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Abstract—Static taint analysis has become a fundamental tech-
nique to detect vulnerabilities implied in web services of Linux-
based firmware. However, existing works commonly oversimplify
the composition of firmware web services. Specifically, only C
binaries (i.e., those extracted from the target firmware) are
considered within the scope of vulnerability detection. In this
work, we observe that modern firmware e xtensively combines
Lua scripts/bytecode and C binaries to implement hybrid web
services, and obviously, those C-binary-oriented vulnerability
detection techniques can hardly achieve satisfactory performance.
In light of this, we propose FirmCross, an automated taint-style
vulnerability detector dedicated for C-Lua hybrid web services.
Compared to existing detectors, FirmCross can automatically de-
obfuscate the Lua bytecode in target firmware, additionally
identify distinctive taint sources in Lua codespace, and sys-
tematically capture the C-Lua cross-language taint flow. In the
evaluation, FirmCross detects 6.82X ~ 14.5X more vulnerabilities
than SoTA approaches (i.e., MangoDFA and LuaTaint) in a
dataset containing 73 firmware images from 11 vendors. Notably,
FirmCross helps identify 610 0-day vulnerabilities among target
firmware images. After reporting these vulnerabilities to vendors,
till now, 31 vulnerability IDs have been assigned.

I. INTRODUCTION

Internet of Things (IoT) devices have become deeply inte-
grated into daily life, with projections indicating that the num-
ber of connected IoT devices will reach 40 billion by 2030 [1],
and Linux-based devices are the mainstream within the IoT
ecosystem [2], [3]. However, their inherent vulnerabilities
(e.g., remote code execution[4], [5], denial-of-service[6], [7])
pose significant risks to production and living infrastructures
(e.g., routers, IP cameras, VPN devices, etc.).

Given that these firmware vulnerabilities usually arise from
web services [8], [9], [10], [11], [12], [13] (i.e., attackers
can compromise the victim device by sending crafted network
requests to the vulnerable web services), security researchers
are actively developing static and dynamic techniques to detect
vulnerabilities in IoT web services. Technically, dynamic ap-
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proaches [[14], [15], [16], [[L7] work by literally executing the
target firmware services either through emulated environments
or directly on physical devices. However, these methods face
inherent challenges including labor-extensive firmware rehost-
ing [3], [18] and limited code coverage [14], [19]. In compar-
ison, static approaches [10], [[11], [L3], [2]], [20], which do not
require the establishment of a dynamic execution environment,
have been embraced as a complementary solution to detect
vulnerabilities of IoT web services. Specifically, these works
mostly leverage the taint analysis technique to accomplish this
task, which involves two key phases: @ Source and Sink
Identification pinpoints user-controllable inputs (sources) and
security-sensitive operations (sinks), and @ Taint Propaga-
tion verifies whether attacker-controlled data can flow from
sources to sinks through execution paths, causing potentially
exploitable vulnerabilities.

Although these static taint analysis techniques [8], [9], [2],
[13], [12], [20] have helped identify various vulnerabilities
in firmware web services, they usually over-simplify the
composition of firmware web services, inevitably hurting the
completeness of vulnerability detection. To be more specific,
existing works merely consider C-binaries (i.e., those extracted
from the target firmware) as the scope of vulnerability detec-
tion. However, as highlighted in recent studies [21]], [22], [23],
Lua has emerged as one of the most popular languages for
implementing web services [24], [25], [26], [27], [28], due
to its high performance and flexibility. As demonstrated in
our large-scale empirical study (see on 4012 commercial
device firmware, 38% firmware samples typically adopt a
hybrid C-Lua framework to implement modern web services.
Among these firmware, Lua scripts/bytecode are extensively
leveraged to implement a wide array of functions (e.g., URI
dispatching and handling). In fact, these long-neglected Lua-
involved attack surfaces [29], [30] have become one of the
bottlenecks in firmware security.

Due to the fundamental differences between C binaries and
Lua scripts/bytecode, as well as the complex cross-language
interactions in C-Lua hybrid web services, existing static
taint analysis approaches [8], [9], [2], [13l, [12], [20] are
difficult to directly apply to this scenario. Hence, in this
work, we are highly motivated to re-design the taint-style



vulnerability detection, making it comply with C-Lua hybrid

web services. However, it is technically a non-trivial task, due

to the following challenges (detailed in §III-C):

o C1: Prevalent and Diverse Lua Bytecode Obfuscation.
Based on our empirical study (see on commercial
firmware, 34% of Lua code exists in bytecode form, and 98%
of Lua bytecode has been guarded with vendor-customized
obfuscation, largely hindering the static taint analysis. Byte-
code obfuscations include structure obfuscations (i.e., shuf-
fled bytecode structure orders) and data obfuscations (i.e.,
transformed data field values). Here, the most recent work,
LuaHunt [31]], sheds light on Lua bytecode deobfuscation.
However, LuaHunt necessitates heavy expert efforts, as it
introduces reverse engineering to understand how the byte-
code structure is shuffled. In addition, LuaHunt can only
deal with one type of data obfuscation (opcode obfuscation)
and can hardly extend to multiple coexisting obfuscations.

¢ C2: Lua-specific Source Identification. The methods for
obtaining the taint sources (i.e., variables that represent
specific input fields) are significantly different between C
and Lua. Existing works [9], [12], [11] suggest that C-
binaries of firmware web services commonly implement in-
put access functions (e.g., websGetVar (wp, "time"))
to parse the specific input field in an on-demand manner,
which provides clear guidance for source identification (e.g.,
the return variable of input access functions). Generally,
these on-demand input access functions are easily recog-
nizable with well-summarized features (e.g., shared string
constants [9], [[12]], or internal code patterns [11]). However,
Lua scripts/bytecode usually parse all input fields in a
uniform way before network request dispatching, and URI
handlers (i.e., handler function for each specific request
path) would fetch these parsed fields as input parameters
through diverse callback mechanisms. In this instance, Lua
code fetches inputs from variable fields instead of functions,
requiring a new source identification approach. The most
recent work LuaTaint [22] aggressively views all input
parameters of URI handlers as taint sources. Obviously,
this heuristic would induce numerous false positives. Even
worse, LuaTaint’s framework-specific design (i.e., can only
handle services implemented upon LuCI [28]] framework)
would cause significant false negatives.

e C3: C-Lua Data Flow Modeling. Furthermore, the C-
binary and the Lua script/bytecode usually exhibit fre-
quent and complex communication, including the data flow
through the application programming interfaces (API) and
the inter-process communications (IPC). Although there
have been studies [32], [33], [34], [35] on cross-language
communication modeling (e.g., C-Python, C-Java), none of
them has constructed the data flow model between C and
Lua. Without a precise and complete communication model,
we can hardly identify those potential C-Lua vulnerabilities.

Our Work. To address these challenges, we present

FirmCross, an automatic static vulnerability detection ap-

proach for modern C-Lua hybrid web services of Linux-

based firmware. First, FirmCross addresses multiple coexisting

obfuscation mechanisms in Lua bytecode via an invariant-
based structure deobfuscation technique and a static bytecode
diffing-based data deobfuscation technique. The rationale be-
hind this is that obfuscated bytecode still contains invariant
features (e.g., length-header and fixed-termination structure,
site-preserving characteristics, prototype structure consistency,
see [RII-C) enabling field order recovery, while differences
between obfuscated and normal bytecode reveal data trans-
formation rules. Second, based on the key observation that
Lua URI handler registration follows deterministic patterns
and source parameters of URI handlers exhibit distinct usage
characteristics, FirmCross identifies Lua-specific sources by
analyzing the registration behaviors of URI handlers and data
usage patterns of handler parameters. Third, FirmCross lever-
ages the deterministic patterns of C-Lua communication to
construct the communication model covering API and IPC. It
enables cross-language data flow tracking, thereby supporting
cross-language vulnerability detection.

Evaluation Results. We have implemented a prototype of
FirmCross and evaluated it on datasets from existing works [9],
[8], [12] and real-world firmware, including 73 firmware
images from 11 vendors. The evaluation results indicate that
FirmCross can deobfuscate all custom interpreters extracted
from real-world firmware, while LuaHunt [31] failed to handle
anyone due to the insufficient support for obfuscation types
and the lack of automation capabilities. In addition, compared
to LuaTaint [22], we achieved 12.96 times as many identified
Lua sources with a 4.67X improvement in accuracy. Benefiting
from cross-language taint tracking capabilities and enhanced
Lua source identification, FirmCross achieves superior perfor-
mance in vulnerability detection by detecting more vulnera-
bilities while maintaining comparable precision compared to
existing works. Specifically, FirmCross detected a total of 696
vulnerabilities with a 33.27% precision rate. The number of
vulnerabilities is 6.82X that of MangoDFA [20] and 14.5X
that of LuaTaint [22], while maintaining comparable precision.
Notably, FirmCross discovered 610 0-day vulnerabilities, with
31 vulnerability IDs assigned until now. We have responsibly
reported these 0-day vulnerabilities to relevant vendors and
received official acknowledgments from Xiaomi, TP-Link, D-
Link, and Tenda.

