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Abstract—Federated learning (FL) enables collaborative model Undefended

training without sharing raw data but is vulnerable to gradient
inversion attacks (GIAs), where adversaries reconstruct private
data from shared gradients. Existing defenses either incur im-
practical computational overhead for embedded platforms or
fail to achieve privacy protection and good model utility at the
same time. Moreover, many defenses can be easily bypassed by
adaptive adversaries who have obtained the defense details. To
address these limitations, we propose SVDefense, a novel defense
framework against GIAs that leverages the truncated Singu-
lar Value Decomposition (SVD) to obfuscate gradient updates.
SVDefense introduces three key innovations, a Self-Adaptive
Energy Threshold that adapts to client vulnerability, a Channel-
Wise Weighted Approximation that selectively preserves essential
gradient information for effective model training while enhancing
privacy protection, and a Layer-Wise Weighted Aggregation
for effective model aggregation under class imbalance. Our
extensive evaluation shows that SVDefense outperforms existing
defenses across multiple applications, including image classifi-
cation, human activity recognition, and keyword spotting, by
offering robust privacy protection with minimal impact on model
accuracy. Furthermore, SVDefense is practical for deployment on
various resource-constrained embedded platforms. We will make
our code publicly available upon paper acceptance.

I. INTRODUCTION

Federated learning (FL) has emerged as a promising
paradigm for collaborative model training that preserves user
privacy in domains such as healthcare [1], finance [2], and
social safety [3]. In FL, distributed clients train models on
their local datasets and only share model updates with a central
server, eliminating the need to expose sensitive user data [4].
However, recent research has revealed that FL systems remain
vulnerable to gradient inversion attacks (GIAs) [5]-[7], where
adversaries can reconstruct private training data by exploit-
ing the gradients shared during client-server communication.
These attacks have shown the ability to reconstruct private
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Fig. 1: An illustration of SVDefense. While the adversary
may attempt to reconstruct user data using the gradients
uploaded by an undefended client, our defense hinders the
data reconstruction by uploading the gradients protected by
SVDefense. The blue and yellow blocks represent the original
and truncated gradients in our defense, respectively.

training data with high fidelity [7]-[9], which raises substantial
privacy risks in FL systems.

While various defense mechanisms against GIAs have been
proposed, they face significant limitations in practical FL
deployments. Encryption-based methods such as secure multi-
party computation (SMC) [10], [11] and homomorphic en-
cryption (HE) [12], [13] provide strong theoretical privacy
guarantees but introduce prohibitive computational overhead
for resource-constrained devices. Perturbation-based defenses
counteract GIAs by modifying local inputs [14]-[17], gradi-
ents [5], [18]-[21], or training processes [22]-[24]. Defenses
that perturb local inputs [14]-[17] or add noise to local



gradients, such as differential privacy (DP) and its variants [5],
[18]-[20], often fail to balance privacy protection and model
utility [20], [25]. In our analysis, methods that perturb lo-
cal gradients [21] and training processes [23], [24] can be
bypassed by adaptive adversaries who have obtained details
of the defense mechanisms. Pruning-based defenses [5], [25],
[26] that selectively remove gradient components to counteract
GIAs can also be bypassed by adaptive attackers, as shown in
our analysis. Unlike previous work [9], [27] that considers less
practical adaptive attacks relying on strong assumptions, we
demonstrate the vulnerability of these defenses under GIAs
augmented with practical adaptive operations.

This paper introduces SVDefense, a novel defense frame-
work against GIAs based on the truncated Singular Value De-
composition (SVD). Truncated SVD is a matrix factorization
technique that approximates a matrix with the goal of effec-
tively reducing its dimensionality while preserving important
information. Our design is motivated by key insights from the
analysis of existing defenses under practical adaptive attacks,
which suggests that affecting all the gradient components
and doing so irreversibly are desirable properties that offer
improved robustness against adaptive GIAs. Moreover, it is
crucial for defense mechanisms to balance defense perfor-
mance with model utility. Truncated SVD has the potential to
counteract adaptive GIAs via gradient decomposition and trun-
cation that irreversibly modifies the entire gradient space while
preserving model utility. However, applying truncated SVD
against GIAs presents practical challenges. Our preliminary
study finds that clients with higher degrees of class imbalance
are more vulnerable to attacks. Thus, more imbalanced clients
should be given stronger protection from GIAs through lower
energy thresholds 7 that reduce the information in truncated
gradients for data reconstruction. This strategy raises three key
questions during the SVD truncation: (1) How to effectively
quantify the varying degrees of class imbalance and adap-
tively adjust the energy thresholds 7 for different clients; (2)
How to preserve information critical for model training while
suppressing sensitive information leakage; and (3) How to
effectively aggregate SVD truncated client updates and thereby
improve global model utility under the class imbalance?

To address these challenges, SVDefense introduces three
key innovations. First, we observe that the distribution of
the singular values obtained in SVD strongly correlates with
the degree of class imbalance. Hence, we propose a Self-
Adaptive Energy Threshold that adaptively adjusts the energy
threshold for each client based on its singular value distribu-
tion, providing stronger protection to class-imbalanced clients
who are more susceptible to GIAs. Second, whereas lowering
the energy threshold in SVD truncation provides stronger
protection against GIAs, it also reduces the information needed
for effective model training. To address this issue, we propose
a Channel-Wise Weighted Approximation that strategically
assigns weights to gradients during the SVD truncation, which
preserves gradients that are critical for model performance
while suppressing potential sensitive information leakages,
leading to better model accuracy and defense performance.

Third, non-IID local data distributions, such as class imbalance
across the clients, lead to degraded global model accuracy due
to client drift [24]. Existing studies have not addressed how to
effectively aggregate SVD truncated updates to improve the
global model’s utility under such heterogeneous data distri-
butions. Our Layer-Wise Weighted Aggregation addresses this
gap by leveraging key correlation between singular value dis-
tributions and local class imbalance. By strategically assigning
layer-wise aggregation weights to client updates based on their
singular value distributions, we effectively improve the global
model’s accuracy under class-imbalanced data. Together, the
three components enable SVDefense to achieve strong privacy
protection while maintaining model utility across diverse FL
scenarios. An illustration of how SVDefense works is shown
in Fig. 1.

Our extensive evaluation on the EMNIST [28], CIFAR-
10 [29], HAR [30], and Google Speech Commands [31]
datasets demonstrates that SVDefense achieves superior per-
formance in both model accuracy and defense effectiveness
compared with various representative defenses. Moreover, we
implement a real-world FL testbed on various embedded plat-
forms, including Raspberry Pi, Nvidia Jetson Orin Nano, and
Nvidia Jetson TX2, to validate the practicality of SVDefense.
Our experiments show that SVDefense has high computa-
tional efficiency on various resource-constrained embedded
platforms and significantly reduces communication cost.

Our contributions are summarized as follows.

o We systematically analyze various representative defenses
against GIAs, demonstrating their vulnerability to prac-
tical adaptive attacks. We derive key insights from our
analysis to identify truncated SVD as a promising tech-
nique for leveraging these insights.

e We develop SVDefense, a novel defense framework
against adaptive GIAs based on truncated SVD. To the
best of our knowledge, ours is the first comprehensive
solution to address practical challenges of defending
against GIAs under non-IID data distributions caused
by class imbalance across FL clients. We introduce the
Self-Adaptive Energy Threshold to adapt the privacy
protection for clients based on their varying degrees of
vulnerability to GIAs caused by their respective levels of
class imbalance, the Channel-Wise Weighted Approxima-
tion to enhance both accuracy and defense performance,
and the Layer-Wise Weighted Aggregation for effective
aggregation of SVD truncated client updates to improve
global model accuracy under the class imbalance.

« Our extensive evaluation on various datasets demonstrates
that SVDefense outperforms existing defenses in both
model accuracy and defense effectiveness. We also im-
plement our solution in a real-world FL testbed using
various embedded platforms. Experimental results show
that SVDefense achieves practical computational cost and
significantly reduces communication cost.



