed, or deacti-
vated the site. Table IV illustrates the initial coverage of these
tools and subsequent coverage after we had reported the URLs
that they had failed to detect. All blocklists initially have low
coverage, with a significant increase in detection rates post our
reporting, especially for evasive threats. However, it is evident
that the blocklists still take substantial time to identify these
threats. For instance, Google Safe Browsing’s detection of JS
evasion attacks increased from 35% to 73%, and SmartScreen’s
detection of DOM-based attacks rose from 18% to 86%.
Regular phishing URL detection also improved significantly.
On the other hand, PhishTank and OpenPhish have different
responses to reported URLs. Despite these improvements, it is
important to note that these blocklists generally maintain high
detection rates and low false positives [57]. A similar trend
was also seen for hosting domains, whose rate of removal
significantly improved after our reporting. Our model thus
helps close detection gaps, particularly for new and evasive
attacks.

IV. ADVERSARIAL IMPACT

The effectiveness of Machine Learning (ML) and Deep
Learning (DL) models can be significantly reduced by adver-
sarial inputs designed to lower the model’s confidence score,
which can also lead to misclassification. These inputs exploit
inherent vulnerabilities related to the training data, architec-
tural design, or developmental assumptions of the model. For
example, in the case of Machine-Learning phishing webpage
detectors (ML-PWD), Panum et al. [60] showed how image-
based phishing detection models are vulnerable to FSGM
pixel-level exploitation, where adversarial websites are modi-
fied to appear like benign ones. AlEroud et al. [22] explores
how models relying on URL-based features can be exploited
by employing perturbations in the URI structure. Both image-
based features and URL-based attributes are irrelevant to our
model, which solely relies on a collection of tags extracted
directly from the HTML source code. Consequently, the only
avenue for an attacker to exploit our model is to target the
specific HTML tags we analyze and alter their associated text.

While previous literature has investigated how attackers can
modify attributes in the “Feature space” [75], [11], [19], [44]
(i.e., when the website is processed into feature vectors specific
to those that are used by the ML-PWD for prediction), recent
studies have focused more on attackers introducing perturba-
tions in the “problem space” (i.e., where the attacker directly
modifies the webpage [46], [12], [5]). This shift is due to real-
world attackers operating in the “problem space” [63], where
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TABLE IV: Performance of browser protection tools, blocklists and hosting domains

Attack Type # URLs Safe Browsing SmartScreen PhishTank OpenPhish Hosting Domain
Detection (%) Time Detection (%) Time Detection (%) Time Detection (%) Time Detection (%) Time

Regular Attack 1,595 50.92 (84.33) 3.71 hrs 34.26 (74.26) 5.85 hrs 14.8 (36.9) 7.33 hrs 22.6% (47.1) 3.81 hrs 39.2 (61.0) 4.50 hrs
JS Evasion 306 35.27 (70.36) 5.67 hrs 27.48 (75.42) 9.66 hrs 3.9 (19.4) 11.19 hrs 8.5% (27.9) 5.77 hrs 6.4% (19.4) 2.15 hrs

ReCAPTCHA/QR 91 40.97 (66.07) 3.75 hrs 15.31 (81.34) 7.54 hrs 9.9 (29.7) 8.02 hrs 16.5% (37.1) 4.05 hrs 9.9% (29.7) 10.22 hrs
Clickjacking 325 61.32 (80.28) 2.42 hrs 38.48 (77.65) 5.3 hrs 7.7 (26.8) 14.70 hrs 15.7% (36.4) 7.19 hrs 7.1% (26.8) 5.73 hrs

DOM Attacks 102 55.79 (74.39) 3.48 hrs 18.27 (85.36) 5.56 hrs 10.8 (31.0) 11.15 hrs 20.6% (40.5) 13.71 hrs 10.8% (31.0) 7.19 hrs
Text encoding 81 27.97 (72.57) 6.45 hrs 20.79 (70.36) 2.5 hrs 8.6 (28.0) 6.42 hrs 16.0% (36.7) 2.88 hrs 8.6% (28.0) 5.13 hrs

the perturbations introduced are subject to certain physical
constraints. If these constraints are not met, which can happen
when perturbations are added in the feature space, there is
an increased risk of generating adversarial samples that, while
potentially reducing the model’s efficiency[82], may result in
samples that are physically unrealizable.

In the context of phishing websites, this often manifests
as notable artifacts in the webpage layout, as demonstrated by
Yuan [92] and Draganovic et al. [25]. These artifacts make the
sites suspicious to users, reducing the attacks’ overall effective-
ness. Moreover, to perturb the feature space, the attacker is re-
quired to have internal access to the processing pipeline of the
ML-PWD - a process that can be challenging and costly [7].
The success rate of phishing, even when undetected by tools,
depends on user interaction. Additionally, most adversarial
implementations in the literature target specific ML-PWDs, but
realistically, attackers do not target specific models. Instead,
they prefer generalizable evasive attacks, that manipulate raw
data in the problem space, making the attack evasive across
different detection systems. Therefore, we focus on testing
and improving the adversarial robustness of PhishLang by
emphasizing on the problem-space attacks. These attacks are
designed to introduce perturbations into the website’s source
code while maintaining the website’s layout.

