
cwPSU: Efficient Unbalanced Private Set Union
via Constant-weight Codes

Qingwen Li
Xidian University

qingwen@stu.xidian.edu.cn

Song Bian
Beihang University
sbian@buaa.edu.cn

Hui Li
Xidian University

lihui@mail.xidian.edu.cn

Abstract—Private Set Union (PSU) allows two parties to
compute the union of their private sets without revealing any
additional information. While several PSU protocols have been
proposed for the unbalanced setting, these constructions still
suffer from substantial communication overhead as the size of the
larger set increases. Moreover, their reliance on multiple invoca-
tions of oblivious pseudo-random functions results in increased
communication rounds, which becomes a practical bottleneck.

In this work, we present cwPSU, a novel unbalanced PSU
protocol built upon constant-weight codes and leveled fully
homomorphic encryption. To prevent leakage, we introduce a
new technique called Batched Ciphertext Shuffle, which enables
secure reordering of packed ciphertexts. Additionally, we propose
an optimized arithmetic constant-weight equality operator, which
reduces the number of non-scalar multiplications to just one-third
of those required by the naı̈ve approach. The communication
complexity of our protocol scales linearly with the size of the
smaller set and remains independent of the larger set. Notably,
cwPSU requires only a single round of online communication.

Experimental results demonstrate that our cwPSU outper-
forms the state-of-the-art protocol in various network conditions,
achieving a 5.1–32.4→ reduction in communication and a 3.1–
13.3→ speedup in runtime.

I. INTRODUCTION

Private Set Union (PSU) is a fundamental cryptographic
primitive that enables two parties to jointly compute the union
of their private sets, without revealing any additional infor-
mation. This functionality is crucial in a variety of privacy-
preserve applications where data sharing must be limited to the
agreed-upon results, such as security risk assessments [1]–[3],
fraud detection across financial institutions [4], collaborative
contact tracing [5], [6], and cross-institution medical research
[7]. Many existing PSU protocols [8]–[11] are designed for
the balanced setting, where the two input sets are roughly
of equal size. While these protocols offer satisfactory perfor-
mance under balanced conditions, their efficiency significantly
degrades when deployed in unbalanced scenarios. In particular,
their communication complexity is typically at least linear in
the size of the larger set, making them unsuitable for settings

where one party’s input set is significantly larger than the
other’s.

Unbalanced PSU scenarios are common in real-world ap-
plications. One representative example is blacklist aggregation
[10]–[13], where entities aim to combine their IP black-
lists to improve network security and intrusion detection
capabilities. In such cases, the sender is often a resource-
constrained device, such as a mobile phone or IoT sensor,
with limited computational power, storage, and battery life,
while the receiver may be a powerful cloud-based server.
Moreover, network bandwidth between the parties may be
restricted, adding further challenges to existing PSU protocols.
According to Ramanathan et al. [14], in a study across 23,483
autonomous systems, over 176 million blacklisted IP addresses
were collected, with significant variation in list sizes. Some
blacklists included over 500,000 IP addresses, while others
contained fewer than 1,000. Balanced PSU protocols perform
poorly in such unbalanced settings due to their reliance on
linear communication with respect to the larger set.

To address the challenges of unbalanced PSU, two notable
works [12], [13] have proposed protocols achieving standard-
model security in such unbalanced settings. Tu et al. [12]
introduced the Permuted Matrix Private EQuality Test (pm-
PEQT) and presented the first unbalanced PSU protocol lever-
aging leveled Fully Homomorphic Encryption (FHE) [15]–
[17]. Their design achieves communication complexity that
is linear in the size of the smaller set and logarithmic in
the size of the larger set. Building on this, Zhang et al.
[13] optimized [12] by incorporating the Oblivious Key-Value
Store (OKVS) data structure [18]–[20], which significantly
improves efficiency by offloading most of the computational
and communication costs to the setup phase. Their protocol
demonstrates superior performance during the online phase
compared to [12]. Despite these advances, both protocols still
maintain a communication complexity that depends at least
partially on the size of the larger set. As a result, when
the receiver’s set grows large (e.g., up to 222 elements), the
communication overhead becomes substantial. Additionally,
both approaches rely on multiple Oblivious Pseudo-Random
Function (OPRF) [21] invocations, making the number of
communication rounds another critical bottleneck in practice.

This work aims to design a new unbalanced PSU protocol
that further reduces communication complexity and minimizes
the number of interaction rounds. Our goal is to provide a more

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231128
www.ndss-symposium.org

practical and scalable solution by optimizing both computation
and communication costs, particularly in scenarios with large-
scale input.

A. Contribution
In this work, we propose a novel unbalanced PSU protocol,

cwPSU, which is based on constant-weight encoding. Our
design achieves significant improvements in communication
complexity and round efficiency, while also offering compet-
itive computational performance. The main contributions of
this paper are summarized as follows:

cwPSU protocol construction. We design a new unbal-
anced PSU protocol based on constant-weight encoding, called
cwPSU, in which the communication cost depends linearly
only on the size of the smaller set and remains independent
of the larger set’s size. The protocol requires only one round
of online communication. However, a direct use of the se-
lection vectors generated by this approach may reveal partial
information about the sender’s input set.

Batched ciphertext shuffle. To address the potential leak-
age in the cwPSU protocol, we introduce a novel primitive
called Batched Ciphertext Shuffle (BCS), which leverages
leveled FHE and the Permute + Share technique. BCS en-
ables the sender to reorder the packed ciphertext of selection
vectors according to its permutation, effectively preserving pri-
vacy without increasing the number of online communication
rounds.

Optimized equality operator. We propose a new arithmetic
constant-weight equality operator EEQ, which reduces the
number of ciphertext-ciphertext multiplications by two-thirds
compared to the naı̈ve operator. This optimization significantly
improves computational efficiency in the equality testing step
of the protocol.

Implementation and evaluation. We implement our cw-
PSU protocol and perform a detailed comparison with the
state-of-the-art unbalanced PSU protocol [13]. Experimental
results show that, in the online phase, our protocol achieves a
5.1→32.4↑ reduction in communication cost and a 3.1→13.3↑
speedup in online runtime under various network settings.

B. Related Work
As a special case of secure two-party computation, private

set operations primarily include Private Set Intersection (PSI)
and PSU.

Over the past decade, PSI [22]–[24] has been extensively
studied in both academic and applied cryptography com-
munities. Balanced PSI protocols have achieved significant
progress, with most constructions relying on Oblivious Trans-
fer (OT) extension [25]–[28] or various implementations of
OPRF [29]–[32]. These techniques enable efficient PSI pro-
tocols when both parties hold input sets of comparable size.
Chen et al. [17] were the first to propose a fast unbalanced
PSI protocol using FHE, achieving sublinear communication
complexity with respect to the size of the larger set. This
line of work has since been further optimized in follow-
up research [33]–[37]. Although PSI and PSU share certain

cryptographic building blocks and design principles, PSU in-
troduces unique challenges. As a result, PSU requires tailored
constructions to ensure both efficiency and security.

Early research on PSU focused primarily on balanced
settings, where both parties’ sets are of comparable size.
The existing constructions can broadly be classified by their
underlying cryptographic primitives. One line of work pre-
dominantly uses public-key techniques [38]–[40], which often
offer robust security properties at the cost of higher com-
putational and communication overhead. Another line relies
on symmetric-key techniques, typically in combination with
oblivious transfer (OT) [8]–[10], enabling significantly faster
protocols in practice. Chen et al. [41] later proposed an
improved PSU protocol from the DDH assumption with linear
complexity in the balanced case. Despite these advancements,
most balanced PSU protocols suffer from considerable perfor-
mance degradation once one set becomes significantly larger
than the other, since their cost generally scales with the larger
set’s size.

Motivated by real-world scenarios where one party’s set can
be orders of magnitude bigger (e.g., a resource-constrained
mobile device vs. a high-performance server), researchers have
recently begun focusing on unbalanced PSU. Jia et al. [10]
were the first to address an unbalanced setting, introducing a
PSU protocol that uses cuckoo hashing and a Permute + Share
[42], [43] subroutine, followed by multiple invocations of
OPRF. However, their protocol incurred linear communication
complexity in the size of the larger set and did not achieve
standard-model security. Tu et al. [12] later proposed the first
unbalanced PSU protocol to offer standard-model security,
achieving sublinear communication in the size of the larger
set. Their key technique was a new polynomial randomization
method for FHE-based unbalanced PSI, combined with the
pm-PEQT to reduce leakage. While this design yielded com-
munication complexity linear in the smaller set and logarith-
mic in the larger set, it still relied on partition techniques that
introduced significant constant factors. Subsequently, Zhang
et al. [13] refined Tu et al.’s approach by incorporating an
OKVS, shifting a substantial portion of computational and
communication overhead to the setup phase. They achieved
improved performance during the online phase and likewise
required only sublinear communication in the larger set’s size.
Despite these advances, both protocols continue to have a
residual dependence on the size of the bigger set, leading to
notable overhead for very large input sets (e.g., 222 elements).
Furthermore, because they rely on multiple OPRF invocations,
the number of communication rounds can also become a
practical bottleneck.