II. BACKGROUND AND RELATED WORK
A. Gradient Inversion Attacks

Existing GIAs can be categorized into optimization-based
and GAN-based attacks.
Optimization-based Attacks: Deep Leakage from Gradients
(DLG) [5] is the first work that demonstrates the feasibility
of reconstructing local data and corresponding labels from
the shared gradients by iteratively optimizing dummy inputs
to match the shared gradients using L-BFGS optimization.
Improved DLG (iDLG) [32] enhances data reconstruction
effectiveness by extracting ground-truth labels from gradient
signs. Inverting Gradients (IG) [6] attack improves over the
early studies of DLG and iDLG by employing the Adam
optimizer to stabilize convergence and introduces cosine
similarity as a more effective gradient matching objective.
Gradlnversion [33] can reconstruct high-fidelity input image
batches using the gradient matching objective with fidelity
regularization and group consistency regularization terms to
improve reconstruction quality. However, its reliance on input
batch normalization statistics makes it impractical in typical
FL settings.
GAN-based Attacks: Generative adversarial networks
(GANs) [34] are generative models capable of capturing
the probability distribution of images from the training set.
Recent advances in GIAs leverage GANs as image priors to
compensate for information loss and enhance reconstruction
quality. GIAS [35] alternately optimizes latent vectors and
generator parameters to improve image reconstruction fidelity.
GGL [8] employs pre-trained GANSs as priors to constrain the
image reconstruction. GIFD [36] sequentially explores the
latent space and intermediate features of the generator under
an [;-ball constraint to address limitations of expressiveness
and generalization in pre-trained GANs. A recent strong
attack ROG [7] encodes raw images into low-dimensional
representations to improve attack optimization efficiency,
followed by GAN-based post-processing to enhance image
reconstruction quality.
Adaptive Attacks: Research has shown that an adaptive
adversary [9], [37], [38] with knowledge of the defense (e.g.,
an honest-but-curious aggregator in FL. who has legitimate
access to the defense mechanism) can design targeted at-
tacks against it. By formulating GIAs within a Bayesian
framework, the work [27] demonstrates how a Bayes opti-
mal adversary can break several heuristic defenses. However,
the theoretical analysis is based on specific neural network
architectures. Learning To Invert (LTI) [9] trains a gradient
inversion model to invert gradients protected by defenses
including sign compression, gradient pruning, and gradient
perturbation. However, LTI assumes that the adversary has
access to the private data distribution. The work [22] shows
how Dropout’s effectiveness as a defense against GIAs can be
mitigated by modeling dropout-induced stochasticity during
attack optimization. While prior efforts [9], [27] shed light
on how adaptive adversaries can circumvent certain defenses,
their findings are limited by strong assumptions about specific

model architectures or attacker’s capabilities. In this paper,
we extensively investigate the vulnerability of various rep-
resentative defenses under realistic adaptive adversaries by
augmenting existing GIAs with practical adaptive operations
and further propose a novel defense framework.

B. Gradient Inversion Defenses

Existing defenses against GIAs can be categorized into
encryption-based, perturbation-based, pruning-based, and
compression-based methods.

Encryption-based defenses employ cryptographic techniques
to protect client updates in FL. SMC protocols [10], [11]
enable secure aggregation of client updates without revealing
individual contributions. Some studies [12], [13] leverage HE
to perform arbitrary computations on encrypted gradients.
Several efforts [39], [40] combine DP with HE or SMC to
provide formal privacy guarantees while allowing encrypted
gradient aggregation. Although these defenses offer theoretical
privacy guarantees, they introduce significant computational,
communication, and storage overhead and often necessitate
modifications to FL architectures, making them less practical.
Perturbation-based defenses can be further divided into three
sub-categories. Input perturbation modifies the local training
data. Approaches include creating composite images through
linear combinations [14], [16], applying strategic data augmen-
tation [15], [41], and synthesizing visually distinct concealed
samples to mimic sensitive data at the gradient level [17].
However, these methods often compromise classification per-
formance, provide insufficient protection, or incur high com-
putational overhead [25]. Gradient perturbation modifies the
local gradients. Early defenses [5] leverage DP by adding
Gaussian and Laplace noises to the gradients. The work [18]
applies per-example gradient clipping and DP noise injection
during local training. The work [19] adds layer-wise random
perturbations to gradients based on information leakage risk.
Outpost [20] adaptively adds Gaussian noise combined with
gradient pruning during each local training iteration based on
privacy leakage risks. However, these noise injection-based
defenses struggle to balance good defense performance and
model utility [6], [25]. CENSOR [21] samples gradients from a
subspace orthogonal to the original gradients while using cold
Bayesian posteriors aiming to improve model utility. Training
perturbation perturbs local training processes. The work [22]
adds dropout layers in local models during training aiming to
mitigate GIAs. PRECODE [23] adds a variational bottleneck
prior to the output layer of the local model to counteract GIAs
while maintaining classification performance. The learning-
rate-perturbation (LRP) [24] randomly perturbs each client’s
learning rate to prevent accurate data reconstruction while
preserving model accuracy. However, LRP only modifies the
gradient scale without affecting the direction, making it vul-
nerable to strong attacks like IG that employ cosine similarity
loss.

Pruning-based defenses selectively remove gradient com-
ponents. Prune [5] sets gradients with small magnitudes to
zero. Soteria [26] identifies that the data representations, i.e.,



the outputs of the layers after the feature extractor, inferred
from the gradients reveal significant information about the
input data. It then prunes the selected gradients to perturb
the data representations. The work [42] proposes pruning
large gradients to defend against GIAs. Dual Gradient Pruning
(DGP) [25] prunes both large and small gradients to conceal
label information while incorporating an error feedback mech-
anism [43] that adds back the pruned gradients in the next
training step to mitigate information loss caused by pruning.
Compression-based defenses mitigate information leakage by
compressing gradients. pFGD [44] combines Discrete Cosine
Transform and gradient pruning to suppress sensitive fre-
quency components. Mixed Quantitation (MQ) [45] assigns
varying quantization precisions across model layers. Exist-
ing defenses directly apply gradient compression techniques
without tailoring them to defend against GIAs or considering
realistic non-IID scenarios. In comparison, our truncated SVD-
based defense adapts to client vulnerability, improves accuracy
and defense performance via weighted approximation, and
enhances aggregation effectiveness under class imbalance.

C. Singular Value Decomposition

Low-rank approximation is the process of approximating
a matrix W by a matrix W of lower rank. Formally, the
objective is to minimize the approximation error ||[W — W/||
subject to rank(W) < k, where k is the desired reduced rank.
SVD can solve this problem effectively [46]. For a matrix
W € RP*? with p > ¢, SVD decomposes it as W = UXV T,
where U € RP*" is an orthogonal matrix of left singular
vectors, ¥ = diag(oy,---,0,) € R"™ " contains singular
values in descending order (o7 > -+ > o,.), r < min{p, ¢}
is the rank of W, and VT € R"*¢ is the transpose of an
orthogonal matrix of right singular vectors. Truncated SVD
approximates W by retaining only the k largest singular values
and their corresponding singular vectors as W =UxVT,
where U’ € RP*F ¥/ ¢ RF*F and V'T e RFxq, The
number of retained singular values is determined by the
energy threshold 7, where energy refers to the sum of the
squared singular values representing the amount of information
captured by the singular values [47]. Specifically, k is chosen

%i > T.1If pk+k+kq < pq, the truncated
matrices contam fewer parameters than the original matrix
W, thus reducing communication cost. SVD is commonly
used in principal component analysis (PCA) for dimensionality
reduction [48], latent semantic analysis (LSA) for feature
extraction in natural language processing [49], and addressing
the challenge of sharing large-scale model updates in FL [50]-
[52]. Unlike prior works, we explore truncated SVD to defend
against adaptive GIAs.

IIT. THREAT MODEL

FL Setting. We consider a standard FL setting with a central
server and M distributed clients. Each client m has local
training data D,, = {(Xm.n, ym,n)}gg’l with N,,, samples. In
communication round ¢, the server first sends the global model
parameters 62_1 to a batch of B? selected clients and sets their

to satisfy mm

local model parameters to ! = (-);_1. Then, the clients
perform local training on D,, and update their respective
local models from ©! ! to ©f . In our setting, each client
m transmits its local model gradients V@®,, to the server,
which has the same effect as sending the updated local model

parameters since VO,, = @, ' — O/

v.. Finally, the server
updates the global model as ©! = @' — S VO,
where p, is the normalized aggregation weight of the b-
th selected client. The objective is to collaboratively train a
global model ®, by aggregating client updates. We follow
the FedAvg algorithm [4] and formulate the objective as

N
argmm Z > L(Fe,(Xmn) Ymn), Where Fg (-) is the

Oy m=1n=1
neural network with parameters @, and L(.,

function used to train it.

Adversary Model and Capabilities. We consider an honest-
but-curious central server as the adversary. Such an adversary
is common in FL research [5], [6], [20], [26]. This adversary
follows the FL protocol properly but attempts to reconstruct
clients’ private training data from their uploaded updates. The
adversary has access to the global model parameters @, and
local model gradients V®,,, but cannot modify the training
process or tamper with model parameters. Furthermore, we
assume an adaptive adversary who knows the deployed de-
fense mechanisms and can design targeted attacks against
these defenses. We assume that the adversary has enough
computational resources to perform attacks.

Adversary Goals. The adversary aims to reconstruct pri-
vate data from local model gradients via GIAs. Given client
m’s gradients V®,,, the adversary first initializes pairs of
dummy input data x/, and label y, , which are the op-
timizable parameters for data recovery. After forward and
backward propagation on the global model, the dummy gra-
dients VO,, = VL(Fe,(x},),y,,) can be generated. The
reconstruction of private data x,, can be viewed as an iter-
ative optimization process with the objective of minimizing
the distance between the dummy gradients and the ground-
truth gradients of the victim client, which can be formulated
as argminDist(V@!,, VO,,,) + R(x.,), where R(-) is the

’ /
X Ym

regularization term.

-) is the loss

IV. MOTIVATION STUDY

This section presents a preliminary study on the MNIST
dataset [53], demonstrating that existing GIA defenses can be
circumvented by practical adaptive adversaries. We summarize
key insights from our study to motivate our defense design.
Experimental Setup. We consider five representative de-
fenses, including two perturbation-based defenses, CEN-
SOR [21] and PRECODE [23], and three pruning-based
defenses, Prune [5], Soteria [26], and DGP [25]. In this
section, we omit perturbation-based defenses that rely on noise
injection, including DP [5] and Outpost [20]. This is because
Expectation over Transformation (EoT), a practical adaptive
attack operation commonly considered for mitigating random
effects induced by the defenders [21], [37], [54], [55], is



TABLE I: Defense Performance of Different Methods Under
Non-adaptive and Adaptive GIAs. Higher PSNR and Lower
LPIPS Values Mean Stronger Attack Performance.

