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Abstract—Machine learning inference protocols based on semi-
honest security models are vulnerable to attacks from malicious
clients in real-world applications. These attacks can lead to the
leakage of machine learning model parameters. Previous works
introduced additional MACs computations to ensure correct
client behavior. However, this resulted in higher runtime and
communication costs during online inference. In this work, we
present CRISP, an efficient two-party cryptographic framework
designed to defend against malicious clients. Specifically: 1)We
design protocols for non-linear layers based on a new crypto-
graphic primitive (Function Secret Sharing). The core of our
approach focuses on optimizing the reconstruction process of
MAC:s. 2)We propose a complex domain verification mechanism
for linear layers. This mechanism eliminates the additional MACs
computations by making better use of the complex space in
homomorphic encryption CKKS. Furthermore, in previous work
(SIMC, USENIX Security’22), we identified compatibility issues
in practical applications. The MAC reconstruction process in the
nonlinear layers may leak intermediate inputs and outputs of the
model when certain garbled circuit optimizations are applied.
In contrast, CRISP effectively avoids this problem. In secure
inference benchmarks considered in SIMC, CRISP reduces the
total communication cost of ML inference by up to 94% and
cuts inference latency by up to 43%.

1. INTRODUCTION

Online ML (machine learning) inference uses pre-trained
models to help users solve downstream tasks such as prediction
and classification. It has been widely adopted as a SaaS
(Software as a Service) in various fields including medical
diagnosis [1], image recognition [2], and financial analysis [3].
However, in scenarios with high data privacy requirements
(such as healthcare and government affairs), ML inference
must be secure and must not leak sensitive data from any
participating party [4]. We refer to ML inference that meets
this condition as secure inference.

In secure inference, server Py possesses a machine learning
model M(W,x), where W represents the weights that are
private and sensitive to Py. The input data x is held by client
P1. The objective is to enable P; to learn the model output
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y = M(W,x) without revealing the private information x,
while gaining no additional information.

Over the past few years, numerous studies have proposed
methods based on secure two-party computation cryptographic
primitives (i.e. homomorphic encryption [5], Yao’s garbled
circuits [6], function secret sharing [7], etc.) to achieve this
goal. Due to the computational complexity of secure two-
party computation, the vast majority of these works have been
founded on weaker security assumptions (i.e., both parties
are semi-honest [8], [9]), focusing primarily on addressing
efficiency issues.

However, Lehmkuhl et al. show in MUSE [10] that in
practical deployments, it is reasonable to assume that servers
hosting ML models are semi-honest due to reputational con-
straints. Conversely, client entities come from diverse sources,
and malicious attackers among them may violate protocol
specifications. MUSE shows that secure inference protocols
based on the semi-honest model can be easily broken in
practice. An attacker can fully recover the model parameters
using far fewer queries than state-of-the-art black-box model
extraction attacks. This finding highlights a critical issue: it
is essential to enforce correct behavior from the client side
during secure inference.

A. Related Work

MUSE represents the first work designed for secure infer-
ence in a client-malicious setting. Its mechanism is built upon
the Delphi [11], incorporating additional verification to ensure
the correctness of client non-linear layer inputs (equivalent
to linear layer outputs) and outputs (serving as linear layer
inputs). Although MUSE’s performance stands out among
traditional protocols that counter malicious adversaries, its
computational and communication costs remain approximately
15 times higher than Delphi due to the complexity of non-
linear components.

To address efficiency concerns, Chandran et al. has
proposed more efficient 2-PC protocols—SIMC [12] —
specifically targeting malicious clients. SIMC analyzes the
primary overhead in MUSE, identifying it within the complex
non-linear layer computations: while using garbled circuits
(GC) to complete non-linear function (primarily ReLU) cal-
culations, participants must also learn corresponding message
authentication codes (MACs) through specific multiplication
protocols. This approach requires communication of at least
2cA + 190xA + 232«% under security parameter 1, AND gates



number ¢ and field space «. In response, SIMC introduces
a novel protocol based on customized GC, utilizing garbled
circuit labels as one-time pads to efficiently construct non-
linear layer outputs with verification tags. The results show
that SIMC achieves at least a fourfold improvement in compu-
tational efficiency and reduces communication by more than
28 times.

However, SIMC 2.0 argues that SIMC’s performance still
has room for improvement before practical application: first,
both SIMC and MUSE employ homomorphic encryption
(HE)-based designs for linear layers, incurring expensive
computational costs in large-scale matrix-vector and convo-
Iution multiplications (operations that dominate computation
in modern neural networks). Additionally, the GC portion in
SIMC'’s non-linear layer encompasses excessive functionality,
requiring at least 2dA + 4k +6«? in communication overhead,
where d denotes the number of AND gates. Following these
reasoning, SIMC 2.0 proposes a new coding method for
homomorphic linear computation in a SIMD manner and
a block-combined diagonal encoding method, reducing the
complexity of rotation operations required for matrix-vector
computation. For non-linear layers, SIMC 2.0 computes only
the non-linear parts of ReLU into GC rather than encapsulating
entire ReLU functions, effectively reducing the number of
AND gates. Compared with SIMC, SIMC 2.0 demonstrates a
17.4-fold increase in linear layer computation speed and a 1.3-
fold reduction in non-linear layer communication costs across
different data dimensions.

The work of SIMC 2.0 illustrates key optimization strategies
in secure inference. On one hand, numerous research efforts
in linear layers have focused on developing novel encoding
methods to reduce the number of rotations in large-batch
matrix-vector multiplications and convolution operations (ro-
tations being considered the most expensive operations in
multiplication) to improve computational efficiency. On the
other hand, since evaluating non-linear layers (e.g., ReLU and
MaxPool) using garbled circuits (GC) is several orders of mag-
nitude more expensive than linear layer protocols in terms of
communication and computation [13], many advanced works
have proposed potentially superior alternatives. Projects like
Poseidon [14] and Bumblebee [15] employ specific approx-
imation techniques, processing non-linear functions through
piecewise approximation, thereby replacing nonlinear func-
tions with linear functions. SIRNN [16] and Iron [17] construct
specialized processing methods for different non-linear func-
tions, such as utilizing tree-reduction protocols to implement
ReLU, Softmax, and other functions, thereby avoiding the
overhead of garbled circuits. CryptFlow2 [18] designs new
millionaire protocols to efficiently implement various non-
linear functions, improving computational costs by 8 to 18
times and reducing communication costs by at least 7 times
compared to garbled circuits.

The work mentioned above performs excellently in semi-
honest adversary models, but it faces challenges when applied
to scenarios with malicious clients. For example, in Crypt-
Flow2’s millionaire protocol, almost every operation and sub-

protocol requires additional verification tag calculations to
ensure the correctness of client behavior. This significantly
increases the computational cost and communication volume
of the entire protocol. Therefore, when dealing with such sce-
narios, a more effective solution might be to choose methods
or cryptographic primitives that can naturally extend to address
malicious participants.

We recognize that the Function Secret Sharing (FSS)
method proposed by Elette Boyle et al. [7] offers unique
advantages in this area. First, as a primitive for secure two-
party computation, FSS inherently provides higher efficiency
and lower communication costs compared to garbled circuits.
For example, in FastSecNet [19], Meng Hao et al. used
FSS to evaluate non-linear functions (ReLU, softmax) and
achieved 64 times better communication efficiency and 11
times better computational efficiency compared to Delphi’s
garbled circuit-based methods for non-linear layers. Second,
FSS can naturally extend to scenarios involving malicious
clients. [20] introduced a lightweight verification mechanism
that uses two steps to defend against malicious behavior.
We optimize the approach in [20], which achieves the same
security goal with one step in verification phase.

