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and privacy. It assumes a distributed system involving an
intermediate server called the shuffler and typically works as
follows. Each user adds noise to her input data and sends
an encrypted version of the noisy data to the shuffler. The
shuffler randomly shuffles the noisy data and sends it to the
data collector. Finally, the data collector decrypts the shuffled
data. Under the assumption that the shuffler does not collude
with the data collector, the random shuffling amplifies privacy.
Specifically, DP strongly protects privacy when the privacy
budget ε is small (e.g., ε ≤ 1), and the shuffling significantly
reduces ε. Thus, the shuffle model achieves the same value of
ε as the local model with less noise, i.e., higher accuracy.

However, most shuffle DP protocols have the following two
vulnerabilities. First, they are vulnerable to collusion attacks
by the data collector and users (or collusion with users) [17],
[18]. Specifically, the data collector can obtain noisy data of
some users by colluding with them or compromising their
accounts. In this case, the data collector can reduce the number
of shuffled values and thereby reduce the effect of shuffling. As
a result, the actual value of ε can be significantly increased
(e.g., from around 1 to 8; see Section IV-B). Second, most
shuffle protocols are vulnerable to data poisoning attacks [18],
[19], [20], which inject fake users and carefully craft data sent
from the fake users to manipulate the statistical results.

A recent study [18] addresses these two issues by introduc-
ing an augmented shuffle model, where the shuffler performs
additional operations, such as random sampling and adding
dummies, before shuffling. Specifically, [18] proposes the LNF
(Local-Noise-Free) protocol, in which each user sends her
(encrypted) input data to the shuffler without adding noise, and
the shuffler performs random sampling, adding dummies, and
shuffling. The key idea of this protocol is to prevent malicious
users’ behavior by adding noise on the shuffler side rather than
the user side. The protocol can also be easily implemented
using any PKE (Public Key Encryption) scheme, such as RSA
and ECIES. It is shown in [18] that the LNF protocol is robust
to both collusion with users and poisoning from users while
also providing higher accuracy than other shuffle protocols.

Unfortunately, the LNF protocol in [18] is limited to a
simple frequency estimation task with a small domain and
cannot be applied to data analysis with a large domain.
Specifically, both the communication and computational costs
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I. INTRODUCTION

DP (Differential Privacy) [1] has been widely adopted by
industry [2], [3], [4] and government agencies [5] to perform
data analysis while protecting individual privacy. DP has been
originally studied in the central model, where a single data
collector holds all users’ personal data and adds noise to
the statistical results. Although central DP enables accurate
data analysis, all personal data can be leaked by data breach
incidents [6]. LDP (Local DP) [7], [8], [9] addresses this issue
by adding noise to each user’s personal data before sending it
to the data collector. However, LDP suffers from low accuracy,
as it needs to add a lot of noise to each user’s personal data.

The shuffle model of DP [10], [11], [12], [13], [14], [15],
[16] has been recently studied to achieve high accuracy
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of the LNF protocol are linear in the number d of items
and are prohibitively large when d is large. For example,
our experimental results show that the LNF protocol would
require about 100 Terabits of communications and 3 years of
run time to calculate a frequency distribution when d = 109

(see Section VIII). The LNF protocol also cannot be applied
to a more complicated task, such as KV (Key-Value) statistics
estimation [21], [22], [23], with large d for the same reason.

In this work, we fill this gap by introducing a novel protocol
for large-domain data. We first focus on frequency estimation
over categorical data with a large domain and consider a
simple extension of the LNF protocol that reduces the domain
size using a hash function common to all users. We analyze
the theoretical properties of this protocol and show that it
suffers from low accuracy due to hash collision. We also show
that this issue cannot be addressed by introducing a different
hash function for each user (or each user group assigned in
advance), as dummies need to be added for each hash function.

To achieve high accuracy and efficiency, we propose a novel
protocol called the FME (Filtering-with-Multiple-Encryption)
protocol. Below, we explain its technical overview.

A. Technical Overview

Our Protocol. In our FME protocol, we use a hash function to
filter out unpopular items with low (or zero) frequencies rather
than to calculate frequencies. Then, we accurately calculate
frequencies for the selected items. This can be realized by
introducing a two-round interaction between users and the
shuffler, where each user sends her hash value for in the
first round and her input data or a symbol “⊥” representing
an unselected item in the second round. However, the two-
round interaction significantly reduces the usability, as each
user must respond to the shuffler twice. Moreover, it needs
synchronization [24] in that the shuffler must wait for all users’
responses before shuffling in each round. Thus, the two-round
protocol would not be practical for many systems.

We overcome this issue by replacing unselected items
with ⊥ on the data collector side and introducing multiple
encryption [25]. Specifically, our FME protocol achieves one
round of interaction between users and the shuffler as follows.
Each user sends her hash value and input data simultaneously
to the shuffler. The shuffler performs augmented shuffling
for the hash values and sends them and the corresponding
input data to the data collector. The data collector filters items
based on the shuffled hash values, replaces unselected items
in the input data with ⊥, and sends them back to the shuffler.
Finally, the shuffler performs augmented shuffling for the input
data, and the data collector calculates frequencies from the
shuffled input data. Note that the input data are communicated
between the shuffler and the data collector three times in
this protocol. Thus, a lot of information can be leaked by
comparing them. To prevent this leakage, we use multiple
encryption for the input data and have the shuffler and data
collector decrypt the input data each time they receive them.
We rigorously analyze the privacy of our protocol and prove
it achieves computational DP [26], [27]. We also show that

it achieves high robustness against collusion and poisoning
attacks, accuracy, and efficiency. Furthermore, we optimize the
range of the hash function in terms of efficiency.

Then, we apply our FME protocol to KV statistics es-
timation, where each user has KV pairs (e.g., movies and
ratings) and the goal is to estimate the frequency and mean
value for each key (item). For this data type, we propose an
additional technique called TKV-FK (Transforming KV Pairs
and Filtering Keys), which transforms KV pairs into one-
dimensional data and filters the data at a key level to reduce
bias in the estimates. We extensively evaluate our proposals
and show they are effective for both categorical and KV data.

Technical Novelty. Our main technical novelty lies in a
technique that carefully uses multiple encryption to provide
(computational) DP within one round of interaction for users,
and in the rigorous proof of DP. To our knowledge, we are the
first to use multiple encryption to reduce the number of rounds
while providing DP (see Section II for details). In addition,
our FME protocol does not use multiple encryption merely
to implement onion routing [28]. More importantly, multiple
encryption enables the data collector to remove ciphertexts
corresponding to unpopular items without revealing this fact
to the shuffler by replacing them with ciphertexts that encrypt
⊥. We prove the DP guarantee of such a protocol by reducing
it to the security of a PKE scheme. Our work also includes
other technical contributions, such as the optimization of the
hash range and a technique to reduce bias (i.e., TKV-FK).

Furthermore, we prove many theorems that are not simple
extensions of [18]. Examples include our theoretical results
for KV data (e.g., Theorems 11 and 12), as [18] does not deal
with KV data. In particular, the existing robustness analysis for
KV data [19] assumes that the number of each user’s KV pairs
does not exceed the padding length [23], which may not hold
in practice. Theorem 11 removes this assumption and shows
the robustness of our protocol in a general setting where the
number of KV pairs can exceed the padding length. Another
example is Theorem 8, which analyzes the communication
cost of our FME protocol based on the size of single, double,
or triple ciphertexts and a bound on the expected number of
selected items. This theorem is also new and serves as a basis
for optimizing the hash range. We also present a new theorem
(Theorem 5) that shows the low accuracy of a simple extension
of the LNF protocol [18] using the common hash function
under the 2-wise independence assumption [29].

B. Our Contributions

We make the following contributions:
• We propose a novel augmented shuffle protocol called the

FME protocol for large-domain categorical and KV data.
Our protocol achieves high privacy, robustness, accuracy,
and efficiency within one round of interaction for users
using multiple encryption. For KV data, we propose an
additional technique called TKV-FK to reduce bias.

• We demonstrate the effectiveness of our proposals
through theoretical analysis and extensive experiments
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that compare ours with twelve state-of-the-art shuffle
protocols (eight for categorical and four for KV data).

Compared to the LNF protocol [18], our protocol reduces the
communication cost from about 100 Terabits to 260 Gigabits
and the run time from about 3 years to 1 day (d = 109). Note
that d is much smaller than 109 in most practical applications
(e.g., there are d = 8× 106 census blocks in the US; Amazon
has d = 6 × 108 products in total [30]), in which case the
communication and computational costs are also smaller. We
also show that our protocol can be applied to a system with
large-scale users and items (e.g., item rating system [31]) by
introducing user sampling. The proofs of all statements are
given in our full paper [32]. Our code is available in [33].

II. RELATED WORK

Shuffle DP. The shuffle model of DP can be divided into
two models: a pure shuffle model and an augmented shuffle
model [18]. Most existing work (e.g., [11], [12], [13], [14],
[15], [16], [34], [35], [36]) assumes the pure shuffle model,
where the shuffler performs only shuffling. However, this
model is vulnerable to collusion with users and data poisoning.
This vulnerability is inevitable in this model because genuine
users need to add noise to their input data; in this case, the
data collector can increase ε by obtaining noisy data of some
users, and fake users can effectively manipulate the statistical
results by not adding noise to their input data [19].

Beimel et al. [37] show a pure shuffle protocol for general
tasks, which achieves accuracy comparable to the central one.
However, their protocol requires two rounds of interaction for
users whereas ours requires only one round of interaction.

Some protocols, including Google’s Prochlo [10], assume
the augmented shuffle model, where the shuffler performs
additional operations, e.g., randomized thresholding [10], ran-
dom sampling [38], and adding dummies [17]. A recent
study [18] proposes the LNF protocol that does not add
noise on the user side and shows that it is robust to both
collusion and poisoning attacks. However, this protocol cannot
be applied to large-domain data. We address this issue by
introducing a novel protocol with multiple encryption.
Collusion/Poisoning Attacks. Some studies [17], [18] show
that pure shuffle protocols are vulnerable to collusion with
users. To address this issue, Wang et al. [17] add dummies
uniformly at random from the domain of noisy data on the
shuffler side. However, their protocol still suffers from the in-
crease in ε by collusion with users, as shown in Appendix E-B.

Data poisoning attacks have been studied in various data
types, e.g., categorical [19], [39], KV [20], numerical [40],
and set-valued data [41]. Although these attacks assume the
local model, they can also be applied to the shuffle model.
Defenses have also been studied for categorical or KV data.
The defenses in [42], [43], [44], [45] introduce multiple rounds
for users and reduce usability. The defenses in [19], [46]
have limited effectiveness [18]. We also show that the defense
in [20] has limited effectiveness in Appendix E-B.
Cryptographic Protocols. Multiple encryption has been stud-
ied in the field of cryptography [25], [47], [48]. Its applications

include key-insulated encryption [47], onion routing [28], mix-
net [49], and an instant messenger [50]. To our knowledge,
we are the first to use multiple encryption to provide DP for
distributed systems within one round of interaction for users.

Finally, a DP protocol using secure multi-party computation
is proposed in [51] to calculate a frequency distribution. Their
protocol requires a PKE scheme with a homomorphic property,
whereas ours can use any PKE scheme based on a wider
class of assumptions. Moreover, the protocol in [51] cannot be
applied to more advanced KV statistics estimation, as (i) each
user may hold multiple KV pairs, and (ii) the data collector
needs to estimate both frequency and mean for each key. In
contrast, our protocol can be used to estimate KV statistics.

III. PRELIMINARIES

A. Notations

Let R, R≥0, N, and Z≥0 be the sets of real numbers,
non-negative real numbers, natural numbers, and non-negative
integers, respectively. Let n ∈ N be the number of users, and
d ∈ N be the number of items. For i ∈ [n] (= {1, 2, . . . , n}),
let ui be the i-th user. Let X be the space of input data,
and xi ∈ X be the input data of user ui. Sections V and VI
focus on frequency estimation over categorical data, whereas
Section VII focuses on frequency and mean estimation over
KV data. Below, we introduce the notations for each case.