Metric Non-adaptive Adaptive
Defense PSNR LPIPS PSNR LPIPS
CENSOR [21] 8.1940 | 0.6958 | 16.4071 | 0.2881
PRECODE [23] 3.5659 | 0.7668 | 57.4165 | 0.0001
Prune [5] 12.9257 | 0.4993 | 36.1273 | 0.0221
Soteria [26] 10.8145 | 0.6481 | 38.7447 | 0.0161
DGP [25] 9.7334 | 0.6187 | 35.6383 | 0.0254

ineffective against these noise injection-based defenses, as
theoretically analyzed in Appendix A. However, we show
(in §VI-C) that under a more powerful, thus less practical,
adaptive adversary, our defense still outperforms the existing
defenses, which demonstrates the superior performance of our
proposed solution even in stressful situations. We configure
the defenses following the recommended settings in their
respective publications to reproduce their best performance.
For CENSOR, we activate the defense for the first five epochs,
following [21]. For PRECODE, we adopt the same parameter
settings as in [23]. For Prune, we set the pruning rate to
90%. For Soteria, we prune 80% of the gradients in the fully
connected layers. For DGP, we prune the smallest 75% as well
as the largest 5% of the gradients.

We evaluate the defenses against both non-adaptive and
adaptive attacks. For the non-adaptive scenarios, we use the
standard IG attack. For the adaptive scenarios, we apply
defense-specific operations on the original IG attack. For
CENSOR, the adversary is assumed to know that the defense
is active for the initial epochs. We then perform the attack in
the subsequent undefended epochs and report the best attack
results. Note that if the defense keeps active for all the epochs
in CENSOR, the model’s utility will degrade significantly,
as shown in §VI-B. For PRECODE, we initialize a dummy
random vector and optimize it together with the dummy inputs
during attack optimization. For the pruning-based defenses
(i.e., Prune, Soteria, and DGP), we assume that the adversary
knows the defense and details of the pruning operation by
detecting the zero values in the ground-truth gradients. We
then apply identical pruning operations to both the ground-
truth and dummy gradients during attack optimization. Since
these defense mechanisms and their parameters (e.g., the
number of initial epochs where defense is deployed) are static
information, the adversary can obtain them in an advanced
persistent threat (APT) scenario [56], where the adversary may
use, for instance, social engineering against the FL clients to
exfiltrate the needed knowledge. Note that we omit GAN-
based attacks in this discussion because they yield results
similar to optimization-based attacks (validated in §VI-C)
due to the two approaches’ shared optimization objective, as
discussed in §III. Consequently, the adaptive operations in this
section are compatible with both attack types.

Experimental Results. Table I summarizes the peak signal-
to-noise ratio (PSNR) [57] and the learned perceptual image
patch similarity (LPIPS) [58] between the ground-truth and
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Fig. 2: Comparison of non-adaptive and adaptive GIAs against
the Prune defense [5].

reconstructed images under the non-adaptive and adaptive
GIAs. Higher PSNR values mean better reconstruction quality
and lower LPIPS values mean smaller perceptual differences
between the original and reconstructed images, both indicating
stronger attack performance. Although LRP is not effective
against the strong IG attack, we still show that its defense
performance drops under the adaptive DLG attack [5] in Ap-
pendix B. These results demonstrate that the effectiveness of
the subject defenses drops significantly under adaptive attacks.
Fig. 2 exemplifies how an adaptive attack works against the
Prune defense. From the figure, while the non-adaptive attack
directly matches gradients without considering the defense,
the adaptive attack applies the same pruning operation to both
the ground-truth and dummy gradients during optimization,
thereby achieving better reconstruction performance.

Key Insights. Our experimental results demonstrate key
vulnerabilities of the existing defenses under practical adaptive
adversaries. First, pruning-based defenses can be adaptively at-
tacked by identifying zeroed gradient components and exploit-
ing the unaffected ones for reconstruction. Second, defenses
relying on random variables (e.g., PRECODE and LRP) can be
bypassed through variable recovery. These empirical findings
suggest that affecting all the gradient components and doing
so irreversibly are desirable properties for improved robustness
against adaptive GIAs. Third, by applying random orthogonal
projection to gradients in the initial epochs only, CENSOR
is vulnerable to attacks during the later undefended epochs,
where the adversary can still extract sufficient information
to reconstruct much of the input data, as evidenced by our
experiments. If the random projection were to be kept active
to maintain privacy, the totality of projected gradients would
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retain so little information that it significantly degrades the
model’s utility. Therefore, it is essential for practical de-
fenses to achieve both privacy protection and good model
utility. These insights motivate our proposed solution based
on truncated SVD. On the one hand, truncated SVD irre-
versibly affects all the gradient components. On the other
hand, it prudently truncates the gradients while preserving
critical information for model utility at low computational and
communication overheads. However, applying truncated SVD
as a robust GIA defense presents practical challenges, which
we will address in the next section.

V. SYSTEM DESIGN
A. Challenges and Design Goals

In real-world FL deployments, data distributions among
clients are often not independent and identically distributed
(non-IID). One of the most common non-IID scenarios is
the imbalanced distribution of classes [59]-[61], where clients
possess varying proportions of data samples across different
classes. For example, different hospitals may observe different
frequencies of disease types based on their specialties and
patient demographics. While prior efforts [59]-[62] have fo-
cused on improving model utility under non-IID data in FL,
the impact of such data heterogeneity on gradient inversion
attacks and defenses remains unexplored.

In our investigation, we simulate the non-IID scenario of
class imbalance using the MNIST dataset and adopt ResNet-
18 [63] as our target model. We first randomly shuffle the
order of the data classes and retain N5 ; X pClS—i samples for
each class, where cls_i, (cls_i = 0,---9) is the shuffled class
index, N5 ; is the original number of samples in class cls_t,
and p is our defined class balance ratio. By varying p from 0
to 1 with a step size of 0.1, we simulate different degrees of
class imbalance, where a larger p indicates a more balanced
class distribution. For each p, we generate 128 batches of
input samples with a batch size of 10. Then, we launch the
IG attack. As shown in Fig. 3, as p increases, the mean
squared error (MSE) between the original and reconstructed

images increases and the PSNR value decreases. This suggests
that clients subject to higher degrees of class imbalance
are more vulnerable to attacks. This is potentially because,
when trained on class-imbalanced data, the model’s gradients
primarily reflect patterns from the dominant classes. Therefore,
it becomes easier for attackers to reconstruct private data from
the less diverse gradients.

Based on the above observations, it is inadvisable to treat
clients with varying degrees of class imbalance uniformly
when counteracting GIAs through SVD truncation. Since
more imbalanced clients are more vulnerable to attacks, they
require stronger protection through lower energy thresholds
that consequently reduce available information in the truncated
gradients for data reconstruction, as illustrated in Appendix C.
This strategy raises three practical challenges during SVD
truncation: Challenge C1: How to effectively quantify the
degree of class imbalance and thereby adaptively adjust the en-
ergy threshold 7 under heterogeneous clients; Challenge C2:
How to preserve information critical for model training while
suppressing sensitive information leakage; and Challenge C3:
How to effectively aggregate the SVD truncated client updates
and improve global model utility under class imbalance? Our
design aims to address these three challenges.

B. Overview of SVDefense

Fig. 4 gives an overview of the proposed SVDefense. We
also provide a detailed description of our approach in Alg. 1.
The workflow is as follows. () Each client receives the
global model and trains its local model (lines 4-6). ) Each
client computes channel-wise weights based on its gradient
magnitude information (line 17). ) Each client applies
the channel-wise weights to perform SVD on the gradients,
measures the entropy of the squared singular value distribution,
and derives the self-adaptive energy threshold (lines 18-20).
@ The factorized gradients are then truncated according to the
calculated energy threshold for each client (line 21). @) Each
client transmits channel-wise weights, truncated gradients, and
entropy value to the server (line 9). ® The server reconstructs
the local gradients with the truncated gradients (line 26) and
calculates layer-wise aggregation weights based on the entropy
value (line 27) to update the global model (line 13).

C. Self-Adaptive Energy Threshold

Our analysis in §V-A indicates that the clients with higher
degrees of class imbalance require stronger protection against
GIAs by lowering the energy threshold. To address Challenge
C1 and quantify the degree of class imbalance for adapting
each client’s energy threshold, we follow the experimental
protocol in §V-A and apply SVD to decompose the gradients
obtained at the end of each training epoch for each setting
of p. Fig. 5 shows the entropy of the squared singular value
distribution for a linear layer of the target model versus the
class balance ratio p. We can see that the entropy value
increases with the class balance ratio, indicating that the
singular value distribution can serve as an effective indicator
of the degree of class imbalance. This observation motivates
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Fig. 6: Comparison of different
gradient perturbation-based de-
fense strategies under GIAs.

us to adapt the energy threshold 7,,; for layer [ of client
m’s local model based on the entropy e,,; of the normalized
squared singular values. Specifically, we set

Tmi =1 —exp(—Bemy), (1)

Tm,l ~ ~ . ~
— >0 Omoilog(Gmi) With Gy =
as the i-th normalized squared singular value,

where e,
(O"m,l,i)z
S5 (Om )2
Tm, is the rank of the gradients of layer [ in client m’s
model, and the sensitivity parameter 3 controls the sensitivity
of privacy protection. A larger 5 means a faster decrease in
threshold values as the entropy decreases. This exponential
function ensures that clients with more imbalanced class
distributions (indicated by lower entropy values) receive lower

energy thresholds, resulting in stronger privacy protection.

