Vault Raider: Stealthy Ul-based Attacks Against
Password Managers in Desktop Environments

Andrea Infantino, Mir Masood Ali, Kostas Solomos, and Jason Polakis
University of Illinois Chicago
{ainfan5, mali92, ksolom6, polakis} @uic.edu

Abstract—Password managers significantly improve password-
based authentication by generating strong and unique passwords,
while also streamlining the actual authentication process through
autofill functionality. Crucially, autofill provides additional secu-
rity protections when employed within a traditional browsing
environment, as it can trivially thwart phishing attacks due to
the website’s domain information being readily available. With
the increasing trend of major web services deploying standalone
native apps, password managers have also started offering
universal autofill and other user-friendly capabilities for desktop
environments. However, it is currently unknown how password
managers’ security protections operate in these environments. In
this paper, we fill that gap by presenting the first systematic
empirical analysis of the autofill-related functionalities made
available by popular password managers (including 1Password
and LastPass) in major desktop environments (macOS, Windows,
Linux). We experimentally find that password managers adopt
different strategies for interacting with desktop apps and employ
widely different levels of safeguards against Ul-based attacks. For
instance, on macOS, we find that a high level of security can be
achieved by leveraging OS-provided APIs and checks, while on
Windows we identify a lack of proper security checks mainly
due to OS limitations. In each scenario, we demonstrate proof-
of-concept attacks that allow other apps to bypass the security
checks in place and stealthily steal users’ credentials, one-time
passwords, and vault secret keys through unobservable simulated
key presses. Accordingly, we propose a series of countermeasures
that can mitigate our attacks. Due to the severity of our attacks,
we disclosed our findings and proposed countermeasures to the
analyzed password manager vendors, which has kickstarted the
remediation process for certain vendors and also been awarded a
bug bounty. Finally, we will share our code to facilitate additional
research towards fortifying password managers.

I. INTRODUCTION

As the modern web revolves around predominantly dynamic
and personalized content, authentication remains an integral
and critical aspect of users’ browsing experience [1], [2],
[3], [4]. While passwordless authentication paradigms have
emerged in recent years [5], [6], passwords remain the de
facto method for end-user authentication in many settings [7],
[8]. Password-based authentication has been extensively an-
alyzed in prior research spanning more than two decades,
detailing their various shortcomings and the challenges users

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231067
www.ndss-symposium.org

face [9]. This includes users choosing weak or guessable
passwords [10], [11], their inability to remember strong
passwords [12], the impact of an ever-increasing number
of accounts and passwords [13] which leads to password
reuse across services [14], [15], and, finally, users’ inherent
susceptibility to phishing attacks [16], [17].

At the heart of these issues lie the natural limitations of
humans, which motivated the proposal of password managers
as a means to address the aforementioned shortcomings. Even
though their core functionality and goals remain unchanged,
password managers have evolved considerably compared to
early academic proposals [18], [19], [20], with a particular
focus on improving usability concerns [21], [22], [23] that can
hinder wider adoption. As a result, popular password manager
browser extensions have millions of downloads in Google
Chrome’s Web Store. Apart from the ability to generate
strong and unique passwords, these browser extensions also
automatically fill out (i.e., autofill) user credentials in websites’
account registration and log-in forms, thereby significantly
streamlining the authentication process. By verifying the vis-
ited website’s domain, which is made readily available by
browsers through the URL Web API [24], password managers
protect against phishing attacks. Importantly, certain password
managers also operate as authenticators for two-factor authen-
tication, further mitigating the effects of phishing or credential
stuffing attacks [25].

While web browsers continue to mediate a significant por-
tion of users’ online activities, many major web services have
started to offer standalone desktop apps as a means to improve
the user experience (this can, at least partially, be attributed
to the declining performance of browsers due to bloat [26],
[27]). Accordingly, this migration from browsers to native apps
has necessitated that password managers also pivot to desktop
ecosystems. Given the key importance of autofill functionality
and the paramount importance of usability, certain password
managers have started offering universal autofill functionality,
wherein they will autofill users’ credentials in the login forms
of non-browser applications. Despite autofill functionality
being conceptually straightforward, securely completing the
autofill process outside of the sandboxed and isolated confines
of a browser requires introducing new types of safeguards.
Moreover, it is unknown what system-level features and APIs
are made available across different operating systems that
could facilitate, or undermine, this process.