A. Evaluating Problem-space evasions

Apruzzese [90] and Yuan et al. [91] have conceptualized
evasive attacks that are relevant and generalizable for creating
phishing samples capable of evading the four most popular
ML-PWDs. They identified 57 features that attackers com-
monly use to bypass ML-PWD systems. Building on this
framework, Montaruli et al. [53] developed a novel set of 16
evasive attacks focusing on the problem space of adversarial
attacks. These attacks involve directly modifying the HTML
content using fine-grained manipulations, allowing for changes
to the HTML code of phishing webpages without compromis-
ing their maliciousness or visual appearance. This approach
successfully preserves both the functionality and appearance
of the websites. Some examples of these attacks include
InjectIntElem, which involves injecting a specified number of
(hidden) internal HTML elements (e.g., < a > tags with
internal links) into the body of the webpage and ObfuscateJS,
where the JavaScript code within < script > elements of a
webpage is obfuscated by encoding them into Base64 and then
inserting a new script to decode and execute the original script.
A full description of these attacks is provided in the author’s
paper. For brevity, we do not go into comprehensive details
about which feature (based on Apruzzese [90] and Yuan et
al.[91]) these attacks target.

Since different phishing websites can be compromised by

different attacks, Montaruli et al also developed a query-
efficient black-box optimization algorithm based on WAF-A-
MoLE [21]. This algorithm employs an iterative methodology
that involves successive rounds of mutation to modify the
original malicious sample, aiming to reduce the confidence
score provided by ML-PWD. Attacks are carried out as Single
Round (SR) or Multi Round (MR) manipulations. SR manip-
ulations, such as UpdateHiddenDivs, UpdateHiddenButtons,
UpdateHiddenInputs, and UpdateTitle, are applied once to
achieve their goal of hiding or modifying specific HTML
elements and do not require further changes to evade detection.
In contrast, MR manipulations, including InjectIntElem and
InjectExtElem, require multiple sequential applications to pro-
gressively adjust the internal-to-external link ratios and other
features to effectively evade detection. The optimizer begins
by initializing the best adversarial example and score with the
initial phishing webpage and its corresponding score. It then
sequentially applies the SR manipulations, updating the best
example and score whenever a new manipulation achieves a
lower score. Afterward, the optimizer enters the MR manip-
ulations loop, which includes a specified number of mutation
rounds. In each mutation round, the algorithm generates new
candidate adversarial phishing webpages from the current best
example by applying one MR manipulation to each candidate.
The candidate with the lowest confidence score is selected,
and if this score is lower than the current best, it becomes the
new best adversarial example. The number of mutation rounds,
R, given the maximum query budget Q, is determined by
the formula R = Q−#SR

#MR , where #SR and #MR represent
the number of SR and MR manipulations, respectively. One
attack InjectFakeFavicon (an SR manipulation) is not relevant
to PhishLang since our parser does not look for favicons in
<head> tags. We set a query budget of 35 (instead of 36 as in
the original paper due to the omission of one SR manipulation)
and injected the attacks into each sample in our test set (6,725
URLs) to choose the best adversarial sample. In addition
to adversarially testing PhishLang, our goal is to introduce
patches that can reduce or nullify the effectiveness of these
attacks. While both SR and MR manipulations cumulatively
work towards creating the best-performing adversarial sample,
it is essential to identify which particular attack had the most
impact. This involves determining which manipulation was
instrumental in significantly reducing the confidence of Phish-
Lang when evaluating the sample. This specific manipulation
can be considered the primary attack that was crucial in
achieving the desired adversarial effect. To identify this, after
each SR and MR round, we compute the difference in the
adversarial advantage for the sample during the current stage
compared to the previous stage. The adversarial advantage,
A, is computed based on the drop in the confidence score
of the model towards the phishing website during subsequent
optimization stages. Therefore, if Co is the original confidence
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TABLE V: Impact of different adversarial attacks. Text in
parentheses indicates values post adversarial patches were
applied.

Attack Median advantage Incorrectly predicted
InjectIntElem (A1) 0.204 (0) 7.99% (0)
InjectIntElemFoot (A2) 0.142 (0) 11.24% (0)
InjectIntLinkElem (A3) 0.231 (0) 4.43% (0)
InjectExtElem (A4) 0.285 (0) 7.02% (0)
InjectExtElemFoot (A5) 0.194 (0) 15.01% (0)
UpdateForm (A6) 0.271 (0) 4.90% (0)
ObfuscateExtLinks (A7) 0.314 (0.039) 19.01% (1.68%)
ObfuscateJS (A8) 0.348 (0.028) 20.92% (1.51%)
InjectFakeCopyright (A9) 0.201 (0) 4.10% (0)
UpdateIntAnchors (A10) 0.245 (0) 7.92% (0)
UpdateHiddenDivs (A11) 0.173 (0) 8.01% (0)
UpdateHiddenButtons (A12) 0.241 (0.025) 17.20% (1.07%)
UpdateHiddenInputs (A13) 0.403 (0.027) 13.59% (1.18%)
UpdateTitle (A14) 0.107 (0.005) 11.27% (0.63%)
UpdateIFrames (A15) 0.111 (0) 5.42% (0)

score of the model in identifying the website as phishing and
Cp1 is the confidence score after the first perturbation round
(SR as per the algorithm), then we define A as A = Co −Cp1 .

