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Abstract—Publicly available large pretrained models (i.e.,
backbones) and lightweight adapters for parameter-efficient fine-
tuning (PEFT) have become standard components in modern
machine learning pipelines. However, preserving the privacy
of both user inputs and fine-tuned adapters—often trained on
sensitive data—during inference remains a significant challenge.
Applying cryptographic techniques, such as multi-party compu-
tation (MPC), to PEFT settings still incurs substantial encrypted
computation across both the backbone and adapter, mainly due to
the inherent two-way communication between them. To address
this limitation, we propose CRYPTPEFT, the first PEFT solution
specifically designed for private inference scenarios. CRYPT-
PEFT introduces a novel one-way communication (OWC) archi-
tecture that confines encrypted computation solely to the adapter,
significantly reducing both computational and communication
overhead. To maintain strong model utility under this constraint,
we explore the design space of OWC-compatible adapters and
employ an automated architecture search algorithm to optimize
the trade-off between private inference efficiency and model
utility. We evaluated CRYPTPEFT using Vision Transformer
backbones across widely used image classification datasets. Our
results show that CRYPTPEFT significantly outperforms existing
baselines, delivering speedups ranging from 20.62× to 291.48×
in simulated wide-area network (WAN) and local-area network
(LAN) settings. On CIFAR-100, CRYPTPEFT attains 85.47%
accuracy with just 2.26 seconds of inference latency. These
findings demonstrate that CRYPTPEFT offers an efficient and
privacy-preserving solution for modern PEFT-based inference.

I. INTRODUCTION

Pre-trained models have revolutionized machine learning,
serving as the foundation for a variety of downstream appli-
cations [11], [12], [19]. By leveraging large-scale datasets and
substantial computational resources, these models often learn
representations that rival or exceed human-level performance.
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Subsequently, fine-tuning [55] re-purposes a pre-trained net-
work for a specific task without necessitating training from
scratch. For example, a model initially designed for general
image classification can be adapted to detect tumors in medical
scans [35], [2], [37], automatically tag images on social
media [27], [49], or recognize traffic signs in autonomous vehi-
cles [13], [45]. Such flexibility facilitates the specialization of
foundational models and yields highly personalized services.

Despite these advantages, deploying fine-tuned models in
user-facing contexts raises pressing privacy concerns. From the
service provider’s perspective, there is an incentive to maintain
confidentiality of proprietary model parameters, while users
often hesitate to disclose potentially sensitive input data. As
a result, privacy-preserving inference1 based on secure multi-
party computation (MPC) [31] has emerged as a promising
solution to protect both the intellectual property of service
providers and the confidentiality of user queries. However,
existing secure computation protocols are often burdened by
substantial communication and computational overhead [38],
[39], [47], [48]. To alleviate these overheads, prior work has
primarily focused on optimizing the resource-intensive low-
level operations within MPC protocols, leading to the devel-
opment of MPC-friendly approximations intended to expedite
the inference process [34], [43], [42], [56], [4], [54]. While
such optimizations can reduce overhead, their effectiveness
diminishes as models increase in complexity and size. When
applied to extremely large architectures, these approaches may
become impractical or infeasible.

In contrast, our study focuses on the development of
MPC-friendly architectures tailored for fine-tuning, thereby
addressing the fundamental challenges posed by the increasing
size of modern models. By rethinking model design at the
architectural level, we aim to ensure that privacy-preserving
inference can scale effectively with minimal overhead. This
emerging research paradigm has recently attracted attention in
pioneering works [32], [33], [52], [46]. Some of these studies

1We use the terms “privacy-preserving inference” and “private inference”
interchangeably throughout this paper.
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emphasize constructing compact models through techniques
such as compressing or distilling large and powerful net-
works [32], [33], [52]. While these methods achieve improved
efficiency, they often involve trade-offs that compromise model
utility, which can be untenable in many practical applications.
More recently, Rathee et al. [46] proposed an alternative
approach that retains the foundational architecture of the
model, fine-tuning only the final layers to indirectly reduce
the overall model size for privacy-preserving inference. While
this method mitigates some utility losses, it remains hindered
by persistent efficiency bottlenecks (Sec. VI-C).

Our solution. To address this challenge, we draw inspira-
tion from Parameter-Efficient Fine-Tuning (PEFT) methodolo-
gies [26], [13], [9], [53], [24], which introduce a small set of
trainable parameters—commonly referred to as adapters—into
a pre-trained backbone model while keeping most of the orig-
inal weights frozen. In standard (i.e., unencrypted plaintext)
fine-tuning settings, PEFT has demonstrated both efficiency
and robustness, often outperforming approaches that fine-tune
only the final layers [9]. Given these advantages, it is natural
to consider extending PEFT to private inference scenarios,
where one might hope to perform the bulk of computation
in plaintext on the public backbone, while limiting MPC-
based encrypted computation to the adapter components—
thus significantly improving overall inference efficiency. Un-
fortunately, our study reveals that existing PEFT methods
are fundamentally incompatible with private inference due
to architectural limitations. Specifically, conventional adapter
designs require their (encrypted) outputs to be decrypted
before being fed back into the backbone, creating a potential
leakage point (c.f., Sec. III-B). These limitations highlight the
need for novel PEFT architectures that can operate entirely on
encrypted data, without sacrificing privacy or efficiency.

In this paper, we propose CRYPTPEFT, the first PEFT-
based solution specifically designed for private inference. Our
key insight is that conventional PEFT techniques inherently in-
troduce a two-way communication (TWC) mechanism between
the backbone and the adapter, necessitating multiple encrypt-
decrypt cycles. In contrast, CRYPTPEFT enforces a one-way
communication (OWC) policy, ensuring that data flows unidi-
rectionally from the backbone to the adapter without being fed
back. By eliminating intermediate decryption, CRYPTPEFT
allows all computations to remain fully encrypted, thereby
preserving strict privacy guarantees.

A natural concern arising from the removal of feedback
loops, as mandated by the OWC policy, is whether such
a restriction compromises the model’s expressive power. To
answer this, we begin with an empirical study to evaluate
the impact of OWC on model performance across various
downstream tasks. The results show that existing adapter
architectures often suffer from reduced utility under OWC
constraints. Based on this observation, we analyze how adapter
structure and placement affect both utility and efficiency in pri-
vate inference scenarios (Sec. IV-A). Guided by these insights,
we design a new adapter architecture specifically tailored

for OWC-compliant settings. A central component of this
design is LinAtten, a lightweight attention mechanism that
replaces the traditional Softmax with MPC-friendly operations
such as addition and multiplication. LinAtten significantly
reduces the cost of private inference while maintaining high
utility. To further enhance efficiency, CRYPTPEFT adopts the
Low-Rank Adaptation (LoRA) framework [26], which reduces
computational and communicational overhead through low-
rank decomposition.

Finally, CRYPTPEFT integrates a Neural Architecture
Search (NAS) mechanism [20] to automatically identify
adapter configurations that optimize the trade-off between
efficiency and utility for a given downstream task. Unlike
conventional NAS in plaintext setting, which typically as-
sumes computational cost scales proportionally with model
size, private inference introduces fundamentally different cost
dynamics. To enable cost-aware NAS, we profiled all key
operations—including linear layers, matrix multiplications,
normalization, and activation functions—under our target net-
work environment, and derived cost estimation models based
on the profiling results. Guided by these cost models, our NAS
strategy is tailored to identify architectures that satisfy a target
utility while minimizing private inference cost (Sec. IV-D).

Evaluations. In this study, we primarily focus on vision-
related tasks, aligning with the majority of existing research in
the field of private inference. Nonetheless, we view language
models as a natural extension of our framework and plan to ex-
plore them in future work. Specifically, we built CRYPTPEFT
using public vision backbones (i.e., ViT-B), and evaluated
its performance on widely-used image datasets, including
CIFAR-10 [28], CIFAR-100 [3], Food-101 [6], SVHN [22]
and Flowers-102 [41]. For each dataset, we identified the most
suitable adapters through our NAS-based search procedure.

We developed an end-to-end inference system for CRYPT-
PEFT using the MPC framework CRYPTEN [1] and evaluated
its private inference efficiency. Our experimental results show
that CRYPTPEFT achieves significant reductions in inference
time compared to the baseline methods. Specifically, in a sim-
ulated wide-area network (WAN) environment characterized
by a 400 Mbps bandwidth and 4 ms latency, it achieves
an average speedup of 250.39× over the traditional PEFT
baseline method, and an average speedup of 20.62× compared
to the baseline that simply fine-tunes only the last layer.
CRYPTPEFT also improves the model accuracy by 0.83%
on average over fine-tuning the last layer. Taking the CIFAR-
100 dataset as an example, CRYPTPEFT achieves a model
accuracy of 85.47% and an inference time of just 2.26 seconds.

Contributions. Our key contributions are outlined below:
• New observations. We propose CRYPTPEFT, the first PEFT
approach tailored to private inference scenarios. CRYPTPEFT
employs a one-way communication (OWC) strategy, com-
pletely removing the need for decryption within the network,
guaranteeing strict end-to-end privacy.
• New designs. Building on insights into adapter behavior
under OWC constraints, we propose a redesigned adapter ar-
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chitecture and a NAS-guided search strategy to jointly enhance
the utility and efficiency of private inference in CRYPTPEFT.
• Extensive empirical studies. We implement CRYPTPEFT
on a standard vision backbone model, and evaluate it on
widely used image datasets, including CIFAR-10, CIFAR-
100, Food-101, SVHN and Flowers-102. CRYPTPEFT sur-
passes existing solutions in both classification accuracy and
inference efficiency, highlighting its potential for real-world,
privacy-preserving deployment. The source code for our re-
search is publicly available at https://github.com/Saisai-Xia/
CryptPEFT.