II. TECHNIQUE OVERVIEW

We present an overview of our cwPSU protocol as follows.
We first design a novel unbalanced PSU protocol that leverages
constant-weight encoding and leveled FHE. In our construc-
tion, the communication cost depends linearly only on the
size of the smaller set and is independent of the size of the
larger set. However, a direct application of these optimizations

2

Fig. 1: Overview of our basic protocol.

may lead to leakage about the sender’s input set. To mitigate
this issue, we introduce a new cryptographic primitive, called
Batched Ciphertext Shuffle (BCS), which securely reorders
batched ciphertexts of selection vectors. By integrating BCS,
we obtain our full unbalanced PSU protocol that is secure in
the semi-honest adversarial model. For clarity, we denote the
two parties as the sender S and the receiver R, holding input
sets X and Y , respectively, where |X| = m, |Y | = n, and
m ↓ n.

A. Basic Protocol

Figure 1 provides an overview of the main steps in our
basic protocol. Before the protocol begins, both S and R

asynchronously preprocess their datasets, including hashing,
constant-weight encoding and packing. Specifically, the sender
S inserts the small set X into a 1-dimensional Cuckoo hash
table Tx, where each bin Tx[i] contains exactly one item.
Meanwhile, the receiver R inserts the large set Y into a 2-
dimensional hash table Ty using standard hashing, where each
bin has a maximum load of B. This technique is common
in PSI and PSU [12], [36], [37]. Inspired by [44], we adopt
permutation-based hashing H : {0, 1}ω ↔ {0, 1}ω

→
to reduce

the effective bit-length of each item. After that, each item is
then encoded into a binary string of length l using constant-
weight encoding. Dummy items used to fill unused bins are
represented as the all-zero binary string of length l. The value
of l is determined by the item’s effective bit-length ω and
the Hamming weight h of the constant-weight codeword, as
defined in Equation 2. The constant-weight codeword hash
tables are denoted by T→

x
for the sender and T→

y
for the

receiver. We now describe how S prepares its data for homo-
morphic operations. Given a homomorphic encryption packing
parameter N , up to N plaintexts can be packed into a single
batch. Since each bit of a constant-weight codeword requires
a separate homomorphic computation, we pack the bits at the
same position across multiple codewords into a single batch to
enable efficient parallel processing. Specifically, for every N
bins in T→

x
, we extract the bits at the same position from their

corresponding codewords and aggregate them into a single

Fig. 2: The example of constant-weight codeword batching,
where l = 5 and h = 2.

batch, as illustrated in Figure 2. The receiver R follows a
similar batching strategy. By treating each of the B columns
in its hash table T→

y
as an independent 1-dimensional hash

table, R applies the same packing process to prepare its own
encoded dataset for comparison.

After the preprocessing and packing steps, the sender S

encrypts the batched constant-weight codeword and transmits
them to the receiver R. For each bin in T→

x
, the receiver

performs equality comparison between S’s encoded item and
all B items in the corresponding bin of T→

y
, using Algo-

rithm 1. Thanks to batching, R can evaluate the equality
comparison for up to N bins in parallel. As described in
Algorithm 1, if two items are equal, the result is a ciphertext
of 1; otherwise, the result is 0. In Section V, we present
an optimized equality comparison algorithm that reduces the
number of ciphertext–ciphertext multiplications by two-thirds
relative to the naı̈ve approach. For each bin i, R computes
the equality between S’s item and all B candidate items
from its own bin, yielding B encrypted comparison results
{e1, · · · , eB}. These are then summed to compute a ciphertext
sum =

∑
B

i=1 ei, and the receiver computes the encrypted
selection bit as 1 → sum. The resulting encrypted selection
vector is 1 → sum = [[b]]pks = [[b1, · · · , bk]]pks , where bi = 0
indicates that the item in S’s bin i is already present in R’s
set, and bi = 1 indicates that the item should be sent by S .

To preserve privacy and prevent S from learning this
selection vector, R applies a blinding technique. Specifically,
R samples k random values r1, · · · , rk, and computes the
blinded selection vector [[b̂]]pks = [[b1 + r1, · · · , bk + rk]]pks .
After that, R packs the random values into vectors, which
are then encrypted under its public key to produce [[r]]pkr =
[[r1, · · · , rk]]pkr . Finally, R sends both [[b̂]]pks and [[r]]pkr to S .

Upon receiving the blinded selection vector [[b̂]]pks , the
sender S first decrypts it and then homomorphically sub-
tracts the encrypted randomness [[r]]pkr , resulting in the se-
lection vector encrypted under R’s public key [[b]]pkr =
[[b1, · · · , bk]]pkr . Next, S performs a plaintext-ciphertext mul-
tiplication between each selection bit bi and the corresponding
item Tx[i], producing [[b1 · Tx[1], · · · , bk · Tx[k]]]pkr . Finally,
S sends the resulting ciphertext vector to R, which allows R

to recover the union set.
Despite the protocol’s correctness and efficiency, the above

approach introduces a potential privacy leakage. When the
receiver R obtains the vector (b1 ·Tx[1], · · · , bk ·Tx[k]), it can

3

Fig. 3: Batched ciphertext shuffle protocol.

infer the value of each selection bit bi by checking whether
the bi · Tx[i] equals zero. Specifically, if the bi · Tx[i] is zero,
it indicates that the corresponding item in bin i appears in
the set of both parties. Although R does not learn the actual
values of any items in S’s input set, it is still able to deduce
which bins contain items shared by both parties. This reveals
structural information about the sender’s set and violates the
ideal privacy guarantee of PSU.

B. Batched Ciphertext Shuffle

To overcome the leakage introduced in the previous ap-
proach, we propose a new cryptographic primitive called
Batched Ciphertext Shuffle, as shown in Figure 3. The goal of
BCS is to allow one party, A, to shuffle an encrypted message
vector without learning the message contents, while simulta-
neously ensuring that B learns nothing about the permutation
strategy.

In our BCS protocol, party A holds a permutation ε, while
party B holds a message vector m = (m1, · · · ,mk), along
with a corresponding randomness vector r = (r1, · · · , rk).
The two parties first engage in the permute + share procedure.
In this phase, A applies its permutation ε to the randomness
vector held by B, resulting in two correlated shares. A receives
sε , and B receives s→

ε
, such that for every index i, the sum

sε(i) + s→
ε(i) equals rε(i).

Following this, B masks the original messages using a one-
time pad approach, adding the randomness to each message
entry to obtain a randomized vector m̂ = (m1+r1, · · · ,mk+
rk). In parallel, B batches and encrypts its share s→

ε
under its

public key, producing the ciphertext [[s→
ε
]]pkb . Both the masked

message vector m̂ and the encrypted share [[s→
ε
]]pkb are then

transmitted to A.
Upon receiving these, A reorders the masked messages

according to its private permutation ε, obtaining the permuted
vector m̂ε = (m̂ε(1), · · · , m̂ε(k)). It then subtracts its own
share sε to compute an intermediate vector m̃ε = m̂ε → sε ,
which effectively equals the true permuted message vector plus
B’s encrypted share. Finally, by performing a homomorphic
subtraction between m̃ε and [[s→

ε
]]pkb , A obtains the permuted

batched ciphertext [[mε]]pkb , without ever learning the under-
lying plaintexts or randomness.

C. Full cwPSU Protocol

To summarize, our complete cwPSU protocol proceeds as
follows.

Initially, the sender S and the receiver R preprocess their
respective input sets X and Y , including hashing, constant-
weight encoding, and batching. After these transformations,
S encrypts the batched constant-weight codewords and sends
them to R. Using these ciphertexts, R computes the encrypted
selection vector [[b]]pks = [[b1, · · · , bk]]pks .