In this paper, we address this gap by offering the first,

mailto:ainfan5@uic.edu
mailto:mali92@uic.edu
mailto:ksolom6@uic.edu
mailto:polakis@uic.edu

to the best of our knowledge, empirical security analysis of
password managers for native desktop application environ-
ments. Specifically, we focus on autofill and other functionality
features that aim to obviate the friction that can arise during the
authentication process. To that end, we first explore the various
user-friendly features offered by popular managers across dif-
ferent platforms. Subsequently, we analyze popular password
managers in-depth and uncover what mechanisms are in place
for preventing applications from exploiting their autofill func-
tionality for credential-stealing attacks. We also explore what,
if any, OS-level APIs and features are leveraged as part of
their security posture. Our analysis uncovers a tale of extreme
divergence in terms of safeguards employed by password
managers within the same operating system, as well as for the
same password managers across different operating systems.
Indicatively, we find that 1Password on macOS employs a
series of countermeasures against phishing apps, including de-
tecting multiple active processes with the same Bundle ID,
mapping applications to trusted Associated Domains,
and verifying apps through macOS’ Code Signing APIs.
In contrast, 1Password for Windows does not employ com-
parable security checks due to the lack of corresponding OS-
level mechanisms, highlighting the challenge of implementing
autofill when faced with insufficient platform support.

Guided by our findings, we demonstrate novel attacks that

exploit the functionality offered by desktop password man-
agers for exfiltrating users’ data, including their credentials,
2FA codes, and vault secret key. For less secure password
managers (e.g., Keeper), the attacks can be as simple as spoof-
ing the target application’s Bundle ID, while in more secure
apps (e.g., 1Password), we use synthetic keyboard clicks for
leveraging the password manager’s Quick Access functionality.
We then detail how a series of system-specific Ul-related
features can be leveraged by malicious applications for hiding
the password manager functionalities that they trigger from
users, thereby rendering our attacks stealthy. Interestingly,
we find that macOS and Windows support multiple window
manipulation techniques that allow for fully stealthy attacks
without visual artifacts. To make matters worse, we also
demonstrate that our attacks enable local privilege escalation
by harvesting system passwords, and allow an attacker to
replicate a user’s vault on a separate device by extracting
the secret key. Guided by our attack techniques, we propose
mitigations that would allow password managers to detect our
attacks and avoid exposing users’ data. Due to the critical
role of password managers and the severe implications of our
attacks, we have already disclosed our findings and proposed
mitigations to the respective vendors. Certain vendors have
acknowledged the severity of our attacks and have initiated
remediation efforts to mitigate the underlying weaknesses that
could significantly impact their user bases.

In summary, our research contributions are:

e We present the first in-depth empirical analysis of
password manager functionality in desktop application
ecosystems. We also explore what mechanisms are ex-
posed by operating systems and adopted by password

managers for safeguarding autofill-related functionality.

« We demonstrate novel attacks that exploit password
managers’ functionality and manipulate UI features for
stealthily exfiltrating secrets from their vaults.

« We propose countermeasures that can be incorporated by
password managers for effectively mitigating our attacks.

« We have responsibly disclosed our findings to the af-
fected vendors to kickstart remediation efforts. To enable
additional research on password manager security, our
source code and attack demonstrations are available on
our artifacts page [28].

II. BACKGROUND AND THREAT MODEL

Here we provide background information on password man-
ager features and functionality, and detail our threat model.

Form Autofill Functionality. Autofill functionality is a core
feature in modern web browsers, designed to store and auto-
matically populate data such as login credentials, addresses,
payment details, and other frequently used information in web
forms [29]. When users input data into form fields, browsers
typically prompt them to save this information for subsequent
use. Once stored, the autofill mechanism identifies matching
fields across different web pages and retrieves the corre-
sponding data to streamline form completion. This browser
functionality is integrated across devices, enabling consistent
user experiences. Sensitive data, including login credentials,
is stored locally within the browser and can be synchronized
with cloud services [30], [31], [32].

The autofill process operates by identifying and interpret-
ing form field elements through the analysis of visible and
hidden attributes, such as usernames and passwords, and
associating them with previously stored credentials. Detection
mechanisms adapt to variations in web forms by analyzing
structural features and semantic markers (e.g., the HTMLS aut-
ofill attribute) [33]. These mechanisms also handle additional
obfuscated or dynamically generated fields to support more
advanced web structures. Once fields are classified, the system
selects the best-matching stored data for automatic completion.

