
RTrace: Towards Better Visibility of Shared Library
Execution

Huaifeng Zhang
Chalmers University of Technology
and the University of Gothenburg

huaifeng@chalmers.se

Ahmed Ali-Eldin
Chalmers University of Technology
and the University of Gothenburg

ahmed.hassan@chalmers.se

Abstract—Software supply chain security has become a critical
concern in recent years. Modern software systems increasingly
depend on third-party dependencies to accelerate development.
Shared libraries are the prevalent form of software sharing and
hence, of third-party dependencies in modern software systems.
As more attacks target the software supply chain, understanding
the behavior of these dependencies is essential for identifying
vulnerabilities and malicious code. Hence, accurately tracing
function calls within shared libraries is critical for effective
software security analysis. However, existing library function
tracers often fail to meet this need. As we show in this work,
state-of-the-art library function tracers are limited in effectiveness
and scalability, missing a significant number of function calls and
failing with more complex workloads, resulting in incomplete or
misleading views of runtime behavior.

In this paper, we present RTrace, a tracing tool designed
to address the limitations of existing solutions. We analyze the
root causes of why widely used tracers miss function calls and
identify common pitfalls such as relying on incorrect symbol
information and inability to monitor early or indirect function
invocations. RTrace overcomes these challenges by incorporating
comprehensive runtime monitoring, function boundary detection,
and support for implicit and unconventional function calls. We
compare RTrace to four state-of-the-art tracers, namely, ltrace,
drltrace, ldaudit, and IntelPT. Our evaluation across
21 applications and 92 shared libraries shows that RTrace
significantly outperforms existing tools in detecting function call.
RTrace achieves an F1-score of at least 0.92 on all benchmarks,
whereas the best existing tracer reaches only 0.74, providing
more accurate visibility into shared library runtime behavior.
Finally, we show how RTrace can be used to assist in detecting
malicious package and in vulnerability analysis by providing a
more complete view of shared library function usage.

I. INTRODUCTION

After many high-profile vulnerabilities were discovered
recently, software supply chain security has become a critical
concern. Today, more than 95% of enterprises actively or
passively depend on third-party libraries to reduce develop-
ment efforts and accelerate feature implementation [1]. Such
widespread dependencies in modern software systems make
vulnerabilities in third-party components potentially more

severe than those in the software itself. A recent study shows
that 99% of vulnerabilities in a software system originate from
their dependencies [2]. A single vulnerability in a dependency
can propagate through the software supply chain, impacting
thousands of systems and applications that rely on it, either
directly or transitively.

The growing complexity of direct and transitive dependencies
in modern software systems makes it increasingly difficult to
determine which components and code are actually executed
in a given application [3]. This lack of visibility into runtime
behavior creates a serious security blind spot, as malicious or
unexpected code could be executed without the developer’s
awareness [4]. Therefore, the need for effective software
visibility tracking - knowing exactly what code is present
and executed – is more important and more challenging than
ever [5]. Tracing techniques play a crucial role in addressing
this challenge, offering insights not only at the system level
(e.g., network traffic, file access, and syscalls), but also at
the application level, including function calls, data flow, and
control flow [6], [7].

In this paper, we focus on the problem of tracing shared
library function calls. Shared libraries are widely-used to pack-
age and distribute code, allowing developers to reuse existing
code and share functionality across different applications in
Linux and Unix-like operating systems [8]. A shared library
contains compiled executable code that can be loaded into
memory and executed by multiple programs at runtime. A
single program may depend on tens and even hundreds of
shared libraries directly and transitively. For example, training
a deep learning model with TensorFlow can involve almost
400 shared libraries [9]. Therefore, tracing function calls to
shared libraries is a powerful technique for enhancing software
transparency. It allows developers and auditors to gain fine-
grained visibility into program behavior and to verify that only
the intended library code is executed.

Tracing shared library function calls is a long-standing topic,
and numerous tools have been developed over the years to
support this task. However, the ability of these tools to meet the
demands of modern software supply chain security has not been
examined. While existing tools from both industry [10], [11],
[12] and academia [7], [13]—such as ltrace, which remains
widely used—offer various tracing capabilities, we find that
they are insufficient for reliably tracing all function calls within

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231243
www.ndss-symposium.org

shared libraries. In particular, many calls go undetected. This
poses a serious risk for security and provenance analysis, as
any undetected call may reflect an undocumented dependency
or even a stealthy malicious payload. A compelling example is
the recent XZ backdoor vulnerability (CVE-2024-3094) [14],
which leveraged indirect function calls to replace a legitimate
OpenSSH function with a malicious one. Such cases underscore
the need for more precise and reliable library call tracing.

In this paper, we identify several common pitfalls that
cause existing tracers to miss function calls in shared libraries.
We then present RTrace, a new library function call tracer
designed to overcome these limitations. RTrace provides a
more complete and accurate view of shared library function
usage during program execution. RTrace operates in two
modes: light mode and rich mode. The light mode focuses on
lightweight and accurate detection of whether a function has
been executed, with minimal runtime overhead. The rich mode
provides a more comprehensive view by generating function
call graphs and capturing detailed runtime information for each
function call, including arguments, return values, and other
runtime data.

For a given program running specific workloads, RTrace
begins by detecting all shared libraries loaded at runtime,
thereby avoiding missed dependencies due to dynamic loading.
For each detected library, RTrace does not rely solely on
symbol table metadata (which may be incorrect or missing);
instead, it performs an adaptive function boundary detection
step to infer accurate function boundaries. It also instruments
any branch-related instructions that may lead out of a function.
To address calls that occur during library loading—such as
resolution of indirect function calls, RTrace is built on
top of DynamoRIO [15], an instrumentation framework that
instruments code before it is executed, allowing it to capture
function calls that occur during the loading of shared libraries.
We evaluate RTrace on a suite of 21 benchmarks involving
92 shared libraries and show that it achieves an F1 score of at
least 0.92, significantly outperforming existing tracers, whose
best-case performance reaches only 0.72.

Beyond traditional use cases, we envision RTrace can be
used by software developers and auditors to inspect, understand,
and verify the behavior of shared libraries in their applications.
We identify two key anticipated use cases for RTrace: (1)
pre-alert detection: the light mode of RTrace can be used
to proactively detect suspicious behavior in shared libraries
by comparing runtime characteristics, such as the number of
function calls—across different versions. Anomalies, such as
a sudden increase in invoked functions within a library with
stable APIs, can serve as early warning signals for potential
security threats. (2) post-incident analysis: In the aftermath
of a security incident, the comprehensive runtime information
provided by the rich mode of RTrace allows analysts to
reconstruct execution flows and understand the mechanisms
used by injected or hidden malicious code. To summarize, our
key contributions are as follows:

• We assess the effectiveness of four widely used library call
tracers, namely, ltrace, drltrace, ldaudit, and

IntelPT, and show that they often miss a substantial
number of shared library function calls, raising awareness
about the limitations of existing, widely used tracers.

• We identify and analyze the common pitfalls in existing
tracers that lead to missed function calls in shared libraries,
including incorrect symbol metadata, overlooked indirect
calls, and unconventional function calls, etc.

• We design and implement RTrace, a library call tracer
that overcomes these issues and provides comprehensive
and accurate function-level tracing for shared libraries.

• We evaluate RTrace against the four tracers using 21
applications and show how RTrace can be used to assist
security analysis.

• We open-source RTrace1.

II. BACKGROUND AND RELATED WORK

A. Supply Chain Security

Software developers usually rely on software frameworks and
third-party libraries to accelerate the development process. This
style of software development forms what is commonly referred
to as the software supply chain, in which software projects
depend on other software projects, libraries, and frameworks
that collectively contribute to the final software product [16].

In recent years, there has been a substantial increase in
the number of attacks targeting this supply chain, particularly
through the exploitation of open-source third-party compo-
nents [16], [17], [3], [18], [2]. Attackers inject vulnerabilities
or malicious code into widely used packages, which are
then propagated throughout the ecosystem, leading to the
compromise of countless systems [19]. Several high-profile
incidents—such as the SolarWinds breach [20], the log4j
vulnerability [21], and the recent XZ backdoor [14], have
underscored the urgent need for better visibility and control
over software dependencies.

Malicious package detection in software supply chains,
particularly for Python, NPM, and RubyGems has gained
more attention in recent years. Many approaches have been
proposed to detect such threats in package registries [22], [23],
[24], [25], [26], with some integrated into CI/CD pipelines
to block malicious packages before deployment [25], [26].
These methods commonly rely on metadata, static analysis, or
dynamic analysis. Their dynamic analysis focuses on system
calls or high-level package API behavior [25], [26]. However,
shared library calls are often overlooked, even though high-level
languages like Python and JavaScript rely on shared libraries
as their low-level runtime. Understanding how packages invoke
and interact with these libraries offers a more complete view
of their runtime behavior and adds a valuable dimension to
malicious package detection.

B. Shared Library

In Linux, shared libraries typically are compiled in the
Executable and Linkable Format (ELF) and uses the .so

suffix [27]. Shared libraries in the ELF format are divided

1https://github.com/negativa-ai/rtrace

2

https://github.com/negativa-ai/rtrace

UnloadedCalls to indirect
function resolver

Loading

Calls to
constructors

Loaded
Calls to exported

functions

Executing

Calls to locall
functions

Calls to
destructors

Unloading

Fig. 1: The lifecycle of shared libraries during program
execution. Traditional tracers focus on the calls to exported
functions during the executing but ignore all the other phases.

into sections, among which the following are most relevant
to our work: .text contains the executable code; .init
and .fini contain the constructor and destructor functions
for library initialization and cleanup, respectively; .symtab
stores both local and global symbols of functions, variables,
etc.; .dynsym is a subset of .symtab, containing only global
symbols used for dynamic linking. Each symbol includes
metadata such as its name (st_name), address (st_value),
size (st_size), type and binding (st_info), etc. These
fields are crucial for library call tracing, as they provide
information about the functions and their locations in memory.

Modern system advancements have significantly increased
the complexity of shared library execution. Figure 1 illustrates
the typical lifecycle of shared libraries during program exe-
cution. When a program starts, the dynamic linker loads the
required shared libraries into memory, initiating a sequence of
phases: loading, execution, and unloading. During the loading
phase, calls to indirect function resolvers (e.g., for GNU IFUNC

symbols) may be triggered. Once the library is loaded but before
the main application logic begins, constructor functions defined
in the library are executed. In the execution phase, the program
invokes exported functions from shared libraries, which may
call local functions within the same library or functions in
other libraries. Finally, during the unloading phase—typically
when the program exits—destructor functions are invoked to
perform any necessary cleanup.