Contributions. We make the following major contributions:

o We propose three key techniques to boost the effectiveness
of detecting taint-style vulnerabilities in C-Lua hybrid web
services of Linux-based firmware, including Lua bytecode
deobfuscation based on structure invariant features and byte-
code diffing, Lua table-based source identification, and C-
Lua cross-language communication modeling.

« We implemented the three techniques into a prototype
FirmCross, and extensively evaluated it on real-world Linux-
based firmware. Results show that FirmCross significantly
outperforms SoTA approaches in Lua bytecode deobfusca-
tion, Lua source identification, and vulnerability detection.

o We detected 696 vulnerabilities during experiments, among
which 610 are 0-day vulnerabilities. After responsibly re-



porting these 0-day vulnerabilities, till now, we have received

official acknowledgments from Xiaomi, TP-Link, D-Link,

and Tenda, with 31 vulnerability IDs assigned.

We have released the code and dataset [[] to facilitate future
research.

II. EMPIRICAL STUDY AND BACKGROUND

As mentioned in[§]} existing works commonly over-simplify
the composition of modern hybrid firmware web services,
particularly omitting Lua-based components in their analysis.
Hence, to comprehensively understand the security risks of C-
Lua hybrid firmware web services, we performed a large-scale
empirical study within IoT ecosystems. Accordingly, we also
provide necessary background information about these hybrid
web services for ease of understanding our solutions.

A. Study Design

Research Questions. In this study, we seek to answer the

following questions:

e RQI1: How prevalent are Lua-C hybrid web services in
modern firmware, and what service-delivery mechanisms
have been employed? (see [SII-B)

« RQ2: How prevalent is the Lua bytecode obfuscation in
modern firmware, and what obfuscation mechanisms have
been employed? (see

Methodology. First, we leveraged Firmadyne Scraper [3] to

collect a large amount of firmware images from six major

vendors, including TP-Link, D-Link, Ruijie, Xiaomi, Netgear
and Tenda, which are the main testing targets of previous
works [8], [9], [L13], [20]. Following existing threshold cri-
terion [23]], a given firmware image is considered to contain

Lua components only when it includes more than 50 Lua

files, either in source or bytecode format. After that, we

manually examined firmware web services and confirmed
whether each service was implemented using both C binaries
and Lua scripts/bytecode. Finally, we analyzed whether the

Lua bytecode has been obfuscated. To faithfully confirm the

existence of bytecode obfuscation, we used the official Lua

interpreter to load each under-test Lua bytecode file. If the
bytecode cannot be successfully loaded, it must have been
guarded with obfuscation techniques.

B. C-Lua Service Prevalence and Mechanisms

Prevalence of C-Lua Hybrid Services. As shown in
we collected 4,012 firmware images in total and successfully
extracted the corresponding filesystem for 2,461 of them,
while the others failed due to firmware encryption or the
nonexistence of the filesystem. Among these 2,461 analyzable
firmware images, we identified 38% firmware instances (i.e.,
937/2,461) containing C-Lua hybrid web services. Considering
the wide existence of such hybrid services, we are highly
motivated to detect implied vulnerabilities among them.

C-Lua Service-delivery Mechanisms. As shown in
C-Lua hybrid firmware web services, similar to C-only

Uhttps://github.com/prankster009/FirmCross

TABLE I: Statistic Results of Empirical Study.

Vendor #FW #FW with # FW with Hybrid # FW with #FW with
Total  Extractable FS Web Service Lua Bytecode Lua Obfuscation
XIAOMI 42 0 2 40 40
TP-Link 1957 1256 469 273 267
Ruijie 623 342 323 0 0
Netgear 501 365 27 9 9
Tenda 715 349 66 0 0
D-Link 174 107 10 0 0
ALL 4012 2461 937 322 316
FW: Firmware Image; FS: Filesystem;
Request Hanlding & Dispatching
@ Network Facing
@ CGI C-Binary |[€—  C-Binary Server [—> B C:) Cfiil/gu; o
(Web Service Entry) ytecode/scrip

@ Service Functional Components

Other Components 1

Lua Bytecode/Script
Fig. 1: General Architecture of C-Lua Firmware Web Service.

ones, commonly rely on a C-binary network-facing server(®)
to receive and preprocess network requests. After that, the
network-facing server(®) would dispatch requests to three
distinct targets, including internal server handler functions(®),
external Common Gateway Interface (CGI) C-binaries(®) or
external CGI Lua scripts/bytecode(®). Finally, specific service
functional components(@®) would be executed to handle each
dispatched request.

Long-neglected Lua-involved Attack Surfaces. Under the
aforementioned C-Lua service architecture, obviously, there
do exist vulnerability patterns that cannot be handled by
existing firmware vulnerability detectors [8]], [9], [2], [13],
[12], [20]. To be more specific, existing works mainly focus
on the attack vectors associated with C-binaries. According
to the vulnerability triggering paths of these C-
binary-only vulnerabilities generally include ©®, O—®, @@,
and @—@—®, while those involving Lua scripts/bytecode are
totally omitted (e.g., ®—=® and ®—=@—®). Hence, we aim to
additionally detect these Lua-involved vulnerabilities to further
enhance the completeness of firmware vulnerability detection.

C. Lua Obfuscation Prevalence and Mechanisms

Prevalence of Lua Bytecode and Lua Bytecode Obfus-
cation. The C-Lua hybrid service implementations exhibit
two Lua code formats, including Lua source scripts and Lua
bytecode files. Statistically, as listed in 66% (i.e.,
615/937) firmware images with C-Lua web services only con-
tain human-readable Lua source scripts. The remaining 34%
(322/937) contain bytecode-form Lua files. Notably, following
the methodology introduced in we confirmed that 98%
(316/322) firmware images implement vendor-specific byte-
code obfuscation schemes. Hence, we should design reliable
deobfuscation solutions to ensure the feasibility of static taint
analysis for C-Lua hybrid firmware services.

Background Information about Lua Bytecode. As shown

in a Lua bytecode file is generated by compiling
the Lua source script through a Lua interpreter or compiler.
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Fig. 2: Lua Bytecode Specification.

During runtime, the Lua interpreter also serves as the executor
of Lua bytecode files. Hence, if the firmware image contains
obfuscated Lua bytecode, it must also include a vendor-
customized interpreter to execute such obfuscated bytecode.
For ease of understanding the mechanisms of Lua bytecode
obfuscation, we here also provide a brief introduction to the
Lua bytecode specification. As illustrated in [Figure 2] the Lua
bytecode file consists of a 12-byte file header and multiple
function prototypes which are organized in a prototype-chain
form. To be more specific, the file header stores essential
compiler metadata (e.g., endianness and version), and each
function prototype contains metadata about a specific Lua
function (e.g., number of parameters, constants, and instruc-
tions). Besides, also illustrates the structure of each
single bytecode instruction and constant.

Understanding Real-world Lua Obfuscation Mechanisms.
As mentioned above, once Lua bytecode is obfuscated, there
always exists a corresponding vendor-customized interpreter
packed in the firmware image, serving as the executor of the
obfuscated bytecode. Besides, the Lua obfuscator commonly
resides within the corresponding vendor-customized inter-
preter. Thus, we can easily obtain the obfuscated bytecode by
using the vendor-customized interpreter to compile arbitrary
source code inputs. These trials potentially provide valuable
clues for investigating the landscape of real-world Lua obfus-
cation mechanisms. In total, we collected 316 interpreters from
firmware images with Lua bytecode obfuscation. Besides, we
leverage a representative Lua source script dataset to reproduce
the vendor-customized obfuscation procedures. Specifically,
we first manually wrote source scripts encompassing compre-
hensive usages of all instruction and constant types. Moreover,
we also extracted Lua source scripts from all collected real-

world firmware. In total, this dataset includes 204 Lua source
code files with 164,305 instructions and 45,583 constants,
which are sufficient to cover all usage scenarios. Here, we
obtain the following key observations:

e Observation-1: Coexisting structure obfuscation and data
obfuscation. (1) Structure obfuscation reorders the 10 fields
within the function prototype while preserving each field’s
internal organization. For instance, the instructions array still
maintains its original sequence order, and individual instruc-
tion instances retain their structures. (2) Data obfuscation
alters specific values within fields, such as opcode, operand,
constant type, and const (highlighted in red in [Figure J)),
containing three data transformation rules, including data
shift that maps a number to another, XOR operation which
is commonly used for strings, and storage format conversion
which mainly refers to the conversion between integer
format and floating-point number format.

e Observation-11: Bytecode invariants under multiple obfus-
cations. (1) Length-header and fixed-termination structure:
The Lua specification mandates that all array structures
within bytecode (e.g., instructions, constants, protos, string-
bytes) must begin with a length header, and all instructions
regions are terminated by a fixed RETURN instruction. (2)
Size-preserving characteristics: Obfuscations do not modify
length indicators for array structures (e.g., instructions, con-
stants, protos, string-bytes). (3) Prototype Structure Consis-
tency: All prototypes within the bytecode maintain identical
structure field order.

III. DESIGN OVERVIEW

In this section, we first introduce the target scope and
threat model of our work. Next, we present a real-world
vulnerability as a motivating example to illustrate how to
detect cross-language vulnerabilities in modern web services
and the associated technical problems. Finally, we explain in
detail the challenges of detecting vulnerabilities in modern
IoT web services crossing Lua and C, and then offer our key
insights for addressing these challenges.