Password Managers. Password managers are available
both as integrated browser features and as standalone ap-
plications for desktop and mobile platforms. Browser-based
password managers focus on credential autofill while offering
additional features such as password generation, secure stor-
age, and password strength analysis, for enhancing account
protection [34]. In addition to their browser-focused im-
plementations,password managers also operate as standalone
desktop applications, integrating into native environments.
These applications, such as 1Password [35], LastPass [36],
and Keeper [37], provide cross-platform synchronization, en-
abling users to securely access their data across multiple
devices. Password managers also support the management
and secure storage of a wide range of sensitive information,
including credit card information, one-time passwords (OTPs),
and identity information, ensuring comprehensive protection
and accessibility. Given the sensitivity of the information
they manage, password managers implement robust security

measures, including master passwords and two-factor au-
thentication (2FA) [38]. User authentication is required to
access encrypted data, with advanced tools employing zero-
knowledge encryption, ensuring that even service providers
cannot access stored information [39].

Threat Model. Our research focuses on the operation of
standalone password managers that offer autofill functionality
outside of the confines of web browsers. As such, we adopt
the typical threat model used in security studies that focus on
native app ecosystems (i.e., non-browser environments). We
assume that the user has installed a malicious application —
the specific propagation method is outside the scope of our
study. Malicious or invasive software is a common occurrence
in desktop environments, including macOS despite the wide
misconceptions that exist about its purported immunity to
malware [40]. In practice, attackers can achieve this through
straightforward social engineering attacks, or more advanced
attacks that pass Apple’s app vetting process [41], or a man-in-
the-middle attack against Apple’s Wireless Direct Link [42].
It is important to note that macOS’s default app protection
mechanism, Gatekeeper, does not prevent users from installing
malware. Instead, it primarily serves as a warning system,
verifying that downloaded apps are signed by an identified
developer and notarized by Apple [43]. Notarization is a one-
time verification process that does not provide continuous
monitoring, allowing apps to introduce malicious behavior
post-installation. In practice, while Gatekeeper can issue warn-
ings for unsigned or unnotarized applications, signed malicious
software continues to be distributed and executed [44], [45],
[40]. Recent macOS malware campaigns have, in fact, explic-
itly leveraged signed binaries to evade Gatekeeper’s protec-
tions [46]. Moreover, users can override system protections
to install unverified applications [47], [48], [49]—a common
practice for software distributed outside the App Store.

Prerequisites. For simplicity, in our analysis we assume that
the user’s password manager application is running, which
is a reasonable assumption as these applications are often
left open in the background for convenience. Nonetheless,
malicious apps can leverage system-level APIs (e.g., ps on
macOS or tasklist on Windows) to monitor active pro-
cesses and launch the attack only after confirming that the
password manager is running, thereby reducing the risk of
detection. Moreover, on macOS, we assume that the mali-
cious app obtains the Accessibility permission during
installation, a typical permission required by a wide range
of legitimate software, including screen recording and remote
control applications [50]. Notably, permission requests and
Ul automation have been leveraged in real-world malware
campaigns to perform tasks such as simulated input events and
data exfiltration [51], [52]. In our attack, Accessibility access
is incorporated into the broader workflow that ultimately
exploits password managers’ autofill behavior. We further
discuss our assumptions’ practicality in §IV and how to relax
our propagation vector assumptions in §VIIL

Malicious application. The application appears to be legit-
imate and can be bundled with popular software or disguised

TABLE I: Summary of analyzed password managers.