Next, the parties execute the BCS protocol. In this phase,
S acting as party A provides the permutation ε, while R

as party B inputs the blinded selection vector [[b̂]]pks =
[[b1 + r1, · · · , bk + rk]]pks , along with the randomness values
r1, · · · , rk. Unlike the original BCS protocol, here the input
from R is a ciphertext encrypted under S’s public key. This
introduces no issues: S can decrypt the blinded vector using its
private key, while R does not need to know the actual values
of b, as the blinding is applied via homomorphic addition.
Therefore, this variant remains fully compatible with our BCS
construction.

After executing BCS, S obtains the permuted selection
vector encrypted [[bε]]pkr . S then reorders its own dataset
according to ε, performs plaintext-ciphertext multiplication
with the permuted selection vector, and sends the result back
to R.

To further optimize protocol efficiency, we follow the design
principle proposed in [13] and divide the protocol into setup
and online phases. In the setup phase, R can pre-download
the ciphertexts of S’s dataset. This is similar in spirit to digest
download in Simple PIR [45], and allows reusability when R’s
input set changes and PSU needs to be re-run. Additionally,
the Permute + Share part of BCS is independent of the dataset
content and can also be precomputed in the setup phase. As a
result, the online phase of BCS requires only a half round of
communication, and combined with the receiver’s query, our
cwPSU protocol achieves a total of just one round of online
interaction.

III. PRELIMINARY

A. Notations

Throughout this paper, we will use the notation [[x]]pk to
denote the encryption of element x under key pk. We use
bolded lowercase letters for vectors. The computational and
statistical security parameters will be denoted by ϑ and ϖ,
respectively. N , q, t represent parameters in FHE, denoting
the degree of the modulus polynomial, the ciphertext modulus,
and the plaintext modulus, respectively. The entire parameter
set of FHE is denoted as params. For x ↗ R, we use ↘x≃
to denote rounding to the nearest integer, ⇐x≃ to represent
rounding up, and ↘x⇒ for rounding down.

4

B. Leveled Fully Homomorphic Encryption

Leveled FHE is a cryptographic technique that permits
encrypted data to be multiplied and added to a certain depth
without decryption. Leveled FHE restricts computation depth
by introducing a hierarchical structure that allows for more
efficient computations. In this study, we utilize the BFV
scheme [15], a specific leveled FHE scheme based on the
computational complexity of the Ring Learning With Errors
(RLWE) problem [46].

For the BFV scheme, we use t and q to represent the
plaintext modulus and the ciphertext modulus, respectively.
This implies that the plaintext and ciphertext spaces are rep-
resented as rings Rt = Zt[x]/(f(x)) and Rq = Zq[x]/(f(x)),
respectively. Here, f(x) = xn+1 is a cyclotomic polynomial,
and n is a power of 2.

The BFV scheme is actually a naturally Somewhat Ho-
momorphic Encryption (SHE) scheme, capable of supporting
a limited number of homomorphic additions and multiplica-
tions. It is worth noting that, through techniques such as key
switching and modulus switching, BFV can be extended into
a Leveled FHE scheme. Our proposed scheme only requires
homomorphic addition and plaintext-ciphertext multiplication,
and as a result, does not employ these two techniques. For
further details, please refer to [15].

The remarkable computational efficiency of second-
generation fully homomorphic encryption schemes is at-
tributed to the key technique of batching. In the RLWE-based
scheme, the plaintext space is a polynomial ring denoted as
Rt = Zt[x]/(f(x)). Through batching, a vector over Ft can
be seamlessly encoded into a polynomial over Rt. Utilizing
the isomorphic properties of the Chinese Remainder Theo-
rem, polynomial operations over Rt parallelize homomorphic
operations, making them ideal for scenarios requiring rapid
homomorphic computations.

In our protocol, we rely on basic homomorphic operations
supported by leveled FHE, specifically ciphertext-ciphertext
and ciphertext-plaintext additions and multiplications. The
cost of each homomorphic operation is characterized by
two primary metrics: its runtime and the noise added to
the ciphertext. For efficiency analysis, we assume that both
ciphertexts and plaintexts are represented in Double-CRT form
and that ciphertext noise is measured by its infinity norm. We
also assume the use of hybrid key-switching mechanisms for
bootstrapping and noise management.

Homomorphic addition is the most lightweight operation,
requiring only O(n log q) integer additions. The resulting
noise is simply the sum of input noises, multiplied by a small
factor O(t).

We distinguish between two types of homomorphic multi-
plication:

• Scalar multiplication (ciphertext-plaintext multiplica-
tion): This operation involves coefficient-wise multipli-
cation of an n-dimensional ciphertext vector with a
plaintext. It incurs O(n log q) integer multiplications and
increases the noise by O(t

⇑
n).

• Non-scalar multiplication (ciphertext-ciphertext mul-
tiplication): This is more costly and consists of two
steps: vector convolution and key-switching. The convo-
lution phase requires O(n log n) integer multiplications,
while the key-switching step involves O(n log n log q +
n(log q)2) integer multiplications. Thus, the overall cost
is O(n log n log q+n(log q)2), and the output noise grows
proportionally to O(n · t ·max(V1, V2)), where V1 and V2

are the input ciphertext noise levels.

C. Constant-weight Encoding
A constant-weight code, or an l-of-h code, is a class of

error-detecting codes in which all codewords have the same
Hamming weight. In the special case of binary constant-
weight codes, each codeword is a binary string with a fixed
number of ones. Constant-weight codes have found important
applications in the design of secure multi-party computation
(MPC) protocols, including private set intersection (PSI) [44]
and private information retrieval (PIR) [47], [48].

The length of a code refers to the number of bits in each
codeword, and the size of the code is the number of distinct
codewords. For a binary constant-weight code of length l and
Hamming weight h, the number of valid codewords is given
by the binomial coefficient

(
l

h

)
.

To ensure that the code can represent at least n distinct
values with fixed weight h, the length l must satisfy:

(
l

h

)
⇓ n. (1)

The details of how to map numbers from the set [n] into
constant-weight codewords can be found in [47].

For the effective bit-length ω of n values, we have n = 2ϑ .
As an approximation, the length can be bounded by:

l ↗ O
(

h
⇑

h! · 2ϑ + h
)
. (2)

We denote the set of all binary constant-weight codewords
of length l and weight h as CW (l, h).

Given two codewords x, y ↗ CW (l, h), it is often necessary
to test whether x = y. Algorithm 1 shows the arithmetic
equality operator [47] over constant-weight codewords that
uses arithmetic operations and is compatible with field-based
computation.

Algorithm 1 Arithmetic Constant-weight Equality Operator
cwEQ(x, y).

Input: x, y ↗ CW (l, h)
1: k =

∑
i↑[l]

x[i] · y[i]

2: e = 1
h! ·

∏
i↑[h]

(k → i)

Output: e ↗ {0, 1}

The output e takes value in {0, 1}, where:

e =

{
1 if x = y (i.e., k→ = k)
0 if k→ < k

(3)

5

This method relies on the fact that the inner product of
two identical constant-weight codewords is exactly k, while
any mismatch results in a value less than k. As a result, the
product in the expression becomes zero unless k→ = k.

A circuit implementing this operator requires l + h multi-
plications and achieves a multiplicative depth of 1+ ⇐log2 h≃.

D. Permute + Share
We introduce the Permute + Share functionality [42], [43],

denoted by FPS, which involves two parties, denoted as A

and B. Party A inputs a private permutation ε of length n,
while party B inputs a vector x = (x1, . . . , xn). After exe-
cuting FPS, both parties receive respective shuffled shares: A
obtains shuffled shares sε = (sε(1), . . . , sε(n)), and B obtains
complementary shuffled shares s→

ε
= (s→

ε(1), . . . , s
→
ε(n)). These

shares satisfy the relation: xε(i) = sε(i)+s→
ε(i), i ↗ [n], where

+ denotes a group operation (such as XOR, addition modulo
a number, etc.) depending on the underlying construction.

We formally define the functionality as follows:

Parameters: Parties A and B, vector length n.

Functionality FPS:
1) Wait for a permutation ε on [n] from party A; abort

if ε is invalid.
2) Wait for input vector x = (x1, . . . , xn) from party

B; abort if |x| ⇔= n.
3) Output shuffled shares sε to A, and shuffled shares

s→
ε

to B, where xε(i) = sε(i) + s→
ε(i), i ↗ [n].

Fig. 4: Permute + Share functionality FPS

E. Private Set Union
PSU is a special case of secure two-party computation. We

describe the ideal functionality of PSU in Figure 5.