II. BACKGROUND

A. Vision Transformer (ViT)

Vision Transformer (ViT) is a neural network architecture
that applies the Transformer model—originally developed for
natural language processing—to image recognition tasks by
treating images as sequences of patch embeddings. It has
demonstrated competitive or superior performance compared
to convolutional neural networks (CNNs), especially when
trained on large-scale datasets. A typical ViT consists of the
Patch Embedding layer, Position Embedding layer, Trans-
former Encoder layer, and Classifier [19]. Given an image
x ∈ RH×W×C with C channels and resolution (H,W ), the
Patch Embedding layer divides x into multiple patches and
flattens them into xp ∈ RN×(P 2·C), where (P, P ) denotes the
resolution of each image patch, and N = H×W

P 2 represents
the number of image tokens. Each row vector in xp is then
mapped to a D-dimensional space and concatenated with a
learnable [CLS] token for further processing. The Position
Embedding layer adds a set of learnable positional encodings
to the output of the Patch Embedding layer to retain spatial
information, resulting in a sequence of image tokens.

The Transformer Encoder layer consists of multiple iden-
tical Transformer layers. Each Transformer layer includes a
Multi-Head Self-Attention (MHSA) layer and a Multi-Layer
Perceptron (MLP) layer. For example, the image tokens xj−1

output by the (j−1)-th Transformer layer are first transformed
into three vectors: Q, K, and V . These vectors are then used
in the attention calculation within the MHSA layer of the j-th
Transformer layer:

x
′

j = Attention(Q,K, V ) = Softmax(QKT /
√

dk)V,

where dk represents the feature dimension of each head in the
MHSA. The output x

′

j is then passed through LayerNorm and
the MLP. The computation can be formalized as:

xj = MLP(LN(x
′

j)) + x
′

j .

For the subsequent Transformer layers, the computation of
xj continues as described above. The final Transformer layer
outputs a set of image tokens, from which the previously
appended [CLS] token is extracted. This [CLS] token,
having captured global information, is then passed to the
Classifier to complete the classification task. For more details
on ViT, please refer to [19].

B. Parameter-Efficient Fine-Tuning (PEFT)

ViTs leverage global self-attention mechanisms across im-
age patches, which enables strong representation learning
but also results in a higher parameter count compared to
traditional convolutional neural networks (CNNs). Fine-tuning
ViTs is particularly computationally expensive, as it typically
involves updating all model parameters. When adapting a
pre-trained model to multiple downstream tasks, conventional
fine-tuning necessitates storing separate parameter sets for
each task, incurring significant storage and compute overhead.
Parameter-Efficient Fine-Tuning (PEFT) offers a practical al-
ternative by introducing a small set of trainable parameters,
such as adapters or low-rank matrices, while keeping the
backbone frozen. In this section, we detail AdaptFormer [9]
and Low-Rank Adaptation (LoRA) [26], two representative
PEFT methods that serve as baselines in our evaluations.

AdaptFormer. AdaptFormer [9] enables ViTs to perform
downstream tasks by tuning lightweight task-specific adapters,
rather than the entire model. These adapters, often imple-
mented as low-rank matrices inserted into selected layers,
significantly reduce the number of trainable parameters, im-
proving efficiency in multi-task and transfer learning scenarios.

LoRA. Low-Rank Adaptation (LoRA) [26] is a technique that
reduces fine-tuning overhead for large pre-trained models by
applying low-rank decomposition. It decomposes the weight
matrices of the pre-trained model into low-rank matrices,
which reduces the number of parameters requiring optimiza-
tion during fine-tuning. LoRA is commonly used with large
language models like GPT and BERT, and can also be applied
to architectures such as ViT. LoRA’s key advantage is its abil-
ity to adapt to new tasks or datasets with minimal parameter
changes, avoiding the need to retrain the entire model.

C. MPC-based Private Inference

Private inference aims to protect sensitive data during
model inference by employing cryptographic techniques such
as multi-party computation (MPC) and homomorphic en-
cryption (HE). In this work, we build our inference sys-
tem using the privacy-preserving machine learning framework
CRYPTEN [30], which implements secure computation proto-
cols based on secret sharing. This section provides essential
background on secret sharing based MPC protocols.

Secret sharing. Arithmetic secret sharing involves divid-
ing a scalar value x ∈ Z/QZ, where Z/QZ represents a
finite ring of integers modulo Q, across a set of parties
P = {p1, p2, . . . , pn}. The sharing of x is represented by
[x] = {[x]p}p∈P , where each [x]p ∈ Z/QZ denotes the share
held by party p. The shares are constructed such that their sum
(modulo Q) reconstructs the original value, i.e.,

x =
∑
p∈P

[x]p (mod Q).

To generate the shares for a value x, the parties first create a
zero-share vector consisting of |P| random numbers, ensuring
their sum equals zero [16]. One party, typically the one with
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access to the secret x, adds the value x to its share and
then discards the original value. The sum of all shares will
reconstruct x without revealing the secret to any single party.

Binary secret sharing is a specific case of arithmetic se-
cret sharing that operates in the binary field Z/2Z, where
arithmetic is performed modulo 2. In this setting, each party
p ∈ P holds a share ⟨x⟩p ∈ {0, 1}, such that the reconstruction
condition is given by:

x =
⊕
p∈P
⟨x⟩p,

where
⊕

denotes the bitwise XOR operation. Binary secret
sharing is often used in applications when binary operations
are efficient.

Conversions. The conversion from an arithmetic secret share
[x] to a binary secret share ⟨x⟩p is performed by first convert-
ing each party’s arithmetic share [x]p into binary shares. Each
party creates a binary secret share, ⟨[x]p⟩, which represents
the bits of their share [x]p. These binary shares are then
combined by summing them to produce the binary secret share
⟨x⟩, which represents the original value x in binary form.
Specifically, each party p ∈ P generates a binary secret share
⟨[x]p⟩ of their share [x]p, and the parties then compute the total
binary share ⟨x⟩ by summing the individual binary shares:

⟨x⟩ =
∑
p∈P
⟨[x]p⟩.

This process typically uses a carry-lookahead adder to handle
the binary addition efficiently, and it can be completed in
O(log2 |P| · log2 Q) communication rounds, where |P| is
the number of parties and Q is the modulus in the original
arithmetic secret sharing scheme [8], [17].

The conversion from ⟨x⟩p to [x] is done by reconstructing
the arithmetic share from the individual bits of the binary share
⟨x⟩. Specifically, the arithmetic secret share is computed as:

[x] =

B∑
b=1

2b · [⟨x⟩(b)],

where ⟨x⟩(b) denotes the b-th bit of the binary secret share
⟨x⟩, and B is the total number of bits needed to represent the
binary share. The sum of the weighted bits reconstructs the
original arithmetic value x.

Private linear functions. To perform private addition of two
secret-shared values [z] = [x]+[y], each party p ∈ P adds their
respective shares of x and y. That is, each party computes:

[z]p = [x]p + [y]p,

where [x]p and [y]p are the individual shares of x and y
held by party p, and [z]p is the corresponding share of
the sum z = x + y. Private multiplication between secret-
shared values [x] and [y] is more complex and is typically
implemented using pre-computed Beaver triples [5]. A Beaver
triple consists of three secret-shared values ([a], [b], [c]), where
c = a · b. Specifically, the parties compute [ϵ] = [x] − [a]

and [δ] = [y] − [b], and decrypt ϵ and δ without informa-
tion leakage due to the masking. They compute the result
[x][y] = [c]+ ϵ[b]+ [a]δ+ ϵδ, using trivial implementations of
addition and multiplication of secret shares with public values.
Private addition and multiplication can be used to implement
a variety of linear functions in neural networks, such as dot
products, outer products, matrix products, and convolutions.

Private non-linear functions. Non-linear functions commonly
used in neural networks, such as ReLU, Sigmoid, and Softmax,
are typically implemented using approximations that combine
private additions, multiplications, and comparisons. Private
comparisons are implemented using a function that evaluates
whether a secret-shared value [z] is less than 0 (i.e., evaluates
[z < 0]) by following a series of steps: (1) First, the secret-
shared value [z] is converted to its binary secret share ⟨z⟩.
This conversion splits [z] into individual bits, where each bit is
shared among the parties. (2) The sign of z can be determined
by evaluating the most significant bit (MSB) of the binary
representation of z. The sign bit ⟨b⟩ is computed by performing
a bit shift operation:

⟨b⟩ = ⟨z⟩ ≫ (L− 1),

where L is the number of bits used to represent the secret-
shared value z, and the right shift operation extracts the sign
bit. If z is negative, the MSB will be 1; otherwise, it will be
0. (3) Finally, the resulting binary sign bit ⟨b⟩ is converted
back to an arithmetic secret share [b]. This allows the parties
to compute the comparison securely, which can then be used
for further operations such as determining the output of the
ReLU function.

III. CRYPTPEFT OVERVIEW

A. Parameter-Efficient Fine-Tuning based Private Inference

Secure computation protocols are well-suited for efficiently
handling linear operations (e.g., addition) and low-degree
polynomial operations (e.g., multiplication). However, they
incur substantial overhead when applied to operations such as
comparison, division, or complex nonlinear computations. As
a result, neural network operators that are efficient in plaintext
settings often become prohibitively expensive under private
inference. Prior work on accelerating private inference has
largely focused on operator-level approximations or low-level
protocol optimizations. In comparison, we aim to investigate
the architectural compatibility between neural network designs
and the constraints imposed by secure computation. Specif-
ically, we focus on Parameter-Efficient Fine-Tuning (PEFT)
methods, which have become standard practice in modern
machine learning workflows.

