
Vault Raider: Stealthy UI-based Attacks Against
Password Managers in Desktop Environments

Andrea Infantino, Mir Masood Ali, Kostas Solomos, and Jason Polakis
University of Illinois Chicago

{ainfan5, mali92, ksolom6, polakis}@uic.edu

Abstract—Password managers significantly improve password-
based authentication by generating strong and unique passwords,
while also streamlining the actual authentication process through
autofill functionality. Crucially, autofill provides additional secu-
rity protections when employed within a traditional browsing
environment, as it can trivially thwart phishing attacks due to
the website’s domain information being readily available. With
the increasing trend of major web services deploying standalone
native apps, password managers have also started offering
universal autofill and other user-friendly capabilities for desktop
environments. However, it is currently unknown how password
managers’ security protections operate in these environments. In
this paper, we fill that gap by presenting the first systematic
empirical analysis of the autofill-related functionalities made
available by popular password managers (including 1Password
and LastPass) in major desktop environments (macOS, Windows,
Linux). We experimentally find that password managers adopt
different strategies for interacting with desktop apps and employ
widely different levels of safeguards against UI-based attacks. For
instance, on macOS, we find that a high level of security can be
achieved by leveraging OS-provided APIs and checks, while on
Windows we identify a lack of proper security checks mainly
due to OS limitations. In each scenario, we demonstrate proof-
of-concept attacks that allow other apps to bypass the security
checks in place and stealthily steal users’ credentials, one-time
passwords, and vault secret keys through unobservable simulated
key presses. Accordingly, we propose a series of countermeasures
that can mitigate our attacks. Due to the severity of our attacks,
we disclosed our findings and proposed countermeasures to the
analyzed password manager vendors, which has kickstarted the
remediation process for certain vendors and also been awarded a
bug bounty. Finally, we will share our code to facilitate additional
research towards fortifying password managers.

I. INTRODUCTION

As the modern web revolves around predominantly dynamic
and personalized content, authentication remains an integral
and critical aspect of users’ browsing experience [1], [2],
[3], [4]. While passwordless authentication paradigms have
emerged in recent years [5], [6], passwords remain the de
facto method for end-user authentication in many settings [7],
[8]. Password-based authentication has been extensively an-
alyzed in prior research spanning more than two decades,
detailing their various shortcomings and the challenges users

face [9]. This includes users choosing weak or guessable
passwords [10], [11], their inability to remember strong
passwords [12], the impact of an ever-increasing number
of accounts and passwords [13] which leads to password
reuse across services [14], [15], and, finally, users’ inherent
susceptibility to phishing attacks [16], [17].

At the heart of these issues lie the natural limitations of
humans, which motivated the proposal of password managers
as a means to address the aforementioned shortcomings. Even
though their core functionality and goals remain unchanged,
password managers have evolved considerably compared to
early academic proposals [18], [19], [20], with a particular
focus on improving usability concerns [21], [22], [23] that can
hinder wider adoption. As a result, popular password manager
browser extensions have millions of downloads in Google
Chrome’s Web Store. Apart from the ability to generate
strong and unique passwords, these browser extensions also
automatically fill out (i.e., autofill) user credentials in websites’
account registration and log-in forms, thereby significantly
streamlining the authentication process. By verifying the vis-
ited website’s domain, which is made readily available by
browsers through the URL Web API [24], password managers
protect against phishing attacks. Importantly, certain password
managers also operate as authenticators for two-factor authen-
tication, further mitigating the effects of phishing or credential
stuffing attacks [25].

While web browsers continue to mediate a significant por-
tion of users’ online activities, many major web services have
started to offer standalone desktop apps as a means to improve
the user experience (this can, at least partially, be attributed
to the declining performance of browsers due to bloat [26],
[27]). Accordingly, this migration from browsers to native apps
has necessitated that password managers also pivot to desktop
ecosystems. Given the key importance of autofill functionality
and the paramount importance of usability, certain password
managers have started offering universal autofill functionality,
wherein they will autofill users’ credentials in the login forms
of non-browser applications. Despite autofill functionality
being conceptually straightforward, securely completing the
autofill process outside of the sandboxed and isolated confines
of a browser requires introducing new types of safeguards.
Moreover, it is unknown what system-level features and APIs
are made available across different operating systems that
could facilitate, or undermine, this process.

In this paper, we address this gap by offering the first,

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231067
www.ndss-symposium.org

mailto:ainfan5@uic.edu
mailto:mali92@uic.edu
mailto:ksolom6@uic.edu
mailto:polakis@uic.edu

to the best of our knowledge, empirical security analysis of
password managers for native desktop application environ-
ments. Specifically, we focus on autofill and other functionality
features that aim to obviate the friction that can arise during the
authentication process. To that end, we first explore the various
user-friendly features offered by popular managers across dif-
ferent platforms. Subsequently, we analyze popular password
managers in-depth and uncover what mechanisms are in place
for preventing applications from exploiting their autofill func-
tionality for credential-stealing attacks. We also explore what,
if any, OS-level APIs and features are leveraged as part of
their security posture. Our analysis uncovers a tale of extreme
divergence in terms of safeguards employed by password
managers within the same operating system, as well as for the
same password managers across different operating systems.
Indicatively, we find that 1Password on macOS employs a
series of countermeasures against phishing apps, including de-
tecting multiple active processes with the same Bundle ID,
mapping applications to trusted Associated Domains,
and verifying apps through macOS’ Code Signing APIs.
In contrast, 1Password for Windows does not employ com-
parable security checks due to the lack of corresponding OS-
level mechanisms, highlighting the challenge of implementing
autofill when faced with insufficient platform support.

Guided by our findings, we demonstrate novel attacks that
exploit the functionality offered by desktop password man-
agers for exfiltrating users’ data, including their credentials,
2FA codes, and vault secret key. For less secure password
managers (e.g., Keeper), the attacks can be as simple as spoof-
ing the target application’s Bundle ID, while in more secure
apps (e.g., 1Password), we use synthetic keyboard clicks for
leveraging the password manager’s Quick Access functionality.
We then detail how a series of system-specific UI-related
features can be leveraged by malicious applications for hiding
the password manager functionalities that they trigger from
users, thereby rendering our attacks stealthy. Interestingly,
we find that macOS and Windows support multiple window
manipulation techniques that allow for fully stealthy attacks
without visual artifacts. To make matters worse, we also
demonstrate that our attacks enable local privilege escalation
by harvesting system passwords, and allow an attacker to
replicate a user’s vault on a separate device by extracting
the secret key. Guided by our attack techniques, we propose
mitigations that would allow password managers to detect our
attacks and avoid exposing users’ data. Due to the critical
role of password managers and the severe implications of our
attacks, we have already disclosed our findings and proposed
mitigations to the respective vendors. Certain vendors have
acknowledged the severity of our attacks and have initiated
remediation efforts to mitigate the underlying weaknesses that
could significantly impact their user bases.

In summary, our research contributions are:
• We present the first in-depth empirical analysis of

password manager functionality in desktop application
ecosystems. We also explore what mechanisms are ex-
posed by operating systems and adopted by password

managers for safeguarding autofill-related functionality.
• We demonstrate novel attacks that exploit password

managers’ functionality and manipulate UI features for
stealthily exfiltrating secrets from their vaults.

• We propose countermeasures that can be incorporated by
password managers for effectively mitigating our attacks.

• We have responsibly disclosed our findings to the af-
fected vendors to kickstart remediation efforts. To enable
additional research on password manager security, our
source code and attack demonstrations are available on
our artifacts page [28].

II. BACKGROUND AND THREAT MODEL

Here we provide background information on password man-
ager features and functionality, and detail our threat model.

Form Autofill Functionality. Autofill functionality is a core
feature in modern web browsers, designed to store and auto-
matically populate data such as login credentials, addresses,
payment details, and other frequently used information in web
forms [29]. When users input data into form fields, browsers
typically prompt them to save this information for subsequent
use. Once stored, the autofill mechanism identifies matching
fields across different web pages and retrieves the corre-
sponding data to streamline form completion. This browser
functionality is integrated across devices, enabling consistent
user experiences. Sensitive data, including login credentials,
is stored locally within the browser and can be synchronized
with cloud services [30], [31], [32].

The autofill process operates by identifying and interpret-
ing form field elements through the analysis of visible and
hidden attributes, such as usernames and passwords, and
associating them with previously stored credentials. Detection
mechanisms adapt to variations in web forms by analyzing
structural features and semantic markers (e.g., the HTML5 aut-
ofill attribute) [33]. These mechanisms also handle additional
obfuscated or dynamically generated fields to support more
advanced web structures. Once fields are classified, the system
selects the best-matching stored data for automatic completion.

Password Managers. Password managers are available
both as integrated browser features and as standalone ap-
plications for desktop and mobile platforms. Browser-based
password managers focus on credential autofill while offering
additional features such as password generation, secure stor-
age, and password strength analysis, for enhancing account
protection [34]. In addition to their browser-focused im-
plementations,password managers also operate as standalone
desktop applications, integrating into native environments.
These applications, such as 1Password [35], LastPass [36],
and Keeper [37], provide cross-platform synchronization, en-
abling users to securely access their data across multiple
devices. Password managers also support the management
and secure storage of a wide range of sensitive information,
including credit card information, one-time passwords (OTPs),
and identity information, ensuring comprehensive protection
and accessibility. Given the sensitivity of the information
they manage, password managers implement robust security

2

measures, including master passwords and two-factor au-
thentication (2FA) [38]. User authentication is required to
access encrypted data, with advanced tools employing zero-
knowledge encryption, ensuring that even service providers
cannot access stored information [39].

Threat Model. Our research focuses on the operation of
standalone password managers that offer autofill functionality
outside of the confines of web browsers. As such, we adopt
the typical threat model used in security studies that focus on
native app ecosystems (i.e., non-browser environments). We
assume that the user has installed a malicious application —
the specific propagation method is outside the scope of our
study. Malicious or invasive software is a common occurrence
in desktop environments, including macOS despite the wide
misconceptions that exist about its purported immunity to
malware [40]. In practice, attackers can achieve this through
straightforward social engineering attacks, or more advanced
attacks that pass Apple’s app vetting process [41], or a man-in-
the-middle attack against Apple’s Wireless Direct Link [42].
It is important to note that macOS’s default app protection
mechanism, Gatekeeper, does not prevent users from installing
malware. Instead, it primarily serves as a warning system,
verifying that downloaded apps are signed by an identified
developer and notarized by Apple [43]. Notarization is a one-
time verification process that does not provide continuous
monitoring, allowing apps to introduce malicious behavior
post-installation. In practice, while Gatekeeper can issue warn-
ings for unsigned or unnotarized applications, signed malicious
software continues to be distributed and executed [44], [45],
[40]. Recent macOS malware campaigns have, in fact, explic-
itly leveraged signed binaries to evade Gatekeeper’s protec-
tions [46]. Moreover, users can override system protections
to install unverified applications [47], [48], [49]—a common
practice for software distributed outside the App Store.

Prerequisites. For simplicity, in our analysis we assume that
the user’s password manager application is running, which
is a reasonable assumption as these applications are often
left open in the background for convenience. Nonetheless,
malicious apps can leverage system-level APIs (e.g., ps on
macOS or tasklist on Windows) to monitor active pro-
cesses and launch the attack only after confirming that the
password manager is running, thereby reducing the risk of
detection. Moreover, on macOS, we assume that the mali-
cious app obtains the Accessibility permission during
installation, a typical permission required by a wide range
of legitimate software, including screen recording and remote
control applications [50]. Notably, permission requests and
UI automation have been leveraged in real-world malware
campaigns to perform tasks such as simulated input events and
data exfiltration [51], [52]. In our attack, Accessibility access
is incorporated into the broader workflow that ultimately
exploits password managers’ autofill behavior. We further
discuss our assumptions’ practicality in §IV and how to relax
our propagation vector assumptions in §VIII.

Malicious application. The application appears to be legit-
imate and can be bundled with popular software or disguised

TABLE I: Summary of analyzed password managers.

Password Manager Version OS Popularity

 ! "

1Password 8.10.48 ✁ ✁ !" >15M users [53]
Keeper 16.10.13 ✁ ✁ N/A >1M paying users [54]
LastPass 4.14.1.0 N/A ✁ N/A >33M users [55]
KeePassXC 2.7.9 ✁ ✁ ✁ >691K Linux installs [56]
MacPass 0.8.1 ✁ N/A N/A >6.8K GitHub stars [57]

!" indicates partial support, where a password manager is available on the operating
system but lacks full feature compatibility.

as a common utility. Once active, it targets specific password
managers and exfiltrates stored credentials (usernames and
passwords), banking information, one-time passwords, and
vault secret keys (if applicable). Our malicious application
prototype operates entirely at the user-level space, without
exploiting kernel-level vulnerabilities or requiring special ad-
ministrative privileges (beyond the Accessibility permission
in macOS). Our attacks exploit design flaws in password
managers’ autofill-related functionality and UI-related features
for extracting sensitive data in a stealthy manner. We em-
phasize that the attack does not rely on zero-day exploits or
implementation bugs, but instead leverages existing function-
ality intended for users. Through variations across different
password managers and OSes, our research demonstrates an
advanced threat that exploits vulnerabilities in the handling of
UI elements and synthetic user events. By manipulating these
components, the attacker bypasses existing security checks and
tricks the password managers into exposing sensitive data.