B. Our Contributions

In this work, we introduce CRISP, a novel secure inference
model designed to defend against malicious clients. CRISP
follows the SIMC infrastructure, employing MACs to ensure
correct client behavior. However, compared to SIMC, CRISP
achieves superior results in both linear and non-linear layers.
Specifically:

« Compatibility Issues Analysis of SIMC: We inves-
tigated the compatibility of SIMC’s nonlinear protocol
with garbled circuit optimizations in practical settings,
identifying potential risks to correctness or security. For
the security issue, we propose an attack strategy and
experimentally confirmed that it may lead to increased
the risk of model leakage.

o FSS-Based Protocol for Non-Linear Layers: In the
malicious client setting, we developed a secure computa-
tion method for non-linear functions based on FSS, with
specific optimizations for ReLU. Our method completes
the computation of a nonlinear function and two MACs
in just one round of communication during the online
phase. In terms of communication cost, each instance of
a nonlinear layer only requires 2n bits, where n is the
bit-length of the input. Compared to SIMC, CRISP also
delivers computational efficiency improvements while
maintaining security guarantees against malicious clients.

» Linear Layer Computation Optimization via Complex
Domain Verification: Diverging from existing linear
layer optimization approaches, we focus on the function-
ality of cryptographic primitives: utilizing the complex
number encoding capabilities of the CKKS homomorphic
encryption scheme to simultaneously process numerical
operations and verification labels within a single com-
putational operation. By activating the typically under-



utilized complex domain space, our method eliminates
the need for additional verification label computations,
significantly reducing both computational and commu-
nication costs in linear layers. Our approach reduces
computational latency by 24%-67% compared to the
SIMC scheme.

The remainder of this paper is organized as follows. In
Section II, we introduce notations, the threat model, and
related technologies. In Section III-A, we analyze security
vulnerabilities in SIMC’s non-linear layers and propose attack
strategies. We provide detailed information about CRISP in
Sections III-B, IV and V, followed by experimental evaluations
in Section VI. Section VII concludes the paper.

II. PRELIMINARIES
A. Threat Model

In a two-party ML inference scenario, we have a server
Py and a client P;. The server Py possesses an ML model
M with private and sensitive weights W. It is semi-honest,
meaning it adheres to the ML inference procedure but may
attempt to deduce the client’s data by analyzing data flows
during execution. The client P, on the other hand, holds a
private input s. It is considered malicious and may deviate
from the protocol arbitrarily. Both parties are assumed to have
knowledge of the model architecture NN used in M.

The objective is to develop a secure inference framework
that allows P; to obtain the inference result of s without
learning any information about W, while ensuring P( gains
no knowledge of the input s.

B. Notations

A is the computational security parameter. Z, R, and C
denote the ring of integers, real, and complex numbers, respec-
tively. Let Zy be input and output domains of size N = 2n,
where n is the bit length. We use R := Z[X]/(X™ +1) with N
being power-of-two to denote the ring of polynomials modulo
XN + 1. Boldface lowercase letters represent vectors, such as
s. Boldface uppercase letters represent matrices, such as W.
[n] denotes the set {1,2,,n}.

For simplicity, we assume that the machine learning model
NN has ¢ layers, and each layer consists of alternating linear
layers(with weights W1, W», ..., W) and nonlinear layers(with
nonlinear function fi, f2, ..., fr—1). Given an input vector vy,
the model sequentially computes s; = W;-v;_; and v; = f;(s;),
where i € [ — 1]. Finally, we have s, = Wy - vy = NN(vp)

C. Fully Homomorphic Encryption

FHE [21] is a public key encryption scheme that supports
the evaluation of arbitrary functions expressed as polynomials
on encrypted data. In this paper, we focus on the CKKS
scheme [22], a widely utilized approach in PPML research
that enables approximate arithmetic operations. This scheme
features encryption and decryption algorithms (Enc/Dec) op-
erating within the ring R which serves as the plaintext space.
i.e., for my,my € R. Its homomorphic properties satisfy:

Dec(Enc(m;) 8 Enc(my)) =~ m| + my

Dec(Enc(m;) @ Enc(my)) ~ my - my
Dec(Enc(m;) Bmy) ~ my +myp
Dec(Enc(m) @my) = my - my

Here, B and m© denote ciphertext/plaintext addition and multi-
plication.

In addition, the CKKS scheme comes with a method
(Ecd/Dcd) to encode complex messages into plaintext space
R:

Dcd(Ecd(z)) + Ecd(zy)) ~ 2] ® 7,

Dcd(Ecda(z)) - Ecd(z;)) 2, O Z;

where @ and © represent the component addition and
Hadamard product of vectors.

D. Arithmetic Secret Sharing

A 2-of-2 additive secret sharing scheme for x € Zy
represents x as a pair ((x), (x)2) = (x—r,r) € Z%,, where r is
a randomly chosen value from Zy. The reconstruction of x is
achieved by summing the two shares: x = (x); + (x), mod N.
This scheme is perfectly hiding, meaning that knowing either
share (x); or (x); reveals no information about x.

E. Function Secret Sharing

Function Secret Sharing (FSS) is a cryptographic technique
that enables the decomposition of a function f into two
additive shares, fy and fi, such that:

« Each share f;, (where b € {0, 1}) reveals no information
about f.

« For any public input x, the sum of the shares satisfies
Jo(x) + fi(x) = f(x).

Formally, a 2-party FSS scheme comprises the following

algorithms:

« Gen(14, f): A probabilistic polynomial-time (PPT) key
generation algorithm. It takes as input the security pa-
rameter A and a function f, and outputs a pair of keys
(ko, k1), where each key implicitly defines f : Zy —
ZN.

o Eval(b, kp,x): A polynomial-time evaluation algorithm.
It takes as input a party index b € {0, 1}, a key kp, and
a public input x € Zy, and computes y, = fp(x), such

that f(x) = fo(x) + f1(x).
F. Other Cryptographic Primitives

In this section, we provide a brief overview of Oblivious
Transfer (OT) and Garbled Circuits (GC) to facilitate the
understanding of subsequent comparisons between different
schemes.

Oblivious Transfer: The 1-out-of-2 Oblivious Transfer [23]
is denoted as OT,,, where the inputs of the sender (Pg) are two
strings sg, s; € {0, 1}", and the input of the receiver (Py) is
a choice bit b € {0,1}. At the end of the OT-execution, P;
obtains s;, while Py receives nothing, and Py does not know
which string has been chosen.



Garbled Circuits: A garbling scheme for boolean circuits
[24] consists of a pair of algorithms (Garble, GCEval) defined
as:

« Garble(1',C) — (GC, {{lab}";}ic(n), {1ab7""}} jejo.1))-
Garble on input the security parameter A and a boolean
circuit C : {0,1}" — {0,1} outputs a garbled circuit
GC, a collection of input labels {laij}ie[n],je{O,l} and a
collection of output labels {lab?“’ }je{o,1y where each label
is of A-bits. For any x € {0, 1}", the labels {labf?xl”}ie[n]
are referred to as the garbled input for x and the label
lab‘é“’x is referred to as the garbled output for C(x).

o GCEval(GC, {lab;};c[,]) — lab’. GCEval on input a gar-
bled circuit GC and a set of labels {lab;};c[,] outputs a
label lab’.

III. NoNLINEAR LAYER OPTIMIZATION

In this section, we analyze the nonlinear protocol in SIMC
and propose a attack strategies from the client’s perspective to
exploit its compatibility issue. Subsequently, we introduce a
novel FSS-based optimization method for securing nonlinear
layers against malicious clients. Our focus is on the secure
computation of the ReLU activation function, which is one
of the most widely used functions in the nonlinear layers of
modern deep neural networks (DNNs).

A. Attack Strategy for SIMC

To defend against malicious clients, SIMC introduces addi-
tional Message Authentication Codes (MACs) within a gen-
eral PPML framework to verify the correctness of client
inputs at each layer. The nonlinear layer protocol in SIMC
is implemented using garbled circuits and consists of three
phases: the garbling phase, the authentication phase, and the
local computation phase. (Details are in the Appendix A)
The core idea behind computing the nonlinear output and
its associated authenticated shares is to use the output labels
from the garbling phase as encryption and decryption keys.
Additionally, the point-and-permute technique is employed to
obfuscate the correspondence between ciphertexts and actual
values, preventing the client from linking any ciphertext to its
true output.