Parameters: Sender S and receiver R, set sizes m and n.
Functionality FPSU:

1) Wait for an input X = {x1, · · · , xm} ↖ {0, 1}ω from
the sender, and an input Y = {y1, · · · , yn} ↖ {0, 1}ω

from the receiver.
2) Output X ↙ Y to the receiver.

Fig. 5: Private set union functionality FPSU

IV. UNBALANCED PRIVATE SET UNION FROM
CONSTANT-WEIGHT ENCODE

A. Batched Ciphertext Shuffle
We formally define the functionality FBCS in Figure 6. In

this functionality, party A inputs a permutation ε over [k],
while party B inputs a message vector m = (m1, . . . ,mk) and
a randomness vector r = (r1, . . . , rk). The functionality out-
puts to party A batched ciphertexts encrypted under B’s public
key, encrypting the plaintext vector consisting of messages
from m arranged according to the permutation ε. Throughout

this process, party A learns nothing about the contents of m,
while party B learns nothing about the permutation ε.

Parameters: Party A and B, public key pk
b

of B, FHE
parameter N .
Functionality FBCS:

• Wait for input ε ↗ Sk from A.
• Wait for input m = (m1, . . . ,mk) and r =

(r1, . . . , rk) from B.
• A output ϱ = ⇐k/N≃ batched ciphertexts [[mi

ε
]]pkb =

[[mε(i·N+1), . . . ,mε(i·N+k)]]pkb , i ↗ [ϱ].
• Reveal nothing to B.

Fig. 6: Batched Ciphertext Shuffle Functionality FBCS

We realize the BCS functionality using homomorphic en-
cryption and the Permute + Share functionality. The formal
description of our protocol construction is given in Figure 7.

Input: The party A inputs a permutation ε over [k]; the
party B inputs a message vector m = (m1, . . . ,mk), a
randomness vector r = (r1, . . . , rk) and public key pk

b
;

FHE parameter N .
Output: A outputs ϱ = ⇐k/N≃ batched ciphertexts
[[mi

ε
]]pkb = [[mε(i·N+1), . . . ,mε(i·N+k)]]pkb , i ↗ [ϱ]; B

outputs ∝.

(1) A and B invoke the ideal Permute + Share function-
ality Fps. A inputs the permutation ε over [k], and
learns shuffled shares sε . B inputs the randomness
vector r = (r1, . . . , rk), and learns shuffled shares s→

ε
.

(2) B adds the randomness r to each message entry to
obtain a randomized vector m̂ = (m1+r1, · · · ,mk+
rk). Meanwhile, B batches and encrypts its shares
s→
ε

, producing ϱ = ⇐k/N≃ ciphertext [[s→i
ε
]]pkb =

[[s→
i·N+1, . . . , s

→
i·N+k

]]pkb , i ↗ [ϱ]. Both the m̂ and
[[s→ε]]pkb are then send to A.

(3) A first reorders the m̂ according to ε, obtaining
m̂ε = (m̂ε(1), · · · , m̂ε(k)). It then computes the
intermediate vector m̃ε = m̂ε → sε by subtracting
its own share. Finally, by homomorphically perform-
ing m̃ε → [[s→

ε
]]pkb , A obtains ϱ batched ciphertexts

[[mi

ε
]]pkb = [[mε(i·N+1), . . . ,mε(i·N+k)]]pkb , i ↗ [ϱ].

Fig. 7: Batched Ciphertext Shuffle Protocol

Theorem 1. The construction given in Figure 7 securely
realizes the functionality FBCS in the FPS-hybrid model against
semi-honest adversaries, assuming the underlying fully homo-
morphic encryption scheme is IND-CPA secure with circuit
privacy.

Proof. We prove security by demonstrating computational
indistinguishability between the outputs of the ideal function-
ality and the real-world execution. Specifically, we construct

6

polynomial-time simulators SimA and SimB to simulate the
views of the corrupted parties as follow.

Corrupt A: Recall that in the ideal world, the party A

inputs a permutation ε over the set [k] to the ideal function-
ality FBCS, and receives ciphertexts encrypting the permuted
message vector mε . During the real protocol execution, A

obtains the following intermediate values: the shuffled shares
sε , the masked message vector m̂, and the encrypted shuffled
shares [[s→

ε
]]pkb .

To simulate the view of A in the ideal world, we construct a
simulator SimA that proceeds as follows: First, SimA samples
a random vector r̄ = (r̄1, . . . , r̄k), and interacts with the
ideal functionality FPS using r̄ as input. It then receives a
shuffled share s̄ε , which is forwarded to A. Owing to the
security guarantees of the Permute + Share functionality, s̄ε
is computationally indistinguishable from the real sε , ensuring
that the simulated view is indistinguishable from the real one.
Next, to simulate the masked message vector m̂, the simulator
observes that in the real protocol, each message is randomized
via additive masking, i.e., m̂i = mi + ri. Hence, SimA
samples m̄ uniformly at random from the plaintext domain,
which remains computationally indistinguishable from m̂.
Finally, for the ciphertexts [[s→

ε
]]pkb , the simulator generates

fresh encryptions of uniformly random plaintexts under the
public key pk

b
. By the IND-CPA security of the leveled

homomorphic encryption scheme, these simulated ciphertexts
are computationally indistinguishable from the ciphertexts
generated in the real execution. Thus, the complete simulated
view is indistinguishable from the real protocol view, as
required.

Corrupt B: When party B is corrupted, it provides the
randomness vector r = (r1, . . . , rk) and receives intermediate
shuffled shares s→

ε
from the Permute + Share functionality

FPS. In the ideal functionality FBCS, B receives no additional
outputs.

To simulate the view of a corrupted B, the simulator SimB
works as follows. Given the randomness vector r, the simulator
samples a uniformly random permutation ε→ independent of
the true permutation ε used by the honest party A. It then
invokes the simulator for the Permute + Share functionality
FPS with inputs r and ε→, obtaining shuffled shares s→

ε→ .
Finally, the simulator delivers s̄ε→ to the corrupted party B.
We argue that this simulated view for corrupted party B is
computationally indistinguishable from the view in the real
protocol execution, due to the security of the Permute + Share
functionality FPS.

B. Full cwPSU Protocol

Our cwPSU protocol is formally described in Figure 8. It is
noted that in our BCS protocol, the receiver’s input is a plain-
text message vector. However, R inputs ciphertexts encrypted
under pk

s
in PSU. R can homomorphically perform the same

operations on ciphertexts as would be done on plaintexts,
since the underlying encryption scheme is homomorphic. And

S upon receiving the ciphertexts can decrypt them using its
private key to recover the masked selection vector.

Theorem 2. The protocol described in Figure 8 securely
realizes the functionality FPSU in the FBCS-hybrid model
against semi-honest adversaries, provided that the underlying
fully homomorphic encryption scheme is IND-CPA secure with
circuit privacy.

Proof. We prove security by constructing simulators SimS and
SimR as follow to demonstrate computational indistinguisha-
bility between the ideal-world and real-world executions.

Corrupt Sender: The sender S simply inputs its private set
X to the ideal functionality FPSU and receives no additional
output. During the real-world execution, S receives only the
permuted batched ciphertexts of the selection vector generated
via the FBCS, which are encrypted under the receiver’s public
key pk

r
. The simulator SimS can simulate the view of the

corrupted sender by invoking the BCS simulator SimA from
the ideal functionality FBCS, with one minor modification:
while SimA simulates masked message vectors by generating
random plaintexts, SimS must encrypt these random values
using pk

s
to simulate the ciphertexts that would appear during

the masking process in the real protocol. Since the FHE is
IND-CPA secure with circuit privacy and the views of the
underlying BCS simulator is indistinguishable. The view of S
in the real execution is computationally indistinguishable from
the simulated view in the ideal world.

Corrupt Receiver: In the ideal world, the receiver R inputs
its private set Y and receives the output X ↙Y from the ideal
functionality FPSU. During the real-world protocol execution,
R receives several intermediate messages during the protocol,
including the encrypted and batched constant-weight codes
{[[Xi,z]]pks}, and the encrypted items [[Cε

i,j
]]pkr . To simulate

the view of a corrupted receiver, the simulator SimR first gen-
erates random ciphertexts [[X̃i,z]]pks by encrypting uniformly
random messages under pk

s
. In order to simulate the final

masked ciphertexts [[Cε

i,j
]]pkr , the simulator uses the known

union set X ↙ Y to compute the items in X \ Y , then
locally re-encodes and repacks these elements into plaintexts
P

ε

i,j
, using the same format as in the real protocol. The

simulator then encrypts these messages under pk
r

to obtain
the final ciphertexts [[Cε

i,j
]]pkr = FHE.Encryptpkr (P

ε

i,j
). These

simulated ciphertexts are indistinguishable from the real ones,
since the underlying homomorphic encryption scheme is IND-
CPA secure with circuit privacy.