Categorical Data. For categorical data, we follow [18], [19],
[52] and represent an item as an integer from 1 to d. Each
user’s input data xi (i ∈ [n]) is an item, i.e., X = [d]. The data
collector estimates the (relative) frequency fi ∈ [0, 1] for each
item i ∈ [d]. The frequency fi is given by fi = 1

n

∑n
j=1 1xj=i,

where 1xj=i takes 1 if xj = i and 0 otherwise. We denote
the estimate of fi by f̂i ∈ R. Let f = (f1, . . . , fd) and f̂ =
(f̂1, . . . , f̂d). The goal for the data collector is to calculate f̂
as close as possible to f under DP.

KV Data. For KV data, we follow [20], [21], [22], [23]
and represent a key (item) as an integer from 1 to d and a
numerical value as a real value between −1 and 1. Note that
we can assume that the values are in the range [−1, 1] without
loss of generality, as numerical values can be transformed into
[−1, 1]. In this use case, each user’s input data xi (i ∈ [n])
is a set of KV pairs ⟨k, v⟩, where k ∈ [d] and v ∈ [−1, 1].
Note that each user has at most one KV pair per key, i.e.,
X =

⋃d
i=1([d] × [−1, 1])i. The data collector estimates the

frequency Φi ∈ [0, 1] and the mean value Ψi ∈ [−1, 1] for
each key i ∈ [d]. They are given by

Φi =
1
n

∑n
j=1 1⟨k,·⟩∈xj

, Ψi =
1
nΦi

∑
j∈[n],⟨k,v⟩∈xj

v,

where 1⟨k,·⟩∈xj
takes 1 if xj includes key k and 0 otherwise.

Let Φ̂i (resp. Ψ̂i) ∈ R be the estimates of Φi (resp. Ψi). Let
Φ = (Φ1, . . . ,Φd), Ψ = (Ψ1, . . . ,Ψd), Φ̂ = (Φ̂1, . . . , Φ̂d),
and Ψ̂ = (Ψ̂1, . . . , Ψ̂d). The goal is to calculate Φ̂ and Ψ̂ as
close as possible to Φ and Ψ, respectively, under DP.

We also summarize our notations in Table I of Appendix A.
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B. Differential Privacy

In this work, we use DP [1] and its computational version
called CDP (Computational DP) [26], [27] as privacy notions:

Definition 1 ((ε, δ)-DP/CDP). Let ε ∈ R≥0 and δ ∈
[0, 1]. We say a randomized algorithm M with domain Xn
provides (ε, δ)-DP if for any neighboring databases D =
(x1, . . . , xn) ∈ Xn and D′ = (x′1, . . . , x

′
n) ∈ Xn that differ

on one entry and any S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ. (1)

We also say M provides (ε, δ)-CDP (Computational DP) if
for any attacker A running in time polynomial in γ ∈ N,

Pr[A(M(D)) = 1] ≤ eε Pr[A(M(D′)) = 1] + δ + negl(γ),
(2)

where negl is a function that approaches 0 faster than the
reciprocal of any polynomial in γ.

In our work, γ coincides with the security parameter of a
PKE scheme. (ε, δ)-CDP (resp. DP) can be used for shuffle
DP protocols with (resp. without) PKE schemes. In shuffle
protocols, the shuffler or the data collector can be an attacker
A. In either case, all messages the attacker receives during the
protocols are outputs of M. Note that ε ≥ 5 is unsuitable in
most applications [53]. δ should be much smaller than 1

n [1].
We also introduce LDP [7], [54], which can be used as a

building block for pure shuffle DP protocols:

Definition 2 (ε-LDP). Let ε ∈ R≥0 and δ ∈ [0, 1]. We say
a randomized algorithm R with domain X provides ε-LDP if
for any input values x, x′ ∈ X and any S ⊆ Range(R),

Pr[R(x) ∈ S] ≤ eε Pr[R(x′) ∈ S]. (3)

Examples of LDP mechanisms R include the GRR [17],
RAPPOR [2], OUE [52], and OLH [52].

C. Pure Shuffle Model

Below, we explain the pure shuffle model assumed in most
existing shuffle DP protocols. Assume that the data collector
has a private key and publishes the corresponding public key.
In the pure shuffle protocols, each user ui adds noise to her
data xi using a randomized algorithm R, encrypts it using the
public key, and sends the encrypted version of R(xi) to the
shuffler. The shuffler randomly shuffles (encrypted) noisy data
R(x1), . . . ,R(xn) and sends them to the data collector. The
data collector decrypts the shuffled data using the private key.

Under the assumption that the shuffler does not collude with
the data collector, the data collector obtains only the shuffled
data. The shuffled data provides (ε, δ)-DP, where ε = g(n, δ)
and g is a monotonically decreasing function of n and δ. For
example, whenR provides LDP, g is expressed using the state-
of-the-art privacy amplification result [16] as follows:

Theorem 1 (Privacy amplification result in [16]). Let ε0 ∈
R≥0 and D = (x1, . . . , xn) ∈ Xn. Let R : X → Y be
a randomized algorithm. Let MS : Xn → Yn be a pure
shuffle algorithm that takes D as input, samples a uniform

random permutation π over [n], and outputs MS(D) =
(R(xπ(1)), . . . ,R(xπ(n))). If R provides ε0-LDP, then for any
δ ∈ [0, 1], MS provides (ε, δ)-DP with ε = g(n, δ), where

g(n, δ) = ln

(
1 + (eε0 − 1)

4
√

2 ln(4/δ)√
(eε0+1)n

+ 4
n

)
(4)

if ε0 ≤ ln( n
8 ln(2/δ) − 1) and g(n, δ) = ε0 otherwise.

By (4), ε is much smaller than ε0 in the LDP mechanism
when n is large. In multi-message protocols [34], [35], [36],
g(n, δ) is different from (4). See [34], [35], [36] for details.

D. Communication Cost and Accuracy

We use the following measures for the communication cost
and accuracy (i.e., utility):

Communication Cost. Let CU−S (resp. CS−D) ∈ R≥0 be
the expected number of bits sent from users to the shuffler
(resp. from the shuffler to the data collector). Then, the
expected total number Ctot of bits sent from one party to
another is given by Ctot = CU−S +CS−D. We use Ctot as a
measure of the communication cost.

Accuracy. For categorical data, we follow [17], [18], [52],
[55] and measure the expected squared error E[(f̂i − fi)2] of
the estimate f̃i for each item i ∈ [d]. If the estimate f̃i is
unbiased, then E[(f̂i − fi)

2] is equal to the variance V[f̂i].
Similarly, we follow [23] and measure the expected squared
errors E[(Φ̂i−Φi)

2] and E[(Ψ̂i−Ψi)
2] (i ∈ [d]) for KV data.

IV. COLLUSION AND POISONING ATTACKS

In this section, we explain collusion and poisoning attacks
in detail. Section IV-A defines our threat model and clarifies
why we focus on these attacks. Sections IV-B and IV-C explain
collusion and poisoning attacks, respectively.

A. Threat Model

We assume that anyone except a single user (victim),
including the shuffler, the data collector, and other users, can
be an attacker who attempts to infer the input data of the
victim. We assume that input data x1, . . . , xn are independent
(which is necessary for DP guarantees [56]) and that the
attacker can obtain input data of all users except the victim as
background knowledge.

We also assume that the data collector can collude with
some users except the victim (or compromise their accounts)
to obtain their noisy data sent to the shuffler. In addition, the
attacker can inject fake users and send an arbitrary message
from each fake user to manipulate the statistics. The former
and latter attacks are collusion and poisoning attacks, respec-
tively. We focus on these attacks because attacks by malicious
users pose a threat in practice – [57] shows that the attacker
can inject a large number of fake users in practical systems. In
particular, collusion attacks are threatening because ε can be
increased from about 1 to 8 in the pure shuffle protocols when
10% of users collude with the data collector; see Section IV-B.
It is also difficult to know the number of colluding users (and
hence the actual value of ε) in these protocols.
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As with most existing shuffle protocols, we assume that
the shuffler and the data collector are semi-honest and do
not collude with each other. Our protocol cannot achieve DP
or accurate estimates when these servers deviate from the
protocol (e.g., when the shuffler leaks data sent from users
or does not perform shuffling; when the data collector alters
the estimates). One way to address this issue is to ensure data
confidentiality and enforce the servers to follow the protocol
via a legally binding contract or a TEE (Trusted Execution
Environment) [10], [58]. Another way is to provide security
against the servers who deviate from the protocol (i.e., mali-
cious security) by using MPC (Multi-Party Computation) [59].
We leave the use of the TEE or MPC for future work.

B. Collusion with Users

Wang et al. [17] point out that ε in the pure shuffle model
can be increased when the data collector colludes with some
users to obtain their noisy data sent to the shuffler.

Specifically, let Ω ⊂ [n]. Assume that the data collector
colludes with users {ui|i ∈ Ω} and obtains their noisy
data sent to the shuffler. Then, the privacy budget ε for the
remaining users is increased from g(n, δ) to g(n−|Ω|, δ) [18].
For example, if n = 106, |Ω| = 105, and δ = 10−12 in
Theorem 1, then ε can be increased from 1.1 to 8.3.

Ideally, the value of ε should not be increased even if some
users share their data sent to the shuffler with the data collector.
Below, we formally define such robustness to collusion with
users. We first introduce Ω-neighboring databases [60]:

Definition 3 (Ω-Neighboring databases). Let Ω ⊂ [n]. We
say two databases D = (x1, . . . , xn) ∈ Xn and D′ =
(x′1, . . . , x

′
n) ∈ Xn are Ω-neighboring if they differ on one

entry whose index i is not in Ω, i.e., xi ̸= x′i for some i /∈ Ω
and xj = x′j for any j ̸= i.

Ω-neighboring databases consider an attacker who colludes
with users {ui|i ∈ Ω}. Based on this, we can define the
robustness to collusion with users as follows:

Definition 4 (Robustness to collusion with users). LetM be a
shuffle protocol that provides (ε, δ)-DP (or CDP). For i ∈ [n],
let νi be data sent from user ui to the shuffler in M. For
Ω ⊂ [n], letMΩ be a protocol that takes a database D ∈ Xn
as input and outputsMΩ(D) = (M(D), (νi)i∈Ω). We sayM
is robust to collusion with users if for any Ω ⊂ [n], any Ω-
neighboring databases D and D′, and any S ⊆ Range(MΩ),
MΩ also satisfies (1) (or (2)), i.e., if ε and δ are not increased
by collusion with users.

The data νi sent from user ui to the shuffler depends on
the protocol M. For example, in the baseline protocol in
Section V-B, νi = h(xi), where h is a hash function. In our
protocol in Section VI, νi = (xi, h(xi)).

Unfortunately, pure shuffle protocols cannot provide the
robustness in Definition 4, as they need to add noise on the
user side. The robustness in Definition 4 can be achieved by
introducing the augmented shuffle model and adding noise on
the shuffler side, as shown in Sections V to VII.

C. Data Poisoning Attacks

Following [19], [20], we consider the following targeted
attacks as data poisoning attacks. Let T ⊆ [d] be the set of
target items. We assume that the attacker injects n′ ∈ N fake
users; there are n + n′ users in total, including n genuine
users. Each fake user can send an arbitrary message to the
shuffler. This is called the output poisoning attack [40]. For
i ∈ [n′], let mi be a message sent from the i-th fake user. Let
m = (m1, . . . ,mn′) be the messages of n′ fake users.

Categorical Data. For categorical data, the attacker attempts
to increase the estimates for the target items T (i.e., to promote
T ) as much as possible. Formally, let f̂ ′i ∈ R be the estimate of
fi after poisoning. Then, the attacker’s overall gain is defined
as Gf (m) =

∑
i∈T E[f̂ ′i − f̂i] [19]. The attacker’s goal is to

maximize Gf (m).
Let Gmax

f = maxmGf (m) be the maximum value of
Gf (m). Cao et al. [19] propose the MGA (Maximal Gain
Attack) that crafts the messages m to achieve Gmax

f . We use
the maximum gain Gmax

f to measure the robustness to data
poisoning attacks in categorical data.

KV Data. For KV data, the attacker attempts to maximize
the frequency and mean estimates for the target items T (i.e.,
to promote T ). Let Φ̂′

i (resp. Ψ̂′
i) ∈ R be the estimate of Φi

(resp. Ψi) after poisoning. Then, the frequency gain and the
mean gain are given by GΦ(m) =

∑
i∈T E[Φ̂′

i − Φ̂i] and
GΨ(m) =

∑
i∈T E[Ψ̂′

i − Ψ̂i], respectively [20]. The goal is
to maximize GΦ(m) and GΨ(m) simultaneously.