III. EXPERIMENTAL SETUP

Selecting and Configuring Password Managers. We
selected password managers based on two criteria: (i) the
presence of autofill functionality in native applications and
(ii) broad platform support. While password managers pro-
vide autofill capabilities in web browsers—typically through
browser extensions—fewer have implemented this feature for
native applications. Since our study focuses on attacks target-
ing autofill functionality beyond the browser, we prioritized
password managers that explicitly support autofill in native
applications. Table I summarizes the key characteristics of the
evaluated password managers, including their supported plat-
forms and popularity. Notably, a subset of password managers
offer full cross-platform support, while others, like MacPass,
are restricted to specific operating systems.

Attack Workflow. Our credential harvesting attack is exe-
cuted through a custom phishing application that performs the
required steps to exfiltrate credentials. The attack proceeds
through the following stages: (i) Upon launch, the application
renders its interface and embeds input components for creden-
tial capture, such as hidden form fields. (ii) To impersonate a
trusted application and bypass verification checks, it modifies
identity attributes such as the window title, bundle metadata,
or display name. (iii) It generates synthetic keyboard inputs
to trigger the password manager’s autofill or credential access
components (e.g., Quick Access). (iv) Once verification suc-

3

TABLE II: Overview of our attacks across different password managers and platforms. Credential Types indicates the categories
of sensitive data that can be harvested: usernames, passwords, one-time passwords (OTPs), and credit card information.
Permissions indicates whether the attack requires additional OS-level permissions (✁) or not (✂) for the respective platform;
N/A denotes that the password manager is not supported on that platform. Stealthiness denotes whether the attack is fully
stealthy (#), partially stealthy (!"), or not stealthy (✂) on each OS. Performance reports the time required to harvest a pair of
credentials under the primary attack variant on macOS, where applicable.

Password Manager Credential Types Permissions Stealthiness Performance

Username Password OTP CC Info  ! "  ! "

1Password ✁ ✁ ✁ ✁ ✁ ✂ ✂ ! ! ✂ 11s
Keeper ✁ ✁ ✁ ✁ ✁ ✂ N/A "# ! N/A 4s
LastPass ✁ ✁ ✁ ✁ N/A ✂ N/A N/A ! N/A 5s
KeePassXC ✁ ✁ ✁ ✂ ✁ ✂ ✂ ! ! ✂ 17s
MacPass ✁ ✁ ✁ ✂ ✁ N/A N/A ! N/A N/A 5s
macOS Keychain ✁ ✁ ✂ ✂ ✂ N/A N/A N/A N/A N/A N/A

ceeds, the password manager either injects credentials directly
into the phishing application’s hidden fields or displays the
vault contents for selection. The phishing application then
simulates interactions to extract the displayed credentials and
transfer them into its own interface for exfiltration (e.g., copy-
paste actions). (v) To maintain stealthiness, the application
overlays distracting content (e.g., a video player) and lever-
ages window layering attributes to remain in the foreground
and/or hide password manager windows. The methodology is
consistent across password managers; differences arise from
OS-level constraints or manager-specific behavior.

Testing Environment. We created test accounts with each
password manager to ensure that no real user data was at
risk. All evaluated password managers supported keyboard
shortcuts to trigger autofill by default, except KeePassXC,
which disables this feature by default; for consistency, we
enabled autofill for our tests. Prior to each experiment, we
ensured the password managers were running, unlocked, and
populated with fake credentials associated with real services.
We deployed our malicious application using the Electron
framework and its window management capabilities [58], en-
abling consistent cross-platform deployment. To simulate user
interactions and trigger autofill mechanisms, we integrated the
RobotJS library [59]. All experiments were conducted locally
on macOS (MacBook Pro, M3, Sonoma 14.6.1), Windows
(Galaxy Book Pro 360, Windows 11 Home), and Linux (HP
15-bw0xx, Ubuntu 22.04.5 LTS).

Overview. Table II summarizes our attacks, detailing the
targeted OSes, required privileges, stealthiness, and perfor-
mance for the primary attack variant (e.g., email-password
credentials). For password managers available in multiple
OSes, we report the performance on macOS. In the following
sections, we discuss each scenario in detail, highlighting any
unique features employed by each password manager, as well
as the intricacies of our attack in each scenario.

IV. MACOS PASSWORD MANAGERS

Here, we analyze the autofill functionalities of macOS
password managers. In §IV-A, we demonstrate our analysis
of 1Password to achieve effective credential harvesting. In

§IV-B, §IV-C, and §IV-D, we extend our analysis and intro-
duce variations of the attack across other password managers,
highlighting commonalities and differences in their verification
mechanisms. We focus our presentation on 1Password for the
following reasons: (i) it is one of the most popular password
managers, (ii) it is highly recommended (e.g., The New York
Times has recommended it multiple times as the best password
manager [60], [61]), and (iii) it incorporates the most OS-
specific safeguards, thereby providing a prime example of the
level of security that can be achieved in macOS.

macOS Features and Security Mechanisms. Autofill
functionality in standalone password managers introduces
additional security challenges not present in their typical
browser-based usage, where credentials are filled within a
well-structured and sandboxed environment. Here we outline
structural and security-relevant aspects of macOS applications
that are pertinent to our threat model.

App Components. macOS apps are built upon a structured
packaging system and robust security mechanisms, designed to
ensure their integrity, usability, and interaction with the operat-
ing system. Specifically, they are distributed as bundles—self-
contained directories that include executable code, resources,
and metadata required for the app’s functionality. A funda-
mental component of the bundle is the Information Property
List (Info.plist), a configuration file that stores essential
app information [62]. It specifies the version number, sup-
ported architectures, localization settings, and entitlements for
accessing system resources.

Each app includes a unique Bundle ID [63], which the
OS uses to manage app identity, enforce permissions, and
isolate inter-application interactions. Similarly, the Bundle
Display Name serves as the primary label that users rely
on to interact with apps in the system’s interface, such as
the Finder, ensuring accurate app identification. macOS also
enforces a robust security model to ensure the integrity and
authenticity of apps. Another key component is code signing,
a process that allows developers to cryptographically sign their
apps [64], [65]. This mechanism verifies app integrity and
authenticity, ensuring it has not been modified by other apps,
malware, or during distribution.

4

Permissions. The Accessibility API serves as a foundational
component that enables apps to support assistive technolo-
gies [66]. It allows developers to programmatically test and
enhance app usability by simulating interactions, identifying
missing accessibility labels, and optimizing layouts. Access to
the Accessibility API requires explicit user approval, managed
through macOS privacy settings, where users must explicitly
grant the permission for the API to become available.

Credential Autofill Mechanisms. Across evaluated pass-
word managers, we identify two primary credential mech-
anisms: Autofill and AutoType. Autofill populates UI
fields directly by leveraging Accessibility API and interacts
with input elements based on their context (e.g., email) [67]. In
contrast, AutoType emulates user-triggered keystrokes for aut-
ofill, without programmatic interaction or field validation [68],
[69]. In our evaluation, we determine the adopted mechanism
for each password manager and exploit it accordingly.

Attack Vectors. As macOS enforces stricter authentication
and verification models, it provides a representative platform
for evaluating attack feasibility under robust OS-level con-
straints. We focus our analysis on macOS to demonstrate
that password managers are vulnerable to credential-harvesting
attacks, despite operating within environments that adopt
advanced platform-level defenses. Specifically, our analysis
reveals inconsistencies in autofill validation that allow attack-
ers to bypass verification mechanisms and extract credentials.
Our attacks exploit three primary flaws: (i) manipulation of
application identification (e.g., spoofed Bundle IDs), (ii) ex-
ploitation of UI interactions, and (iii) abuse of system-level
configurations (e.g., window layering). By leveraging these
techniques, an attacker can systematically and stealthily har-
vest credentials from multiple password managers. We note
here that all variations of our attack leverage the macOS
Accessibility permission to programmatically interact with the
password manager and automate the credential harvesting.

Given that legitimate applications request Accessibility per-
missions, we consider this assumption to be realistic. Specifi-
cally, our analysis of 100 of the most popular free apps from
the macOS App Store revealed that approximately 20% request
this permission, which suggests that users are accustomed to
often granting this permission to apps they install. Moreover,
prior studies in different domains (e.g., Android) have assumed
or explored the presence of malicious applications with the
Accessibility permission [70], [71], [72], [73] or reported its
use by malware in the wild [52].

A. 1Password
We focus our initial analysis on uncovering potential secu-

rity and verification flaws that would allow effective credential
harvesting attacks against 1Password.

Autofill Verification. The autofill mechanism provided by
1Password is activated through dedicated keyboard short-
cuts [74], enabling users to launch a search interface known
as the Quick Access Window (Figure 1). This interface offers
a list of stored credentials that users can select for autofilling
into the corresponding application. To mitigate unauthorized

Fig. 1: 1Password’s Quick Access window.

access and credential exfiltration, 1Password incorporates pro-
tections against malicious applications that attempt to exploit
its autofill functionality. These protections align with the types
of attacks outlined in our threat model, further emphasizing
the realistic threat that such attacks pose to users. Due to the
proprietary closed-source nature of the 1Password application,
we conduct an empirical black-box analysis to identify its
internal security mechanisms and verification processes.

Application Verification. 1Password associates credential
records with applications based on their Bundle ID, each app’s
unique identifier, and this mapping ensures that credentials are
only autofilled into the intended app. However, our analysis
reveals that Bundle IDs are not a reliable indicator of appli-
cation integrity, as they can be tampered with by modifying
an app’s Info.plist file or spoofed by changing another
app’s Bundle ID to match that of a legitimate application. We
experimentally found that 1Password rejects autofill when con-
flicting Bundle IDs are detected. Additionally, we confirmed
the specific conditions enforced by its verification mechanism.
Based on our experimental insights, we have reconstructed the
autofill verification workflow employed by 1Password, which
we summarize in Algorithm 1.

Algorithm 1: 1Password Autofill Workflow on macOS
Input: A: Target Application, BID: Bundle ID

1 if No records linked to BID then
2 Select a record to link

3 if Multiple active apps are linked to BID then
4 Abort autofill

5 if A is devoid of Code Signature then
6 Abort autofill

7 Link the selected record with BID if not yet linked
8 if A’s Code Signature is untrusted or invalid then
9 Abort autofill

10 DevID → Apple Developer ID associated with Code Signature
11 if DevID ↑ Verified Developers then
12 if BID /↑ Verified Bundle IDs for DevID then
13 Abort autofill

14 else if BID ↑ Existing Developer ID — Bundle ID associations then
15 Abort autofill

16 Perform autofill

The process begins by identifying the currently running
application and extracting its Bundle ID – if no records are
linked, the user is prompted to select a record for future autofill
actions. 1Password also performs checks to detect whether
multiple running applications are sharing the same Bundle ID.
If such a conflict is detected, the autofill process is aborted
and the ID is flagged as potentially spoofed. Subsequently,
1Password verifies the application’s code signature by access-

5

ing the designated folder in its contents. If the application is
not digitally signed, the autofill process is aborted. Otherwise,
it checks the code signature to ensure it is both (a) valid,
confirming that the code has not been tampered with, and
(b) trusted, indicating that it is signed by a verified
Apple Developer. In the final step, 1Password checks the
Apple Developer ID associated with the code signature, and
ensures that the Bundle ID matches a verified list of IDs
for that developer. For popular applications (e.g., Discord,
Slack), 1Password maintains a list of known Developer IDs
to manage verification effectively. When encountering a new
unrecognized Bundle ID, it treats the first valid and trusted
signature as legitimate and prompts the user to confirm the
association. Once this verification is complete, future autofill
requests from the same Developer ID are processed without
additional prompts. When all checks are successfully passed,
1Password proceeds with the autofill operation. The multitude
of safeguards in place strongly suggest that local deceptive
apps are a valid concern for desktop password managers, and
also reveal the numerous macOS features that can be leveraged
to enhance their robustness.

User Confirmation. The first time a user attempts to autofill
credentials into an app, 1Password displays an alert window
prompting the user to confirm the action (see Figure 3 in
the Appendix). Upon confirmation, 1Password establishes an
association between the credentials and the app, blocking any
future attempts to modify this existing association.

Experimental findings. Here, we detail a series of em-
pirical experimental findings, which constitute the individual
“ingredients” that will then be combined into our proof-of-
concept attack. While 1Password conducts multiple verifica-
tion checks before performing an autofill operation, we have
identified omissions in their verification process. Accordingly,
we have developed an automated phishing application exploit-
ing those weaknesses, specifically in the Quick Access feature.

Application Validation. In 1Password’s primary autofill
workflow, the password manager verifies the identity of the
target application before injecting credentials, establishing a
binding between the credential item and its intended des-
tination. In contrast, the Quick Access interface does not
perform application-level validation; it does not verify whether
the application receiving the credentials matches the expected
origin (e.g., bundle identifier). This omission allows any local
application to retrieve stored credentials without triggering
user alerts or verification prompts. The absence of target
validation in this component weakens the security guarantees
provided by the primary autofill mechanism.

Interaction Origin. 1Password does not differentiate be-
tween physical and synthetic keyboard inputs. This allows an
attacker to programmatically simulate user interactions, such
as key presses, to trigger the Quick Access window and access
stored credentials. The attack leverages crafted interactions
with the 1Password vault and automatically harvests creden-
tials without additional user input, thereby bypassing Quick
Access’s built-in security measures.