By analyzing these differences, we can identify which
manipulations had the most significant impact on reducing the
model’s confidence, thereby determining the primary attack
that achieved the desired adversarial effect. If two or more
attacks demonstrate similar adversarial advantages (within one
standard deviation of the mean adversarial advantage across
all samples), we designate these as primary attacks [Scenario
1]. Additionally, an attack following a primary attack may
negatively impact the model’s performance, but the preceding
primary attack might have lessened its effectiveness. Therefore,
once a primary attack is identified, we remove it from the
sample and rerun the optimization algorithm. If another attack
then exhibits an adversarial advantage similar to the previously
recognized primary attack (within one standard deviation of the
adversarial advantage across all samples), it is also designated
as a primary attack [Scenario 2]. In our dataset, we noticed
that only 11.3% of the samples met [Scenario 1] and 4.5%
(samples met [Scenario 2], indicating that for most phishing
websites, only one attack had a significant impact in adver-
sarially compromising it. Table V presents the performance of
each adversarial attack on PhishLang, detailing the number of
incorrect predictions (false negatives) and the corresponding
median adversarial advantages. We observe that all problem-
space-facing attacks were able to decrease the efficiency of our
vanilla model initially, which was then significantly improved
by applying the patches. For example, the ObfuscateJS (A8)
attack had a median adversarial advantage of 0.348, which
dropped to 0.028 after applying adversarial patches, and the
incorrect prediction rate reduced from 20.92% to 1.51%. Simi-
larly, the UpdateHiddenButtons (A12) attack showed a median
advantage of 0.241 initially, which was reduced to 0.025 post-
patch application, with incorrect predictions decreasing from
17.20% to 1.07%. We discuss the design and implementation
of these adversarial patches in the next section.

B. Mitigating Adversarial Attacks

To mitigate or nullify the effectiveness of the adversarial
attacks, we employ one or both of the following strategies: a)
Parser Modification - Here, we identify that the attack can
be sufficiently neutralized by modifying how our framework

parses the raw HTML source code, eliminating the need for
adversarial retraining, and b) Adversarial Training - We
retrain our model using adversarial samples in cases where
the respective attack is identified as the primary attack.

Parser modifications: Attacks InjectIntElem (A1),
InjectIntElemFooter (A2), InjectIntLinkElem (A3),
InjectExtElem (A4), and InjectExtElemFooter (A5) use
one of four strategies to create the adversarial samples:
S1, S2, S3, and S4. S1 inserts the hidden attribute into an
HTML element to prevent the browser from rendering its
content, adopting the hidden attribute as its default approach.
S2 modifies the style attribute to “display:none” to hide
elements. S3 uses the < style > HTML element to achieve
the same effect as S2 but through the < style > tag. S4
places HTML elements to be hidden inside the < noscript >
tag, effective only if JavaScript is enabled in the victim’s
web browser. To counter these attacks, we propose two
parser-based modifications. Patch 1 ignores any tags with a
hidden attribute or “display: none” in the style attribute, which
reduces the effectiveness of attacks applied using S1 and S2
to 0. For tags that refer to a CSS element, the parser searches
the corresponding CSS < style > sheet for “display:none”
attributes. If found, the initial tag is omitted from being
included in the parsed representation given to the model. This
constitutes Patch 2, which reduces the effectiveness of S3 to
0. We did not need to implement any protection for S4, as
our parser does not consider < noscript > elements. Patches
1 and 2 are also transferable to Attacks InjectFakeCopyright
(A9), UpdateHiddenDivs (A11), and UpdateIFrames (A15),
which use similar syntax to add or modify hidden elements
in the source code. On the other hand, attack UpdateForm
(A6) manipulates forms on a webpage by replacing the
original internal link specified in the action attribute with a
different internal link that does not trigger detection features,
such as “#!” or “#none.” To counter this attack, we propose
Patch 3, a parsing modification that checks if the ‘action’
attribute directs to an internal section or is a valid external
link (using Python’s request library [28]) that nullified the
attack effectiveness to 0. Finally, ObfuscateExtLinks (A7)
obfuscates the external links in a webpage to evade multiple
HTML features by substituting the external link with a
random internal one that is not detected as suspicious by
the HTML features (e.g., #!) and creates a new < script >
element that updates the value of the action attribute to the
original external link when the page is loaded. While similar
to A6 in terms of manipulating links to avoid detection, A7
specifically targets external links and employs JavaScript
to dynamically revert the obfuscation. Regardless, Patch 3
successfully nullifies this attack and UpdateIntAnchors (A10).