D. Channel-Wise Weighted Approximation

Lowering the energy threshold 7 in SVD truncation not
only suppresses sensitive information that can be exploited for
data reconstruction, but it also reduces useful information for
training the model. Traditional SVD treats all the elements of
the matrix uniformly, which does not align with our objective
of addressing Challenge C2 to preserve more information
critical for model training while suppressing sensitive infor-
mation leakage. Recent studies [5], [25], [26] suggest that
larger gradients, which capture the primary direction of model

updates, contain more critical information for classification,
while smaller gradients often carry redundant information.
Additionally, as proven in [25], the effectiveness of GIAs
measured by the data reconstruction error is bounded by the
overall gradient error, regardless of whether it originates from
large or small gradients. Inspired by these insights, our design
preserves larger gradients while applying stronger perturba-
tions to smaller gradients during SVD truncation, aiming to
improve both defense performance and model utility.

We conduct a toy experiment on CIFAR-10 using the IG
attack to illustrate the effectiveness of the aforementioned
strategy. We consider two perturbation-based defenses: 1) top-
20 that applies Laplace noise (scale = 0.03) to the top 20%
largest gradients and 2) bottom-80 that applies Laplace noise
(scale = 0.03) to the bottom 80% smallest gradients. As shown
in Fig. 6, the bottom-80 defense strategy achieves higher best
and final classification accuracies and higher MSE between
the ground truth and reconstructed inputs, indicating a better
classification and defense performance at the same time.

To this end, we propose a weighted truncated SVD approach
that incorporates the gradient magnitude information. Intu-
itively, the weighted optimization objective is formulated as:
arg min Zle ZZN:l'f Wiei(Wiei— VAVLC,Z-)2, where W; and

w,;

W, denote respectively the ground-truth and approximated
gradients of the [-th layer in the client model, w;.; is the
weight for the i-th element in the c-th output channel of
the gradients, C' is the number of total output channels, and
Nj . is the number of elements in the c-th channel of W;.
For simplicity, we use squared gradients as weights, where
Wiei = (Wiei)® In §VI-E, we consider an alternative
method of using absolute gradient values as weights and
demonstrate that squared gradients as weights achieves better
accuracy and defense performance. However, such element-
wise weighted low-rank approximation is a nonlinear opti-
mization problem, which does not have a closed-form solu-
tion [64]. To make the problem tractable, we employ a diago-
nal weight matrix. Specifically, we sum the weights along the
output channel axis and define the channel-wise weight matrix

. Nic
as I} = diag(\/wr1,...,/wic), where wi . = > ;% Wic,i-



Algorithm 1 Federated learning with SVDefense

1: Input: Initial global model ®Y, local datasets { Dy, })_,

number of rounds 7, sensitivity parameter 3

2: Output: Final global model @Z;

3: for each round t =0,1,...,7 — 1 do

4: for each selected client m in parallel do

5: Initialize local model: ©,, - ©

6: Train local model on D,, to get gradients V@,
7: for each layer [ of client model do

8: P,,; < DEFEND_GRAD(VO®,, ;, ()

9: Send P, ; to server

10: end for

11: end for

12: for each layer | of global model in server do

13: ©!h! < AGGREGATE(®! |, {P, 1 })_,)

14: end for

15: end for

16: function DEFEND_GRAD(V®,, ;, 5)

17: Compute channel-wise weight matrix I; from VO,
18 {U,Z,V,'} < SVD(I,VO,, ;)

19: Compute entropy e, ; from ¥

20: Compute threshold 7, ; <— 1 — exp(—Bem. 1)

21:  Truncate singular values to get {U;, 25, V; '}

22: return P, « {I,, U}, 35, Vi e}
23: end function

24: function AGGREGATE(®), ,, (P32 )

25: for each client m do

26: VO < (Iyy) UL 5 VE T

27: Compute layer-wise aggregation weight p,,, ; based
on €m,1

28: end for

M
29: v®g7l — Zm:l pm,lVGm,l
30:  return ©) , — VO,

31: end function

The optimization problem then transforms to:

arg min HI[W[ — IlWl”F, (2)
W,

where || - || is the Frobenius norm. The optimization tends to

reduce the error in high-weight regions due to I;.

The optimization process is as follows. For a rank % derived
from the energy threshold 7, we obtain the optimal W;‘
by applying truncated SVD to I; W, yielding Uj, X7, and
Vl*T that satisfy Eq. 2. The optimal solution is denoted by
W; = (I)""U;ZV; T, which maintains the same rank k
since (I;) " is a diagonal matrix. This weighted optimization
strategy effectively improves both the model accuracy and the
privacy protection by selectively preserving larger gradients
while applying stronger perturbations to smaller gradients.

We theoretically demonstrate that our Channel-Wise
Weighted Approximation enhances the defense performance of
truncated SVD. A passive attacker is defined as an adversary
who attempts to reconstruct private input data while honestly
adhering to the FL protocol [25]. As discussed in §III, the

honest-but-curious adversary we consider belongs to the class
of passive attackers. Specifically, we have the following
definition and theorem:

Definition 1. A passive attack A is an (g, 0)-passive attack, if
it satisfies:

P(E(DA(VO,VO")) <e) > 1-4. (3)

where P represents the probability, E represents the expecta-
tion, and D 4 is the distance estimated under A.

Theorem 1. For any (g,0)-passive attack A, under the
presence of truncated SVD, it will degenerate to (¢ +
VNIIVO| g, 6), where v1 = 1 — T. Under the presence of
truncated SVD with Channel-Wise Weighted Approximation,
it will degenerate to (¢ + /72||VO|r,d), where v =
(%)2(1 —T), Omaz(-) and opin(-) mean the maximum
and minimum singular value of the input matrix.

Since Zmaz@ > 1 e have ~o > «y;. This indicates that
truncated SVD with Channel-Wise Weighted Approximation
provides stronger protection than the original truncated SVD.
The detailed proof can be found in Appendix D. By our proof
in Appendix D and experimental results in §VI, Channel-
Wise Weighted Approximation improves both the defense
performance and model accuracy.

E. Layer-Wise Weighted Aggregation

Under non-IID local data distributions, the aggregated local
optima deviates from the global optimum, leading to degraded
global accuracy [24], [61], [65], [66]. To address this, weighted
aggregation strategies have been proposed [66], [67], where
local clients contribute differently to the global model updates
based on their heterogeneous data distributions. However, no
existing work investigates appropriate weights for aggregating
SVD truncated weights and addresses Challenge C3.

This work assumes the global data distribution to be class-
balanced, which aligns with standard FL. benchmarks [28]—
[31]. Under this assumption, clients with more balanced local
data distributions will have local optima closer to the global
optimum, which should be assigned higher weights during
aggregation [61]. Our analysis in §V-C reveals that the entropy
of the squared singular value distribution can serve as an
indicator of the degree of class imbalance. Therefore, we
assign layer-wise aggregation weights to different clients as:

€m,l X Nm
Pm,i = M B

e X N;
-1

“4)

where p,, ; represents the aggregation weight. The server then
aggregates the received client updates to update the global
model O = O, — VO, ,;, where @', is the weights of
layer [ of the global model, VO, ; = 2%21 DPm, VO, 1, and
VO, denotes the layer [ of client m’s gradients.

VI. EVALUATION
A. Experimental Setup.

Datasets and Models: We evaluate the effectiveness of our
defense using the following datasets and applications.
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Fig. 7: Comparison of classification accuracy across different defense methods.

TABLE II: Number of Total and Participating Clients per
Round.

# client

Dataset # total client # class  non-IID
per round
EMNIST [28] 196 19 64 v
CIFAR-10 [29] 100 10 10 v
HAR [30] 30 2 6 v
KWS [31] 489 48 36 v

« Image Classification (IC). We consider two image clas-
sification datasets: the extended MNIST (EMNIST) [28]
with 28 x 28 grey-scale handwritten letters collected from
different writers with imbalanced class distributions and
CIFAR-10 [29] with 32 x 32 color images. We randomly
select 196 writers from the EMNIST dataset and assign
each writer’s data samples to a client. For CIFAR-10, we
create 100 class-imbalanced clients by splitting the data
samples of each class based on proportions sampled from
a Dirichlet distribution with o = 0.5. We denote the two
applications as IC-EMNIST and IC-CIFAR10.

o« Human Activity Recognition (HAR). HAR identifies
daily activities like walking or sitting, leveraging sensor
signals such as Inertial Measurement Unit (IMU) data.
We adopt a public IMU dataset [30] consisting of six
daily activities collected from 30 class-imbalanced par-
ticipants. We assign each participant’s data samples to a
client.

« Keyword Spotting (KWS). KWS captures specific com-
mands using device microphones to enable voice-based
human-computer interaction. We use the Google Speech
Commands Dataset [31], which contains 105,829 one-
second utterances of 35 keywords collected from different
speakers. Each voice sample is processed into an 81 x 40
Mel-Frequency Cepstral Coefficients (MFCC) tensor. We
randomly select 489 speakers that are class-imbalanced
and assign each speaker’s data samples to a client.