C. Optimization for Small Sender Set
According to our cwPSU protocol, the primary computa-

tional overhead stems from invoking the arithmetic Constant-
weight Equality Operator, which the receiver R must per-
form B times. Therefore, reducing B directly decreases
computational cost. As B is upper-bounded by hn/µ +
O(

√
hn logµ/µ) , where h is the number of hash functions,

and n is the receiver’s set size [49]. A straightforward ap-
proach to minimize B is to set the number of bins µ to be a

7

Input: The receiver R inputs Y ′ {0, 1}ω of size n = |Y |, the sender S inputs x ′ {0, 1}ω of size m = |X|. m,n,ς
are public. ϖ denote the statistical security parameter.
Output: The receiver outputs X ↙ Y , the sender outputs ∝.

1. [Hashing]
(a) [Hashing to bins.] Given hashing parameters h, µ,B, R hashes hn balls into µ bins using simple hashing,

resulting in a hash table Ty with maximum load B per bin. S hashes m balls into µ bins using Cuckoo
hashing, obtaining a hash table Tx.

(b) [Hashing to shorter strings.] Let ς→ = ϖ + log2 B. Both parties R and S sample a random hash function
H : {0, 1}ω ↔ {0, 1}ω

→
, and then apply permutation-based hashing to map each item in their hash tables to a

shorter representation of length ς→, obtaining T↓
y

and T↓
x

.
2. [Process X]

(a) [Constant-weight encoding.] For each item T↓
x
[i] in bin i ↗ [µ], S apply constant-weight encoding to obtain

T→
x
[i][z], where z ↗ [l] and l is the bit-length of the constant-weight codeword.

(b) [Batching.] For each bit position j ↗ [l], batch together the same bit position from every N bins in T→
x

. This
results in batches {Xi,z}, where i ↗ ⇐µ/N≃, z ↗ [l].

(c) [Encrypt.] The sender S encrypts each batch Xi,z using their public key pk
s

with FHE.Encrypt, resulting in
ciphertexts {[[Xi,z]]pks}. S then sends these ciphertexts to the R.

3. [Process Y]
(a) [Constant-weight encoding.] For each item T↓

y
[i][j] in bin i ↗ [µ] and position j ↗ [B], the receiver R applies

constant-weight encoding to obtain T→
y
[i][j][z], where z ↗ [l].

(b) [Batching.] For each bit position z ↗ [l], batch together the same bit position from every N bins and each of
the B columns in T→

y
. This yields the batch collection {Yi,j,z}, where i ↗ ⇐µ/N≃, j ↗ [B], and z ↗ [l].

4. [Computing Selection Vector] For each i ↗ ⇐µ/N≃ and j ↗ [B], the receiver R invokes the arithmetic constant-
weight equality operator to homomorphically compute [[ei,j]]pks = cwEQ([[Xi]]pks ,Yi,j). Then, R computes the sum
of the comparison results across all B positions [[oi]]pks =

∑
B

j=1[[ei,j]]pks . Finally, the encrypted selection vector
is computed as [[bi]]pks = 1→ [[oi]]pks .

5. [Performing BCS] R inputs the encrypted selection vector [[bi]]pks along with its own public key pk
r
, while the

sender S inputs a permutation ε. As a result, S obtains the permuted batched ciphertexts of the selection vector
[[bε

i
]]pkr encrypted under pk

r
.

6. [Output] S reorders Tx according to ε to obtain Tε

x
. Then, for each item Tε

x
[i], it splits the data into plaintext

slots of log2 t bits, and packs them into messages denoted as P
ε

i,j
, where i ↗ ⇐µ/N≃ , j ↗ ⇐ς/ log2 t≃. S then

homomorphically performs [[Cε

i,j
]]pkr = [[bε

i
]]pkr ·P

ε

i,j
. The results are sent to R. Finally, R decrypts them to recover

the items in X \ Y , and merges them with its own set Y to obtain the X ↙ Y .

Fig. 8: Full cwPSU protocol.

multiple of the plaintext slots N , thus fully utilizing all avail-
able plaintext slots. However, our BCS protocol incurs a com-
munication complexity of O(µ logµ). Hence, simply setting µ
to N would introduce unnecessary additional communication
overhead if the originally required µ is significantly smaller
than N .

To resolve this issue, we propose an optimized approach.
The high-level idea is illustrated in Figure 9. To avoid
additional overhead in the BCS protocol, we maintain the
minimum required value of µ. To ensure full utilization of
plaintext slots, assume without loss of generality that µ divides
N . The receiver R duplicates its one-dimensional hash table
T̃↓
x

exactly N/µ→ 1 times and combines these copies to form
an extended hash table of length N , which is used directly
in subsequent encoding and batching steps without further
modification. Meanwhile, the sender S evenly partitions the

B items within each bin of its two-dimensional hash table
T↓
y
[i] into N/µ groups. It then places the j-th group of bin i

into the ((j→1) ·µ+ i)-th row of a new two-dimensional hash
table T̃↓

y
with N rows, which becomes the sender’s input for

subsequent computations.

According to our protocol design, if an item T̃↓
x
[i] is con-

tained in T↓
y
[i], then exactly one position among (j→1) ·µ+ i

for j ↗ [N/µ] in the encrypted vector [[õ]]pks will be 1, while
the others will be 0. Otherwise, all corresponding positions
will be 0.

We subsequently modify the BCS protocol accordingly.
Receiver R still inputs µ random values r = (r1, . . . , rµ)
into the BCS protocol and obtains µ shuffled shares. To align
dimensions, R expands the randomness vector r into N/µ
vectors as follows: for each ri with i ↗ [µ], randomly select
N/µ→1 numbers ri,1, . . . , ri,N/µ↔1, and set the final number

8

9
4

10 6 19 15 9 11
13 2 7 1 12 8

9
4
9
4
9
4

10 6
13 2
19 15
7 1
9 11
12 8

1
0

0
0
0
0
1
0

1
0

�� ��
Inverse
Selection
Vector

�� ��
Computing
Result

Inverse
Selection
Vector

Fig. 9: The high-level idea of our optimization for small sender
set.

ri,N/µ = ri →
∑

N/µ↔1
j=1 ri,j .

Receiver R then masks the encrypted vector [[õ]]pks by
adding corresponding randomness values ri,j to position (j→
1) ·µ+ i, obtaining masked ciphertexts [[c̃]]pks , and sends these
along with the encrypted shuffled shares to sender S .

Upon receiving [[c̃]]pks , sender S decrypts them and com-
putes ci =

∑
N/µ

j=1 c̃(j↔1)·µ+i, for i ↗ [µ]. This recovers exactly
the original µ bins of the BCS protocol, yielding ci = oi + ri
for each bin. Finally, sender S obtains the permuted inverse
selection vector [[b̃ε]]pkr via BCS, and hence it must perform
1→ [[b̃ε]]pkr to produce the final encrypted permuted selection
vector [[bε]]pkr .

In addition, if the number of bins is significantly smaller
than the parameter N , many plaintext slots in each ciphertext
may remain unused in Step 6. Recall that S must split each
item into log2 t-bit segments and place them into separate
ciphertexts. To fully utilize all available slots, both R and S

can simply duplicate their shuffled shares and masked selection
vectors N/µ times, thereby creating an extended input that
matches the slot capacity. As a result, the leftover slots are
employed effectively, reducing the total number of ciphertexts
need to be sent.

V. OPTIMIZATION OF EQUALITY OPERATOR

As mentioned earlier, the majority of computational over-
head in our cwPSU protocol arises from the Arithmetic
Constant-weight Equality Operator. Specifically, the protocol
must compare two constant-weight codes—each of bit-length
l and Hamming weight h—to determine whether they are
equal. Since one encoding is in ciphertext form and the
other is in plaintext, computing [[k]] in Algorithm 1 only
requires plaintext-ciphertext multiplications, which incur neg-
ligible cost compared to ciphertext-ciphertext multiplications.
By contrast, computing [[e]] requires multiplying h cipher-
texts because [[k → i]] is itself a ciphertext. Hence, it incurs
h→1 ciphertext-ciphertext multiplications with a multiplicative
depth on the order of

⇑
h. To address this, we propose a new

Arithmetic Constant-weight Equality Operator, referred to as
EEQ, detailed in Algorithm 2.