Adversarial retraining: Attack ObfuscateJS (A8) obfuscates
JavaScript within < script > elements to evade detection
features such as HTML_popUP, HTML_rightClick, and
HTML_statBar. This technique involves extracting the
original JavaScript, encoding it in Base64, and replacing the
original < script > content with new code that decodes and
executes the obfuscated JavaScript. To counter this attack,
we developed two patches: Patch 4.1 converts Base64 (or
any other non-UTF-8 encodings) to UTF-8 before parsing,
and Patch 4.2 retrains the model with adversarial samples
where A7 was the primary attack. Although these patches did
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TABLE VI: Impact of adversarial attacks on phishing attacks
by category (Test set)

Attack Type Before intervention After intervention
Median

Advantage
Incorrectly
Predicted

Median
Advantage

Incorrectly
Predicted

Regular attacks (5,734) 0.212 648 0.030 37
Behaviour based JS (198) 0.425 73 0.246 29
Clickjacking (485) 0.230 91 0.033 14
DOM Manipulations (101) 0.380 45 0.021 3
Text encoding (207) 0.316 42 0.063 8

not completely nullify the attack, they significantly reduced
the median adversarial advantage to 0.039 (from 0.314)
and the false negative rate to 1.68% (from 19.01%). Attack
UpdateHiddenButtons (A12) obfuscates all disabled button
elements by removing the disabled attribute and inserting
a new <script> element that re-applies this attribute during
rendering using the setAttribute() DOM method. This
approach ensures that both the rendering and original behavior
of the buttons are preserved. While a potential countermeasure
could involve ignoring scripts with the disabled attribute,
this could break the user experience. For example, in a web
form where the “Submit” button is initially disabled and
only enabled after all required fields are filled out, ignoring
such scripts could prevent proper functionality. Therefore, to
address this attack, we retrained our model with adversarial
samples where A12 was the primary attack (Patch 5). This
reduced the median adversarial advantage to 0.025 (from
0.241) and the false negative rate to 1.07% (from 17.20%).
Attack UpdateHiddenInputs (A13) evades detection of hidden
and disabled input elements by changing the type attribute
from “hidden” to “text” and adding the hidden attribute.
We adversarially trained with samples that had this attack
as the primary focus (Patch 6), which reduced the median
adversarial advantage to 0.0.27 (from 0.403) and the false
negative rate to 1.18% (from 13.59%). For Attack UpdateTitle
(A14), we use a variant of Patch 6 that prevents JS from
executing when reading the < title > tag.

C. Advesarial impact on phishing categories

We also examined the impact of adversarial attacks on our
test set samples based on different attack categories. Table VI
shows the median adversarial impact and the number of incor-
rectly predicted samples for the five phishing attack categories
(Regular, BJE, Clickjacking, DOM Manipulations, and Text
Encoding) both before and after implementing interventions
(such as parser modifications or adversarial training). We found
that after applying adversarial patches, the True Positive Rate
(TPR) for all attack categories, except BJE, improved beyond
their initial training accuracies. For instance, regular phishing
attacks achieved a TPR of 99.4%, while DOM manipulations
reached 98%.

Despite the application of adversarial patches, websites
with Behavioral JavaScript Evasion (BJE) continued to have a
comparatively lower TPR (85.9%) than other attack categories.
Upon closer inspection, we discovered that a significant portion
of these samples were affected by the ObfuscateJS (A8) attack.
Given the low distribution of BJE samples in our ground truth
dataset (n=715), we decided to collect more samples for this
attack category. From July 11th to 29th, 2024, we gathered the
source code for 17,305 new websites from PhishTank which

TABLE VII: Performance of PhishLang against evasive attacks
after adversarial patching. Values in parenthesis denote %
increase

Attack Type Samples Accuracy Precision Recall
Regular Attacks 1,623 97.0% (2.8%) 96.0% (1.5%) 98.3% (2.6%)
Behavior-based JS 280 94.2% (1.3%) 95.6% (2.3%) 94.1% (1.5%)
Clickjacking 313 93.5% (2.2%) 95.7% (3.6%) 94.0% (3.5%)
DOM Manipulations 94 94.1% (5.7%) 94.8% (5.8%) 93.5% (6.4%)
Text Encoding 78 95.5% (4.8%) 96.4% (5.2%) 95.1% (5.2%)

had been verified as phishing, and then identified 411 new BJE
samples. These samples were then adversarially augmented us-
ing the optimization algorithm detailed in Section IV. Both the
original and adversarial samples were added to the ground truth
and used for retraining. Following the retraining, we observed
a significant reduction in the adversarial advantage of the BJE
samples, both with and without the patch. Without the patch,
the median adversarial advantage decreased to 0.084, and after
applying Patch 5, it further reduced to 0.039, achieving a TPR
rate of 97.2%. In the next section, we identify whether the
performance boost due to adversarial training transfers to real-
world websites outside the ground-truth dataset.