The use of Garbled Circuits (GC) requires various optimiza-
tions to reduce the complex computation processes and high
communication overheads, like [25]-[27], and SIMC follows
a similar approach. However, while the extension of the
point-and-permute technique in the SIMC protocol improves
performance in authentication phase, its compatibility with
other optimization methods may be contentious '

For example, in [25], the GPGRR2 method is proposed,
which eliminates the need for external indices and reduces the
size of ciphertext evaluations. [26] introduces an information-
theoretic secure secret-sharing obfuscation scheme that assigns
permutation bits only to the A line” to indicate which part of
the ”B line” should be used, while no permutation or color

!Our analysis highlights potential compatibility issues when specific opti-
mizations are introduced

bits are assigned to the ”B line.” This approach bypasses
the lower bounds of garbled circuits. Additionally, [28], [29]
construct reusable garbled circuits, allowing the evaluator to
assess multiple inputs within a single circuit using the same
labels.

When SIMC is combined with the aforementioned garbled
circuit optimizations, issues related to correctness or security
may arise. First, incompatibility with the point-and-permute
technique can hinder P; from selecting the correct ciphertext
during the authentication phase. For example, the method in
[25], [26] removes the selection bits required for encrypting
the randomness used in SIMC’s authentication phase.

Second, in the case of reusable garbled circuits, forcibly
adding permutation bits can reveal the correlation between
permutation bits and actual values across multiple inputs, po-
tentially exposing both the inputs and outputs of the nonlinear
layer in SIMC 2. This poses a serious security risk, which we
illustrate through a proposed attack strategy.

Our attack strategy relies on two key observations regarding
privacy-preserving machine learning:

1) In a neural network that alternates linear and nonlinear
layers, the input to the linear layer of the (i + 1)-th layer
depends on the output of the nonlinear layer of the i-th
layer.

2) In SIMC and most PPML frameworks, the client and
server collaborate to compute the output of each layer in
the neural network. As a result, the client gains knowledge
of the model architecture. For example, in SIMC, the
client can easily distinguish between linear layer com-
putations and garbled circuit computations, allowing it
to clearly identify which layer of the neural network is
currently being processed.

Therefore, the client gains access to the inputs of each
nonlinear layer from the second layer to the £-th layer in the
neural network. Although the client’s input is verified in the
SIMC setting—rendering the attack in MUSE infeasible—the
exposure of the model structure allows the client to understand
the composition of each layer in the neural network. Combined
with knowledge of the nonlinear layer inputs and outputs, this
makes a model extraction attack feasible.

Previously, most model extraction attacks [30]-[34] were
conducted in black-box environments, which fall into two main
categories. The first type involves attackers who know the
model structure and understand the specific types of activation
functions. The second type involves attackers who have no
knowledge about the internal structure of the model and only
know the input x and the final output y = NN (x). This differs
from our work in a significant way - the vulnerabilities in the
SIMC protocol expose the nonlinear layer inputs and outputs,
making the attack environment no longer a black box.

Taking fully connected operations as an example (con-
volutional operations can also be viewed as combinations
of multiplication and addition), as our earlier observations

2In the garbled circuit phase of the nonlinear protocol in SIMC, the output
corresponding to input s includes both s and f(s).



indicated, clients can learn the model structure through linear
and non-linear protocols. In this case, attackers can obtain
multiple sets of inputs and outputs for any linear layer (by
repeatedly running the protocol), which transforms the model
extraction attack into essentially a linear regression problem
(as shown in Equation (1)).

XT yT bT
| e

W-l =7 -]. (1
ol I 7 I

If the data meets the necessary conditions, meaning x’x is
invertible, we can directly calculate the weight matrix through
the equation:

W= (x"x)"xTy
After we calculate the value of W, we can obtain the bias
term b by computing the average:

b

1 & .
- ;(Yi - Wx;)

If x”x is not invertible, the attacker can use regularization
methods such as Ridge Regression. This approach adds a
regularization term to make the matrix invertible:

W=xIx+aD) Xy

By using this method, the attacker can obtain an approxi-
mation of the model’s weights and bias. We conducted exper-
iments on the fully connected layer of the 7-layer CNN model
from [35]. As the number of input samples increased, the mean
squared error (MSE) between the recovered weights\biases and
its true values remained below 0.0001.

Additionally, for simple single-layer structures, the attacker
can use the method provided in [36] to achieve effective
functional approximation.

In summary, the nonlinear layer protocol in SIMC may lead
to model information leakage in practical applications. This
risk arises from the extended use of the point-and-permute
technique, while the security proof of SIMC only addresses the
basic protocol and does not account for real-world deployment
scenarios. We argue that the garbled circuit approach itself
may be the bottleneck in the performanc. Therefore, in the
next section, we explore an alternative solution: leveraging
Function Secret Sharing (FSS) to achieve both malicious-client
resistance and efficient inference.

B. Our Protocol for the Non-Linear Layer

In this section, we build upon the work of [19] to present an
efficient FSS-based implementation of ReLU. Additionally, we
propose an optimized implementation tailored for settings with
malicious clients. Compared to the protocol used in SIMC, this
method offers enhanced efficiency while preventing the expo-
sure of intermediate parameters in nonlinear layers, thereby
mitigating the risk of model extraction attacks.

The ReLU function, one of the most widely used activation
functions in machine learning, can be fundamentally under-
stood as a comparison between the input and zero. State-of-the-
art works [11], [18], [37] implement this functionality using
garbled circuits (GC) and oblivious transfer (OT) techniques.
However, these approaches incur high communication costs
and require multiple rounds of interaction. Specifically, the
OT-based solution [18] requires (kn + 18n) bits of commu-
nication over log (n + 2) rounds, while GC-based solutions
[11], [37] consume «n bits over two communication rounds. In
contrast, our FSS-based solution [19] achieves efficient ReLU
computation with only 2n bits of communication in a single
round.

We begin by revisiting the FSS-based comparison protocol
[20], which serves as a fundamental operation for nonlinear
functions. The general comparison function is denoted as
f;’ 5 (x), which outputs 8 if x < @, and 0 otherwise. The FSS
scheme for comparison consists of a pair of algorithms: Gen;’ 5
and Evalfyﬁ. After obtaining their respective keys through
Gen;’ , parties evaluate the common input using Evalft’ to
obtain the final output, which serves as their share of the
function f;’ ﬁ(x) computation result.

FSS employs a fixed-point ring to represent the plaintext
space, where ReLU(x) equals x if x < N/2, and O otherwise.
To accommodate secret-shared inputs, ReLLU requires an offset
r (sampled from Zy uniformly at random) to ensure privacy
of x. 3 We define the offset function for ReLU as ReLU, =
ReLU(x—r). We summarize the ReLU construction method in
[19], to efficiently compute ReL.U, using FSS, we approximate
its computation over Zy as:

X—-r, x>r

ReLU, (x) = { )

0, else

For sufficiently large domains, Equation (2) holds with high
probability.

The complete FSS-based ReLLU protocol is presented in
Algorithms 1 and 2. The protocol incorporates the splines
function from [7] to output polynomial coefficients 3: When
input x > r, B3 = (Bo, B1); otherwise 3 = (0, 0).

The aforementioned FSS protocol is designed for semi-
honest parties, and adapting it to a malicious client scenario
presents two main challenges. The first lies in ensuring the
correct execution of correlated randomness setup (e.g. r and
3). Fortunately, trusted correlated randomness setup can be
achieved through several approaches: assuming a semi-trusted
dealer (e.g., [38]), introducing a trusted third party, or employ-
ing two-party maliciously secure preprocessing protocols. For
two-party maliciously secure preprocessing protocols, this can
be efficiently accomplished by incorporating state-of-the-art
general-purpose 2PC protocols (e.g., [39]-[41]).

The second critical aspect is how to ensure the correct
behavior of the client. To solve this, We first extend the
original protocol by incorporating a verification mechanism for

3This is the prerequisite for ensuring that FSS works in secure two-party
computation. The core concept can be found in [20].



