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Fig. 1: Authentication System Overview

mation and resources [21], [7], [26]. Traditional authentication
methods, e.g. passwords, and PINs, have been proven to be
vulnerable to breaches and often inconvenient [11], [8]. In the
world of wearable IoT devices, where users’ sensitive real-
time data are being continuously collected and processed on
the device, it is important to provide seamless authentication
protection mechanisms beyond traditional authentication ap-
proaches.

Biometric authentication is a compelling approach to ad-
dress this challenge, relying on the distinct physiological or
behavioral patterns of different individuals, which can be con-
sidered reliable sources of authentication [31], [2], [22]. Car-
diac signal-based approaches, e.g. electrocardiogram (ECG)-
based and photoplethysmography (PPG)-based authentication,
are especially attractive because they can be integrated into
real-time systems to enable continuous authentication [29],
[23], [39]. ECG-based biometrics have shown high accuracy
in research; however, ECG signal collection is often hampered
by its intrusive nature and discontinuous acquisition (typically
requiring contact electrodes or active user engagement, such
as placing a finger on a sensor).

PPG, by contrast, is easily captured by the optical sensors
already embedded in most wearables, making it non-intrusive,
ubiquitous, and power-efficient. Unlike ECG, which demands
low-impedance skin–electrode contact and thus imposes more
hardware complexity and user burden, PPG can be sensed pas-
sively with minimal user involvement. Although ECG yields
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I. INTRODUCTION

Authentication is a critical part of modern digital systems,
ensuring that only authorized users can access sensitive infor-
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cleaner waveforms and zero phase lag because it measures
the heart’s electrical impulse directly, these benefits come at
the cost of comfort and form-factor flexibility. PPG’s main
drawbacks are a higher susceptibility to motion artifacts,
ambient-light interference, and a physiological lag behind
the cardiac electrical event, all of which can degrade signal
quality in everyday use. Nevertheless, early studies that used
high-frequency PPG have reported excellent authentication
accuracy under controlled conditions [34], [24], [32].

Despite PPG’s potential, gaps remain in the current literature
on continuous PPG-based authentication as well as in a
practical way. These solutions frequently fall short in enabling
continuous, real-world operation due to practical constraints
like power consumption and comfort, and often rely on high-
quality PPG signals collected at high sampling rates (typically
75–500 Hz) using professional or medical-grade sensors [10],
[4], [18]. Such high-fidelity data capture rich heartbeat mor-
phology but at the cost of increased power consumption and
data volume. This is impractical for power-constraint wearable
devices (parallel wearable platforms for continuous physio-
logical monitoring grapple with similar cost/comfort/power
trade-offs [35]). Moreover, much of the past work has been
evaluated on pre-collected datasets or in laboratory scenarios
with stationary subjects. Practical real-world validation of PPG
authentication has been limited. Few studies attempted on-
device deployment of PPG authentication algorithms, and they
often do not address power and energy impacts.

In this paper, we address these challenges by proposing a
continuous authentication system using low-frequency multi-
channel PPG signals and evaluate the system through practical
real-world demonstration, which to the best of our knowl-
edge, is the first work to fully implement and evaluate a
continuous biometric authentication system on a smartwatch.
Figure 1 shows the high-level overview of the authentication
system. We chose to rely solely on the PPG signal. While
incorporating additional sensors like Galvanic Skin Response
(GSR; e.g., recent low-power, wrist-deployable EDA acquisi-
tion systems [36]), accelerometer, or even ECG could help,
our aim is to demonstrate strong results using just PPG.
Our approach leverages the We-Be Band—a research-oriented
smartwatch equipped with PPG and other physiological sen-
sors [37], [12]—to collect photoplethysmogram data from
users. Uniquely, we sample the PPG at native 25 Hz, substan-
tially lower than in most prior studies, to enable ultra-low-
power operation. By using multi-channel PPG (multiple wave-
lengths/sensors), we capture complementary cardiovascular
features even at this lower sampling rate. These signals are fed
into a machine learning model that learns each user’s heartbeat
pattern. The model is lightweight and is suitable for real-time
inference on the edge device or wearable’s embedded pro-
cessor. Our system thus emphasizes an energy-aware design:
it maintains robust authentication accuracy while minimizing
sampling frequency and computation, thereby optimizing for
battery life of wearable devices.

To evaluate our approach, we aim to answer the following
key Research Questions (RQs):

• RQ1: How does PPG sampling frequency affect authenti-
cation accuracy and generalization in real-world wearable
use cases?

• RQ2: To what extent does multi-channel PPG improve
authentication resilience against impersonation and signal
noise compared to single-channel input?

• RQ3: What is the impact of activity-aware training
(e.g., walking, typing) on the robustness of PPG-based
biometric models in dynamic environments?

• RQ4: Can a low-power authentication model operating
at 25 Hz PPG sampling achieve accuracy and robustness
comparable to high-frequency counterparts on real-world
wearable devices?

• RQ5: How feasible is real-time, continuous biometric
authentication using low-frequency PPG on embedded
devices in terms of power and usability?

We answer these questions through extensive experimen-
tation with our prototype system. In terms of authentication
performance, our results show that the proposed 25 Hz multi-
channel PPG approach can achieve strong accuracy—for in-
stance, about 88% classification accuracy in identifying users,
with an equal error rate (EER) below 3%. This is comparable
to state-of-the-art methods that use significantly higher sam-
pling rates, indicating that a higher rate is not strictly necessary
for effective biometric recognition. Importantly, the system
maintains this accuracy in realistic conditions. We validate it
with users during various activities and over multiple sessions
to demonstrate its ability for real-world use. The trained
deep learning model runs in real-time, and we successfully
deployed the pipeline on a prototype with the We-Be Band for
continuous operation. Equally significant are the implications
for energy efficiency. By using a 25 Hz sampling rate instead
of the common 75+ Hz, our system drastically reduces the
volume of data and frequency of sensor readings, directly
lowering the power consumption of both the PPG sensor
and the processing workload. We estimate that this down-
sampling approach leads to considerable power savings. In our
measurements, the power consumption for PPG sensing alone
at 25 Hz is 53% less than at 512 Hz and 19% less than at
128 Hz. Combined with the power saved by processing lower-
frequency data this leads to a longer battery life consistent
with multi-day wearable use.

Additionally, we gained two notable insights from our
experiments. First, we show that a lower sampling rate can
sometimes yield similar accuracy before it reaches 20 Hz.
Lower rates starting at 20 Hz quickly compromise the perfor-
mance, outweighing any additional energy benefit. In certain
scenarios, the model’s generalization ability is similar on
down-sampled PPG as the higher rates, likely because the
lower rate filters out high-frequency noise and forces the
model to focus on the most salient features of the pulse
waveform. Further discussion can be found in Section VI-A.
Second, incorporating diverse activities in the training data
(rather than only resting-state PPG) greatly improves the
system’s robustness and biometric separability. Models trained
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on PPG data across a range of activities (e.g., walking, typing,
exercising) were significantly better at distinguishing users
under various real-life conditions, highlighting that activity-
induced variations can enrich the biometric feature set (we
discuss this further in Section VI-E).