System model. In our settings, we consider a common
incentive mechanism in which the model service provider
(MS) offers secure model inference as a paid service, charging
clients per query or based on usage. The model is fine-
tuned on proprietary data for specific downstream tasks, while
leveraging a publicly available backbone model. These pro-
prietary data—such as medical diagnostic images—are highly

4



valuable and specifically tailored for certain downstream tasks.
Meanwhile, a model user (MU) has access to the same public
backbone but lacks access to the provider’s private training
data. To leverage the fine-tuned model’s enhanced capabilities
for a specific task, the MU submits its processed input to the
MS and receives the corresponding inference results.

A key challenge in this interaction is preserving the privacy
of both parties. The MU seeks to protect the confidentiality
of its input, ensuring that no sensitive information is leaked
during inference. Simultaneously, the MS aims to safeguard
the proprietary adapter model from unauthorized access or
reconstruction. Notably, since the MU can observe both the
input it provides and the output it receives, some information
about the adapter is inherently exposed, potentially making the
model susceptible to model inversion attacks. However, we
argue that in our setting, the information naturally inferable
from the input-output pairs is necessary. Our method ensures
that beyond this unavoidable exposure, the MU gains no
additional knowledge about the adapter’s private parameters.
As such, we consider the defenses against model inversion
attacks orthogonal to our work. Our research aims to develop
efficient private inference techniques that protect the sensitive
information of both parties. In this scenario, the MU and the
MS collaboratively run the following steps:
• MU-side pre-processing. The MU initially performs local

computations on the plaintext backbone model using its
input data. It then encrypts the resulting intermediate out-
puts and sends this encrypted data to the MS, who possesses
a specialized adapter.
• MS-side computation. Upon receiving the encrypted inter-

mediate data, the MS processes it using the adapter, ensur-
ing that all computations remain in encrypted form. This
involves performing private linear and nonlinear operations
collaboratively with the MU, utilizing secure computation
protocols outlined in Sec. II-C.
• Result retrieval. The MS sends the encrypted output to the
MU, who decrypts it to obtain the final inference result.

Threat model. To formalize the privacy guarantees, we adopt
the semi-honest (i.e., honest-but-curious) adversarial model.
This implies that both parties adhere to the prescribed protocol
but may attempt to extract additional information from the data
they receive or observe during the interaction. This setup is
practical since the server is driven by financial incentives to
adhere to protocols and deliver high-quality services, while
the client is encouraged to comply with the protocol to
access those services. As a result, this semi-honest model
is widely used in existing research. However, our approach
can be extended to support malicious adversaries that may
arbitrarily deviate from the protocol. Specifically, the protocols
can be strengthened by incorporating homomorphic message
authentication codes (MACs) [18], a standard technique in
authenticated secret sharing, which enable each party to verify
the correctness of computations performed by others without
revealing private data. Under this threat model, two key
privacy objectives must be met:

Backbone Backbone Backbone
input

Backbone Backbone Backbone

Adapter Adapter

output
MU

plaintext plaintext plaintext plaintext

MS

(a) Plaintext inference.

Backbone Backbone Backbone
input

Backbone Backbone Backbone

Adapter

encrypt decrypt encrypt decrypt

Adapter

output
MU

MS

(b) Encrypt-then-decrypt inference (insecure).

Backbone

Backbone

input

Backbone Backbone
Adapter

encrypt

Backbone

Adapter

Backbone

decrypted output

MS

MU

(c) Private inference (secure but slow).

Fig. 1: Inference workflows in different scenarios. Orange-
shaded components indicate computations performed under
secure computation protocols.

• Confidentiality of MU’s input. The MS should not learn
any information about the private input data of MU. This
guarantee is especially crucial when the input data includes
proprietary or sensitive information, such as personal health
records or confidential business data.

• Confidentiality of MS’s private adapter. The MU obtains the
output corresponding to their own input but cannot obtain
any additional information of the MS’s private adapter.
Any compromise in this regard could undermine the MS’s
intellectual property and competitive edge.

B. One-way Communication Policy

Motivations. In this paper, we focus on PEFT methods such
as AdaptFormer [9] and LoRA [26], which introduce a small
number of trainable parameters while keeping the majority
of pre-trained weights frozen. This approach has been shown
to significantly reduce training time, memory consumption,
and fine-tuning overhead. As illustrated in Fig. 1a, inference
in plaintext settings typically involves separate computation
on the backbone and the adapter, followed by merging inter-
mediate representations before proceeding through subsequent
layers. In such environments, PEFT consistently outperforms
simpler strategies like fine-tuning only the final layers.

However, in the private inference scenario, existing PEFT
techniques typically require bidirectional communication and
partial decryption between the backbone and adapter, intro-
ducing potential leakage points. Specifically, a naive (and
inherently insecure) approach to applying PEFT in this setting
is illustrated in Fig. 1b: the MU uses the public backbone
to compute intermediate results in plaintext, encrypts these
results, and sends them to the MS, which holds the adapter. The
MS then processes it with the adapter using secure computation
protocols, and returns the partial output to the MU so that the
MU can decrypt them and continue the inference process. While
this design minimizes the computational load by retaining
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plaintext operations in the backbone, it directly violates the
privacy objectives set forth in Sec. III-A. As a result, conven-
tional PEFT architectures that depend on iterative interactions
between the backbone and adapter are fundamentally incom-
patible with the strict end-to-end privacy guarantees expected
in private inference. To fully meet those objectives, most
computations—including those performed by the backbone—
must be performed over encrypted data (Fig. 1c). This require-
ment renders the naive design impractically slow and resource-
intensive, highlighting the core challenge of applying PEFT in
private inference scenarios.
Solution. A critical challenge in private inference lies in
ensuring that neither the MS nor the MU obtains unnecessary
information beyond what is essential for producing the final
result. Traditional fine-tuning pipelines often rely on iterative
or bidirectional data exchange, a process we refer to as two-
way communication (TWC). To tackle the challenges above,
we introduce a key insight for reconciling PEFT with private
inference: one-way communication (OWC). This approach
involves transferring data only once and in a single direction,
eliminating the need for decryption or the back-and-forth
exchange of intermediate representations.

In TWC, each step typically involves decrypting partial
outputs and exchanging them between components (e.g., the
adapter and backbone). This intermediate decryption poses sig-
nificant risks, as it exposes internal features that malicious or
curious parties could exploit to extract private information. In
contrast, OWC eliminates this vulnerability by enforcing that
intermediate activations never return to earlier layers or to the
other party in plaintext. Instead, all data processing—including
that performed by the adapter—happens in a forward-only
manner. Specifically, any intermediate representation remains
in encrypted form as it passes through the model. Critically,
no step in the pipeline requires decrypting these activations
until the final output is ready for the legitimate recipient. This
design intrinsically aligns with MPC’s principle of keeping
all intermediate computations locked behind cryptographic
methods, thereby eliminating leakage risks.

C. CRYPTPEFT Workflow

In this paper, we propose CRYPTPEFT, the first PEFT
architecture specifically designed for private PEFT inference
scenarios. Fig. 2 provides an overview of CRYPTPEFT’s
workflow, illustrating the secure collaboration between the MU
and the MS while ensuring compliance with the OWC policy.

Specifically, the MU holds a public backbone network, which
it uses to perform local inference on the input data in plaintext.
When specialized adapter-based processing, owned by the MS,
is required, the MU encrypts the intermediate results using
an MPC-based secure protocol. These encrypted intermediate
results are then transmitted to the MS for secure processing
using the adapter. Notably, the MU does not need to wait for
the MS’s response to continue its local, plaintext computations.
The MS focuses on receiving ciphertext from the MU, per-
forming private inference using the adapter, and returning the
encrypted prediction results. Upon receiving these encrypted

outputs, the MU decrypts them to produce the final inference
results. Throughout this workflow, only the final prediction
result is transmitted from the MS to the MU in ciphertext
form—a necessary step—while all other intermediate results
flow unidirectionally from the MU to the MS in encrypted form.

A potential concern with removing feedback loops is
whether it diminishes the overall expressive power of the
model. Traditional architectures often rely on residual or skip
connections, effectively implementing partial “feedback” of in-
termediate activations. In practice, many deep learning models
already exhibit strong utility even when most layers remain
unaltered. Coupled with PEFT, our experience has shown
that carefully designed adapter structures and the strategic
placement of adapters in deeper layers (while maintaining a
unidirectional flow) can maintain robust model utility. This
approach preserves the core objective of fine-tuning, i.e.,
adapting pre-trained models to new tasks or data distributions,
while adhering to the OWC policy essential for efficient
private inference. The details for the design of OWC-compliant
adapters will be presented in Sec. IV.

Ultimately, OWC introduces a novel design paradigm for
integrating cryptographic techniques with modern PEFT ar-
chitectures. Instead of retrofitting existing models—often bur-
dened by bidirectional data flows—OWC serves as a guiding
principle that informs model construction to inherently protect
intermediate computations. As elaborated in the following sec-
tions, OWC is foundational to building secure and parameter-
efficient pipelines, enabling the adaptation of large pre-trained
models to new tasks under strict privacy constraints without
incurring excessive overhead.

IV. CRYPTPEFT DESIGN DETAILS

In Sec. III-B, we established that enforcing OWC policy is
essential for enabling efficient PEFT-based private inference.
However, traditional adapter architectures experience a notable
degradation in accuracy when subject to OWC constraints.
To overcome this challenge, we begin with key empirical
observations and design principles in Sec. IV-A, which serve
as the foundation for our approach. Based on these principles,
we describe the architecture and placement strategies for the
adapters in Sec. IV-B and Sec. IV-C, respectively. In Sec. IV-D,
we introduce an algorithm that automates the search for
optimal adapter configurations.