Password Manager Version oS Popularity

¢« = D
1Password 8.10.48 v v [>15M users [53]
Keeper 16.10.13 v/ v NA >1M paying users [54]
LastPass 4.14.1.0 N/A v N/A >33M users [55]
KeePassXC 2.7.9 v v v >691K Linux installs [56]
MacPass 0.8.1 v N/A N/A >6.8K GitHub stars [57]

@ indicates partial support, where a password manager is available on the operating
system but lacks full feature compatibility.

as a common utility. Once active, it targets specific password
managers and exfiltrates stored credentials (usernames and
passwords), banking information, one-time passwords, and
vault secret keys (if applicable). Our malicious application
prototype operates entirely at the user-level space, without
exploiting kernel-level vulnerabilities or requiring special ad-
ministrative privileges (beyond the Accessibility permission
in macOS). Our attacks exploit design flaws in password
managers’ autofill-related functionality and Ul-related features
for extracting sensitive data in a stealthy manner. We em-
phasize that the attack does not rely on zero-day exploits or
implementation bugs, but instead leverages existing function-
ality intended for users. Through variations across different
password managers and OSes, our research demonstrates an
advanced threat that exploits vulnerabilities in the handling of
UI elements and synthetic user events. By manipulating these
components, the attacker bypasses existing security checks and
tricks the password managers into exposing sensitive data.

III. EXPERIMENTAL SETUP

Selecting and Configuring Password Managers. We
selected password managers based on two criteria: (i) the
presence of autofill functionality in native applications and
(ii) broad platform support. While password managers pro-
vide autofill capabilities in web browsers—typically through
browser extensions—fewer have implemented this feature for
native applications. Since our study focuses on attacks target-
ing autofill functionality beyond the browser, we prioritized
password managers that explicitly support autofill in native
applications. Table I summarizes the key characteristics of the
evaluated password managers, including their supported plat-
forms and popularity. Notably, a subset of password managers
offer full cross-platform support, while others, like MacPass,
are restricted to specific operating systems.

Attack Workflow. Our credential harvesting attack is exe-
cuted through a custom phishing application that performs the
required steps to exfiltrate credentials. The attack proceeds
through the following stages: (i) Upon launch, the application
renders its interface and embeds input components for creden-
tial capture, such as hidden form fields. (ii) To impersonate a
trusted application and bypass verification checks, it modifies
identity attributes such as the window title, bundle metadata,
or display name. (iii) It generates synthetic keyboard inputs
to trigger the password manager’s autofill or credential access
components (e.g., Quick Access). (iv) Once verification suc-

TABLE II: Overview of our attacks across different password managers and platforms. Credential Types indicates the categories
of sensitive data that can be harvested: usernames, passwords, one-time passwords (OTPs), and credit card information.
Permissions indicates whether the attack requires additional OS-level permissions (v') or not (X) for the respective platform;
N/A denotes that the password manager is not supported on that platform. Stealthiness denotes whether the attack is fully
stealthy (@), partially stealthy (@), or not stealthy (X) on each OS. Performance reports the time required to harvest a pair of
credentials under the primary attack variant on macOS, where applicable.

Password Manager Credential Types Permissions Stealthiness Performance
Username Password OTP CC Info @& = A .' = A
1Password v v v v v X X [] [] X 11s
Keeper v v v 4 v X N/A D) N/A 4s
LastPass v v v v N/A X N/A N/A [) N/A 5s
KeePassXC v v v X v X X [} o X 17s
MacPass v v v X v N/A N/A o N/A N/A 5s
macOS Keychain v v X X N/A° NA NA NA NA N/A

ceeds, the password manager either injects credentials directly
into the phishing application’s hidden fields or displays the
vault contents for selection. The phishing application then
simulates interactions to extract the displayed credentials and
transfer them into its own interface for exfiltration (e.g., copy-
paste actions). (v) To maintain stealthiness, the application
overlays distracting content (e.g., a video player) and lever-
ages window layering attributes to remain in the foreground
and/or hide password manager windows. The methodology is
consistent across password managers; differences arise from
OS-level constraints or manager-specific behavior.

Testing Environment. We created test accounts with each
password manager to ensure that no real user data was at
risk. All evaluated password managers supported keyboard
shortcuts to trigger autofill by default, except KeePassXC,
which disables this feature by default; for consistency, we
enabled autofill for our tests. Prior to each experiment, we
ensured the password managers were running, unlocked, and
populated with fake credentials associated with real services.
We deployed our malicious application using the Electron
framework and its window management capabilities [58], en-
abling consistent cross-platform deployment. To simulate user
interactions and trigger autofill mechanisms, we integrated the
Robot]S library [59]. All experiments were conducted locally
on macOS (MacBook Pro, M3, Sonoma 14.6.1), Windows
(Galaxy Book Pro 360, Windows 11 Home), and Linux (HP
15-bwOxx, Ubuntu 22.04.5 LTS).