Window management. The Quick Access window is de-

signed to remain in the foreground, appearing above all other
active windows to ensure that it remains accessible and visible
to the user. However, macOS allows developers to assign
different window levels to control the visibility and layering
of app windows [75], [76]. By default, windows are assigned
the normal level, but 1Password elevates the Quick Access
window to the pop-up-menu level. Our attack exploits this
capability by elevating the attacker’s window to the screen-
saver level, to conceal the Quick Access interface from the
user while harvesting credentials in the background.

Hidden Text Fields. Hidden text fields are HTML in-
put elements with their visibility intentionally concealed
from the user interface, typically through CSS rules
(e.g., display:none). Although not visible to users, these
fields remain accessible to scripts, allowing applications to
access, store, and transmit data. As such, attackers can leverage
them to exfiltrate credentials within an application, without
users being made suspicious or alerted [77].

Attack execution. To assess the practical implications of
1Password’s security flaws, we developed a proof-of-concept
phishing application that systematically extracts stored cre-
dentials while evading detection, by combining all of our
aforementioned findings. The attack targets the Quick Access
feature, leveraging window management inconsistencies, syn-
thetic user interactions, and distraction techniques to stealthily
exfiltrate credentials. The application automates the triggering
of Quick Access, bypassing user interaction requirements by
simulating keyboard input events. Once activated, it retrieves
credential records by programmatically searching stored en-
tries and extracting usernames, passwords, and two-factor
authentication (TOTP) tokens. Unlike default autofill, Quick
Access does not validate the requesting application, allowing
credentials to be retrieved without enforcing application verifi-
cation. To conceal the exfiltration process, the attack exploits
window layering mechanisms, by dynamically elevating the
attacker’s window above the Quick Access interface, it ensures
that credential retrieval remains hidden from the user. Addi-
tionally, the extracted credentials are stored in the phishing
application’s hidden input fields, not visible by the user. After
credential exfiltration, the application restores its window to
the default window level to minimize post-execution traces.
This harvesting approach can be extended to exfiltrate stored
payment information from the vault. The phishing application
enumerates vault entries and accesses items labeled with
payment-related keywords (e.g., Visa, Card). Autofill proceeds
if the target window includes the expected form fields (e.g.,
card number, expiration date). However, the availability of
sensitive fields depends on the user’s stored data and settings
(e.g., CVV autofill requires explicitly storing it [78]). Once
populated, payment information becomes accessible to the
attacker. Finally, to enhance stealthiness, the application intro-
duces obfuscation mechanisms during execution, and overlays
distraction content, such as a video player UI, to divert user
attention. This mechanism can be further augmented with
additional realistic content, such as a simulated software in-
stallation or documentation text, to maintain user engagement.

6

Attack Performance. To evaluate the performance of our
attack, we populated 1Password with five credential records
corresponding to different services and conducted 10 itera-
tions targeting different sets each time. On average, creden-
tial extraction requires 11 seconds per username-password
pair. We further extend our evaluation to include two-factor
authentication (2FA) codes, by populating 1Password with
three records containing Time-Based One-Time Passwords
(TOTPs). We then measured the time required to harvest
a record comprising a username, password, and TOTP. Our
results show that harvesting a TOTP adds approximately four
seconds to the attack execution, resulting in a total time of
15 seconds for extracting a complete credential record. Since
TOTPs typically remain valid for at least 30 seconds [79],
attackers have sufficient time to leverage the stolen credentials
before expiration. Overall, our evaluation demonstrates that the
proposed attack is practical, highly stealthy, and effective at
harvesting credentials from 1Password.

Credential Binding Flaw. We identified an additional design
flaw in 1Password’s credential association logic that enables
a denial-of-service attack that affects legitimate applications.
Although this issue does not allow credential harvesting, it can
prevent users from accessing their vault. We describe this flaw
in detail in Appendix C.

Privilege Escalation: Harvesting System Password.
1Password supports storing system credentials, which enables
users to autofill directly into terminal apps, such as the default
Terminal. In 1Password, system credentials are saved as
standard vault entries and are assigned a record name based
on the device’s name by default. This naming convention
introduces a security risk since attackers can predict record
names and directly locate system credentials in the vault.
For example, a user named “Alice” using a MacBook Pro
would have their system password saved under a record named
Alice’s MacBook Pro. Since device names often contain
personally identifiable information, including usernames, this
feature significantly reduces the effort required for an attacker
to identify and extract system credentials.

Attack Evaluation. This attack is a variation of the pre-
viously introduced credential-harvesting attack and relies on
the same configuration and permissions. The attacker appli-
cation first retrieves the system’s device name and logged-
in user information using standard macOS APIs, such as
scutil --get ComputerName and whoami. Using this
information, it constructs the expected system credential
record name. Subsequently, it queries the 1Password vault
through the Quick Access feature and searches for records
matching the device name. Since the naming scheme is
predictable, the attacker can directly identify system creden-
tials without the need for exhaustive searching. After locat-
ing the system credential record, the attacker executes the
aforementioned credential exfiltration technique. With access
to the system password, the attacker can execute privileged
commands using sudo, and disable system security features,
modify configurations, or install persistence mechanisms.

To further assess the attack’s performance, we populated

1Password with system credential records under different
configurations. In ten iterations targeting five different user
profiles, the attack required an average of 6 seconds to locate
and extract system credentials. The attack was highly accurate
in detecting the default naming conventions and the associated
credentials. This highlights the practicality and stealthiness of
the attack, allowing the attacker to escalate privileges once
they gain access to the system’s credentials.

1Password Command Line Interface. A key feature
of 1Password is its Command Line Interface (CLI) tool,
accessible through the op command, which allows users
to interact with their vault directly from the terminal [80].
Primarily designed to automate vault operations and manage
credentials programmatically, the CLI tool provides flexibility
for advanced users but can also introduce new security risks
if improperly secured. Our analysis revealed major flaws in
the 1Password CLI tool that can be exploited to extract
sensitive credentials, including the Secret Key — a critical
component required to decrypt the vault. Unlike standard
credentials, the Secret Key is not transmitted to 1Password’s
servers and must be used alongside the master password
to unlock the vault [81]. If both the master password and
Secret Key are compromised, an attacker can authenticate on
a different device, gaining full access to the user’s 1Password
account and resulting in a total compromise of the user’s data.

Authorization Bypass. When a process triggers the 1Pass-
word CLI tool for the first time, a pop-up window is shown
to confirm access to the vault. However, this authorization
pop-up inherits the same flaws as the Quick Access window.
Specifically, it is assigned the pop-up-menu window level,
allowing it to be hidden by higher-level windows. Critically,
it does not differentiate between physical and synthetic user
interactions, allowing an attacker to programmatically simulate
user inputs and approve CLI access without the user’s consent.
By exploiting this flaw, an attacker can stealthily enable CLI
functionality and gain persistent access to the vault.

Default User Records. Once authorized, the CLI provides
access to the vault, including a record named 1Password
Account, which is automatically created during account
setup. This record stores both the master password and the
Secret Key, retrieved in plaintext upon access. While 1Pass-
word enforces restrictions on retrieving the Secret Key through
the Quick Access window, these restrictions do not extend
to the CLI tool, which allows programmatic extraction of
the Secret Key through command-line queries. The ability
to extract the Secret Key has severe implications for the
user, as it allows an attacker to recreate the user’s vault
on a separate device and completely decrypt its contents by
bypassing 1Password’s authorization mechanisms. Essentially,
this enables full account impersonation, bypasses recovery
protections, and grants persistent access—even if the master
password is changed.

Attack Execution & Evaluation. To exploit these vulner-
abilities, an attack begins by executing the op command
to trigger the CLI authorization prompt. Since the prompt
is not protected against synthetic interactions, the attacker

7

programmatically approves the request without requiring user
intervention. After authorization is granted, the attack retrieves
the record ID associated with the user’s account by execut-
ing the op item list command, followed by op get item
<recordID> --reveal, which exposes the Secret Key
and master password. The attack completes in approximately
three seconds, with two seconds required for the authorization
bypass and less than one second for the credential extraction.
The efficiency and low interaction overhead render this attack
highly practical for stealthy credential exfiltration.

B. Keeper
Features and Protections. Keeper is a popular password

manager that provides autofill functionality for login creden-
tials in macOS applications. Keeper verifies applications us-
ing the Bundle Display Name rather than an immutable
identifier, such as the Bundle ID. This introduces a critical
vulnerability, as an attacker can spoof the Bundle Display
Name to bypass authentication checks. Notably, modifying
the Bundle Display Name requires neither elevated privileges
nor OS-level permissions. To initiate autofill, Keeper provides
keyboard shortcuts for different credential types, such as
usernames, passwords, payment info, and one-time passwords
(OTPs), allowing users to fill these fields individually [82].
While this approach improves usability, it also constitutes an
attack vector since a malicious application can programmat-
ically simulate the required keyboard inputs to exploit the
autofill process and harvest credentials without user consent.

Bypassing Autofill Protections. To evaluate Keeper’s autofill
functionality, we analyzed its reliance on an application’s
Bundle Display Name for credential autofill validation. We
developed a malicious macOS application that mimicked a
legitimate one by modifying its Bundle Display Name to
match a trusted target, and tested whether Keeper would
autofill credentials into the spoofed application’s text fields.
Our analysis confirmed that the malicious application success-
fully triggered the autofill functionality, populating the fields
with credentials associated with the legitimate target. Unlike
1Password, which implements stricter validation, Keeper’s
reliance on a modifiable identifier allows unauthorized access
to stored credentials with minimal effort, extending to other
sensitive record types, such as payment information.

Stealthiness. While the baseline attack is technically effec-
tive, its practicality for undetected execution is impacted by
visual artifacts during the autofill process. Text fields remain
visible, the malicious application’s window briefly flashes on
the screen, and its icon momentarily appears in the Dock dur-
ing system restarts, increasing the risk of detection. To address
these issues, we developed an auxiliary application, which we
call Hider, designed to mask the malicious app’s activity
and enhance the attack’s stealthiness (we provide a detailed
description in Appendix B). The auxiliary application operates
in the foreground to maintain user engagement, while the
malicious application executes exclusively in the background
to perform the attack. Also, to achieve stealthier deployment,
we deploy the malicious app within the auxiliary application’s

Fig. 2: KeePassXC pop-up window.

Contents folder. To further minimize detection, Hider
leverages techniques from our 1Password attack, setting its
window level to screen-saver to remain above all other
windows. Moreover, the window frame is omitted to prevent
visual artifacts, such as blurring when focus shifts between
applications. Additionally, the malicious app’s icon is omit-
ted from the Dock, using Electron’s app.dock.hide()
API [83], effectively hiding itself from the user.

Attack Evaluation. The attacker configures a JSON file
listing target applications, with each entry containing the
Bundle Display Name of a target. During initialization, the
malicious application adopts the first target’s Bundle Display
Name from the list. Once active, it simulates key presses to
trigger Keeper’s autofill and extract the credentials associated
with the current Bundle Display Name. After harvesting, the
application modifies its Bundle Display Name to the next
target in the list and restarts, iterating through all specified
targets. Our analysis indicates that the phishing application
requires an average of three seconds to retrieve a pair of
credentials per target, with an additional one second to restart
and update its identity. This results in a total execution time of
four seconds per target, demonstrating the attack’s efficiency
and feasibility for large-scale credential harvesting.

Limitations. Despite the aforementioned strategies to en-
hance the attack’s stealth, certain visual indicators may still
reveal its presence to the users. First, macOS automatically
hides the mouse pointer when a text field is focused using
the Tab key. Since the malicious application relies on this
behavior to trigger autofill, users may notice the pointer
disappearing at regular intervals. Second, macOS adjusts a
window’s shadow opacity when it is inactive. Although the
auxiliary application remains on top level, it cannot maintain
continuous focus, leading to minor visual effects that users
might detect. Finally, while the malicious application’s icon
is hidden from the Dock to avoid detection, brief flashes or
momentary appearances may still occur during application
restarts due to macOS’s built-in app launching behavior.

C. KeePassXC
Features. Next, we focus our analysis on KeePassXC,

another widely used password manager, to evaluate its aut-
ofill mechanism and security flaws. KeePassXC leverages
the AutoType feature and supports usernames, passwords,
and one-time passwords (OTPs). However, OTP autofill is

8

not enabled by default and requires users to configure each
record individually [84]. Also, it disables autofill by default,
requiring users to manually enable the feature by configuring
a keyboard shortcut in the settings. Additionally, users are
required to manually associate credentials with specific appli-
cations, similar to Keeper (§IV-B) and MacPass (§IV-D). This
association relies on the application’s Bundle Display Name
rather than an immutable identifier like the Bundle ID, making
it vulnerable to manipulation. Once configured, the autofill
process is triggered via a user-defined keyboard shortcut and
requires manual confirmation through a pop-up prompt.

Verification Mechanisms. Similar to Keeper, KeePassXC
leverages the app’s Bundle Display Name to match and
autofill credentials without additional validation. However,
if the requesting application’s window is positioned above
KeePassXC’s window (i.e., has a higher window level), the
AutoType feature disables autofill and instead displays a
manual credential selection popup, effectively blocking auto-
matic credential injection. Instead of completing the autofill,
KeePassXC displays a pop-up window (Figure 2) listing all
available vault credentials where the user must manually
select the desired credentials before autofill is completed. Fi-
nally, KeePassXC does not provide a default autofill shortcut,
requiring attackers to identify the user’s specific keyboard
configuration before launching an attack.