A. Target Scope and Threat Model

Similar to existing work [8]], [9], [13l], [20], [12], [2], we
assume the adversary can send crafted network requests to a
device’s web service, aiming to compromise the victim device.
By leveraging IPC and cross-language API, the adversary
may exploit vulnerabilities in various web service components,
including network-facing binary server ®, CGI binary @, CGI
Lua bytecode/script ®, and generic functional components
@, as shown in Therefore, this paper considers
all these web service components as vulnerability detection
targets. Since taint-style vulnerabilities are quite prevalent in
web services [8], [9], [12], [LO], [13], this paper focuses on
detecting such vulnerabilities, including command injection
(CWE-78) and buffer overflow vulnerabilities (CWE-119).



02. function wol_wake(input_table, URI_path)

03. log("request URI path" .. URI_path)

4. local user_if = input_table.user_if

05. local mac = input_table.mac

06. local cmdl = string.format([[/usr/bin/ether-wake -b -i %s %s]],
07. user_if, mac)

08. 1ib.forkExec(cmdl)

09. local ip = input_table.ip

10. local cmd2 = "/usr/sbin/portscan "..lib._cmdformat(ip).." "
11. ..1lib._cmdformat(mac).." portscan”

12. 1ib.forkExec(cmd2)

13. | end

15. int sub_4027CC(char *mac)

16. | {

17. char file_name[512];

18. memset(file_name, @, sizeof(file_name));

19. // buffer overflow

20. sprintf(file_name, "/tmp/portscan_result/%s", mac);
21.

22. |}

Fig. 3: Motivating example including two 0-day vulnerabilities
discovered by FirmCross. For readability, we restructure the
decompiled code and rename the symbols.

B. Motivation Example

We showcase two 0-day vulnerabilities detected by
FirmCross in Applying taint analysis to these vulner-
abilities requires three key steps: Lua bytecode deobfuscation,
Lua-specific source identification, and C-Lua cross-language
communication modeling. First, the code of both vulner-
abilities was compiled to bytecode and obfuscated, which
could not be recognized by taint analysis tools. Therefore,
the bytecode must be deobfuscated to recover the original
bytecode before actual taint analysis. Second, taint analy-
sis typically starts from an adversary-controllable variable,
known as a taint source, which should be first identified.
URI handlers (e.g., wol_wake ()) in Lua scripts/bytecode
commonly receive network input fields (e.g., input_table
in parsed before request dispatching) through their
parameters. Specifically, the input is parsed and stored in
fields of input_table, whose type is a Lua table. Only
by identifying these adversary-controllable variables/fields, the
taint analysis can track their propagation for vulnerability
detection. For example, the user_if and mac fields ex-
tracted from input_table at line 4-5 are propagated to
cmdl string, then executed at line 8 without strict input
sanitization; this allows attacker to send malicious inputs like
user_if=";cat /var/passwd;" to remotely execute
"cat /var/passwd" command. By tracking such a taint
propagation flow, taint analysis detects this vulnerability as a
command injection. Third, another vulnerability is triggered
by the Lua taint source input_table as well, but the
vulnerable code is located in the portscan binary. In this
case, the taint analysis will fail to detect the vulnerability
without modeling the cross-language communication of C-
Lua. More specifically, the inputs stored to ip and mac are
passed to portscan after input format checks introduced
by 1ib._cmdformat () at line 10-11, so the taint analysis

must further analyze the portscan binary to see whether
these inputs will cause vulnerabilities. By modeling that the
ip and mac are passed through arguments, the taint analysis
can further find that the mac input is propagated to the
sprintf () function call at line 20 without size checking,
and detect the vulnerability as a buffer overflow.

C. Key Challenges and Insights

In light of the technical problems of the novel scenario men-
tioned above, we summarize the following three challenges
and then offer our key insights to deal with them.

C1: How to deal with diverse obfuscations of the Lua byte-
code automatically and efficiently. As detailed in byte-
code obfuscation consists of structure obfuscation (shuffling
bytecode structure orders) and data obfuscation (transforming
bytecode field values). For structure obfuscation, LuaHunt [31]]
first leverages binary reverse engineering to understand how
the bytecode structure is shuffled (i.e., what is the shuffled
structure field order). However, because it introduces reverse
engineering, LuaHunt necessitates heavy expert efforts. This is
because the obfuscated interpreter binary likely lacks symbols
and involves syntactic differences introduced by customiza-
tion, version divergence, and compiler optimizations, where
existing automatic reverse engineering techniques (e.g., binary
diffing) likely fall short [36], [37], [38].

Regarding data obfuscation, LuaHunt leverages a mutation-
based semantic testing technique to identify data transforma-
tion rules for deobfuscation. Specifically, it selects opcode
regions of bytecode compiled from pre-constructed Lua source
gadgets as mutation targets; then it randomly mutates the
opcode regions. After that, LuaHunt uses the obfuscated inter-
preter to execute the mutated bytecode to get outputs; if the
output is equivalent to the expected source code output, then
the mutation operation is used for deobfuscation. However,
the mutation-based approach faces fundamental limitations
when handling multiple co-existing obfuscations. Specifically,
as the vendor-specific custom interpreter may simultaneously
obfuscate multiple kinds of data elements (e.g., opcode and
operand of instructions, type and const of constants), the
mutated regions expand. The worse case occurs when the
string constants are obfuscated, which further makes the ex-
ploration space for mutations grow exponentially. As a result,
the mutation-based technique will fail to recover bytecode
involving co-existing data obfuscation schemes.

Insight-I: Leverage invariant features and bytecode dif-
ference for Lua bytecode deobfuscation. The obfuscated
interpreter, responsible for executing obfuscated bytecode,
must reside in the firmware. By leveraging this interpreter
to compile pre-constructed source code, we can generate
controllable obfuscated bytecode.

To address the challenges of structure deobfuscation, we
propose an invariant-based approach. As detailed in
bytecode exhibits invariant features even under multiple types
of obfuscation. Based on these invariant features, we can iden-
tify the actual field orders in obfuscated bytecode structures.



Specifically, FirmCross extracts signatures of the field invari-
ant features from pre-constructed Lua source gadgets, and then
matches the signatures in obfuscated bytecode compiled from
the same source gadgets to identify corresponding structure
fields. By using this technique, FirmCross automatically infers
structure field orders of obfuscated bytecode without reversing
the obfuscated interpreter binary.

To address the challenges of data deobfuscation, we propose
a static diffing-based approach. The other key observation
is that the data transformation rules can be directly in-
ferred by statically comparing obfuscated bytecode and normal
bytecode, without relying on heavy mutation-based testing.
Specifically, by comparing value differences in the same fields
(e.g., opcode and operand of instructions, type and const of
constants) between obfuscated bytecode and normal bytecode
generated from the same source gadget, FirmCross can infer
the data transformation rules for corresponding fields. This
static bytecode diffing-based method can handle scenarios
where multiple data obfuscations coexist, while avoiding the
exponential exploration space problem inherent to mutation-
based approaches.

C2: How to automatically identify Lua-specific intermedi-
ate sources. As described in the Lua-specific source
like inputs_table is essential for source identification. Such
a source, denoted as intermediate source (IS), is identified
from the middle of network input handling instead of the
start point of receiving network inputs, which greatly improves
the effectiveness of source-to-sink taint propagation, and has
been adopted by many previous work [9], [L1], [12], [L3],
[20]. However, Lua scripts/bytecode and C binaries exhibit
fundamentally distinct language-specific characteristics. C bi-
naries predominantly utilize pointer-based memory access,
necessitating comparatively lengthy code implementations and
typically encapsulating frequently used operations into ded-
icated functions. In contrast, Lua scripts/bytecode leverage
table structures to achieve complex data access with mini-
mal code. Consequently, the IS access method is different
between C binaries and Lua scripts/bytecode within hybrid
firmware web services. The C binaries predominantly employ
the dedicated function, namely the input access function (e.g.,
websGetVar(wp, "time”)), to retrieve input fields from struc-
tured data (e.g., HTTP requests), which is easily recognizable
(e.g., keywords and function signatures) and provides clear
guidance (e.g., the return variable of input access functions).
However, Lua scripts/bytecode usually parse all input fields in
a uniform way before network request dispatching, and URI
handlers would fetch these parsed fields as input parameters
through diverse callback mechanisms. Consequently, existing
source identification methods [9]], [[11]], [12] based on the input
access function cannot locate Lua-specific IS.

To address this issue, LuaTaint [22] leverages a framework-
specific and file path-based approach to identify Lua-specific
ISs. Specifically, it assumes that all function parameters under
specific file paths within the LuCI [28] framework are sources.
However, this approach is coarse-grained and not scalable.

First, because not all parameters of URI handlers are sources
and its file path-based heuristic solution is rough, it leads to
many false positives. In addition, it can hardly locate sources
within web services under other frameworks [24], [39], [27],
which leads to significant false negatives.