In summary, the contributions of this paper are as follows:
• A low-frequency, multi-channel PPG authentication

system: We design and implement a continuous au-
thentication pipeline based on 25 Hz multi-channel PPG
signals, demonstrating that robust performance can be
achieved without high-frequency sensing.

• Empirical validation of sampling rate impact: Through
downsampling experiments on public datasets, we show
that lower sampling rates can retain or even improve au-
thentication accuracy while dramatically reducing power
consumption.

• Practical Real-world implementation and evaluation:
Our model achieved 88.11% accuracy, 0.48% False
Acceptance Rate (FAR), 11.77% False Rejection Rate
(FRR), and Equal Error Rate (ERR), 2.76%. We further
design and deploy a prototype system that supports
the entire pipeline of authentication tasks in real-world
scenarios involving human participants on a smartwatch
(We-Be Band).

• Insights into activity-aware training: We demonstrate
that training the model on a diverse set of activities (e.g.,
sitting, walking, typing) significantly improves general-
ization across conditions, countering the long-standing
bias toward resting-state biometrics.

• Design guidance for low-power wearable devices: We
provide power measurements and performance bench-
marks to guide developers in selecting sampling rates that
balance biometric fidelity and energy efficiency for con-
tinuous authentication applications. And note that link-
layer choices (e.g., connection interval, packet length,
security) further shift the energy envelope for continuous
streaming [20].

II. BACKGROUND

Biometric authentication has evolved from relying on tradi-
tional physical traits, such as fingerprints and facial features,
to utilizing physiological signals for enhanced security and
robustness. Among these, electrocardiogram (ECG) and pho-
toplethysmography (PPG) have garnered significant attention
due to their uniqueness and feasibility for continuous monitor-
ing. This section provides foundational context for our work,
including key challenges and motivations behind our multi-
channel, low-power PPG-based approach. For an expanded
discussion of related literature, please refer to Section VII.

A. ECG-Based Authentication

ECG signals have been widely studied for biometric au-
thentication due to their unique cardiac waveform character-
istics [1], [28], [15], [17], [30]. However, ECG acquisition
typically requires electrodes and direct skin contact, making
it less suitable for continuous, unobtrusive use in daily life.

Furthermore, ECG signals are not continuously captured in
most wearable devices, limiting their practicality for real-time
authentication systems.

B. Photoplethysmography (PPG) as an Alternative

Photoplethysmography (PPG) offers a non-invasive and
wearable-friendly alternative to ECG. Early works using high-
frequency PPG (75–500 Hz) demonstrated excellent authen-
tication performance in controlled environments [34], [24],
[32]. However, such systems often incur substantial power
and computational overhead, which can hinder scalability to
continuous real-world use. These limitations have prompted
research into lower-frequency, multi-channel, and hardware-
aware approaches to preserve both accuracy and efficiency.
Table I summarizes prior works on PPG-based biometric
authentication.

C. Sensor Hardware and PPG Channel Characteristics

Our system is based on the SFH-7072 optical sensor
equipped on We-Be Band, which features four PPG channels:
two green (526 nm), one red (660 nm), and one infrared
(950 nm). Each wavelength penetrates to a different tissue
depth and interacts with distinct physiological layers, enabling
richer signal acquisition and improving resilience to motion
artifacts and skin tone variability. This configuration is par-
ticularly advantageous for authentication tasks, which require
reliable signal diversity.

III. METHODOLOGY

In this section, we present our continuous authentication
methodology, encompassing data acquisition, preprocessing,
model design, training, and evaluation.

Our approach features four key innovations: (1) a low-power
PPG sensing pipeline with a 25 Hz sampling rate, (2) the use
of multi-channel PPG inputs for enhanced signal richness, (3)
a class-weighted loss function to address imbalanced training
data, and (4) a rigorous comparison and selection of two
deep learning architectures (a Bi-LSTM with attention vs. a
Transformer) to identify the optimal model for this task.

A. Wearable Platform: We-Be Band

Our data were collected using the We-Be Band, a smart-
watch platform developed for low-power, multi-modal physi-
ological monitoring. Sensors relevant to our system include:

• multi-channel PPG Sensor: Four optical channels (two
green, one red, one infrared) sampled at 25 Hz.

• Data Acquisition: An nRF52840 SoC with ARM Cortex-
M4 manages synchronized sampling and stores data on
a 256 MB flash module. BLE is supported for optional
real-time streaming.

B. Datasets

We evaluated our system using two datasets: one public
dataset, Pulse Transit Time PPG Dataset (PTTPPG), and one
custom dataset collected using the We-Be Band.
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TABLE I: Representative Prior Works on PPG-Based Biometric Authentication

Study Model Type Sampling Rate Dataset Key Contribution

[32] CWT +
DLDA 100–300 Hz BioSec.Lab

PPG Evaluated performance across states (e.g., exercise, stress).

[27] Statistical
Analysis 75 Hz

Custom
(finger
sensor)

Demonstrated feasibility of PPG for ID under controlled,
low-motion conditions.

[10] CNN +
LSTM 125 Hz TROIKA Achieving 96% accuracy on wrist-worn PPG.

[18] CNN 125 Hz TROIKA,
PulseID End-to-end PPG authentication with AUC of 78–83%.

[39]
Random
Forest +
Wavelet

300 Hz Custom Continuous auth with cardiac features from wrist-worn
wearable devices.

[40] Random
Forest 125 Hz Custom Gesture-aware 2FA using PPG; proposed multimodal

fusion on wearable devices.

[13] CNN
(Fusion) 100–300 Hz PRRB,

TROIKA
Multi-channel fusion for variation-stable biometric
recognition.

[33] Statistical
analysis 300 Hz Custom (3

subjects)
Demonstrated that derivatives of PPG signals can precisely
describe individual features for identification purposes.

[6] Correlation-
based 75 Hz

Custom
(44/14

subjects)

Proposed continuous authentication using PPG; achieved
EERs of 5.29% and 13.47% over different durations.

[34] Random
Forest 500 Hz

PRRB,
MIMIC-III,
CapnoBase

Achieved 96.4% accuracy and EER of 2.14%.

[16] Deep Belief
Network 125 Hz TROIKA Applied adaptive deep learning for PPG-based

identification.