Algorithm 2 Efficient Arithmetic Constant-weight Equality
Operator EEQ(x, [[y]]).

Input: x, [[y]] ↗ CW (l, h), L,H, {ai}i↑[h]

1: [[k]] =
∑

i↑[l] x[i] · [[y[i]]]
2: z = ↘h/2 + 1⇒
3: [[k→]] = [[k]]→ z
4: Get [[k→]]2, · · · , [[k→]]2L and [[k→]]4L, · · · , [[k→]](H↔1)·2L

5: e =
∑

H↔1
i=0

(
[[k]]2L

)i (∑
L↔1
j=0 aj

(
[[k]]2

)j+1
)

Output: e ↗ {0, 1}

First, we analyze the function

e =
1

h!

∏

i↑[h]

(k → i),

whose core objective is to compute a polynomial

f(k) =

{
0, 0 ∞ k < h,

1, k = h.

Essentially, f is a Lagrange interpolation polynomial that takes
the value 0 for all integers from 0 to h → 1, and 1 at k = h.
By letting [[k]] → z, where z = ↘h/2 + 1⇒, center the domain
symmetrically around 0 for the first h points, we can rewrite
f(k) in the form

f(k) =





0,

⌈
→(h→ 1)/2


∞ k <


(h→ 1)/2


,

1, k =

(h→ 1)/2


,

leading to an equivalent expression:

f(k) =
z∏

i=0

k2 → i2

h2 → i2
.

When [[k]] is a ciphertext, this approach reduces the number
of ciphertext-ciphertext multiplications from h to z+1, effec-
tively halving the overall multiplication cost.

To reduce the multiplicative complexity even more, we em-
ploy the Paterson-Stockmeyer algorithm [50]. By expanding

f(k) =
z∏

i=0

k2 → i2

h2 → i2
=

z

i=0

aik
2(i+1),

we can select positive integers L and H to organize powers
of [[k]], depending on the Hamming weight h. Concretely, we
first compute the low powers [[k]]2, [[k]]4, . . . , [[k]]2L and then
the high powers [[k]]4L, [[k]]8L, . . . , [[k]](H↔1)·2L. Accordingly,
the polynomial can be rewritten as

f([[k]]) =
H↔1

i=0

(
[[k]]2L

)i (L↔1

j=0

aj
(
[[k]]2

)j+1
)
.

Here, the inner sums rely on scalar multiplications and addi-
tions of the low powers, while ciphertext-ciphertext multipli-
cations are only required for multiplying these partial sums by
the high powers. Table I provides optimal choices of L and
H for different values of h.

9

Fig. 10: Communication (MB) and computation (s) overhead under different Hamming weights. The experiments are conducted
with m = 210 and n = 220. The left figure reports results for 128-bit items with Hamming weights from 14 to 22, while the
right figure shows results for 32-bit items with Hamming weights from 5 to 13.

h 7 8–11 12–15 16–19 20–23

L 2 3 4 5 6
H 2 2 2 2 2

Mult. 3 4 5 6 7

TABLE I: Optimal choices of L and H and required non-
scalar multiplications for different h

Our new EEQ operator significantly reduces the number
of non-scalar multiplications compared to the original cwEQ
algorithm, which requires h → 1 such multiplications. By ex-
ploiting symmetry in the polynomial expression, we halve the
multiplicative cost, and by applying the Paterson–Stockmeyer
algorithm, we further minimize the remaining multiplications.

VI. IMPLEMENTATION AND PERFORMANCE

In this section, we experimentally evaluate our cwPSU
protocol and EEQ algorithm.

A. Implementation Detail
We implemented our cwPSU protocol in C++ using the

Microsoft SEAL library, and we compared its performance
against the state-of-the-art protocols [13]. Our measurements
focused on both runtime and communication overhead. We
set the computational security parameter ϑ = 128 and the
statistical security parameter ϖ = 40. Similar to [12], [13],
we realized the Permute + Share functionality following the
construction in [43].

We used the Linux tc command to emulate different net-
work conditions. Specifically, we considered a LAN environ-
ment featuring local connections at 10 Gbps with a round-trip
time (RTT) of 0.2 ms. We also evaluated WAN settings with
bandwidths of 100 Mbps, 10 Mbps, and 1 Mbps, each with an
RTT of 80 ms.

We set the homomorphic encryption parameters to log2 N =
14, log2 t = 20, and log2 q = 256 for 128-bit items, and
to log2 N = 13, log2 t = 20, and log2 q = 204 for 32-
bit items, with further adjustments made when necessary. As
shown in Figure 10, our benchmarking results reveal that when

the effective bit-length is ς = 128, the best balance between
communication and computation overhead is achieved at a
Hamming weight of h = 19. For 32-bit items, the optimal
trade-off occurs at h = 7.

Following [13], we employ a preprocessing strategy that
divides the protocol execution into a one-time setup phase and
an online phase. Precomputation is a well-established concept
in secure multiparty computation [51]–[53], and is commonly
assumed in existing unbalanced PSO protocols [13], [36], [37].
Most of these works allow the sender to anticipate its input set
and perform any necessary precomputation based on the set
contents before entering the online phase [36], [37]. Likewise,
in some PIR schemes, the client can download a digest of the
database during the setup phase, allowing a single-server PIR
protocol to achieve performance comparable to the two-server
counterpart [45], [54]. In our protocol, we make a similar
assumption: the sender’s input set is known in advance during
the setup phase. The sender then generates a digest of its
set, specifically encryptions of its elements, and transmits this
digest to the receiver.

B. cwPSU Evaluation

Table II presents a detailed benchmark of the setup and on-
line phases, contrasting cwPSU with two protocols from [13],
namely ZLPps

op and ZLPpke. The evaluation is conducted over
small set sizes m ↗ {28, 210, 212}, large set sizes n ↗

{218, 220, 222}, with efficient bit-length ς = 128. In addition,
Figure 11 includes another protocol from [13], ZLPddh

op , for
further comparison and illustrates how communication and
runtime change with the small set size or varying network
bandwidth.

Communication comparison. As shown in Table II and
Figure 11, our cwPSU reduces communication overhead by
a factor of 5.1–32.4↑ compared with [13]. Notably, the
communication cost of cwPSU remains the same for a fixed
small set size m, irrespective of the large set size n. This
is because, in the online phase, cwPSU only transmits the
selection vector from the receiver and the ciphertext of items in
X \Y from the sender, leading to communication complexity
linear in m and independent of n.

10

Param.
Protocol

Comm. (MB) Running Time (s)

Setup Online
LAN 100Mbps 10Mbps 1Mbps

n m Setup Online Setup Online Setup Online Setup Online

218

28
ZLPps

op 18.01 1.35 45.68 1.23 49.71 2.07 62.99 4.15 200.27 14.41
ZLPpke 17.99 1.47 119.15 2.83 123.43 3.83 195.27 5.07 272.08 15.70
Ours 32.28 0.26 3.40 1.42 7.58 1.97 31.42 2.03 268.84 4.70

210
ZLPps

op 18.01 5.39 46.84 1.46 50.22 4.32 64.48 8.91 201.83 49.31
ZLPpke 17.99 3.32 268.69 3.93 273.56 6.01 287.18 8.80 421.73 33.41
Ours 32.53 0.35 3.35 1.69 7.09 2.26 32.12 2.51 271.73 6.09

212
ZLPps

op 18.01 11.56 95.81 4.41 100.09 6.38 112.77 19.32 249.15 98.87
ZLPpke 17.99 12.35 386.50 6.74 389.95 8.66 404.71 18.81 539.81 107.52
Ours 36.01 0.66 3.30 2.12 7.52 2.68 34.69 2.95 299.01 8.53

220

28
ZLPps

op 18.01 2.60 85.99 1.53 88.63 2.75 102.58 5.10 239.15 24.10
ZLPpke 17.99 2.63 175.77 4.08 179.57 5.68 193.44 7.76 328.49 27.37
Ours 34.54 0.26 3.39 4.94 7.79 5.43 33.74 5.79 286.96 8.43

210
ZLPps

op 18.01 5.47 127.12 1.93 130.43 4.09 143.69 7.98 281.32 47.87
ZLPpke 17.99 5.88 302.34 4.08 306.03 5.84 319.21 9.97 455.49 53.22
Ours 33.72 0.35 3.38 4.94 7.88 5.37 32.89 5.85 278.51 8.77