Insight-II: Leverage registration mechanisms of URI han-
dlers for Lua table-based source identification. As shown
in Lua-specific sources can be identified at table-
structured parameters of URI handling functions. Therefore,
the core problem is to identify URI handlers. We observe that
Lua URI handlers strictly follow a registration-callback mech-
anism, exhibiting deterministic registration patterns. Based on
how callbacks (i.e., URI handlers) are registered, our key idea
is to identify URI handlers based on two characteristic patterns
of their registration procedures. The first pattern is that the
registration function is called with characteristic arguments
(e.g., a nested registry table or a function name string). The
second pattern is that the registration function exhibits specific
registering code logic (see [SIV-BI). After identifying regis-
tration procedures, we identify the registered URI handlers
and then distinguish attacker-controllable parameters as taint
sources, which is based on the common field-based data
accessing paradigms of table-based source variables.

C3: How to accurately model the communication between
C-binaries and Lua scripts/bytecode? There are frequent
(e.g., 167 times per firmware on average as shown in
and diverse communications (via API and IPC) between C-
binaries and Lua scripts/bytecode, which inherently introduces
cross-language vulnerabilities. Although many studies [32],
[33], [34], [35] have focused on cross-language communica-
tion modeling (e.g., C-Java, C-Python), there is no work that
constructs the communication modeling between C and Lua.
Without a comprehensive and accurate C-Lua communication
model, we cannot detect potential cross-language C-Lua vul-
nerabilities within the firmware hybrid web service.

Insight-III: Leverage deterministic patterns to construct
C-Lua cross-language communication models. Even though
C-Lua communications are diverse in the real world, we find
that they all follow standardized paradigms defined by the
operating system (e.g., system calls) or the C/Lua specifica-
tions. Therefore, we design deterministic patterns to identify
and model such cross-language communications. Specifically,
there are two kinds of communications, i.e., API-based and
IPC-based communications. For API-based communications,
the C specification indicates that C binaries invoke functions
of Lua scripts/bytecode via the lua_State structure, and the
Lua specification indicates that Lua scripts/bytecode invoke
C binary functions through standardized loading mechanisms.
For IPC-based communications, we mainly focus on the
IPC triggered by command execution, tracing command-line
parameters used by command execution functions according
to the operating system specification (e.g., execve () in C,
os.execute () in Lua). We present more details in
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Fig. 4: FirmCross Workflow.

IV. DETAILED APPROACH

Based on our key insights mentioned in we design
FirmCross, an automatic taint-style vulnerability detection
approach for modern C-Lua hybrid web services of Linux-
based firmware. As shown in FirmCross works
in three steps: @ FirmCross takes firmware as input and
checks whether Lua code within firmware is obfuscated. If
obfuscation is detected, it conducts bytecode deobfuscation to
convert obfuscated bytecode to normal bytecode (see [SIV-A).
® After that, FirmCross identifies sources (see and
sinks for C binaries and Lua scripts/bytecode within firmware.
® Subsequently, FirmCross constructs a C-Lua communica-
tion model and performs taint propagation within and across
languages (see §IV-C). Finally, FirmCross generates a vulner-
ability report when it detects unsanitized tainted data flowing
from a source to a sink.

A. Lua Bytecode Deobfuscation

Firmware containing obfuscated Lua bytecodes must have
the vendor-specific custom interpreter to execute it. The
custom interpreter allows us to generate controllable obfus-
cated bytecode by carefully constructing source code inputs.
FirmCross first performs invariant-based structure deobfus-
cation (§IV-Al) and static diffing-based data deobfuscation
(SIV-A2), then carefully verify whether the deobfuscation
generates correct results. The detailed verification steps are
presented in (§V-C).

1) Invariant-Based Structure Deobfuscation:

Structure deobfuscation needs to identify three structure fields,
namely Instructions, Constants, and Protos fields. Instructions
and Constants fields constitute the core data regions for byte-
code execution logic; the Protos field contains instructions and
constants of sub-functions, so is also essential for recovering
the entire bytecode structure. Even though other structure
fields can also be deobfuscated, they either serve debugging
purposes (e.g., source line number), or can be recovered by
analyzing the deobfuscated fields as described in

We deobfuscate bytecode structures through 4 steps: First,
we design signatures based on field invariants described
in Second, we construct a source gadget and extract
its invariant-based signatures. Third, FirmCross matches the
invariant-based signatures in the source gadget’s obfuscated
bytecode compiled with a given obfuscation interpreter. Fi-
nally, FirmCross extracts offsets between structure fields,
which represent the bytecode structure obfuscation scheme,
and then leverages this scheme to deobfuscate any bytecode
compiled with the given obfuscation interpreter.

Invariant-based Field Signatures. Based on the bytecode
invariants detailed by Observation-II in we further
design signatures to infer variant structure field characteristics
introduced by structure obfuscation, i.e., the offsets between
structure fields. For instructions and constants fields, the
invariants suggest strong data characteristics, so we design
signatures to directly determine their offsets in a structure.
For the instructions field, the invariant suggests it should start
with a 4-byte instruction number counter and terminate with
2 RETURN instructions when a return statement is used. For
the constants field, the invariant suggests it should also start
with a 4-byte constant number counter; besides, by definition,
the constants must hold all constants from the specific source
code scope. By using these data features, the signatures can
determine the starting and ending offset of the instructions and
constants field.

For the protos field, it represent functions defined in an
inner scope of an outer code range (e.g., sub-functions defined
within a function), and can be recursively nested. Therefore,
inferring their offsets is more complex. Fortunately, there are
multiple invariants suggesting that we can infer the offsets of
protos fields based on the offsets of other fields. The most
important invariant is that all protos fields are of the same
structure type, which contain fields of sub-function bytecode,
including instructions, constants, and inner protos. This in-
variant suggests we can determine the order of instructions,
constants, and protos fields by comparing the offsets of inner
and outer instructions/constants fields. Based on such order,
we can further identify the first field of outer and inner protos,
and thus calculate the offset between them. Since this offset
is a sum calculated of the size of fields within outer protos
fields and offsets between these fields, the offsets between
protos and instructions/constants can be calculated using the
known size (e.g., sizes of instructions and constants fields) and
offset values (e.g., offsets between instructions and constants).
Therefore, we leverage the offset between outer and inner
protos as the signature to infer offsets between protos and
other fields. We showcase the above signatures in [Figure 5|

Field Signatures Extraction. We carefully constructed a
source code gadget to extract distinct field signatures as
shown in We use the outer protos field as an
example. The instructions comprise four instructions ending
with two identical RETURN instructions, hence its signa-
ture is [4:4][8:any][4:RETURN][4:RETURN] where any rep-
resents any value. Notably, the instructions signatures do



Crafted Source Code

00000000 1b4c 75 61 51 00 01 04 08 04 08 00 (OIO0IO000 :

Bytecode Data L |Fid | @ ® ® @

Range [0x20,0x34)[0x34,0x47)|[0x5F,0x6F) [[0x6F,0x84),

01. | local function innerf() : :

02. local b = "two-str" | [ ) £ 00000010 — { Structure Inference
03. return Proto Outer :Complle E 00000020 ! 2400 00 00 41 00 00 00 1e 00 80 00J : Step Inference Result

04. end Proto E E é E Instructions<Constants<Protos

05. local a = "a-str' : E 00000030 1e 00 80 00 01000000 04 060000 00000000 E 1 First-Inner-Field(FIF): Inner Instructions®)
06. | return ' L J First-Outer-Field(FOF): Outer Instructions@

l Signature Extraction

® ®
00000040 00 61 2d 73 74 72 00

: — :
£ 00000050 J R

2 First-Offset(FO):0x14(FOF-0xC)
Inner Prototype Start(IPB):0x4B(FIF-FO)
Outer Protos & Start:0x47(IPB-4)

Q & L4

Proto Field Signature !
p ' Bl H ¢ Structure Recovery
(instructions |[44][8:any][4:RETURN][4:RETURN] [Signature: 00000060 01000000 1e 008000 100800001 ;  0x00" "5 -0x47
3 H File Header Num: 1
Outer 2Constants [4:1][1:any][8:6][6:any]' . Match . (())’:;E $ox14F0) ; §0x14(70) (()));:1}?
(®Protos [EEN[FiSEORSeEany]First- Inner-Field 00000070 00 00'00 04 08700/0000700/00'00°00 74 77 6f2d Ox34-- @Instructions| / @lnstructions| _ Ox6E
Lner @Instructions |[#3][4:any][4:RETURN][4:RETURN] ' 3 b - @Constants |/ | @Constants |
@Constants  [[4:1][1:any][8:8][8:any] : x Protos Protos
00000080 73 7472 00 00 00 00 00 00 00 00 00 00 00 00 00 :

[Sizej:Valuei][Sizea:Valuea] denotes that Valuep occupies Sizej bytes while Valueo immediately follows, occupying Slze2 bytes.
Fig. 5: A Running Example of Structure Deobfuscation.

not leverage the specific value of the RETURN instruction
but identify the two repeated 4-byte patterns, ensuring they
work even when instructions are obfuscated. The constants
field has only one string-type constant, and its signature
is [4:1][1:any][8:6][6:any] (consistent with the string-type
constant structure, see [Figure 2). The constants signatures
do not leverage the string constant content, thus remaining
effective even under string content obfuscation.

Field Signature Matching. After obtaining the signatures of
instructions and constants, we compile the source code gadget
into bytecode and match signatures in the bytecode. As shown
in we locate the outer prototype instructions region
as [0x20,0x34) and its constants region as [0x34,0x47), while
the inner prototype instructions region is [0x5F0x6F) and its
constants region [0x6F 0x84).