C. Library Call Tracing

Shared library function call tracing is widely used in
various domains, including software security analysis [7],
debugging [28], performance analysis [29] and software de-
bloating [30], [13], [31]. One of the most widely used tools for
this purpose on Linux systems is ltrace [10]. It leverages
the Linux ptrace interface to instrument the target process by
setting software breakpoints (INT3) at entries in the Procedure
Linkage Table (PLT). When a program invokes a function from
a shared library, the call is redirected through the PLT, allowing
ltrace to intercept and log the call when the PLT entry is
executed. Apart from ltrace, several binary instrumentation
frameworks such as DynamoRIO [15] and Intel PIN [32]
have enabled the development of more advanced tracing tools.
For example, drltrace[11], based on DynamoRIO, and
TinyTracer[33], based on PIN, are designed to monitor and
trace shared library function calls during program execution.

The rtld-audit API of the dynamic linker provides
another tracing mechanism [12]. It offers hooks such as

la_symbind, which are triggered when the dynamic linker
resolves symbols, enabling interception and logging of function
calls at link time. Another approach by Wang et al.[7] employs
a custom dynamic loader to perform library call tracing.
Additionally, Intel Processor Trace (IntelPT) [34] provides
hardware-assisted tracing capabilities, allowing for detailed
tracing of function calls and control flow in applications.

Despite these various approaches, all tools we examined
have significant limitations; These tools heavily rely on
symbol table information to determine which functions to trace
and often miss calls that occur outside the main execution
phase of the shared library lifecycle (Figure 1). As a result,
they frequently miss functions due to missing or inaccurate
symbol data and implicit calls triggered during the loading
or unloading phases. Such missed functions can be part of
benign initialization routines or exploitations for malicious
purposes. Some tools also incur substantial runtime overhead,
making them impractical for complex applications, as we show
in Section V.

D. Binary Analysis

Function boundary detection in binaries aims to identify
the start and end of functions in compiled binaries without
relying on source code. Research in this area can be broadly
classified into three categories: control flow graph (CFG)-based
methods [35], [36], [37], [38], pattern-based methods [39],
[40], [41], and machine learning-based methods [42], [43],
[44]. Among these, two techniques are particularly relevant
to our work: FunSeeker [41] and Nucleus [36]. FunSeeker
uses a pattern-based approach to detect endbr instructions
in binaries that support Intel’s Control-flow Enforcement
Technology (CET) [45], a modern hardware feature designed
to mitigate control-flow hijacking attacks. Nucleus, on the
other hand, utilizes a CFG-based approach that identifies
function boundaries through connected component analysis
of the binary’s control flow graph. Unlike FunSeeker, Nucleus
is more general and applicable to binaries without CET support.

Function signature inference aims to deduce a function’s
signature, including arity (the number of arguments) and types
(both arguments and return value), from a compiled binary.
Static analysis, such as control-flow, data-flow and value set
analysis, is commonly used to infer function signatures [40],
[38] and variable type [46]. Binary analysis platforms, like
Ghidra [40] and Angr [38], leverage known library signatures
and perform static data-flow analysis to infer likely types by
examining how values are propagated and used. De Goër et
al.[47] propose a lightweight dynamic analysis approach that
monitors runtime behavior to recover function parameters and
return values, focusing on three basic types {addr, int,

float}. Hybrid methods that combine static and dynamic
analysis can improve inference accuracy, as demonstrated in
works like TypeSqueezer[48]. Most of these methods focus
on System V AMD64 ABI [49] calling convention, which is
commonly used on Linux x86-64 systems.

3

III. A CALL FOR A BETTER TRACER

As discussed earlier, advancements in modern systems
have significantly increased the complexity of shared library
execution, introducing many implicit function calls that occur
outside the direct control of the application. Existing tracers
have not evolved to accommodate these changes, and as a
result, they often fail to provide accurate and comprehensive
visibility into shared library behavior at runtime. To give
a simple example, Listing 2 in the appendix illustrates a
shared library that defines several functions, some of which
are implicitly invoked. When a program calls the function
indirect_func, it triggers the execution of all functions
shown in the listing. However, to the best of our knowledge,
no existing tracer is capable of detecting all these calls.

We have identified the following key limitations of tra-
ditional tracers that contribute to these blind spots. Firstly,
traditional tracers typically rely on symbol tables (.symtab
and .dynsym sections) to determine which function to trace.
For instance, drltrace uses the .dynsym section to trace
calls to exported functions, but fails to capture local function
calls within shared libraries. While tracing interactions between
the main program and shared libraries is helpful, developers
are usually aware of these calls. What is more critical for
security and provenance is understanding what happens inside
the library—how functions call each other, and how they
interact with other libraries. This level of tracing is challenging
because local functions are typically only listed in .symtab,
which is often missing in stripped libraries. Without this
symbol information, traditional tracers cannot identify or trace
local functions. Additionally, even when function symbols are
available, the size field in the symbol table is optional and
may be inaccurate.

Secondly, certain functions, such as those used in indirect
function resolution, may be executed before the shared library
is fully loaded. As most existing tracers begin monitoring only
after library loading, they fail to capture these early invocations.
In addition, shared libraries may define constructor (.init)
and destructor (.fini) functions that are executed before
the main() function and when the process is terminating,
respectively. These functions are invoked implicitly by the
dynamic linker and are not explicitly called in the application’s
code. Existing tracers frequently miss these lifecycle hooks,
despite their importance. For example, ltrace failed to detect
any function calls during the loading phase of the shared library
in Listing 2. Alarmingly, this implicit execution makes them
an ideal vector for stealthy attacks. For example, the recent
XZ backdoor (CVE-2024-3094) exploited an indirect function
call to overwrite a legitimate function in OpenSSH with a
malicious one [14].

Thirdly, some functions do not follow standard call conven-
tions [50]. They may begin execution at an internal offset (not
st_value declared in the symbol table), exit without a RET
instruction, or be invoked using non-CALL instructions like
JMP or indirect branches. Tracers that assume conventional
function entries and exits based on symbol information will

overlook such calls.
Finally, as software systems grow in complexity, existing

tracers become increasingly impractical. For instance, when
attempting to trace a machine learning model training pro-
gram, ltrace failed with an error: “too many call stacks”.
Other tools, such as drltrace, introduced extreme over-
heads—slowing down a 50-second workload to over 1 hours, a
more than 70→ degradation. At the other end, IntelPT, as a
hardware tracing tool, is only available on about 10% of AWS
instance types [51] and produces more than 200GB tracing
data in the machine learning training case, making it costly
and difficult to scale in practice.

As software supply chain security becomes increasingly
critical, gaining visibility into the behavior of shared libraries
is essential for ensuring the integrity and trustworthiness of
modern software systems. This necessitates the development
of a more robust and accurate tracer—one that can compre-
hensively capture function calls within shared libraries and
overcome the limitations of existing tools.

IV. RTRACE: AN ACCURATE TRACER

A. Overview

Figure 2 illustrates the workflow of RTrace, which operates
in two distinct modes: Light Mode and Rich Mode. The light
mode only detects whether a function has been executed,
without collecting additional runtime information, with very
low runtime overhead. The rich mode traces every call of
a function and captures detailed runtime information, such
as function arguments and return values, but with increased
runtime overhead. The light mode is particularly suitable for
proactive monitoring within CI/CD pipelines, while the rich
mode is more appropriate for in-depth post-incident analysis
when anomalies are detected.

Both modes begin by identifying shared libraries at runtime.
In the light mode, RTrace instruments branch and return
instructions only upon their first execution. It then performs
function boundary detection to determine the start and end
addresses of functions within each shared library. Using this
information, RTrace generate an accurate list of functions
executed by the application, achieving high accuracy with
minimal performance impact.

In the rich mode, function boundary detection is performed
first to identify the functions to be instrumented. Once function
boundaries are identified, RTrace instruments each function
call to capture detailed runtime data generating a call graph
report for each call of a function, including its arguments,
return values, number of executed basic blocks, number of
executed instructions, and any other functions it calls.

We implement RTrace based on DynamoRIO, with over
1,500 lines of C++ for instrumentation and 1300 lines of Python
for report generation. In the following sections, we provide an
in-depth discussion of each component in the workflow. For
each step, we first examine the pitfalls that informed our design
choices, followed by a detailed explanation of the solutions to
address these pitfalls.

4

Library Detection

rtrace --mode {mode} -- /bin/date -u

Adaptive Boundary
Detection

liba.so:
 func1
 func2
 ...

Branch-Return
Instrumentation

Adaptive Boundary
Detection

Function Call
Instrumentation

{
 liba.so: func1,
 args: [1,2],
 ret: 3,
 blocks: 122,
 insns: 3659,
 calls: [
 {
 liba.so: func2,
 ...
 },

 ...
]
}

mode == light mode == rich

Function Coverage Report Call Graph Report

IV-B1

IV-B2

IV-B3

IV-B4

IV-B3

IV-C1

IV-C2

Fig. 2: Workflow of the two modes of RTrace to trace
executed library functions triggered by the date utility.

B. Light Mode

Light Mode is designed to detect all executed functions
efficiently and accurately. It ultimately produces a function
coverage report that lists the set of functions executed during
program execution.

1) Library Detection: Library Detection aims to accurately
identify all shared libraries used by a program during execution,
including those loaded both directly and transitively at runtime.
Pitfall. Traditional methods rely on static analysis to determine
the libraries in use [52], [13]. These approaches inspect
program binaries by parsing the ELF .dynamic section to
extract dependency information. However, program binaries
and shared libraries can also load shared libraries dynamically
at runtime (loaded by dlopen). Static analysis cannot detect
these dynamically-loaded libraries [52].
Solution. To address this limitation, RTrace performs run-
time library detection using hook functions provided by the
DynamoRIO framework. This enables monitoring of shared
library loading events as they occur. Whenever a new library
is loaded, RTrace records its file path and its memory range,
defined by its start and end addresses. A sample output from
this detection process is shown in Listing 3 in the appendix.