Let Gmax
Φ = maxmGΦ(m) and Gmax

Ψ = maxmGΨ(m).
Wu et al. [20] propose the M2GA (Maximal Gain Attack) that
crafts m to achieve Gmax

Φ and Gmax
Ψ simultaneously. We use

the maximum frequency gain Gmax
Φ and the maximum mean

gain Gmax
Ψ as robustness measures in KV data.

V. BASELINE PROTOCOLS

In this section, we present two baseline protocols for
categorical data and explain why they are unsuitable for
large-domain data. Section V-A describes the LNF (Local-
Noise-Free) protocol in [18] and explains that it suffers from
prohibitively high communication and computational costs.
Section V-B introduces the CH (Common Hash) protocol to
address this issue and shows that it suffers from low accuracy.

A. Local-Noise-Free Protocol

Protocol. Fig. 1 shows the overview of the LNF protocol.
We show an algorithmic description of the LNF protocol in
Algorithm 2 of Appendix B-A. We denote the LNF protocol
by SLNF

D,β . SLNF
D,β has a dummy-count distribution D over Z≥0

with mean µ ∈ R≥0 and variance σ2 ∈ R≥0 and a sampling
probability β ∈ [0, 1] as parameters.

The LNF protocol SLNF
D,β is simple and works as follows

(we omit the encryption/decryption process). First, each user
ui (i ∈ [n]) sends her input value xi ∈ [d] without adding
noise. Then, the shuffler performs three operations: random
sampling, adding dummies, and shuffling. Specifically, the
shuffler randomly selects each input value with probability
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User Item Shuffler : encrypted using a public 
key of the data collectorRandom Sampling

Adding Dummies

Shuffling Data Collector

Fig. 1. Overview of the LNF protocol (n = 6, d = 3). In this example, the
shuffler discards input data of u2 and adds (z1, z2, z3) = (1, 0, 2) dummies.

β. For each item i ∈ [d], the shuffler randomly generates
zi from the dummy-count distribution D (zi ∼ D) and adds
zi dummy values. Let y1, . . . , yñ ∈ [d] be the selected input
values and dummies, where ñ ∈ Z≥0 is the total number of
these values. The shuffler samples a random permutation π
over [ñ] and sends yπ(1), . . . , yπ(ñ) to the data collector. In
Fig. 1, yπ(1), . . . , yπ(ñ) = (1, 2, 3, 3, 2, 1, 3, 1) (ñ = 8).

After receiving the shuffled values yπ(1), . . . , yπ(ñ), the
data collector calculates their histogram. Specifically, the data
collector calculates a count (absolute frequency) c̃i ∈ Z≥0

for each item i ∈ [d] from yπ(1), . . . , yπ(ñ). In the example
of Fig. 1, (c̃1, c̃2, c̃3) = (3, 2, 3). Finally, the data collector
calculates an unbiased estimate f̂i of fi as f̂i = 1

nβ (c̃i − µ)
and outputs f̂ = (f̂1, · · · , f̂d).
Theoretical Properties. SLNF

D,β provides DP and is robust
to both data poisoning and collusion attacks if a simpler
mechanism called the binary input mechanism provides DP:

Definition 5 (Binary input mechanism). Let D be a dummy-
count distribution over Z≥0. The binary input mechanism
MD,β : {0, 1} → Z≥0 with parameters D and β ∈ [0, 1]
takes binary data x ∈ {0, 1} and outputs

MD,β(x) = αx+ z,

where α and z are random variables that follow the Bernoulli
distribution Ber(β) and D, respectively (α ∼ Ber(β), z ∼ D).

Theorem 2 ([18]). If MD,β provides ( ε2 ,
δ
2 )-DP, then SLNF

D,β
provides (ε, δ)-CDP1 and is robust to collusion with users.

Theorem 3 ([18]). Let λ = n′

n+n′ and fT =
∑
i∈T fi. SLNF

D,β
provides the following robustness against poisoning attacks:

Gmax
f = λ(1− fT ). (5)

Gmax
f in (5) does not depend on ε and is smaller than

existing pure shuffle protocols [19], [34], [35], [36]. Thus,
Theorems 2 and 3 mean that SLNF

D,β provides DP and is robust
to collusion and data poisoning attacks if MD,β provides DP.

In addition, SLNF
D,β achieves the following accuracy:

1Note that MD,β provides CDP, as it uses a PKE scheme. Specifically,
it provides (ε, δ)-DP for the data collector and (0, 0)-CDP for the shuffler.
In addition, ε and δ in SLNF

D,β are doubled. This is because neighboring data
x, x′ ∈ {0, 1} in MD,β differ by 1 in one dimension, whereas neighboring
databases D,D′ ∈ [d]n in SLNF

D,β differ by 1 in two dimensions.

Theorem 4 ([18]). For any i ∈ [d], SLNF
D,β outputs an unbiased

estimate (i.e., E[f̂i] = fi) and achieves the following expected
squared error:

E[(f̂i − fi)2] = fi(1−β)
nβ + σ2

n2β2 . (6)

The error in (6) decreases as σ2 decreases and β increases.

Dummy-Count Distribution D. Examples of D providing
DP include the binomial distribution and the asymmetric geo-
metric distribution. In particular, [18] shows that the asymmet-
ric geometric distribution provides higher accuracy than the
binomial distribution and existing pure shuffle protocols when
β = 1 and achieves pure DP (δ = 0) when β = 1− e−ε/2.

Limitations. The drawback of SLNF
D,β is that it cannot be

applied to large-domain data due to its high communication
and computational costs. Specifically, the communication costs
of SLNF

D,β are: CU−S = τn, CS−D = τ(βn+ µd), and

Ctot = τ((1 + β)n+ µd), (7)

where τ is the size of each ciphertext. Thus, Ctot can be
expressed as O(n + d). Note that we can effectively reduce
n by randomly sampling users, as shown in our experiments.
However, we cannot reduce d by randomly sampling items
without losing accuracy. Moreover, the mean µ of the dummy-
count distribution D is much larger than 1, e.g., µ = 108 in the
asymmetric geometric distribution (β = 1, ε = 1, δ = 10−12).
Thus, Ctot in (7) can be prohibitively large when d is large.
For example, when n = 105, d = 109, µ = 108, β = 1, and
the 2048-bit RSA is used, SLNF

D,β needs Ctot = 220 Terabits.
Similarly, the computational cost of SLNF

D,β is O(n+ d) and
can be prohibitively large when d is large. For example, SLNF

D,β
requires about 3 years when d = 109 in our experiments.

B. Common Hash Protocol

Protocol. The LNF protocol SLNF
D,β cannot be applied to

categorical data with large domain size d, as both the com-
munication and computational costs are O(n + d). A natural
approach to improving the efficiency would be to reduce the
domain size using a hash function. Our baseline, called the
CH (Common Hash) protocol, simply uses a hash function
common to all users. We denote this baseline by SCH

D,β .
Specifically, letH be a universal hash function family whose

domain is [d] and whose range is [b] (b ≤ d). The CH protocol
SCH
D,β randomly selects a hash function h : [d] → [b] from
H, applies h to input values x1, . . . , xn, and runs the LNF
protocol SLNF

D,β . In other words, SCH
D,β runs Algorithm 2 (lines

1-11) with inputs (h(x1), . . . , h(xn)), b, D, and β. Then, the
data collector obtains (c̃1, . . . , c̃b), where c̃j (j ∈ [b]) is a count
of a hash value j calculated from the shuffled values. Finally,
the data collector calculates an unbiased estimate f̂i (i ∈ [d])
of fi as f̂i = b

nβ(b−1) (c̃h(i) −
nβ
b − µ).

Theoretical Properties. We show DP and the robustness of
SCH
D,β in Appendix B-B. Below, we analyze the communication

cost of SCH
D,β . Since SCH

D,β reduces the domain size from d to
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b via the hash function h, the communication costs of SCH
D,β

are: CU−S = τn, CS−D = τ(βn+ µb), and

Ctot = τ((1 + β)n+ µb), (8)

where τ is the size of each ciphertext. Ctot in (8) can be
expressed as O(n + b). Similarly, the computational cost of
SCH
D,β is O(n + b). Therefore, the CH protocol SCH

D,β is much
more efficient than the LNF protocol SLNF

D,β when b≪ d.

Limitations. Unfortunately, the CH protocol SCH
D,β is also

unsuitable for large-domain data because it suffers from low
accuracy due to hash collision.

Specifically, assume that the hash function h is 2-wise inde-
pendent; i.e., for any i1, i2 ∈ [d] and j1, j2 ∈ [b], Pr(h(i1) =
j1|h(i2) = j2) = Pr(h(i1) = j1) = 1

b . For example, let
p ∈ [d, 2d) be a prime, a1 ∈ [p − 1], and a0 ∈ [p]. Then, a
hash function h defined by h(x) = ((a1x+a0) mod p) mod b
is (almost) 2-wise independent [29]. This hash function is
used in [34] and is also used in our experiments. Under this
assumption, the accuracy of SCH

D,β can be quantified as follows:

Theorem 5. For any i ∈ [d], SCH
D,β with a 2-wise independent

hash function h outputs an unbiased estimate (i.e., E[f̂i] = fi)
and achieves the following expected squared error:

E[(f̂i − fi)2] = b2

n2β2(b−1)2

(
nfiβ(1− β) + σ2 + ω

)
, (9)

where

ω =
∑d
j=1,j ̸=i

(
(n2f2

j β
2+nfjβ(1−β))(b−1)

b2 +
nfjβ(1−β)

b2

)
.

The first and second terms in (9) are almost the same as
the squared error in (6). However, the third term in (9) is
introduced by hash collision and is very large when b is small.
For example, when β = 1 and b = n, the squared error in (6)
is σ2

n2 . In contrast, the squared error in (9) is about σ2+n
n2 in

the worst case. In other words, the squared error is increased
from O(n−2) to O(n−1) due to the hash collision. We also
show that SCH

D,β suffers from low accuracy in our experiments.
In Appendix B-C, we describe other baselines than SLNF

D,β
and SCH

D,β and explain that they also suffer from low accuracy.

VI. FILTERING-WITH-MULTIPLE-ENCRYPTION PROTOCOL

In this section, we propose a novel DP protocol called the
FME (Filtering-with-Multiple-Encryption) protocol to address
the issues in the baselines. Section VI-A explains its technical
motivation and overview. Section VI-B describes the details
of our FME protocol. Section VI-C analyzes its theoretical
properties. Section VI-D proposes a method to optimize the
range b of the hash function in our FME protocol.

A. Technical Motivation and Overview

Technical Motivation. As explained in Section V-B, hash val-
ues h(x1), . . . , h(xn) cannot be used for frequency estimation
due to hash collision. However, they can be used to filter out
unpopular items with low (or zero) frequencies. This is helpful
in large-domain data because the frequency distribution f is
sparse; e.g., most items have a count of zero when n ≪ d.

ShufflerUser

hash value shuffled hash values

selected items selected items

1st Round

ShufflerUser

input value or 
(unselected item)

2nd Round
shuffled input values
( : unselected item)

Data Collector

Data Collector

: encrypted using a public key of the data collector

Fig. 2. Two-round protocol using a hash function h.

(4) Filter items and replace
unselected items with 

(2) Augmented Shuffle
(6) Augmented Shuffle

ShufflerUser Data Collector

hash value

shuffled hash values

selected items 
input value

shuffled input values

shuffled input values
( : unselected item)

shuffled input values
( : unselected item)

(1)

(3)

(5)

(7)
: encrypted using a public 
key of the data collector

: encrypted using a public 
key of the shuffler

Fig. 3. Overview of our FME protocol. It reduces the number of rounds
between users and the shuffler in Fig. 2 by introducing multiple encryption.

After reducing the input domain by filtering, we can efficiently
use the LNF protocol to obtain high accuracy.

Based on this, we can consider a two-round protocol shown
in Fig. 2. In the first round, each user ui sends her hash
value h(xi) to the shuffler. The shuffler performs augmented
shuffling (i.e., sampling, adding dummies to hash values, and
shuffling) and sends the shuffled hash values to the data
collector. The data collector filters out unpopular items and
sends a set Λ ⊆ [d] of popular items to the users. In the
second round, each user ui replaces her input value xi with
⊥ representing an unselected item if xi /∈ Λ. Then, the parties
run the LNF protocol for selected items Λ and ⊥; i.e., [d] is
replaced with Λ ∪ {⊥}.