[24] LDA, QDA,
Mahalanobis 512 Hz DEAP

Implemented biometric authentication using PPG signals;
achieved 90% and 95% accuracy for 2s and 8s signals,
respectively.

[38]
Gradient
Boosting

Tree
300 Hz Custom (20

subjects)

Developed TrueHeart, a continuous authentication system
using wrist-worn PPG; achieved 90% accuracy and 4%
FDR under motion.

[14] CNN +
LSTM 100 Hz, 300 Hz

BioSec1,
BioSec2,

PRRB

Evaluated time-stable PPG biometrics across sessions;
achieved 98% accuracy in single-session and 87.1% in
two-session setups.

[3] CNN +
LSTM 125 Hz TROIKA,

IMEC-Db

Introduced CorNET for ambulant biometric ID and HR
estimation; achieved 96% ID accuracy and 1.47±3.37
BPM HR error.

1) Pulse Transit Time PPG Dataset (PTTPPG): This public
dataset [19] includes synchronized ECG and multi-channel
PPG data from 22 healthy subjects during sitting, walk-
ing, and running sessions. ECG was recorded at 500 Hz,
and PPG at 500 Hz using six MAX30101-based channels
(pleth 1–pleth 6). All signals are temporally aligned to within
2 ms. We use both ECG and PPG data from this dataset for
baseline comparisons across activity states.

2) Custom Dataset: We-Be Dataset: We use a multi-modal
dataset from 26 volunteers (mean age: 23 ± 3.1 years; 38%
female) collected using the We-Be Band. Subjects wore the
band on the non-dominant wrist and performed daily tasks
including rest, walking, talking, etc. PPG was sampled at

25 Hz from all four channels. This design captures a range of
physiological responses and motion-induced variations. The
We-Be Band’s extended battery life and onboard storage
enabled uninterrupted recording across all sessions.

C. PPG Signal Selection

We select multiple PPG channels to ensure spatial and
spectral diversity across skin depths, enabling the model to
learn more robust and individualized signal representations.
multi-channel fusion enables the extraction of complementary
biometric features—such as amplitude ratios, peak timings,
and pulse shape—which may not be consistently present in
single-channel signals. While some studies have explored addi-

4



tional sensor modalities such as skin temperature and galvanic
skin response (GSR), we focus on optimizing the use of multi-
channel PPG for practical, and continuous authentication.

To evaluate the impact of spectral diversity on biometric
modeling and validate our selection of multi-channel con-
figuration, we conducted an ablation study using the We-Be
Dataset. Our model was first trained and evaluated in: (i) a
single-channel setting using only one green PPG signal, and
(ii) a multi-channel setting incorporating all four available
channels.

Green light was chosen for the single-channel baseline as
it is the most commonly used wavelength in commercial
wearable devices, offering strong superficial pulse signals and
high signal-to-noise ratios. However, this wavelength probes
only shallow tissue layers and may not capture deeper or
complementary hemodynamic features.

D. Data Preprocessing

The raw PPG signals are first processed with a second-
order band-pass filter (0.5–12 Hz) to remove motion artifacts,
baseline drift, and high-frequency noise. Each filtered signal
is then segmented into 4-second windows with 50% overlap,
producing fixed-length inputs that preserve temporal continuity
while improving data density. Within each segment, the signals
are Z-score normalized to eliminate amplitude variance across
users and sessions, facilitating convergence during training.

E. Design Choices

1) Window Length: For window length, we use 4-second
windows. We evaluated 2-second, 4-second, and 8-second
windows on the We-Be dataset while keeping every other
component—preprocessing, network architecture, and training
schedule—unchanged. The 4-second window delivered the
highest accuracy (88.11%) over the alternatives), whereas 2-
second and 8-second reached 86.45% and 86.02%, respec-
tively. Short 2-second windows often contain only one or two
heartbeats; the reduced morphological context limits discrimi-
native cues and increases variance. Conversely, 8-second seg-
ments bundle 5–15 beats, which inflates input dimensionality,
slows training, and introduces greater intra-window variability,
all of which manifested as pronounced oscillations in the
learning curves. A 4-second window therefore strikes the best
balance: it spans several cardiac cycles across a wide heart-rate
range (35–180 bpm), yet keeps authentication latency under 5
seconds—acceptable for smartwatch unlock scenarios.

2) Overlap: For overlap between windows, we employ a
50% overlap (stride = 2 s) for both training and inference.
This choice is guided by three practical considerations:

• Boundary completeness: Any beat that straddles a win-
dow edge is fully captured in at least one neighbouring
segment, mitigating clipping artifacts without resorting to
beat-aligned segmentation.

• Sample efficiency vs. redundancy: Halving the stride
doubles the effective dataset size and diversifies mini-
batches, yet keeps adjacent windows decorrelated enough
for the optimizer to see non-redundant gradients. Heavier

overlap (75%) would magnify storage and compute costs
with diminishing information gain; lighter overlap (25%)
risks undersampling transient morphologies.

• Real-time update rate: During deployment the classifier
emits a decision every 2s, providing a smooth, promptly
updating confidence stream suitable for majority-vote
fusion and quick lock/unlock feedback. Together, the 4s
window with 50% overlap yields a responsive, compu-
tationally tractable pipeline while preserving the physio-
logical detail necessary for reliable PPG-based authenti-
cation.

3) Sampling Rate: We adopt a 25 Hz sampling rate for
all baseline experiments. The impact of alternative rates is
examined in Section IV-B1 as part of RQ1.

F. Deep Learning Model Architectures

We evaluated two deep learning architectures for user classi-
fication from multi-channel PPG: a bidirectional LSTM model
with attention, and a Transformer-based encoder. We choose
these two models because both of them capture temporal
dependencies in the sequential physiological signals, with
LSTM excelling at modeling local patterns efficiently and
Transformers leveraging global attention for more comprehen-
sive feature learning. We present our comparison results and
final decision later on.

Each 4-second segment contains 100 time steps (at 25 Hz)
and 4 channels (two green, one red, one infrared). The models
output a probability distribution over M = 26 users.

1) BiLSTM+Attention model: This architecture employs
stacked bidirectional LSTM layers to learn forward and back-
ward temporal dynamics in the PPG sequence. Each time
step’s hidden state is passed to a global attention layer, which
computes a context vector as a weighted sum of all hidden
states. The attention mechanism enables the model to focus
on salient waveform segments relevant to individual identity,
such as unique pulse morphology. The context vector is fed
into a fully connected layer with softmax activation for user
classification. The model is lightweight and suitable for on-
device inference.

2) Transformer model: The Transformer replaces recur-
rence with multi-head self-attention. After embedding the
input and adding positional encodings, the model applies
stacked encoder blocks with attention and feed-forward lay-
ers. A prepended [CLS] token is used to extract a global
representation of the sequence. While the Transformer sup-
ports parallel training and models long-range dependencies,
its higher complexity may be excessive for our short input
windows and limited dataset.