Algorithm 1 Genﬁe]éU for ReLU Function

1: Let B=(B0,B1)=(l,-r) and @ =r

2: (kg, k}) < Gen,

3: Sample (r)o, (r)l — Zn, st, (r)o+{r)y =r mod N
4: Sample (Bo)o. (Bo)1, (Br)o, (Bi)r «— Zon, s.t., {Bo)o +
(Bo)1 = Bo mod N and (Bi)o + (B1) =1 mod 2"

Let kp = ky, || () || {B)p for b € {0,1}

6: return (ko, k)

W

malicious security [20]. Specifically, for nonlinear function f,
fu = pf is additionally constructed in each calculation, where
u is the verification key known only to the server. Verification
is achieved by confirming whether uf equals f,, thereby
ensuring the client has executed the correct operations during
the current computational round. In addition, we optimized
the mechanism of extending the verification gate. Using the
Algorithm 1 as an example, by modifying 3 to 3’ = (u, —ur),
we can control the evaluation function’s output to be either 0
or ux, thereby quickly implementing the verification gate of
ReLU. Since the input to f,, is identical to the input for f, the
evaluation of f,, requires no additional communication costs.

Algorithm 2 EvallffléU for ReLU Function

1. Parse kp =k || (r)n || (B)o

2: Send (x)p,+(r)p to the other party, receive {(x)1_p+{r)1-p,
and reconstruct x + » mod N

3: Set ({yo)p, (y1)p) < Evaly (b, ky,x+r)+Bp

4: Compute (y)p = (yo)p(x +7) +(y1)p, mod N

5: return (y)p

The correct execution of FSS ensures the security of our
nonlinear layer protocol. Building upon this, we focus on
efficiently constructing MAC values under malicious parties.
Our protocol consists of two main phases: function secret
sharing phase and local computation phase. Below, we provide
a high-level overview of our protocol. Recall that Py inputs
({x)0, 1) and P1 inputs (x);.

* Function Secret Sharing Phase: The objective of this
phase is to enable Py and P; to independently compute
the output of the FSS gate and obtain their respective
shares. During the offline phase, Py and P can acquire
FSS keys kp, k; and (r)p, {(t)p, {(ur)» (The specific
functionality of the offline phase will be elaborated
in Section V). And then, they subsequently invoke
EvalRe]éU in this phase to obtain (f(x)), and (f,(x))s.

* Local Computation Phase: At this stage, both parties
only need to use the (u)p, {(ur)p obtained in the offline
phase and the x+r obtained in the function secret sharing
phase to reconstruct their shares of px.x

We formally describe the Non-linear layer protocol ﬂ'Non lin
in Figure 2. By relegating the majority of operations to the
offline phase, our protocol can complete non-linear function
computation and MACs reconstruction with just one round

of interaction. Compared to SIMC, CRISP has a much lower
online communication cost in the non-linear layer. Its com-
munication is only 2n, which grows linearly with the input
size n. In contrast, SIMC’s communication depends on the
security parameter A, the statistical security parameter «, and
the number of AND gates d. These factors lead to linear or
even quadratic growth in total cost. Under common parameter
settings, such as k = 44, 1 = 128, and n = 32, our protocol
reduces the communication cost by more than two orders of
magnitude compared to SIMC.

Remark 3.1 (Multi-Input Nonlinear Functions). Our tech-
nique can be readily extended to non-elementary functions
that take multiple inputs and produce one or more outputs,
such as Maxpool. Specifically, The underlying algorithm of
Maxpool is to compute the maximum value over d elements
X0,X1,...,Xg—1. we can employ a tree reduction architecture
that recursively divides the input in half and compares el-
ements from each half. For each comparison between two
secret-shared elements (x;) and (x;), we can simply extend
using ReLU: max({x;), {x;)) = ReLU({x;) — (x;)) + {x;).
Building maxpool,, follows the same principle. We provide a
performance comparison experiment of Maxpool in Appendix
B.

Theorem 1: the protocol wNon 1in Securely realizes the func-
tionality against a malicious client (P;) and a semi-honest
server (Py).

Proof: We first prove correctness of the protocol followed
by security.

Correctness. Based on the correctness of (Gen} B
Evaly ) each participating party can obtain the correct key
and compute their corresponding share of the function output.
This enables the parties to acquire the correct values of f(x)
and f,(x). Furthermore, both parties’ shares of yx sum up to
the correct value, such that:

(ux)o + (pxh
= (wo(x +r) = (ur)o + (1 (x + 1) = (ury
=pulx+r)—

Security: Now, we prove security against any malicious
adversary A controlling P,

Claim 1: ﬂ-gon»lin is secure against any malicious adversary
A corrupting the client P;.

Proof: We prove Claim 1 through a sequence of hybrid ex-
periments. We demonstrate that P;’s view in the real protocol
execution is computationally indistinguishable from its view
in an ideal world with a simulator.

Hybrid 0 (Real World) executes the protocol as specified in
Figure 2.

Hybrid 1 replaces the FSS key generation with ideal func-
tionality while maintaining and replaces Py’s {(u)p, {(ur)p. The
value (f (X))o, (fu(X))o and (ux)o is now computed using
these simulated randomness*.

3)

4 Su(x) and px will be uniformly verified in the final stage of secure
inference



X € Zy, i.e., {a)o, {a); € Zy, as input and outputs f(a).

Protocol:
1. Function Secret Sharing Phase:

ac

2. Local Computation Phase:
* Py computes {ux), = (u)p(x +r) = (ur)p

Preamble: The function f is such that f : Zy — Zx. Consider f based on FSS Nonlin/ that takes additive shares of
Input: Py inputs (x)o € Z%, and p € Zy. Py inputs (x); € Z%, and (u);.
Output: P;, learns (ux)p, (f(X))p, {fu (X)) for b € {0, 1}.

* P, compute (f(x)), < Eval, g by using k, and (x);
* Py computes (fy,(x)), < Evall 5 by using k7, and (x);

Fig. 1: Protocol 7

Hybrid 2 (Remove the Influence of Input) builds upon
Hybrid 1 by further replacing replaces (x +r)y with simulator-
generated random value.

Hybrid 3 (Ideal World) replaces (ux)¢ and the real FSS eval-
uation with a simulator-generated random value and an ideal
functionality, respectively. That is, all shares are produced by
the simulator rather than computed through the protocol

The indistinguishability between adjacent hybrids follows
from standard security arguments. The transition from Hybrid
0 to Hybrid 1 relies on the security of FSS and random value:
Adversary A cannot distinguish whether the value evaluated
by the key and the message associated with the random value
is real or comes from the simulator. Hybrid 2 eliminates the
influence of input x. Due to the uniform randomness of the
share of x and r, it remains indistinguishable from Hybrid 1.
Finally, Hybrid 2 to Hybrid 3 preserves indistinguishability
through the randomness of the same distribution, since {(ux)g
and the evaluation results of FSS are uniformly random in
Hybrid 2.

This sequence of hybrids, justified by security of FSS and
the randomness of the same distribution, establishes that Proto-
col wI’:OH_Hn achieves computational security against malicious
Pi.

Security of ﬂﬁon_lin against any semi-honest adversary A
controlling the server Py follows the similar proof process as
above.

IV. LINEAR LAYER OPTIMIZATION

We first describe the secure execution of linear layers in
previous work. SIMC and SIMC2.0 designed two protocols
(InitLin and Lin) to securely execute linear layer operations,
maintaining additional MAC values in each layer to ensure the
correctness of client inputs. This setup approximately doubles
the computational overhead of linear layers compared to
linear layer protocols based on semi-honest participants: each
linear layer requires homomorphic computation of both W-m
and uW - m (including matrix-vector multiplication in fully
connected layers and convolution operations in convolutional
layers), where W is the plaintext weight matrix held by the
server and m is the client’s input. However, in real-world
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Non-lin

scenarios involving large-scale computations, this increased
computational cost creates a gap between theoretical perfor-
mance and practical usability. To address this issue, SIMC 2.0
optimized GAZELLE’s matrix-vector multiplication algorithm
and applied it to linear computations, thereby reducing the
computational cost of linear layers.

Our approach differs from SIMC2.0. We harness CKKS’s
ability to encrypt complex numbers to reduce multiplication
computations. CKKS encoding allows data to be mapped
from the complex domain to the integer polynomial domain
(CN2 5 Z[X]/(XN + 1)) before encryption.

In real applications, operations usually happen in the real
or integer domain, and the complex domain space remains
underused. We activate this complex domain by extending
the input to CV/2 and placing MAC value in the complex
domain. This approach allows us to compute both values and
verification tags at the same time in a single operation. It
greatly reduces the number of multiplication operations needed
for secure inference when dealing with malicious clients.