A. Understanding OWC-Compliant Adapters

In compliance with the OWC policy, data flows unidirec-
tionally from the backbone to the adapter. This fundamental
constraint necessitates a careful reconsideration of the adapter
architecture to maintain both high accuracy and private infer-
ence efficiency. We first examine the impact of several critical
factors in adapter design with empirical studies, ultimately
leading to the formulation of the key design constraints.
Specifically, we aim to address the following questions.

(Q1): Are traditional adapters effective for CRYPTPEFT?
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Fig. 2: Workflow of CRYPTPEFT.

TABLE I: Classification accuracy (%) of traditional adapters
across different datasets under the TWC and OWC settings.

Datasets LoRA AdaptFormer

TWC OWC TWC OWC

CIFAR-10 97.31 95.84 (↓1.47) 97.34 95.91 (↓1.43)
CIFAR-100 87.41 83.73 (↓3.68) 87.23 83.72 (↓3.51)
Food-101 83.95 80.13 (↓3.82) 83.91 80.02 (↓3.89)

SVHN 91.81 63.17 (↓28.64) 91.72 63.11 (↓28.61)
Flowers-102 84.37 80.76 (↓3.61) 84.42 80.89 (↓3.53)

To evaluate how the OWC constraint affects model perfor-
mance, we conducted a series of experiments using traditional
PEFT methods such as LoRA and AdaptFormer, both orig-
inally designed under the Two-Way Communication (TWC)
paradigm. In these experiments, we held all training hyper-
parameters and downstream tasks (i.e., dataset for specific
tasks) unchanged, modifying only the communication policy—
from TWC to OWC. As shown in Table I, this shift leads to
considerable fluctuations in model utility. In most downstream
tasks, we observe a clear performance drop. Specifically,
on the SVHN dataset—a street-view digit recognition task
with only 10 labels and a data distribution that deviates
significantly from standard object classification—the model’s
utility decreases by an average of 28.63%.

This degradation highlights a core limitation of conventional
adapter architectures under the OWC constraint: their inability
to effectively capture inter-token dependencies. In TWC-based
PEFT methods, task-specific features extracted by the adapter
are re-integrated into the backbone, allowing the backbone’s
attention mechanisms to recompute and propagate information
across tokens. However, OWC restricts such bidirectional
interaction, preventing the features extracted by adapters from
propagating across the tokens—including the [CLS] token,
which is crucial for downstream prediction. As a result, the
model loses a key pathway for token-level information ex-
change, which is especially detrimental for tasks with complex
or non-standard input distributions. To address this challenge,
our adapter design must incorporate an internal attention block

within the adapter that explicitly models inter-token relation-
ships. This allows the adapter to refine the representation of
the [CLS] token and recover utility.

(Q2): Are existing attention mechanisms efficient for
CRYPTPEFT?

In standard Transformer architectures, attention and MLP
layers play a central role in modeling long-range dependen-
cies within input sequences (Sec. II-A). However, in private
inference settings, the Softmax operation in attention and the
GELU activation in MLP introduce significant computational
and communication overhead. To address this, recent works
have proposed MPC-friendly alternatives. MPCFormer [34]
approximates both Softmax and GELU using low-degree
polynomials. MPCViT [52] adopts a hybrid attention mech-
anism—combining ReLU Softmax Attention [40] and Scaling
Attention [50]—and replaces GELU with the more MPC-
efficient ReLU. SHAFT [29] further improves communication
efficiency by introducing a constant-round Softmax protocol
and an MPC-tailored GELU approximation. Since MPC-based
private inference is highly sensitive to communication—both
in rounds and bandwidth—we evaluate the communication
overhead of these methods within an adapter block using
CrypTen [30]. As shown in Fig. 3, the Softmax and activation
functions in MPCViT and SHAFT account for over 80% of
total communication overhead with the private inference of an
adapter block. While MPCFormer reduces bandwidth usage,
it still incurs a high number of communication rounds. These
results highlight that directly applying existing attention and
activation designs in adapter modules can severely impact
private inference efficiency, underscoring the need for more
communication-efficient alternatives.

(Q3): How does the placement of adapters affect model
utility?

Conventional PEFT methods typically insert adapters into
every layer of the backbone, resulting in a number of adapters
that scales with model depth. While this design improves
model expressiveness, it substantially compromises the ef-

7



0% 20% 40% 60% 80% 100%

MPCFormer

SHAFT

MPCViT

0% 20% 40% 60% 80% 100%

MPCFormer

SHAFT

MPCViT

Softmax Activation Others

(a) Communication Round (b) Communication Cost

Fig. 3: Communication overhead breakdown: Softmax and
activations are dominant contributors in existing methods.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11

CIFAR-10

CIFAR-100

Food-101

SVHN

Flowers-102

Deeper Layers

T
o
p

-1
 A

cc
u
ra

cy
 (

%
)

Layer ID

Fig. 4: Impact of adapter placement on model utility.

ficiency of private inference. In this work, we revisit the
adapter placement strategy within the CryptPEFT framework,
aiming to preserve utility while minimizing the number of
adapters. A central question we explore is whether positioning
adapters in shallower or deeper layers significantly affects
model performance. This sparse adapter setting not only
improves computational efficiency but also reduces the search
space for neural architecture search (NAS).

To investigate this, we conduct a series of experiments in
which a single adapter—comprising a low-rank decomposition
module, an attention mechanism, and a MLP module—is
integrated into the backbone architecture under the constraints
of OWC. The adapter is inserted at varying depths across
different layers of the network to evaluate its influence on
model utility while adhering to OWC. As shown in Fig. 4,
the results indicate that, across many downstream tasks, plac-
ing the adapter in deeper layers consistently yields superior
performance—highlighted by the deep red dashed boxes in
the figure. These findings suggest that, under tight resource or
efficiency constraints, prioritizing adapter placement in deeper
layers is a more effective strategy for preserving model utility.

Summary of design constraints. In summary, to fully harness
the utility benefits of PEFT within CRYPTPEFT’s workflow,
CRYPTPEFT enforces 4 key constraints and incorporates a
neural architecture search (NAS) mechanism.
• Constraint 1: Ensuring One-Way Communication (OWC).
This constraint enforces a unidirectional flow of encrypted
data, preventing any back-and-forth exchange that might re-
quire decryption mid-inference. By adhering to OWC, CRYPT-
PEFT effectively reduces potential leakage points.
• Constraint 2: Integrating attention mechanisms with the
adapters. Adapters augmented with attention mechanisms

demonstrate a strong capacity to model inter-token depen-
dencies and capture global contextual representations, thereby
facilitating effective updates to the [CLS] token. When ad-
hering to OWC, models incorporating such attention-based
adapters are still capable of preserving a high level of utility.
• Constraint 3: Using MPC-friendly attention and activation
functions. The fundamental operations supported by MPC are
addition and multiplication, while other operations require the
use of approximation algorithms or protocols, which inevitably
increase the communication rounds and communication cost.
Therefore, adapters should aim to minimize the use of complex
approximation algorithms and protocols.
• Constraint 4: Focusing on deeper layers. Rather than in-
serting adapters throughout the entire backbone, CRYPTPEFT
targets deeper layers, which typically carry high-level features
essential for final predictions. This selective adjustment yields
a favorable trade-off between model accuracy and efficiency.
• Neural Architecture Search (NAS). To identify the op-
timal configurations of adapter structures and placements,
CRYPTPEFT employs a NAS approach. By exploring different
architecture candidates under the above constraints, it system-
atically discovers a model architecture that maximizes model
accuracy while minimizing private inference latency.

B. CRYPTPEFT Adapter Architecture

Fig. 5 shows the core design of our adapter. The funda-
mental goal is to update the [CLS] token exclusively within
the adapter, ensuring that no information is propagated back
into the backbone. Since the backbone’s [CLS] token cannot
be updated by an external module under OWC, our adapter
incorporates an attention block to extract and refine features
specifically for the [CLS] token.

To reduce the cost of private SoftMax in existing attention
mechanisms, we draw inspiration from non-local neural net-
works [50] and propose a novel attention mechanism: learn-
able linear attention (LinAtten). Non-local neural networks
introduce a general non-local operation to capture long-range
dependencies, defined as:

Non-local(x) =
1

C(x)

∑
i

f(xi, x)g(xi).

Here, f(·) is a similarity function, g(·) is a linear transfor-
mation, and 1

C(·) is a normalization factor. In LinAtten,
we adopt the standard dot-product operations from classical
attention for both f(·) and g(·), i.e., matrix multiplication.
Moreover, to enhance private inference efficiency, we replace
the normalization term 1

C(·) with a learnable linear transfor-
mation. As a result, LinAtten is formally defined as:

LinAtten(Q,K, V ) = L(QKT )V,

where L(·) denotes a learnable linear transformation, parame-
terized as L(x) = WLx. LinAtten is a highly efficient alter-
native that relies solely on linear operations, i.e., multiplication
and addition, making it particularly well-suited for private
inference while maintaining effective attention modeling. Our
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Fig. 5: The proposed adapter structure in CRYPTPEFT.

evaluation shows that LinAtten achieves a good utility-
efficiency tradeoff (Table III and Table IV in Sec. VI).

Although LinAtten eliminates expensive operations such
as SoftMax, directly applying it at the full feature dimen-
sionality can remain computationally burdensome in private
inference settings due to the scale of the involved matrix op-
erations. To alleviate this issue, we adopt a low-rank adaptation
strategy [26] to strike a balance between model expressiveness
and computational efficiency. By constraining the learnable
parameters to low-rank matrices, CRYPTPEFT significantly
reduces both computational and communication overhead in
secure MPC environments. Specifically, adapter weight matri-
ces are decomposed into low-rank components parameterized
by a tunable rank r, enabling fine-grained control over the
model’s parameter count and the private inference efficiency.