2) Branch-Return Instrumentation: To identify which func-
tions are executed, we must instrument the application’s
execution flow to detect function usage at runtime.
Pitfall. To detect used functions, traditional library call tracers
utilize the rules of Call Convention [50]. One approach is to
trace the CALL instruction and analyze the operand of the CALL
instruction to get which function is called. Another approach
inserts trap instructions at the beginning of a function and the
RET instruction, assuming that the execution starts from the

first instruction of a function and ends at the RET instruction.
However, from our observation of many real-world shared
libraries, we found that call convention is not always followed.
Some functions are not called by the CALL instruction, instead,
they are called by the JMP instruction directly, which nullifies
the first approach. On the other hand, the entrance and exit
of a function are not always at the beginning and the RET

instruction, which invalidates the other approach.
Solution. Based on this observation, we assume that if a
function is executed, it must eventually exit through a branch-
related instruction such as RET, JMP, or CALL. Therefore,
to detect function usage, we instrument two types of instruc-
tions: branch-related instructions and return-related instructions.
We intentionally avoid instrumenting function entry points
for two key reasons. First, not all functions are entered
at their start addresses. For example, during a machine
learning training workload, we observed that the function
__memcpy_sse2_unaligned_erms in libc (at address
0xba900) was entered from the middle rather than the defined
entry point. Second, branch and return instrumentation does not
rely on function boundary information. This enables instrumen-
tation of the target application without first detecting function
boundaries, thereby reducing the overhead introduced during in-
strumentation. The light mode takes advantage of this property
to perform accurate function tracing with minimal performance
impact. Additionally, to minimize overhead without sacrificing
accuracy, each branch and return instruction is instrumented
only once, during its first execution. Our evaluation shows
that branch and return instrumentation alone is sufficient to
detect function execution accurately. The output of this branch-
return instrumentation is a list of executed instruction addresses,
which are later matched with function boundaries to identify
executed functions. Listing 4 in the appendix shows a sample
output of the branch-return instrumentation.

3) Adaptive Boundary Detection: After identifying all
shared libraries used by the target application and instrumenting
branch and return instructions, The next step is to determine
the boundaries, i.e., the start and end addresses of each function
within these libraries. Function boundaries are essential for
accurately identifying executed functions.
Pitfall. A common approach for boundary detection involves
parsing the symbol table of each shared library to retrieve
function names along with their virtual addresses and sizes.
However, two major issues compromise its effectiveness.
First, many shared libraries do not have the debug symbol
table (.symtab) and include only the dynamic symbol table
(.dynsym), which contains a limited subset of function
symbols. Second, the function size field in a symbol table
is optional in the ELF format and may not be set by the
compiler. As a result, solely depending on symbol tables can
lead to incomplete or inaccurate function boundary detection.
Solution. To overcome these limitations, RTrace employs
an adaptive function boundary deduction process for each
shared library, as illustrated in Figure 3. Our evaluation
of existing function boundary detection algorithms reveals
depending on the metadata available in each shared library,

5

different algorithms can be used to achieve better accuracy and
efficiency. Based on this observation, we propose an adaptive
boundary detection workflow that dynamically selects the most
suitable boundary detection algorithm according to the metadata
available in each shared library.

If the shared library includes the debug symbol table
(.symtab), RTrace applies a linear detection algorithm (Al-
gorithm 1) to deduce function boundaries. The linear detection
algorithm works straightforwardly by iterating through the
symbol table, identifying function symbols, and calculating
their start address which is the st_value field of the symbol.
Then the end address of a function is the start address of the
next function. If the debug symbol table is absent but the library
supports CET, RTrace uses the FunSeeker algorithm, which
is specifically designed for CET-enabled binaries; If neither
debug symbols nor CET are available, RTrace resorts to the
Nucleus algorithm for boundary detection, which is designed
for general binaries. The output of this process is a list of
functions with their start and end offsets, as shown in Listing 5
in the appendix.

Algorithm 1: Linear Detection of Function Boundaries
Input : A Shared library
Output : A list of detected function boundaries S
/* The index of S starting from 0 */

S ↑ [];
for s in .symtab or .dynsym do

if s.type in {FUNC, IFUNC} then
Add s to S;

end
end
for i = 0 to |S| ↓ 1 do

si.start ↑ si.st value;
end
Sort S by s.start in ascending order;
for i = 1 to |S| ↓ 1 do

si→1.end ↑ si.start;
end
/* t is the end offset of the .text

section */

S|S|→1.end ↑ t;

4) Function Coverage Report: The function coverage report
summarizes the set of functions that are actually executed dur-
ing runtime. This report is generated by combining the results
from the library detection, branch-return instrumentation, and
boundary detection steps. For each instruction address captured
by the branch-return instrumentation, we first determine the
corresponding shared library it belongs to. Then, using the
previously detected function boundaries within that library, we
identify the specific function to which the address belongs.
Finally, this function is reported as executed.

C. Rich Mode

The rich mode provides detailed runtime information about
function execution and ultimately generates a function call

has .symtab

Linear

CET Enbaled

NucleusFunSeeker

liba.so

F1: [0x0, 0xa)
F2: [0xa, 0xd)

...

Y

N

Y

N

Fig. 3: Adaptive Boundary Detection Workflow.

graph report. Unlike the light mode, the rich mode performs
function boundary detection as described in §IV-B3 before

function call instrumentation, to ensure that all functions
are accurately identified and instrumented. Once function
boundaries are detected, the rich mode performs function call
instrumentation and generate a call graph report per thread.
These two steps are discussed in the following sections.

1) Function Call Instrumentation: Function call instrumen-
tation is designed to collect detailed runtime information
about each executed function. This process has two primary
challenges: (1) inferring function signatures, which describe
the number and types of arguments and return types; and (2)
handling calling conventions to correctly extract these values at
runtime. Function signatures are not directly available in shared
libraries. Existing tools such as ltrace and drltrace rely
on user-provided signatures, which limits scalability. To address
this, we automatically infer function signatures using static
analysis. After evaluating several tools, we use Angr [38] to
infer function signatures due to its better performance on large
shared libraries.

Calling conventions is also essential for extracting function
arguments and return values. While various calling conventions
exist, the System V AMD64 ABI [49] is the most widely
adopted standard on x86-64 Linux systems. Consequently, in
line with existing tools such as ltrace and drltrace, the
rich mode in our tool currently supports only this convention.
Due to limitations of DynamoRIO, our implementation cur-
rently supports retrieving values of type addr (pointer type)
and int (all integers types), but not float. However, this is
not a fundamental limitation of our approach, and we plan to
add support for float types in a future version.

The function instrumentation proceeds as follows; For each
function identified via boundary detection, we use Angr to
infer its signature to obtain the number and types of arguments
and return types. We then instrument the function’s entry and
exit points. At entry, the specified number of arguments is read
from the registers or stack according to the calling convention.
At exit, the return value is similarly extracted. In addition to
arguments and return values, we collect additional runtime

6

metrics including the number of basic blocks executed, the
number of instructions executed, and the functions invoked.
For performance reasons, these runtime data is not assembled
into a call graph during function instrumentation. Instead, two
intermediate files are generated for each thread to store the
collected data:

• A basic block file that records block start addresses and
the instruction counts of each block.

• A function trace file that logs entry and exit events,
argument values, basic block executions, and return values.

The basic block file contains a mapping of basic block start
addresses to their respective instruction counts. The function
trace file follows a structured format. Upon function entry, a line
of the form Entry:func addr is logged, where func addr
is the start address of the function being entered. This is
followed by lines in the form of Arg:arg value for each
argument, and BB:bb addr for each basic block executed,
where arg value is the value of the argument and bb addr
is the start address of the basic block. Upon return, it logs
Ret:ret value for the return value, and Exit:func addr
to indicate the function of address func addr exits. Listing 6
in the appendix shows a sample of the function trace file.
These two intermediate files are later parsed to produce the
final function call graph report.

2) Call Graph Report: At this step, a dynamic function
call graph is constructed by parsing two intermediate files
produced by the previous function instrumentation step. The
call graph report summarizes this information in a structured
format, represented in Listing 1. While the listing omits details
such as function names and shared libraries for brevity, the
actual report includes this additional metadata.

Listing 1: Data structure used to represent each function call
in the dynamic call graph.
struct Call {

void* addr; // Function address

vector<void*> args; // Function arguments

void* ret_val; // Return value

int executed_blocks;// Number of executed basic blocks

int executed_insts; // Number of executed instructions

vector<Call> calls; // Functions called by this call

}

The function trace file is processed using a simple stack-
based algorithm that resembles the way call stacks are managed
at runtime, as shown in Algorithm 2. As each function entry
Entry:func addr is encountered in the function trace file,
a new Call struct is created with the addr field set to
func addr. This struct is then pushed onto a stack to represent
the current call context. Any subsequent arguments, return
values, basic blocks and function calls in the function trace file
are recorded in the current call context. When a function exits,
the call is popped from the stack. A representative output of
the call graph report is also shown in Listing 7 in the appendix.
Each thread generates a separate call graph report.

V. EXPERIMENT

In this section, we evaluate the effectiveness of existing
library function tracers and RTrace.

Algorithm 2: Call Graph Report
Input : Basic block file Fb and function trace file Ff

Output : A call graph starting from root

stack ↑ [root];
/* block_info maps basic block

addresses to their instruction

counts */

block info ↑ parse_basic_block_file(Fb);
for l in Ff do

if is_entry(l) then
Create a new Call struct call;
call.addr ↑ l.func addr;
stack.top().calls.push_back(call);
stack.push(call);

end
else if is_arg(l) then

stack.top().args.push_back(l.arg value);
end
else if is_bb(l) then

stack.top().executed blocks ↑
stack.top().executed blocks + 1;

stack.top().executed insts ↑
stack.top().executed insts +
block info[l.bb addr];

end
else if is_ret(l) then

stack.top().ret val ↑ l.ret value;
end
else if is_exit(l) then

stack.pop();
end

end

A. Experiment Setup

Evaluated Metrics. Our evaluation focuses on the accuracy of
detection of executed functions. We use precision, recall and
F1-score as the metrics to evaluate the accuracy of each tracer.
Precision measures the ratio of detected functions that are
actually executed, while recall measures the ratio of executed
functions that are detected. F1-score is the harmonic mean of
precision and recall, providing a single metric to evaluate the
overall accuracy.

TABLE I: Overview of evaluated library call tracers.

Tracer Type Mechanism

ltrace Industry Tool PLT-based library function calls
tracing

drltrace Industry Tool DynamoRIO-based library function
calls tracing

ldaudit Author
Implementation

Uses la_symbind64 callback
during symbol binding

IntelPT Industry Tool Hardware tracing

Benchmark Applications, We evaluate the tracers with 21

7

applications, 20 of which are from the Debloater-Eval bench-
mark [30], and one machine learning application. The machine
learning application involves training a convolutional neural
network (CNN) model using LibTorch [53] on the MNIST
dataset. Table II summarizes the evaluated applications details.
We run each application traced by each tracer and collect the
function calls detected by each tracer.