The two-round protocol provides high accuracy for popular
items Λ, as it uses the LNF protocol for them. In addition, the
second round can be efficiently performed since the domain
is restricted to Λ ∪ {⊥}. Similar approaches have been taken
in [22], [61] – they introduce the first round to find popular
items and the second round to calculate statistics for them.

However, the two-round protocol is not desirable for many
practical systems, as it significantly requires a great deal of ef-
fort from users and synchronization, as described in Section I.
We are interested in providing high accuracy and communi-
cation/computation efficiency without introducing two rounds
of interaction between users and the shuffler.

Overview. Our key idea is to remove the two rounds of
interaction between users and the shuffler in Fig. 2 by replac-
ing unselected items with ⊥ on the data collector side and
introducing multiple encryption. Fig. 3 shows the overview of
our FME protocol that embodies our key idea.

For ease of explanation, we begin with our FME protocol
without encryption. In our protocol, each user ui sends her
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hash value h(xi) and input value xi simultaneously. After
receiving each user’s pair ⟨h(xi), xi⟩ (i ∈ [n]), the shuffler
performs augmented shuffling for the pairs, where dummies
are added to hash values (i.e., in the form of ⟨h(i),⊥⟩ for
i ∈ [b]), and sends the shuffled pairs to the data collector. Then,
the data collector selects a set Λ of popular items based on the
shuffled hash values and replaces unselected items xi /∈ Λ in
the shuffled pairs with ⊥. After that, the data collector sends Λ
and the shuffled input values (including ⊥) back to the shuffler.
Note that the shuffled input values are the same as the ones
the shuffler receives in the second round in Fig. 2 (except that
dummies are added to ⊥). Thus, as with Fig. 2, the shuffler
performs augmented shuffling for Λ and ⊥ and sends shuffled
input values to the data collector.

The above protocol achieves one round of interaction be-
tween users and the shuffler by replacing unselected items
with ⊥ on the data collector side rather than the user side.
Note, however, that we must handle the shuffled input values
very carefully to prevent information leakage. For example, if
each user ui encrypts ⟨h(xi), xi⟩ using a public key of the
data collector, then the data collector can obtain x1, . . . , xn
by decrypting them. Moreover, the shuffled input values are
communicated between the shuffler and the data collector three
times (shuffler → data collector → shuffler → data collector),
and a lot of information can be leaked by comparing them.
For example, the shuffler would know whose input values are
replaced with ⊥ by comparing the first and second shuffled
data. The data collector would know which values are added
as dummies by comparing the second and third shuffled data.

We address this issue by introducing multiple encryption, as
shown in Fig. 3. Specifically, each user ui encrypts her input
value xi three times using public keys of the data collector,
the shuffler, and the data collector. The data collector and
the shuffler decrypt the shuffled data each time they receive
them. Then, intuitively, the above information leakage can be
prevented for two reasons: (i) the data collector cannot see the
contents of the first shuffled data, and (ii) the three shuffled
data are completely different from each other. We prove that
this approach provides (computational) DP in Section VI-C.

B. Details

Protocol. Algorithm 1 shows an algorithmic description
of our FME protocol. Our protocol uses two dummy-count
distributions D1 (mean: µ1, variance: σ2

1) and D2 (mean: µ2,
variance: σ2

2). D1 and D2 are used for adding dummy hash
values and dummy input values, respectively. We denote these
distributions by D∗ = (D1,D2) and our FME protocol by
SFME
D∗,β . In Appendix C, we show a toy example of SFME

D∗,β .
First, each user ui sends her hash value Epkd

[h(xi)] and
input value Epkd

[Epks
[Epkd

[xi]]], where pkd and pks are public
keys of the data collector and the shuffler, respectively (lines
1-3). After receiving them, the shuffler randomly selects each
pair with probability β (line 4). Then, for each hash value i ∈
[b], the shuffler adds a dummy ⟨Epkd

[i], Epkd
[Epks

[Epkd
[⊥]]]⟩

for zi ∼ D1 times (lines 5-7). Let yH1 , . . . , y
H
ñ ∈ [b] (resp. y1,

. . . , yñ ∈ [d] ∪ {⊥}) be the selected hash (resp. input)
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Fig. 4. Example of filtering items. In this example, α = 0.05, zth = 15,
b = 10, l = 3, and ΛH = {1, 3, 7}.

values and dummies, where ñ ∈ Z≥0 is the total num-
ber of these values. The shuffler samples a random per-
mutation π over [ñ] and sends (Epkd

[yHπ(1)], . . . , Epkd
[yHπ(ñ)])

and (Epkd
[Epks

[Epkd
[yπ(1)]]], . . . , Epkd

[Epks
[Epkd

[yπ(ñ)]]]) to
the data collector (lines 8-9).

Then, the data collector decrypts them and calls the Count
function, which calculates a count c̃Hi ∈ Z≥0 for each hash
value i ∈ [b] from yHπ(1), . . . , y

H
π(ñ) (lines 10-11). Based

on c̃H1 , . . . , c̃
H
b , the data collector calls the FilterItems

function, which selects a set ΛH ⊆ [b] of popular hash values
and a set Λ ⊆ [d] of the corresponding input values (line 12).
We explain the FilterItems function later in detail. Then,
the data collector replaces unselected items Epks

[Epkd
[yπ(i)]],

whose corresponding hash values are yHπ(i) /∈ ΛH , with
Epks

[Epkd
[⊥]] (lines 13-17). Note that the data collector can

do this without seeing yπ(i), as she knows yHπ(i). The data
collector sends Λ and shuffled input values (Epks

[Epkd
[yπ(1)]],

. . . , Epks
[Epkd

[yπ(ñ)]]) back to the shuffler (line 18).
The shuffler decrypts ñ shuffled input values while

removing those corresponding to dummy hashes, i.e.,
Epkd

[Epks
[Epkd

[⊥]]] generated by the shuffler (line 19). The
shuffler can remove them because she knows the random
permutation π. Then, for each selected item i ∈ Λ, it adds
a dummy Epkd

[i] for zi ∼ D2 times (lines 20-22). Let
y∗1 , . . . , y

∗
ñ∗ ∈ [d] be ñ input values and dummies, where

ñ∗ ∈ Z≥0 is the total number of these values. The shuf-
fler samples a random permutation ρ over [ñ∗] and sends
(Epkd

[y∗ρ(1)], . . . , Epkd
[y∗ρ(ñ∗)]) to the data collector (lines 23-

24). Finally, the data collector calculates an unbiased estimate
f̂i of fi for i ∈ Λ and outputs Λ and {f̂i|i ∈ Λ} (lines 25-30).
Filtering Items. Below, we explain the details of the
FilterItems function in Algorithm 1 (line 12). This
function takes two parameters as input: a significance level
α ∈ [0, 1] and the maximum number l ∈ [b] of selected hashes.
Specifically, we first calculate a threshold zth ∈ Z≥0 so that a
random variable z generated from D1 is larger than or equal
to zth with probability at most α, i.e., Pr(z ≥ zth) ≤ α. Then,
we compare each count c̃Hi (i ∈ [b]) to the threshold zth and
select the hash value i if c̃Hi ≥ zth. If the number of selected
hash values exceeds l, we select l hash values with the largest
counts. Finally, we add the selected hash values to ΛH and
the corresponding input values x such that h(x) ∈ ΛH to Λ.
Fig. 4 shows an example of ΛH .

Suppose that no user has a hash value i ∈ [b]. Then, we
incorrectly add i to ΛH with probability at most α; i.e., the
false positive probability is at most the significance level α,
which is small. In addition, we add at most l hash values to
ΛH . Thus, we can improve the efficiency by reducing l.
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Input: Input values (x1, . . . , xn) ∈ [d]n, hash function h : [d]→ [b], dummy-count distributions D∗ = (D1,D2) (D1

has mean µ1 and variance σ2
1 ; D2 has mean µ2 and variance σ2

2), sampling probability β ∈ [0, 1], significance
level α ∈ [0, 1], maximum number of selected hashes l ∈ [b].

Output: Selected items Λ ⊆ [d], estimates {f̂i|i ∈ Λ}.
/* Send hash values and input values (users → shuffler) */

1 foreach i ∈ [n] do
2 [ui] Send ⟨Epkd

[h(xi)], Epkd
[Epks

[Epkd
[xi]]]⟩ to the shuffler;

3 end
/* Random sampling */

4 [s] Sample ⟨Epkd
[h(xi)], Epkd

[Epks
[Epkd

[xi]]]⟩ (i ∈ [n]) with probability β;
/* Dummy hash data addition */

5 foreach i ∈ [b] do
6 [s] zi ← D1; Add a dummy ⟨Epkd

[i], Epkd
[Epks

[Epkd
[⊥]]]⟩ for zi times;

7 end
/* Random shuffling */

8 [s] Let yH1 , . . . , y
H
ñ ∈ [b] (resp. y1, . . . , yñ ∈ [d]∪ {⊥}) be the selected hash (resp. input) values and dummies. Sample

a random permutation π over [ñ];
/* Send shuffled data (shuffler → data collector) */

9 [s] Send (Epkd
[yHπ(1)], . . . , Epkd

[yHπ(ñ)]) and (Epkd
[Epks

[Epkd
[yπ(1)]]], . . . , Epkd

[Epks
[Epkd

[yπ(ñ)]]]) to the data collector;
/* Filtering (ΛH ⊆ [b]: selected hash values, Λ ⊆ [d]: selected items) */

10 [d] Decrypt yHπ(1), . . . , y
H
π(ñ) and Epks

[Epkd
[yπ(1)]], . . . , Epks

[Epkd
[yπ(ñ)]];

11 [d] (c̃H1 , . . . , c̃
H
b )←Count(yHπ(1), . . . , y

H
π(ñ));

12 [d] ΛH ,Λ←FilterItems(c̃H1 , . . . , c̃
H
b , α,D1, l);

/* Replace unselected items with ⊥ */
13 foreach i ∈ ñ do
14 if yHπ(i) /∈ ΛH then
15 [d] Epks

[Epkd
[yπ(i)]]← Epks

[Epkd
[⊥]];

16 end
17 end
/* Send selected items and shuffled data (data collector → shuffler) */

18 [d] Send Λ and (Epks
[Epkd

[yπ(1)]], . . . , Epks
[Epkd

[yπ(ñ)]]) to the shuffler;
/* Dummy input data addition */

19 [s] Decrypt Epkd
[yπ(1)], . . . , Epkd

[yπ(ñ)] while removing those corresponding to dummy hash data;
20 foreach i ∈ Λ do
21 [s] zi ← D2; Add a dummy Epkd

[i] for zi times;
22 end

/* Random shuffling */
23 [s] Let y∗1 , . . . , y

∗
ñ∗ ∈ [d] ∪ {⊥} be ñ input values and dummies. Sample a random permutation ρ over [ñ∗];

/* Send shuffled data (shuffler → data collector) */
24 [s] Send (Epkd

[y∗ρ(1)], . . . , Epkd
[y∗ρ(ñ∗)]) to the data collector;

/* Compute an unbiased estimate */
25 [d] Decrypt y∗ρ(1), . . . , y

∗
ρ(ñ∗);

26 [d] (c̃1, . . . , c̃d)←Count(y∗ρ(1), . . . , y
∗
ρ(ñ∗));

27 foreach i ∈ Λ do
28 [d] f̂i ← 1

nβ (c̃i − µ2);
29 end
30 return Λ and {f̂i|i ∈ Λ}
Algorithm 1: Our FME protocol SFME

D∗,β . pkd (resp. pks) represents a public key of the data collector (resp. shuffler).
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Parameters. SFME
D∗,β has parameters β, α, and l. We explain

how to set l in Section VI-D and β and α in Appendix E-A.

C. Theoretical Properties

Privacy and Robustness. First, we show that SFME
D∗,β provides

DP and is robust to both data poisoning and collusion attacks:

Theorem 6. If the binary input mechanisms MD1,β and
MD2,1 in Definition 5 provide ( ε12 ,

δ1
2 )-DP and ( ε22 ,

δ2
2 )-DP,

respectively, then SFME
D∗,β provides (ε, δ)-CDP, where (ε, δ) =

(ε1 + ε2, δ1 + δ2), and is robust to collusion with users.