Structure Deobfuscation. We first infer the position of the
outer protos field, and then recover the bytecode structure
according to instructions, constants, and protos field of the
outer prototype. We use the example in[Figure 3to explain how
to infer the outer protos position following a 4-step procedure:
@ Because field @ is prior to the field @, the instructions field
is located before constants field; because fields ®+® are prior
to fields ®+® while ®+® are in the outer protos field, so the
order of three fields is instructions, constants, protos. @ As
the first outer field (FOF) is ©® which starts from 0x20 and
the outer prototype starts from O0xC, so the first field offset
(FO) is 0x14 (0x20-0xC). ® As the first inner field (FIF) is
@ which starts from Ox5F, so the inner prototype starts from
0x4B (0x5F-FO). ® Since there is a number header with a
length of 4 (size_t) between the outer protos field ® start and
the inner prototype start, so the outer protos field ® starts
from 0x47 (0x4B-4). Since the lengths of these three fields
vary across different bytecode instances, we use relative offsets
rather than absolute positions for localization. Thus, the final
recovered bytecode structure is as follows: The first field is
instructions, with an offset of 0x14, followed by constants
field with an offset of 0 from the previous field, followed by
protos, with an offset of 0 from the constants field.

2) Static Diffing-Based Data Deobfuscation:
Our static diffing-based obfuscation approach compiles source
code with standard and obfuscated interpreters to generate
bytecode for diffing-based analysis. So we first prepare a
source code dataset to representatively cover all data usage
scenarios. Specifically, we extensively collect 204 scripts fol-
lowing the method introduced in [§II-C| After compiling the
source code into standard and obfuscated bytecode, FirmCross
extracts all constants and the instructions fields from the
two bytecode files for diffing-based analysis. Subsequently,
FirmCross iterates the constants and instructions fields and
compares each constant and instruction element. Specifically,
the compared regions are opcodes and operands of instruction
elements, as well as the type and data regions of constant
elements. If the comparison finds inconsistency, FirmCross
identifies that the interpreter obfuscates the bytecode data.

When data obfuscation is identified, FirmCross further
analyzes how the data is obfuscated. Based on our observation,
the existing data transformations can be classified into three
categories: (1) data shift that maps a number to another; (2)
XOR operation which is commonly used for strings; and
(3) storage format conversion, which mainly refers to the
conversion between integer format and floating-point number
format. If any two elements from two bytecode files with
the same position are inconsistent, FirmCross automatically
conducts inspections according to the above three categories
of data transformations and records the specific transformation
pattern that is applied.

02. | dispatch_tbl.port_speed_supported = {

3. [*".args"] = "supported”,
4. [".super"] = {

05. cb = port_speed_supported,
06. }

e7. | }

09. | function dispatch(http_form)

10. local ctl = require "luci.model.controller”
Lo return ctl.dispatch(dispatch_tbl, http_form)

12. | end

11318

14.

15. register_keyword_action("wol", "wake", "wol_wake")

. 6: Two types of URI Handler Registration in Lua.



B. Taint Source Identification

1) Table-Based Source Identification:

FirmCross first leverages registration mechanisms of URI
handlers to identify candidate Lua sources. To be specific,
FirmCross utilizes the registration parameter patterns and
registration behaviors to accurately locate the URI handlers
and identifies all parameters of these handlers as candidate
sources. Subsequently, FirmCross further uses data storage
characteristics to distinguish attacker-controllable parameters
as table-based ISs.

Handler Registration-Based Source Candidate Identifi-
cation. FirmCross initially identifies candidate registration
functions based on registration parameter patterns. The core
idea here is that the registration function is invoked with
parameters describing the URI handlers to be registered,
and such parameters are easily identifiable. Specifically, we
observe two types of these parameters. The first type directly
conveys the function name (e.g., wol_wake at line 15 in[Fig-|
[ure 6). The second type of parameter describes a URI handler
using a registry table (e.g., dispatch_tbl at line 2
in [Figure 6], where the target URI handler function (e.g.,
port_speed_suppoted at line 5 in is stored
in a table field. Therefore, both types of parameters refer to
URI handlers. By analyzing the characteristics of function
parameters, we first identify candidate registration functions
and record the registered candidate URL handlers for further
analysis (line 2 of [Algorithm TIJ). Specifically, FirmCross
analyzes the parameters of all functions: if a parameter is a
string corresponding to a function name, or a table contain-
ing function objects internally, the function is considered a
candidate registration function.

Simply leveraging the parameter patterns to identify reg-
istration functions easily leads to false positives as debug
functions usually print function names. To filter out such
false positives, FirmCross further analyzes the internal logic
to confirm that the previously identified candidate regis-
tration functions exhibit registration behaviors. Specifically,
FirmCross identifies two kinds of registration behaviors (line
3 in [Algorithm T). First, registry table-based registration func-

tions (e.g., ct1l.dispatch at line 11 in contain
internal logic to execute the handler object stored within the

table. FirmCross identifies such registration logic by detecting
whether the stored handler is used by CALL-like instructions
within the function. Second, name binding-based registration
functions (e.g., register_keyword_action at line 15
in contain internal logic to store these function-
name strings in a Lua table with a constant string/number,
which will then be used to invoke corresponding URI handlers
once the request path matches the registered path. FirmCross
identifies such registration logic by detecting whether the
function-name strings are used by SETABLE-like instructions
with a constant key. If confirmed, FirmCross records the actual
registration function. At this stage, FirmCross has located ac-
tual registration functions, RealR, and identifies all parameters
of URI handlers registered by actual registration functions as
candidate sources.

Algorithm 1 Lua Table-based Source Identification

Input: F' - All Lua Functions

OQutput: Source - The identified source list

: CandidateR, Real R, Handler All, S < ()

: CandidateR, Handler All < RegParamCheck(F')

: RealR < RegLogicCheck(CandidateR)

: for RegF' € RealR do
HandlerList « getHandler(Handler All, RegF)
NewSource < Handler ParamCheck(Handler List)
Source U Identi fiedSource

end for

return Source
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Parameter Usage-Based Source Filtering. After collecting
candidate sources, FirmCross further distinguishes control-
lable sources from them. Based on our observation, source
parameters commonly exist in the form of Lua table structure,
due to the hierarchical nature of multi-field inputs (e.g.,
input_table at line 2 in [Figure 3), while uncontrollable
parameters are stored as primitive types, such as number and
string (e.g., URI_path at line 2 in[Figure 3). In addition, URI
handlers registered by the same registration function at the
same registration parameter indices exhibit consistent source
parsing and propagation patterns, sharing identical parameter
structures (i.e., which parameter serves as the source). Given
that, if any parameter within a URI handler is found to exhibit
nested access, all parameters at the corresponding indices of
such URI handlers are marked as table-based sources in the
form of Lua table structure. Specifically, FirmCross extracts all
URI handlers, HandlerList, registered by the same registration

function, RegF (line 5 in [Algorithm TJ). After that, FirmCross

iterates through each parameter of every URI handler to detect

nested access patterns (line 6 in [Algorithm IJ). If detected,

FirmCross classifies all parameters at the same index position
across such handlers as taint sources (line 6-7 in[Algorithm TJ.
2) Function-Based Taint Source Identification:

For C binaries, FirmCross strictly follows the mangoDFA [20]
approach to identify sources, including both direct sources
(e.g., read ()) and intermediate sources (e.g., getenv ()).
For Lua scripts/bytecode, we have found that in the LuCT [2§]]
framework, while sources are generally retrieved via table-
based URL handler parameters, some sources are retrieved
using dedicated functions like 1uci.http.formvalue ().
To make source identification more comprehensive, we have
also incorporated these LuCl-specific functions into our
method, which is consistent with LuaTaint [22].

C. Taint Propagation

FirmCross incorporates both single-language and cross-
language taint propagation. For single-language taint propaga-
tion, FirmCross leverages existing techniques [20] to analyze
C code, and implements a bytecode-based taint propagation
engine to analyze Lua code. During single-language taint
propagation, FirmCross recognizes specific input sanitization
functions by their names (e.g., atoi() in C code and
tonumber () in Lua code), and untaints the flow that calls
these functions to filter out false positives. This untainting
approach is in line with prior works [8], [9], [20].