TABLE II: Evaluated applications and their versions.

Category Application Version

Debloater-Eval Benchmark [30]

bzip2 1.0.5

chown 8.2
date 8.21
grep 2.19
gzip 1.2.4
mkdir 5.2.1
rm 8.4
sort 8.16
tar 1.14
uniq 8.32
bftpd 6.1
wget 1.20.3
objdump 2.40
memcached 1.6.18
lighttpd 1.4
make 4.2
imageMagick 7.0.1
nmap 7.93
nginx 7.93
poppler 0.60

Machine Learning train-cnn LibTorch (2.7)

Oracle. To compute precision and recall, we implement an
oracle that establishes ground truth for executed functions. The
oracle operates in two main steps for each shared library used
in the benchmarks: (1) obtaining correct function boundaries,
and (2) determining which functions are actually executed.
The oracle downloads debug symbol tables for each library
used in the benchmarks, which serve as the ground truth
for function boundaries. For generic shared libraries, we
use the find-dbgsym-packages tool to retrieve their
debug symbols [54]. For CUDA libraries used in the machine
learning benchmark, we utilize the NVIDIA Debug Symbol
Service [55]. To determine the functions executed, the oracle
performs instruction-level tracing, recording the address of
every instruction executed during benchmark runs. By mapping
these instruction addresses to the function boundaries identified
in the first step, a function is considered executed if at least one
of its instructions is executed at runtime. Across all benchmarks,
a total of 103 shared libraries are used, of which 92 have
available debug symbols and thus serve as ground truth. All
evaluation results are based on these 92 libraries.
Evaluated Tracers. We select the evaluated tracers based on
the following criteria: (1) The tracer must automatically detect
all executed functions, rather than relying on user-specified
function lists; (2) The tracer must be application-specific, i.e.,
it should trace only the functions triggered by the target
application, not those invoked by other processes; (3) The
tracer must be compatible with Linux. Based on these criteria,

we select four tracers for evaluation, as shown in Table I. Note
that during the evaluation of all tracers, no additional debug
symbols are downloaded using the methods as the oracle does.
Debug symbol tables were used only if the shared libraries
themselves included embedded debug symbols. Among the
92 libraries with ground truth, only 8 had embedded debug
symbols within the shared libraries.

All experiments were conducted on an Ubuntu 24.04 system
with Intel PT support, running inside privileged Docker
containers to ensure isolation. Privileged access is necessary to
enable evaluation of the hardware-assisted tracer IntelPT.

B. Accuracy and Performance of the Light Mode

Accuracy.Table III presents the precision, recall and F1-
score of each tracer on evaluated benchmarks. While all tracers
demonstrate high precision, this metric alone is insufficient
for evaluating effectiveness. A tracer that identifies only a
single executed function may have a precision score of 1, yet
miss the majority of executed functions, resulting in low recall.
This phenomenon appears in every compared tracers, which
exhibit notably low recall across benchmarks. For instance, the
highest recall among them is achieved by IntelPT on the
make benchmark, with a value of 0.58. In contrast, RTrace
consistently achieves both high precision and recall, exceeding
0.92 for both metrics across all benchmarks. RTrace achieves
the highest F1-score across all benchmarks, with its lowest
being 0.92 on the ml_train benchmark and the highest
reaching 1 on the gzip benchmark. These results show that
RTrace provides a significantly more accurate view of shared
library execution behavior.

Performance. We also evaluate the runtime overhead in-
troduced by each tracer on the benchmark applications. Each
benchmark was executed 10 times without tracing to establish
a baseline, and then 10 times under each tracer. The average
execution times from both scenarios are used to compute the
relative slowdown, as reported in Table IV. Among all tools,
the light mode of RTrace ’s consistently shows the second-
lowest overhead, only behind ldaudit, which has limited
utility due to its poor precision and recall (Table III).

Excluding ldaudit, RTrace light mode exhibits the most
stable and moderate overhead across benchmarks, with a
maximum slowdown of 30→ in the worst case (make). This
overhead is mainly due to (1) initialization of DynamoRIO
framework, and (2) first-time instrumentation of branch and
return instructions. For longer-running workloads such as
bftpd, memcached, and ml_train, the overhead becomes
negligible, with at most a 2→ slowdown, comparable to the
hardware-assisted tracer IntelPT. In contrast, ltrace and
drltrace exhibit excessive overhead for certain cases. For
example, in nmap, ltrace incurs a 11,756→ slowdown and
drltrace 113→, while RTrace light mode incurs only
5→. This is because this benchmark contains many repetitive
function calls, and RTrace light mode only traces the first
execution of each function, whereas ltrace and drltrace

trace every function call, resulting in notably higher overhead.

8

TABLE III: Precision, recall and F1-score of each tracer on the benchmarks. P is precision, R is recall, and F1 is F1-score.

Benchmark ltrace drltrace ldaudit IntelPT RTrace (light)

P R F1 P R F1 P R F1 P R F1 P R F1

bftpd 0.96 0.38 0.54 0.97 0.35 0.52 0.43 0.21 0.28 0.99 0.50 0.67 0.96 0.98 0.97
bzip2 0.96 0.28 0.43 0.97 0.32 0.48 0.71 0.11 0.20 0.99 0.54 0.70 0.97 1.00 0.98
chown 0.97 0.31 0.47 0.97 0.35 0.52 0.71 0.08 0.15 0.99 0.52 0.68 0.97 0.99 0.98
date 0.94 0.27 0.41 0.95 0.32 0.48 0.69 0.09 0.15 0.99 0.53 0.69 0.99 0.99 0.99
grep 0.98 0.27 0.42 0.98 0.31 0.47 0.80 0.13 0.22 0.99 0.55 0.71 0.99 0.99 0.99
gzip 1.00 0.15 0.26 0.97 0.19 0.31 0.61 0.11 0.18 0.98 0.50 0.66 0.99 1.00 1.00
imagemagick 0.99 0.25 0.40 0.99 0.56 0.71 0.92 0.49 0.64 1.00 0.56 0.72 0.98 0.99 0.98
lighttpd 0.97 0.29 0.45 0.97 0.31 0.47 0.81 0.14 0.24 0.99 0.54 0.70 0.99 0.99 0.99
make 0.95 0.36 0.52 0.95 0.39 0.56 0.61 0.17 0.26 0.98 0.58 0.73 0.96 0.99 0.97
memcached 0.96 0.34 0.51 0.94 0.35 0.51 0.62 0.22 0.32 0.99 0.56 0.71 0.94 0.98 0.96
mkdir 0.96 0.17 0.28 0.97 0.24 0.39 0.56 0.06 0.11 0.99 0.53 0.69 0.98 0.99 0.99
nginx 0.98 0.33 0.49 0.98 0.35 0.52 0.84 0.17 0.29 0.99 0.55 0.71 0.97 0.98 0.97
nmap 0.97 0.29 0.44 0.98 0.39 0.56 0.14 0.30 0.19 0.99 0.46 0.63 0.97 0.97 0.97
objdump 0.94 0.27 0.42 0.95 0.31 0.47 0.53 0.16 0.25 0.99 0.54 0.70 0.95 0.99 0.97
poppler 0.99 0.36 0.53 0.99 0.44 0.60 0.11 0.17 0.13 1.00 0.38 0.55 0.99 0.96 0.98
rm 0.97 0.22 0.36 0.97 0.28 0.43 0.68 0.09 0.16 0.88 0.52 0.65 0.99 0.99 0.99
sort 0.93 0.27 0.41 0.94 0.31 0.47 0.75 0.13 0.22 0.99 0.46 0.62 0.99 0.99 0.99
tar 0.96 0.35 0.51 0.98 0.31 0.48 0.37 0.18 0.24 0.99 0.49 0.66 0.98 0.99 0.98
uniq 0.95 0.26 0.41 0.96 0.32 0.48 0.72 0.09 0.17 0.99 0.53 0.69 0.99 0.99 0.99
wget N/A1 N/A1 N/A1 1.00 0.41 0.58 0.54 0.15 0.24 1.00 0.26 0.41 0.99 0.98 0.98
ml train N/A2 N/A2 N/A2 0.99 0.03 0.06 0.88 0.03 0.05 1.00 0.24 0.38 0.93 0.92 0.92

1 Due to the significant slowdown introduced by ltrace, the wget benchmark repeatedly timed out and failed run correctly.
2 The ml_train benchmark failed to run with ltrace.

TABLE IV: Relative slowdown of RTrace compared to other tracers. Results are averaged over 10 runs; standard deviations
are omitted as they remain below 10% across all benchmarks.

Benchmark Original(ms) ltrace drltrace ldaudit IntelPT RTrace (light) RTrace (rich)

bftpd 2,082 4→ 1→ 1→ 1→ 1→ 1→
bzip2 13 47→ 7→ 1→ 96→ 8→ 188→
chown 4 170→ 25→ 2→ 329→ 23→ 128→
date 4 99→ 23→ 2→ 330→ 22→ 116→
grep 5 304→ 23→ 1→ 263→ 21→ 123→
gzip 4 42→ 18→ 2→ 329→ 19→ 96→
imagemagick 26 1, 048→ 37→ 1→ 47→ 12→ 343→
lighttpd 4 204→ 24→ 2→ 330→ 25→ 137→
make 8 3, 158→ 40→ 2→ 164→ 30→ 230→
memcached 2,011 9→ 1→ 1→ 2→ 1→ 1→
mkdir 4 19→ 20→ 2→ 328→ 20→ 102→
nginx 1,036 14→ 1→ 1→ 2→ 1→ 2→
nmap 51 11, 756→ 113→ 1→ 25→ 5→ 831→
objdump 13 757→ 21→ 1→ 93→ 13→ 215→
poppler 27 6, 504→ 102→ 1→ 45→ 14→ 613→
rm 4 125→ 22→ 2→ 330→ 22→ 114→
sort 5 155→ 21→ 1→ 264→ 19→ 105→
tar 7 409→ 23→ 2→ 188→ 20→ 139→
uniq 5 76→ 17→ 1→ 264→ 17→ 90→
wget 85 N/A 165→ 1→ 15→ 9→ 856→
ml train 53,218 N/A 70→ 1→ 1→ 2→ 345→

C. Accuracy and Performance of the Rich Mode

For the rich mode of RTrace, we evaluate both the accuracy
of capturing correct function arguments and return values, as
well as the runtime overhead it introduces. Obtaining ground
truth for runtime arguments and return values is challenging,
as no existing tools can automatically capture these values
for all functions, to the best of our knowledge. As a result,
establishing ground truth requires significant manual effort.
Therefore, instead of evaluating all 21 benchmarks, we focus
on the standard C library (libc) and utilize the libc-test
project [56]. We selected 117 functions from the functional tests

that do not involve float types, as our rich mode currently
does not support tracing float arguments or return values
yet. We manually modified the source code of the test cases
to log the arguments and return values of the tested functions.
Then, we ran these tests with RTrace in rich mode and
compared the traced values of the function with the logged
ground truth. Note that we do not compare against the other
tracers. Because ltrace or drltrace require user-specified
function signatures, making automated large-scale evaluation
infeasible, while ldaudit and IntelPT do not support
capturing argument or return values.