Overview. Table II summarizes our attacks, detailing the
targeted OSes, required privileges, stealthiness, and perfor-
mance for the primary attack variant (e.g., email-password
credentials). For password managers available in multiple
OSes, we report the performance on macOS. In the following
sections, we discuss each scenario in detail, highlighting any
unique features employed by each password manager, as well
as the intricacies of our attack in each scenario.

IV. MACOS PASSWORD MANAGERS

Here, we analyze the autofill functionalities of macOS
password managers. In §IV-A, we demonstrate our analysis
of 1Password to achieve effective credential harvesting. In

§IV-B, §1V-C, and §IV-D, we extend our analysis and intro-
duce variations of the attack across other password managers,
highlighting commonalities and differences in their verification
mechanisms. We focus our presentation on 1Password for the
following reasons: (i) it is one of the most popular password
managers, (ii) it is highly recommended (e.g., The New York
Times has recommended it multiple times as the best password
manager [60], [61]), and (iii) it incorporates the most OS-
specific safeguards, thereby providing a prime example of the
level of security that can be achieved in macOS.

macOS Features and Security Mechanisms. Autofill
functionality in standalone password managers introduces
additional security challenges not present in their typical
browser-based usage, where credentials are filled within a
well-structured and sandboxed environment. Here we outline
structural and security-relevant aspects of macOS applications
that are pertinent to our threat model.

App Components. macOS apps are built upon a structured
packaging system and robust security mechanisms, designed to
ensure their integrity, usability, and interaction with the operat-
ing system. Specifically, they are distributed as bundles—self-
contained directories that include executable code, resources,
and metadata required for the app’s functionality. A funda-
mental component of the bundle is the Information Property
List (Info.plist), a configuration file that stores essential
app information [62]. It specifies the version number, sup-
ported architectures, localization settings, and entitlements for
accessing system resources.

Each app includes a unique Bundle ID [63], which the
OS uses to manage app identity, enforce permissions, and
isolate inter-application interactions. Similarly, the Bundle
Display Name serves as the primary label that users rely
on to interact with apps in the system’s interface, such as
the Finder, ensuring accurate app identification. macOS also
enforces a robust security model to ensure the integrity and
authenticity of apps. Another key component is code signing,
a process that allows developers to cryptographically sign their
apps [64], [65]. This mechanism verifies app integrity and
authenticity, ensuring it has not been modified by other apps,
malware, or during distribution.

Permissions. The Accessibility API serves as a foundational
component that enables apps to support assistive technolo-
gies [66]. It allows developers to programmatically test and
enhance app usability by simulating interactions, identifying
missing accessibility labels, and optimizing layouts. Access to
the Accessibility API requires explicit user approval, managed
through macOS privacy settings, where users must explicitly
grant the permission for the API to become available.

Credential Autofill Mechanisms. Across evaluated pass-
word managers, we identify two primary credential mech-
anisms: Autofill and AutoType. Autofill populates UI
fields directly by leveraging Accessibility API and interacts
with input elements based on their context (e.g., email) [67]. In
contrast, AutoType emulates user-triggered keystrokes for aut-
ofill, without programmatic interaction or field validation [68],
[69]. In our evaluation, we determine the adopted mechanism
for each password manager and exploit it accordingly.

Attack Vectors. As macOS enforces stricter authentication
and verification models, it provides a representative platform
for evaluating attack feasibility under robust OS-level con-
straints. We focus our analysis on macOS to demonstrate
that password managers are vulnerable to credential-harvesting
attacks, despite operating within environments that adopt
advanced platform-level defenses. Specifically, our analysis
reveals inconsistencies in autofill validation that allow attack-
ers to bypass verification mechanisms and extract credentials.
Our attacks exploit three primary flaws: (i) manipulation of
application identification (e.g., spoofed Bundle IDs), (ii) ex-
ploitation of UI interactions, and (iii) abuse of system-level
configurations (e.g., window layering). By leveraging these
techniques, an attacker can systematically and stealthily har-
vest credentials from multiple password managers. We note
here that all variations of our attack leverage the macOS
Accessibility permission to programmatically interact with the
password manager and automate the credential harvesting.