G. Training Procedure and Imbalanced Data Handling

Before training, the segmented dataset was divided into
disjoint subsets for model learning and evaluation. We par-
titioned each participant’s PPG segments into a training set
(approximately 60% of the segments), a validation set (20%),
and a test set (20%). This per-user stratified split ensures that
the model is tested on data from every user that it has seen
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during training, thereby assessing its ability to recognize indi-
viduals under new conditions or at different times. All models
were implemented in PyTorch and trained on a customer-grade
GPU, so at both training and inference time, the models are
lightweight enough to be deployed on mobile or edge devices
if needed.

1) Class-weighted Loss: A challenge in training the au-
thentication models was the class imbalance in the data.
Although we tried to collect a comparable duration of data
from each participant, there are still some users having fewer
segments than others. Moreover, in many biometric scenarios,
the imposters can be over-represented when combining data
from many non-target subjects. To prevent the model from
biasing towards classes with more samples, and to avoid
creating artificial data through oversampling, we employed a
weighted cross-entropy loss during training. In this scheme,
each user’s class in the loss function is given a weight inversely
proportional to the number of training examples for that user.

Let C be the number of classes and Nc be the number
of training samples for class c. If N is the total number of
training samples, we define the weight for class c as:

wc =
N

C ·Nc

These weights are applied to the standard cross-entropy loss,
yielding the class-weighted loss:

Lweighted = −
N∑
i=1

wyi
· log pyi

where yi is the true class label of sample i, and pyi
is the

predicted probability for the correct class.
This weighting ensures that an error made on an under-

represented user’s data contributes more to the loss than
an error on an over-represented user, thereby balancing the
influence of each class on the gradient updates. The weighted
loss function proved essential for improving the minority-class
accuracies and overall system fairness, without noticeably
impacting the performance on well-represented classes.

2) Hyperparameters and training setup: We trained both
the BiLSTM+Attention and Transformer models using the
Adam optimizer. The initial learning rate was set to 9.23 ×
10−4, and an exponential learning rate decay schedule was
applied to promote convergence (the learning rate was de-
creased by a factor of 0.5 if the validation loss plateaued for a
certain number of epochs). We trained for a maximum of 40
epochs for model selection comparison, and 100 epochs for
evaluating our methodology on We-Be Dataset. Each training
batch consisted of 32 segments. We applied regularization
techniques including dropout and weight decay to further
mitigate overfitting. Table II summarizes the key hyperparam-
eter values and architectural settings for BiLSTM+Attention
model.

IV. EVALUATION

We evaluate the proposed continuous PPG-based authentica-
tion system and present experimental results in this section. We

TABLE II: Hyperparameter search space and optimal config-
uration

Hyperparameter Search Space Optimal Value
Hidden dimension {32, 64, 128, 256, 512} 256
LSTM layers {1–5} 3
Dropout [0.3–0.5] 0.47
Learning rate 10−5–10−2 (log) 9.23× 10−4

Weight decay 10−6–10−3 (log) 8.21× 10−6

Epochs (per trial) 30 —
Trials 50 —

assess model performance in terms of classification accuracy,
biometric-specific metrics, learning dynamics, and class-wise
behavior, reflecting both system robustness and practical vi-
ability. Our evaluation systematically addresses the following
research questions:

• RQ1: How does PPG sampling frequency affect authenti-
cation accuracy and generalization in real-world wearable
use cases?

• RQ2: To what extent does multi-channel PPG improve
authentication resilience against impersonation and signal
noise compared to single-channel input?

• RQ3: What is the impact of activity-aware training
(e.g., walking, typing) on the robustness of PPG-based
biometric models in dynamic environments?

• RQ4: Can a low-power authentication model operating
at 25 Hz PPG sampling achieve accuracy and robustness
comparable to high-frequency counterparts on real-world
wearable devices?

• RQ5: How feasible is real-time, continuous biometric
authentication using low-frequency PPG on embedded
devices in terms of power and usability?

A. Model Evaluation and Selection

We first compared the BiLSTM+Attention and Transformer
models on the PTTPPG dataset using both PPG and ECG
inputs. Each model was trained and evaluated under identical
preprocessing and data splits.
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Fig. 2: Training and validation accuracy over epochs for the
PPG-based models

Figure 2 shows that both models perform well on PPG
signals, with BiLSTM+Attention achieving up to 97% val-
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Fig. 3: Training and validation accuracy over epochs for the
ECG-based models

idation accuracy and outperforming Transformer by several
percentage points. In contrast, Figure 3 demonstrates a dra-
matic difference in ECG: BiLSTM+Attention maintains strong
performance, while the Transformer model fails to converge,
showing a 30% accuracy gap. This suggests that Transformers
may be less robust under noisy ECG conditions.

Based on this evaluation, we selected the
BiLSTM+Attention architecture as the foundation of
our continuous authentication pipeline. Its temporal modeling
capacity and generalization make it preferable for deployment
on wearable platforms using low-frequency PPG signals.

B. Research Questions (RQs)

We evaluate our approach to answer the key Research
Questions (RQs) described in Section I and the beginning of
this Section.

1) RQ1: To evaluate the impact of sampling frequency
on authentication performance, we conducted an experiment
using the PTTPPG dataset. The original PPG signals sampled
at 500 Hz were downsampled to 250 Hz, 125 Hz, 25 Hz, 20 Hz,
10 Hz, and 5 Hz, and we used identical preprocessing and
training procedures on each variant. This allowed us to assess
performance trends under lower temporal resolutions while
holding signal source and model architecture constant.

Figure 4 presents the validation accuracy curves over 40
epochs.

Performance remains statistically indistinguishable from the
500 Hz reference down to 25 Hz (97–98 % peak accuracy) but
begins to degrade below that rate. At 20 Hz, accuracy drops
by ∼5 %, indicating the first tangible loss of discriminatory
detail. At 10 Hz, a similar or slightly larger decline emerges.
At 5 Hz, peak accuracy falls by a further ∼8 %, confirming
that such sparse sampling aliases the pulse waveform beyond
reliable recognition; we also observe slower learning during
the early epochs.

These results align with the physiological findings from
prior work [9] that no pulse-rate-variability (PRV) metric
differed significantly so long as the sampling frequency was
at least 25 Hz, whereas clear discrepancies appeared at 20 Hz
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Fig. 4: Validation accuracy on PTTPPG dataset under different
sampling rates.

and below. Together, the evidence suggests that our earlier
choice of 25 Hz—already the default rate on many commercial
wearables—hits the sweet spot where power savings plateau
yet biometric fidelity is preserved. Rates below 20 Hz quickly
compromise both convergence smoothness and ultimate EER,
outweighing any additional energy benefit. A fuller discus-
sion of the physiological and signal-processing implications
appears in Section VI-A.