9

TABLE V: Error analysis of argument and return value tracing
of the rich mode (out of 117 functions).

Category Count Root Cause

Wrong Argument 12 8: Incorrect function signature
4 Incorrect function boundary

Wrong Return 5 1: Incorrect function signature
4: Incorrect function boundary

Total Failure 12/117

Accuracy. Table V summarizes the accuracy of rich mode
tracing. Out of 117 function calls, 12 are traced with incorrect
argument values or return values. For argument values, eight
of them are caused by inaccurate function signatures (e.g., the
actual number of arguments exceeds what RTrace inferred),
and four due to incorrect function boundary detection. For
instance, in the fscanf test case, which uses variadic
arguments, the rich mode only detected two arguments, causing
the remaining ones to be missed. Regarding return values, five
out of 117 function calls are traced incorrectly. Among them,
one is due to incorrect function signature and four due to
incorrect function boundary detection. For example, RTrace
failed to detect boundaries of some functions like memset,
resulting in no return value being recorded. To address these
issues, we modified RTrace to allow users to override the
automatically inferred function signatures and boundaries with
user-specified ones. This design helps improve tracing accuracy
for functions of particular interest.

Performance. Regarding performance overhead, we evaluate
the rich mode using the benchmarks in Table II, with results
shown in Table IV. As expected, the rich mode incurs higher
overhead than the light mode. This increase is due to three
factors: Firstly, unlike light mode, which only traces the first
call to each function, rich mode traces every function call,
and for each call it inspects registers and walks the call stack
to extract function arguments and return values, which is a
major source of overhead. Secondly, it also performs function
boundary detection before instrumentation and must load the
resulting boundary information into memory, adding setup
overhead. Finally, boundary detection also increases the number
of functions to be instrumented, which further increases the
overall overhead. Despite this overhead, we argue that the
rich mode remains practical, as it is primarily intended for
post-incident or offline analysis where completeness and detail
are prioritized over runtime performance. In addition, it is
comparable in performance to ltrace.

D. Impacts of Boundary Detection Algorithm

In this section, we evaluate how the choice of boundary
detection algorithm affects the accuracy of the light mode
of RTrace. As outlined in the workflow in Figure 3, we
categorize shared libraries into three groups based on their
available metadata: (1) libraries containing a debug symbol
table (symtab), (2) libraries with CET enabled (CET), and
(3) libraries that lack both a debug symbol table and CET
support (Neither). Out of a total of 92 shared libraries, 8

contain debug symbol tables, 71 have CET enabled, and 13
fall into the third category with neither feature. We apply the
three boundary detection algorithms respectively to all groups
and evaluate their performance.

Table VI summarizes the results. As shown, the linear
algorithm performs best on libraries with debug symbol
tables, achieving the highest precision, recall, and F1-score
of 1. This also indicates that branch-return instrumentation
is effective in tracing function execution. For CET-enabled
libraries, the FunSeeker algorithm consistently yields the most
accurate results, with precision, recall, and F1-score all of 0.98.
Meanwhile, the Nucleus algorithm provides the best recall and
F1-score for libraries without debug symbol tables or CET,
where linear and FunSeeker algorithms shows lower recall and
F1-score. These results further validate the boundary detection
workflow illustrated in Figure 3: Rather than relying on a
single boundary detection algorithm for all libraries, selecting
appropriate algorithm based on the available metadata within
each library results in the most accurate tracing results.

TABLE VI: Accuracy of executed function tracing by RTrace
light mode using different boundary detection algorithms. P is
precision, R is recall, and F1 is F1-score.

Category Metric Linear FunSeeker Nucleus

symtab

P 1.00 1.00 0.98
R 1.00 0.98 0.85
F1 1.00 0.99 0.91

CET

P 0.85 0.98 0.94
R 0.51 0.98 0.91
F1 0.64 0.98 0.93

Neither

P 0.99 0.83 0.83
R 0.37 0.55 0.83
F1 0.54 0.66 0.83

E. Ablation Study

To better understand the contribution of each component
within RTrace, we perform an ablation study by selectively
disabling individual components and measuring their impact
on function detection accuracy. We disabled the following
components: (1) boundary detection, as shown in §IV-B3;
(2) branch instrumentation and (3) return instrumentation.
Table VII reports the corresponding changes in precision, recall,
and F1-score when each component is removed.

We observe that disabling the boundary detection component
significantly reduces the effectiveness of RTrace, resulting in
substantial drops in precision, recall, and F1-score across all
benchmarks. For instance, in the gzip benchmark, removing
this component leads to a 0.23 drop in precision, a 0.64 drop
in recall, and an overall F1-score reduction of 0.50. Boundary
detection impacts both precision and recall because failing to
detect a correct function boundary can simultaneously introduce
a false positive and a false negative. An example illustrating
this effect is provided in §VIII-C in the appendix.

Branch instrumentation also has a pronounced effect, particu-
larly on recall. Disabling it results in a 0.43 recall reduction for

10

the ml_train benchmark, indicating that many functions exit
using branch instructions instead of standard return instructions.
However, disabling branch instrumentation has a positive effect
on precision, with many benchmarks showing a slight increase
in precision. This is because disabling branch instrumentation
results in fewer detected functions, which also reduces false
positives, thus marginally increase precision.

Return instrumentation exhibits a similar pattern: its absence
leads to a notable decline in recall but has little effect on
precision. For example, in the wget benchmark, disabling
return instrumentation decreases recall by 0.15, while precision
remains almost unchanged. Overall, all the components of
RTrace contribute to its effectiveness, with boundary detection
being the most critical. We present specific examples illustrating
how the disabling of individual components in RTrace leads
to missed function detections in §VIII-C in the appendix.

TABLE VII: Performance change when disabling each compo-
nent of RTrace. Negative values indicate degradation; Positive
values indicate improvement. P is precision, R is recall, and
F1 is F1-score.

Benchmark Boundary Detection Branch Return

P R F1 P R F1 P R F1

bftpd -0.12 -0.51 -0.37 0.01 -0.11 -0.05 -0.00 -0.04 -0.02
bzip2 -0.16 -0.55 -0.41 0.02 -0.09 -0.04 -0.00 -0.04 -0.02
chown -0.19 -0.55 -0.42 0.02 -0.10 -0.05 -0.00 -0.04 -0.02
date -0.21 -0.57 -0.44 0.00 -0.10 -0.05 -0.00 -0.04 -0.02
grep -0.21 -0.59 -0.46 0.00 -0.08 -0.04 -0.00 -0.04 -0.02
gzip -0.23 -0.64 -0.50 0.00 -0.07 -0.03 -0.00 -0.05 -0.03
imagemagick -0.05 -0.28 -0.18 0.01 -0.22 -0.12 -0.00 -0.05 -0.02
lighttpd -0.18 -0.53 -0.40 0.00 -0.08 -0.04 -0.00 -0.06 -0.03
make -0.16 -0.51 -0.38 0.02 -0.11 -0.05 -0.00 -0.05 -0.03
memcached -0.13 -0.45 -0.32 0.03 -0.11 -0.05 -0.00 -0.06 -0.03
mkdir -0.26 -0.63 -0.50 0.00 -0.09 -0.04 -0.00 -0.05 -0.02
nginx -0.15 -0.48 -0.35 0.02 -0.11 -0.04 -0.00 -0.05 -0.03
nmap -0.10 -0.36 -0.25 0.01 -0.13 -0.07 -0.00 -0.09 -0.05
objdump -0.18 -0.56 -0.42 0.02 -0.11 -0.05 -0.00 -0.04 -0.02
poppler -0.11 -0.32 -0.23 0.01 -0.18 -0.10 -0.00 -0.10 -0.05
rm -0.24 -0.60 -0.48 0.00 -0.09 -0.04 -0.00 -0.05 -0.02
sort -0.15 -0.47 -0.35 0.00 -0.10 -0.05 -0.00 -0.05 -0.02
tar -0.15 -0.55 -0.41 0.01 -0.10 -0.05 -0.00 -0.04 -0.02
uniq -0.21 -0.56 -0.44 0.00 -0.09 -0.05 -0.00 -0.04 -0.02
wget N/A N/A N/A 0.01 -0.20 -0.11 -0.00 -0.15 -0.08
ml train N/A N/A N/A 0.06 -0.43 -0.27 -0.01 -0.11 -0.06

F. Analysis of Missed Functions

In this section, we analyze the reasons why different tracers
fail to detect certain function calls. To facilitate this analysis,
we categorize missed functions based on three key attributes:
symbol type, symbol binding, and whether the function is
part of a shared library’s initialization routine. We consider
two primary symbol types: (1) FUNC, representing standard,
directly callable functions; (2) IFUNC, representing indirect
functions that are dynamically resolved during shared library
loading. For binding types, we distinguish three categories:
(1) GLOBAL, functions visible across all shared libraries; (2)
LOCAL, functions with visibility limited to the defining library;
(3) WEAK, functions that can be overridden by other definitions.
Finally, we also categorize functions based on whether they
are initialization functions, which are called after a shared
library is loaded but before the application’s main() function
is executed.

Table VIII presents the ratio of missed functions across
these categories for each tracer. All the four compared tracers
exhibit significantly higher miss rates for IFUNC functions
compared to standard FUNC functions. They also show a
higher miss rate for LOCAL functions. This is primarily due
to the fact that most LOCAL symbols are stripped from
shared libraries. Without symbol information or function
boundary detection, these tracers cannot trace such functions.
ltrace, drltrace and ldaudit cannot detect shared
library initialization functions. One reason is that they begin
tracing only after the main program starts—missing early
initialization functions, as with ltrace. Another reason is
that symbol information of these initialization functions are
often stripped from shared libraries, making them undetectable
to tools like drltrace and ldaudit. While IntelPT

captures some of these initialization functions, which is likely
because they are called later by some other functions, it still
fails to detect many of them. RTrace shows a significantly
lower miss rate across all categories and all the missed functions
are caused by incorrect boundary detection.