As shown in Figure 2, our linear layer protocol consists of
InitLIN and LIN. InitLin is invoked exactly once and takes
as input a matrix W and a MAC key u from Py and x from P;.
It outputs authenticated shares of m = Wx to both parties. Our
approach is characterized by producing output shares whose
plaintext reside in the complex domain.

For LIN, the computation process follows the original
structure of SIMC, requiring only minor modifications to the
parties’s input and computation:

* We embed the secret shared portions used for verification
into the complex domain. We then transform them to the
integer domain through the CKKS encoding method.

* In operations involving addition (where the server pos-
sesses addition constants b, such as bias terms in fully
connected layers), the constant » must be transformed
into its complex form b + bj and subsequently encoded
prior to executing addition operations. For comprehen-
sive details of the addition operations, please refer to the
Appendix C.

Notably, the latter operation can be executed during the of-



Realization of InitLin in 7pjy,:

Input: Py holds W € Z*¢, u € Zy and parameter
InitLin. Py holds x € Z5,.

Output: Pj, learns (Wx);,, (uWx);, for b € {0, 1}.

Protocol:

e Pp and P; (one time) engage in a two-party
computation protocol secure against a semi-honest
Py and malicious P; to sample (pk, sk) for AHE
such that P; learns (pk,sk) and Py learns pk.
Both parties store these for use in this and all
subsequent calls to 7rp;, as well.

e P, obtain share of (ux), by methods such as
multiplication triplets or garbled circuits, where
b €{0,1}.

« P; sends the encryption €; < Encpk (X + (ux)1j)
to Pg along with a zero-knowledge (ZK) proof of
plaintext knowledge of this ciphertext®.

e Py set X’ =c¢; + Ecd({ux)oj)

o Py samples (m)y € Z7, and sets m = Wx'.

o Py sends the ciphertexts ¢; < Encpx(m — (m)o)
to Pj.

o P; sets (m); = Decg(cp).

« P, outputs (m); for b € {0, 1}.

Realization of Lin in mpy,:

Input: Py holds (m), € C%,, W € Z"*", ;1 € Zy and
parameter Lin. Py holds (m); € CY,.
Output: Pj, learns (Wm), and (t); for b € {0, 1}.

Protocol:

« P; sends the encryptions ¢; < Encyi(Re({m)))
¢ < Encpi(Im({m);)) and c3 < Enc(pk, (m);)
to Py and a ZK proof of plaintext knowledge for
this three.

o Pg sets t «— p3(c; + Re(Ded({m)g))) — u?(Cy +
Im(Dcd((m)o)))

« P samples (Wm)y €g Zy; and (t)o €r Z},.

o Py homomorphically evaluates the ciphertexts
¢4 € Encp(W(Cs + (m)y) — (Wm)g), ¢5 €
Encpi(t — (t)o), and sends to P;.

o P sets (Wm); = Decg(cg) and (t); = Decg(cs).

o Py, outputs (Wm), and (t), for b € {0, 1}.

2 ZK proof of knowledge for the statement that c¢ is
a valid sample from Enc,(m) for an m known to
the prover. We refer the reader to [10], [42] for more
details.

Fig. 2: Protocol 7ry iy

fline phase, thus incurring no additional computational burden
on the server during the online phase.

Theorem 2: the protocol myj, securely realizes the function-
ality against a malicious client (P1) and a semi-honest server
(Po).

Proof: Correctness. From Figure 2’s description, we can
clearly observe the correctness of the protocol. The secret
sharing scheme ensures the accuracy of the output pairs. For
InitLIN, (M) + (M); = Wx. For LIN, (WM) + 0+ (WM); =
WM.

Security. Our protocol’s security stems from two key prop-
erties in the semi-honest model. First, for ux, cryptographic
primitives ensure share randomness, preventing Po from infer-
ring x from (ux), while P; obtains no information about .
Second, all communication viewed by semi-honest P consists
entirely of ciphertexts protected by semantic security. Even
under malicious adversarial control of P, while decryption
of Py’s sent data becomes possible, the uniform randomness
of the secret sharing ensures that decrypted values reveal
nothing about Py’s inputs due to information-theoretic security
properties. The indistinguishability between real and simulated
views for both parties follows from the perfect secrecy of
the secret sharing scheme and the semantic security of the
underlying encryption system, thus completing our security
proof under both semi-honest assumptions and with malicious
extension considerations.

In homomorphic encryption applications, ciphertext space
consumption is a critical factor affecting system throughput
and deployment feasibility. The BFV method used in SIMC
relies on integer modulus encoding, where MAC value px cal-
culations must be performed independently from x calculations
(such as multiplication operations). This requires each linear
layer to process two sets of ciphertexts. This operation causes
each logical data element to redundantly occupy double the
ciphertext space, and after homomorphic multiplication, each
ciphertext expands into a triple ciphertext, further increasing
storage overhead. Our proposed CKKS-based method lever-
ages the structural properties of the complex domain to achieve
compact representation while maintaining data consistency.
CKKS ciphertexts are similarly composed of two or three
polynomial rings, with the same basic units as BFV. However,
because no additional ciphertext space is needed to construct
MAC values, the overall number of ciphertexts is reduced,
significantly lowering space redundancy.

For example, with N = 2'* = 16384 and a modulus
length of 218 bits, each ciphertext polynomial occupies ap-
proximately 445 KB of storage space. When comparing based
on processing % = 8192 slots per operation, in the CKKS
scheme, an entire complex vector requires only 1 ciphertext
(expanding to a triple ciphertext after multiplication, occu-
pying about 1.33 MB). In contrast, BFV needs to encrypt
two sets of integer data as two ciphertexts (expanding to two
triple ciphertexts after multiplication, totaling about 2.67 MB).
Therefore, with the same throughput and batch processing
capacity, the CKKS scheme reduces ciphertext quantity and
total storage consumption by approximately 50% compared



to BFV. This demonstrates better space compression and
resource utilization, making it particularly suitable for approxi-
mate homomorphic application scenarios requiring large-scale
dense computations.

Furthermore, our method can naturally support encoding
techniques similar to CHeetah [43] (our approach requires
optimization over a ring) to improve the efficiency of mul-
tiplication operations .

V. SECURE INFERENCE

Neural network inference algorithms are generally struc-
tured with two distinct layer types: linear and non-linear
layers. The linear layers comprise operations such as matrix-
vector multiplication and convolution, whereas non-linear lay-
ers incorporate functions such as ReLU, Maxpool. Section
V-A presents our comprehensive protocol for secure inference
under malicious client assumptions. By combining the pro-
tocols detailed in Sections III-B and IV with a consistency
verification phase, this protocol facilitates secure inference
for neural networks incorporating any combination of linear
and non-linear layers. We present the security and correctness
proofs in Section V-B.

A. Neural Network Inference Protocol

In this section, we describe the details of our secure
inference protocol (denoted as 7rp¢). Similar to [10], [12],
we consider a neural network NN with ¢ linear layers (with
weights W, W, ..., W) and £ —1 non-linear layers evaluating
non-linear functions (with nonlinear function fi, f>, ..., fe—1)-
The network exhibits an alternating structure of linear and non-
linear layers, with the first layer being linear. Let x denote
the input to the neural network, and NN(x) represent the
inference output. Let s; denote the (intermediate) inference
vector after evaluating the i-th linear layer, and v; denote
the (intermediate) inference vector after evaluating the i-th
non-linear layer. Given that s; = Wix, for i € [¢ - 1],
we have v; = fi(s;) and s;y; = M, v;. Finally, we have
s¢ = Wy -vp_1 = NN(x).

Within the secure inference framework, the server (Py)
possesses the weights of all linear layers (Wi, Wo, ..., Wy),
while the client (P;) holds the input x. The protocol aims to
enable the client to learn NN(x). Figure 4 presents our formal
description of protocol 7y, for this setting, which ensures
security in the presence of semi-honest servers and malicious
clients.