For IC-CIFAR10, IC-EMNIST, and KWS, we adopt the
ResNet-18 architecture. For HAR, we use the 1D Con-
vNet [68]. We also consider the larger-scale Vision Trans-
former (ViT) [69] trained on ImageNet [70] in §VI-C. The
total number of clients and the number of participating clients
per communication round are summarized in Table II. Note

that the data splits in all the applications are class-imbalanced.

Attack and Defense Baselines: We implement the widely
considered IG attack as our primary evaluation attack due
to its broad applicability across different model architec-
tures and data types. §VI-C also evaluates our defense us-
ing a recent strong GAN-based attack, ROG [7], on high-
resolution image data. We consider eight representative de-
fense baselines, including perturbation-based (DP [5], Out-
post [20], CENSOR [21], and PRECODE [23]), pruning-based
(Prune [5], Soteria [26], and DGP [25]), and compression-
based (pFGD [44]) defenses. We implement adaptive attacks
as defined in §III and employ the same attack settings as
in §IV for all the defenses except for noise injection-based
(i.e., DP and Outpost) and compression-based (i.e., pFGD)
defenses. This is because noise injection-based defenses are
theoretically proven effective against practical adaptive attacks
in Appendix A, while pFGD compresses the entire gradient
space by discarding low-frequency components, similar to
truncated SVD. However, §VI-C compares our defense with
noise injection-based and compression-based defenses under a
less practical adaptive adversary to demonstrate our defense’s
robustness even under extreme threat conditions. We imple-
ment two DP baseline variants, DP-Gaussian and DP-Laplace,
which employ Gaussian and Laplacian noises, respectively.

For IC-CIFAR10, IC-EMNIST, and KWS, we set the noise
scale to 0.03. For HAR, we set the noise scale to 0.5. We
follow [44] and set the pruning rate to 0.01 for pFGD. We
randomly sample 128 input samples from each dataset to
launch attacks. We set the local training batch size, number of
epochs, and the number of steps all to be 1 and perform the
attack in the first communication round. This setting is ideal
for the adversary and most challenging for the defender, which
is commonly adopted by existing defenses [7], [9], [22], [25].
By default, we set 5 to be 0.3 in SVDefense as our experiments
in §VI-G show that this value achieves a favorable trade-off
among defense, accuracy, and communication cost.

Evaluation Metrics: We use accuracy to evaluate classifica-
tion performance. To evaluate defense effectiveness, we use
metrics including the MSE, PSNR, structural similarity index
measure (SSIM) [71], and LPIPS. Note that we use all four
metrics for image classification and only use MSE for the
remaining applications, since PSNR, SSIM, and LPIPS are
specific to image data. Higher MSE and LPIPS and lower



TABLE III: Comparison of Defense Effectiveness Across Different Defense Methods.

Dataset Metric None DP-Gau DP-Lap  Outpost CENSOR PRECODE Prune Soteria DGP pFGD SVDefense
MSE (1) 0.0056 0.0546 0.0514 0.0177 0.0141 0.0000 0.0136 0.0050 0.0108 0.0584 0.0619
CIFAR-10 PSNR (}) 23.8755 12.8280 13.1080 18.0419 19.2682 inf 19.3477  24.0950  21.1468 12.9291 12.5278
SSIM ({) 0.8411 0.2478 0.2718 0.3780 0.6908 0.9998 0.6915 0.8469 0.7579 0.2122 0.1375
LPIPS (1)  0.1894 0.5830 0.5754 0.6347 0.2747 0.0001 0.3223 0.1780 0.2631 0.5821 0.5866
MSE (1) 0.0003 0.0633 0.0575 0.0057 0.0017 0.0000 0.0006 0.0003 0.0006 0.0968 0.1429
EMNIST PSNR (J) 36.8783 12.1025 12.5235  23.2789 40.8229 inf 357690  37.0652  33.6131 10.3058 8.5792
SSIM ({) 0.9516 0.5376 0.5522 0.8178 0.9833 0.9968 0.9550 0.9553 0.9264 0.3084 0.2025
LPIPS (1)  0.0111 0.5453 0.5310 0.1223 0.0098 0.0003 0.0135 0.0103 0.0176 0.6494 0.6651
HAR MSE (1) 0.1953 0.2198 0.2907 0.2627 0.2034 0.000 0.2930 0.2493 0.2247 0.3561 0.4156
KWS MSE (1) 0.0978 0.1286 0.1542 0.1129 0.1194 0.000 0.1638 0.1385 0.1068 0.1634 0.1676

PSNR and SSIM indicate more effective defense performance.
To evaluate system overhead, we define the normalized on-
device latency and communication cost reduction. The nor-
malized on-device latency is defined as the ratio between
the total on-device local training time with and without de-
fense. A value of 1.0 for this metric indicates no additional
computational overhead compared with the baseline without
defense. The communication cost reduction measures the
percentage decrease in total communication latency (including
both uploading and downloading latency) achieved by the
defense relative to the baseline without defense.
Implementation Details: To validate the practicality of SVDe-
fense, we implement a real-world FL testbed as shown in
Appendix E. The testbed contains heterogeneous embedded
platforms, including two NVIDIA Jetson TX2, two NVIDIA
Jetson Nano, and six Raspberry Pi 4, as client devices. The
server is equipped with an AMD EPYC 7543@ 3.7GHz, 256G
RAM, and 4 RTX A5000 GPUs. We use TL-SG116 to connect
the server and client devices. Since the number of clients
participating in each communication round may exceed the
number of available devices, we randomly assign a device for
each client to train its local model. Each device trains one
client model at a time due to resource constraints.

B. Accuracy

Fig. 7 presents the classification accuracy across commu-
nication rounds in the presence of different defenses and
in the absence of defense, indicated by “None”. From the
results, we can see that SVDefense performs better than the
undefended baseline “None” and the other defense methods
across all the applications. As expected, DP-based defenses
degrade the model utility. Specifically, DP-Laplace achieves a
final accuracy of 51.0% and DP-Gaussian achieves 53.5% in
KWS, while the “None” baseline achieves a final accuracy of
78.0% and SVDefense achieves 79.9%, respectively. Outpost
achieves an accuracy similar to “None” by adaptively adjusting
perturbations to preserve more information during the FL
training. However, it has degraded defense performance, as
shown in §VI-C. CENSOR maintains an accuracy close to
“None” since its defense operations are only activated during
the initial few training epochs [21]. When the defense is
activated for all the training epochs, CENSOR reduces the
final accuracy by 14%, 8%, 18%, and 9% for IC-CIFARI10,
IC-EMNIST, HAR, and KWS, respectively, compared with
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TABLE IV: Comparison of Defense Effectiveness Across
Different Defense Methods Under Adaptive LTI attack [9].

Metric DP-Gau DP-Lap  Outpost pFGD SVDefense
MSE (1) 0.0292 0.0315 0.0220 0.0197 0.0469
PSNR (J) 15.8955 15.5623  17.1465 17.6388 14.3392
SSIM ({) 0.2547 0.2356 0.3369 0.3672 0.1509
LPIPS (1)  0.5744 0.5834 0.5487 0.5362 0.6521

“None”. PRECODE has degraded accuracy in all the ap-
plications because it needs to sample a random vector in
each training step, leading to extra noise. Note that Soteria
is omitted from the accuracy comparison as its layer-wise
defense operations become computationally intractable when
applied in each communication round [20]. Prune achieves
a lower accuracy due to its aggressive gradient pruning that
discards potentially important update information. Although
DGP performs well in IC applications, its accuracy fluctuates
in HAR and KWS, potentially due to the per-step pruning of
large gradients that may contain useful information. pFGD
has degraded accuracy because it applies the Discrete Cosine
Transform to the gradients and directly sets the coefficients
of the low-frequency components to zero, which may discard
critical gradient direction information.

C. Defense Performance

Table III presents the defense performance of different
methods, with the best and second-best results highlighted
in bold and underlined, respectively. Note that the PSNR is
computed by dividing the MSE. Thus, “inf” values in the table
indicate near-zero MSE values. We can see from the table
that SVDefense achieves the best defense performance in all
the applications, compared with all the baselines. Although
DP provides theoretical privacy guarantees, it significantly
impacts the model utility, as shown in Fig. 7. In comparison,
SVDefense achieves strong defense performance without com-
promising classification accuracy, due to the effectiveness of
the Channel-Wise Weighted Approximation and Layer-Wise
Weighted Aggregation mechanisms in our design. Examples
of the reconstructed images under different defenses are pro-
vided in Appendix E.