To further optimize the efficiency of the MLP module under
MPC, we replace the GELU activation with ReLU, a more
computation-friendly alternative in secure MPC environments,
thereby yielding an MPC-friendly MLP design.

We also introduce a scaler factor—a tunable multiplicative
constant—to modulate the contribution of the adapter output.
While this factor is often fixed to small values (e.g., 0.1)
in plaintext settings, our OWC-constrained architecture may
benefit from alternative configurations to better navigate the
accuracy-efficiency tradeoff. The effects of varying this scaler
factor are empirically explored in Sec. IV-D.

Finally, the number of attention heads h in LinAtten
affects both the model’s representational capacity and the cost
of core operations such as matrix multiplication. We allow
h to be adjusted based on the requirements of downstream
tasks, retaining only the minimal number of heads necessary
to sustain competitive accuracy while minimizing overhead.

C. Organizational Strategy of the Adapter

As shown in Fig. 6, the backbone remains frozen, and we
selectively insert adapters and a classifier in the deeper layers.
Let s denote the number of final layers chosen for parameter-
efficient fine-tuning. By restricting adapter placement to the
last s Transformer layers, we can capture high-level semantic
features with fewer trainable parameters—an essential consid-
eration for preserving low-overhead private inference.

D. Automated Search for Adapters

In a typical NAS workflow, four components are essential:
the search space, the performance-cost estimator, the sampling

Backbone
input

Backbone Backbone Backbone

AdapterAdapter
output

Classifier

s

FrozenFrozen

TrainableTrainable OWCOWC

Fig. 6: Adapter placement: trainable adapters and classifier are
selectively inserted into deeper layers of a frozen backbone.
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Fig. 7: Impact of scaler on model utility.

controller, and the search strategy. The search strategy itera-
tively selects candidate architectures from the search space via
the sampling controller, evaluates them using the estimator,
and leverages the results as reward to optimize the controller.
In our work, we tailor all these components to address the
specific requirements of PEFT-based private inference.

Our search space is explicitly designed around the adapter
structure described in Sec. IV-B. In this paper, we focus on
micro-searching [57], i.e., searching for NAS cells that can
be repeatedly stacked to construct the network, which has
proven effective and significantly reduces the search space.
Specifically, each adapter contains two NAS cells representing
distinct design choices: (1) the LinAtten module with a
configurable number of attention heads, and (2) the low-rank
compression module characterized by its rank. In addition to
the internal structure of each adapter, we also treat the total
number of adapters as a separate search dimension. In practice,
we fix the scaler parameter based on preliminary tuning to
simplify the overall search space. To identify an appropriate
fixed value, we conducted a series of controlled experiments in
which all other parameters were held constant while varying
only scaler. We evaluated the model utility across multiple
downstream tasks, and as shown in Fig. 7, a value of 0.5 con-
sistently yielded the best average performance. As such, we fix
scaler at 0.5 for all subsequent evaluations. Accordingly, the
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full search space is defined by three key hyperparameters: h
(the number of heads), r (the rank for low-rank compression),
and s (the number of adapters), which jointly affect both model
utility and the cost of private inference.

Unlike conventional NAS in plaintext setting, which typi-
cally assumes computational cost scales proportionally with
model size, private inference introduces fundamentally dif-
ferent cost dynamics. Here, the cost of each candidate ar-
chitecture depends not only on parameter size, but also on
communication cost, the number of communication rounds,
and local computation time. These factors are influenced by
system characteristics such as bandwidth, latency, and the abil-
ity to batch operations into a single communication round. To
enable cost-aware NAS, we profiled all key operations, includ-
ing linear layers, matrix multiplications, normalization, and
activation functions, under the target network environment,
and derived cost estimation models based on the profiling
results. Specifically, the communication cost is modeled as
(0.001153h+0.000187 r+0.000578) s+0.005692, while the
number of communication rounds is calculated as 26 s + 3.2

Under a fixed network environment, both communication cost
and the number of communication rounds contribute linearly
to the overall communication time, which can therefore be
modeled as (c1h + c2r + c3)s + c4. For example, in a
typical WAN setting (400 Mbps bandwidth, 4 ms latency),
the communication time is:

comm time = (0.02117h+ 0.00344 r + 0.35828) s+ 0.15541,

with a coefficient of determination R2 = 0.9975. Similarly,
the computation time is modeled as (with R2 = 0.9873):

comp time = (0.01711h+ 0.00121 r + 0.12311) s+ 0.16581.

Consequently, the total private inference latency can be mod-
eled as the sum of communication time and computation time.

Guided by the cost models, our NAS objective is to identify
architectures that achieve a target utility while minimizing
the latency of private inference. Since latency is primarily
influenced by the number of adapters (s), our customized NAS
strategy (outlined in Algorithm 1) prioritizes minimizing s,
while tuning h and r to improve utility within the latency
constraint. The value of s is increased only when necessary,
i.e., when the desired utility cannot be met by adjusting h and
r, or when increasing h or r incurs a higher cost than adding
an additional adapter. Specifically, we first use a sampling
controller to sample values for h and r (line 6), and estimate
the latency using our latency model (line 7). If the sampled
adapter meets the latency constraint, we evaluate the utility
(line 11) and use both utility and latency to compute the reward
(line 12), which guides the controller toward configurations
with higher utility and lower latency (line 20). If repeated
samples fail to reach the target utility, the current search
round is terminated (line 21), and the number of adapters is

2Each adapter involves 26 communication rounds: 9 for linear operations, 2
for matrix multiplication, 6 for normalization, and 9 for activation. The linear
layer contributes 1 round, and the normalization layer contributes 2 rounds.

Algorithm 1: NAS-based search algorithm.
Input: Targets Utarget,Ltarget, Ttarget; Latency model

Latency(∗, ∗, ∗); Search spaces H,R,S
Output: Best config (h∗, r∗, s∗); Best utility U∗

1 (s,∆)← (1, 1);
2 (h∗, r∗, s∗,U∗)← (⊥,⊥,⊥,−∞);
3 while s ≤ max(S) do
4 τ ← 0;
5 while True do
6 (h, r)← C(θ);
7 if Latency(h, r, s) > Latency(hinit, rinit, s+∆)

or Latency(h, r, s) > Ltarget then
8 (Reward, τ)← (1/Latency(h, r, s), τ + 1);
9 end

10 else
11 U ← Eval(h, r, s);
12 Reward← U + 1/Latency(h, r, s);
13 τ ← τ + 1;
14 if U > U∗ then
15 (h∗, r∗, s∗,U∗)← (h, r, s,U);
16 τ ← 0;
17 end
18 if U∗ ≥ Utarget then return (h∗, r∗, s∗, U∗);
19 end
20 θ ← OPT (C, θ, Reward);
21 if τ ≥ Ttarget then break;
22 end
23 s← s+ 1;
24 end
25 return (h∗, r∗, s∗, U∗);

incremented before restarting the search (line 23). The process
returns either the adapter configuration that meets the target
utility (line 18), or the one closest to it (line 25). Overall,
these adaptations make our NAS particularly well-suited for
private inference, where both latency and communication cost
are critical constraints.

V. SECURITY ANALYSIS

The security of CRYPTPEFT is established under the Uni-
versal Composability (UC) framework [7], which guarantees
that the protocol remains secure even when composed with
arbitrary other protocol instances. Specifically, the UC frame-
work relies on a simulation-based definition, where a protocol
is considered secure if for every real-world adversary A, there
exists a polynomial-time simulator S such that no environment
Z can distinguish whether it is interacting with the real
protocol execution or with the ideal functionality emulated
by S. In CRYPTPEFT, all computation is performed using
CRYPTEN [1], which provides a suite of cryptographic primi-
tives including arithmetic and binary secret sharing, as well as
secure conversions between them (Sec. II-C). These primitives
have been rigorously proven secure under standard simulation-
based techniques, and their security holds under the UC
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composition theorem [31, Appendix B]. Since all higher-level
operations in CRYPTPEFT are constructed as compositions of
these UC-secure primitives, the overall protocol inherits their
composability guarantees. Consequently, CRYPTPEFT is UC-
secure against semi-honest adversaries, and its security holds
even in complex, concurrent environments where multiple
protocol instances may be executed simultaneously.

VI. EVALUATIONS

A. Experiment Methodology

Hardware and software configurations. Our experimental
platform consists of an Intel Xeon Silver 4310 CPU, 64 GB
of RAM, and two NVIDIA GeForce RTX 4090 GPUs. The
GPU was employed for automated architecture search and
fine-tuning. Since most existing private inference frameworks
are optimized for CPU-based implementation, our primary
evaluations were conducted on the CPU. We used PyTorch
version 2.3.1 for plaintext computations and CRYPTEN [1]
for private inference. Specifically, plaintext computations for
the backbone and private inference for the adapter were
executed on the CPU with CRYPTEN’s default configurations.
Additionally, we examined the benefits of GPU acceleration
in the context of batched task processing, utilizing the GPU
to evaluate its impact on private inference efficiency.