We first describe the offline phase of the protocol. The
offline phase primarily consists of two steps. The first relies
on function Frgs to generate the correlated randomness for
function secret sharing, completing the key distribution. Frgg
includes two key generation functions: Gen, g and Gen‘(‘y‘f‘g,
which are used to generate keys for evaluating the nonlinear
function f and verifying function f,,, respectively. In the
second step, the server sends secret shared portions of y to the
client. These portions are used during the local computation
phase of the nonlinear protocol. We provide specific details of
the offline phase in Figure 3.

Client Server
«—— Frss-Gen ——
ki, ki, (rn ko, k, <)o
</J>l s (o, (M1
(uh

Fig. 3: The offline phase in CRISP.

Below, we provide an overview of secure inference. Our
protocol can be broadly divided into three phases: linear
layer evaluation, non-linear layer evaluation and consistency
check phase. In the evaluation phase, we alternately execute
computations for linear and non-linear layers while generating
corresponding authentication tags. Subsequently, the server
performs a consistency check phase to verify the correctness
of all client inputs. Upon successful verification, the client
obtains the final output.

* Linear Layer Evaluation: For the initial linear layer,
parties Py and P; execute protocol 7y i, using the pa-
rameter InitLin to construct inputs with embedded share
of MAC value and compute the corresponding linear
layer outputs. For each subsequent linear layer i, the
parties execute protocol 7i, using the parameter Lin.
Through this process, both parties obtain ({sj)p, (ti)») for
b € {0, 1}, where s has a plaintext space C with MAC
value embedded in the complex domain, and t serves as
the consistency tag between the linear layer’s inputs and
outputs.

* Non-linear Layer Evaluation: Py and P; can ob-
tain the real part of s by invoking CKKS’s decod-
ing function DeCod on the input. Subsequently, both
parties execute protocol wﬁon,hn to learn the outputs
((u)p, (VR€)p, (v/™),,) of the i-th non-linear layer. Here,
u represents the reconstructed value usR¢, vR¢ is the
output f(x) of the non-linear function, and v/™ is the
MAC value for vR¢ (specifically u f(x)). Furthermore, to
accommodate linear layer inputs, the participating parties
employ the Cod method to re-encode the constructed
complex input v.

* Consistency Check: During this phase, the server con-
ducts consistency verification on all client inputs through
two primary mechanisms:

- For i in {2,...,£ — 1}, the correctness of linear layer
inputs is validated by verifying that the MAC value ¢;
equals 0.

- Foriin {1, ...,£—1}, the correctness of non-linear layer
inputs is confirmed by verifying that the difference
between s; and the reconstructed u; equals 0 (s; —u; =



that need to be computed in £ — 1 non-linear layers.

Output: P; learns NN(x).
Protocol:

b € {0,1}, Py, learns (s1),.
3. For each j € [£ — 1],

* Non-linear Layer f;: Py and P; invoke 7

4. Consistency Check:

fi

Preamble: A neural network NN with ¢ linear and € — 1 non-linear layers. Let f, ..

Input: Py holds {W; € Z?\;X"j’] }jele)» i-e., weights for the £ linear layers. Py holds the input x € Z}0 for NN.

1. Py samples MAC key u uniformly from Zy to be used throughout the protocol.
2. First Linear Layer: Py and P, invoke 7rpj, with inputs (ImitLin, Wy, ) and (InitLin, x), respectively. For

Non-lin
respectively. For b € {0, 1}, P}, learns ({u;)p, (Vf‘f)b, <V§m)b), and set (v;)p — Cod((vfe)b + <V§m>bj).
* Linear Layer j + 1: Py and P; invoke $ij, with inputs (Lin,(v;)o, W;js,@) and

(Lin, (v;)1, (erh, <V§m>1), respectively. For b € {0, 1}, P learns ({S;+1)p, (tj+1)5).

 For j € [{ - 1], Py samples r; € ZY;\{ and r;.+1 € Z’;\'j” and sends (r;,r
* Py computes (g)1 = X jer-1] (((s§’">1 = u)) *rj+ ({tjp) * r;.H)) and sends it to Py.

= Py computes (q)o = Xjeqe-1) ({510 = (o) 1 + (6100 ¥ -
e Py aborts if (g)o + (¢)1 mod p # 0. Else, sends (s¢)o to Pj.
5. Output Phase: P; outputs (s¢)y + (s¢); mod p if Py didn’t abort in the previous step.

., fe—1 be the elementary functions

with inputs (7)o, 1, ko, k') and (651, ki1, k),

}+1) to Pj.

Fig. 4: Protocol 7ry,¢

0).

Finally, Py combines all these verifications into a single
check using randomly selected scalars. Upon verification fail-
ure, Py terminates the protocol; otherwise, P obtains the final
share and can proceed with output reconstruction.

Remark 5.1 The method proposed in [20] ensures the
malicious security of the FSS protocol by combining two
consistency checks: one to prevent selective failure attack,
and another to detect tampering with intermediate shares.
Selective failure attack aims to determine whether all wire
values are zero by repeatedly modifying the o value. However,
in machine learning scenarios, it is highly unlikely for all
parameters in a linear layer to be zero. Moreover, in CRISP,
any incorrect input to the nonlinear layer propagates through
subsequent linear layers, causing the computed verification
tags to deviate from their expected values. As a result, the
protocol will abort during the final consistency check. Based
on these observations, we omit verification step (a) from
[20], thereby slightly improving efficiency without introducing
additional security risks.

B. Correctness and Security

Theorem 3: Protocol 7y, achieves secure computation of
machine learning models under a threat model consisting of a
semi-honest server Py and a malicious client Pj.

Proof: Correctness. By correctness of 7rj, on InitLin, we
have s;, whose corresponding value in the message space is
Wix + uW;xj. By correctness of 7 j, on Lin, for each i €
{2, ..., £} it holds that s; and t;, whose corresponding values
in the message space are m;v;_; + um;v;_j and p>Re(v;_1) —
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wu*Im(v;_1). By correctness of ”iGon-lin’ for each i € [¢ — 1]

it follows that w; = us;, vR¢ = fi(s;) and v/"™ = pfi(s;).
On substituting, it is easy to see that ¢ = O since for each
ie[t-1],t, =0, sf’" = u;. Finally, we conclude correctness
by noting that s, = NN(x).

Security. We prove that our protocol is secure against
a semihonest server Py and a malicious client P; using
simulation based security. For the scenario with a semi-honest
adversary corrupting Py: During the evaluation phase, Py only
learns a share of the outputs from 7rp;, and T Non-lin® which
is indistinguishable from random values chosen from the field
by the simulator. In the consistency check phase, Py computes
{q)o and receives {(q);. We configure the simulator to know
that ¢ = 0 and receive Py’s input. Consequently, the simulator
can compute (g)o and set {(g); = —(g)o. Due to the constraint
of ¢ = 0 and the randomness of r and r’, Py cannot distinguish
between the simulator’s output and the output in the real
world. Now, we prove security against a malicious client in
the following claim.

claim 2: Protocol 7ry,s is secure against a malicious adver-
sary A controlling client P;.

Proof: The adversary A may deviate arbitrarily from the
protocol specifications. In protocol 7ry,¢, this manifests as:

1) In the Initlin phase of 7ri,, A can provide input x’ #
x(client’s original input) and obtain (s);.

2) For each i € [€ — 1], A can invoke ﬂ'gon_ﬁn on input
(s’fe)l = (ise)l + A} and receive (u;)1, (er)l, <v{m>1.

3) In the Lin phase of 71 ;,, A can provide inputs (V’f“))l =

(vRey + A2 vy = (I + AL (Vi = (i +



Ecd(A;1 + A;"j) and learn (S;+1)1, {(ti+1)1-
4) During consistency check phase, A can modify (g); to
()1 + A’ before sending it to Py

In the above description, if all A values are 0, then A
can be considered to have honestly followed the protocol
specifications.

Therefore, we can summarize two distinct scenarios: In the
case of protocol compliance, the simulator and real views
are demonstrably identical. In the case of protocol deviation
(characterized by the existence of a non-zero A), the simulator
terminates with probability 1. This is primarily due to the au-
thentication value properties that guarantee detection of illegal
inputs. Similarly, in the real world, Py terminates the protocol
with overwhelming probability under such circumstances.

claim 3: In real execution, if at least one of the A is nonzero,
the probability of Py continuing the protocol is negligible.