We also re-evaluated our adversarially patched model on
the metadata of the 42.7M domains from Certstream that
were collected in Section III-A. We find that 1,778 more
websites were flagged as phishing, a noticeable increase of
6.88% compared to when the initial model was run (25,796
URLs to 27,574 URLs). Breaking down these numbers per
category: The model detected 18,549 regular (6.6% increase),
3,391 JavaScript evasion (7.3% increase), 3,583 Clickjacking
(7.0% increase), 1,147 DOM (8.5% increase), and 904 Text
encoding attacks (8.3% increase). However, it is more im-
portant to evaluate the false-positive and false-negative rates
of these samples. We pseudo-randomly selected the same
number of URLs (2.5k) from the detected set, with the same
per category distribution, with 1,632 regular attacks, 280
BJEs, 313 clickjacking, 94 DOM Manipulations, and 78 text
encoding. Similar to the evaluation of the initial model, we also
randomly selected 2.5k benign websites. Table VII illustrates
the performance of the model against different categories of
attacks. We see a noticeable boost across all attack categories,
for example, for Behavior-based JS evasion attacks, the model
now achieves an accuracy of 94.8% (an increase of 1.9%),
whereas for Text Encoding attacks, the accuracy increased to
95.7% (an increase of 3.2%). This indicates that the boost in
detection for attack categories transferred from the test set (as
seen in the previous section) to real-world websites.

V. CLIENT-SIDE APPLICATION

Building on the PhishLang framework detailed throughout
this paper, we now discuss the design, functionality, and evalu-
ation of our client-side application. This application integrates
a Chromium-based browser extension with a background pro-
cess to block phishing websites without relying on online
blocklists. Once installed, the application automatically de-
ploys our trained MobileBERT-based model as a local server,
which the browser extension utilizes to analyze all visited
URLs. This setup is compatible with Microsoft Windows 10
and later, as well as Debian-based Linux distributions like
Ubuntu, with MacOS support planned for future releases. The
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Fig. 6: PhishLang client-side extension running in Brave
Browser.

installation process seamlessly configures the model, initializes
the local service, and installs the extension for supported
Chromium-based browsers. Notably, the detection system op-
erates entirely on the local machine, utilizing CPU DRAM
to ensure privacy and independence from external servers.
The deployed model in the client-side extension includes all
adversarial patches and parser improvements introduced in
Section IV, providing hardened, real-time protection against
evasive phishing threats. Future adversarially retrained models
are automatically pushed to the open-source release from
our end, ensuring that users always benefit from the latest
robustness enhancements without requiring manual updates.

A. Evaluating the performance of our client-side extension

We evaluate 2,000 verified phishing websites from Phish-
Tank, comparing the performance of PhishLang on four dis-
tinct system configurations. The first configuration is our
experimental setup, featuring an Intel Xeon W Processor with
184GB of RAM and 4x NVIDIA A5000 GPUs, running
Ubuntu 22.04 LTS, with the model running natively (i.e.,
without the browser extension). The second configuration is
a mid-tier setup, consisting of an Intel Core i5 13th Gen
processor, 8GB of RAM, no GPU, and running Windows 11
Build 22631. The third configuration is a low-tier setup, using
an Intel Celeron N4500 processor, 2GB of RAM, no GPU, and
running Ubuntu 24.04 LTS. The final configuration involves a
virtual machine using VMware Player emulated with 2 core,
4GB of RAM, no GPU acceleration, and running Windows
11 Build 22631. These various configurations were chosen to
assess PhishLang’s performance across a spectrum of hardware
configurations that reflect typical end-user environments. Ta-
ble VIII presents the performance of PhishLang in terms of ef-
ficiency, memory usage, and inference time. Our findings show
that the client-side application running on both Ubuntu and
Windows 11 achieves the same efficiency as the model running
on our experimental server, indicating no performance loss
when PhishLang operates on the client-side. Additionally, all
configurations exhibit similar memory usage. Memory usage
was calculated by considering the system service (local server)
and the memory consumed by the browser extension. It is
noteworthy that the experimental setup has lower RAM usage
since it runs the base model without any browser extension
overhead. Regarding inference time, the low-tier and virtual
machine configurations, despite having weaker processors,
demonstrate only a slight decrease in speed compared to the
experimental and mid-tier setups. All configurations maintain a
median inference time of under one second. This suggests that

TABLE VIII: Performance of the PhishLang app for various
system configurations

Configuration Precision/Recall Memory usage Inference time (in secs)
Min Max Median Min Max Median

Experimental 0.95/ 0.96 28MB 215MB 76MB 0.08 1.09 0.44
Medium-end 0.95/ 0.96 51MB 308MB 93MB 0.13 1.47 0.59

Low-end 0.95/ 0.96 54MB 247MB 89MB 0.18 1.95 0.73
Virtual Machine 0.95/ 0.96 68MB 231MB 102MB 0.11 2.43 0.81

TABLE IX: Comparison of Zero-day protection by anti-
phishing tools

Tool Regular JS-
Evasions

Click-
jacking

DOM
Manipul.

Text
Encoding Overall

PhishLang 94 97 94 87 85 457 (91.4%)
GSB (Enhanced) 56 53 39 44 29 221 (44.2%)

GSB (Client-only) 38 5 11 9 9 77 (15.4%)
McAfee 63 69 46 31 18 227 (45.4%)

BitDefender 45 48 36 39 7 175 (35%)
Avast 84 52 29 9 16 192 (38.4%)

Trend-Micro 52 18 43 12 5 130 (26%)

our application offers rapid inference regardless of the system
configuration. It is important to note that the reported inference
time excludes the time required to fetch the website, as server
congestion or intentional delays by attackers can significantly
affect website loading times.