For cross-language taint propagation, FirmCross first iden-
tifies cross-language data propagation points (DPPs) and then
constructs the communication model for each identified point.
Data Propagation Point Identification (DPPI). The data
propagation across C binaries and Lua scripts/bytecode can
be divided into two types, including API and IPC.

e API-based DPPI. FirmCross identifies Lua-to-C and C-
to-Lua API-based DPPs accordingly. As Lua-to-C func-
tion calls can be dynamically registered, we must first
identify C functions registered by Lua interpreter. When
loading a C library for registration, the Lua interpreter
will call the library’s initialization function, which calls
lual_register () function to register C functions. Each
lual_register () function call registers a function table
(an array containing function names and their addresses),
which is passed through its arguments. Based on the calling
convention, FirmCross can easily identify the registered
functions and their names. Then, if any Lua function calls
the registered function by its name, FirmCross identifies
the call as a DPP. For C-to-Lua API-based DPPs, they
propagate data by calling a set of specific APIs in order.
Specifically, the C binary loads the Lua script/bytecode
by calling lual_loadfile (), then it obtains a refer-
ence to a Lua function by calling lua_getglobal (),
and after that, it passes arguments with dedicated func-
tions like 1ua_pushnumber () function and finally calls
lua_pcall () to invoke the Lua function. Therefore, we
directly identify such API call sequences as C-to-Lua DPPs.
IPC-based DPPI. FirmCross focuses on command
execution-triggered IPC. Specifically, FirmCross monitors
whether the execution target in command strings (within
command execution functions, e.g., os.execute () in
Lua, system() in C) resolves to a binary executable
and whether command-line parameters is not a constant.
If both conditions are satisfied, FirmCross records the
propagation point as (farget, cmd-param-index), where
target is the target binary/script/bytecode and cmd-param-
index represents the index of non-constant command-line
parameter.

C-Lua Data Propagation Modeling. FirmCross constructs
propagation models based on identified propagation points.
For API-based propagation modeling, when FirmCross con-
firms that parameters passed to cross-language target func-
tions are tainted, it marks these parameters as tainted and
initiates taint propagation within the target environment (pro-
gram/script/bytecode). For IPC-based propagation modeling,
when FirmCross detects that command-line parameters passed
to cross-language targets are tainted within command execu-
tion strings, it marks these command-line parameters as tainted
and activates taint propagation in the target environment.

V. EVALUATION
A. Experiment Setup

Implementation. We have implemented a prototype of
FirmCross using more than 14,500 lines of Python code (i.e.,
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about 4,500 LoC for Lua bytecode deobfuscation, and about
10,000 LoC for source/sink identification and taint tracking).
Considering the co-existence of Lua source scripts and byte-
code in given firmware images, we chose to first convert source
scripts into bytecode using an official Lua interpreter, and then
uniformly conduct taint analysis at the bytecode level. Notably,
the prototype of FirmCross mainly put an emphasis on Lua
code taint analysis and C-Lua cross-language taint analysis.
As for the taint analysis among C binaries, which is not the
key contribution of this work, we chose to directly integrate
the SoTA tool mangoDFA [20] into FirmCross.

Evaluation Questions. Our evaluation is organized by answer-

ing the following research questions:

e RQI1. How effective is FirmCross in detecting taint-style
vulnerabilities in real-world firmware? (see [§V-B))

o RQ2. How effective is FirmCross in Lua bytecode deobfus-
cation? (see

« RQ3. How effective is FirmCross in identifying taint sources
among Lua code? (see

+ RQ4. How effective is FirmCross in C-Lua cross-language
taint propagation? (see [§ V-E)

Dataset. To convincingly demonstrate the effectiveness of

FirmCross, we tried our best to construct a representative

dataset of firmware images as evaluation targets. Specifically,

we considered those benchmark firmware images used by

existing works (i.e., Karonte [8], SaTC [9], EmTaint [10],

and LARA [12]]), and finally collected 13 firmware images

which contain C-Lua hybrid firmware web services. To further

improve the diversity of target firmware images, we randomly

selected 60 latest-version firmware images (i.e., 10 firmware

images from each of the 6 vendors) from the dataset of our

empirical study (see [§II). As such, the final dataset contains

73 firmware images across 11 vendors.

Environment. All experiments were run on a host machine
with a 56-core Intel(R) Xeon(R) CPU and 128GB of RAM
running the Ubuntu 18.04 operating system.

B. Effectiveness of Vulnerability Detection (RQI)

Experiment Overview. In this experiment, we considered
MangoDFA [20] and LuaTaint [22] as baseline tools. Man-
goDFA [20] is the SoTA vulnerability detector for C-binary
firmware, which has experimentally shown better performance
than other C-binary-oriented detectors (e.g., Karonte [8]] and
SaTC [9]). LuaTaint [22] is the SoTA vulnerability detector
for firmware web services implemented in Lua, which out-
performs other Lua-oriented detectors (e.g., LuaCheck [40],
TscanCode [41] and Semgrep [23]], [42]). The comparative
experiments were conducted on the 73 firmware images
collected in our firmware dataset (see [§V-A). We manually
developed PoCs for all reported alerts to dynamically validate
the existence of each identified vulnerability, either on physical
devices or in emulated environments.

Overall Results. According to [Table 1I} the evaluation results
demonstrate that FirmCross detected 696 vulnerabilities in to-
tal with 96.67% vulnerability coverage (VC) ratio and 33.27%



TABLE II: Vulnerability Detection Results of FirmCross, MangoDFA and LuaTaint.
Vendor #Firmware Test Targets FirmCross MangoDFA LuaTaint
#Bin #Lua  #Alert TP FP Prec. vC AVG Time #Alert TP  FP Prec. vC AVG Time #Alert TP FP  Prec. vC AVG Time
TPLink 11 12836 5382 229 56 173 2445%  81.16% 18458 23 8 15 3478%  1159%  163.86 39 13 26 3333%  18.84%  101.84
XIAOMI 10 10076 6530 1016 145 871  1427%  100.00% 15.13 0 0 0 - 0.00%  7.94 0 0o 0 - 0.00%  0.00
NetGear 15 21156 2273 238 17 121 49.16%  92.86%  174.13 214 93 121 4346%  T7381% 17329 78 33 45 4231%  26.19%  19.18
Tenda 10 6184 1102 366 250 116 6831%  100.00%  55.90 12 0 12 0.00% 0.00% 5510 0 o 0 - 0.00% 4848
Dlink 10 6180 1025 156 86 70 55.13%  100.00%  50.33 2 0 2 0.00% 0.00%  49.93 0 0o 0 - 0.00% 2472
Ruijie 10 9940 3590 1 0 1 0.00% - 84.98 0 0 0 - - 81.34 18 0 18  0.00% 1.20
TOTOLink 2 2096 97 77 41 36 5325%  100.00%  22.82 1 0 1 0.00% 0.00%  22.15 0 [ 0.00%  120.00
Motorola 2 1260 112 8 0 8 0.00% - 190.34 8 0 8 0.00% - 190.12 0 0 0 - 045
H3C 1 496 30 0 0 0 44.60 0 0 0 - 44.37 0 0 0 0.56
Mercury 1 280 3 0 0 0 - - 46.99 0 0 0 - - 46.97 0 0o 0 - - 0.01
TRENDnet | 936 124 1 1 0 100.00%  33.33%  97.28 1 1 0 100.00%  33.33%  96.73 2 20 100.00% 66.67% 038
SUM 73 53472 20268 2092 696 1396 3327%  96.67%  100.29 261 102 159 39.08%  1417% 9531 137 48 89 35.04%  6.67% 3273
#Alert: the number of reported vulnerabilities; TP/FP: the number of correctly/incorrectly identified vulnerabilities; Prec.: TP%’FP; VC: vulnerability coverage, calculated as
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precision rate, achieving 6.82X and 14.5X improvements in
VC ratio over MangoDFA [20]] and LuaTaint [22] respectively,
while maintaining comparable precision. To sum up, the
vulnerability detection capability of FirmCross significantly
outperforms existing approaches. In the following, we further
carried out a detailed breakdown analysis of these results.

Breakdown Analysis (VC). Regarding vulnerabilities de-
tected by FirmCross but overlooked by comparative methods,
FirmCross uniquely identified C-Lua cross-language vulner-
abilities, whereas MangoDFA [20]] and LuaTaint [22] failed
to detect vulnerabilities in languages outside their focus do-
mains. Additionally, via automatic Lua bytecode deobfus-
cation (see and advanced Lua source identification
(see §V-D), FirmCross uncovered numerous vulnerabilities
that LuaTaint could not detect. Furthermore, by modeling
cross-language data flow between Lua scripts/bytecode and
C binaries, FirmCross traces data propagation from Lua
scripts/bytecode to C binaries, enabling detection of previ-
ously undetectable cross-language vulnerabilities triggered in
C binaries that MangoDFA missed (see §V-E). Concerning
vulnerabilities detected by comparative methods but missed
by FirmCross, since FirmCross is built upon MangoDFA,
FirmCross inherently detected all vulnerabilities discovered by
MangoDFA. However, LuaTaint identified 24 vulnerabilities
overlooked by FirmCross. Manual inspection revealed that this
is attributed to incomplete modeling of the MOD instruction in
our taint analysis framework.

Breakdown Analysis (Precision). We manually verified all
the reported alerts as follows: (1) First, we checked whether
the identified sources could truly be reached via network
inputs. (2) We examined whether there was no sanitization
along the taint propagation path. (3) If all the above checks
passed, the vulnerability was considered an TP; otherwise, it
was regarded as a FP. The FPs in FirmCross, LuaTaint, and
MangoDFA can all be attributed to the following reasons: (1)
There are misidentified sources that are actually not reached
via network inputs. (2) During taint propagation, they assume
that the return value of a function is tainted when its parameter
is tainted, which may trigger false alarms. Existing works [12],
[L3], [20] also encounter this problem. (3) Developers conduct
various checks during program/script/bytecode execution, such
as format checks for IP and MAC inputs and content checks
for malicious delimiters. Nevertheless, it is challenging to

ACG Time: average time cost of analyzing per firmware sample (minutes);

detect these checks through a unified method. In addition,
apart from the above reasons, MangoDFA incorrectly flagged
buffer overflow vulnerabilities due to unmodeled input-length-
to-buffer-capacity relationships.