AutoType Exploitation. To detect the keyboard short-
cut configured for the AutoType feature, we implemented
a brute-force technique that targets commonly used short-
cuts [85], [86]. The malicious application emulates keyboard
combinations while monitoring for focus changes, which in-
dicate that a shortcut has successfully triggered the autofill.
Once the appropriate shortcut is identified, the attack pro-
ceeds by automating the credential extraction process. The
malicious application navigates the pop-up list using synthetic
key presses to select entries and confirms the autofill opera-
tion. This process is systematically repeated until all stored
credentials are extracted. The primary overhead in this attack
lies in inferring the user-configured shortcut for Autotype.
To evaluate this process in detail, we conducted a dedicated
performance analysis measuring the time required to exhaust
each phase of our shortcut inference strategy (we provide
more details in Appendix E). Testing the most common default
shortcuts requires approximately ten seconds. Once the correct
shortcut is triggered, credential extraction proceeds at an
average rate of seven seconds per credential pair. These results
demonstrate that the attack is both practical and scalable under
realistic conditions for targeting a user’s account credentials
for a set of popular services.

D. MacPass
Next, we analyze MacPass and explore its internal ver-

ification flaws. Similar to KeePassXC, MacPass adopts the
AutoType feature for credential injection. However, AutoType
is enabled by default and can be triggered using a predefined
keyboard shortcut [57]. MacPass employs a unique credential
association method, linking credentials to an application’s

window title (i.e., the label displayed on the window frame)
instead of using immutable identifiers. When an application
with a matching window title triggers the autofill, MacPass
submits the associated credentials directly into the application.
This linking mechanism introduces a critical verification flaw,
making MacPass vulnerable to credential exfiltration.

Window Title Spoofing. In this attack variation, the primary
requirement for the attacker is to modify the malicious appli-
cation’s window title to impersonate a trusted application—a
straightforward task that requires no elevated permissions. To
enhance stealthiness, we omit the window frame entirely from
the malicious application, preventing the window title from
being displayed to the user. Furthermore, an attacker can also
recreate the window frame through custom UI design, making
the phishing application visually indistinguishable from the
legitimate target.

Attack Evaluation. The attack follows a series of coordi-
nated steps to effectively harvest the credentials. Initially, the
malicious application dynamically modifies its window title
to match a predefined list of target applications – once Mac-
Pass detects the spoofed title, the application triggers autofill
using the default keyboard shortcut, capturing and storing the
credentials. This process repeats iteratively, with the malicious
application updating its window title for each subsequent target
in the list. Our evaluation finds that each cycle—including
modifying the window title, triggering the AutoType feature,
and capturing a pair of credentials—requires approximately
five seconds. This efficiency allows attackers to harvest multi-
ple credentials while bypassing any need for user interaction.

E. Alternative Local Credential-Stealing Attack Vectors
To assess the broader scope and impact of our attacks, we

compare them to a traditional local attack vector for stealing
passwords: keyloggers, which monitor user inputs to capture
credentials, have limited effectiveness against password man-
agers as credentials are autofilled or typed programmatically.
Importantly, the macOS Secure Input Mode adds another layer
of protection by blocking keyloggers from accessing keyboard
events when sensitive fields, such as password inputs, are in fo-
cus [87]. Moreover, the Secure Keyboard Entry in the macOS
Terminal provides protection against keylogging by preventing
other applications from intercepting keystrokes; however, this
feature is not enabled by default [88]. Nonetheless, enabling
Secure Keyboard Entry reduces the risk of unauthorized access
to sensitive inputs, such as sudo passwords, but may also
introduce compatibility issues with legitimate tools that rely on
keyboard input interception [89]. In summary, keyloggers have
limited effectiveness on macOS, while our attacks are capable
of exfiltrating critical user data from password managers.

V. WINDOWS PASSWORD MANAGERS

We shift our focus to the Windows platform, analyze how
the selected password managers implement their functionality,
and identify vulnerabilities that enable credential exfiltration.

Security Mechanisms & Features. Contrary to macOS,
Windows does not enforce strict application verification. Apps

9

are not required to use immutable identifiers, and code sign-
ing is not mandatory or enforced [90]. Instead, password
managers rely on mutable properties like window titles for
autofill verification. In addition, Windows permits inter-app
interactions without elevated privileges, allowing any app to
simulate keystrokes, manipulate window focus and position,
or change titles. Following the priorly established exploitation
methodology for macOS, we demonstrate attacks that system-
atically extract credentials by exploiting these design flaws.

A. 1Password

On Windows, 1Password exposes its autofill functionality
via the Quick Access interface, while it differs from its
macOS implementation, where autofill behavior is tied to
application identity and verified more strictly. Upon activa-
tion, the user selects a vault record, and the corresponding
credentials are inserted into the target application. Notably,
this process does not create any persistent association between
the application and the credentials being filled.

Platform-specific Mechanisms. In contrast to macOS, the
Windows version performs no target validation, and our analy-
sis confirms that any active window receiving focus is eligible
for autofill, regardless of its origin or developer’s identity.
Moreover, the Quick Access window persists as long as the
1Password background process is running, enabling repeated
interactions without user reauthentication. These properties
highlight critical security flaws in 1Password’s Windows im-
plementation compared to its macOS distribution, regarding
permission controls and validation during autofill.

Exploiting AutoType. 1Password’s AutoType feature fills
credentials into any active text field, without verifying the
identity of the target app. As a result, credentials can be
injected into arbitrary windows under the attacker’s control.
We replicate our approach for MacPass (§IV-D), automating
input events to trigger AutoType and direct output into
hidden fields within a phishing app.

Stealthiness. Windows does not enforce window layering
constraints, and the most recently focused window is always
positioned in the foreground. As a result, prior stealthiness
techniques that rely on display-level manipulation are in-
effective. However, the Quick Access window remains ac-
tive as long as 1Password’s background process is run-
ning. Leveraging this persistence, we use the Node.js library
node-window-manager [91] in our application to repo-
sition the Quick Access interface beyond the visible screen
boundaries. Since Windows does not restrict these operations,
the interface remains fully functional even when hidden from
view. Additionally, 1Password preserves the window’s last
known position, ensuring all subsequent activations occur off-
screen without user awareness.

The attack follows the priorly established methodology
(§IV), adapted to the Windows environment. Regarding
stealthiness in this attack variant, the malicious application
repositions the Quick Access window off-screen at the start of
execution, preventing the user from noticing its presence. The

absence of security checks in 1Password’s Windows imple-
mentation allows the attack to execute more efficiently than on
macOS. While the macOS attack requires separate interactions
to access usernames and passwords sequentially, the Windows
variant completes autofill with a single keyboard shortcut. As
a result, credential harvesting takes approximately 7 seconds
per record, improving performance while maintaining the same
level of effectiveness.

B. Keeper
Keeper’s autofill functionality on Windows relies on the

AutoType mechanism where users associate credential en-
tries with application windows based on their titles, and autofill
is triggered via a keyboard shortcut [82].

Bypassing Autofill Mechanism. Unlike its macOS coun-
terpart, Keeper associates credentials with window titles rather
than application metadata. However, it does not continuously
verify titles—instead, validation is triggered only when the
application loses and then regains focus. As a result, if the title
is modified while the application remains in focus, the change
goes undetected. Attackers are able to manipulate window
titles and trick Keeper into autofilling credentials in unautho-
rized applications. For example, a malicious application can
dynamically alter its window title to impersonate a trusted
target without triggering a re-validation check. Additionally,
Windows’ permissive security model allows malicious apps
to exploit Keeper’s autofill mechanism without requiring ad-
ditional permissions. We leverage these weaknesses to de-
ploy a fully automated phishing attack that triggers autofill
by spoofing trusted window titles. The phishing application
emulates legitimate targets by modifying its title at runtime,
bypassing validation and causing Keeper to inject credentials
into unauthorized contexts without user interaction.

Stealthiness. To achieve stealthiness, the phishing applica-
tion omits its window frame to conceal spoofed titles and
avoid visual cues. The attack exploits a flaw in Keeper’s
window title verification logic, which performs validation
only when the application loses and regains focus. At launch
time, the phishing application spawns two windows: a visible
main window presenting benign content and a secondary,
hidden window used for title spoofing. The hidden window
is concealed using two techniques: (i) it is configured to be
omitted from the system taskbar and (ii) it is programmat-
ically repositioned outside the visible screen area using the
node-window-manager library [92]. This configuration
ensures that the spoofing window remains undetectable, al-
lowing the phishing application to manipulate window titles
and trigger autofill without user awareness.

Attack Evaluation. The malicious app maintains a pre-
defined list of target apps and their corresponding window
titles. For each target, it dynamically modifies its visible main
window’s title to mimic a legitimate app. To trigger autofill,
the attack simulates a focus-switching sequence, ensuring
Keeper registers the new title. The app momentarily shifts
focus to the hidden secondary window and then returns focus
to the main window, exploiting Keeper’s reliance on user-

10

driven focus changes for title verification. Also, crafted timing
delays ensure the spoofed title is detected accurately. Keeper
identifies the spoofed title instantly, and the focus-switching
process completes in under 1 second. The remaining time is
spent autofilling credentials into text fields. Overall, the attack
successfully extracts a set of credentials in approximately 3
seconds, demonstrating both efficiency and effectiveness.

C. LastPass & KeepassXC

LastPass. On Windows, LastPass deploys the autofill fea-
ture using the AutoType mechanism, and users are expected
to explicitly associate credentials with target apps. Similar to
Keeper, LastPass identifies target windows by their titles, and
it additionally monitors title changes in real time, eliminating
the need for focus-switching to trigger verification. While
this improves autofill responsiveness, it does not address the
underlying vulnerability of relying on mutable window titles.
Our analysis shows that LastPass exhibits identical vulnera-
bilities to those previously identified in MacPass (§IV-D). As
a result, they are similarly susceptible to credential harvesting
via phishing apps. This attack variation executes with compa-
rable efficiency across platforms, with credentials extracted in
approximately five seconds.

KeePassXC. KeePassXC on Windows and macOS share the
same deployment model, relying on the AutoType feature,
which is disabled by default and requires user confirmation
for autofill (§IV-C). Once enabled, triggering AutoType
prompts the user before credentials are inserted. However, the
underlying implementation differs across platforms, resulting
in distinct attack surfaces.

Platform-Specific Mechanisms. On Windows, KeePassXC
identifies target apps by their window titles. When a match
is found, it displays an authorization prompt requiring user
confirmation. However, this behavior can be disabled via a
configuration setting. If the confirmation prompt is turned off,
KeePassXC automatically fills credentials into any matching
window title without user interaction. We identified an ad-
ditional flaw in KeePassXC configuration storage. Both the
confirmation prompt setting and the keyboard shortcut used
to trigger AutoType are stored in a plaintext configuration
file located in the user’s app folder1. This file is unprotected
and can be modified by any app with user-level access. A
malicious app may disable the confirmation prompt and assign
a known shortcut. Even though these changes require a restart
of KeePassXC, this can be triggered programmatically or may
occur during regular user activity.

Attack Workflow & Performance. The attack follows the
strategy deployed against LastPass and MacPass (§IV-D). The
phishing app first modifies the configuration file to disable
the prompt and set a predefined shortcut, eliminating the
need for user interaction. After restarting KeePassXC, the app
triggers AutoType and captures the injected credentials. The
attack outperforms the brute-force shortcut inference approach
required on macOS, since the keyboard shortcut is explicitly

1C:\Users\<user>\AppData\Roaming\KeePassXC

configured. File modification completes in under one second,
and the total execution time is approximately five seconds,
which is comparable to the MacPass attack.

VI. LINUX PASSWORD MANAGERS

On Linux, only 1Password and KeePassXC support autofill
for native applications, making it significantly more limited
than on Windows or macOS. We applied the previously intro-
duced attack methodology, and while the attacks remained ef-
fective, platform-specific constraints prevented them from be-
ing stealthy. Specifically, Linux does not support display-level
distinctions, such as screen-saver and pop-up-menu,
preventing overlay-based concealment of password manager
windows. Additionally, Linux enforces an OS-level policy
that restricts window positioning within the visible screen
area. We further explored alternative methods to manipulate
window behavior using tools such as xdotool [93]. This
approach was ineffective since 1Password’s Quick Access win-
dow and KeePassXC’s authorization prompt remained visible
throughout the attack. While KeePassXC remains vulnerable
to the same AutoType-based credential extraction technique,
the attack is noticeable due to the persistent visibility of
password manager windows. Due to space constraints, we
provide additional details in Appendix D.

VII. ATTACK MITIGATION

Given the significant implications of our attacks, we propose
a series of countermeasures that can be incorporated by
password managers or enforced at the OS level.

Security checks enhancement. Our analysis of 1Password
on macOS uncovered a series of security checks that are
employed for ensuring the legitimacy of the application trig-
gering autofill. Surprisingly, the majority of the password
managers did not employ the extensive security measures
that 1Password does, resulting in highly insecure applications
that can be trivially tricked into autofilling user credentials.
The first step for fortifying password managers on macOS is
to leverage all of the OS-level mechanisms that are readily
available. This countermeasure can only be implemented by
macOS password managers, as Windows and Linux currently
do not expose the required OS-level properties and callbacks.
Finally, specifically for 1Password on macOS, we emphasize
that the checks performed on the main autofill process should
also be employed for the secondary ones that we exploit. In
other words, the robustness of the autofill process should not
be undermined by additional usability features.