B. Comparison with Commercial Anti-phishing tools

We also compare the performance of PhishLang with
five widely used commercial anti-phishing tools. Like Phish-
Lang, these tools operate within the user’s web browser,
scanning links of visited websites and providing warnings
if a website is identified as phishing. Among these, Google
Safe Browsing serves as the default protection mechanism
in Google Chrome, Mozilla Firefox, and Safari, and several
other browsers, collectively covering nearly 96% of all internet
users [78]. Beyond browser-integrated protections, many users
choose specialized antivirus solutions that incorporate anti-
phishing functionalities. For our evaluation, we selected four
popular anti-phishing tools that have been certified by AV-
Comparatives [10], an independent organization that tests and
certifies security software. These tools include Avast Online
Security, BitDefender TrafficLight, McAfee WebAdvisor, and
TrendMicro Toolbar.

To ensure unbiased evaluation, we tested all tools against
500 previously unseen phishing domains that were created and
hosted by us. We designed the layout of these websites based
on the top 50 most frequently targeted brands, as identified
in the January 2024 OpenPhish rankings [59], since these
brands are more attractive targets for anti-phishing detectors
aiming to maximize real-world impact. We then systematically
augmented these base designs with the features for regular
credential phishing, as well as the four evasive categories (See
Table X in Appendix A), with each category consisting of
100 samples. To maintain ethical standards, all phishing func-
tionalities were disarmed, ensuring any information entered on
these sites was immediately discarded. The websites were also
taken down immediately after completing our experiments.
This approach aligns with methodologies used in prior re-
search for simulating real-world phishing scenarios [56]. This
methodology aligns with established best practices for safely
simulating phishing scenarios in prior academic research [56].
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We then deployed these domains using GoPhish [88], an open-
source phishing framework that enabled secure hosting and
fine-grained control over deployment, ensuring consistency
across experiments.

C. Evaluation strategies

Approaches: We evaluate the performance of the tools
using two evaluation strategies: zero-day protection and over-
time protection. Zero-day protection measures the detection
rate of each tool immediately after a phishing website is
launched. This is crucial because anti-phishing tools often rely
on both local and online models: the local model provides
immediate detection, while the online model, typically more
sophisticated and resource-intensive, queues the URL for anal-
ysis and subsequently pushes updates to all users once a threat
is confirmed [57]. PhishLang, being primarily client-side, is
designed to deliver zero-day protection. Since the risk of
phishing attacks escalates rapidly with time [56], zero-day de-
tection represents the ideal outcome for any anti-phishing tool.
The second evaluation strategy, over-time protection, examines
what percentage of websites are detected over a seven-day
period. Anti-phishing tools often improve detection rates post-
launch by leveraging larger models, intelligence from partner
organizations, manual reviews, or more advanced analyses that
take additional time [55], [62]. However, PhishLang is at a
disadvantage in this scenario as it relies exclusively on client-
side protection.
Tool specifications and setup: With PhishLang being a client-
side-only tool, we aimed to test the client-side components
of other tools as well. However, most tools integrate both
client-side and online modules, with the latter being insep-
arable in practice, except for Google Safe Browsing (GSB).
GSB’s default Standard protection appears to rely solely on
online blocklists for detection without incorporating a real-
time component . It only sends a random sample of the
user’s browser history for analysis. In contrast, its Enhanced
protection setting invokes the real-time module. To ensure we
utilized only the client-side component, we implemented the
strategy described by Pourmohamad et al. [64], isolating the
client-side component for evaluation purposes. We included the
GSB Enhanced mode as part of our testing to assess its real-
time capabilities. Each tool was installed in Google Chrome
within a separate VM running Windows 11 with 4GB of RAM.
Using Selenium, we automated browser visits to each of the
500 websites recursively until detected by the respective tool.
The first iteration, conducted immediately after the websites
were launched, was treated as the zero-day metric. Subsequent
iterations continuously monitored over-time protection.

D. Results

Table IX compares the zero-day protection capabilities of
the anti-phishing tools. PhishLang demonstrates a substantial
advantage, achieving a detection rate of 91.4% for zero-day
phishing websites. In contrast, GSB-Enhanced detects slightly
over 44% of such websites, while its client-only variant per-
forms considerably worse, identifying only 15.4%. This aligns
with the findings of Pourmohamad et al. [64], which report
significantly low detection rates for the GSB client-only model.
Among the other commercial tools, performance is relatively
similar, with Trend Micro showing the lowest detection rate