Adaptive Adversary against SVDefense. As analyzed in
§IV, SVDefense is invulnerable to adaptive attack operations
like identifying modified gradient components or recovering
random variables used by the defender. Nevertheless, to further



TABLE V: Comparison of Defense Effectiveness Across Different Defense Methods on High-resolution ImageNet with

LeNet [72].
Metric None DP-Gau DP-Lap  Outpost CENSOR PRECODE Prune DGP pFGD  SVDefense
MSE (1) 0.0220 0.0381 0.0369 0.0273 0.0289 0.0029 0.0265 0.0247 0.0564 0.0904
PSNR ({) 17.2417  14.6213  14.6889  16.3300 16.3367 28.6856 16.4031  16.8004  13.4950 10.9315
SSIM () 0.5090 0.2613 0.2446 0.4253 0.4162 0.9287 0.4280 0.4952 0.4490 0.1128
LPIPS (1) 0.4313 0.6175 0.6242 0.4908 0.5163 0.0236 0.5053 0.4498 0.5343 0.7004
TABLE VI: Comparison of Defense Effectiveness Across Different Defense Methods on High-resolution ImageNet with
ViT [69].
Metric None DP-Gau DP-Lap  Outpost CENSOR PRECODE  Prune DGP pFGD SVDefense
MSE (1) 0.0817 0.0796 0.0794 0.0848 0.0874 0.0834 0.1109 0.0859 0.0985 0.1287
PSNR ({) 11.4922 11.6943 11.7168  11.3691 11.1634 11.4756 9.9646 11.2950  10.5598 9.2805
SSIM ({) 0.4852 0.2795 0.2704 0.1925 0.4342 0.4847 0.3194 0.4586 0.1821 0.0494
LPIPS (1) 0.3528 0.6552 0.6739 0.6939 0.3793 0.3536 0.5627 0.3834 0.6631 0.7473
data distribution is precisely what a client aims to protect. If
BN MSE.  EEE PSNR 1 BEm MSE. mEE PSNRT,, o the attacker already had access to similarly distributed data,
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Fig. 8: Impact of Self-Adaptive Energy Threshold on defense
performance under class imbalance. Lower MSE and higher
PSNR indicate stronger attack effectiveness. 7 = 0.8 is fixed
for “SVD”; B for “SVD_S” is chosen to match the defense
performance of “SVD” at class balance ratio of 0.9.

evaluate SVDefense’s performance in extreme situations, we
simulate a powerful adaptive attacker based on the LTI at-
tack [9]. Specifically, we assume that the attacker has obtained
a surrogate training dataset that follows the same distribution
as the client’s local data. The attacker can then train a surrogate
local model on this dataset, use the model to generate input-
gradient pairs, and apply SVDefense to process these gradients.
The attacker then trains a neural network to learn the mapping
from the approximated gradients to the input samples. We
can follow a similar procedure to train the gradient inversion
models for the DP, Outpost, and pFGD baselines. During
the attack phase, the gradient inversion model is applied to
a victim client’s defended gradients in order to attempt data
reconstruction. Table IV presents the defense performance on
CIFAR-10. From the results, we can observe that SVDefense
achieves the best defense performance compared with the DP
baselines (i.e., DP-Gaussian and DP-Laplace both with a noise
scale of 0.1), Outpost, and pFGD. However, the assumption
that the adversary can obtain the distribution of a client’s real
data can be impractically strong and work against the premise
of GIAs. This is because in real-world FL scenarios, the private
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there would be little motivation to perform GIAs in the first
place.

SVDefense Effectiveness for High-Resolution Images and
on Large-Scale Model. We evaluate our defense on ImageNet,
a large-scale dataset consisting of 1,000 classes of high-
resolution (224 x 224) color images. We train a LeNet [72] on
ImageNet and implement a recent strong GAN-based attack,
ROG. We follow the same evaluation setup as described in
§VI-A except that we set the training batch size to 16 and the
noise scale of the DP baselines to 0.1. As shown in Table V,
SVDefense achieves superior defense performance compared
with all the baselines. Note that Soteria is excluded from this
comparison due to its computational infeasibility for high-
dimensional data. We then evaluate SVDefense’s performance
on the large-scale ViT model using the IG attack. As shown
in Table VI, SVDefense still outperforms all the baselines.

D. Impact of Self-Adaptive Energy Threshold under Class
Imbalance

This section evaluates the impact of the Self-Adaptive
Energy Threshold on the defense performance of truncated
SVD under class imbalance. We follow the method described
in §V-A to simulate varying degrees of class imbalance on
CIFAR-10. Fig. 8 illustrates the defense performance of trun-
cated SVD with and without Self-Adaptive Energy Threshold,
denoted by “SVD” and “SVD_S”, respectively, under varying
degrees of class imbalance. For a fair comparison, we fix
the energy threshold 7 to be 0.8 for “SVD” and select a
for “SVD_S” such that its defense performance matches that
of the “SVD” when the class balance ratio is 0.9. We can
observe that the defense performance of “SVD” deteriorates
as the class balance ratio decreases. In comparison, “SVD_S”
effectively adapts to varying degrees of class imbalance and
maintains more stable defense performance. The defense per-
formance for “SVD_S” is always better than that of “SVD”.
This is because class-imbalanced inputs produce gradients
with a more skewed distribution of squared singular values,
leading the Self-Adaptive Energy Threshold to adaptively
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derive a lower energy threshold that provides stronger pro-
tection.

E. Impact of Channel-Wise Weighted Approximation

This section compares the original truncated SVD (“SVD”)
and two variants of truncated SVD with Channel-Wise
Weighted Approximation, i.e., “SVD_C” that uses squared
gradients as weights and “SVD_C(abs)” that uses absolute
values of gradients as weights, on CIFAR-10. Fig. 9a shows
the classification accuracy when varying the energy threshold
T from 0.1 to 0.9 with a step size of 0.1. We can observe that
the accuracy increases with the threshold, and that “SVD_C”
outperforms both “SVD_C(abs)” and “SVD”. Fig. 9b shows
the defense performance. We can see that, when 7 < 0.7, the
LPIPS value fluctuates and all the methods perform similarly.
When 7T is greater than 0.7, “SVD_C” outperforms both
“SVD_C(abs)” and “SVD”. These results demonstrate the
effectiveness of the Channel-Wise Weighted Approximation
module in enhancing both the accuracy and defense perfor-
mance. They also show that, compared with absolute values
of gradients as weights, square gradients as weights better
emphasize larger singular components, which contributes to
improved classification and defense performance.
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F. Ablation Study

We evaluate three key components of SVDefense, namely
Self-Adaptive Energy Threshold, Channel-Wise Weighted
Approximation, and Layer-Wise Weighted Aggregation, on
CIFAR-10. We denote different variants as “SVD_{}_{}",
where each placeholder in brackets contains the component’s
initial letter if included. For example, “SVD_S_C” represents
SVDefense without the Layer-Wise Weighted Aggregation.
“SVDefense” denotes our full proposed method.

Fig. 10 presents the accuracy and defense performance of
different variants. For the variant without the Self-Adaptive
Energy Threshold, we set a fixed energy threshold T of
0.8, which achieves a balanced accuracy and defense per-
formance based on empirical results. For variants with the
Self-Adaptive Energy Threshold, we vary the sensitivity pa-
rameter [ within {0.05, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5,
0.6}. Since the undefended baseline “None” and “SVD_C_L”
are not affected by the variation of 3, their performance is
represented by horizontal lines in Fig. 10. The Layer-Wise
Weighted Aggregation aims to improve the global model’s
utility and does not affect the defense performance. There-
fore, in Fig. 10b, we only present “SVDefense” (equivalent
to “SVD_S_C”), “SVD_S_L” (equivalent to “SVD_S”), and
“SVD_C_L” (equivalent to “SVD_C”). From Fig. 10a, the
complete version of SVDefense achieves the best accuracy
compared with all the other variants. From Fig. 10b, the de-
fense performance of all the methods is similar when 8 < 0.3.
When 8 > 0.3, SVDefense outperforms the other variants.
In conclusion, SVDefense that combines all three components
achieves the best accuracy and defense performance when set-
ting 3 at appropriate values. This is because the Self-Adaptive
Energy Threshold and Channel-Wise Weighted Approximation
effectively suppress sensitive information leakage under class
imbalance while preserving more information critical for the
model training. The Layer-Wise Weighted Aggregation further
enhances the global model accuracy.

Fig. 11 shows the classification accuracy versus the com-
munication cost reduction of the different variants. For the
variants without Self-Adaptive Energy Threshold, we vary
T from 0.1 to 0.9 with a step size of 0.1. For the vari-
ants with Self-Adaptive Energy Threshold, we vary § to be
{0.05, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6}. We can see



that SVDefense achieves better accuracy and communication
efficiency, compared with all the other variants. This validates
the effectiveness of the three key components in balancing
accuracy and communication efficiency.

G. Sensitivity Analysis

This section evaluates the impact of varying different param-

eters on SVDefense’s performance using the CIFAR-10 dataset.
Sensitivity Parameter (3. First, we analyze the impact of vary-
ing the sensitivity parameter 3 on SVDefense’s performance.
We vary the value of 3 to be {0.05, 0.07, 0.1, 0.15, 0.2, 0.3,
0.4, 0.5, 0.6}. The red line in Fig. 10a shows the classification
accuracy of SVDefense across different 5 values. The result
shows that the accuracy increases with . This is because
for the same entropy value, a larger value of [ leads to a
higher energy threshold 7, retaining more gradient informa-
tion. This improvement in accuracy plateaus around 5 ~ 0.3,
suggesting that additional gradient information beyond this
point contributes minimally to the classification performance.
The red line in Fig. 10b illustrates the defense performance
of SVDefense across different [ values. The performance
fluctuates because SVDefense tends to retain larger gradients
for higher accuracy, which can also be primarily exploited for
data reconstruction [25]. However, by perturbing the gradients
with channel-wise weights and aggregating the local models
with layer-wise weights, SVDefense can effectively improve
both the accuracy and defense performance. The red line
in Fig. 11 illustrates the trade-off between the accuracy and
communication cost reduction of SVDefense across different
B values. The result shows that the accuracy decreases as
the communication cost reduction rate increases. SVDefense
achieves a favorable trade-off when 5 € {0.3,0.2,0.15}. In
summary, SVDefense achieves an optimal balance at 8 = 0.3,
where it maintains strong classification performance, robust
privacy protection, and high communication efficiency. Similar
sensitivity analysis can be applied to determine the optimal
value of S for other applications, considering their respective
requirements for model accuracy, privacy protection, and com-
munication cost.
Number of Participating Clients. We analyze the impact
of the per-round client sampling rate on the classification
accuracy of SVDefense. We vary the client sampling rate f €
{0.05,0.1,0.2}, where f represents the ratio of sampled clients
in each communication round. As shown in Fig. 12, increasing
the client sampling rate yields modest accuracy improvements.
For example, for IC-CIFARI10, the accuracy increases by
1.97% when f increases from 0.05 to 0.2. However, this
marginal performance gain comes with 4x higher client-server
communication costs. The results suggest that moderate client
sampling rates can achieve a good model performance while
maintaining communication efficiency.