Theorem 7. Let λ = n′

n+n′ and fT =
∑
i∈T fi. SFME

D∗,β

provides the following robustness against poisoning attacks:

Gmax
f = λ(1− fT ) +

∑
i∈T ηifi, (10)

where ηi ∈ [0, 1] is the probability that the i-th item is not
selected in the filtering step (i.e., i /∈ Λ) before data poisoning.

Theorem 6 uses the basic composition theorem [1]. In
Appendix C, we explain that this is almost tight in our
case. SFME

D∗,β spends (ε1, δ1) and (ε2, δ2) for hash and input
values, respectively. When β = 1 and the same dummy-count
distribution is used for D1, D2, and D, SFME

D∗,β needs the total
budget (ε, δ) twice as large as the LNF protocol SLNF

D,β .
In addition, Theorem 6 assumes that the shuffler does not

disclose dummies after running the protocol in the same way
as [17], [18]. This can be achieved, e.g., by using the TEE. We
note, however, that even if the shuffler discloses dummies, we
can guarantee DP for the outputs by adding additional noise
to the outputs before publishing them. In Appendix E-F, we
show the accuracy is hardly affected by this additional noise.

In Theorem 7, the second term in (10) is introduced because
a target item i ∈ T can be discarded in the filtering step
before poisoning and selected after poisoning. This results in
a slight increase in the overall gain. We note, however, that the
second term in (10) is very small in practice, as ηi is extremely
small when fi is large (e.g., ηi decreases exponentially as fi
increases when l = b; see [32]). When the second term is
ignored, Gmax

f of SFME
D∗,β is equal to that of SLNF

D,β in (5).

Efficiency. We next analyze the communication cost of SFME
D∗,β :

Theorem 8. Let τ1, τ2, τ3 ∈ R≥0 be the size of a single ci-
phertext, double ciphertext, and triple ciphertext, respectively,
in SFME

D∗,β . Then, the total communication cost of SFME
D∗,β is

Ctot = CU−S + CS−D, where

CU−S = (τ1 + τ3)n

CS−D ≤ (2τ1 + τ2 + τ3)(βn+ µ1b) + τ1(µ2 + 1)E[|Λ|],

and the expected number E[|Λ|] of selected items is:

E[|Λ|] ≤

{
(βn+α(l−βn))d

b (if βn ≤ l ≤ b)
ld
b (otherwise).

(11)

For example, if we use ECIES with 256-bit security [62],
then τ1, τ2, and τ3 are 712, 1392, and 2072 bits, respectively.
By optimizing b, Ctot of SFME

D∗,β can be expressed as Ctot =

O(n +
√
ld) when l < βn. See Section VI-D for details.

Similarly, the computational cost of SFME
D∗,β can be O(n+

√
ld)

in this case. See [32] for details.

Accuracy. Finally, we analyze the accuracy of SFME
D∗,β :

Theorem 9. For any item i ∈ Λ selected in the filtering step,
SFME
D∗,β outputs an unbiased estimate (i.e., E[f̂i|Λ] = fi) and

achieves the following variance:

V[f̂i|Λ] = fi(1−β)
nβ +

σ2
2

n2β2 . (12)

SFME
D∗,β also achieves the following expected squared error:

E[(f̂i − fi)2] = (1− ηi)V[f̂i|Λ] + ηif
2
i , (13)

where ηi ∈ [0, 1] is the probability that the i-th item is not
selected in the filtering step (i.e., i /∈ Λ).

The variance in (12) is the same as that of SLNF
D,β in (6).

The second term in (13) is introduced because SFME
D∗,β always

calculates f̂i as 0 for an unselected item i /∈ Λ. However, the
second term in (13) is very small, as ηi is extremely small
for a large fi, as explained above. When ignoring the second
term, the l2 loss of SFME

D∗,β is almost the same as that of SLNF
D,β .

Summary. Our FME protocol SFME
D∗,β can achieve almost the

same accuracy and robustness as the LNF protocol SLNF
D,β by

using (ε, δ) twice as large as SLNF
D,β . It can also achieve the

communication and computational costs of O(n +
√
ld) by

optimizing b, as explained below.

D. Optimizing the Range b of the Hash Function

As shown in Theorem 8, the communication cost Ctot of
SFME
D∗,β depends on the hash range b. A larger b results in the

increase of dummy values sent from the shuffler to the data
collector. In contrast, a smaller b results in the increase of
E[|Λ|] in (11). The optimal b can be obtained by calculating
b that minimizes the upper bound on Ctot in Theorem 8.

For example, if l = b, then the optimal value of b is given
by b =

√
τ1(µ2+1)β(1−α)nd

(2τ1+τ2+τ3)µ1
. In this case, Ctot of SFME

D∗,β can

be simplified as Ctot = O(n+
√
nd+ αd) by treating τ1, τ2,

and τ3 as constants. This is larger than O(n) but much smaller
than O(n+ d) when d≫ n.

If l < βn, the optimal value of b is b =
√

τ1(µ2+1)ld
(2τ1+τ2+τ3)µ1

. In

this case, Ctot of SFME
D∗,β can be written as Ctot = O(n+

√
ld).

Setting l. In practice, the frequency distribution f is sparse
in large-domain data, and we are often interested in popular
items with large frequencies [23], [34], [63]. Thus, in this
work, we propose to set l to l = max{n

2

d , c}, where c ∈ N
is some constant (c = 50 in our experiments). In this setting,
Ctot does not depend on d until d exceeds n2

c . Moreover, this
setting guarantees that at least c popular items are selected.
In our experiments, we show that our FME protocol with this
setting provides high accuracy and efficiency.
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Fig. 5. Example of filtering at a (a) KV pair level or (b) key level. The
number in the matrix represents a count of each KV pair in the first shuffled
data sent from the shuffler to the data collector.

VII. APPLICATION TO KEY-VALUE DATA

In this section, we propose a protocol for frequency and
mean estimation over KV data by applying the FME protocol
SFME
D∗,β with an additional technique called TKV-FK (Trans-

forming KV Pairs and Filtering Keys). Section VII-A explains
our protocol. Section VII-B shows its theoretical properties.

A. Our Protocol for KV Data

Overview. Our protocol for KV data, denoted by SKV
D∗,β , first

uses padding-and-sampling [23], a state-of-the-art sampling
technique for a large domain. Then, it applies the FME
protocol SFME

D∗,β to KV data with an additional technique called
TKV-FK, which transforms KV pairs into one-dimensional
data and filters the data at a key level. Finally, it calculates
unbiased estimates Φ̂ and Ψ̂ of frequencies Φ and mean values
Ψ, respectively. Below, we explain these techniques in detail.

Padding-and-Sampling. We first use a padding-and-sampling
technique [23]. This technique samples a single KV pair for
each user ui to avoid splitting the privacy budget ε into mul-
tiple KV pairs xi. Specifically, if the number |xi| of KV pairs
is smaller than a parameter κ ∈ N called the padding length,
user ui adds dummy KV pairs ⟨d+1, 0⟩, . . . , ⟨d+κ−|xi|, 0⟩
to xi. Then, ui samples a single KV pair ⟨ki, v∗i ⟩ from xi
and discretizes v∗i to vi = 1 with probability 1+v∗i

2 and
vi = −1 with probability 1−v∗i

2 . As a result, ui obtains a
single, discretized KV pair ⟨ki, vi⟩ ∈ [d]× {−1, 1}.
TKV-FK. After padding-and-sampling, we apply the FME
protocol SFME

D∗,β to the KV pair ⟨ki, vi⟩ (i ∈ [n]) with our
TKV-FK technique. This technique first transforms the KV
pair ⟨ki, vi⟩ of user ui into one-dimensional data si ∈ [2d]
by si = ki +

1
2 (vi + 1)d. Then, we can directly apply the

FME protocol SFME
D∗,β by treating (s1, . . . , sn) ∈ [2d]n as input

values. However, this approach does not work well, as filtering
is performed at a key-value pair level. Fig. 5(a) shows its
example. In this example, the KV pair ⟨2, 1⟩ is selected in
the filtering step, whereas ⟨2,−1⟩ is not. This causes a large
positive bias in the estimate Ψ̂2 of the mean value Ψ2 for key
2. Thus, mean values Ψ cannot be accurately estimated.

Our TKV-FK technique addresses this issue by filtering data
at a key level, as shown in Fig. 5(b). Specifically, it makes the
following three changes to the FME protocol SFME

D∗,β (Algo-
rithm 1): (i) each user ui applies a hash function h : [d]→ [b]
to her key ki and sends Epkd

[h(ki)] and Epkd
[Epks

[Epkd
[si]]]

to the shuffler (line 2), (ii) based on shuffled hash values, the
data collector selects a set ΛH ⊆ [b] of popular hash values
and a set Λ ⊆ [d] of the corresponding keys (line 12), and

(iii) for each i ∈ Λ, the data collector adds zi,1, zi,−1 ∼ D2

dummies to KV pairs ⟨i, 1⟩ and ⟨i,−1⟩, respectively (line 21).

Calculating Unbiased Estimates. Finally, we calculate un-
biased estimates Φ̂ and Ψ̂ as follows. For i ∈ Λ, let c̃i,1
(resp. c̃i,−1) ∈ Z≥0 be a count of KV pair ⟨i, 1⟩ (resp. ⟨i,−1⟩)
in the shuffled data the data collector decrypts. For i ∈ Λ, the
data collector calculates Φ̂i and Ψ̂i as follows2:

Φ̂i =
κ
nβ (c̃i,1 + c̃i,−1 − 2µ2), Ψ̂i =

κ
nβΦ̂i

(c̃i,1 − c̃i,−1). (14)

Thanks to our TKV-FK technique, we can calculate both c̃i,1
and c̃i,−1 for each selected key i ∈ Λ. Thus, the estimates in
(14) are (almost) unbiased, as shown in Section VII-B.

B. Theoretical Properties

Privacy and Robustness. Our KV protocol SKV
D∗,β also

provides DP and is robust to collusion and poisoning attacks:

Theorem 10. If the binary input mechanisms MD1,β and
MD2,1 in Definition 5 provide ( ε12 ,

δ1
2 )-DP and ( ε22 ,

δ2
2 )-DP,

respectively, then SKV
D∗,β provides (ε, δ)-CDP, where (ε, δ) =

(ε1 + ε2, δ1 + δ2), and is robust to collusion with users.

Theorem 11. Let λ = n′

n+n′ , ΦT =
∑
i∈T Φi, and ΨT =∑

i∈T Ψi. Let Ui be the set of users who have key i ∈ [d].
For uj ∈ Ui, let ψj,i ∈ [−1, 1] be the value of key i held by
user uj . For j ∈ [n], let ξj = max{|xj |, κ}. SKV

D∗,β provides
the following robustness against poisoning attacks:

Gmax
Φ = κ

n+n′

(
(
∑
i∈T

∑
uj∈Ui

1
ξj
) + n′

)
− ΦT

+
∑
i∈T ηiΦi (15)

Gmax
Ψ ≈

∑
i∈T

(
∑
uj∈Ui

ψj,i

ξj
) + n′

|T |

(
∑
uj∈Ui

1
ξj
) + n′

|T |

−ΨT , (16)

where ηi ∈ [0, 1] is the probability that the i-th item is not
selected in the filtering step (i.e., i /∈ Λ) before data poisoning.
The approximation in (16) is obtained from a Taylor expansion
E[XY ] ≈ E[X]

E[Y ] for two random variables X and Y .

Theorem 11 states that Gmax
Φ and Gmax

Ψ of SKV
D∗,β in (15)

and (16) do not depend on the privacy budget ε. It is shown
in [20] that the existing KV protocols become vulnerable to
data poisoning as ε increases or decreases. For example, in
PrivKVM [21], Gmax

Φ increases (resp. decreases) as ε decreases
when |T | = 1 (resp. |T | ≥ 3). In PCKV-GRR and PCKV-UE,
Gmax

Φ increases as ε decreases. In contrast, SKV
D∗,β does not

suffer from such fluctuation in Gmax
Φ and Gmax

Ψ .
Moreover, Gmax

Φ and Gmax
Ψ of SKV

D∗,β are much smaller than
those of the existing KV protocols analyzed in [20]. See [32]
for details. In our experiments, we show that SKV

D∗,β is much
more robust than the existing protocols.