Conclusion: Cutting the sampling rate to 25 Hz preserves
authentication accuracy while smoothing convergence
and trimming energy use; but dipping below 20 Hz
rapidly degrades both learning speed and discrimination.
Hence 25 Hz is a practical lower bound that balances
biometric fidelity with the power constraints of wearable
devices.

2) RQ2: To evaluate the impact of spectral diversity on
biometric modeling, we conducted an ablation study using the
We-Be Dataset. Our Bi-LSTM+Attention model was trained
in two configurations: (i) a single-channel setting using only
one green PPG signal, and (ii) a multi-channel setting incor-
porating all four available channels (two green, one red, and
one infrared).
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Fig. 5: Training and validation accuracy over epochs for
single-channel vs. multi-channel PPG input.

7



We tracked the training and validation performance of the
Bi-LSTM with attention model over 100 epochs using both
single-channel and multi-channel PPG inputs on the We-Be
Dataset. The resulting accuracy curves are shown in Figure 5.

The multi-channel model exhibited smooth and rapid con-
vergence, reaching a training accuracy of 99.14% and a final
validation accuracy of 88.00% These curves suggest stable
learning dynamics with modest overfitting, evidenced by the
11% gap between training and validation accuracy.

In contrast, the single-channel model plateaued at a much
lower validation accuracy of approximately 43.5%, despite
steady gains in training accuracy. This large generalization
gap implies that single-channel input lacks the diversity and
redundancy required to support robust identity recognition,
especially under realistic motion and physiological variability.
The gap in performance highlights the importance of leverag-
ing multi-channel PPG signals for reliable biometric modeling.

These trends validate the architectural choice of fusing
multiple PPG channels and support the decision to avoid
minimal-sensing configurations for continuous authentication.

Conclusion: Our findings demonstrate that multi-channel
PPG significantly enhances the robustness of biometric
authentication against noise and inter-user similarity. This
supports the adoption of multi-channel sensing in practi-
cal deployment, particularly for continuous authentication
scenarios where signal quality and user dynamics vary
over time.

3) RQ3: To evaluate the impact of activity diversity on
model performance, we trained two versions of our Bi-
LSTM+Attention model using multi-channel PPG data: one
using only resting-state signals, and another using a mix
of sitting, walking, and typing activities. Both models were
trained on the We-Be Dataset with identical hyperparameters.
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Fig. 6: Training and validation accuracy over epochs for
models trained with diverse activities vs. resting-only PPG
data.

As shown in Figure 6, the model trained on diverse activity
data significantly outperformed the resting-only baseline. The
diverse model achieved a final validation accuracy of 88.00%,
while the resting-only model plateaued around 41.5%, de-
spite continued improvements in training accuracy. This large

generalization gap in the resting-only model indicates severe
overfitting to low-variability heartbeat patterns and a failure to
learn robust, identity-specific features. Further discussion on
this issue can be found in Section VI-E.

Conclusion: Training solely on resting PPG data results
in poor generalization and should be avoided. Including
segments from everyday activities enables the model
to learn identity-relevant dynamics that persist across
varying physiological states. This strategy is essential for
building biometric systems that function reliably in real-
world settings.

4) RQ4:

• Overall and Class-Wise Performance: The Bi-LSTM
with attention model achieved a test accuracy of 88.11%.
Macro-averaged precision, recall, and F1-score were all
0.88, indicating consistent performance across all classes
despite class imbalance. Table III highlights the best- and
worst-performing classes, with Class 18 achieving near-
perfect accuracy and Class 19 showing relatively lower
performance.

TABLE III: Representative class performance metrics

Class Precision Recall F1-score Support
Best (Class 18) 0.99 0.99 0.99 358
Worst (Class 19) 0.76 0.68 0.72 329
Macro Avg 0.88 0.88 0.88 –

• Authentication Metrics: Biometric authentication sys-
tems are evaluated not just by classification accuracy but
also by user-specific error metrics. in our test set, the
system achieved:
– False Acceptance Rate (FAR): 0.48%
– False Rejection Rate (FRR): 11.77%
– Equal Error Rate (EER): 2.76%
These results reflect a practical balance between security
and usability: a low FAR ensures that imposters are rarely
accpeted, while a moderate FRR could be further mit-
igated through multi-factor integration or opportunistic
gating mechanisms. The ROC curves in Figure 7 further
support this, with one-vs-all AUC scores consistently
above 0.97.

• Confusion Matrix: The normalized confusion matrix in
Figure 8 is largely diagonal, demonstrating high per-
user classification reliability. A few mild off-diagonal er-
rors—such as those between Class 19 and Class 45—are
rare and localized, often stemming from users with over-
lapping physiological patterns or fewer available samples.

• Impact of Class Imbalance: The number of segments
per class ranged from 134 (Class 16) to 723 (Class
3). To counteract this imbalance, we employed class-
weighted cross-entropy loss instead of oversampling. This
approach preserved physiological signal integrity and led
to balanced macro and weighted F1-scores of 0.88.
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Fig. 7: One-vs-All ROC curves for selected users. The system
achieves an average AUC above 0.97.
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Fig. 8: Normalized confusion matrix showing class-wise pre-
diction distribution.

Conclusion: Our results show that a low-power authen-
tication model operating at 25 Hz sampling can achieve
competitive accuracy and robustness. The high AUC
scores and well-balanced per-class metrics underscore the
system’s real-world applicability despite reduced sam-
pling resolution. By maintaining low FAR and miti-
gating class imbalance through a class-weighted loss,
our approach demonstrates the feasibility of deploying
lightweight biometric models on resource-constrained
wearable devices without sacrificing authentication in-
tegrity.

5) RQ5: To quantify the energy implications of operating
our authentication system at different sampling rates, we
directly measured the power consumption of our PPG sensor
while varying the sampling rate from 8 Hz to 512 Hz. The

experimental setup is shown in Figure 9. We dismantle a We-
Be band and expose the circuit board, which is connected to
a power profiler to obtain power consumption data.

1. We-Be Band Circuit
2. Power Profiler

3. Power Monitor Software 4. Power Supply

Fig. 9: Experimental setup to measure the power consumption
of the PPG sensing module.

As illustrated in Figure 10, power consumption increases
nonlinearly with sampling frequency. Below 100 Hz, energy
cost scales moderately with frequency; however, above this
point, the marginal power draw rises steeply. This behavior is
likely due to increased LED duty cycles and sensor controller
overhead at higher sampling rates.

8 32 64 128 256 512

PPG Sampling Rate (Hz)

40

50

60

70

80

90
Po

we
r C

on
su

m
pt

io
n 

(m
W

)

Fig. 10: Sensor power consumption as a function of PPG
sampling rate.