Fig. 7: Comparison of anti-phishing tools overtime

at just 26%. Notably, all tools, except for PhishLang, provide
stronger protection against regular phishing attacks compared
to evasive ones. This highlights a significant vulnerability
for users relying on these tools against phishing threats at
zero day. Figure 7 illustrates the performance of the tools
over seven days, measured at 8-hour intervals. The results
show a steady improvement in detection rates across all tools,
starting from their Day Zero findings and gradually increasing
over time. Avast, BitDefender, and McAfee demonstrated
notable gains, achieving detection rates of 79.4%, 82.2%,
and 76.8%, respectively. Similarly, GSB and Trend Micro
followed a comparable trend, reaching 67.2% and 65.2%, with
most of their improvements concentrated in the Regular and
Clickjacking categories. However, these tools showed limited
progress in detecting other evasive threats. Notably, their final
detection rates remained lower than PhishLang’s Day Zero
performance. It is important to highlight that anti-phishing
tools are specifically designed to maintain very low false
positive rates to avoid blocking legitimate websites [62], [57].
In Section III-B, we established PhishLang’s similarly low
false positive rate on a live stream of Certstream URLs. While
these experiments demonstrate PhishLang’s performs better
than other anti-phishing tools, some limitations of the study
must be acknowledged. In real-world scenarios, phishing URLs
are often distributed multiple times across emails, social media
platforms, and other channels, significantly increasing their
exposure to anti-phishing systems. This heightened visibility
enhances their likelihood of detection - a condition our URLs
were not subjected to. In our setup, the only visibility these
URLs received was through repeated queries from our individ-
ual browsers during the longitudinal experiment, however, they
still appeared to originate from the same subnet, potentially
resembling traffic from a single isolated location. However,
this does not undermine the fact that phishing attacks should be
detected as soon as they are discovered to minimize damage, a
task at which PhishLang excelled throughout the experiment,
especially against evasive threats as soon they appeared.

VI. CONCLUSION

In this work, we introduced PhishLang, a lightweight,
fully client-side phishing detection framework powered by
MobileBERT. By focusing on actionable elements within a
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website’s source code, PhishLang moves beyond traditional
heuristic and static features to effectively detect evasive, zero-
day phishing threats. When deployed in real time, PhishLang
identified thousands of phishing attacks, including many that
were missed by popular anti-phishing blocklists. The model
also demonstrates strong adversarial resilience, successfully
defending against a wide range of problem-space evasion
attacks and was further improved through targeted adversarial
patches. As a browser extension, PhishLang runs efficiently
even on low-end consumer systems, while outperforming sev-
eral commercial anti-phishing tools in zero-day protection.
To support broader adoption and community-driven improve-
ments, we open-source both the PhishLang detection frame-
work and the client-side browser extension.

ETHICAL CONSIDERATIONS

This research does not involve human subjects, interaction
with users, or the collection of any personally identifiable
information (PII). All data used for training and evaluation was
sourced from publicly available phishing and benign websites.
The PhishLang framework operates entirely on publicly acces-
sible metadata and HTML content, and does not engage with
backend infrastructure or user data. Accordingly, this study did
not require IRB approval.
Risk Mitigation: In accordance with the Menlo Report’s [13]
principle of Beneficence, we carefully evaluated potential
risks associated with the development and deployment of
PhishLang, aiming to maximize societal benefit while mini-
mizing harm. Although detailing detection mechanisms could
potentially inform adversarial adaptation, we proactively eval-
uated our framework against 16 types of realistic problem-
space adversarial attacks and applied targeted mitigations that
render most evasion attempts ineffective or impractical. These
improvements significantly enhanced the model’s robustness
in real-world conditions. PhishLang operates entirely on the
client-side, without transmitting any user data externally,
thereby eliminating privacy risks during deployment. No re-
mote logging, telemetry, or external dependencies are used.
Responsible Disclosure: All phishing URLs identified by
PhishLang during live deployment were reported within 3
hours to relevant hosting providers, blocklist maintainers, and
affected organizations. This responsible disclosure process
directly contributed to the takedown of threats that had evaded
detection by popular antiphishing blocklists and tools.
Legal and Platform Compliance: We ensured compliance
with all applicable laws and platform terms of service. No
authentication systems were probed, and we did not submit
information to live phishing forms. All evaluations were based
on passive analysis of publicly accessible HTML content and
metadata. Training data was sourced from an open repository
(PhishPedia).
Open Source and Data Sharing: We have open-sourced the
PhishLang framework and Chromium browser extension to
support transparency and reproducibility. However, given the
sensitive nature of live phishing websites, we do not release the
URLs publicly. Access may be granted upon request under a
legal data-sharing agreement, subject to institutional approval.
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APPENDIX A
TAXONOMY AND CLASSIFIER FOR CATEGORIZING EVASIVE

PHISHING PAGES

In Section III-A, our coders manually looked through 2,500
websites that were identified by PhishLang in real-time, and
validated 2,388 as phishing. They further used a series of
heuristics to categorize these websites into regular phishing
and four evasive categories. Table X outlines the structural
and behavioral indicators derived from prior literature [56],
[80], [9], [46], [85] that were used by them to categorize
the websites manually. These features were chosen for their
reproducibility and ability to capture evasive techniques that
manipulate rendering behavior, obscure intent, or evade au-
tomated scanners. The manual annotation process involved
the coders inspecting each website’s source code to detect
the presence of these evasive features. For example, to iden-
tify Behavioral JavaScript Evasions (as described in Liang
et al. [46]), coders flagged websites containing constructs
such as setTimeout() or setInterval() to delay
the appearance of key elements like login forms, or those
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using document.write() and innerHTML to dynami-
cally inject phishing payloads post-render. Both coders jointly
reviewed and labeled the complete set of 2,500 websites,
and disagreements were resolved through three adjudication
sessions where both coders reviewed the raw HTML and
JavaScript code together to assess how specific constructs
aligned with the evasive feature definitions. The resulting inter-
coder agreement was 0.91, reflecting strong reliability and
consistency in the manual classification.