212
ZLPps

op 18.01 20.05 128.26 4.37 132.01 7.59 145.76 22.56 281.88 166.76
ZLPpke 17.99 12.50 670.95 6.76 673.24 8.98 688.26 18.70 824.14 108.92
Ours 37.77 0.66 3.28 5.91 7.83 6.34 36.40 6.79 312.52 12.47

222

28
ZLPps

op 18.01 5.20 331.33 2.55 334.28 4.25 348.35 8.80 482.52 48.31
ZLPpke 17.99 3.21 643.55 13.30 646.30 14.80 660.66 18.24 795.69 40.63
Ours 36.67 0.26 3.39 17.50 7.90 18.09 35.48 18.39 304.68 20.56

210
ZLPps

op 18.01 9.88 422.71 3.00 426.33 5.01 440.25 12.35 575.44 83.99
ZLPpke 17.99 9.92 692.82 6.93 696.41 8.77 709.83 17.02 846.73 88.70
Ours 35.95 0.35 3.36 17.90 7.57 18.36 34.86 18.79 298.28 21.91

212
ZLPps

op 18.01 20.38 614.10 5.16 617.95 8.20 618.68 23.18 766.72 170.57
ZLPpke 17.99 21.44 1440.05 9.76 1443.32 12.55 1457.33 29.01 1593.03 183.68
Ours 38.84 0.66 3.32 19.66 7.56 20.23 37.20 20.68 322.12 25.79

TABLE II: Communication cost (in MB) and running time (in seconds) comparing our protocols to ZLPps
op and ZLPpke [13].

The LAN network has 10 Gbps bandwidth and 0.05 ms RTT latency. The best results are marked in cyan.

Running time comparison. Our cwPSU outperforms [13]
by achieving a 3.1–13.3↑ speedup in online runtime under
various network conditions. In a LAN environment, while
cwPSU is not always faster for every parameter set, certain
scenarios (e.g., m = 212, n = 218) show a runtime of only
2.12 seconds for cwPSU, compared to 4.41 seconds for ZLPps

op
(a 2↑ improvement) and 6.74 seconds for ZLPpke (a 3.1↑
improvement). Moreover, in LAN settings, our setup phase
completes more than two orders of magnitude faster than
that of [13]. Under low-bandwidth conditions, the advantage
of our lower communication overhead becomes even more
pronounced. For instance, with m = 212 and n = 220 at
1Mbps bandwidth, cwPSU requires just 12.47s , whereas
ZLPps

op and ZLPpke take 166.76s and 108.92s, respectively,
yielding improvements of approximately 13.3↑ and 8.7↑.

C. EEQ Evaluation
To evaluate how much our EEQ operator improves overall

protocol performance compared to the original cwEQ, we
measured the time required to compute the selection vector
in cwPSU, as well as the resulting ciphertext size for small

sets of items at 32-bit length (h = 7) and 128-bit length
(h = 19). As shown in Table III, although the number of
non-scalar multiplications is reduced to approximately one-
third of its original value, the additional scalar multiplications
and unchanged multiplicative depth entail a slightly larger
homomorphic parameter configuration for EEQ than cwEQ.
Nevertheless, this overhead is offset by a roughly 2 times
improvement in runtime, while the increase in ciphertext size
remains modest.

D. Scalability

To further evaluate scalability, we tested a larger configu-
ration with a receiver’s set of size 224 and a sender’s set of
size 210. In this setting, the setup and online communication
costs were 38.18 MB and 0.35 MB, respectively, while the
LAN execution times were 3.37 s for setup and 70.96 s for
the online phase. These results highlight the strong scalability
of our protocol in terms of communication, as the online cost
remains independent of the large set size. Although compu-
tation time naturally increases with input size, the protocol’s

11

Fig. 11: Communication cost (in MB) and running time (in seconds) comparing our protocols to ZLPps
op, ZLPddh

op and ZLPpke
[13]. The first figure shows the communication cost increases as the small set size increases. The second figure shows the
runtime decreases as the bandwidth increases. The third and fourth figures show the runtime increases as the small set size
increases in different bandwidths (i.e., 1 Mbps and 10 Gbps).

Param. Operator 32 bit 128 bit

n m
Time

(s)
ct Size
(MB)

Time
(s)

ct Size
(MB)

218
210

cwEQ 0.88 4.46 2.44 26.13
EEQ 0.48 4.82 1.35 27.63

212
cwEQ 0.86 4.46 2.35 26.13
EEQ 0.49 4.84 1.34 27.63

220
210

cwEQ 2.20 4.47 6.84 28.38
EEQ 1.29 4.84 4.03 29.76

212
cwEQ 2.24 4.47 6.80 28.38
EEQ 1.31 4.84 3.86 29.76

222
210

cwEQ 6.84 4.47 19.80 30.64
EEQ 4.10 4.84 11.19 31.52

212
cwEQ 6.75 4.47 19.88 30.64
EEQ 4.10 4.85 11.21 31.52

224
210

cwEQ 24.38 4.47 67.61 31.54
EEQ 14.33 4.86 38.51 32.59

212
cwEQ 23.79 4.49 67.59 31.54
EEQ 14.21 4.86 38.08 32.59

TABLE III: Ciphertext size (in MB) and the time (in seconds)
of selection vector computing comparing our EEQ to cwEQ
[47].

communication efficiency makes it particularly well-suited for
low-bandwidth environments.

VII. CONCLUSION

In this paper, we proposed cwPSU, a novel unbalanced PSU
protocol that achieves low communication complexity and
round efficiency by leveraging constant-weight encoding and
leveled fully homomorphic encryption. Our protocol achieves
communication cost that is linear in the size of the smaller
set and independent of the larger set, while requiring only a
single round of online communication. Experimental results
demonstrate that cwPSU significantly outperforms the state-
of-the-art protocols in both communication and runtime under
various network settings. Future directions include reducing
the ciphertext size transmitted during the setup phase, as well

as extending the design to support multi-party settings and
other private set operations.

ACKNOWLEDGMENT

We thank all anonymous reviewers for their helpful feed-
back. This research is supported in part by the Special Funds of
the National Natural Science Foundation of China (62441226),
National Natural Science Foundation of China (62572020,
62402363), Young Elite Scientists Sponsorship Program by
CAST (2023QNRC001), Shaanxi Province Postdoctoral Re-
search Funding Program (2024BSHSDZZ106), Fundamental
Research Funds for the Central Universities (XJSJ24066). Hui
Li is the corresponding author.

REFERENCES

[1] K. Hogan, N. Luther, N. Schear, E. Shen, D. Stott, S. Yakoubov,
and A. Yerukhimovich, “Secure multiparty computation for coopera-
tive cyber risk assessment,” in 2016 IEEE Cybersecurity Development
(SecDev). IEEE, 2016, pp. 75–76.

[2] D. Landoll, The security risk assessment handbook: A complete guide
for performing security risk assessments. CRC press, 2021.

[3] A. Shameli-Sendi, R. Aghababaei-Barzegar, and M. Cheriet, “Taxonomy
of information security risk assessment (isra),” Computers & security,
vol. 57, pp. 14–30, 2016.

[4] J. West and M. Bhattacharya, “Intelligent financial fraud detection: a
comprehensive review,” Computers & security, vol. 57, pp. 47–66, 2016.

[5] H. Li, Y. Zhu, and Y. Niu, “Contact tracing research: a literature review
based on scientific collaboration network,” International Journal of
Environmental Research and Public Health, vol. 19, no. 15, p. 9311,
2022.

[6] E. Osmanlliu, E. Rafie, S. Bédard, J. Paquette, G. Gore, M.-P. Pomey
et al., “Considerations for the design and implementation of covid-
19 contact tracing apps: scoping review,” JMIR mHealth and uHealth,
vol. 9, no. 6, p. e27102, 2021.

[7] T. Yum, T. Zhou, Q. Ye, H. Peng, and J. Chen, “Cross-institution online
problem based learning in chinese medicine education,” in Asia Pacific
Conference on Advanced Research, APCAR 2016 Proceedings, 2016.

[8] V. Kolesnikov, M. Rosulek, N. Trieu, and X. Wang, “Scalable private
set union from symmetric-key techniques,” in International conference
on the theory and application of cryptology and information security.
Springer, 2019, pp. 636–666.

[9] G. Garimella, P. Mohassel, M. Rosulek, S. Sadeghian, and J. Singh,
“Private set operations from oblivious switching,” in IACR international
conference on public-key cryptography. Springer, 2021, pp. 591–617.

[10] Y. Jia, S.-F. Sun, H.-S. Zhou, J. Du, and D. Gu, “Shuffle-based private
set union: Faster and more secure,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 2947–2964.