TABLE VIII: Percentage of missed functions for different
functions categories. wget and ml_train are excluded from
this analysis as ltrace failed to trace them.

Category Value ltrace drltrace ldaudit IntelPT RTrace

Type FUNC 55% 49% 74% 48% 1%
IFUNC 82% 69% 74% 89% 0

Bind
GLOBAL 25% 11% 57% 47% 0
LOCAL 75% 70% 84% 57% 2%
WEAK 40% 30% 53% 45% 0

Init. No 58% 51% 74% 53% 1%
Yes 100% 100% 100% 94% 0

G. Application of RTrace in Security Domain

In this section, we demonstrate two security applications
of RTrace: the light mode for detecting malicious Python
packages and the rich mode for analyzing compromised shared
libraries.

1) Malicious Python Package Detection: Although RTrace
is not specifically designed for malicious package detection,
it can be effectively applied in this domain. We use the
dataset from [26], which comprises 1,500 benign and 500
malicious Python packages, to perform a statistical analysis
of the installation behaviors of these packages. Our focus
is on install-time attacks, i.e., attacks that occur during the
package installation phase. Some packages fail to install due
to incompatible Python versions or operating systems, thus
we only focus on the packages that are successfully installed.
Among the 1500 benign packages and 500 malicious packages,
898 and 289 were successfully installed, respectively. Using
the light mode of RTrace, we trace the installation process
of these successfully installed packages.

Figure 4a shows a violin plot of the number of functions exe-
cuted during installation for each package. The distribution for
benign packages is narrow and centered around 2,100 functions.
In contrast, malicious packages exhibit a broader distribution.

11

While some have function counts similar to benign packages,
the majority invoke significantly more functions—around 2,800.
We found that 77% of the malicious packages executed more
than 2,800 functions, while only 4% of benign packages do so.
This suggests that function-level behavior during installation is
a strong indicator of malicious activity, making it a promising
dimension for detecting malicious packages.

Figures 4b and 4c present the distributions of basic block
and instruction counts during installation. These metrics do
not show a distribution as distinct as the function count.
Interestingly, benign packages have longer-tailed distributions,
suggesting more variability and complexity in their installation
processes. In comparison, malicious packages display a more
compact distribution. Both benign and malicious packages has
a median around 3→108 basic blocks and 1.3→109 instructions,
making it harder to differentiate between benign and malicious
behavior using only these metrics.

We further investigate the reason behind the distinct dis-
tribution patterns observed in malicious versus benign pack-
ages—specifically, why malicious packages exhibit a long
tail in function count but a compact distribution in basic
block and instruction counts, while benign packages show the
opposite trend. A recurring pattern among malicious packages
is the use of custom installation scripts that override standard
routines. These install-time attack scripts typically follow a
fixed structure: they replace the default installation logic and
frequently use the Python requests library to download a
payload from a remote URL, followed by conditional checks
to decide whether to execute the downloaded file based on
the runtime environment. At the time of our experiments,
many of the remote resources used by malicious packages
were no longer accessible, preventing the payload from being
downloaded or executed. As a result, the installation process
of malicious packages was straightforward, involving fewer in-
structions and basic blocks. However, the initial stages of these
attacks still invoke functions from uncommon shared libraries,
such as libnss_dns, libresolv, and libnss_files,
which are rarely used by benign packages. This leads to a
broader variety of function call. In contrast, some benign
installations involve building from C code or setup processes
that include repetitive, same function calls. These activities
result in more executed basic blocks and instructions, even
if the number of distinct functions invoked remains lower.
This difference highlights the potential of using function-level
execution patterns as a lightweight and effective signal for
detecting suspicious installation behaviors.

2) XZ Backdoor Case Study: We use RTrace to analyze
a case in which the shared library itself is compromised,
demonstrating how the two modes of RTrace can detect
and analyze abnormal behaviors introduced through malicious
modifications. We use the recently disclosed supply chain
attack, the XZ backdoor vulnerability (CVE-2024-3094), as
a case study. This vulnerability affects the widely used XZ
compression library, which is pre-installed in many major Linux
distributions. To avoid the risk of running a compromised
library, we conduct this case study in a sandboxed AWS

Benign Malicious
2000

2500

3000

3500

4000

4500

F
u
n
ct

io
n

C
ou

nt

(a) #Function.

Benign Malicious

0.4

0.6

0.8

1.0

1.2

1.4

1.6

B
as

ic
B

lo
ck

C
ou

nt

⇥109

(b) #Basic block.

Benign Malicious

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

In
st

ru
ct

io
n

C
ou

nt

⇥1010

(c) #Instruction.

Fig. 4: Distribution of executed function counts(detected by
the light mode of RTrace), basic block counts and instruction
count during installation of benign and malicious packages.

EC2 instance. As the instance lacked hardware support, the
IntelPT tracer was excluded from this experiment.

Attack Mechanism. The attack was carried out by a
malicious actor who gained control of the XZ project [57] and
injected backdoor code into the shared library liblzma.so,
specifically in versions 5.6.0 and 5.6.1. This library is a
dependency of the sshd server binary. When the SSH server
is launched, it loads the malicious version of liblzma.so.
The library exploits the indirect function call mechanism to
replace an internal OpenSSH function with a malicious version.
As a result, the attacker is able to authenticate using a private
key and gain unauthorized access to the system through the
SSH server.

Analysis Setup. To evaluate the ability of various tracers to
detect abnormal function behavior, we launch an SSH server
with several versions of liblzma.so respectively, including
nine older benign versions and the compromised versions
(5.6.0*). We then use the tracers to trace the function calls made
within the liblzma.so library during the server’s launch.

Figure 5 shows the number of function calls detected by
compared tracers and the light mode of RTrace in each
version of the library. ltrace, ldaudit and drltrace

fail to detect any function calls within the library across
all versions, including the compromised version. RTrace
consistently detects more function calls than all other tracers for
every version of the library. Notably, RTrace constantly detect
7 function calls in the benign versions of the library. However,
the compromised version exhibited a sharp increase, with 90
detected function calls. Given the fact that liblzma.so is
a mature library with stable APIs, this significant increase in
the number of function calls should be considered an anomaly
signal and a potential red flag during security audits.

We further leverage the rich mode of RTrace to perform a
detailed analysis of function call behavior. Figures 6a and 6b
illustrate the dynamic function call graphs generated by the
rich mode RTrace for the benign (5.6.0) and compromised
(5.6.0*) versions of liblzma.so, respectively. In the benign
version, the graph shows only standard function calls associated
with shared library loading and unloading, such as _init and
_fini functions. These are expected and represent normal,
benign initialization behavior. In contrast, the function call
graph for the compromised version reveals a stark different
pattern. To improve readability, we present a simplified view

12

5.2
.9

5.2
.11 5.4

.1
5.4

.2
5.4

.3
5.4

.4
5.4

.5
5.5

.99 5.6
.0

5.6
.0*

Version

0

20

40

60

80

N
um

b
er

of
de

te
ct

ed
fu

nc
ti

on
s ltrace

drltrace

ldaudit

RTrace

Fig. 5: Number of function calls detected by different tracers
in the liblzma.so across different versions. 5.6.0* is the
compromised version.

of the graph due to its significantly larger size. A key anomaly
is observed: two indirect functions, crc32_resolve and
crc64_resolve, are invoked before the standard _init

function. These two functions serve as hidden entry points
for the backdoor code, initiating setup and injection routines.
All subsequent function calls in the graph are associated
with the injected malicious payload. The full version of the
compromised call graph is substantially more complex and
contains 90 distinct function invocations in the library and
differ significantly from all the previous benign versions.

ld.so

_init frame_dummy __do_global_dtors_aux _fini

register_tm_clones deregister_tm_clones

(a) Benign version (5.6.0).
ld.so

crc32_resolve crc64_resolve _init frame_dummy __do_global_dtors_aux _fini

_get_cpuid register_tm_clones deregister_tm_clones

_cpuid lzma_check_init lzma_alloc lzma_free

(b) Compromised version (5.6.0.*).

Fig. 6: Function call graph generated by the rich mode
of RTrace for benign and compromised versions of
liblzma.so.

VI. DISCUSSION AND FUTURE WORK

Modern software systems have become increasingly difficult
to trace at runtime. This is primarily due to two factors: (1)
they rely on large and complex dependencies, and (2) the
implicit features that are employed to enhance performance and
developer convenience, such as indirect function calls, shared
library constructors and destructors, compiler optimizations,
and so on. These mechanisms, while improving performance

and developer productivity, often introduce implicit code execu-
tions that do not only occur outside the visibility of application
developers but also negatively impact the effectiveness of
existing library call tracing tools. As a result, these implicit
behaviors can serve as stealthy vectors for malicious activity,
making them attractive targets for attackers seeking to conceal
malicious behavior. Therefore, an accurate and comprehensive
library function call tracer is of great importance for software
supply chain security. In this paper, we identify the limitations
of existing library call tracers and propose a new tracer,
RTrace, that addresses these limitations and traces shared
library function calls more accurately and comprehensively.

Limitations. The light mode of RTrace depends on accu-
rate function boundary detection to identify executed functions.
While existing techniques have demonstrated good accuracy,
they still face limitations. Some tools require substantial time
to analyze large shared libraries, and others may fail to detect
function boundaries reliably for certain binaries. Similarly, the
rich mode of RTrace attempts to infer function signatures
automatically using static binary analysis frameworks. These
frameworks can be time-consuming, particularly for large
libraries, and may produce incorrect function signatures. To
mitigate this issue, we have designed RTrace to be extensible,
allowing users to provide function signature manually if
accessible. The rich mode currently supports only System
V AMD64 ABI, a limitation shared with existing tools such
as ltrace and drltrace. Overall, most limitations stem
from the reliance on static analysis.

Future Work. Given that RTrace operates at runtime and
has access to dynamic execution information, it is promising
to explore how this runtime data can be leveraged to enhance
the accuracy of both function boundary detection and signature
inference. Integrating such dynamic insights into RTrace

could potentially improve its robustness and precision. For
example, we observed that FunSeeker can produce false
positives in function boundary detection due to indirect returns;
however, these returns can be captured at runtime and used to
refine the detected boundaries. Additionally, RTrace does not
yet support tracing float types, which we plan to address in
future work.