H. System Overhead

Normalized On-Device Latency. Fig. 13 compares the nor-
malized on-device latency of different defenses on three
embedded platforms. The absolute on-device latency of the

TABLE VII: Absolute On-device Latency (Seconds) of
“None”.

Device IC-CIFAR10 IC-EMNIST HAR KWS
RPi 130.1 31.3 2.1 62.5
Orin Nano 3.6 0.8 0.2 1.7
TX2 4.5 1.1 0.3 2.6

TABLE VIII: Communication Cost Reduction (%) for SVDe-

fense.
Application  IC-CIFARI0 IC-EMNIST HAR  KWS
Comm. cost 42.0 30.3 486 237

13

reduction (%)

undefended baseline “None” over one epoch can be found in
Table VII. First, on the Raspberry Pi 4, all the defenses incur
minimal additional computation overhead. This is because
the CPU-based model training on the Raspberry Pi 4 is
time-intensive, making the defense operation time relatively
insignificant. Second, the DP-based defenses show a 2-3x
slowdown compared with “None” on both the Orin Nano
and TX2. This is because random sampling operations are
costly on resource-constrained hardware. Third, pruning-based
defenses perform notably slower on Orin Nano due to their
computation-intensive matrix operations like sorting. Fourth,
CENSOR and pFGD have negligible extra computational
overhead but struggle to achieve a good balance between
model utility and privacy protection. Lastly, SVDefense incurs
limited additional on-device computational overhead on all
the platforms across all the applications except IC-EMNIST.
This is because SVDefense is only applied once at the end
of each communication round, reducing the overall computa-
tional cost. The higher extra computational cost for EMNIST
is because the dataset is relatively simple. Thus, the total
local training time becomes comparable to the SVD operation
time. Note that Soteria is omitted from the latency comparison
as its layer-wise defense operations applied in each training
step become computationally infeasible on these embedded
platforms [20].

Communication Cost Reduction. SVDefense achieves
communication cost reduction by decomposing and truncating
the model updates into matrices with fewer parameters than
the original updates. As shown in Table VIII, SVDefense
significantly reduces the communication costs in all the ap-
plications. Note that the other defense baselines have similar
communication cost as “None” because these defenses do not
have specific mechanisms for communication time reduction.

VII. DISCUSSION

SVDefense can be potentially extended to deep learning
architectures like recurrent neural networks (RNNs), graph
neural networks (GNNs), and other emerging model archi-
tectures. For example, SVD can be applied to the recurrent
layers in RNNs and the message-passing layers in GNNs.
Doing so may require developing new SVD strategies that
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Fig. 13: Comparison of normalized on-device latency across different defense methods on three embedded platforms.

account for the unique characteristics of these architectures.
Beyond the applications discussed in this paper, SVDefense
can be employed in other domains such as natural language
processing [73]-[75] and medical image analysis.

VIII. CONCLUSION

This paper presents SVDefense, a novel defense frame-
work based on truncated SVD against adaptive GIAs in FL.
Our framework introduces three key innovations: the Self-
Adaptive Energy Threshold that adapts to client vulnerability,
the Channel-Wise Weighted Approximation to enhance accu-
racy and defense performance, and the Layer-Wise Weighted
Aggregation for effective aggregation under class imbalance.
Extensive experiments demonstrate that SVDefense outper-
forms existing defenses in both model accuracy and defense
effectiveness. Furthermore, SVDefense achieves practical com-
putational cost and much reduced communication cost on a
real-world FL testbed.
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APPENDIX

A. Analysis of Noise Injection-based Defenses under EoT
Attack

In GIAs, the adversary optimizes the dummy input x’ by
minimizing D(VO, VO’), where VO and VO’ represent the
ground truth and dummy gradients, respectively, and D repre-
sents the distance metric. The distance metric D quantifies the
distance between the two gradients. To simplify our analysis,
we consider D to be the Euclidean distance. Under defense,
the GIA objective is:

min [[p(VO) - VO'|F, )

where ¢(-) denotes the defense operation and || - ||z is the
Frobenius norm.

Take DP-Gau [5] as an example, o(-) represents injecting
noise 7 sampled from a Gaussian distribution N (0,0?) to
input data. Then, the observed gradients can be denoted by
»(VO®) = VO + 7 and the optimization objective of GIA
under DP-Gau becomes:

min |[VO +n—VO'|p. (6)

When an adaptive adversary applies the Expectation over
Transformation (EoT) [21] by sampling n times from the
Gaussian distribution A'(0, 02) to add noise to and average the
perturbed input, the dummy gradients become VO’ +1n’, where
n ~ N (O,"%). Consequently, the optimization objective
becomes:

min |[VO — VO’ +n —17'||F, (7)

where 7 — 7’ follows a Gaussian distribution A/ (0, 2tLo2).
Given the objectives in Eqs. 6 and 7, the optimized dummy
gradients VO™ is approximated as VO +n and VO + n —
7', respectively. As theoretically proven in [25], the attack
effectiveness of GIAs, which is characterized by the data
reconstruction error, is lower bounded by the overall gra-
dient error between the ground-truth and optimized dummy
gradients, which is ||[VO — VO*||r. By applying the EoT
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TABLE IX: Defense Performance of LRP and MQ Under
Non-adaptive and Adaptive GIAs.

Metric Non-adaptive Adaptive
Defense PSNR LPIPS PSNR LPIPS
LRP [24] 12.8634 0.4995 31.2368 0.1459
MQ [45] 4.3438 0.7567 45.7481 0.0032

operation, the data reconstruction error lower bound for DP-
Gau changes from ||| to ||n—7'[|p, with increased variance.
Consequently, the attack becomes less effective with EoT
operation. A similar analysis can be done on Outpost that
injects Gaussian noise in the gradients based on leakage risks.

For DP-Lap, the injected noise 7 follows Laplace distribu-
tion Laplace(0, b) with mean 0 and variance 2b%. The noise 7’
introduced in the dummy gradients when the adversary applies
EoT follows a distribution with mean O and variance #
Thus, n — 7/, follows a new distribution with mean O and
variance W, which is greater than the variance of 7,
leading to an increased variance in the lower bound of the data
reconstruction error. We can conclude that the EoT operation
also deteriorates the attack effectiveness against DP-Lap.

In conclusion, under noise injection-based defenses includ-
ing DP-Gau, Outpost, and DP-Lap, the adaptive attack opera-
tion of EoT increases the variance of the lower bound of data
reconstruction error, leading to reduced attack effectiveness.

B. Effectiveness of Adaptive Attack under LRP and MQ

This section evaluates the defense performance of LRP [24]
and MQ [45] under both non-adaptive and adaptive attackers.

LRP defends against GIAs by assigning randomly sampled
learning rates to clients, concealing them from the attacker. In
our experiments, we set the client learning rate to be 0.1. For
the non-adaptive attack, we implement the DLG attack [5], as
LRP has been shown to be resistant to DLG but vulnerable
to the IG attack. We then configure the adversary’s dummy
learning rate to be 0.2, simulating the LRP defense. For the
adaptive attack against LRP, we initialize a trainable dummy
learning rate and optimize it together with the dummy input
during the attack optimization process.

MQ defends against GIAs by hiding the gradient range
information. For the non-adaptive attack, we implement the
IG attack and directly use quantized gradients for input
reconstruction. For the adaptive attack, similar to LRP, the
adversary can initialize trainable dummy minimum and max-
imum gradient vectors, which are jointly optimized together
with the dummy input during attack optimization process. The
recovered hidden gradient range can be used to dequantize the
gradients.

Table IX presents the defense performance of LRP and MQ.
The results show that the adaptive attacks significantly weaken
the defense effectiveness of both methods.

C. Impact of Energy Threshold on Attack Effectiveness

Fig. 14 illustrates the effectiveness of IG attack under
truncated SVD with varying energy thresholds using an image
from the MNIST dataset. As the energy threshold increases,
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Fig. 14: The attack performance under different energy thresh-
olds.

] ™
l NVIDIA Jetson TX2

Fig. 15: An illustration of our federated learning testbed with
various embedded platforms.

the MSE decreases and image reconstruction quality also
increases. This is because truncated SVD with higher energy
threshold retains more singular values and corresponding vec-
tors, preserving more information for data reconstruction. This
exemplifies that clients with smaller energy thresholds during
SVD truncation receive stronger protection against GIAs.