Proof: Based on the analysis presented in Claim I, we have
that:

si™ = uWx’ (4)
u = u(Wix' +A)) (5)

Forie{2,....{ -1}
sim = Wi(vim £ AY ) (6)
w = p(Wi (v + A7) + A) (7

For i € [{—1]

vim = pvRe )]
tin = (VO +AD) =12 (V" + A)) ©)

-1
q:AS +Z((S;m—ui)*ri+ti+l *17) (10)
i=1

By substituting equations (4) through (9) into equation (10),
we obtain that:

l-a
g =N+ ) (WA} ) 1)
i=2

-1 -1
—p((Q AL+ ) Wik )« ) (11)
i=1 i=2

-1 -1
QA *x) = WY AT )
i=1 i=1

The RHS of Equation (11) is a degree-3 polynomial in
M, denoted by Q(u). When A introduces any error, at least
one A must be non-zero, resulting in Q(u) being a non-zero
polynomial. Unlike in finite fields, the probability analysis in
Zy 1is more intricate due to the presence of zero divisors and
the ring’s algebraic structure.

First, let us examine the case where r and r’ are chosen
to make all coefficients zero in Q(u). When there exists a
non-zero A, with gcd(A,2") = 2%, the probability of choosing
r and r’ that result in all coefficients being zero is at least
1/2"=k_ This is fundamentally different from the finite field
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case, as the ring structure allows for more solutions due to
zero divisors.

Next, consider the scenario where Q () is a non-zero poly-
nomial, and we analyze the probability of choosing an u that
satisfies Q(u) = 0. Given that Q(u) is a degree-3 polynomial
with leading coefficient a3, where gcd(as,2") = 2™, the
equation Q(u) = 0 may have up to 2™ solutions in Zy.
Consequently, the probability of selecting a u that makes
O(u) =0 is at least 1/2"7™,

Furthermore, the ring structure of Zy introduces additional
complexities. The polynomial Q(u) might degenerate to a
lower degree due to specific combinations of r and r’, and
the presence of zero divisors could lead to unexpected solu-
tions. These factors contribute to a more complex probability
landscape than in the finite field setting.

Therefore, the overall success probability of the protocol is
bounded by 1 — max(l/Z"‘k, 1/2"~™). However, this bound
is likely optimistic as it does not account for the potential in-
teraction between different failure cases and additional failure
modes introduced by the ring’s algebraic properties. The actual
success probability is expected to be lower due to the non-
independence of these events and the additional complexities
introduced by the ring structure of Zy.

Fortunately, Cramer et al. [44] present an efficient solution
to this challenge through a lifting technique: given a secu-
rity parameter s, the computation is elevated to Zy-, where
N’ = 2" In this framework, data elements x and key u
are elements of Zy-, and the MAC is computed as m = ux
mod N’. The verification procedure is restricted to the n least
significant bits. As proven in [44], this methodology effectively
reduces the adversary’s probability of successful cheating to
275,

VI. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to demonstrate the
performance of CRISP.

A. Implementation Details

The experiment is conducted on an Apple M1 Pro processor
(10-core CPU@3.2GHz, 16-core GPU) and 16 GB of RAM.
All cryptographic computations are performed in a 32-bit
integer ring. The specific experimental setup is as follows:

e Similar to the SIMC experimental setup, since the indi-
vidual components of the connection protocol incur no
cost, we implemented each component separately and
evaluated their end-to-end execution time. We imple-
mented the CRISP scheme in C++, utilizing the OpenSSL
library for secure random number generation, and incor-
porating the EMP (Efficient Multi-Party Computation)
library to support secure two-party computation protocols
in a local area network (LAN) environment, ensuring that
data exchanges and computations during the inference
process remain confidential between the participating
parties. Additionally, we employed the homomorphic
encryption library provided by SEAL (Simple Encrypted



Arithmetic Library) to implement the CKKS scheme for
the linear layers.

B. Performance of Non-Linear Layers

We compared the computational and communication over-
heads of SIMC and CRISP in implementing the nonlinear
ReLU activation function. Given the characteristics of the
activation layer, where ReLU operates primarily on each
element of the matrix, a significant number of activation
function evaluations are required when entering the activation
layer. As a result, we focus on highlighting the differences
between the two approaches in terms of the cost associated
with executing varying numbers of ReLU functions. In this
experiment, we set the security parameter 4 = 128 bits and
the plaintext space to Z,». In addition, we use four threads to
parallelize the computation in both of the above schemes.

Computation Overhead: Figure 5 shows the running time
of SIMC and CRISP for different numbers of ReLU functions.
Our method improves the running time by 10%-90% compared
to SIMC. At lower ReLU densities, the CRISP approach
exhibits marked superiority. Nevertheless, this comparative
advantage progressively decreases with the increasing num-
ber of ReLU. Based on our analysis, this phenomenon is
primarily attributed to the distinct fixed overhead structures
of these two protocols. The SIMC protocol, which relies on
garbled circuits, necessitates complex circuit generation and
label transmission operations, introducing substantial protocol
initialization overhead. In contrast, the CRISP protocol lever-
ages function secret sharing mechanisms, thereby simplifying
the protocol structure, reducing communication volume, and
lowering fixed overheads that are independent of computation
scale. Consequently, when the number of ReLLU operations is
relatively small, these fixed overheads constitute a significant
proportion of the total execution time, allowing CRISP to
demonstrate a marked advantage. However, as the number of
ReLU operations increases to 2! and beyond, communication
and computational costs that scale proportionally with com-
putation size gradually become the dominant factors, causing
the asymptotic performance of both protocols to converge and
narrowing the performance gap. Furthermore, in the SIMC
non-linear layer, participants exclusively assume the role of
either sender or receiver, whereas CRISP requires bidirectional
information exchange between both parties to reconstruct x+r
during each ReLU execution, resulting in cumulative com-
munication latency when processing large quantities of ReLU
operations.

Communication Overhead: Figure 6 illustrates the com-
munication overhead comparison between SIMC and our pro-
posed method when computing varying numbers of ReLU
functions.In the nonlinear intermediate layer, CRISP only
requires a single round of communication to reconstruct x +r,
followed by local computations to obtain the shares of ux,
f(x) and uf(x). In contrast, SIMC necessitates a substantial
number of garbled circuit labels for one-time pad calculations.
This design results in a communication overhead reduction
of approximately 96%-99% for CRISP compared to SIMC.
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Fig. 5: Non-linear layer computational overhead
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Fig. 6: Non-linear layer communication overhead

TABLE I: Compare of Fully Connected Layer

| | Comm. (MB) | Lantency (s)
Polynomial Modulus
\ | SIMC  CRISP | SIMC  CRISP
8192 53 54| 065 049
Benchmark A ‘ 16384 ‘ 432 433 ‘ 466 152
8192 53 54 | 064 045
Benchmark B ‘ 16384 ‘ 429 429 ‘ 429 14

Furthermore, as the number of ReLU operations increases,
the savings in communication overhead grow accordingly. For
instance, when evaluating 2'® ReLU gates, CRISP requires
only about 2 KB of communication, whereas the SIMC
approach demands at least 218 MB. This advantage is non-
trivial, as mainstream DNN models typically involve tens of
thousands of ReLLU operations.

C. Performance of Secure Inference

Following the idea of SIMC, we evaluate the performance
of secure inference on two benchmarks: benchmark A, a 2-
layer convolutional neural network trained on MNIST, and
benchmark B, a 7-layer CNN architecture for CIFAR-10 clas-
sification. For details on networks, see [10], [35].