VII. CONCLUSION

In this paper, we presented RTrace, a tracer designed
to accurately capture function calls within shared libraries.
Through a systematic evaluation of existing library function
tracers, we found that their effectiveness and scalability is
limited. Many shared library function calls are missed and
these tools do not work for complex workloads, such as
machine learning workloads. We analyzed the root causes
of these limitations and identified key pitfalls in existing
tracers, including reliance on incomplete symbol information,
inability to detect early or non-standard function calls, and
poor support for complex runtime behaviors. Building on this
analysis, we designed RTrace to address these shortcomings
through comprehensive runtime monitoring, function boundary
detection, and support for unconventional function calls. Our

13

evaluation on 21 real-world applications shows that RTrace
significantly improves the accuracy of shared library function
call tracing, achieving an F1-score of at least 92% across all
benchmarks. We also show how RTrace can be used to assist
in software security analysis using real-world examples.

ACKNOWLEDGMENT

We would like to thank Prof. Philipp Leitner for his valuable
suggestions that inspired this work. We are also grateful to
the anonymous reviewers for their valuable comments, which
greatly helped improve the paper. This project is supported by
the Knut and Alice Wallenberg Foundation via a Wallenberg
AI, Autonomous Systems and Software Program PhD grant
and an SSF future research leaders grant.

REFERENCES

[1] Gartner, “Application development will shift to application assembly and
integration.” https://www.gartner.com/en/newsroom/press-releases/2021-1
1-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experie
nces, 2021, [Accessed 08-04-2025].

[2] Y. Shen, X. Gao, H. Sun, and Y. Guo, “Understanding vulnerabilities in
software supply chains,” Empirical Software Engineering, vol. 30, no. 1,
pp. 1–38, 2025.

[3] W. Enck and L. Williams, “Top five challenges in software supply chain
security: Observations from 30 industry and government organizations,”
IEEE Security & Privacy, vol. 20, no. 2, pp. 96–100, 2022.

[4] L. Gao, M. Lu, L. Li, and C. Pan, “A survey of software runtime
monitoring,” in 2017 8th IEEE International Conference on Software

Engineering and Service Science (ICSESS). IEEE, 2017, pp. 308–313.
[5] G. Rousseau, R. Di Cosmo, and S. Zacchiroli, “Software provenance

tracking at the scale of public source code,” Empirical Software

Engineering, vol. 25, pp. 2930–2959, 2020.
[6] S. Grayson, F. Aguilar, R. Milewicz, D. S. Katz, and D. Marinov, “A

benchmark suite and performance analysis of user-space provenance
collectors,” in Proceedings of the 2nd ACM Conference on Reproducibility

and Replicability, 2024, pp. 85–95.
[7] F. Wang, Y. Kwon, S. Ma, X. Zhang, and D. Xu, “Lprov: Practical

library-aware provenance tracing,” in Proceedings of the 34th Annual

Computer Security Applications Conference, 2018, pp. 605–617.
[8] L. Documentation, “Shared Libraries — tldp.org,” https://tldp.org/H

OWTO/Program-Library-HOWTO/shared-libraries.html, [Accessed
10-04-2025].

[9] H. Zhang and A. Ali-Eldin, “The hidden bloat in machine learning
systems,” 2025. [Online]. Available: https://arxiv.org/abs/2503.14226

[10] “ltrace — ltrace.org,” https://ltrace.org/, [Accessed 08-10-2024].
[11] “GitHub - mxmssh/drltrace: Drltrace is a library calls tracer for Windows

and Linux applications. — github.com,” https://github.com/mxmssh/drlt
race, [Accessed 28-08-2024].

[12] “rtld-audit(7) - Linux manual page — man7.org,” https://man7.org/linux
/man-pages/man7/rtld-audit.7.html, [Accessed 08-04-2025].

[13] A. Ziegler, J. Geus, B. Heinloth, T. Hönig, and D. Lohmann, “Honey, i
shrunk the elfs: Lightweight binary tailoring of shared libraries,” ACM

Transactions on Embedded Computing Systems (TECS), vol. 18, no. 5s,
pp. 1–23, 2019.

[14] “NVD - CVE-2024-3094 — nvd.nist.gov,” https://nvd.nist.gov/vuln/deta
il/CVE-2024-3094, [Accessed 26-09-2024].

[15] D. Bruening and S. Amarasinghe, “Efficient, transparent, and compre-
hensive runtime code manipulation,” 2004.

[16] L. Williams, G. Benedetti, S. Hamer, R. Paramitha, I. Rahman,
M. Tamanna, G. Tystahl, N. Zahan, P. Morrison, Y. Acar et al., “Research
directions in software supply chain security,” ACM Transactions on

Software Engineering and Methodology, 2024.
[17] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife

collection: A review of open source software supply chain attacks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment: 17th

International Conference, DIMVA 2020, Lisbon, Portugal, June 24–26,

2020, Proceedings 17. Springer, 2020, pp. 23–43.
[18] B. Hammi and S. Zeadally, “Software supply-chain security: Issues and

countermeasures,” Computer, vol. 56, no. 7, pp. 54–66, 2023.

[19] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy of
attacks on open-source software supply chains,” in 2023 IEEE Symposium

on Security and Privacy (SP). IEEE, 2023, pp. 1509–1526.
[20] R. Alkhadra, J. Abuzaid, M. AlShammari, and N. Mohammad, “Solar

winds hack: In-depth analysis and countermeasures,” in 2021 12th

International Conference on Computing Communication and Networking

Technologies (ICCCNT). IEEE, 2021, pp. 1–7.
[21] “CVE-2014-0160.” Available from NVD, CVE-ID CVE-2021-44228.,

December 2021, [Accessed 10-04-2025]. [Online]. Available: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

[22] W. Liang, X. Ling, J. Wu, T. Luo, and Y. Wu, “A needle is an outlier in
a haystack: hunting malicious pypi packages with code clustering,” in
2023 38th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 2023, pp. 307–318.
[23] C. Huang, N. Wang, Z. Wang, S. Sun, L. Li, J. Chen, Q. Zhao, J. Han,

Z. Yang, and L. Shi, “{DONAPI}: Malicious {NPM} packages detector
using behavior sequence knowledge mapping,” in 33rd USENIX Security

Symposium (USENIX Security 24), 2024, pp. 3765–3782.
[24] J. Zhang, K. Huang, Y. Huang, B. Chen, R. Wang, C. Wang, and X. Peng,

“Killing two birds with one stone: Malicious package detection in npm
and pypi using a single model of malicious behavior sequence,” ACM

Transactions on Software Engineering and Methodology, vol. 34, no. 4,
pp. 1–28, 2025.

[25] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and
W. Lee, “Towards measuring supply chain attacks on package managers
for interpreted languages,” in Network and Distributed System Security

(NDSS) Symposium, 2021.
[26] X. Zheng, C. Wei, S. Wang, Y. Zhao, P. Gao, Y. Zhang, K. Wang, and

H. Wang, “Towards robust detection of open source software supply
chain poisoning attacks in industry environments,” in Proceedings of

the 39th IEEE/ACM international conference on automated software

engineering, 2024, pp. 1990–2001.
[27] “elf(5) - Linux manual page — man7.org,” https://man7.org/linux/man-p

ages/man5/elf.5.html, [Accessed 20-04-2025].
[28] J. Engblom, “A review of reverse debugging,” in Proceedings of the 2012

System, Software, SoC and Silicon Debug Conference. IEEE, 2012, pp.
1–6.

[29] J. Wang, N. Liu, A. Casadevall-Saiz, Y. Liu, D. Behrens, M. Fu, N. Jia,
H. Härtig, and H. Chen, “Enabling efficient mobile tracing with btrace,” in
Proceedings of the 30th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 2,
2025, pp. 325–338.

[30] M. D. Brown, A. Meily, B. Fairservice, A. Sood, J. Dorn, E. Kilmer, and
R. Eytchison, “A broad comparative evaluation of software debloating
tools,” in 33rd USENIX Security Symposium (USENIX Security 24), 2024,
pp. 3927–3943.

[31] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee,
“{RAZOR}: A framework for post-deployment software debloating,”
in 28th USENIX security symposium (USENIX Security 19), 2019, pp.
1733–1750.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” Acm sigplan notices,
vol. 40, no. 6, pp. 190–200, 2005.

[33] “Tiny tracer: A pin tool for tracing api calls,” https://github.com/hashere
zade/tiny tracer, [Accessed 16-09-2024].

[34] P. Guide, “Intel® 64 and ia-32 architectures software developer’s manual,”
Volume 3: System Programming Guide, vol. 2, no. 11, 2016.

[35] J. Alves-Foss and J. Song, “Function boundary detection in stripped bina-
ries,” in Proceedings of the 35th Annual Computer Security Applications

Conference, 2019, pp. 84–96.
[36] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function

detection in binaries,” in 2017 IEEE European Symposium on Security

and Privacy (EuroS&P). IEEE, 2017, pp. 177–189.
[37] A. Di Federico, M. Payer, and G. Agosta, “rev. ng: a unified binary anal-

ysis framework to recover cfgs and function boundaries,” in Proceedings

of the 26th International Conference on Compiler Construction, 2017,
pp. 131–141.

[38] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “Sok: (state
of) the art of war: Offensive techniques in binary analysis,” 2016.

[39] X. Meng and B. P. Miller, “Binary code is not easy,” in Proceedings

of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 24–35.

14

https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://arxiv.org/abs/2503.14226
https://ltrace.org/
https://github.com/mxmssh/drltrace
https://github.com/mxmssh/drltrace
https://man7.org/linux/man-pages/man7/rtld-audit.7.html
https://man7.org/linux/man-pages/man7/rtld-audit.7.html
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://man7.org/linux/man-pages/man5/elf.5.html
https://man7.org/linux/man-pages/man5/elf.5.html
https://github.com/hasherezade/tiny_tracer
https://github.com/hasherezade/tiny_tracer

[40] “GitHub - NationalSecurityAgency/ghidra: Ghidra is a software reverse
engineering (SRE) framework — github.com,” https://github.com/Natio
nalSecurityAgency/ghidra, [Accessed 24-07-2025].

[41] H. Kim, J. Lee, S. Kim, S. Jung, and S. K. Cha, “How’d security benefit
reverse engineers?: The implication of intel cet on function identification,”
in 2022 52nd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN). IEEE, 2022, pp. 559–566.
[42] K. Pei, J. Guan, D. Williams-King, J. Yang, and S. Jana, “Xda:

Accurate, robust disassembly with transfer learning,” arXiv preprint

arXiv:2010.00770, 2020.
[43] S. Yu, Y. Qu, X. Hu, and H. Yin, “{DeepDi}: Learning a relational

graph convolutional network model on instructions for fast and accurate
disassembly,” in 31st USENIX Security Symposium (USENIX Security

22), 2022, pp. 2709–2725.
[44] S. Kim, H. Kim, and S. K. Cha, “Funprobe: Probing functions from

binary code through probabilistic analysis,” in Proceedings of the 31st

ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, 2023, pp. 1419–1430.
[45] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity

principles, implementations, and applications,” ACM Transactions on

Information and System Security (TISSEC), vol. 13, no. 1, pp. 1–40,
2009.