D. Theoretical Analysis of truncated SVD with Channel-Wise
Weighted Approximation

Theorem 1. For any (e,6)-passive attack A, Under the
presence of truncated SVD, it will degenerate to (¢ +
V1IV®|| k., 6), where v1 = 1 — T. Under the presence of
truncated SVD with Channel-Wise Weighted Approximation,
it will degenerate to (¢ + /72||VO|r,d), where 2
(%)2(1 —T), Omaz(-) and opin(-) mean the maximum
and minimum singular value of the input matrix.

Poof. By definition, an (g,0)-passive attack allows the
attacker to achieve:

E|VO — VO*||r <,

®)

where VO* is the attacker’s optimized gradients of the
ground-truth gradients V®. The Frobenius norm of a matrix
can be expressed as [|A[% = >0 07(A), where o;(-)
denotes the i-th singular value of A and r is the rank of A.

By applying truncated SVD (tSVD) on VO to retain the
top-k singular values based on the energy threshold 7T, we

have:
Kk

Y 0l (V) =T -||Vej.

i=1

€))
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With tSVD, the attacker observes only the truncated gradients.
Therefore, the error between the ground-truth gradients and
optimized gradients becomes:

E|VO — VO*||r

—E|VO — tSVD(VO, T) + tSVD(VO, T) — VO*||

(@)
< [KSVD(VO,T) — VO*|r + [[VO —tSVD(VO, T)| r

®)
< e+ |VO —tSVD(VO, T)||»

=c+ IVO|r
121 Zj 1 J v®)2

9)

<e+vVA-T)VO|r

=+ vnllVOllr,

(10)
where v; = 1—7. (a) is based on the Frobenius norm triangle
inequality, which states that for any two matrices A and B, the
inequality ||[A + B||r < ||A|lr + || B|r holds.

By augmenting tSVD with Channel-Wise Weighted Ap-
proximation, the error between the ground-truth gradients and
optimized gradients becomes:

E|Ve - Vve'|r
=E|VO —T"1SVD(IVe,T)
+I"1SVD(IVO,T) — VO*||r

(a)
< IT7'%SVD(IV®,T) - VO*|
+[|[VO —T"%SVD(IV®, T)| r

®)
< e+ [|[VO - I"H%SVDAVO, T)| r
=c+|I7'(IVO — tSVD(IVO, 7))

)
< e+ T2/ IVO —tSVD(AVO, T)| r

(9)
£+ Omaz TV (1 = T)IVO|

<
()
YV =TVl r
WA =T)VO|r

<
\/ 1-=T)IVe|r

=c+ x/%IIV@HFv

Y

€+ Uma;v

=e+ Uma:v Uma:r

Umax

where || - |2 represents the spectral norm, i.e., the maximum
singular value of the matrix, and vy = (%:8)))2(1 7).
(b) is based on the submultiplicativity of matrix norms,
which states that for any matrices A and B, the inequality
|AB|# < ||All2 - | B||# holds. Since ”7@ > 1, we have
Y2 > 71 under the same energy threshold . This indicates
that tSVD with Channel-Wise Weighted Approximation pro-
vides stronger protection than the original tSVD. Hence, this

theorem holds.

E. Visualization of our FL Testbed and Reconstructed Exam-
ples

Fig. 15 illustrates our FL testbed. To visualize defense
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Fig. 16: Visual examples of reconstructed inputs on CIFAR-10.
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Fig. 17: Visual examples of reconstructed inputs on EMNIST.

effectiveness, we present examples of reconstructed CIFAR-
10 and EMNIST images under different defense methods in
Fig. 16 and Fig. 17, respectively. We can observe that the
reconstructed examples from SVDefense are not recognizable
for both datasets.

F. ARTIFACT APPENDIX

1) Description & Requirements: We provide SVDefense,
a novel defense framework against GIAs that leverages the
truncated Singular Value Decomposition (SVD) to obfuscate
gradient updates. SVDefense integrates three core functional-
ities: SVDefense introduces three key innovations, the Self-
Adaptive Energy Threshold that adapts the privacy protection
for clients with different vulnerability to GIAs caused by
their varying degrees of class imbalance, the Channel-Wise
Weighted Approximation that selectively preserves essential

DGP

18

gradient information for model training while enhancing pri-
vacy protection, and the Layer-Wise Weighted Aggregation for
effective aggregation of client updates under class imbalance.
We have developed a comprehensive platform that evaluate the
defense performance and classification performance of existing
defenses and SVDefense. In this artifact, we take the cifarl0
dataset as an example.
How to access: Our implementation is available on Zen-
odo with DOI: https://doi.org/10.5281/zenodo.16948135.
Hardware dependencies: GPU: 8GB (optional), CPU: 8
cores, RAM: 16GB and Disk space: 100 GB of space.
Software dependencies:

1) Operation System: Ubuntu 22.04.

2) Package management system: Conda (or Mini-

conda).

Benchmarks: cifarl0.



2) Artifact Installation & Configuration:
o Create workspace: Download the code repository from
GitHub, and name as ~/svdefense workspace.
Environment setup: Navigate to
“/svdefense/scripts and run the setup
script ./setup.sh to configure the development
environment.
Software: Install the parallel using sudo apt-get
install parallel to run experiments in parallel.

3) Experiment El: Defense performance under IG attack:
about [20 human-minutes + 100 compute-hours] This experi-
ment aims to:

o Assess the functionality of the Svdefense.

o Evaluate Svdefense’s effectiveness under the 1G attack, as

Table III details.

[Preparation]
e Change the defense  parameter in  the
~/svdefense/scripts/defense_IG.sh to

evaluate different defense methods. Here we provide
some examples including ‘none’, ‘dp’, ’outpost’, ‘prune’,
‘dgp’, ‘pfgd’, and ‘svdefense’. We can comment out the
command to test the performance of the defense.

Using the ‘parallel’ command can reconstruct multiple
images concurrently. The usage of the ‘parallel” command
can be found in the defense_IG.sh. The default
command is to reconstruct one image for testing.
[Execution]

e Main Script: Navigate to “/svdefense/scripts and
run the setup script . /defense_TIG.sh.

[Results] The reconstructed images can be found in
the folder ~/svdefense/IG_attack/recon_data/,
and the ground-truth images can be found in the
“/svdefense/IG_attack/gt_data/. Then we can use
the cal_matric.py to output the metrics in Table III.

4) Experiment E2: Training perturbation-based defense
performance under IG attack: about [2 human-minutes + 1
compute-hours] This experiment aims to:

o Evaluate existing training perturbation-based defenses’
effectiveness under the adaptive attack, as Table III de-
tails.

o We take the PRECODE as an example.

[Preparation]

e Comment out the code in the 137 line of

PRECODE/invertinggradients/inversefed

/reconstruction_algorithms.py to enable the

adaptive attack and vice versa.

[Execution]
e Main Script: Navigate to “ /svdefense/scripts and
run the setup script . /defense_PRECODE. sh.

[Results] The reconstructed images can be found in

the folder ~/svdefense/PRECODE/recon_data/,
and the ground-truth images can be found in
the ~/svdefense/PRECODE/gt_data/. Then

cal_matric.py can output the metrics in Table III
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5) Experiment E3: Defense performance under ROG at-

tack:

[Preparation]

e Download the needed pretrained weights following the
public GitHub repository https://github.com/KAI-YUE/
rog.

1) Download the pretrained models ' and put them
under ROG_attack/model_ zoos/.

2) Download the csv file 2> and put it under
ROG _attack/data folder.

Change the defense parameter in the configuration
file ROG_attack/utils/config_fedavg.yaml
to evaluate different defenses. Here we provide some
examples including ‘none’,‘dp’, ’outpost’, ‘prune’, ‘dgp’,
‘pfgd’, and ‘svdefense’.

[Execution]

e Main Script: Navigate to ~/svdefense/scripts and
run the script . /defense_ROG. sh.

[Results] The reconstructed images can be found in
the folder ~/svdefense/ROG_attack/recon_data/,
and the ground-truth images can be found in the
“/svdefense/ROG_attack/gt_data/. Then python
cal_matric.py can output the metrics in Table V.

6) Experiment E4: Classification performance on cifarl0
dataset:

[Preparation]

e Here we provide some examples including
‘none’, ’outpost’, ‘prune’, ‘dgp’, ‘pfgd’, and
‘svdefense’. We can update the parameters in

“/svdefense/svd-defense/pyproject.toml

to test the performance of the defense. Noted that, to

control for confounding factors, the layer-wise weighted

aggregation is omitted so that the analysis focuses solely

on the defense applied to gradients.

We can change the ‘local-defense’ parameter in the

configuration file to evaluate different defense methods

in the Federated learning setting.

[Execution]

e Main Script: Navigate to “ /svdefense/scripts and
run the script . /£1.sh.

o Change the parameters ‘server-device’ and ‘client-device’
to ‘cuda’ to accelerate the training process.

[Results] The accuracy across epochs can be found in
“/svdefense/svd-defense/{defense}_acc.txt.
Then python draw.py can output one line of results of
the corresponding defense in Fig.7.

Uhttps://huggingface.co/erickyue/rog_modelzoo/tree/main
Zhttps://storage.googleapis.com/openimages/v6/oidv6-class-
descriptions.csv