Efficiency. Our KV protocol SKV
D∗,β achieves the same effi-

ciency as SFME
D∗,β . Specifically, SKV

D∗,β can achieve the commu-
nication and computational costs of Ctot = O(n+

√
ld).

2Note that Ψ̂i is not defined for an unselected key i /∈ Λ. We set Ψ̂i = 1
for i /∈ Λ to eliminate the (unnecessary) mean gain for unselected keys.
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Accuracy. Finally, we show the accuracy of SKV
D∗,β :

Theorem 12. If κ ≥ |xj | for any j ∈ [n], then for any key i ∈
Λ selected in the filtering step, SKV

D∗,β outputs almost unbiased
estimates. Specifically, SKV

D∗,β achieves:

E[Φ̂i|Λ] = Φi (17)

V[Φ̂i|Λ] = Φi(κ−β)
nβ +

2κ2σ2
2

n2β2 (18)

E[Ψ̂i|Λ] ≈ Ψi (19)

V[Ψ̂i|Λ] ≲ κ2

nβ2 (2(qi − q2i + ri − r2i )−
β
κ (1−

β
κ )), (20)

where qi =
β(1+Ψi)

2κ and ri =
β(1−Ψi)

2κ . The approximations
in (19) and (20) are obtained from Taylor expansions E[XY ] ≈
E[X]
E[Y ] and V[XY ] ≈ V[X]

E[Y ] for two random variables X and Y .
In addition, SKV

D∗,β achieves the following expected l2 loss:

E[(Φ̂i − Φi)
2] = (1− ηi)V[Φ̂i|Λ] + ηiΦ

2
i

E[(Ψ̂i −Ψi)
2] = (1− ηi)V[Ψ̂i|Λ] + ηi(1−Ψi)

2,

where ηi ∈ [0, 1] is the probability that the i-th key is not
selected in the filtering step (i.e., i /∈ Λ).

In our experiments, we show that SKV
D∗,β provides higher

accuracy than the existing KV protocols.

VIII. EXPERIMENTAL EVALUATION

A. Experimental Set-up

Datasets. We conducted experiments using four real datasets:
• Foursquare [64]: Location dataset with n = 18201 users

in New York. We divided the city into 1000×1000 regions
(d = 1000000) at regular intervals.

• AOL [65]: Web access dataset. Following [34], we ex-
tracted n = 10000 users and used the first three characters
of each URL as an item (d = 224 = 16777216).

• E-Commerce [66]: Clothing review dataset with n =
23486 users, d = 1206 keys (items), and 23486 ratings.

• Amazon [31]: Amazon rating dataset with n = 1210271
users, d = 249274 keys, and 2023070 ratings.

The first two are categorical, and the last two are KV datasets.

Protocols. We compared our FME protocol with the CH pro-
tocol and existing shuffle protocols. In our FME protocol, we
set α = 0.05 and used the asymmetric geometric distribution
[18] with β = 1 as dummy-count distributions D1 and D2

(i.e., (ε1, δ1) = (ε2, δ2)). Then, we optimized the hash range
b as described in Section VI-D and set the maximum number
l of selected hashes to l = b (denoted by Proposal (large l))
or max{n

2

d , 50} (Proposal (small l)). For KV data, we used
our TKV-FK technique. In Appendix E-A, we also evaluated
our FME protocol when we changed ε1 (= ε− ε2), α, and l.

For existing protocols, we evaluated twelve protocols.
Specifically, for categorical data, we evaluated four pure
shuffle protocols using the GRR [17], RAPPOR [2], OUE [52],
and OLH [52]. For these protocols, we used a numerical
upper bound in [15] because it is tighter than Theorem 1
(we confirmed that the upper bound is very close to the

lower bound in [15]). We also evaluated three multi-message
protocols in [34] (for a large domain), [35], [36], denoted by
LWY22-Large, BC20, and CM22, respectively. We used their
amplification results for these protocols. Since these protocols
assume that ε is within a certain range, we evaluated them
only within the range. For CM22, we generated 10 dummy
values per user in the same way as [36]. We also compared our
protocols with the LNF protocol [18] in terms of efficiency.
Following [2], [52], we used a significance threshold, which
assigns 0 to an estimate below a threshold for each protocol.

For KV data, we evaluated four pure shuffle protocols based
on PrivKVM [21], PrivKVM* [22], PCKV-GRR [23], and
PCKV-UE [23] using the numerical upper bound in [15].
We did not evaluate the protocol in [67], as it leaks the
number of KV pairs held by each user and fails to provide
DP. Following [23], we clipped frequency estimates to [0, 1]
and set the padding length κ to κ = 1 (resp. 3) in the E-
Commerce (resp. Amazon) dataset.

Performance Metrics. Since d is large in our experiments,
most items have low or zero frequencies. Thus, we evaluated
the accuracy for top-50 items (keys) with the largest frequen-
cies. Specifically, we evaluated the MSE (Mean Squared Error)
over the 50 items. Here, we varied ε from 0.1 to 5, as DP with
this range of ε provides theoretical privacy guarantees against
the inference of input values. See Appendix D for details.

For robustness to collusion attacks, we refer to ε when no
(resp. |Ω|) users collude with the data collector as a target
ε (resp. actual ε). We set the target ε to 0.1 and evaluated
the actual ε while changing |Ω|. For robustness to poisoning
attacks, we evaluated the maximum gains Gmax

f , Gmax
Φ , and

Gmax
Ψ . We ran each protocol 10 times and averaged the MSE

and the gains. For efficiency, we evaluated Ctot and measured
the run time using a workstation with Intel Xeon W-2295 (3.00
GHz, 18 Cores) and 256 GB main memory.

User Sampling. In the KV datasets, n is large. Thus, for
each protocol (except for the LNF protocol), we introduced
user sampling, which randomly samples users with probabil-
ity 0.05 before running the protocol to improve efficiency.
We evaluated the MSE between the estimates and the true
frequencies before user sampling.

B. Experimental Results

Accuracy. First, we evaluated the relationship between the
MSE and ε. Fig. 6 shows the results.

Fig. 6 shows that Proposal (large l) significantly outper-
forms the existing protocols. This is because our FME protocol
with l = b achieves almost the same accuracy as the LNF
protocol, which is shown to be very accurate in [18], by
doubling (ε, δ). Fig. 6 also shows that Proposal (small l)
provides almost the same MSE as Proposal (large l), which
means that we can improve the efficiency without affecting
accuracy by reducing l as proposed in Section VI-D.

In Appendix E-C, we also show that the CH protocol has
poor accuracy for unpopular items due to hash collision and
cannot be improved by using user/group-dependent hashes.

12



0 1 2 3 4 5
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

0 1 2 3 4 5

10−7

10−5

10−3

Foursquare AOL

 Proposal (Large l)  Proposal (Small l)  CH  GRR  RAPPOR
 OUE  OLH  LWY22-Large  BC20  CM22

1 2 3 4 5

 Proposal (Small l) Proposal (Large l)  
PCK GRR  PrivKVM 

PCKV UE  
PrivKVM*

0 1 2 3 4 5
10−5

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5

10−1

100

0 1 2 3 4 5
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

0 1 2 3 4 5

10−1

100

Ecommerce (frequency) Ecommerce (mean)

Amazon (frequency) Amazon (mean)

Fig. 6. MSE vs. ε (δ = 10−12).

Foursquare AOL

0.0 0.2 0.4 0.6 0.8 1.0

0.1

1

10

n 
0.0 0.2 0.4 0.6 0.8 1.0

0.1

1

10

n 

 GRR  RAPPOR/OUE/OLH Proposal  
LWY22 Large  BC20  CM22

0.0 0.2 0.4 0.6 0.8 1.0

0.1

1

10

n 
0.0 0.2 0.4 0.6 0.8 1.0

0.1

1

n 

Ecommerce Amazon
 Proposal  PCKV-GRR/PCKV-UE/PrivKVM/PrivKVM*
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δ = 10−12).

Moreover, in Appendix E-E, we show the effectiveness of our
TKV-FK technique through an ablation study.
Robustness to Collusion Attacks. Next, we evaluated the ro-
bustness to collusion with users. Fig. 7 shows the relationship
between the actual ε and the ratio |Ω|/n of colluding users.

We observe that in all the existing protocols, the actual ε
rapidly increases with an increase in |Ω|. This vulnerability is
inevitable in the existing protocols because they add noise on
the user side. In Appendix E-B, we also show that the defense
in [17] is insufficient in that the actual ε still increases with an
increase in |Ω|. In contrast, the actual ε always coincides with
the target ε in our proposals, demonstrating the robustness of
our proposals to collusion with users.

In Appendix E-D, we also set |Ω|/n = 0.1 and evaluate the
relationship between the actual ε and the target ε.
Robustness to Poisoning Attacks. We also evaluated the
robustness to poisoning attacks. Here, we randomly selected
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Φ , and Gmax
Ψ vs. ε (λ = 0.1, δ = 10−12).
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Fig. 9. Computational cost Ctot and run time (ε = 1, δ = 10−12).

|T | = 10 target items for categorical data and |T | = 1 target
item for KV data. Then, we set the fraction λ of fake users to
λ = 0.1; we also changed λ in Appendix E-D.

Fig. 8 shows the results.3 We observe that the existing
protocols suffer from large maximum gains. In Appendix E-B,
we also show that the defense in [20] has limited effectiveness.
In contrast, our proposals always achieve small Gmax

f , Gmax
Φ ,

and Gmax
Ψ , and are robust to poisoning attacks.

Efficiency. Finally, we evaluated Ctot and the run time.
Specifically, we measured Ctot and the run time of the LNF
protocol, Proposal (large l), and Proposal (small l) in the
Foursquare and Amazon datasets. For an encryption scheme,
we used the 2048-bit RSA or ECIES with 256-bit security
in [62]. Then, we calculated the time to encrypt or decrypt a

3In Fig. 8, we omit the gain for the CH protocol because it is very close
to the gains for our proposals.
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single message using multiple encryption and estimated Ctot
and the run time when we changed d from 105 and 109.

Fig. 9 shows the results. We observe that Ctot and the
run time of the LNF protocol are linear in d and extremely
large when d is large; e.g., Ctot is about 100 Terabits and
the run time is about 3 years when d = 109 and ECIES is
used. Proposal (small l) addresses this issue. Specifically, in
Proposal (small l), both Ctot and the run time do not depend
on d until d = 106 or 107 and then increase in O(

√
d), which

is consistent with our theoretical results in Section VI-D.
For example, when d = 109, Proposal (small l) reduces

Ctot from about 100 Terabits to 260 Gigabits and the run
time from about 3 years to 1 day. Thus, accurate, robust, and
efficient data analysis over large-domain categorical and KV
data is now possible under DP.

IX. CONCLUSION

We proposed the FME protocol for large-domain categorical
and KV data and showed its effectiveness through theoretical
analysis and extensive experiments. LDP protocols for cate-
gorical data serve as a basis for many complex tasks, such
as frequent itemset mining [41], ranking estimation [68], and
range queries [69]. Thus, we believe our FME protocol can
also be used as a building block for such tasks. For future
work, we would like to generalize our protocol for such tasks.
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APPENDIX A
BASIC NOTATIONS

Table I shows the basic notations in this paper.

APPENDIX B
MORE DETAILS ON THE BASELINES

A. Algorithmic Description of the LNF Protocol

Algorithm 2 shows an algorithmic description of the LNF
protocol SLNF

D,β . The Count function (line 11) calculates a
count c̃i for each item i ∈ [d] from yπ(1), . . . , yπ(ñ).

B. DP and Robustness of the CH Protocol

We show DP and the robustness of the CH protocol SCH
D,β :

Theorem 13. If the binary input mechanism MD,β in Def-
inition 5 provides ( ε2 ,

δ
2 )-DP, then SCH

D,β provides (ε, δ)-CDP
and is robust to collusion with users.

Theorem 14. Let λ = n′

n+n′ and fT =
∑
i∈T fi. SCH

D,β
provides the following robustness against poisoning attacks:

Gmax
f = λ(|T | − fT ). (21)

C. Other Baselines

Below, we explain two other baselines than SLNF
D,β and SCH

D,β :

User/Group-Dependent Hash Protocol. We can consider a
variant of SCH

D,β that uses a different hash function hi for each
user ui (or each user group) to avoid the hash collision among
users. However, this variant also results in low accuracy, as it
needs to add dummy values for each hash function hi and
each hash value in [b] to provide DP. In Appendix E-C, we
show that this variant provides worse accuracy than SCH

D,β .