Considering the impact of polynomial modulus on ho-
momorphic encryption performance in linear layers, we first



TABLE II: Compare of Offline Phase

TABLE IV: Compare of Model Accuracy

| Comm. (MB) | Lantency (s)

| SIMC  CRISP | SIMC  CRISP
Benchmark A | 266 5 | 4.26 1.45
Benchmark B | 4063 78 | 3281 16.37

TABLE III: Compare of Online Phase

| Comm. (MB) | Lantency (s)
| SIMC CRISP | SIMC CRISP
Linear Layer 48 49 6.73 4.57
Benchmark A | Non-linear Layer | 126 0.11 1.53 0.09
| Total | 174 49.11 | 826 4.66
Linear Layer 135 135 3237  20.86
Benchmark B | Non-linear Layer | 2109 1.36 2.14 1.58
| Total | 2244 136.36 | 3451 2244

conducted comparative experiments exclusively on fully con-
nected layers. As illustrated in Table I, regarding compu-
tational latency, CRISP achieved performance improvements
ranging from 24.6% to 67.3% compared to SIMC, with the
most substantial efficiency gain of 67.3% observed when
processing larger polynomial modulus scales (16384). This
demonstrates that CRISP’s approach of placing verification
labels in the complex domain for synchronous computation
effectively enhances computational performance. In terms of
communication overhead, CRISP and SIMC performed simi-
larly. Indeed, both SIMC and CRISP protocols transmitted five
ciphertexts during the linear layer phase, which aligns with
intuitive expectations for both protocols. The experimental
results indicate that CRISP exhibits increasingly pronounced
communication performance advantages as the polynomial
modulus scale expands, making it particularly suitable for
application scenarios requiring enhanced security levels or
larger data volumes.

As shown in Table II and Table III, we conducted a
comprehensive performance evaluation of CRISP and SIMC
under two different benchmark scales.

In offline phase, CRISP eliminates the need to generate a
large number of circuits and tags, resulting in a twofold im-
provement in computational efficiency and a 50-fold reduction
in communication overhead.

In online phase, CRISP achieves a 32-36% latency reduc-
tion in linear layers while maintaining communication vol-
ume comparable to SIMC. However, in processing non-linear
layers, CRISP demonstrates excellent performance, reducing
communication overhead by nearly two orders of magnitude
while significantly decreasing computational latency. This
architectural optimization translates into substantial overall
advantages: in Benchmark A, CRISP reduces total commu-
nication cost from 174MB to 49.11MB and total latency from
8.26 seconds to 4.66 seconds. In the more complex Benchmark
B, these advantages further expand, with total communication
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| | Accuracy
Dataset Model -
| | Plaintext ~ CRISP
MNIST | Benchmark A | 99.31%  99.23%
CIFAR-10 | Benchmark B | 81.61%  81.56%

volume decreasing from 2244MB to 136.36MB and total
latency shortening from 34.51 seconds to 22.44 seconds. These
data highlight CRISP’s exceptional performance in handling
large-scale secure inference tasks, making it an ideal choice
for scenarios with high security requirements.

D. Model Accuracy

A key requirement for private inference is that the intro-
duced cryptographic protocols should not compromise model
performance. To validate this, we use the EzPC framework to
test inference accuracy on two benchmarks for both plaintext
and CRISP, as shown in Table II. The results indicate that,
compared to the plaintext model, CRISP causes a slight
decrease in accuracy. This performance degradation can likely
be attributed to three factors: 1. precision loss due to fixed-
point arithmetic. 2. errors introduced during encryption and
decryption by the approximate homomorphic encryption algo-
rithm CKKS, and 3. Equation (2) in Section III-B are not hold
(small probability).

VII. CoNcLUSION

In this paper, we propose CRISP, a system designed for
secure machine learning inference against malicious clients.
CRISP effectively avoids the issue in non-linear layers of
SIMC through an FSS-based approach, significantly reduc-
ing communication overhead while maintaining computational
efficiency. Additionally, we introduce a novel acceleration
method for linear layer computation that minimizes expensive
redundant multiplication operations through the construction
of a complex domain verification scheme. In future work, we
will focus on designing more effective optimization strategies
to further reduce the computational costs of CRISP and explore
its extension to more complex machine learning models,
making secure ML inference suitable for a broader range of
practical applications.
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APPENDIX A
NON-LINEAR PROTOCOL IN SIMC

The nonlinear protocol details of SIMC are shown in Figure

7.



the last n bits of input.

Protocol:
1) Garbled Circuit Phase:

e Py computes (GC, {{labi{‘j

.....

2) Authentication Phase:

3) Local Computation Phase:

. PO outputs <Z]>0 = - (Zie[x] Vl:,()zi_l)’ <Z2>0 = -
o P outputs (z1)1 = (Zie[K] ci2'”

Preamble: The function f is such that f : F, — F,. Consider a boolean circuit Comp’ that takes additive shares of
a € Fp, ie., (a)o,{(a)1 € Fp, as input and outputs (a, f(a)). Let Trim, : {0, 1}* — {0,1}" be a function that outputs

Input: Py inputs (s)o € F}, and @ € F,. Py inputs (s); € F),.
Output: Py, learns (@s)p, (f(5))p, (@ f(s))p for b € {0, 1}.

Vierans {1ab ier2x1 }jeqo,1y) < Garble(17, Comp/). A

e Py and P invoke OT'j whqre Py is the sender and P; is the receiver with inputs {lab;"‘o} ie{k+1,...2ky and ()1,
respectively. P learns {faT);n}ielk+1 2k]- Po sends GC and {labi-n

e P computes {fa{f);’UI}ie[Zk] «— GCEval(GC, {faff);n}ie[zk]).

o For i € [«], Py chooses 1;0,8;0,vi,0 € Fp and sets (1:.1,6;,1,vi,1) = (1 + 00, @ + 650, @ + vip).

« Fori € [2«] and j € {0,1}, Po parses 1ab{"} as p; j||ki ; where p; j € {0,1} and k; ; € {0, 1}*7.

o Fori e [«],j €{0,1}, Py sends ct; p, ; = v; j ® Trim, (k; ;) and c?t,-,pi’_,- = (1:,;16:,;7) @ Trimog (kv j)-
« For i € [2«], Py parses IEB?M as p;|lk; where p; € {0,1} and k; € {0, 1},

o For i € [], Py computes ¢; = ct; 5, ® Trim,, (k;) and (d;|le;) = ct; 5, ® Trimoy (Kisi)-

(Zie[l{] 77i,02i_1), and (z3)9 = — (Zie[K] 5i’02i—1).
D, (@ = (Siereg 427 1), and (2301 = (Siepe) €i2'Y)-

,,,,,

= lab™"

i (syoli)ielx] tO Pr.

Fig. 7: Protocol &

APPENDIX B
MAXPOOL EXPERIMENT

As noted in Remark 3.1, our framework adopts a modular
design that supports the substitution of specific nonlinear
functions and underlying protocols. To demonstrate the gen-
eralizability of CRISP, we evaluate the performance of the
MaxPool function on Benchmark A.

TABLE V: Compare of maxpool

| Comm. (KB) | Lantency (ms)
| SIMC  CRISP | SIMC  CRISP
Benchmark A | 31983 54 | 325.66 63.39

Table V shows that the MaxPool function implemented
using the CRISP framework achieves approximately a 5x
improvement in computational efficiency and nearly two orders
of magnitude reduction in communication overhead compared
to the GC-based MaxPool. These results are consistent with
the performance gains observed in our ReLU experiments.

AprpeENDIX C
ADDITIVE OPERATE

Due to the necessity of ensuring synchronous computa-
tion of verification labels in the complex domain, additional
processing is required during constant addition operations.
In machine learning scenarios, additive constants are model
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S
SIMC-Non-lin

Input: Py holds (m), € C%,, W € Z" X", ;1 € Zy and
processsed bias B” = Cod(B+uBj) € ZY;. The plaintext
corresponding to m is x + ux . Py holds (m); € C},.
Output: Pj, learns (Wm + B’);, for b € {0, 1}.

P; sends the encryption C; < Enc(pk, (m);) to
Py.

Py sets m = C; + Ecd((m)o)

Py homomorphically evaluates the ciphertexts
Wm+ B’, which plaintext is XW + B+ y(xW + B)j.
Py samples (Wm + B")( €g Z'I{;.

Py computes C, < Enc(pk, Wm + B’ — (Wm +
B’)y), and sends to Pj.

P;, outputs (Wm + B’);, for b € {0, 1}.

L]

Fig. 8: Fully connected layer with addition operation

parameters owned by the server, such as bias B. Therefore,
the server must construct B + uBj during the offline phase,
extending b into the complex domain to accommodate addition
operations. We illustrate this process using a fully connected
layer with bias as an example, with specific details presented
in Figure 8.