Given that legitimate applications request Accessibility per-
missions, we consider this assumption to be realistic. Specifi-
cally, our analysis of 100 of the most popular free apps from
the macOS App Store revealed that approximately 20% request
this permission, which suggests that users are accustomed to
often granting this permission to apps they install. Moreover,
prior studies in different domains (e.g., Android) have assumed
or explored the presence of malicious applications with the
Accessibility permission [70], [71], [72], [73] or reported its
use by malware in the wild [52].

A. 1Password

We focus our initial analysis on uncovering potential secu-
rity and verification flaws that would allow effective credential
harvesting attacks against 1Password.

Autofill Verification. The autofill mechanism provided by
1Password is activated through dedicated keyboard short-
cuts [74], enabling users to launch a search interface known
as the Quick Access Window (Figure 1). This interface offers
a list of stored credentials that users can select for autofilling
into the corresponding application. To mitigate unauthorized

Q test 0 @

Test - Test Autofill]

[Discord - Discord@test.com - https://discord.com/

% C Copyusername 3 @ C Copypassword - More actions

Fig. 1: 1Password’s Quick Access window.

access and credential exfiltration, 1Password incorporates pro-
tections against malicious applications that attempt to exploit
its autofill functionality. These protections align with the types
of attacks outlined in our threat model, further emphasizing
the realistic threat that such attacks pose to users. Due to the
proprietary closed-source nature of the 1Password application,
we conduct an empirical black-box analysis to identify its
internal security mechanisms and verification processes.

Application Verification. 1Password associates credential
records with applications based on their Bundle ID, each app’s
unique identifier, and this mapping ensures that credentials are
only autofilled into the intended app. However, our analysis
reveals that Bundle IDs are not a reliable indicator of appli-
cation integrity, as they can be tampered with by modifying
an app’s Info.plist file or spoofed by changing another
app’s Bundle ID to match that of a legitimate application. We
experimentally found that 1Password rejects autofill when con-
flicting Bundle IDs are detected. Additionally, we confirmed
the specific conditions enforced by its verification mechanism.
Based on our experimental insights, we have reconstructed the
autofill verification workflow employed by 1Password, which
we summarize in Algorithm 1.

Algorithm 1: 1Password Autofill Workflow on macOS

Input: A: Target Application, BID: Bundle ID
if No records linked to BID then
| Select a record to link

o=

w

if Multiple active apps are linked to BID then
| Abort autofill

if A is devoid of Code Signature then
| Abort autofill

7 Link the selected record with BID if not yet linked
8 if A’s Code Signature is untrusted or invalid then
9 L Abort autofill

10 DevID < Apple Developer ID associated with Code Signature
11 if DevID € Verified Developers then

12 L if BID ¢ Verified Bundle IDs for DevI D then

13

| Abort autofill
14 else if BID € Existing Developer ID — Bundle ID associations then
15 L Abort autofill

IS

N

16 Perform autofill

The process begins by identifying the currently running
application and extracting its Bundle ID — if no records are
linked, the user is prompted to select a record for future autofill
actions. 1Password also performs checks to detect whether
multiple running applications are sharing the same Bundle ID.
If such a conflict is detected, the autofill process is aborted
and the ID is flagged as potentially spoofed. Subsequently,
1Password verifies the application’s code signature by access-

ing the designated folder in its contents. If the application is
not digitally signed, the autofill process is aborted. Otherwise,
it checks the code signature to ensure it is both (a) valid,
confirming that the code has not been tampered with, and
(b) trusted, indicating that it is signed by a verified
Apple Developer. In the final step, 1Password checks the
Apple Developer ID associated with the code signature, and
ensures that the Bundle ID matches a verified list of IDs
for that developer. For popular applications (e.g., Discord,
Slack), 1Password maintains a list of known Developer IDs
to manage verification effectively. When encountering a new
unrecognized Bundle ID, it treats the first valid and trusted
signature as legitimate and prompts the user to confirm the
association. Once this verification is complete, future autofill
requests from the same Developer ID are processed without
additional prompts. When all checks are successfully passed,
1Password proceeds with the autofill operation. The multitude
of safeguards in place strongly suggest that local deceptive
apps are a valid concern for desktop password managers, and
also reveal the numerous macOS features that can be leveraged
to enhance their robustness.

User Confirmation. The first time a user attempts to autofill
credentials into an app, 1Password displays an alert window
prompting the user to confirm the action (see Figure 3 in
the Appendix). Upon confirmation, 1Password establishes an
association between the credentials and the app, blocking any
future attempts to modify this existing association.