[46] C. Ye, Y. Cai, A. Zhou, H. Huang, H. Ling, and C. Zhang, “Manta: Hybrid-
sensitive type inference toward type-assisted bug detection for stripped
binaries,” in Proceedings of the 29th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, Volume 4, 2024, pp. 170–187.
[47] F. de Goër, R. Groz, and L. Mounier, “Lightweight heuristics to retrieve

parameter associations from binaries,” in Proceedings of the 5th Program

Protection and Reverse Engineering Workshop, 2015, pp. 1–12.
[48] Z. Lin, J. Li, B. Li, H. Ma, D. Gao, and J. Ma, “Typesqueezer: When static

recovery of function signatures for binary executables meets dynamic
analysis,” in Proceedings of the 2023 ACM SIGSAC Conference on

Computer and Communications Security, 2023, pp. 2725–2739.
[49] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell, “System v application

binary interface,” AMD64 Architecture Processor Supplement, Draft v0,
vol. 99, no. 2013, p. 57, 2013.

[50] “Guide: Function Calling Conventions — delorie.com,” https://www.de
lorie.com/djgpp/doc/ug/asm/calling.html, [Accessed 29-08-2024].

[51] “Introducing eight new Amazon EC2 bare metal instances - AWS —
aws.amazon.com,” https://aws.amazon.com/about-aws/whats-new/2023/
10/new-amazon-ec2-bare-metal-instances/, [Accessed 26-07-2025].

[52] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portokalidis,
“Nibbler: debloating binary shared libraries,” in Proceedings of the 35th

Annual Computer Security Applications Conference, 2019, pp. 70–83.
[53] “PyTorch — pytorch.org,” https://pytorch.org/, [Accessed 22-04-2025].
[54] “find-dbgsym-packages: Debian Manpages — manpages.debian.org,” ht

tps://manpages.debian.org/testing/debian-goodies/find-dbgsym-package
s.1.en.html, [Accessed 26-07-2025].

[55] “NVIDIA CUDA Toolkit Symbol Server — NVIDIA Technical Blog —
developer.nvidia.com,” https://developer.nvidia.com/blog/cuda-toolkit-s
ymbol-server/, [Accessed 26-07-2025].

[56] “musl libc - libc-test — wiki.musl-libc.org,” https://wiki.musl-libc.org/li
bc-test, [Accessed 20-07-2025].

[57] tukaani, “XZ Compression Library,” https://github.com/tukaani-project/xz,
[Accessed 14-04-2025].

VIII. APPENDIX

A. Sample Code

Listing 2: A single call to function indirect_func will
trigger all the functions in the library.
#include <stdio.h>

void export_func(){

printf("export_func");

}

static void constructor() __attribute__((

constructor));

void constructor(){

export_func();

printf("constructor");

}

int called_by_resolver(){

printf("called_by_resolver");

}

void indirect_func() __attribute__((ifunc("

resolve_indirect_func")));

static void indirect_func_impl(){

printf("indirect_func_impl");

}

static void *resolve_indirect_func(void){
called_by_resolver();

return (void *)indirect_func_impl;

}

Listing 3: A sample output of library detection.
/usr/lib/ld.so: [0x717234fc0000, 0

x717234ffa000)

/usr/lib/libc.so: [0x71723449c000, 0

x7172346ae000)

/usr/lib/libdl.so: [0x717234e8b000, 0

x717234e90000)

Listing 4: A sample output branch-return instrumentation.
0x721537f4225b

0x721537f42275

...

Listing 5: A sample output of adaptive boundary detection of
shared libray ld.so.
_dl_call_init: [0x1000, 0x1090)

_dl_call_fini: [0x1090, 0x1150)

...

Listing 6: A sample output of function instrumentation.
Entry: 129645018424432

Arg_0: 1

BB: 129645018424432

Entry: 129645017074208

BB: 129645017074208

Exit: 129645017074208

BB: 129645018424467

Ret: 0

Exit: 129645018424432

...

Listing 7: A sample output call graph report.
{

"name": "root",

"start_addr": "0x0",

"so_path": "root",

"num_args": 0,

"args": [],

"ret_val": null,

"executed_blocks": 0,

"executed_insts": 0,

"calls": [

{

"name": "boundary_detected_0x201d0",

"start_addr": "0x201d0",

15

https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://www.delorie.com/djgpp/doc/ug/asm/calling.html
https://www.delorie.com/djgpp/doc/ug/asm/calling.html
https://aws.amazon.com/about-aws/whats-new/2023/10/new-amazon-ec2-bare-metal-instances/
https://aws.amazon.com/about-aws/whats-new/2023/10/new-amazon-ec2-bare-metal-instances/
https://pytorch.org/
https://manpages.debian.org/testing/debian-goodies/find-dbgsym-packages.1.en.html
https://manpages.debian.org/testing/debian-goodies/find-dbgsym-packages.1.en.html
https://manpages.debian.org/testing/debian-goodies/find-dbgsym-packages.1.en.html
https://developer.nvidia.com/blog/cuda-toolkit-symbol-server/
https://developer.nvidia.com/blog/cuda-toolkit-symbol-server/
https://wiki.musl-libc.org/libc-test
https://wiki.musl-libc.org/libc-test
https://github.com/tukaani-project/xz

"so_path": "/usr/lib/x86_64-linux-gnu/ld-linux-x86

-64.so.2",

"num_args": 0,

"args": [],

"ret_val": 0,

"executed_blocks": 160,

"executed_insts": 636,

"calls": [

{

"name": "boundary_detected_0x1d1f0",

"start_addr": "0x1d1f0",

"so_path": "/usr/lib/x86_64-linux-gnu/ld-linux-

x86-64.so.2",

"num_args": 1,

"args": [129644961628184],

"ret_val": 0,

"executed_blocks": 1,

"executed_insts": 10,

"calls": []

}

...

]

},

...

]

}

B. Commands to Run Evaluated Tracers

Listing 8: Command lines used to run evaluated tracers.
ltrace

ltrace -f -o output.log -s 1024 -x "*" {cmd}

drltrace

drltrace -logdir output {cmd}

ldaudit

LD_AUDIT=/path/to/audit.so {cmd}

IntelPT

perf record -e intel_pt//u -o {log_dir}/perf.

data -- {cmd} # record

perf script -i {log_dir}/perf.data -F ip,sym,

dso --no-demangle > {log_dir}/output.txt

parse

C. Examples of Ablation Study

Boundary Detection. In the imagemagick benchmark,
the function decompress_onepass located at address
0x21630 in the libjpeg library was executed during
runtime. This function’s symbol is absent from the symbol
table as it is stripped from the library. However, with boundary
detection enabled, RTrace successfully identified the func-
tion boundary and correctly reported it as executed. When
boundary detection is disabled, the function boundary for
decompress_onepass is not identified, and the function is
consequently not reported, resulting in a false negative. More-
over, due to the presence of executed instructions, RTrace
incorrectly attributes this activity to the closest known function
before 0x21630, namely jpeg_write_coefficients

at 0x214c0. Since this function was not actually executed, this
also leads to a false positive. This example highlights a critical
insight: missing a single function boundary can simultaneously
lead to both false positives and false negatives. Thus, boundary
detection directly influences both precision and recall.

Branch Instrumentation. Certain functions do not exit with
a RET instruction but instead exiting by branching directly to an-
other function using a jump instruction. In the imagemagick
benchmark, the function AnnotateComponentTerminus

at address 0x62220 in the libMagickCore shared li-
brary is such a case. This function executes without ex-
iting via a standard RET; instead, it performs a jump
to another function. When branch instrumentation is dis-
abled, such control flow transitions are not captured, and
AnnotateComponentTerminus is not reported as exe-
cuted, resulting in a false negative. Listing 9 shows the
corresponding assembly code for this function, where no return
instruction in the function.

Listing 9: Assemble code of function
AnnotateComponentTerminus.
62220: endbr64

62224: cmpq

6222b:

6222c: je 62240

6222e: lea 0x41d653(%rip),%rdi

62235: jmp 58de0

6223a: nopw 0x0(%rax,%rax,1)

62240: lea 0x41d641(%rip),%rdi

62247: sub $0x8,%rsp

6224b: call 58ce0

62250: lea 0x41d631(%rip),%rdi

62257: add $0x8,%rsp

6225b: jmp 58de0

Return Instrumentation. A normal function typically exits
with a RET instruction. Therefore, return instrumentation plays
an important role in accurately identifying function execution. A
function that does not have any branch instruction, but only RET
instructions, can be only detected by return instrumentation.
As the example shown in Listing 10, in the imagemagick
benchmark, the function omp_get_max_threads, located
at address 0x12290 in the shared library libgomp.so,
is executed during runtime. However, this function contains
no branch instructions—only a RET. As a result, when
return instrumentation is disabled, RTrace fails to detect
this function, resulting in a false negative.

Listing 10: Assemble code of function
omp_get_max_threads.
12290: endbr64

12294: mov 0x42ce5(%rip),%rax

1229b: mov %fs:0x58(%rax),%rdx

122a0: test %rdx,%rdx

122a3: lea 0xa0(%rdx),%rax

122aa: lea 0x4318f(%rip),%rdx

122b1: cmove %rdx,%rax

122b5: mov (%rax),%eax

122b7: ret

16

	Introduction
	Background and Related Work
	Supply Chain Security
	Shared Library
	Library Call Tracing
	Binary Analysis

	A Call for a Better Tracer
	RTrace: An accurate Tracer
	Overview
	Light Mode
	Library Detection
	Branch-Return Instrumentation
	Adaptive Boundary Detection
	Function Coverage Report

	Rich Mode
	Function Call Instrumentation
	Call Graph Report

	Experiment
	Experiment Setup
	Accuracy and Performance of the Light Mode
	Accuracy and Performance of the Rich Mode
	Impacts of Boundary Detection Algorithm
	Ablation Study
	Analysis of Missed Functions
	Application of RTrace in Security Domain
	Malicious Python Package Detection
	XZ Backdoor Case Study

	Discussion and Future Work
	Conclusion
	References
	Appendix
	Sample Code
	Commands to Run Evaluated Tracers
	Examples of Ablation Study