Window placement: z-index level. As mentioned
before, macOS distinguishes between pop-up-menu
and screen-saver window levels. As a result,
screen-saver level windows can hide any focused
windows at the pop-up-menu level, even the ones
meant to always stay at the screen’s top level. A
straightforward mitigation involves modifying password
manager implementations to reposition their pop-up
interfaces (e.g., 1Password’s Quick Access window and
CLI authorization prompt) to the screen-saver window

11

level, rather than the default pop-up-menu level. At this
elevated level, attacker-controlled windows placed at the same
layer will appear behind the password manager interface.
Since the system brings to the front the most recently
interacted window when autofill is triggered via a keyboard
shortcut, this approach ensures that the password manager’s
interface remains visible to the user.

Window Placement and Screen Boundaries. In Windows,
the pop-up-menu and screen-saver window levels are
treated equivalently, preventing the use of window layering
for reliably prioritizing sensitive UI elements. Our attack
is stealthy since it leverages the node-window-manager
library to reposition the 1Password Quick Access window
beyond the visible screen boundaries. Preventing such off-
screen placement at the OS level (e.g., by constraining window
coordinates to the physical display area) would significantly
limit our attack’s stealthiness.

Synthetic Click Detection. Our attacks rely on emulated
keyboard presses, making synthetic input detection a critical
countermeasure. However, legitimate apps, such as terminal
emulators and accessibility tools, also use synthetic input for
automation and usability. Password managers should integrate
detection mechanisms that differentiate between user-triggered
autofill and external manipulation, rather than enforcing uni-
form OS-level restrictions. For instance, MacPass (§IV-D)
relies on synthetic input for autofill, and rejecting synthetic
events would break its intended functionality. Instead, pass-
word managers should validate the requesting process ID and
restrict autofill to explicitly linked applications, preventing
unauthorized input injection while preserving legitimate au-
tomation. To evaluate this defense, we develop a prototype
tool for macOS and Windows that detects synthetic input from
running applications and issues security warnings to users.

macOS prototype. We have developed a prototype detection
tool as a Swift application. The primary mechanism employed
by the detection tool is to listen for Key Pressed events (i.e.,
when the CGEventType instance is set to .keyDown) and
check if at least one of the following conditions is true: (i) The
Process ID of the application that generated the synthetic event
is equal to 0, which indicates that the event originated at the
system level. (ii) The User ID associated with the process is
equal to 0, i.e., the root. (iii) The User ID associated with the
process is equal to 244, i.e., the specific system user account
associated with input device handling (e.g., keyboard).

If any of the conditions is satisfied, it indicates that the user
has physically pressed the detected key; otherwise, a poten-
tially untrusted application has triggered the interaction. In the
latter case, our defense mechanism triggers a visual alert and
notifies the user. However, in a production deployment, this
signal can be leveraged to enforce stricter mitigations, such as
immediately locking the vault and requiring re-authentication
(e.g., master password, biometrics, OS credential) to prevent
unauthorized autofill. Our prototype interface is implemented
as a system-level window to ensure it is always rendered
above all other windows, including those manually elevated to
the screen-saver level. While system-level windows offer

limited customization, they benefit from privileged rendering
behavior enforced by the OS.

Windows prototype. We developed our defensive tool as
a C++ application. The core mechanism intercepts keyboard
events at a low level and analyzes them to determine their
origin. The tool utilizes a low-level keyboard hook proce-
dure by calling the SetWindowsHookEx function with the
WH_KEYBOARD_LL hook type [94]. This allows the appli-
cation to monitor all keyboard input events at the system
level before they reach any applications. The hook proce-
dure (LowLevelKeyboardProc) processes each keyboard
event encapsulated in the KBDLLHOOKSTRUCT structure.
We focus on events where the nCode parameter equals
HC_ACTION, indicating a keyboard event that should be pro-
cessed. Within this procedure, we verify the flags field of the
KBDLLHOOKSTRUCT to determine if the event was generated
synthetically. Specifically, we access the LLKHF_INJECTED
flag, which signifies that the event was injected by an applica-
tion rather than originating from a physical keyboard press. If
such a synthetic event is detected, our tool launches an alert
window to warn the user about the synthetic keyboard input.
We designed the alert window to be displayed at the topmost
level of the screen by using the MessageBox function with
the MB_TOPMOST flag. This ensures that the alert window
stays above all other windows, including those set to the
topmost level by other applications.

VIII. DISCUSSION

Disclosures. We have responsibly disclosed our findings to
the developers of all the evaluated password managers, all of
whom have acknowledged our reports. Keeper and MacPass
found our suggestions especially helpful and are actively
working on implementing fixes. Keeper further acknowledged
our efforts with a bug bounty reward. 1Password stated that
while they want to deploy countermeasures, they are “really
restricted by the platform as to what defences we can deploy
to defend against attacks such as this.” We will continue to
work with all vendors upon request, sharing countermeasures
and assisting them in navigating OS limitations to improve
security.

Stealthiness. Our attack employs various concealment tech-
niques to eliminate visible execution traces. The majority
are stealthy, with two exceptions: Keeper on macOS, which
exhibits minor visual artifacts, and Linux, which is limited by
internal UI constraints. On macOS, window layering, Dock
suppression, and visual overlays effectively eliminate all attack
indicators. On Windows, the absence of layering constraints
allows the application’s windows to be repositioned off-screen
without triggering visual alerts. Video demonstrations of all
the attack variants are available on our artifact page [28].

Real-world Applicability. To evaluate the scalability of
our attacks, we include details about the performance of each
attack variant to highlight the limited time each of our exploits
takes to complete exfiltration. We include performance values
for the primary attack variant against each password manager
in Table II. Additionally, our attacks on macOS rely on users

12

enabling the Accessibility permissions for our malicious app,
which we found to be a common practice and hence, a
reasonable assumption, since 20% of the 100 most popular
free apps on the App Store request this permission (see §IV.)

Additional Credential Mechanisms. Our attack targets tra-
ditional autofill mechanisms in standalone password managers.
We also evaluated whether similar techniques could be ap-
plied to OS-level credential stores and modern authentication
alternatives. Specifically, macOS Keychain Access [95] does
not expose autofill capabilities for native applications, and
credential retrieval typically requires explicit user interaction
via system dialogs, which falls outside our threat model.
Similarly, passkey-based authentication [96], [97], increas-
ingly supported by password managers, relies on challenge-
response protocols (e.g., WebAuthn [98]) and bypasses form-
based credential injection. Since they do not rely on typical
input field submission, and password managers interface with
browser or app APIs, our credential harvesting attacks do not
directly apply to passkeys. We leave a systematic evaluation
of passkey-specific threat models and additional credential
management mechanisms to future work.

IX. RELATED WORK

UI Attacks. Early works addressing secure UI proposed
isolated window systems via solutions like EROS [103] and
TrustedX [104]. Recent work on UI security has focused
on mobile platforms [105], [106], [107], [101], [108], [109],
[110]. Bianchi et al. [106] exploited Android’s full-screen
overlay to trick users into interacting with phishing apps that
mimic the GUI of legitimate apps. Fratantonio et al. [101]
demonstrated users’ susceptibility to granting permissions that
could enable malicious apps to take over the UI feedback loop.
Lee et al. [107] found iOS apps that use stealthy and malicious
crowdturfing UIs to manipulate app ranking. Researchers have
also studied UI attacks on non-traditional display settings.
Mahdad et al. [111] used deceptive overlays on limited-
display FIDO2 authenticators that trick users into authorizing
malicious sign-in requests. Cheng et al. [112] demonstrated UI
attacks on popular AR platforms from Apple, Google, Meta,
Microsoft, and within the WebXR API in the browser.

Desktop Apps. Our threat model exploits password man-
agers using a malicious desktop app. Prior work has shown
several vulnerabilities in desktop apps; Xiao et al. [113]
demonstrated that vulnerable cross-context flows can allow
attackers to perform Remote Code Execution (RCE) and take
over an operating system. Ali et al. [114] showed that popular
Electron apps may have insecurities that can lead to RCEs, and
Paloscia et al. [115] explored how migrating web application
code to desktop apps suffers from inherent flaws due to the
differences that exist between the two different execution
environments. Jin et al. [116] demonstrated an exploit within
Microsoft Teams and developed a DOM-based defense mech-
anism. Ahmadpanah et al. [117] found vulnerabilities in local
deployments of trigger-action platforms, e.g., Node-RED, that
execute code across multiple applications. Finally, Wang et
al. [118] exploited lax privilege checks on Windows to launch

cross-platform attacks from a desktop against mobile super
apps like WeChat.

Password Managers. In 2012, Bonneau et al. [119] found
that password managers are not resilient to internal observa-
tion, i.e., an attacker can impersonate a user by intercepting
from inside the user’s device. Li et al. [120] in 2014 and
Oesch and Ruoti [121] in 2020 found that web-based pass-
word managers use insecure defaults and include unencrypted
metadata, which makes them vulnerable to credential stealing
and clickjacking attacks. Fabrega et al. [122] used injection
attacks against password managers that allowed attackers
to extract confidential information from observing protected
data. Finally, studies have also demonstrated vulnerabilities in
password managers’ autofill implementations.

A. Comparison with Prior Work
Next, we provide a detailed comparison between our work

and prior research on credential-stealing attacks against pass-
word managers, which we summarize in Table III.

Silver et al. [99] evaluated desktop and mobile password
managers’ functionality within web browsers. Their exploits
can be largely categorized based on attacker placement —
first, a malicious website carefully crafts a web page to extract
information from autofilled values; and second, a malicious
attacker intercepts traffic when on the same network as the
victim (e.g., public Wi-Fi in a coffee shop). While the attacks
require initial user interaction to trigger the attack (e.g., the
user interacts with the website or joins a new Wi-Fi network),
subsequently the attack can be executed in a stealthy manner,
by triggering password managers to autofill hidden iframes or
browser windows.

Lin et al. [77] demonstrated vulnerabilities in password
managers’ handling of autofill on websites. They developed
curated web forms that remain hidden from the victim, with
the help of CSS attributes, overlays, and off-screen placement.
When the victim visits and interacts with the web page, pass-
word managers autofill hidden form fields, enabling stealthy
credential exfiltration. Fu and Wang [100] extended prior
work by exploring password managers’ handling of hidden
<input> elements when autofilling forms on sites within
web browsers.

Fratantonio et al. [101] demonstrated vulnerabilities in
Android’s implementation of Accessibility permissions. While
they did not explicitly demonstrate attacks against password
managers, the same techniques the paper demonstrated could
be used to access the vault of a password manager installed
on the mobile device. Gangwal et al. [102] exploited the
WebView functionality used to load web pages within Android
apps. They demonstrated that while an app may load an
external login page within a WebView, an autofill attempt
on this WebView can leak credentials to the underlying app.
Their work demonstrated shortcomings in the autofill design
of mobile password managers and Android’s system-level
intermediation for autofill.

This work. Native password managers expose a funda-
mentally different attack surface compared to their browser-

13

TABLE III: Comparison with prior work on attacks against password managers. Here, we consider Device (! = Desktop, ! =
Mobile) evaluated in the study, the attacker’s Placement in regard to the victim (! / ! = on-device, ! = in a web browser,
" = on-network), whether the victim needs to interact with the vulnerable platform (i.e., app or web browser) to Trigger
the attack (! = Requires UI, " = No UI), whether the attacks are Stealthy (" = Stealthy, # = Not stealthy), and the
Platform (! = web browser, ! = mobile phone, ! = desktop), along with the corresponding exploited Feature.

Reference Device Attacker Victim Vulnerability
Placement UI Trigger Stealthiness Platform Feature

Silver et al. [99] ! ! ! " ! " ! Hidden iframes and windows
Lin et al. [77] ! ! ! " ! Hidden form fields
Fu and Wang [100] ! ! ! " ! Hidden <input> fields
Fratantonio et al. [101] ! ! " " ! Android’s Permission Model
Gangwal et al. [102] ! ! ! # ! Android’s Autofill Intermediation
Vault Raider (this work) ! ! " " ! Native Desktop Autofill

based or mobile counterparts. Prior work has focused on those
environments by exploiting form heuristics, insecure inter-app
communication, or overlay-based UI attacks [77], [102], [100],
[101]. Their attacks operate within different security contexts
and constraints, such as the browser sandbox or Android’s
permission architecture. Also, prior threat models assume
additional conditions, such as user interaction or compromised
origins. In contrast, our attack targets standalone desktop
password managers, for which completely different safeguards
exist (e.g., see §IV for macOS-specific mechanisms). We
exploit intended autofill-related functionality and the absence
of robust application identity verification to harvest creden-
tials without user interaction. Our attack leverages native OS
features and verification inconsistencies, exposing a novel and
previously unexplored threat vector. Nonetheless, our attack
also incorporates hidden form elements and manipulates UI-
related features to achieve stealthiness, and UI-based deception
has been used against autofill [77]. Importantly, we demon-
strate attacks that target the credentials of a password man-
ager’s vault itself. Overall, we highlight features that remain
unavailable in web browsers and mobile apps, and therefore
uncover vulnerabilities left unexplored by prior research.

Despite extensive research into password managers’ usabil-
ity and security, their analysis has been limited to mobile
and browser-based platforms. Our work highlights unique
challenges that password managers face on desktop platforms,
which have variable security models that make them suscepti-
ble to UI-based attacks. We hope that our work inspires further
research on the nuances of desktop-based deployments and
incentivizes operating systems to standardize and secure native
autofill functionality similar to mobile platforms.