Identified 0-day Vulnerabilities. Among 696 TP vulnerabil-
ities discovered by FirmCross, 610 of them were previously
unknown 0-day vulnerabilities, including 557 command in-
jection vulnerabilities and 53 buffer overflow vulnerabilities.
We have responsibly reported all discovered vulnerabilities
to relevant vendors. Until now, 31 vulnerability IDs have
been assigned, which are detailed in Besides, we also
received official acknowledgments from Xiaomi and TP-Link,
for uncovering the long-neglected Lua-involved attack surfaces
in their products.

TABLE III: Lua Bytecode Deobfuscation Results for Real-
World Vendor-Customized Interpreters.

Vendor #Interp FirmCross LuaHunt

Pass Rate  AVG time Pass Rate AVG time
NetGear 9 100% 19.52 0 -
XIAOMI 40 100% 13.51 0 -
TP-Link 267 100% 21.07 0 -
SUM 316 100% 18.03 0 -

#Interp: the number of under-test interpreters; Pass Rate: what percentage of
interpreters can pass the deobfuscation verification; AVG Time: the average time
cost of deobfuscating per interpreter (minutes);

TABLE 1V: Deobfuscation Capability Comparison between
FirmCross and LuaHunt.

Ob-Data
Tool Ob-Structure o © © 06 ©
FirmCross v v v v v /
LuaHunt v X x x v X

Ob-Structure: structure obfuscation; Ob-Data: data obfuscation; @: signed int type
addition; @: constant type modification; ®: string xor; @: opcode obfuscation; @:
operand obfuscation;

C. Effectiveness of Lua Bytecode Deobfuscation (RQ2)

Experiment Overview. To comprehensively evaluate the de-
obfuscation capability of FirmCross, we here did not use the
firmware dataset introduced in which contains only
16 vendor-customized interpreters. Alternatively, we extracted
316 distinct vendor-customized interpreters from firmware
images collected in the empirical study as the evaluation
targets of this experiment. Here, we selected LuaHunt [31]]
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TABLE V: Obfuscation Mechanisms of Real-World Vendor-
Customized Interpreters.

Ob-Data
Vendor #Interp  Ob-Structure o o © o ®
NetGear 9 0 9 0 0 0 0
XIAOMI 40 40 40 40 40 40 40
TP-Link 267 267 267 0 0 1t o
SUM 316 307 316 40 40 151 40

see table footnotes of

(i.e., the most recent work in Lua bytecode deobfuscation)
as the baseline. To automatically verify the correctness of
bytecode deobfuscation, we followed a 3-step procedure: @
we first generate normal bytecode and obfuscated bytecode by
compiling the same source script using the official interpreter
and the vendor-customized interpreter respectively. @ Then,
we deobfuscate the obfuscated bytecode to obtain deobfus-
cated bytecode. ® Finally, by directly comparing all field
regions of the deobfuscated bytecode with those of the normal
bytecode, we consider the deobfuscation result correct only
when all regions are exactly the same. In addition, we select
the Luahunt benchmark, which consists of 9 source scripts,
as the basis for compiling bytecode. Besides, We provide
the bytecode structure recovered by FirmCross to LuaHunt,
eliminating the need for manual reverse-engineering in its
testing process.

Overall Results. As shown in FirmCross passed
the deobfuscation result verification on all 316 vendor-specific
custom interpreters, achieving a 100% pass rate with an
average time of 18.03s per interpreter. It means that the current
version of FirmCross can correctly handle all deobfuscated
Lua bytecode among these firmware images. In comparison,
the SoTA approach LuaHunt [31]], however, did not pass the
deobfuscation verification on any custom interpreter, because
the obfuscation types employed by vendor-specific interpreters
exceed its supported scope. Besides, since LuaHunt requires
manual efforts to reverse-engineer the interpreter to understand
the bytecode structure, we did not report its time consumption
here.

demonstrates the deobfuscation capability com-
parison between FirmCross and LuaHunt. Since FirmCross
deobfuscates bytecode based on invariant field features and
static bytecode diffing, it can handle all types of existing
obfuscation techniques, including structure obfuscation and all
types of data obfuscation techniques. However, LuaHunt [31]]
can only address structure obfuscation and a single data ob-
fuscation technique (opcode manipulation) based on mutation-
based testing.

In addition, we have statistically analyzed the obfuscation
behaviors among all interpreters. As shown in[Table V] among
the 316 obfuscated interpreters, 307 implemented structural
obfuscation, while all 316 exhibited data obfuscation: 316
added new signed integer constant types (notably with varying
type identifiers across these interpreters), 40 modified constant
type values, 40 xored constant string contents, 151 obfuscated
opcodes, and 40 obfuscated operands. The Xiaomi obfuscated
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interpreters demonstrated the most comprehensive techniques,
incorporating all identified obfuscation techniques.

Benefits of More Reliable Lua Bytecode Deobfuscation.
Converting obfuscated bytecode into normal bytecode enables
us to conduct vulnerability mining on it. In the dataset intro-
duced in [§V-A] Lua bytecode in 16 firmware is obfuscated.
Benefiting from our deobfuscation technique, we discovered
154 vulnerabilities in them, including 148 Lua bytecode vul-
nerabilities and 6 C binary vulnerabilities where the data flow
originated from the Lua bytecode.

Other Interesting Findings. We have also identified other
interesting obfuscation phenomena. For the Xiaomi vendor, we
identified obfuscation techniques diverging from publicly doc-
umented patterns [43], demonstrating that pattern-based deob-
fuscation approaches easily become outdated, which necessi-
tates more generalized deobfuscation techniques. FirmCross
models bytecode invariants and common data transformation
schemes, thus can handle such cases. Additionally, in some
interpreters, different compilation options resulted in varying
obfuscation behaviors. Besides, we observed cases where a
single instruction was obfuscated into two instructions, as well
as cases where different instructions were obfuscated into the
same instruction. Through manual inspection, we found that
these involved the UNM and NOT instructions, which the
vendor likely considered functionally equivalent.

D. Effectiveness of Lua Source Identification (RQ3)

Experiment Overview. In this experiment, we evaluated
FirmCross against LuaTaint [22] on Lua taint source iden-
tification. We used the 73 firmware images described in
as evaluation targets. Then we manually inspected the source
identification results through dynamic execution to measure
the precision. To reduce manual inspection results, for each
vendor, we only randomly sampled 50 sources (or all sources
if the overall number is less than 50) identified by a tool
for analysis. For reliability, we followed a 2-step inspection
procedure: @ recording the identified source locations (in-
struction numbers for bytecode and line numbers for source
code); ® manually checking whether the identified sources are
reachable via the network.

Overall Results. presents the Lua source identifi-
cation results of FirmCross and LuaTaint [22]. Statistically,
FirmCross successfully identified valid sources in the firmware
of 10 vendors, with a total of 23,306 sources, while LuaTaint
only identified 1,798 valid sources in the firmware of 6
vendors. The inspection revealed that FirmCross achieved a
source accuracy rate of 0.84, compared to LuaTaint’s 0.18.
By analyzing the registration behavior and parameter usage
of URI handlers, FirmCross can identify table-based sources
in different implementations with high accuracy. In contrast,
the source identification scheme of LuaTaint is designed
for the specific LuCI framework, which makes it unable to
identify sources in other frameworks and results in many false
negatives. Additionally, its file-path-based heuristic method is
coarse-grained and leads to a large number of false positives.



TABLE VI: Source Identification Comparison between
FirmCross and LuaTaint.

Vendor #Firmware FirmCross LuaTaint
#Vul  #Source Prec. #Vul #Source Prec.

TPLink 11 48 5572 1 13 401 0.58
XTAOMI 10 139 11470 0.84 0 0 -
NetGear 15 24 1885 1 33 707 0.4
Tenda 10 250 1466 0.84 0 0 -
Dlink 10 86 1098 0.92 0 248 0.2
Ruijie 10 0 1058 0.86 0 334 0.44
TOTOLink 2 41 532 0.92 0 0 -
Motorola 2 0 138 0.94 0 54 0.2
H3C 1 0 2 1 0 0 -
Mercury 1 0 0 - 0 0 -
TRENDnet 1 0 85 0.94 2 54 0.16
Total 73 588 23306 0.926 48 1798 0.33

#Vul: the number of identified Lua vulnerabilities; #Source: the number of identified
Lua sources; Prec.: the precision of the Lua source identification;

TABLE VII: Cross-Language Date Propagation and Vulnera-
bilities.

#CL DP #Vul
#IPC-based DP  #API-based DP  #CL Vul. #SL C Vul. #SL Lua Vul.
1622 10584 6 102 588

CL: Cross-Language; SL: Singe-Language; DP: Data Propagation; Vul.: Vulnera-

bility;
Benefits of More Reliable Source Identification. The eval-
uation results show that FirmCross discovered 12.25 times
as many verified Lua vulnerabilities as LuaTaint. As shown
in Table VIl we counted the total number of manually verified
true vulnerabilities within Lua scripts/bytecode discovered by
both methods across all firmware. Benefiting from more iden-
tified Lua sources, FirmCross identified 588 vulnerabilities,
significantly outperforming LuaTaint, which only detected 48
vulnerabilities.