Protocol in [34]. Yet another baseline is a protocol for large-
domain data in [34], denoted by LWY22-Large. Specifically,
LWY22-Large applies a hash function hi different for each
user ui and then repeatedly adds dummy values to a tuple
of a hash function and a hash value uniformly chosen from
H×[b]. This protocol also does not work well. This is because
it generates dummy values uniformly at random, which is
shown to be ineffective in [18]. In Section VIII, we show
that LWY22-Large does not provide high accuracy.

APPENDIX C
MORE DETAILS ON THE FME PROTOCOL

Toy Example of SFME
D∗,β . Assume that n = 5, d = 8,

b = 4, (x1, . . . , x5) = (2, 8, 4, 8, 2), (h(x1), . . . , h(x5))
= (1, 1, 3, 1, 1), β = 1, and the binomial distribution B(2, 0.5)
is used as D1 and D2. The shuffler adds (z1, z2, z3, z4)
= (1, 0, 1, 1) dummies for hash values. Then, the shuffled
data are, e.g., (yHπ(1), . . . , y

H
π(8)) = (1, 3, 1, 4, 1, 1, 1, 3) and
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TABLE I
BASIC NOTATIONS.

Symbol Description
n Number of users.
d Number of items.
ui i-th user.
xi Input value of user ui.
X Space of input data.
fi Frequency of item i in categorical data. f = (f1, . . . , fd).
f̂i Estimate of fi. f̂ = (f̂1, . . . , f̂d).
Φi Frequency of key i in KV data. Φ = (Φ1, . . . ,Φd).
Φ̂i Estimate of Φi. Φ̂ = (Φ̂1, . . . , Φ̂d).
Ψi Mean value of key i in KV data. Ψ = (Ψ1, . . . ,Ψd).
Ψ̂i Estimate of Ψi. Ψ̂ = (Ψ̂1, . . . , Ψ̂d).
T Set of target items.
n′ Number of fake users.
λ Fraction of fake users (λ = n

n+n′ ).
Gmax

f Maximum gain in categorical data.
Gmax

Φ Maximum frequency gain in KV data.
Gmax

Ψ Maximum mean gain in KV data.
Ctot Expected number of bits sent from one party to another.
h Hash function.
b Range of hash function h.
D∗ Dummy-count distributions (D∗ = (D1,D2); D1 has mean

µ1 and variance σ2
1 ; D2 has mean µ2 and variance σ2

2).
β Sampling probability.
α Significance level.
l Maximum number of selected hashes.
ΛH Set of selected hash values after filtering.
Λ Set of selected items after filtering.
κ Padding length in the padding-and-sampling technique.

(yπ(1), . . . , yπ(8)) = (8, 4, 2,⊥, 8,⊥, 2,⊥). The data collector
filters items and selects Λ = {2, 8} and ΛH = {1}. In this
case, the shuffled input values become (yπ(1), . . . , yπ(8)) =
(8,⊥, 2,⊥, 8,⊥, 2,⊥) (4 is replaced with ⊥). Finally, the shuf-
fler removes ⊥ generated by the shuffler and adds (z2, z8) =
(1, 2) dummies for input values. Then, the shuffled input
values are, e.g., (y∗ρ(1), . . . , y

∗
ρ(8)) = (2, 8,⊥, 8, 2, 8, 2, 8), and

the estimate f̂ is f̂ = (0, 0.4, 0, 0, 0, 0, 0, 0.6).

On the Composition in SFME
D∗,β . Below, we explain that the

basic composition theorem in Theorem 6 is almost tight. To
show this, we consider the optimal composition theorem [70].
This theorem provides the tightest bound when each sub-
mechanism provides (ε, δ)-DP. However, even this theorem
cannot improve the bound in Theorem 6, as our protocol com-
poses only two sub-mechanisms – one outputting hash values
and the other outputting input values. Specifically, assume that
each sub-mechanism provides ( ε2 ,

δ
2 )-DP, i.e., ε1 = ε2 = ε

2

and δ1 = δ2 = δ
2 in Theorem 6. Then, the theorem in

[70] states that the entire protocol provides (ε, δ − ( δ2 )
2)-DP

(or (0, δ′)-DP with an extremely large δ′), which is almost
equivalent to (ε, δ)-DP. Thus, the basic composition theorem
is almost tight in our case.

APPENDIX D
ε IN DP AND PRIVACY GUARANTEES

Below, we show the relationship between ε in DP and pri-
vacy guarantees against the inference of input values through
hypothesis testing interpretations [70]. Specifically, DP con-
siders two neighboring databases, D and D′, that differ in the

Input: Input values (x1, . . . , xn) ∈ [d]n, #items
d ∈ N, dummy-count distribution D (mean: µ,
variance: σ2), sampling probability β ∈ [0, 1].

Output: Estimates f̂ = (f̂1, · · · , f̂d).
/* Send input values */

1 foreach i ∈ [n] do
2 [ui] Send Epkd

[xi] to the shuffler;
3 end
/* Random sampling */

4 [s] Sample Epkd
[xi] (i ∈ [n]) with probability β;

/* Dummy data addition. */
5 foreach i ∈ [d] do
6 [s] zi ← D; Add a dummy Epkd

[i] for zi times;
7 end
/* Random shuffling */

8 [s] Let y1, . . . , yñ ∈ [d] the selected input values and
dummies. Sample a random permutation π over [ñ];
/* Send shuffled values */

9 [s] Send shuffled values (Epkd
[yπ(1)], . . . , Epkd

[yπ(ñ)])
to the data collector;
/* Compute an unbiased estimate */

10 [d] Decrypt yπ(1), . . . , yπ(ñ);
11 [d] (c̃1, . . . , c̃d)←Count(yπ(1), . . . , yπ(ñ));
12 foreach i ∈ [d] do
13 [d] f̂i ← 1

nβ (c̃i − µ);
14 end
15 return f̂ = (f̂1, · · · , f̂d)
Algorithm 2: LNF protocol SLNF

D,β [18]. [ui], [s], and
[d] represents that the process is run by user ui, the
shuffler, the data collector. pkd represents a public key
of the data collector.

input value of the victim (see Definition 1). Thus, given an
output Y of a randomized algorithm M, we can define the
following hypotheses: H0: “Y came from D.”; H1: “Y came
from D′.” Assume that, given D and D′, the attacker who
obtains Y guesses which of H0 or H1 is correct. The attacker
may choose H1 when H0 is true (type I error). Conversely,
the attacker may choose H0 when H1 is true (type II error).
Let pI , pII ∈ [0, 1] be the probabilities of type I and II errors,
respectively. Then, DP is closely related to pI and pII :

Theorem 15 ([70]). A randomized algorithm M provides
(ε, δ)-DP if and only if the following inequalities holds for any
neighboring databases D and D′ and any Y ∈ Range(M):

pI + eεpII ≥ 1− δ, eεpI + pII ≥ 1− δ. (22)

Theorem 15 states that (ε, δ)-DP is equivalent to lower
bounding type I and II errors by (22). Fig. 10 shows the
relationship between ε and the lower bound on the error
probability p∗ when the type I and II errors are equal, i.e.,
p∗ = pI = pII . Note that p∗ is the error probability when the
attacker is given two candidates for the victim’s input value.
The inference of the victim’s input value is much more difficult
in practice, as there are d (≫ 2) candidates for it.
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Fig. 10. ε in DP and the lower bound on the attacker’s error probability p∗

(= pI = pII) obtained from (22) (δ = 10−12).
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Fig. 11. MSE of our FME protocol when changing parameters ε1 (= ε−ε2),
α, and l in the Foursquare dataset (ε = 1, δ = 10−12).

Fig. 10 shows that when ε is close to 0, p∗ is close to 0.5 (the
error probability of a random guess). In contrast, when ε ≥ 5,
p∗ is almost zero. This means that DP cannot provide strong
privacy guarantees in this case, as claimed in [53]. Taking this
into account, we varied ε from 0.1 to 5 in Section VIII.

APPENDIX E
ADDITIONAL EXPERIMENTS

A. Changing Parameters in the FME Protocol

We evaluated the MSE of SFME
D∗,β when we changed param-

eters ε1 (= ε− ε2), α, and l in the Foursquare dataset. Here,
we set ε1 = 0.5ε, α = 0.05, and l = max{n

2

d , 50} as default
values and changed each parameter while fixing the others.

Fig. 11 shows the results. The MSE is roughly the same
when ε1 is between 0.2ε and 0.5ε, which indicates that this
range of ε1 can balance the trade-off between the noise for
hash values and the noise for input values. Fig. 11 also shows
that the MSE rapidly increases as we decrease α and l from
10−6 and 50, respectively. This is because SFME

D∗,β filters out
almost all items in this case. Our suggestion is to avoid such
extreme settings; e.g., if we are interested in the frequency of
top-k items, α and l should be: α ≥ 10−5 and l ≥ k.

Note that SFME
D∗,β also has the sampling probability β as a

parameter. [18] shows that the communication cost is improved
by reducing β. However, it comes at the cost of accuracy.
Since we can significantly improve the communication cost
by setting l small, our suggestion is to set β = 1.

B. Existing Defenses against Collusion and Poisoning Attacks

We evaluated the existing defenses against collusion and
poisoning attacks not evaluated in Section VIII.
Collusion Attacks. For collusion attacks, we evaluated a
defense in [17], which adds dummies uniformly at random
from the domain of noisy data. This defense increases the MSE
by (1 + υ)2 times by adding υn dummies, where υ ∈ R≥0.
We set υ = 0.5, in which case the MSE is increased by 2.25
times. We applied the defense in [17] to the existing protocols
and evaluated the relationship between the actual ε and the
ratio |Ω|/n of colluding users using the Foursquare dataset.
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Fig. 12. Actual ε vs. the ratio |Ω|/n of colluding users when the defense
in [8] is applied to the existing protocols in the Foursquare dataset (ε = 0.1,
δ = 10−12).
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Fig. 13. FPR and FNR of the defense in [20] in the Amazon dataset (λ = 0.1,
δ = 10−12).

Fig. 12 shows the results. The actual ε still increases with
an increase in |Ω|/n, which indicates that the defense in [17]
is insufficient as a defense against collusion attacks.
Poisoning Attacks. For poisoning attacks, we evaluated a
defense in [20]. The defense in [20] detects fake users based
on isolation forest in KV statistics estimation. Note that the
isolation forest simply divides users into two groups. Since we
can set the size of each group in the isolation forest, we assume
that the data collector knows the number n′ of fake users,
divides the users into a group with n′ users and another group,
and treats the former group as a fake group. Following [20], we
used the FPR (False Positive Rate) and FNR (False Negative
Rate) as performance measures. The FPR (resp. FNR) is the
ratio of genuine users decided as fake (resp. fake users decided
as genuine). We evaluated the FPR and FNR of the defense
in [20] applied to PCKV-GRR/UE using the Amazon dataset.

Fig. 13 shows the results. Although the FPR and FNR are
low for PCKV-GRR, the FNR is very high for PCKV-UE. This
is because, for PCKV-UE, the M2GA sets bits corresponding
to the target keys to 1 and randomly samples other bits to evade
detection [20]. Our result shows that the effectiveness of the
defense in [20] is limited for PCKV-GRR. This is consistent
with the experimental results in [20].

C. User/Group-Dependent Hash Protocol

We also evaluated the UH (User-Dependent Hash) and GH
(Group-Dependent Hash) protocols.
UH/GH Protocol. Below, we explain the GH protocol, as it is
more general than the UH protocol. Let g ∈ [n] be the number
of groups. For each i ∈ [g], the data collector randomly selects
a hash function hi : [d]→ [b] from H. Then, the data collector
selects a group ID ri ∈ [g] for each user ui (i ∈ [n]) and sends
ri and hri to ui. User ui (i ∈ [n]) sends a pair ⟨ri, hri(xi)⟩
of the group ID and the hash value to the shuffler.

The shuffler randomly selects each pair with probability β.
For each group ID j ∈ [g] and each hash value k ∈ [b],
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Fig. 14. MSE of our proposal and the CH/GH/UH protocol in the Foursquare
dataset (left: MSE over all items, right: MSE over the top-50 items). The CH
and UH protocols are the GH protocol with g = 1 and 100, respectively.