Automate Detection of Attack Categories: To automate
this classification of evasive behavior, we encoded these same
heuristics into a lightweight, rule-based detection algorithm.
Unlike the evaluation by the human coders, qualitative judg-
ment is not feasible in automated settings; thus, we introduced
a quantitative scoring rule. This algorithm takes the HTML
source and JavaScript content (when present) of a page as
input, scans for the known evasive features, and assigns a
single evasive category based on a scoring strategy. The scoring
system reflects the number of matched heuristics per category.
A fallback category of Regular Phishing is used when no
evasive indicators are detected. The full pseudocode of this
detection logic is provided in Figure 8

To evaluate the effectiveness of this rule-based approach,
we applied it to the same 2,388 websites that were previously
categorized manually by the coders. The rule-based algorithm
correctly matched the coders’ labels in 2,270 cases (95.1%).
It achieved high agreement across all categories: 1,546 out of
1,623 Regular Phishing (95.2%), 266 out of 280 Behavioral
JavaScript Evasion (95.0%), 295 out of 313 Clickjacking
(94.2%), 87 out of 94 DOM Manipulation (92.6%), and 76 out
of 78 Text Encoding (97.4%). These results suggest that the
rule-based classifier provides a reliable and scalable alternative
to manual annotation. However, these feature lists are not
exhaustive, and it is possible that during both manual in-
spection and automated detection, some evasive websites may
have been mislabeled as regular. While the chosen categories
reflect several widely studied evasion strategies, they do not
encompass the full spectrum of evasive techniques seen in the
wild.

TABLE X: Technical Features Used for Evasion Labeling

Attack Category Technical Features Used for Labeling

Behavioral JS Evasion [59]

JS-triggered content on events: onmousemove,
onclick
setTimeout() or setInterval() delays before
UI shown
DOM created via document.createElement
Content injected using innerHTML, appendChild
Phishing form rendered only after CAPTCHA interac-
tion

Clickjacking [95, 16]

<iframe> with width=1, height=1, or
opacity: 0
z-index stacking to overlay invisible login forms
Multiple iframes with pointer-events: none
Hidden iframes redirecting click actions

DOM Manipulation [59]

Benign-looking tag insertion: <p>, <div>, <h1>
Obfuscation via whitespace or null bytes in tags
CSS: display: none, visibility: hidden,
text-indent: -9999px
Misleading content inside <noscript> blocks

Text Encoding [100, 59]

HTML entities like &#x6C;&#x6F;&x67;&#x69;&#x6E;
Unicode homoglyphs (e.g., Cyrillic ‘’ for Latin ‘a’)
LTR/RTL override characters (e.g., &#x202E;)
JavaScript obfuscation via
String.fromCharCode()
Encoded form labels/button text to evade filters

Fig. 8: Pseudocode for automated scoring-based categorization
of evasive phishing pages

APPENDIX B
GPT PROMPTS

To further validate the coders’ selection of the tags, we
queried GPT-4 with 3,000 confirmed phishing websites from
the PhishPedia dataset, asking it to identify HTML tags most
relevant to phishing detection. Prior work has shown GPT-4 to
be proficient at identifying phishing patterns [15], [39], making
it a credible secondary reference. The model confirmed our tag
set and additionally recommended <applet> and <img>.
However, <applet> was excluded due to its deprecation in
HTML5 and extremely low prevalence in the dataset. <img>
was excluded because it typically encodes filenames or links
rather than semantic content, which a language model cannot
interpret. The GPT prompt used for this task is provided in
the next page.

We also used a GPT prompt later in Section II-C to com-
pare their performance in phishing website detection versus
PhishLang. That prompt is also provided in the next page.

APPENDIX C
EXAMPLES OF MISDETECTIONS AND IMPROVEMENTS

We present examples of the false positives and false
negatives discussed in Section III-B, which were initially
misclassified by PhishLang but later resolved through parser
modifications and adversarial patches.
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Fig. 9: An example of a parked domain page that was flagged
as a false positive

Fig. 10: An example of a false positive with poor layout

"FORM": {

  "title": "Rakuten Member Login",



  "TEXT": "To use this service, please log in with your Rakuten user ID. 

If this is your first time using Rakuten e-NAVI, you must complete the e-NAVI service start 
procedure.",



  "INPUT": [

    { "type": "text", "name": "user_id"},

    { "type": "password", "name": "password", "placeholder": "Password (alphanumeric)" }

  ],



  "CHECKBOX": {

    "label": "Agree to Privacy Policy",

  },



  "BUTTON": {

    "text": "Login"

  },



  "LINK": [

    {

      "text": "Forgot your user ID or password?",

      "href": "[URL to recovery page]"

    },

    {

      "text": "Privacy Policy",

      "href": "[URL to privacy policy]"

    }

  ]


Original Site

Translated, parsed and detected

Fig. 11: Misdetection in Figure 4 that was translated by Argos
library and then detected by PhishLang.
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