12

[11] C. Zhang, Y. Chen, W. Liu, M. Zhang, and D. Lin, “Linear private set
union from {Multi-Query} reverse private membership test,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 337–
354.

[12] B. Tu, Y. Chen, Q. Liu, and C. Zhang, “Fast unbalanced private set
union from fully homomorphic encryption,” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security,
2023, pp. 2959–2973.

[13] C. Zhang, Y. Chen, W. Liu, L. Peng, M. Hao, A. Wang, and X. Wang,
“Unbalanced private set union with reduced computation and commu-
nication,” in Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, 2024, pp. 1434–1447.

[14] S. Ramanathan, J. Mirkovic, and M. Yu, “Blag: Improving the accuracy
of blacklists,” in NDSS, 2020.

[15] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[16] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[17] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in cryptology–
ASIACRYPT 2017: 23rd international conference on the theory and
applications of cryptology and information security, Hong kong, China,
December 3-7, 2017, proceedings, part i 23. Springer, 2017, pp. 409–
437.

[18] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Obliv-
ious key-value stores and amplification for private set intersection,”
in Advances in Cryptology–CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part II 41. Springer, 2021, pp. 395–425.

[19] M. Hao, W. Liu, L. Peng, H. Li, C. Zhang, H. Chen, and T. Zhang,
“Unbalanced {Circuit-PSI} from oblivious {Key-Value} retrieval,” in
33rd USENIX Security Symposium (USENIX Security 24), 2024, pp.
6435–6451.

[20] A. Bienstock, S. Patel, J. Y. Seo, and K. Yeo, “{Near-Optimal}
oblivious {Key-Value} stores for efficient {PSI},{PSU} and {Volume-
Hiding}{Multi-Maps},” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 301–318.

[21] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search
and oblivious pseudorandom functions,” in Theory of Cryptography:
Second Theory of Cryptography Conference, TCC 2005, Cambridge,
MA, USA, February 10-12, 2005. Proceedings 2. Springer, 2005, pp.
303–324.

[22] C. Meadows, “A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party,” in 1986 IEEE
Symposium on Security and Privacy. IEEE, 1986, pp. 134–134.

[23] B. A. Huberman, M. Franklin, and T. Hogg, “Enhancing privacy
and trust in electronic communities,” in Proceedings of the 1st ACM
conference on Electronic commerce, 1999, pp. 78–86.

[24] E. De Cristofaro, J. Kim, and G. Tsudik, “Linear-complexity private set
intersection protocols secure in malicious model,” in International Con-
ference on the Theory and Application of Cryptology and Information
Security. Springer, 2010, pp. 213–231.

[25] M. Orrù, E. Orsini, and P. Scholl, “Actively secure 1-out-of-n ot
extension with application to private set intersection,” in Topics in
Cryptology–CT-RSA 2017: The Cryptographers’ Track at the RSA
Conference 2017, San Francisco, CA, USA, February 14–17, 2017,
Proceedings. Springer, 2017, pp. 381–396.

[26] P. Benny, S. Thomas, and Z. Michael, “Faster private set intersection
based on ot extension,” in Usenix security, vol. 14, 2014, pp. 797–812.

[27] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private set
intersection using permutation-based hashing,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 515–530.

[28] P. Rindal and M. Rosulek, “Malicious-secure private set intersection via
dual execution,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1229–1242.

[29] M. Chase and P. Miao, “Private set intersection in the internet setting
from lightweight oblivious prf,” in Annual International Cryptology
Conference. Springer, 2020, pp. 34–63.

[30] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious prf with applications to private set intersection,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 818–829.

[31] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light: lightweight
private set intersection from sparse ot extension,” in Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part III 39. Springer, 2019, pp. 401–431.

[32] ——, “Psi from paxos: Fast, malicious private set intersection,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2020, pp. 739–767.

[33] B. Tu, X. Zhang, Y. Bai, and Y. Chen, “Fast unbalanced private
computing on (labeled) set intersection with cardinality,” Cryptology
ePrint Archive, 2023.

[34] M. Wu and T. H. Yuen, “Efficient unbalanced private set intersection
cardinality and user-friendly privacy-preserving contact tracing,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 283–300.

[35] Y. Son and J. Jeong, “Psi with computation or circuit-psi for unbalanced
sets from homomorphic encryption,” in Proceedings of the 2023 ACM
Asia Conference on Computer and Communications Security, 2023, pp.
342–356.

[36] K. Cong, R. C. Moreno, M. B. da Gama, W. Dai, I. Iliashenko, K. Laine,
and M. Rosenberg, “Labeled psi from homomorphic encryption with
reduced computation and communication,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 1135–1150.

[37] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled psi from fully
homomorphic encryption with malicious security,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1223–1237.

[38] A. Davidson and C. Cid, “An efficient toolkit for computing private
set operations,” in Information Security and Privacy: 22nd Australasian
Conference, ACISP 2017, Auckland, New Zealand, July 3–5, 2017,
Proceedings, Part II 22. Springer, 2017, pp. 261–278.

[39] C. Hazay and K. Nissim, “Efficient set operations in the presence
of malicious adversaries,” in International Workshop on Public Key
Cryptography. Springer, 2010, pp. 312–331.

[40] L. Kissner and D. Song, “Privacy-preserving set operations,” in Annual
International Cryptology Conference. Springer, 2005, pp. 241–257.

[41] Y. Chen, M. Zhang, C. Zhang, M. Dong, and W. Liu, “Private set
operations from multi-query reverse private membership test,” in IACR
international conference on public-key cryptography. Springer, 2024,
pp. 387–416.

[42] M. Chase, E. Ghosh, and O. Poburinnaya, “Secret-shared shuffle,” in Ad-
vances in Cryptology–ASIACRYPT 2020: 26th International Conference
on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7–11, 2020, Proceedings, Part III 26.
Springer, 2020, pp. 342–372.

[43] P. Mohassel and S. Sadeghian, “How to hide circuits in mpc an efficient
framework for private function evaluation,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2013, pp. 557–574.

[44] R. A. Mahdavi, N. Lukas, F. Ebrahimianghazani, T. Humphries, B. Kac-
smar, J. Premkumar, X. Li, S. Oya, E. Amjadian, and F. Kerschbaum,
“{PEPSI}: Practically efficient private set intersection in the unbalanced
setting,” in 33rd USENIX Security Symposium (USENIX Security 24),
2024, pp. 6453–6470.

[45] A. Henzinger, M. M. Hong, H. Corrigan-Gibbs, S. Meiklejohn, and
V. Vaikuntanathan, “One server for the price of two: Simple and fast
{Single-Server} private information retrieval,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 3889–3905.

[46] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learn-
ing with errors over rings,” in Advances in Cryptology–EUROCRYPT
2010: 29th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, French Riviera, May 30–June 3,
2010. Proceedings 29. Springer, 2010, pp. 1–23.

[47] R. A. Mahdavi and F. Kerschbaum, “Constant-weight {PIR}: Single-
round keyword {PIR} via constant-weight equality operators,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 1723–
1740.

[48] J. Liu, J. Li, D. Wu, and K. Ren, “Pirana: Faster multi-query pir
via constant-weight codes,” in 2024 IEEE Symposium on Security and
Privacy (SP). IEEE, 2024, pp. 4315–4330.

[49] M. Raab and A. Steger, ““balls into bins”—a simple and tight analy-
sis,” in International Workshop on Randomization and Approximation
Techniques in Computer Science. Springer, 1998, pp. 159–170.

13

[50] M. S. Paterson and L. J. Stockmeyer, “On the number of nonscalar
multiplications necessary to evaluate polynomials,” SIAM Journal on
Computing, vol. 2, no. 1, pp. 60–66, 1973.

[51] F. Kerschbaum, E.-O. Blass, and R. A. Mahdavi, “Faster secure com-
parisons with offline phase for efficient private set intersection,” arXiv
preprint arXiv:2209.13913, 2022.

[52] Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, “Private set
intersection for unequal set sizes with mobile applications,” in Privacy
Enhancing Technologies Symposium. De Gruyter, 2017, pp. 177–197.

[53] P. Rindal and P. Schoppmann, “Vole-psi: fast oprf and circuit-psi
from vector-ole,” in Annual international conference on the theory and
applications of cryptographic techniques. Springer, 2021, pp. 901–930.

[54] M. Zhou, A. Park, W. Zheng, and E. Shi, “Piano: extremely simple,
single-server pir with sublinear server computation,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 2024, pp. 4296–4314.

14