0 1 2 3 4 5

1

2

3

4

5

Target epsilon 0.0 0.1 0.2 0.3 0.4 0.5
0
2
4
6
8

10
12

fm
ax



 Proposal (Large l)  Proposal (Small l) 
 GRR   RAPPOR 
 OUE  OLH  LWY22-Large 
 BC20  CM22

 Proposal  GRR 
 RAPPOR/OUE/OLH
 LWY22-Large 
 BC20  CM22

Fig. 15. Robustness against collusion and poisoning attacks when varying
the target ε and the fraction λ of fake users in the Foursquare dataset (left:
|Ω|/n = 0.1, δ = 10−12; right: ε = 1, δ = 10−12).

the shuffler randomly generates zjk from the dummy-count
distribution D (zjk ∼ D) and adds a dummy pair ⟨j, k⟩ for zjk
times. The shuffler randomly shuffles the selected hash values
and dummies to the data collector. Finally, the data collector
calculates an unbiased estimate f̂i (i ∈ [d]) of fi as: f̂i =

b
nβ(b−1) (

∑
(j,k)∈Si

c̃jk − nβ
b − gµ), where c̃jk is the number

of ⟨j, k⟩ in the shuffled data, and Si = {(j, k)|hj(i) = k},
i.e., the set ⟨j, k⟩ of pairs that could be produced from item i.

Note that this protocol is equivalent to a protocol that
independently applies the CH protocol to each group. Thus,
the GH protocol inherits the theoretical properties of the CH
protocol, e.g., (ε, δ)-CDP. The UH protocol is a special case
of the GH protocol where g = n and ri = i (i ∈ [n]).

Experimental Results. We compared our proposals with the
UH and GH protocols using the Foursquare dataset. Note that
the GH protocol is inefficient when g is large. To reduce the
run time, we randomly selected n = 100 users and divided the
city into 100 × 100 regions (d = 10000) at regular intervals.
Then, we evaluated the MSE over all items (regions) and
the MSE over the top-50 items while changing g in the GH
protocol from 1 to 100. Note that the CH and UH protocols
are the GH protocol with g = 1 and 100, respectively.

Fig. 14 shows the results. In the GH protocol, the MSE
increases as g increases. This is because the GH protocol needs
to add dummies for each group. In addition, the CH protocol
(i.e., GH with g = 1) suffers from a large MSE over all
items. This is because the CH protocol has poor accuracy for
unpopular items due to the hash collision. The poor accuracy
cannot be improved by using user/group-dependent hashes.

D. Changing Parameters in Collusion and Poisoning Attacks

We evaluated the robustness against collusion and poisoning
attacks when varying the target ε and the fraction λ of fake
users in the Foursquare dataset. Fig. 15 shows the results.
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Fig. 16. MSE of our proposals with/without the TKV-FK technique in the
Amazon dataset (δ = 10−12).
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Fig. 17. MSE of our proposals with additional noise in the Foursquare and
Amazon datasets (δ = 10−12).

Fig. 15 shows that the actual ε rapidly increases as the
target ε increases in the existing protocols. In contrast, the
actual ε is always the same as with the target ε in our FME
protocol, demonstrating robustness against collusion attacks.
Our proposals also achieve the smallest gain Gmax

f and is the
most robust to poisoning attacks for all values of λ.

E. Effectiveness of TKV-FK

For an ablation study, we evaluated our proposal with our
TKV-FK technique (Fig. 5(b)) and our proposal without our
TKV-FK technique (Fig. 5(a)) in the Amazon dataset.

Fig. 16 shows the results. The MSE for means is signifi-
cantly improved by introducing TKV-FK, demonstrating the
effectiveness of TKV-FK for reducing bias. The MSE for
frequencies is also significantly reduced by introducing TKV-
FK. This is because our proposal with TKV-FK effectively
finds popular items by filtering data at a key level.

F. Our Proposals with Additional Noise

Theorem 6 assumes that the shuffler does not disclose dum-
mies after running the protocol. However, even if the shuffler
discloses dummies, we can guarantee DP for the outputs of
SFME
D∗,β by adding additional DP noise before publishing them.

We denote this modified protocol by Proposal*.
Specifically, Proposal* adds noise randomly generated

from the two-sided geometric distribution Geo(e−ε/4) [71]
with parameter e−ε/4 to each of the counts c̃H1 , . . . , c̃

H
b (cf.

Algorithm 1, line 11). Since the sensitivity of the count
is 2, adding noise from Geo(e−ε/4) provides ε

2 -DP for Λ.
Similarly, Proposal* adds noise from Geo(e−ε/4) to each of
the counts c̃1, . . . , c̃d (cf. Algorithm 1, line 26) to provide ε

2 -
DP for f . Then, publishing Λ and f provides ε-DP, even if the
shuffler discloses dummies after running the protocol.

We evaluated the MSE of this protocol using the Foursquare
and Amazon datasets. Fig. 17 shows the results. The accuracy
is hardly affected by introducing additional noise.
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APPENDIX F
ARTIFACT APPENDIX

Our source code is a Java implementation of the proposed
FME (Filtering-with-Multiple-Encryption) protocol. The pur-
pose of this source code is to reproduce our main results
(Fig. 6) using the categorical (Foursquare) and key-value
(Amazon) datasets.

A. Description & Requirements
1) How to access: Our source code can be downloaded

from Zenodo: https://doi.org/10.5281/zenodo.17032669 (DOI:
10.5281/zenodo.17032669). The directory structure of this
repository is as follows:

• data/ – Place raw datasets here (currently empty).
• dataset/ – Preprocessed datasets (currently empty). The

preprocessed files will be automatically stored in the
dataset/ directory after running DataPreprocessing.

• lib/ – External libraries (JAR files) (currently empty).
• src/ – Java source code.
• LICENSE.txt – MIT license.
• README.md – README file.
2) Hardware dependencies: None.
3) Software dependencies: Our code needs the following

libraries:
• Apache Commons Math 3.6.14.
• Bouncy Castle5.
4) Benchmarks: Our code uses the following datasets:
• Global-scale Check-in Dataset6.
• User Profile Dataset6.
• Amazon - Ratings (Beauty Products)7.

The first two are the Foursquare dataset, and the last one is the
Amazon dataset. The Foursquare dataset contains categorical
data, whereas the Amazon dataset contains key-value data.

B. Artifact Installation & Configuration
Install and compile our code as follows:

1) Clone the repository:

$ git clone https://github.com/
FilteringMultipleEncryption/
FilteringMultipleEncryption.git

$ cd FilteringMultipleEncryption

2) Place the following libraries in the lib/ directory:
• Apache Commons Math 3.6.14: Download commons-

math3-3.6.1-bin.zip or .tar.gz from the Apache archive
and decompress it. The archive contains commons-
math3-3.6.1.jar. Place it into the lib/ directory.
(NOTE: Commons Math 4.x uses a different package
structure and is incompatible with our code.)

• Bouncy Castle5: Our code works with bcprov-
jdk18on-1.81.jar. Place it into the lib/ directory.

3) Compile our code:

4https://archive.apache.org/dist/commons/math/binaries/
5https://www.bouncycastle.org/
6https://sites.google.com/site/yangdingqi/home/foursquare-dataset
7https://www.kaggle.com/datasets/skillsmuggler/amazon-ratings

TABLE II
ENTRY POINTS.

Data Type Entry Point Description
Categorical fme.CategoricalFME Evaluate the FME protocol for

categorical data.
Key-Value fme.KeyValueFME Evaluate the FME protocol for

key-value data.

TABLE III
ARGUMENTS IN EACH ENTRY POINT.

Argument Description
DataConfig Dataset name.
epsilon ε in differential privacy.
delta δ in differential privacy.
alpha Significance level.
beta Sampling probability.
topK Evaluate the MSE of the top-K frequent items.
encryption Encryption mode (RSA or ECIES).
isLargeL Use “Proposal (Large l)” if true.
seed Random seed (optional).

$ javac -cp "lib/*" -d bin src/data/*.java
src/encryption/*.java src/fme/*.java

src/hash/*.java src/sageo/*.java src/
util/*.java

C. Major Claims

• (C1): Our FME protocol “Proposal (Large l)” with ε = 1
achieves the MSE of about 1.6× 10−7 in the Foursquare
dataset. This is proven by the experiment (E1) whose
results are shown in Fig. 6 “Foursquare”.

• (C2): Our FME protocol “Proposal (Large l)” with ε = 1
achieves the frequency MSE of about 2.8×10−7 and the
mean MSE of about 0.17 in the Amazon dataset. This is
proven by the experiment (E2) whose results are shown
in Fig. 6 “Amazon (frequency)” and “Amazon (mean)”.

D. Evaluation

Table II shows an entry point in our code for each data type
(i.e., categorical or key-value). Each entry point has arguments
shown in Table III. Based on them, we explain how to conduct
our experiments.

1) Experiment (E1): [Foursquare Dataset] [30 human-
minutes + 1 compute-minute]: First, we explain our exper-
iments using the Foursquare dataset. After downloading the
datasets, our code can be easily run and does not take time;
our estimate is 1 minute even on a laptop. The expected results
are: the MSE of about 1.6×10−7 for “Proposal (Large l)” with
ε = 1.

[How to] Below, we explain how to conduct our experi-
ments using the Foursquare dataset.

[Preparation] Download the following datasets into data/:
• Global-scale Check-in Dataset (dataset TIST2015

.zip)6.
• User Profile Dataset (dataset UbiComp2016.zip)6.

Then, preprocess the dataset as follows:
On Windows:

$ java -cp "lib/*;bin" util.DataPreprocessing
foursquare
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On Linux/MacOS:

$ java -cp "lib/*:bin" util.DataPreprocessing
foursquare

[Execution] Run the evaluation code as follows:
On Windows:

$ java -cp "lib/*;bin" fme.CategoricalFME
foursquare 1.0 1E-12 0.05 1.0 50 RSA true
100

On Linux/MacOS:

$ java -cp "lib/*:bin" fme.CategoricalFME
foursquare 1.0 1E-12 0.05 1.0 50 RSA true
100

[Results] Then, the following results will be output to the
console:

Frequency MSE: 1.5896099937481953E-7

This value – about 1.6 × 10−7 – is the MSE of “Proposal
(Large l)” with ε = 1.0. We expect that the same results will
be output to your console, as the above execution command
fixes the random seed (= “100”) by setting the 9th argument
to “100”.

2) Experiment (E2): [Amazon Dataset] [30 human-minutes
+ 1 compute-minute]: Second, we explain our experiments
using the Amazon dataset. Note that we need to log in to
the Kaggle to download the Amazon dataset. As with (E1),
our code does not take time. The expected results are: the
frequency MSE of about 2.8 × 10−7 and the mean MSE of
about 0.17 for “Proposal (Large l)” with ε = 1.

[How to] Below, we explain how to conduct our experi-
ments using the Amazon dataset.

[Preparation] Download the following datasets into data/
(please log in to the Kaggle to download the dataset):

• Amazon - Ratings (Beauty Products) (ratings
Beauty.csv)7.

Then, preprocess the dataset as follows:
On Windows:

$ java -cp "lib/*;bin" util.DataPreprocessing
amazon

On Linux/MacOS:

$ java -cp "lib/*:bin" util.DataPreprocessing
amazon

[Execution] Run the evaluation code as follows:
On Windows:

$ java -cp "lib/*;bin" fme.KeyValueFME amazon
1.0 1E-12 0.05 1.0 50 RSA true 100

On Linux/MacOS:

$ java -cp "lib/*:bin" fme.KeyValueFME amazon
1.0 1E-12 0.05 1.0 50 RSA true 100

[Results] Then, the following results will be output to the
console:

Frequency MSE: 2.830363096692403E-7
Mean MSE: 0.1714257324077271

These values – about 2.8×10−7 and 0.17 – are the frequency
MSE and the mean MSE of “Proposal (Large l)” with ε = 1.0.
We expect that the same results will be output to your console.

E. Customization

For each data type, we can change the value of ε by
changing the 2nd argument (from “1.0” to the desired value).
We can evaluate “Proposal (Small l)” by changing the 8th
argument from “true” to “false”. The 9th argument (“100”
in the above examples) is optional and can be omitted. We
plotted Fig. 6 “Proposal (Large l)” and “Proposal (Small l)”
in the Foursquare and Amazon datasets by changing ε from
0.1 to 5.0 and averaging the MSE over 10 runs.
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