Experimental findings. Here, we detail a series of em-
pirical experimental findings, which constitute the individual
“ingredients” that will then be combined into our proof-of-
concept attack. While 1Password conducts multiple verifica-
tion checks before performing an autofill operation, we have
identified omissions in their verification process. Accordingly,
we have developed an automated phishing application exploit-
ing those weaknesses, specifically in the Quick Access feature.

Application Validation. In 1Password’s primary autofill
workflow, the password manager verifies the identity of the
target application before injecting credentials, establishing a
binding between the credential item and its intended des-
tination. In contrast, the Quick Access interface does not
perform application-level validation; it does not verify whether
the application receiving the credentials matches the expected
origin (e.g., bundle identifier). This omission allows any local
application to retrieve stored credentials without triggering
user alerts or verification prompts. The absence of target
validation in this component weakens the security guarantees
provided by the primary autofill mechanism.

Interaction Origin. 1Password does not differentiate be-
tween physical and synthetic keyboard inputs. This allows an
attacker to programmatically simulate user interactions, such
as key presses, to trigger the Quick Access window and access
stored credentials. The attack leverages crafted interactions
with the 1Password vault and automatically harvests creden-
tials without additional user input, thereby bypassing Quick
Access’s built-in security measures.

Window management. The Quick Access window is de-

signed to remain in the foreground, appearing above all other
active windows to ensure that it remains accessible and visible
to the user. However, macOS allows developers to assign
different window levels to control the visibility and layering
of app windows [75], [76]. By default, windows are assigned
the normal level, but 1Password elevates the Quick Access
window to the pop—up-menu level. Our attack exploits this
capability by elevating the attacker’s window to the screen-
saver level, to conceal the Quick Access interface from the
user while harvesting credentials in the background.

Hidden Text Fields. Hidden text fields are HTML in-
put elements with their visibility intentionally concealed
from the user interface, typically through CSS rules
(e.g., display:none). Although not visible to users, these
fields remain accessible to scripts, allowing applications to
access, store, and transmit data. As such, attackers can leverage
them to exfiltrate credentials within an application, without
users being made suspicious or alerted [77].

Attack execution. To assess the practical implications of
1Password’s security flaws, we developed a proof-of-concept
phishing application that systematically extracts stored cre-
dentials while evading detection, by combining all of our
aforementioned findings. The attack targets the Quick Access
feature, leveraging window management inconsistencies, syn-
thetic user interactions, and distraction techniques to stealthily
exfiltrate credentials. The application automates the triggering
of Quick Access, bypassing user interaction requirements by
simulating keyboard input events. Once activated, it retrieves
credential records by programmatically searching stored en-
tries and extracting usernames, passwords, and two-factor
authentication (TOTP) tokens. Unlike default autofill, Quick
Access does not validate the requesting application, allowing
credentials to be retrieved without enforcing application verifi-
cation. To conceal the exfiltration process, the attack exploits
window layering mechanisms, by dynamically elevating the
attacker’s window above the Quick Access interface, it ensures
that credential retrieval remains hidden from the user. Addi-
tionally, the extracted credentials are stored in the phishing
application’s hidden input fields, not visible by the user. After
credential exfiltration, the application restores its window to
the default window level to minimize post-execution traces.
This harvesting approach can be extended to exfiltrate stored
payment information from the vault. The phishing application
enumerates vault entries and accesses items labeled with
payment-related keywords (e.g., Visa, Card). Autofill proceeds
if the target window includes the expected form fields (e.g.,
card number, expiration date). However, the availability of
sensitive fields depends on the user’s stored data and settings
(e.g., CVV autofill requires explicitly storing it [78]). Once
populated, payment information becomes accessible to the
attacker. Finally, to enhance stealthiness, the application intro-
duces obfuscation mechanisms during execution, and overlays
distraction content, such as a video player UI, to divert user
attention. This mechanism can be further augmented with
additional realistic content, such as a simulated software in-
stallation or documentation text, to maintain user engagement.