X. CONCLUSIONS

While years of research have identified barriers to password
managers’ adoption, developers have made notable progress
in addressing these issues by introducing desktop applications
and features like universal autofill and quick access. How-
ever, these advancements also introduce new attack vectors.
In this work, we highlight how desktop operating systems’
unique architectures, features, and constraints can augment or
undermine the security mechanisms of password managers.

We demonstrate a range of UI-based attacks that compromise
sensitive user credentials, financial information, and even
bypass 2FA. Our work examines multiple popular password
managers across major operating systems, uncovering critical
security vulnerabilities that enable compromising users’ online
accounts. To mitigate these risks, we have designed straight-
forward techniques for detecting synthetic user input events
and preventing our attacks. Accordingly, we have disclosed
our findings and mitigations to the respective developers,
encouraging them to implement the necessary safeguards. Our
work advances ongoing efforts of enhancing the security of
password managers and ensuring that they remain a trustwor-
thy tool for users.

ETHICAL CONSIDERATIONS

All experiments were conducted using desktop environ-
ments, configurations, and applications under our control.
Password manager evaluations relied on synthetic credentials
and test accounts created for this study. No real user data,
accounts, or devices were used at any stage, and our attacks
did not affect any actual users. Moreover, as detailed in §VIII,
we have notified all of the affected password manager vendors
of our findings and our proposed mitigation techniques.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and shepherd for their
helpful feedback. This project was supported by the Na-
tional Science Foundation (CNS-2211574, CNS-2143363).
The views in this paper are only those of the authors and
may not reflect those of the US Government or the NSF.

REFERENCES

[1] M. Ghasemisharif, C. Kanich, and J. Polakis, “Towards automated
auditing for account and session management flaws in single sign-on
deployments,” in 2022 IEEE Symposium on Security and Privacy (SP).

[2] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter:
Automated black-box auditing for web authentication and authorization
flaws,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS).

[3] M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, and J. Po-
lakis, “O single {Sign-Off}, where art thou? an empirical analysis of
single {Sign-On} account hijacking and session management on the
web,” in 27th USENIX security symposium (USENIX Security ’18).

14

[4] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The cracked cookie jar:
Http cookie hijacking and the exposure of private information,” in 2016
IEEE symposium on security and privacy (SP).

[5] L. Lassak, E. Pan, B. Ur, and M. Golla, “Why aren’t we using
passkeys? obstacles companies face deploying FIDO2 passwordless
authentication,” in USENIX Security ’24.

[6] L. Lassak, A. Hildebrandt, M. Golla, and B. Ur, “”it’s stored, hopefully,
on an encrypted server’’: Mitigating users’ misconceptions about
FIDO2 biometric WebAuthn,” in USENIX Security ’21.

[7] C. Herley and P. Van Oorschot, “A research agenda acknowledging the
persistence of passwords,” IEEE Security & privacy, vol. 10, no. 1, pp.
28–36, 2011.

[8] J. Blessing, D. Hugenroth, R. J. Anderson, and A. R. Beresford,
“Sok: Web authentication in the age of end-to-end encryption,” 2024.
[Online]. Available: https://arxiv.org/abs/2406.18226

[9] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
measuring the effect of password-composition policies,” in ACM CHI
’11.

[10] J. Bonneau, “The science of guessing: analyzing an anonymized corpus
of 70 million passwords,” in 2012 IEEE S&P.

[11] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in ACM CCS ’16.

[12] J. Bonneau, E. Bursztein, I. Caron, R. Jackson, and M. Williamson,
“Secrets, lies, and account recovery: Lessons from the use of personal
knowledge questions at google,” in WWW ’15.

[13] D. Florêncio, C. Herley, and P. C. van Oorschot, “Password portfolios
and the Finite-Effort user: Sustainably managing large numbers of
accounts,” in USENIX Security ’14.

[14] D. Florencio and C. Herley, “A large-scale study of web password
habits,” in WWW ’07.

[15] A. Nisenoff, M. Golla, M. Wei, J. Hainline, H. Szymanek, A. Braun,
A. Hildebrandt, B. Christensen, D. Langenberg, and B. Ur, “A {Two-
Decade} retrospective analysis of a university’s vulnerability to attacks
exploiting reused passwords,” in USENIX Security ’23.

[16] D. Florêncio, C. Herley, and B. Coskun, “Do strong web passwords
accomplish anything?” HotSec, vol. 7, no. 6, p. 159, 2007.

[17] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi,
Y. Markov, O. Comanescu, V. Eranti, A. Moscicki et al., “Data
breaches, phishing, or malware? understanding the risks of stolen
credentials,” in Proceedings of the 2017 ACM CCS.

[18] J. A. Halderman, B. Waters, and E. W. Felten, “A convenient method
for securely managing passwords,” in WWW ’05.

[19] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell,
“Stronger password authentication using browser extensions.” in
USENIX Security ’05.

[20] S. Chiasson, P. C. van Oorschot, and R. Biddle, “A usability study and
critique of two password managers.” in USENIX Security ’06.

[21] A. Karole, N. Saxena, and N. Christin, “A comparative usability
evaluation of traditional password managers,” in Information Security
and Cryptology-ICISC 2010: 13th International Conference.

[22] D. McCarney, D. Barrera, J. Clark, S. Chiasson, and P. C. van Oorschot,
“Tapas: design, implementation, and usability evaluation of a password
manager,” ser. ACSAC ’12.

[23] S. Pearman, S. A. Zhang, L. Bauer, N. Christin, and L. F. Cranor,
“Why people (don’t) use password managers effectively,” in Fifteenth
Symposium on Usable Privacy and Security (SOUPS 2019), 2019.

[24] “Mdn web docs - url,” https://developer.mozilla.org/en-US/docs/Web/
API/URL, 2024.

[25] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley,
L. Invernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh et al.,
“Protecting accounts from credential stuffing with password breach
alerting,” in USENIX Security ’19.

[26] J. Nejati, M. Luo, N. Nikiforakis, and A. Balasubramanian, “Need for
mobile speed: A historical analysis of mobile web performance,” 2020.

[27] C. Qian, H. Koo, C. Oh, T. Kim, and W. Lee, “Slimium: debloating
the chromium browser with feature subsetting,” in ACM CCS ’20.

[28] A. Infantino, M. M. Ali, K. Solomos, and J. Polakis, “[Artifact] Vault
Raider: Stealthy UI-based Attacks Against Password Managers in
Desktop Environments,” 2026. [Online]. Available: https://doi.org/10.
5281/zenodo.16996391

[29] web.dev, “Autofill in forms,” https://web.dev/learn/forms/autofill/, 2023.

[30] T. Verge, “Google chrome password manager integrates with android
autofill,” https:/ /www.theverge.com/2024/10/18/24273369/google-
chrome-android-password-manager-native-autofill, 2024.

[31] M. Foundation, “Firefox sync features,” https://www.mozilla.org/en-
US/firefox/features/sync/, 2024.

[32] A. Inc., “Set up icloud keychain to autofill information on mac,”
https://support.apple.com/guide/mac-help/set-icloud-keychain-autofill-
information-mac-mh43699/mac., 2024.

[33] M. W. Docs, “Html attribute: autocomplete,” https://developer.mozilla.
org/en-US/docs/Web/HTML/Attributes/autocomplete, 2024.

[34] TechTarget, “Password manager,” https : / / www . techtarget . com /
searchsecurity/definition/password-manager, 2024.

[35] 1Password, “1Password: Password Manager for Families, Businesses,
Teams,” 2024, accessed: 2024-11-06. [Online]. Available: https:
//1password.com/

[36] LastPass, Inc., “Lastpass,” https://www.lastpass.com/, 2024, accessed:
2024-11-06.

[37] Keeper Security, Inc., “Keeper security,” https://www.keepersecurity.
com/, 2024, accessed: 2024-11-06.

[38] Wikipedia contributors, “Multi-factor authentication — Wikipedia,
the free encyclopedia,” 2024, [Online; accessed 6-November-
2024]. [Online]. Available: https://en.wikipedia.org/wiki/Multi-factor
authentication

[39] 1Password, “Zero-knowledge encryption in 1password,” https : / /
1password.com/features/zero-knowledge-encryption/, 2024.

[40] C. Topcuoglu, A. Martinez, A. Acar, S. Uluagac, and E. Kirda, “Macos
versus microsoft windows: A study on the cybersecurity and privacy
user perception of two popular operating systems.”

[41] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on iOS:
When benign apps become evil,” in 22nd USENIX Security Symposium
(USENIX Security ’13).

[42] M. Stute, S. Narain, A. Mariotto, A. Heinrich, D. Kreitschmann,
G. Noubir, and M. Hollick, “A billion open interfaces for eve and
mallory: MitM, DoS, and tracking attacks on iOS and macOS through
apple wireless direct link,” in 28th USENIX Security Symposium
(USENIX Security ’19).

[43] A. Cunningham. (2025) macos sequoia makes you jump through more
hoops to disable gatekeeper app checks. [Online]. Available:
https://arstechnica.com/gadgets/2024/08/macos- 15- sequoia- makes-
you-jump-through-more-hoops-to-disable-gatekeeper-app-checks/

[44] T. Yin, Z. Gao, Z. Xiao, Z. Ma, M. Zheng, and C. Zhang, “{KextFuzz}:
Fuzzing {macOS} kernel {EXTensions} on apple silicon via exploiting
mitigations,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 5039–5054.

[45] Y. Wang, Y. Hu, X. Xiao, and D. Gu, “iservice: Detecting and evaluat-
ing the impact of confused deputy problem in appleos,” in Proceedings
of the 38th Annual Computer Security Applications Conference, 2022.

[46] D. Winder, “Forbes - mac users warned as ‘fully undetectable’ security
backdoor confirmed,” https://www.forbes.com/sites/daveywinder/2025/
02/04/mac- users- warned- as- fully- undetectable- security- backdoor-
confirmed/, 2025.

[47] C. Z. Harris. (2024) Apple’s macos sequoia changes how you install
unsigned apps. [Online]. Available: https://www.idownloadblog.com/
2024/08/07/apple-macos-sequoia-gatekeeper-change-install-unsigned-
apps-mac/

[48] T. Holwerda. (2024) Bug or intentional? macos 15.1 completely
removes ability to launch unsigned applications. [Online]. Available:
https://www.osnews.com/story/141055/bug-or-intentional-macos-15-
1-completely-removes-ability-to-launch-unsigned-applications/

[49] Apple Support Communities. (2024) How to run unsigned apps in
macos 15.1? [Online]. Available: https://discussions.apple.com/thread/
255759797?sortBy=rank

[50] TeamViewer, “Remote control a mac,” https://www.teamviewer.com/
en/global/support/knowledge-base/teamviewer-classic/remote-control/
remote-control-a-mac/, 2023.

[51] P. Wardle, “Proton: Osx rat,” https://objective-see.org/blog/blog 0x14.
html, 2017.

[52] C. W. Charlie Osborne, “Mami malware targets mac os x dns settings,”
https://www.zdnet.com/article/mami-malware-targets-mac-os-x-dns-
settings/, 2018.

[53] Team Signhouse, “1Password Revenue and Growth Statistics (2024),”
Aug. 2024. [Online]. Available: https://usesignhouse.com/blog/
1password-stats/

15

https://arxiv.org/abs/2406.18226
https://developer.mozilla.org/en-US/docs/Web/API/URL
https://developer.mozilla.org/en-US/docs/Web/API/URL
https://doi.org/10.5281/zenodo.16996391
https://doi.org/10.5281/zenodo.16996391
https://web.dev/learn/forms/autofill/
https://www.theverge.com/2024/10/18/24273369/google-chrome-android-password-manager-native-autofill
https://www.theverge.com/2024/10/18/24273369/google-chrome-android-password-manager-native-autofill
https://www.mozilla.org/en-US/firefox/features/sync/
https://www.mozilla.org/en-US/firefox/features/sync/
https://support.apple.com/guide/mac-help/set-icloud-keychain-autofill-information-mac-mh43699/mac.
https://support.apple.com/guide/mac-help/set-icloud-keychain-autofill-information-mac-mh43699/mac.
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/autocomplete
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/autocomplete
https://www.techtarget.com/searchsecurity/definition/password-manager
https://www.techtarget.com/searchsecurity/definition/password-manager
https://1password.com/
https://1password.com/
https://www.lastpass.com/
https://www.keepersecurity.com/
https://www.keepersecurity.com/
https://en.wikipedia.org/wiki/Multi-factor_authentication
https://en.wikipedia.org/wiki/Multi-factor_authentication
https://1password.com/features/zero-knowledge-encryption/
https://1password.com/features/zero-knowledge-encryption/
https://arstechnica.com/gadgets/2024/08/macos-15-sequoia-makes-you-jump-through-more-hoops-to-disable-gatekeeper-app-checks/
https://arstechnica.com/gadgets/2024/08/macos-15-sequoia-makes-you-jump-through-more-hoops-to-disable-gatekeeper-app-checks/
https://www.forbes.com/sites/daveywinder/2025/02/04/mac-users-warned-as-fully-undetectable-security-backdoor-confirmed/
https://www.forbes.com/sites/daveywinder/2025/02/04/mac-users-warned-as-fully-undetectable-security-backdoor-confirmed/
https://www.forbes.com/sites/daveywinder/2025/02/04/mac-users-warned-as-fully-undetectable-security-backdoor-confirmed/
https://www.idownloadblog.com/2024/08/07/apple-macos-sequoia-gatekeeper-change-install-unsigned-apps-mac/
https://www.idownloadblog.com/2024/08/07/apple-macos-sequoia-gatekeeper-change-install-unsigned-apps-mac/
https://www.idownloadblog.com/2024/08/07/apple-macos-sequoia-gatekeeper-change-install-unsigned-apps-mac/
https://www.osnews.com/story/141055/bug-or-intentional-macos-15-1-completely-removes-ability-to-launch-unsigned-applications/
https://www.osnews.com/story/141055/bug-or-intentional-macos-15-1-completely-removes-ability-to-launch-unsigned-applications/
https://discussions.apple.com/thread/255759797?sortBy=rank
https://discussions.apple.com/thread/255759797?sortBy=rank
https://www.teamviewer.com/en/global/support/knowledge-base/teamviewer-classic/remote-control/remote-control-a-mac/
https://www.teamviewer.com/en/global/support/knowledge-base/teamviewer-classic/remote-control/remote-control-a-mac/
https://www.teamviewer.com/en/global/support/knowledge-base/teamviewer-classic/remote-control/remote-control-a-mac/
https://objective-see.org/blog/blog_0x14.html
https://objective-see.org/blog/blog_0x14.html
https://www.zdnet.com/article/mami-malware-targets-mac-os-x-dns-settings/
https://www.zdnet.com/article/mami-malware-targets-mac-os-x-dns-settings/
https://usesignhouse.com/blog/1password-stats/
https://usesignhouse.com/blog/1password-stats/