While prior studies have demonstrated excellent perfor-
mance using datasets collected at sampling rates of 75 Hz or
higher, our results show that such high rates are not strictly
necessary for effective continuous user authentication. We find
that a significantly lower rate of 25 Hz can yield comparable
authentication performance.

At this low sampling rate, the PPG module consumes just
41.9 mW, compared to 51.5 mW at 128 Hz and 90.0 mW at
512 Hz. These savings are especially significant in the context
of battery-powered wearable devices, where sensing accounts
for a large fraction of energy usage.

Conclusion: Operating our system at 25 Hz yields sub-
stantial energy savings—up to 53% lower than 512 Hz
and 19% lower than 128 Hz—without compromising au-
thentication performance. This validates the practicality
of deploying our framework on ultra-low-power wearable
platforms, extending operational lifespan without sacrific-
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ing biometric accuracy.

C. Realistic Long-Term Usage and Battery Life on the We-Be
Band

To test real-world viability we conducted an independent
ten-day realistic long-term study with one participant wearing
a fully charged We-Be Band that streamed four-channel PPG
at 25 Hz. The study followed three phases:

1) Training data collection: For ten consecutive days the
participant recorded 20 min of PPG while resting, typing,
and walking, mirroring the activity mix used in our earlier
evaluation.

2) Continuous run for battery lifetime and testing data
collection: After the tenth day the watch was fully
charged and worn continuously until it dies, streaming
PPG data throughout daily life with more diverse and
zero-shot activities like driving, stairs, strength workouts,
dining, and watching TVs, and widely varying ambient
light across different environment and day time, making
it more challenging.

3) Incremental training and evaluation: Ten models were
trained, each adding one extra day of data. A single 18 h
“awake-only” slice, excluding the sleep period, from the
testing data served as the test set.

Continuous sensing exhausted the battery in 1,550 minutes
(25.8 hours), confirming that the We-Be Band can support
day-long 25 Hz PPG collection on a single charge.

Figure 11 plots test accuracy over different data amount.
Accuracy climbs steadily, reaching 80.7% with all ten
days—about 8% below the previous benchmark. The drop
is expected because the long-term test (i) spans a much
longer duration, (ii) includes unfamiliar and higher-intensity
activities such as workouts in gym, driving, and going up and
down stairs, and (iii) faces changing indoor/outdoor lighting.
Even so, just ten days of short daily sessions (<3.5 h total
PPG) already deliver reliable, day-long authentication while
the watch lasts a full battery cycle. With continued incre-
mental fine-tuning and the gradual accumulation of varied
high-quality data, we expect the long-term accuracy to con-
verge toward—if not match—the 88.11% achieved in our pre-
vious evaluation, confirming the practical value and headroom
of the proposed approach.

V. PROTOTYPE EVALUATION

We implemented our continuous PPG-based authentication
system based on the We-Be Band wearable device and evalu-
ated its real-time performance in a real-world usage scenario
involving 20 users. The goal was to determine whether our
approach can effectively differentiate between a legitimate user
and unknown users (or imposters) under realistic operating
conditions.

The usage of such a device involves several stages:
1) Data collection: where PPG data belonging to the target

user is collected;
2) Model training: where a model is trained to recognize

a user based on collected PPG data;
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Fig. 11: Test accuracy on an 18 h “awake” segment versus the
number of days’ data used for training.

3) Real-time continuous authentication: where the trained
model starts to work and identify if the device is being
operated by the corrected user.

A. Experiment Setup

1) Hardware: The We-Be Band wearable device was used
for PPG signal acquisition. A MacBook Pro laptop equipped
with an Apple M-series processor serves as the gateway device
for receiving PPG data, training models, and performing
inference. We choose to perform computation tasks on a laptop
instead of using cloud or more powerful servers because we
want to show that all the tasks can be done on resource-
constraint devices, and the whole workflow can be easily
ported to mobile devices with similar computing powers. The
We-Be Band and laptop communicated via Bluetooth Low
Energy (BLE). A picture of our experiment setup is shown
in Figure 12.

1. Wearable 
device to collect 

PPG signals

2. Laptop to receive data, train 
model and perform 

authentication

Fig. 12: Case study hardware setup.

2) Experiment Process: The flow of our experiments is
shown in Figure 13. This experiment involves 20 different
individuals. Each user follows a fixed timeline:

1) Data collection: The user wears a watch for around 55
minutes to collect 30,000 data points.

2) Model training: A dedicated model is trained based on
the newly collected data, mixed with the We-Be Dataset.

10



After this step, the user will have a dedicated model
labeled with their name.

3) Testing: We follow a fixed routine to switch the watch
between different users. First, after booting the watch, the
user wears the watch for 4.5 minutes. Then the watch
is handed to 2 “imposters” whose PPG signals are not
included in the model training set. Each imposter user
wears the watch for 2.5 minutes. Finally, the user wears
the watch again for another 2.5 minutes.

4) Data Collection: During Step 3), real-time authentication
decisions were generated and logged for further analysis.

Data Collection

Model Training

Testing

Prediction
1 2

U 1 2 U

U U

TimeTarget User

U

: Target User

: Unknown User

Fig. 13: Experiment steps.

The time it takes for each experiment is shown in Table IV.
The combined data collection and model training time can also
represent the time it costs to set up a watch for a new user in
a real-world scenario.

TABLE IV: Time Span.

Data Collection Model Training Testing
55 min 49 min 4.5 + 2.5 + 2.5 + 2.5 = 12 min

B. Results

1) Raw vs. Smoothed Predictions: Our results on every
individual show that the authentication system works for every
test subject. We select to show the generated prediction traces
of 3 users in Figure 14. We can see that in raw data, despite
being correct most of the time, the model outputs brief false
rejections occasionally. To address this, we apply a sliding
window filter to the trace of prediction results, where the
current values are determined by previously observed values
within a fixed-size window, and are replaced by the majority
class in that window when a clear majority exists. Applying a
sliding window majority filter significantly reduces prediction
jitter, resulting in stable authentication streams. We can see
that our authentication system is reliable from the traces
shown. Excluding the device warm-up phase, where the We-
Be Band spends around 2 minutes to calibrate its sensors and
internal DSP algorithm parameters, our method completely
rejects all unauthorized access to the device, and successfully
verifies the correct user most of the time, although with
occasional jitters.

2) Handling Unknown Users: During inference the model
assigns an unknown label whenever the maximum soft-max
probability falls below the empirically chosen 0.8 threshold;
this open-set trigger is then smoothed with the same 5-sample

majority filter used for genuine decisions, yielding the practical
result shown above. These observations demonstrate that the
prototype can reliably reject users whose PPG was unseen
during training.