To emulate different network conditions, we utilized the
Traffic Control (TC) tool on Linux. Following the setup in
BumbleBee [36] and SHAFT [29], we reproduced inference
latency scenarios under two representative network environ-
ments: a wide-area network (WAN) with 400 Mbps bandwidth
and 4 ms latency, and a local-area network (LAN) with
1 Gbps bandwidth and 0.5 ms latency. We evaluated the
impact of varying bandwidth on private inference efficiency
in Sec. VI-C.
Evaluation metrics. To evaluate the effectiveness of CRYPT-
PEFT, we focus on two key aspects: model utility, measured
by classification accuracy, and private inference efficiency,
evaluated in terms of communication time and total time
during private inference, averaged over 10 runs.
Baselines. We selected two baseline approaches:
• PEFT—the traditional PEFT architecture, where we applied
two typical methods—LoRA [26] and AdaptFormer [9]—to
the backbone by implementing their proposed adapters. When
evaluating inference efficiency, the encryption-then-decryption
approach may lead to privacy leaks (Fig. 1b). To align with the
privacy guarantees of CRYPTPEFT, we followed the inference
process depicted in Fig. 1c for the PEFT baselines.
• Simple Fine-tuning (SFT). A straightforward approach to
achieving OWC involves fine-tuning only the final few layers
of the backbone while keeping the majority of the layers
frozen [46]. In private inference, this strategy enables plaintext
execution for the frozen layers, while the fine-tuned final
layers are executed with secure computation protocols, thereby
reducing computational and communication overhead.
Datasets. We used ViT-B-16 as the backbone model for eval-
uation and evaluated the effectiveness of CRYPTPEFT on five
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Fig. 8: The relationship between model utility and estimated
private inference latency targeting the WAN environment.

representative datasets: CIFAR-10 [28], CIFAR-100 [3], Food-
101 [6], SVHN [22] and Flowers-102 [41]. Prior studies, such
as MPCViT [52] and AdaptFormer [9], conducted evaluations
on subsets of these datasets. TinyImageNet was intentionally
excluded due to its strong visual and distributional similarity to
ImageNet, the dataset used to pretrain our ViT-B-16 backbone.
This overlap can lead to inflated performance, reducing its
effectiveness for evaluating domain generalization. Instead, we
included Flowers-102 to introduce greater style diversity. Its
relatively small size and large number of classes also present
a challenging low-resource setting, enabling a more com-
prehensive evaluation of model adaptability under realistic,
distribution-shifted conditions relevant to private inference.

B. Utility

NAS. CRYPTPEFT performs NAS by leveraging a cost
model tailored to the target network environment to estimate
the end-to-end private inference latency under each candidate
adapter. Given a target utility, the search strategy selects
the adapter with the lowest estimated latency that meets the
utility constraint. We first use the WAN setting as a case
study to examine the relationship between target utility and
resulting private inference latency (Fig. 8). The results show
that, across various downstream tasks, higher utility generally
leads to increased latency. However, beyond a certain point,
further utility gains are marginal despite significantly increased
latency. Based on this observation, we define two trade-off
strategies: efficiency-first, which sacrifices some utility for
lower latency, and utility-first, which accepts higher latency
to maximize utility.

The adapter structures (in the format of {h, r, s}) discovered
under both WAN and LAN settings are summarized in Table II.
Our results indicate that the optimal adapter design varies
across downstream tasks and depends on the performance
objective. For example, under the utility-first setting targeting
the WAN environment, the Food-101 dataset requires 12
heads in the LinAtten module, while only 4 are needed
under the efficiency-first setting. In the following evaluations,
we primarily adopt the efficiency-first setting, as it offers
strong utility with significantly improved efficiency. Under this
setting, CRYPTPEFT completed the search in 4.15, 1.77, 3.87,

11



TABLE II: Optimized adapter structures obtained by NAS.

Datasets Utility-first Efficiency-first

LAN WAN LAN WAN

CIFAR-10 {1, 180, 2} {10, 180, 2} {4, 120, 1} {2, 120, 2}
CIFAR-100 {1, 300, 2} {2, 300, 2} {1, 240, 1} {1, 300, 1}
Food-101 {10, 300, 1} {12, 300, 1} {6, 180, 1} {4, 180, 1}

SVHN {12, 120, 3} {12, 180, 3} {12, 60, 1} {12, 300, 1}
Flowers-102 {1, 300, 1} {1, 300, 1} {1, 120, 1} {1, 180, 1}

4.73, and 0.62 hours on CIFAR-10, CIFAR-100, Food-101,
SVHN, and Flowers-102, respectively.
Utility comparison. We began by evaluating the model
utility under various configurations of CRYPTPEFT. In the
baseline approach, the neural architecture search component is
absent, resulting in the use of the same adapter structure for
all downstream tasks. In contrast, our approach customizes
CRYPTPEFT to align with the specific characteristics of
each downstream task. As shown in Table III, the utility-
first configuration of CRYPTPEFT outperforms the traditional
PEFT baseline by 1.45%. This improvement is particularly
significant considering that the PEFT baseline requires the
majority of computations on both the backbone and adapter
to be performed with secure protocols (Fig. 1c), which intro-
duces substantial communication and computational overhead
(Table IV). Furthermore, even the efficiency-first configuration
of CRYPTPEFT, which sacrifices some utility for inference
efficiency, outperforms the baseline that simply fine-tuning the
last layer by an average of 0.80%.

We also report the average number of parameters involved in
encrypted computation across the downstream tasks. CRYPT-
PEFT achieves a significant reduction, lowering the parameter
count by 88.81% in the efficiency-first setting for the WAN
environment, compared to the last-layer fine-tuning baseline
(0.80 million vs. 7.15 million). This reduction translates to
lower computational and communicational overhead in private
inference, which is further analyzed in the following.

C. Private inference efficiency

We implemented an end-to-end private inference system
for CRYPTPEFT using the privacy-preserving machine learn-
ing framework CRYPTEN [1]. To ensure a fair compari-
son, we adopted the efficiency-first configuration and applied
the same approximation techniques—specifically, the state-
of-the-art Softmax and GELU approximations introduced by
SHAFT—to all baseline methods, as described in Sec. IV-A.
We evaluated the inference efficiency of CRYPTPEFT and the
baselines under both simulated LAN and WAN settings.

As shown in Table IV, CRYPTPEFT significantly reduces
private inference latency in both LAN and WAN environments.
Taking CIFAR-100 as an example, CRYPTPEFT achieves a
20.85× speedup over the last-layer fine-tuning baseline and a
238.76× speedup over AdaptFormer in the LAN setting. In
the WAN setting, it yields a 20.08× and 243.84× speedup
over the same baselines, respectively. Notably, CRYPTPEFT
demonstrates an inference time of 2.26 seconds with an accu-
racy of 85.47% on CIFAR-100 under the WAN environment.

Performance breakdown. Table V provides a detailed per-
formance breakdown of CRYPTPEFT on the CIFAR-100
dataset, including communication cost, communication round,
communication time, and total inference time. For compar-
ison, we used the most efficient baseline among the SFT
configurations—fine-tuning only the last layer. Compared to
this baseline, CRYPTPEFT reduces the number of commu-
nication rounds by 62.37% and the communication cost by
an average of 96.45% in both LAN and WAN environments.
Since communication is the dominant contributor to latency
in MPC-based inference, these reductions result in signifi-
cant performance gains: CRYPTPEFT achieves speedups of
20.85× in LAN settings and 20.08× in WAN settings.

Reliability of the cost model. The cost model plays a
critical role in our NAS framework. To evaluate its accuracy,
we compare the estimated end-to-end latency with actual
measurements under both LAN and WAN settings (Table IV).
The results show that the estimation error remains within a
±4.3% margin, indicating that the model provides reliable
latency predictions to guide the search process.

Comparison with MPCViT [52]. We also compared CRYPT-
PEFT with MPCViT, the current state-of-the-art that leverages
NAS and approximation techniques for efficient private infer-
ence for ViT. MPCViT provides pre-trained models for vari-
ous downstream tasks, including CIFAR-10 and CIFAR-100,
which align with our evaluation benchmarks. As shown in Ta-
ble VI, CRYPTPEFT outperforms MPCViT on both datasets,
achieving higher utility and a 9.19× to 13.14× speedup
in private inference. These gains result from CRYPTPEFT’s
PEFT-specific design, which leverages a public backbone and
adopts the OWC policy to minimize encrypted computation,
thereby enhancing both model utility and efficiency.

D. Ablation Study and Sensitivity Analysis

Sensitivity to network conditions. In addition to the simulated
LAN and WAN environments, we further evaluated the private
inference efficiency of CRYPTPEFT under a range of network
bandwidths using the CIFAR-100 dataset. The network latency
was fixed at 4 ms, and the SFT configuration was adopted as
the baseline. As shown in Table VII, CRYPTPEFT consis-
tently outperforms the baseline across all bandwidth settings.
Notably, CRYPTPEFT reduces the communication volume to
only 3.87% of that required by SFT (Table V). This efficiency
gain becomes increasingly significant under limited bandwidth
conditions. Specifically, CRYPTPEFT achieves speedups of
9.56× under optimal network conditions and up to 21.72×
under the most constrained setting. Given that MPC-based
private inference is inherently communication-intensive and
highly sensitive to network conditions, CRYPTPEFT exhibits
strong robustness to degraded network environments, thereby
enhancing its viability for real-world applications.

Effectiveness of LinAtten. We evaluated LinAtten by
comparing it with several attention mechanisms specifically
designed for MPC-friendly computation. Using the CIFAR-
100 dataset, we integrated three representative approaches—
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TABLE III: Comparison of model utility (i.e., accuracy). CRYPTPEFT achieves classification accuracy comparable to the
baseline methods, while significantly reducing the number of parameters involved in encrypted computation.