[54] Keeper Security, “Keeper Reaches 1 Million Customers Worldwide,”
May 2020, publisher: Keeper Security. [Online]. Available: https:
//www.keepersecurity.com/blog/2020/05/27/keeper-reaches-1-million-
customers-worldwide/

[55] M. Kapko, “What’s at stake for 33M compromised LastPass users?”
Cybersecurity Dive, Jan. 2023. [Online]. Available: https://www.
cybersecuritydive.com/news/lastpass-breach-high-stakes/639838/

[56] KeePassXC Team, “Install KeePassXC on Linux,” Dec. 2024. [Online].
Available: https://flathub.org/apps/org.keepassxc.KeePassXC

[57] HicknHack Software GmbH, “MacPass,” Jan. 2025, original-
date: 2012-07-21T00:48:01Z. [Online]. Available: https://github.com/
MacPass/MacPass

[58] Electron. (2024) Browserwindow: setAlwaysOnTop flag, level, and
relativelevel. Accessed: 2024-10-11. [Online]. Available: https://www.
electronjs.org/docs/latest/api/browser-window#winsetalwaysontopflag-
level-relativelevel

[59] J. Stallings, “RobotJS: Desktop automation for node.js,” https://robotjs.
io/, 2015, accessed: October 11, 2024.

[60] M. Eddy, “The Best Password Managers,” The New York Times,
Oct. 2024. [Online]. Available: https://www.nytimes.com/wirecutter/
reviews/best-password-managers/

[61] S. Gilbertson, “The Best Password Managers to Secure Your Digital
Life,” Wired, Apr. 2024. [Online]. Available: https://www.wired.com/
story/best-password-managers/

[62] Apple Developer, “Managing your app’s information property
list,” accessed: 2024-11-06. [Online]. Available: https://developer.
apple.com/documentation/bundleresources/information property list/
managing your app s information property list

[63] Apple Inc., The Bundle Identifier, 2021. [Online]. Avail-
able: https: / /developer.apple.com/documentation/bundleresources/
information property list/cfbundleidentifier

[64] Code Signing Guide, “About Code Signing,” Sep.
2016, publisher: Apple Inc. [Online]. Available:
https://developer.apple.com/library/archive/documentation/Security/
Conceptual/CodeSigningGuide/Introduction/Introduction.html

[65] “Code signing process of macos applications,” https://support.apple.
com / guide / security / app - code - signing - process - sec3ad8e6e53 / web,
2024.

[66] M. Developers, “Macos accessibility api,” https://developer.apple.com/
accessibility/, 2024.

[67] 1Password, “How to use universal autofill on mac,” https://1password.
com/features/how-to-use-universal-autofill-on-mac/, 2024.

[68] M. Developers, “Autotype,” https://github.com/MacPass/MacPass/wiki/
Autotype, 2024.

[69] K. Developers, “Auto-type — keepassxc user guide,” https://keepassxc.
org/docs/KeePassXC UserGuide# auto type, 2024.

[70] M. Naseri, N. P. Borges Jr, A. Zeller, and R. Rouvoy, “Accessileaks: In-
vestigating privacy leaks exposed by the android accessibility service,”
in PETS 2019-The 19th Privacy Enhancing Technologies Symposium.

[71] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee, “A11y attacks:
Exploiting accessibility in operating systems,” in Proceedings of the
2014 ACM CCS.

[72] W. Diao, Y. Zhang, L. Zhang, Z. Li, F. Xu, X. Pan, X. Liu, J. Weng,
K. Zhang, and X. Wang, “Kindness is a risky business: On the usage of
the accessibility {APIs} in android,” in 22nd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2019).

[73] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and dagger:
from two permissions to complete control of the ui feedback loop,” in
2017 IEEE Symposium on Security and Privacy (SP).

[74] 1Password Support, “How 1password fills information in apps on your
mac,” https://support.1password.com/mac-universal-autofill-settings/,
November 2022, accessed: 2024-10-11.

[75] A. D. Documentation, “Nswindow.level,” https://developer.apple.com/
documentation/appkit/nswindow/level-swift.struct, 2024.

[76] J. Fisher, “What is the order of nswindow levels?” https://jameshfisher.
com/2020/08/03/what-is-the-order-of-nswindow-levels/, 2020.

[77] X. Lin, P. Ilia, and J. Polakis, “Fill in the blanks: Empirical analysis
of the privacy threats of browser form autofill,” in Proceedings of the
2020 ACM CCS.

[78] 1Password Support, “Save and fill credit cards and addresses,” https:
//support.1password.com/credit-card-address-filling, accessed: 2025-
04-12.

[79] D. M’Raihi, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based
One-Time Password Algorithm,” Internet Engineering Task Force,

Request for Comments RFC 6238, May 2011. [Online]. Available:
https://datatracker.ietf.org/doc/rfc6238/

[80] 1Password, “1password cli documentation: Get started,” https : / /
developer.1password.com/docs/cli/get-started/, 2025.

[81] ——, “Secret key security,” https://support.1password.com/secret-key-
security/, 2025.

[82] Keeper Security, “Keyboard shortcuts: Tips and tricks,” 2024.
[Online]. Available: https://docs.keeper.io/en/user-guides/tips-and-
tricks/keyboard-shortcuts

[83] Electron Contributors, “app.dock.hide() - electron documentation,”
https://www.electronjs.org/docs/latest/api/app#appdockhide- macos,
2024.

[84] KeePassXC Team, “Keepassxc user guide,” 2024. [Online]. Available:
https://keepassxc.org/docs/KeePassXC UserGuide

[85] K. Team, “Keyboard shortcuts,” 2025. [Online]. Available: https:
//keepass.info/help/kb/keyb shortcuts.html

[86] 1Password, “Keyboard shortcuts — 1password support,” 2024.
[Online]. Available: https://support.1password.com/keyboard-shortcuts/

[87] N. Turner, “macos secure input mode: Understanding its purpose
and implications,” https://nickjvturner.com/macos-secure-input-mode,
2024.

[88] Apple Inc., Use Secure Keyboard Entry in Terminal on Mac, https://
support.apple.com/guide/terminal/use-secure-keyboard-entry-trml109/
mac#, 2024.

[89] Tenable, “5.10 Ensure Secure Keyboard Entry Terminal.app Is En-
abled,” https : / /www. tenable . com/audits /CIS Apple macOS 12 .0
Monterey Cloud-tailored v1.0.0 L1, 2025.

[90] Microsoft Docs, “Use code signing for better control and protec-
tion,” Microsoft Learn, 2025, https : / / learn .microsoft . com/en- us /
windows/security/application-security/application-control/app-control-
for- business/deployment/use- code- signing- for- better- control- and-
protection.

[91] npm, “node-window-manager,” 2024. [Online]. Available: https:
//www.npmjs.com/package/node-window-manager

[92] npm contributors, “node-window-manager: Node.js library for man-
aging native application windows,” https://www.npmjs.com/package/
node-window-manager.

[93] J. Sissel, “xdotool: Fake keyboard/mouse input, window management,
and more,” https://github.com/jordansissel/xdotool, 2025.

[94] Microsoft Developer Network, “SetWindowsHookExA function (wi-
nuser.h),” https : / / learn . microsoft . com / en - us / windows / win32 / api /
winuser/nf-winuser-setwindowshookexa, 2024.

[95] Apple Inc., “What is keychain access on mac?” 2024. [Online].
Available: https://support.apple.com/guide/keychain-access/what- is-
keychain-access-kyca1083/mac

[96] 1Password, “Passkeys: The future of secure sign-in,” 2024. [Online].
Available: https://1password.com/product/passkeys

[97] LastPass, “Passwordless authentication with passkeys,” 2024.
[Online]. Available: https://www.lastpass.com/features/passwordless-
authentication

[98] M. W. Docs, “Web authentication api,” https://developer.mozilla.org/
en-US/docs/Web/API/Web Authentication API, 2024.

[99] D. Silver, S. Jana, D. Boneh, and E. Chen, “Password Managers:
Attacks and Defenses,” in USENIX Security 14.

[100] Y. Fu and D. Wang, “Leaky autofill: An empirical study on the privacy
threat of password managers’ autofill functionality,” in Proceedings
of the Annual Computer Security Applications Conference (ACSAC).
ACM, 2024.

[101] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and Dagger:
From Two Permissions to Complete Control of the UI Feedback Loop,”
in 2017 IEEE Symposium on Security and Privacy (SP).

[102] A. Gangwal, S. Singh, and A. Srivastava, “AutoSpill: Credential
Leakage from Mobile Password Managers,” in Proceedings of ACM
CODASPY, 2023.

[103] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia,
“Design of the eros Trusted Window System,” 2004. [Online].
Available: https://www.usenix.org/conference/13th-usenix-security-
symposium/design-eros-trusted-window-system

[104] J. Epstein, J. McHugh, R. Pascale, C. Martin, D. Rothnie, H. Orman,
A. Marmor-Squires, M. Branstad, and B. Danner, “Evolution of a
trusted B3 window system prototype,” in 1992 IEEE Computer Society
Symposium on Research in Security and Privacy.

[105] F. Roesner and T. Kohno, “Securing Embedded User Interfaces: An-
droid and Beyond,” in USENIX Security Symposium ’13, 2013.

16

https://www.keepersecurity.com/blog/2020/05/27/keeper-reaches-1-million-customers-worldwide/
https://www.keepersecurity.com/blog/2020/05/27/keeper-reaches-1-million-customers-worldwide/
https://www.keepersecurity.com/blog/2020/05/27/keeper-reaches-1-million-customers-worldwide/
https://www.cybersecuritydive.com/news/lastpass-breach-high-stakes/639838/
https://www.cybersecuritydive.com/news/lastpass-breach-high-stakes/639838/
https://flathub.org/apps/org.keepassxc.KeePassXC
https://github.com/MacPass/MacPass
https://github.com/MacPass/MacPass
https://www.electronjs.org/docs/latest/api/browser-window#winsetalwaysontopflag-level-relativelevel
https://www.electronjs.org/docs/latest/api/browser-window#winsetalwaysontopflag-level-relativelevel
https://www.electronjs.org/docs/latest/api/browser-window#winsetalwaysontopflag-level-relativelevel
https://robotjs.io/
https://robotjs.io/
https://www.nytimes.com/wirecutter/reviews/best-password-managers/
https://www.nytimes.com/wirecutter/reviews/best-password-managers/
https://www.wired.com/story/best-password-managers/
https://www.wired.com/story/best-password-managers/
https://developer.apple.com/documentation/bundleresources/information_property_list/managing_your_app_s_information_property_list
https://developer.apple.com/documentation/bundleresources/information_property_list/managing_your_app_s_information_property_list
https://developer.apple.com/documentation/bundleresources/information_property_list/managing_your_app_s_information_property_list
https://developer.apple.com/documentation/bundleresources/information_property_list/cfbundleidentifier
https://developer.apple.com/documentation/bundleresources/information_property_list/cfbundleidentifier
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://support.apple.com/guide/security/app-code-signing-process-sec3ad8e6e53/web
https://support.apple.com/guide/security/app-code-signing-process-sec3ad8e6e53/web
https://developer.apple.com/accessibility/
https://developer.apple.com/accessibility/
https://1password.com/features/how-to-use-universal-autofill-on-mac/
https://1password.com/features/how-to-use-universal-autofill-on-mac/
https://github.com/MacPass/MacPass/wiki/Autotype
https://github.com/MacPass/MacPass/wiki/Autotype
https://keepassxc.org/docs/KeePassXC_UserGuide#_auto_type
https://keepassxc.org/docs/KeePassXC_UserGuide#_auto_type
https://support.1password.com/mac-universal-autofill-settings/
https://developer.apple.com/documentation/appkit/nswindow/level-swift.struct
https://developer.apple.com/documentation/appkit/nswindow/level-swift.struct
https://jameshfisher.com/2020/08/03/what-is-the-order-of-nswindow-levels/
https://jameshfisher.com/2020/08/03/what-is-the-order-of-nswindow-levels/
https://support.1password.com/credit-card-address-filling
https://support.1password.com/credit-card-address-filling
https://datatracker.ietf.org/doc/rfc6238/
https://developer.1password.com/docs/cli/get-started/
https://developer.1password.com/docs/cli/get-started/
https://support.1password.com/secret-key-security/
https://support.1password.com/secret-key-security/
https://docs.keeper.io/en/user-guides/tips-and-tricks/keyboard-shortcuts
https://docs.keeper.io/en/user-guides/tips-and-tricks/keyboard-shortcuts
https://www.electronjs.org/docs/latest/api/app#appdockhide-macos
https://keepassxc.org/docs/KeePassXC_UserGuide
https://keepass.info/help/kb/keyb_shortcuts.html
https://keepass.info/help/kb/keyb_shortcuts.html
https://support.1password.com/keyboard-shortcuts/
https://nickjvturner.com/macos-secure-input-mode
https://support.apple.com/guide/terminal/use-secure-keyboard-entry-trml109/mac#
https://support.apple.com/guide/terminal/use-secure-keyboard-entry-trml109/mac#
https://support.apple.com/guide/terminal/use-secure-keyboard-entry-trml109/mac#
https://www.tenable.com/audits/CIS_Apple_macOS_12.0_Monterey_Cloud-tailored_v1.0.0_L1
https://www.tenable.com/audits/CIS_Apple_macOS_12.0_Monterey_Cloud-tailored_v1.0.0_L1
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/deployment/use-code-signing-for-better-control-and-protection
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/deployment/use-code-signing-for-better-control-and-protection
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/deployment/use-code-signing-for-better-control-and-protection
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/deployment/use-code-signing-for-better-control-and-protection
https://www.npmjs.com/package/node-window-manager
https://www.npmjs.com/package/node-window-manager
https://www.npmjs.com/package/node-window-manager
https://www.npmjs.com/package/node-window-manager
https://github.com/jordansissel/xdotool
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexa
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexa
https://support.apple.com/guide/keychain-access/what-is-keychain-access-kyca1083/mac
https://support.apple.com/guide/keychain-access/what-is-keychain-access-kyca1083/mac
https://1password.com/product/passkeys
https://www.lastpass.com/features/passwordless-authentication
https://www.lastpass.com/features/passwordless-authentication
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://www.usenix.org/conference/13th-usenix-security-symposium/design-eros-trusted-window-system
https://www.usenix.org/conference/13th-usenix-security-symposium/design-eros-trusted-window-system