3) Deployment Insights: These results confirm the feasi-
bility of deploying our system in real-world settings. The
model (1) Quickly detects imposter transitions (<5s delay),
(2) Maintains continuous recognition of genuine users, and
(3) Perfectly rejects all imposters.

To the best of our knowledge, this is the first work to fully
implement and evaluate a continuous biometric authentication
system on a smartwatch.

These findings establish the viability of continuous au-
thentication using low-frequency PPG and pave the way for
future deployment in smartwatch, consumer- and medical-
grade wearable systems.

VI. DISCUSSION

A. Why Did Some Down Sampled Data Perform Similar as
Original Data in PTTPPG Dataset Experiment?

In Section IV-B1, our Bi-LSTM+Attention model trained
on some downsampled PPG data performed similar as models
trained on the original 500 Hz signals from the PTTPPG
dataset. While this may seem counterintuitive—given the
assumption that higher-frequency signals contain richer phys-
iological detail—there are important caveats and potential
explanations:

• Regularization effect: Downsampling can act as a form
of regularization, reducing high-frequency noise or vari-
ability that is irrelevant to biometric identity.

• Feature sparsity: PPG signals are quasi-periodic. Over-
sampling can lead to redundant temporal features, while
moderate downsampling preserves essential waveform
morphology without overwhelming the model.

• Model fit: High-dimensional input from high-frequency
signals can exceed the capacity of compact models,
particularly in settings with limited training data.

B. Applicability to Other Devices

Our evaluation assumed a single, fixed smartwatch per user.
In practice, users may replace or upgrade their wearable,
and even nominally identical hardware can differ in LED
spectrum, photodiode gain, or skin coupling. We therefore
expect a degree of device specificity: a model enrolled on
one watch may not transfer perfectly to another. Analogous
to today’s onboarding flow for commercial biometrics, where
a short calibration is required whenever the user pairs a
new device. Future work should explore rapid calibration
strategies—e.g., few-minute fine-tuning, or domain-adversarial
layers—to minimize user effort while coping with sensor drift.

C. On-Device Training and Personalization

Our prototype streams PPG to a laptop for convenience, but
three factors suggest that full edge deployment is feasible:

1) Model size: Modern microcontrollers and smartwatch
chipsets now ship with accelerators and on-chip memory
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Fig. 14: Real-time authentication results on 3 participants. The green background color indicates that the watch is worn by a
legitimate user, while the red background colors indicate that the watch is worn by imposters.

measured in the megabytes, more than enough for the
lightweight recurrent network used here.

2) Incremental learning: Poetntial personalization can per-
form nightly on-device in four steps:

a) Clean-window selection: A lightweight Signal Quality
Assessment (SQA) filter writes only high-quality seg-
ments (4 s, 50% overlap) from the past 24 h to a rolling
buffer capped at 5 min (<3 kB, 8-bit).

b) Few-shot fine-tuning: At the next charging event—or
after midnight if the watch is not worn, update only the
projection layer and the second BiLSTM gate (∼8% of
the weights).

c) Regularization: An L2 penalty for weight drift plus
elastic weight consolidation for shared layers prevents
catastrophic forgetting while allowing gradual adapta-
tion to changes in the skin or sensor.

d) Rollback safeguard: The watch keeps the previous
weight snapshot; if the new model’s confidence falls
below 80%, for example, during the following day, it
automatically reverts and flags the update for review
in the companion app.

3) Energy budget: Opportunistic, event-driven authentica-
tion can keep duty cycle low so that occasional fine-
tuning adds negligible battery cost relative to the watch’s
daily charge pattern.

A fully self-contained implementation would also eliminate
the BLE data path, further reducing privacy risk.

D. Security and Privacy Considerations

Spoofing / Presentation Attacks: Replicating a live, multi-
channel PPG signal would likely require a custom prosthetic or
micro-fluidic “arm” capable of reproducing the target’s haemo-
dynamic response in real time—far beyond current commodity

threat models. Nevertheless, we outline three hardening layers
that collectively make such attacks even less practical:

1) Random LED pattern: Each 4 s window uses a
pseudo-random sequence of LED intensity or colors
(channels). The pattern is revealed only after the window
closes, so a replay device cannot anticipate which optical
channel to fake. Any mismatched channel lowers the
similarity score and triggers an “unknown” label.

2) Cross-checking inertial data for liveness: Every
real pulse causes tiny, natural wrist motions that the
built-in accelerometer can feel. We can compute the
magnitude-squared coherence between the radial-axis ac-
celerometer and the PPG magnitude spectrum at a certain
frequency. Small coherence below a certain threshold
suggests the optical signal is decoupled from physical
motion, a red flag for prosthetic injection.

3) One-class pulse-shape anomaly detector: A lightweight
auto-encoder, trained only on the existing user’s clean
pulses, reconstructs each beat at inference time. Recon-
struction error above certain threshold marks the segment
as spoof-suspect. Because the detector learns fine-grained
morphology, even perfectly timed yet physiologically
unnatural waveforms are rejected.
Adversarial Machine-Learning Threats: Synthetic per-

turbations or generative signals might be crafted to fool
the classifier. Although a full robustness analysis is outside
our scope, common defenses include adversarial training on
transformed windows, frequency-domain masking, and score-
level temporal smoothing [25], [5], [38].

Privacy Leakage: In our prototype, we stream raw PPG
over BLE only to a trusted laptop in the lab; no biometric
profile is stored on the watch, and neither the laptop or the
watch stores raw data. Combined with the limited access to

12



query the authentication ML model, we believe the privacy
risk is minimal. A production system could perform any
aggregation using federated or split learning with differential-
privacy noise, thereby limiting the risk of privacy leakage.

Availability Versus Sudden Changes: Majority-vote
smoothing across several windows prevents a single out-
lier—caused by stress, motion, or bad contact—from locking
the device. More advanced adaptive thresholds could further
balance usability and security, particularly during rapid phys-
iological shifts (e.g., exercise to rest).

E. Effect of Activity Diversity on Model Generalization

Traditionally, resting-state physiological signals are consid-
ered optimal for biometric authentication due to their stability
and low noise. However, our results reveal a counterintuitive
finding: models trained solely on resting PPG segments per-
formed significantly worse when evaluated on signals recorded
during walking or other physical activities. Specifically, while
the Bi-LSTM+Attention model achieved decent accuracy on
held-out rest segments, its performance dropped significantly
on other segments from the same users—highlighting a failure
to generalize beyond static conditions.

To address this, we introduced activity diversity into the
training data, incorporating segments from sitting, walking,
and typing, where these mild activities introduce minimal
motion artifacts. This broader training regime encouraged the
model to extract identity-specific features that remain stable
across physiological states, such as inter-channel timing shifts,
amplitude morphology, and pulse modulation patterns.