Methods Avg. private CIFAR-10 CIFAR-100 Food-101 SVHN Flowers-102 Avg.
params. (M) utility

PEFT
(baseline)

LoRA 86.01 97.31% 87.41% 83.95% 91.81% 84.37% 88.97%
AdaptFormer 87.05 97.34% 87.23% 83.91% 91.72% 84.42% 88.92%

SFT
(baseline)

Last Layer 7.15 97.28% 86.24% 84.99% 87.35% 88.81% 88.93%
Last 2 layers 14.23 97.51% 86.57% 85.56% 90.10% 90.63% 90.07%

CRYPTPEFT

Utility-first (LAN) 1.28 97.29% 85.63% 84.84% 91.82% 92.60% 90.43%
Efficiency-first (LAN) 0.46 97.19% 85.37% 84.56% 90.03% 91.32% 89.69%

Utility-first (WAN) 1.53 97.26% 85.70% 84.70% 91.51% 92.60% 90.35%
Efficiency-first (WAN) 0.80 97.23% 85.47% 84.38% 90.27% 91.45% 89.76%

TABLE IV: Comparisons of private inference latency (unit: second) within typical LAN and WAN environments. We also
report the latency estimated by our cost model for comparison (

:::
with

:::::
wavy

:::::::::
underline).

Methods CIFAR-10 CIFAR-100 Food-101 SVHN Flowers-102

L
A

N

PEFT
(baseline)

LoRA 271.34 270.39 266.42 266.59 267.82
AdaptFormer 269.02 269.80 270.75 268.31 271.65

SFT
(baseline)

Last layer 23.30 23.56 23.44 23.17 23.72
Last 2 layers 46.89 46.96 44.95 45.28 47.24

CRYPTPEFT Efficiency-first 0.81 (
:::
0.83) 1.13 (

:::
1.10) 1.04 (

:::
1.06) 0.90 (

:::
0.87) 0.75 (

::
0.75)

W
A

N

PEFT
(baseline)

LoRA 548.27 545.91 547.08 546.43 545.56
AdaptFormer 549.95 551.08 550.64 549.66 548.96

SFT
(baseline)

Last layer 45.32 45.38 45.25 45.56 44.26
Last 2 layers 90.70 90.80 90.07 88.08 90.54

CRYPTPEFT Efficiency-first 2.45 (
:::
2.55) 2.26 (

:::
2.24) 1.85 (

:::
1.79) 2.78 (

:::
2.66) 1.61 (

::
1.68)

TABLE V: Performance breakdown analysis.

Metrics SFT
(baseline) CRYPTPEFT Improvements

L
A

N

Comm. (GB) 1.55 0.05 31.00×
Comm. round 77 29 2.66×

Comm. time (s) 14.40 0.55 26.18×
Total time (s) 23.56 1.13 20.85×

W
A

N

Comm. (GB) 1.55 0.06 25.83×
Comm. round 77 29 2.66×

Comm. time (s) 34.42 1.51 22.79×
Total time (s) 45.38 2.26 20.08×

TABLE VI: Comparison of utility and private inference latency
(unit: second) between MPCViT and CRYPTPEFT.

Settings Metrics MPCViT CRYPTPEFT Improvements

C
IF

A
R

-1
0

L
A

N Utility 94.27% 97.19% ↑2.92%
Total time 10.64 0.81 13.14×

W
A

N Utility 94.27% 97.23% ↑2.96%
Total time 24.10 2.45 9.84×

C
IF

A
R

-1
00

L
A

N Utility 77.46% 85.37% ↑7.91%
Total time 10.38 1.13 9.19×

W
A

N Utility 77.46% 85.47% ↑8.01%
Total time 22.97 2.26 10.16×

MPCFormer, SHAFT, and MPCViT—into the CRYPTPEFT
framework and conducted end-to-end private inference un-
der various network conditions. As shown in Fig. 9, we

TABLE VII: Total private inference latency (unit: second)
under varying network bandwidths.

Bandwidths SFT (baseline) CRYPTPEFT Improvements

100 Mbps 145.77 6.71 21.72×
500 Mbps 38.65 2.11 18.32×

1 Gbps 23.71 1.71 13.87×
5 Gbps 12.95 1.35 9.56×

report both communication rounds and communication cost
for each method. Compared to existing attention mechanisms,
CRYPTPEFT achieves significant reductions in both met-
rics. This performance gain is attributed to the design of
LinAtten, which provides a more communication-efficient
attention mechanism. Specifically, LinAtten relies predom-
inantly on MPC-friendly operations (additions and multiplica-
tions), thereby reducing both communication and computation
overheads (see Fig. 5).

Under different network conditions, Fig. 10b presents the
total inference latency, where CRYPTPEFT consistently out-
performs all baselines. In particular, compared to MPCFormer,
MPCViT, and SHAFT, CRYPTPEFT achieves speedups of
1.13× to 1.56×, 2.73× to 4.49×, and 6.02× to 14.70×,
respectively, highlighting the effectiveness of LinAtten in
improving private inference efficiency.

Sensitivity to batch sizes. In real-world inference scenarios,
batching and GPU parallelism are commonly employed to
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Fig. 9: CRYPTPEFT outperforms existing attention mecha-
nisms in terms of both communication round and cost.
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Fig. 11: Private inference efficiency under different batch sizes.

improve inference efficiency. To evaluate the impact of batch
size on private inference efficiency, we evaluated CRYPTPEFT
across a range of batch sizes using both CPU and GPU
backends. All experiments were conducted on the CIFAR-
100 dataset under a WAN network setting, and we report
the amortized overhead per sample. As illustrated in Fig. 11,
increasing the batch size leads to substantial improvements in
private inference efficiency. For example, when using a CPU,
scaling the batch size from 1 to 32 results in a 1.30× speedup
in computation time and a 1.37× speedup in communication
time per sample. However, the marginal gains decrease with
larger batch sizes due to hardware and network bandwidth
limitations. GPU-based computation yields even greater bene-
fits: increasing the batch size from 1 to 32 achieves an 4.10×
speedup in computation time.

Effectiveness of NAS. Our NAS approach incorporates a cost
model tailored for private inference, prioritizing architectures
with higher efficiency in this setting. To evaluate its effective-
ness, we adopted ENAS [44], a representative reinforcement
learning based NAS method, as the baseline. We conducted
experiments under the WAN network environment across 5
downstream tasks. The end-to-end private inference latency
was evaluated using the adapters discovered by both methods.
As shown in Fig. 12, our method achieved a 4.07× average
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Fig. 12: Comparison of accuracy and private inference latency
for models discovered by CRYPTPEFT and ENAS.

speedup in private inference latency, with only a marginal drop
in classification accuracy (89.73% vs. 90.51%). In addition, it
identified target models 1.85× faster on average compared to
ENAS (3.03 hours vs. 5.60 hours on average).

VII. LIMITATIONS AND DISCUSSIONS

Backbone model overhead. Under the OWC policy adopted
by CRYPTPEFT, a substantial portion of the computation on
the backbone model is offloaded to the MU and executed in
plaintext. This design assumes the MU has moderate com-
putational capability—a reasonable assumption given that, in
traditional MPC-based approaches, the MU already engages in
costly encrypted computations. Since encrypted computation
typically dominates the MU’s workload, reducing its reliance
through OWC offers a significant advantage.

In CRYPTPEFT, both MS and MU must download the
backbone model (e.g., from public repositories like Hugging
Face), incurring a one-time offline cost that does not impact
private inference efficiency. Both parties also store a local
copy of the backbone, introducing certain storage overhead.
However, similar to existing PEFT methods, CRYPTPEFT
benefits from model reuse across multiple downstream tasks,
significantly reducing overall storage demands.

Scalability to LLMs. A promising avenue is to extend
CRYPTPEFT’s applicability to a wider range of architectures
and application domains. While our current focus is on vision-
based tasks, adapting the proposed approach to large language
models (LLMs) or multi-modal networks could yield novel
insights and present new challenges. Specifically, addressing
the unique functional blocks and data flow patterns inherent
in language transformers may necessitate specialized adapter
designs, enhanced OWC strategies, and innovative approxima-
tion methods tailored to natural language processing.

Trusted Execution Environment (TEE). While our primary
focus is on the MPC setting, our proposed method is com-
patible with TEE-based deployments with minimal modifi-
cation. Specifically, the OWC constraint and the resulting
architecture search procedure are agnostic to the underlying
secure execution mechanism and can be readily applied in TEE
environments. TEEs offer advantages in terms of lower latency
and simpler deployment, especially in single-device or edge
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scenarios. However, they rely on trusting the hardware vendor
and are potentially susceptible to side-channel attacks, whereas
MPC provides stronger security guarantees under standard
cryptographic assumptions.

VIII. RELATED WORKS

Privacy-preserving computation friendly neural network ar-
chitectures. Traditional neural networks were not originally
designed to accommodate private inference. To bridge this gap,
recent research has explored the optimization of neural archi-
tectures for privacy-preserving settings. Early works primarily
focused on adapting CNNs for private inference under HE and
MPC frameworks [32], [14], [15], [33]. Recently, Zeng et al.
introduced MPCViT [52], a ViT architecture tailored for MPC
settings. By reducing the scale of the ViT and implementing
heterogeneous attention mechanisms, MPCViT achieves effi-
cient and accurate inference under MPC frameworks.

Efficient approximation of neural networks. To acceler-
ate private inference, researchers have explored polynomial
approximations of nonlinear functions [51], [34], [4], [21],
[10], [54]. While low-precision approximations can enhance
computational efficiency, they often lead to utility degradation.
MPCFormer employs knowledge distillation to improve model
utility compromised by low-precision approximations [34].
AutoFHE introduces layerwise mixed-degree polynomial ap-
proximations, assigning different polynomial degrees to var-
ious layers based on their sensitivity to approximation er-
rors [4]. Recent studies have proposed more efficient approxi-
mation methods to mitigate utility degradation caused by low-
precision approximations [56], [43].