[106] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna, “What the App is That? Deception and Countermeasures in
the Android User Interface,” in 2015 IEEE S&P.

[107] Y. Lee, X. Wang, K. Lee, X. Liao, X. Wang, T. Li, and X. Mi, “Un-
derstanding iOS-based Crowdturfing Through Hidden UI Analysis,” in
USENIX Security Symposium ’19.

[108] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into Your App without
Actually Seeing It: UI State Inference and Novel Android Attacks,” in
23rd USENIX Security Symposium (USENIX Security ’14).

[109] M. Jubur, P. Shrestha, N. Saxena, and J. Prakash, “Bypassing Push-
based Second Factor and Passwordless Authentication with Human-
Indistinguishable Notifications,” in ACM AsiaCCS ’21.

[110] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio, “Phishing Attacks
on Modern Android,” in Proceedings of the 2018 ACM CCS.

[111] A. T. Mahdad, M. Jubur, and N. Saxena, “Breaching Security Keys
without Root: FIDO2 Deception Attacks via Overlays exploiting Lim-
ited Display Authenticators,” in ACM CCS ’24.

[112] K. Cheng, A. Bhattacharya, M. Lin, J. Lee, A. Kumar, J. F. Tian,
T. Kohno, and F. Roesner, “When the user is inside the user interface:
An empirical study of ui security properties in augmented reality,” in
33rd USENIX Security Symposium (USENIX Security ’24).

[113] F. Xiao, Z. Yang, J. Allen, G. Yang, G. Williams, and W. Lee,
“Understanding and Mitigating Remote Code Execution Vulnerabilities
in Cross-platform Ecosystem,” in Proceedings of the 2022 ACM CCS.

[114] M. M. Ali, M. Ghasemisharif, C. Kanich, and J. Polakis, “Rise of
Inspectron: Automated Black-box Auditing of Cross-platform Electron
Apps,” in USENIX Security Symposium ’24.

[115] C. Paloscia, K. Solomos, M. M. Ali, and J. Polakis, “Lost in translation:
Exploring the risks of web-to-cross-platform application migration,”
Proceedings on Privacy Enhancing Technologies, 2025.

[116] Z. Jin, S. Chen, Y. Chen, H. Duan, J. Chen, and J. Wu, “A Security
Study about Electron Applications and a Programming Methodology
to Tame DOM Functionalities,” in Proceedings 2023 Network and
Distributed System Security Symposium, 2023.

[117] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and
A. Sabelfeld, “SandTrap: Securing JavaScript-driven Trigger-Action
Platforms,” in USENIX Security Symposium ’21.

[118] C. Wang, Y. Zhang, and Z. Lin, “RootFree Attacks: Exploiting Mobile
Platform’s Super Apps From Desktop,” in ACM AsiaCCS ’24.

[119] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The Quest to
Replace Passwords: A Framework for Comparative Evaluation of Web
Authentication Schemes,” in 2012 IEEE S&P.

[120] Z. Li, W. He, D. Akhawe, and D. Song, “The Emperor’s New Password
Manager: Security Analysis of Web-based Password Managers,” in
USENIX Security Symposium ’14.

[121] S. Oesch and S. Ruoti, “That Was Then, This Is Now: A Security
Evaluation of Password Generation, Storage, and Autofill in Browser-
Based Password Managers,” in USENIX Security ’20.

[122] A. Fabrega, A. Namavari, R. Agarwal, B. Nassi, and T. Ristenpart,
“Exploiting Leakage in Password Managers via Injection Attacks,” in
USENIX Security ’24.

APPENDIX

A. Password Manager Notifications Examples

Figure 3 shows the alert displayed when a credentials set is
selected from the Quick Access window.

B. Keeper: Phishing Application Structure

Figure 4 illustrates the internal structure of the phish-
ing application used to exploit Keeper’s vault. The outer
wrapper, named Hider.app, serves as a benign-looking
macOS application designed to conceal the embedded mali-
cious component. Within Hider.app, a nested application
(Malicious.app) contains the core functionality responsi-
ble for credential harvesting. Both applications follow the stan-
dard macOS app bundle structure, with the Contents folder
that holds essential files and directories required for execution.
The Malicious.app includes two critical files, highlighted

Fig. 3: Alert window.

s

Contents

Contents

Hider.app Resources

Malicious.app

Malicious.app Resources

apps.json

Hider.app

Info.plist

Fig. 4: Phishing app structure.

in red: apps.json and Info.plist. The apps.json
file contains a predefined list of target applications and their
corresponding configurations, such as window titles or Bundle
Display Names. The phishing application uses this file to
identify which credentials to harvest from Keeper’s vault.
The Info.plist file stores essential metadata about the
application, including its Bundle Display Name. By modifying
this file, the attacker can impersonate trusted applications,
effectively bypassing Keeper’s verification checks.

C. Vault Integrity

We detected an additional design flaw in 1Password’s cre-
dential association process on macOS. The application links
credential records to Bundle IDs based solely on the presence
of a code signature, even when that signature is invalid or
untrusted. Specifically, 1Password establishes an association
between a credential record and a Bundle ID upon verifying
the presence of a Code Signature. Notably, this association
is created even if subsequent verification checks fail, such as
assessing the validity of the signature. To evaluate the security
implications of this behavior, we tested a scenario involving
credentials for a legitimate service that had not yet been used
for autofill in the corresponding legitimate application. We
verified that an attacker could exploit this mechanism by trick-
ing a user into installing a malicious application. When the
user attempts to autofill credentials for the legitimate service,
1Password verifies that the malicious application includes a
valid Code Signature and subsequently associates the service’s
credentials with the malicious app’s Bundle ID. However, in its
subsequent validation steps, 1Password detects that the Code
Signature is either untrusted or unverified and blocks autofill
into the malicious application. Although this validation pre-
vents immediate credential exfiltration, it introduces a flaw, as
once the association between the credentials and the malicious
Bundle ID is established, 1Password subsequently blocks any
attempt to update the association when the user attempts to
autofill the same credentials into the legitimate application.
This results in a persistent Denial of Service (DoS) condition,
effectively preventing users from accessing their credentials
within the intended, legitimate application. While this issue
is not part of our credential stealing attack, nonetheless it
presents an additional design flaw in 1Password’s verification
workflow.

17

TABLE IV: Default and user-defined autofill shortcuts in
macOS password managers.

(a) Default password manager shortcuts.

Shortcut Password Manager

Cmd + \ 1Password, Dashlane, Enpass

Cmd + Shift + L Bitwarden
Cmd + Shift + Space LastPass

Cmd + Shift + U Keeper
Cmd + Shift + X NordPass
Cmd + Shift + P RoboForm
Cmd + Shift + M MacPass

(b) User-defined shortcuts.

Shortcut

Cmd + / Cmd + . Cmd + ,

Cmd + ‘ Cmd + ’ Cmd + D
Cmd + Return

D. Linux Password Managers
For Linux systems, we applied the techniques outlined

in §IV and §V to evaluate the availability and behavior of
autofill functionality in desktop password managers. Among
the evaluated password managers, 1Password and KeePassXC
offer native Linux desktop applications, while Keeper pro-
vides limited functionality, and LastPass does not support the
platform. The 1Password client does not implement autofill
on Linux but provides a Quick Access interface, allowing
users to copy credentials to the clipboard via keyboard short-
cuts. As previously assessed in §IV-A, this interface can be
manipulated by a malicious application to extract credentials
through automated interaction. We replicated this attack on
Linux and confirmed its effectiveness. Similarly, KeePassXC
supports autofill functionality, and we confirmed that creden-
tial injection can be programmatically triggered. However,
in both cases, OS-level constraints on Linux significantly
limit the stealthiness of such attacks. Specifically, Linux lacks
a privileged UI layer—such as the screen-saver level
available on macOS—that could be used to obscure the attack
interface.

Additionally, the Linux window manager prevents appli-
cations from positioning windows outside the visible screen
boundaries. We also tested workspace-based hiding strategies,
but triggering either the Quick Access or autofill interface
causes it to appear in the user’s current workspace. Although
automated credential extraction is technically feasible, stealthy
exploitation under default Linux configurations is impractical.
Finally, the Keeper desktop application does not support
autofill on Linux and is therefore not susceptible to the class
of attacks explored in this work. LastPass does not provide
a Linux desktop application and is thus excluded from our
evaluation.

TABLE V: Average time to infer KeePassXC’s autofill shortcut
per phase (avg across five iterations).

Shortcut Set Tested Avg. Time (s)

Default manager shortcuts 10.54
Common user-defined shortcuts 21.12
Special key-based combinations 99.75

Algorithm 2: Shortcut inference for KeePassXC.
Input: commonDefaultShortcuts,

commonUserDefinedShortcuts
Output: Detected autofill shortcut

1 foreach (primaryKey, modifierKeys) in
commonDefaultShortcuts →
commonUserDefinedShortcuts do

2 Trigger modifierKeys + primaryKey

3 primaryKeys ↑ extract all unique keys from prior sets
modCombos ↑ {CTRL, CTRL+SHIFT,
CTRL+OPTION, CTRL+SHIFT+OPTION}

4 foreach key in primaryKeys do
5 foreach mods in modCombos do
6 Trigger mods + key

E. KeePassXC: Inferring the Autofill Shortcut
Unlike other password managers, KeePassXC does not

define a default autofill shortcut. Consequently, successful
credential harvesting requires an attacker to infer the user’s
configured keyboard shortcut. Exhaustive brute-force across
all potential combinations is not practical due to the high
number of permutations. To address this, we develop a shortcut
inference strategy that prioritizes realistic configurations based
on common user behavior and commonly deployed shortcuts.

Our method proceeds in three phases. First, it tests the
default autofill shortcuts used by other popular password
managers, as shown in Table IVa, under the assumption that
users may reuse familiar key bindings. Second, it creates a set
of user-defined shortcuts commonly recommended in online
discussions and documentation and user guides (Table IVb).
Finally, it expands the search space by pairing frequently used
primary keys with combinations of modifier keys such as
Control, Option, and Shift. Algorithm 2 outlines our
inference methodology.

We evaluate the effectiveness of each phase independently
by measuring the average completion time over five iterations,
as shown in Table V. Testing default manager shortcuts
completes in 10.5 seconds on average, and represents the most
efficient phase due to its low overhead. The user-defined subset
completes in ↓20 seconds. The final phase, which explores
a broader space of modifier-key combinations, completes in
under 100 seconds. These results confirm the practicality of
the default-only phase for credential harvesting, while also
highlighting that exhaustive exploration of complicated input
combinations remains possible within a short time window.

18

	Introduction
	Background and Threat Model
	Experimental Setup
	macOS Password Managers
	1Password
	Keeper
	KeePassXC
	MacPass
	Alternative Local Credential-Stealing Attack Vectors

	Windows Password Managers
	1Password
	Keeper
	LastPass & KeepassXC

	Linux Password Managers
	Attack Mitigation
	Discussion
	Related Work
	Comparison with Prior Work

	Conclusions
	References
	Appendix
	Password Manager Notifications Examples
	Keeper: Phishing Application Structure
	Vault Integrity
	Linux Password Managers
	KeePassXC: Inferring the Autofill Shortcut