• Physiological Insight: Resting PPG signals often exhibit
low inter-subject variability due to stabilized autonomic
activity, resulting in homogeneous waveform structures
that limit biometric separability. In contrast, physical ac-
tivity induces sympathetic activation, heart rate elevation,
and dynamic vascular responses—all of which vary from
person to person. These activity-driven variations act
as “physiological fingerprints,” revealing robust identity-
linked patterns masked during rest.

• Real-World Validation: The benefits of activity-diverse
training extended beyond offline metrics. In live deploy-
ment on the We-Be Band, users experienced smooth au-
thentication across sitting, walking, and typing activities,
demonstrating the system’s robustness in everyday use
cases. The model retained high accuracy without explicit
motion classifiers or condition-specific tuning.

Importantly, this variation is not merely noise—it reflects
meaningful, individualized cardiovascular responses. While
motion artifacts do exist, deep learning models can disentan-
gle such artifacts from systematic, identity-relevant features
embedded in the physiological response.

Contrary to conventional wisdom, resting PPG alone is
insufficient for reliable authentication. Incorporating activity
diversity into the training data is essential to avoid overfitting
and ensure generalization. Our findings suggest that mild phys-
iological perturbation—such as walking—can reveal identity-

specific dynamics and improve model robustness, even in the
presence of moderate signal variability.

F. Device Variability and Calibration

During evaluation, we observed a strong dependency be-
tween the authentication model and the specific device used
during data collection. That is, a model trained on PPG data
from one smartwatch does not generalize well to data collected
from a different unit, even of the same model. This device
variability likely stems from subtle hardware-level differences
such as sensor alignment, optical path, LED intensity, and skin
contact geometry.

While this device-specificity might appear to limit gen-
eralization, we argue that it aligns well with our system’s
intended use case. Our goal is to link a specific user to a
specific device in a continuous authentication scenario. In
practical deployments, the authentication model is expected to
run on the same wearable device that the user initially sets up.
This mirrors the onboarding process of commercial biometric
systems, where calibration or enrollment is performed on the
user’s own device.

We treat the device-model pairing as part of the person-
alization process. If a user changes devices, a one-time re-
enrollment or calibration stage can be triggered. This auto-
calibration step can involve collecting a short segment of
resting-state PPG to fine-tune or reinitialize the model.

While the current approach assumes static device usage,
future work could investigate transfer learning or domain
adaptation techniques to improve cross-device generalization
without full retraining.

VII. RELATED WORK

A. PPG-Based Biometric Authentication

Photoplethysmographic (PPG) signals have emerged as a
promising biometric modality due to their accessibility and
compatibility with wearable devices [32], [27], [6]. Early work
by [32] demonstrated robustness across physiological states
(e.g., exercise, emotional stress) using Continuous Wavelet
Transform (CWT) and Direct Linear Discriminant Analysis
(DLDA), achieving equal error rates (EER) of 0.5%–6% with
short training times. Similarly, [27] validated PPG’s feasibil-
ity for identification under controlled conditions, while [6]
explored continuous authentication via long-term monitoring.
However, these studies relied on high sampling rates (≥50 Hz)
and computationally intensive preprocessing (e.g., CWT), ne-
glecting energy constraints critical for wearable deployment
in clinical settings like remote patient monitoring.

B. Deep Learning for PPG Authentication

Recent advances leverage deep learning to address PPG’s
temporal variability. CNN-LSTM architectures dominate the
field: [10], [4] achieved ∼96% accuracy on wrist-worn PPG
(TROIKA dataset, 125 Hz) by combining spatial-temporal fea-
ture extraction. However, these models require high-frequency
data and complex architectures (e.g., multi-layer CNNs),
increasing computational costs. While [18] applied CNNs
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directly to raw PPG for real-time authentication (AUC: 78%–
83%), their focus on accuracy overlooked energy efficiency—a
critical gap for smartwatch and consumer-grade wearable
devices requiring multi-day operation.

C. Energy Efficiency and Low-Frequency PPG
Efforts to optimize PPG systems for wearable devices have

focused on adaptive sampling [39] and noise reduction [40],
but few address authentication. For example, [27] and [39] val-
idated PPG’s usability in ambulatory settings but retained high
sampling rates, limiting deployment in energy-sensitive sce-
narios like dementia care. Meanwhile, low-frequency PPG has
been underexplored outside heart rate monitoring. While [33]
tested derivatives of PPG for biometrics at 25 Hz, their single-
channel setup suffered from motion artifacts, and [13] im-
proved robustness through 100 Hz multichannel fusion but
ignored energy costs. These gaps highlight the need for
systems balancing fidelity, efficiency, and clinical utility.

VIII. CONCLUSION

In this paper, we presented a continuous user authentication
system using only low-frequency (25 Hz) multi-channel PPG
signals from a wearable device. Despite the dramatically
reduced sampling rate, our deep Bi-LSTM+Attention model
achieved high authentication performance: about 88.11% clas-
sification accuracy with low FAR of 0.48%, FRR of 11.77%,
and EER of 2.76% on a custom 26-user dataset. This ac-
curacy is comparable to state-of-the-art PPG authentication
approaches that rely on much higher sampling frequencies
(75–500 Hz), yet substantially reducing power consumption,
yielding up to approximately 53% savings in sensor energy
use. The success of the model at only 25 Hz—combined with
training on an activity-diverse dataset– demonstrated that our
approach is robust against artifacts and varying real-world
conditions. The long-term study on the We-Be Band further
confirmed that a single battery charge supports 25.8 hours
of continuous sensing and day-long practicality in real-world
use. Furthermore, we implemented the entire system for real-
time operation on the We-Be Band, and a deployment case
study with 20 users confirmed the model’s effectiveness and
stability in live use. To the best of our knowledge, this is
the first work to fully implement and evaluate a continuous
biometric authentication system on a smartwatch, highlighting
the practicality and novelty of our on-device solution.

IX. ETHICS CONSIDERATIONS

This study involved the collection of biometric
data—including photoplethysmography (PPG)—from
human participants to develop and evaluate authentication
mechanisms. Prior to data collection, we obtained approval
from the Institutional Review Board (IRB). All participants
provided informed consent after being briefed on the study’s
objectives, procedures, potential risks, and their rights,
including the right to withdraw at any time without penalty.

To safeguard participant privacy, all collected data were
anonymized by removing personally identifiable information

(PII) and assigning randomized identifiers. Data storage and
processing were conducted on secure, access-controlled sys-
tems in compliance with institutional and federal data pro-
tection guidelines. The study was designed to minimize risk,
ensuring that procedures were non-invasive and posed no more
than minimal risk to participants.
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