Private transformer inference systems. The widespread
adoption of Transformer architectures has introduced notable
challenges for private inference. In response, several studies
have developed efficient private inference systems tailored for
Transformers [23], [42], [36], [25], [29]. Specifically, Iron
addresses the intensive computational demands of large-scale
matrix multiplications and complex nonlinear functions like
Softmax and GELU inherent in Transformer models [23].
BumbleBee [36] and Bolt [42] implement advanced protocols
for matrix multiplication and activation functions. CipherGPT
extends these advancements to generative large language mod-
els [25]. SHAFT [29] extends CRYPTEN [1] by introducing
efficient protocols for constant-round Softmax and GELU
computations. In comparison, CRYPTPEFT introduces a novel
architecture tailored for PEFT methods, which can be seam-
lessly integrated into existing backbone models.

IX. CONCLUSIONS

In this paper, we present CRYPTPEFT, the first PEFT ar-
chitecture designed specifically for private inference. CRYPT-
PEFT introduces an OWC paradigm that confines encrypted
computation to the adapter, thereby eliminating the need for
expensive two-way interactions with the backbone. To ensure
strong model utility under the OWC constraint, we explore
the design space of OWC-compliant adapters and incorporate

an automated search mechanism to identify optimal configura-
tions. Our evaluations demonstrate that CRYPTPEFT achieves
significant improvements in private inference efficiency.
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[16] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion,
pseudorandom secret-sharing and applications to secure computation. In
Theory of Cryptography: Second Theory of Cryptography Conference,
TCC 2005, Cambridge, MA, USA, February 10-12, 2005. Proceedings
2, pages 342–362. Springer, 2005.
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APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

CRYPTPEFT is a parameter-efficient fine-tuning (PEFT)
solution specifically designed for private inference scenarios.
It minimizes the cost of encrypted computation by intro-
ducing a novel one-way communication (OWC) architecture,
significantly reducing both computational and communication
overhead. To maintain strong model utility under these con-
straints, CRYPTPEFT incorporates OWC-compatible adapters
and employs an automated neural architecture search (NAS)
algorithm. Our artifact includes the code and scripts neces-
sary to evaluate both the model utility and private inference
efficiency of the proposed method.

1) How to access: The source code of CRYPTPEFT is
publicly available at https://doi.org/10.5281/zenodo.17036866.

2) Hardware dependencies: Our artifact can be executed
on a standard Linux server without requiring specialized
hardware. The original experiments were conducted on a
machine equipped with two NVIDIA GeForce RTX 4090
GPUs, used primarily for neural architecture search (NAS)
and for assessing the benefits of GPU acceleration in batched
task processing. To reduce hardware dependency and enhance
accessibility, GPU-related components have been excluded
from the artifact. This modification does not impact the paper’s
core claims: CRYPTPEFT achieves high model utility and
efficient private inference through the introduction of the OWC
policy and an OWC-compliant adapter design.

3) Software dependencies: We implemented CRYPT-
PEFT using Python 3.10.14. The dependencies for CRYPT-
PEFT (and the following experiments) are detailed in
requirements.txt.

4) Benchmarks: (1) Datasets: CIFAR-10 [28], CIFAR-
100 [3], Food-101 [6], SVHN [22] and Flowers-102 [41].
(2) Models: ViT-B-16, a set of adapters searched using Al-
gorithm 1.

B. Artifact Installation & Configuration

Download the source code locally following Sec. A-A1.
In the AE folder under the project root directory (default:
CRYPTPEFT), you will find a README.md file with detailed
installation and configuration instructions.

C. Major Claims

• (C1): CRYPTPEFT achieves classification accuracy com-
parable to the state-of-the-art methods, while significantly

reducing the number of parameters involved in encrypted
computation. This is proven by the experiment (E1), with
results reported in Table III.

• (C2): CRYPTPEFT significantly reduces private inference
latency in both LAN and WAN environments. This is
proven by the experiment (E2), with results reported in
Table IV and Table V.

• (C3): CRYPTPEFT significantly outperforms
MPCViT [52] by providing higher utility and achieving
9.19× to 13.14× speedup in private inference on
CIFAR-10 and CIFAR-100. This is proven by the
experiment (E1), experiment (E2) and experiment (E3),
with results reported in Table VI.

• (C4): The LinAtten proposed in CRYPTPEFT signif-
icantly outperforms the attention mechanisms used in
MPCFormer [34], MPCViT [52], and SHAFT [29] in
terms of private inference efficiency. This is proven by
the experiment (E4), with results reported in Fig. 10.

D. Evaluation

1) Experiment (E1): [CRYPTPEFT utility] [5 human-
minutes + 20 compute-minutes]: This experiment is designed
to evaluate the utility of CRYPTPEFT under both Utility-first
and Efficiency-first strategies.

[Preparation] Go to the project root directory (default
name: CRYPTPEFT).

[Execution] Run the command below.

$: bash AE/eval_model_utility.sh

[Results] All results are saved in the directory
AE/eval_result. Open the file named like
WAN_CRYPTPEFT_Efficiency_first_cifar100
to find results similar to the example below (note that results
may vary by about 1% depending on the experimental
environment and hardware).

========= eval result ...... =========
acc:85.47
n_param:1.12141

2) Experiment (E2): [CRYPTPEFT private inference la-
tency] [5 human-minutes + 90 compute-minutes]: This exper-
iment is designed to evaluate the private inference latency of
CRYPTPEFT under LAN and WAN environments.

[Preparation] Go to the project root directory (default
name: CRYPTPEFT).

[Execution]
(1): Execute the following command in the Linux terminal

to simulate a LAN network environment (avoid using VSCode,
as it may cause the execution to fail).

$: sudo tc qdisc add dev lo root \
netem rate 1gbit delay 0.5ms
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(2): Open two terminals and run the following commands
separately (you can use either VSCode or a Linux terminal).

$0: bash AE/eval_CRYPTPEFT_PI.sh 0 LAN
$1: bash AE/eval_CRYPTPEFT_PI.sh 1 LAN

$0: bash AE/eval_SFT_Last_PI.sh 0 LAN
$1: bash AE/eval_SFT_Last_PI.sh 1 LAN

(3): Execute the following command in the Linux terminal
to simulate a WAN network environment (avoid using VS-
Code, as it may cause the execution to fail).

$: sudo tc qdisc del dev lo root
$: sudo tc qdisc add dev lo root \
netem rate 400mbit delay 4ms

(4): Open two terminals and run the following commands
separately (you can use either VSCode or a Linux terminal).

$0: bash AE/eval_CRYPTPEFT_PI.sh 0 WAN
$1: bash AE/eval_CRYPTPEFT_PI.sh 1 WAN

$0: bash AE/eval_SFT_Last_PI.sh 0 WAN
$1: bash AE/eval_SFT_Last_PI.sh 1 WAN

(5): Restore the default network environment (avoid using
VSCode, as it may cause the execution to fail).

$: sudo tc qdisc del dev lo root

[Results] All results are saved in the directory AE/
eval_private_inference_result. Open the file
named like {e.g., eval_CryptPEFT_LAN_cifar100} to
find results similar to the example below (the total time and
comm time may vary due to differences in CPU specifica-
tions; however, the improvements compared to the baseline,
comm cost and comm round remain consistent).

total_time: 1.1336361408233642
comm_round: 29.0
comm_cost: 0.052045270800590515
comm_time: 0.49003771375864746

3) Experiment (E3): [Comparation with MPCViT] [5
human-minutes + 20 compute-minutes]: This experiment is
designed to compare the model utility and private inference
latency between CRYPTPEFT and MPCViT (the utility results
of MPCViT are taken from the results reported in their
paper [52]).

[Preparation]
(1): Go to the project root directory (default name: CRYPT-

PEFT).
(2): Simulate WAN and LAN network environments follow-

ing similar steps as in Experiment (E2).

[Execution]
(1): Make sure you are in the simulated LAN network envi-

ronment. Open two terminals and run the following commands
separately (you can use either VSCode or a Linux terminal).

$0: bash AE/eval_MPCViT_PI.sh 0 LAN
$1: bash AE/eval_MPCViT_PI.sh 1 LAN

(2): Make sure you are in the simulated WAN network envi-
ronment. Open two terminals and run the following commands
separately (you can use either VSCode or a Linux terminal).

$0: bash AE/eval_MPCViT_PI.sh 0 WAN
$1: bash AE/eval_MPCViT_PI.sh 1 WAN

[Results] All results are saved in the directory AE/
eval_private_inference_result. Open the file
named like eval_MPCViT_WAN_cifar100 to find results
similar to the example below.

total_time: 22.374131655693056
comm_round: 513.0
comm_cost: 0.5615268349647522
comm_time: 18.25921990380448

4) Experiment (E4): [The private inference efficiency of
LinAtten ] [5 human-minutes + 50 compute-minutes]: This
experiment is designed to evaluate the efficiency of private
inference with various attention mechanisms.

[Preparation]
(1): Go to the project root directory (default name: CRYPT-

PEFT).
(2): Simulate different network bandwidths following simi-

lar steps as in Experiment (E2). Note that the network latency
should be fixed at 4ms, and the network environment must be
reset to default before changing to a different bandwidth.

[Execution] We assume you are in a network environment
with 1Gbps bandwidth and 4ms latency. Open two terminals
and run the following commands separately.

$0: bash AE/ablation_LinAtten_PI.sh 0 1G
$1: bash AE/ablation_LinAtten_PI.sh 1 1G

[Results] All results are saved in the directory
AE/eval_private_inference_result.
Open the file named like
ablation_LinAtten_1G_CryptPEFT_cifar100
to find results similar to the example below.

total_time: 1.5270877838134767
comm_round: 29.0
comm_cost: 0.06424663960933685
comm_time: 0.8196889258921146
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