Attack Performance. To evaluate the performance of our
attack, we populated 1Password with five credential records
corresponding to different services and conducted 10 itera-
tions targeting different sets each time. On average, creden-
tial extraction requires 11 seconds per username-password
pair. We further extend our evaluation to include two-factor
authentication (2FA) codes, by populating 1Password with
three records containing Time-Based One-Time Passwords
(TOTPs). We then measured the time required to harvest
a record comprising a username, password, and TOTP. Our
results show that harvesting a TOTP adds approximately four
seconds to the attack execution, resulting in a total time of
15 seconds for extracting a complete credential record. Since
TOTPs typically remain valid for at least 30 seconds [79],
attackers have sufficient time to leverage the stolen credentials
before expiration. Overall, our evaluation demonstrates that the
proposed attack is practical, highly stealthy, and effective at
harvesting credentials from 1Password.

Credential Binding Flaw. We identified an additional design
flaw in 1Password’s credential association logic that enables
a denial-of-service attack that affects legitimate applications.
Although this issue does not allow credential harvesting, it can
prevent users from accessing their vault. We describe this flaw
in detail in Appendix C.

Privilege Escalation: Harvesting System Password.
1Password supports storing system credentials, which enables
users to autofill directly into terminal apps, such as the default
Terminal. In 1Password, system credentials are saved as
standard vault entries and are assigned a record name based
on the device’s name by default. This naming convention
introduces a security risk since attackers can predict record
names and directly locate system credentials in the vault.
For example, a user named “Alice” using a MacBook Pro
would have their system password saved under a record named
Alice’s MacBook Pro. Since device names often contain
personally identifiable information, including usernames, this
feature significantly reduces the effort required for an attacker
to identify and extract system credentials.

Attack Evaluation. This attack is a variation of the pre-
viously introduced credential-harvesting attack and relies on
the same configuration and permissions. The attacker appli-
cation first retrieves the system’s device name and logged-
in user information using standard macOS APIs, such as
scutil --get ComputerName and whoami. Using this
information, it constructs the expected system credential
record name. Subsequently, it queries the 1Password vault
through the Quick Access feature and searches for records
matching the device name. Since the naming scheme is
predictable, the attacker can directly identify system creden-
tials without the need for exhaustive searching. After locat-
ing the system credential record, the attacker executes the
aforementioned credential exfiltration technique. With access
to the system password, the attacker can execute privileged
commands using sudo, and disable system security features,
modify configurations, or install persistence mechanisms.

To further assess the attack’s performance, we populated

1Password with system credential records under different
configurations. In ten iterations targeting five different user
profiles, the attack required an average of 6 seconds to locate
and extract system credentials. The attack was highly accurate
in detecting the default naming conventions and the associated
credentials. This highlights the practicality and stealthiness of
the attack, allowing the attacker to escalate privileges once
they gain access to the system’s credentials.

1Password Command Line Interface. A key feature
of 1Password is its Command Line Interface (CLI) tool,
accessible through the op command, which allows users
to interact with their vault directly from the terminal [80].
Primarily designed to automate vault operations and manage
credentials programmatically, the CLI tool provides flexibility
for advanced users but can also introduce new security risks
if improperly secured. Our analysis revealed major flaws in
the 1Password CLI tool that can be exploited to extract
sensitive credentials, including the Secret Key — a critical
component required to decrypt the vault. Unlike standard
credentials, the Secret Key is not transmitted to 1Password’s
servers and must be used alongside the master password
to unlock the vault [81]. If both the master password and
Secret Key are compromised, an attacker can authenticate on
a different device, gaining full access to the user’s 1Password
account and resulting in a total compromise of the user’s data.

Authorization Bypass. When a process triggers the 1Pass-
word CLI tool for the first time, a pop-up window is shown
to confirm access to the vault. However, this authorization
pop-up inherits the same flaws as the Quick Access window.
Specifically, it is assigned the pop—up-menu window level,
allowing it to be hidden by higher-level windows. Critically,
it does not differentiate between physical and synthetic user
interactions, allowing an attacker to programmatically simulate
user inputs and approve CLI access without the user’s consent.
By exploiting this flaw, an attacker can stealthily enable CLI
functionality and gain persistent access to the vault.

Default User Records. Once authorized, the CLI provides
access to the vault, including a record named 1Password
Account, which is automatically created during account
setup. This record stores both the master password and the
Secret Key, retrieved in plaintext upon access. While 1Pass-
word enforces restrictions on retrieving the Secret Key through
the Quick Access window