E. Effectiveness of Cross-Language Vulnerability (RQ4)

Experiment Overview. To systematically analyze cross-
language data flows in hybrid web services, we performed
a quantitative analysis of cross-language communication iden-
tified by FirmCross in 73 firmware images and documented
new vulnerabilities discovered through cross-language com-
munication modeling.

Overall Results. presents the evaluation results of
cross-language communication, counting the number of cross-
language data propagation via IPC and API. FirmCross has
found 1,622 IPC-based communications and 10,584 API-based
communications.

Benefits of C-Lua Cross Language Taint Tracking. More-
over, FirmCross discovered 6 cross-language vulnerabilities
all triggered in C binaries. These vulnerabilities cannot be
detected by simply analyzing C binaries because the data
triggering the vulnerabilities originates from Lua bytecode.

VI. DISCUSSION

Limitations of Lua Bytecode Deobfuscation. As a coun-
termeasure against obfuscation, the deobfuscation technique
of FirmCross is designed to combat specific obfuscation
strategies and may prove ineffective when faced with novel
obfuscation methods. The structural deobfuscation approach of
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FirmCross primarily relies on invariant features of Lua byte-
code structures, such as the consistent counts of instruction-
s/constants before and after obfuscation. Consequently, this
approach becomes ineffective when obfuscation alters instruc-
tion/constant lengths. Additionally, the static bytecode diffing-
based data deobfuscation approach employed by FirmCross
focuses solely on byte mapping operations, such as XORing
string bytes with a constant. This limits its capability to
identify and recover from complex data obfuscation techniques
like AES encryptions. Nonetheless, we have not encountered
such obfuscation scenarios in real-world firmware images.
Common Taint Propagation Defects. During taint propaga-
tion, FirmCross primarily addresses the modeling of cross-
language data flow between C and Lua. For single-language
taint propagation, FirmCross can encounter common taint
propagation defects similar to previous techniques, including
over-tainting and under-tainting issues [20], [L1O], [22].

False Positive Mitigation. The FPs stem from two primary
factors: the inherent over-tainting issue of taint analysis and
the incorrect modeling of custom sanitizer logic. Although
little light has been shed on these two obstacles in the
firmware security community, existing vulnerability validation
techniques [44], [43], [46] in the binary security community
can potentially help improve the precision of FirmCross.
Scalability for Other Script Languages. Porting FirmCross
to other script languages would require language-specific
adaptations: in the source identification phase, we need to
analyze source characteristics within the new language; in the
cross-language taint propagation phase, we need to identify
language-specific DPPI related to new language.

VII. RELATED WORKS

Static Vulnerability Detection of Linux-based Firmware.
Static taint analysis has been extensively adopted for vulnera-
bility detection in Linux-based firmware, primarily comprising
two phases: source/sink identification and taint propagation
tracking. Source identification techniques have been systemat-
ically studied through cross-domain optimizations: SaTC [9]]
identifies intermediate sources by correlating frontend key-
words with backend input access functions, shortening the
taint propagation path; LARA [12] further enhances SaTC
with LLM-driven recognition of semantic relations in code
and data, uncovering more previously undetectable sources;
FITS [11]] analyzes the function signatures of input access
operations and then uses the signature to locate intermediate
sources. For taint propagation tracking, significant advance-
ments have been achieved: Emtaint [[10] resolves indirect calls
based on the structured symbolic expressions to reconstruct
complete execution paths; HermeScan [2] enhances the de-
tection efficiency via optimized reaching dataflow analysis;
MangoDFA [20] introduces a sink-to-source strategy that
prunes unreachable paths, enabling taint analysis across all
firmware binaries with acceptable overhead.

Lua Bytecode Deofuscation. While code deobfuscation tech-
niques are extensively studied across various programming
languages [47], [48]], [49], [50], the deobfuscation of Lua



bytecode remains largely unexplored. Based on our literature
review, LuaHunt [31]] represents the state-of-the-art in the
field of Lua bytecode deobfuscation. LuaHunt introduces a
Lua bytecode structure deobfuscation method that necessitates
binary reverse engineering, demanding substantial expert ef-
forts. Additionally, it offers a mutation-based semantic testing
approach for data deobfuscation, which assumes that only
instruction opcodes are subject to obfuscation. Consequently,
this approach falls short in addressing other data obfusca-
tion strategies, such as modifications to data types. In con-
trast, FirmCross tackles structure deobfuscation using invariant
characteristics of Lua bytecode structure fields. Furthermore,
FirmCross expands the scope of data deobfuscation to accom-
modate a wider array of obfuscation schemes by leveraging
bytecode diffing-based techniques.

VIII. CONCLUSION

This paper introduces FirmCross, which incorporates three
novel techniques to improve static taint-style vulnerability de-
tection in C-Lua hybrid web services of Linux-based firmware:
(1) Lua bytecode deobfuscation enables taint analysis on
deobfuscated Lua bytecode; (2) Lua table-based source iden-
tification locates more taint sources to facilitate taint-style
vulnerability detection; (3) C-Lua communication modeling
supports cross-language vulnerability detection. Our evalua-
tions demonstrate the three techniques help detect vulnerabil-
ities in C-Lua hybrid firmware web services, and FirmCross
significantly outperforms the SoTA approaches by detecting
6.82X 7 14.5X more vulnerabilities.

ACKNOWLEDGMENT

We appreciate the anonymous reviewers for their insightful
comments. This work was supported in part by the National
Natural Science Foundation of China (61902416, U2436207,
62172105) and Natural Science Foundation of Hunan Province
in China (2019JJ50729). Jiarun Dai, Baosheng Wang and
Min Yang are the corresponding authors. Yuan Zhang was
supported in part by the Shanghai Pilot Program for Ba-
sic Research - FuDan University 21TQ1400100 (21TQO012).
Baosheng Wang is a professor with the School of College
of Computer Science and Technology, National University of
Defense Technology, Changsha, China. Min Yang is a faculty
of Shanghai Institute of Intelligent Electronics & Systems, and
Engineering Research Center of Cyber Security Auditing and
Monitoring, Ministry of Education, China.

REFERENCES

[1] “State of IoT 2024: Number of connected IoT devices
growing 13% to 18.8 billion globally,” https://iot-analytics.com/
number-connected-iot-devices, 2024.

Z. Gao, C. Zhang, H. Liu, W. Sun, Z. Tang, L. Jiang, J. Chen, and
Y. Xie, “Faster and better: Detecting vulnerabilities in linux-based iot
firmware with optimized reaching definition analysis,” in Proceedings
of the 2024 Network and Distributed System Security Symposium, San
Diego, CA, USA, vol. 26, 2024.

D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.” in NDSS, vol. 1,

2016, pp. 1-1.
“CVE-2024-20399,” https://nvd.nist.gov/vuln/detail/CVE-2024-20399,

2024.

[2]

14

[5]
[6]
[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

“CVE-2025-20184,” https://nvd.nist.gov/vuln/detail/CVE-2025-20184,

2025.
“CVE-2025-30658,” |https://nvd.nist.gov/vuln/detail/CVE-2025-30658,
2025.
“CVE-2025-30659,” |https://nvd.nist.gov/vuln/detail/CVE-2025-30659,
2025.

N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting Insecure Multi-
binary Interactions in Embedded Firmware,” in Oakland’20, 2020.

L. Chen, Y. Wang, Q. Cai, Y. Zhan, H. Hu, J. Linghu, Q. Hou, C. Zhang,
H. Duan, and Z. Xue, “Sharing More and Checking Less: Leveraging
Common Input Keywords to Detect Bugs in Embedded Systems,” in
USENIX Security’21, 2021.

K. Cheng, Y. Zheng, T. Liu, L. Guan, P. Liu, H. Li, H. Zhu, K. Ye, and
L. Sun, “Detecting vulnerabilities in linux-based embedded firmware
with sse-based on-demand alias analysis,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2023, pp. 360-372.

P. Liu, Y. Zheng, C. Sun, C. Qin, D. Fang, M. Liu, and L. Sun, “Fits:
Inferring intermediate taint sources for effective vulnerability analysis
of iot device firmware,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 4, 2023, pp. 138-152.

J. Zhao, Y. Li, Y. Zou, Z. Liang, Y. Xiao, Y. Li, B. Peng, N. Zhong,
X. Wang, W. Wang et al, “Leveraging semantic relations in code
and data to enhance taint analysis of embedded systems,” in USENIX
Security’24, 2024, pp. 7067-7084.

A. Qasem, M. Debbabi, and A. Soeanu, “Octopustaint: Advanced
data flow analysis for detecting taint-based vulnerabilities in iot/iiot
firmware,” in Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, 2024, pp. 2355-2369.

H. J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher, T. Reddy,
W. Gibbs, Z. L. Basque, F. Dong, Z. Smith ef al., “Greenhouse:{Single-
Service} rehosting of {Linux-Based} firmware binaries in {User-Space }
emulation,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 5791-5808.

W. Xie, J. Chen, Z. Wang, C. Feng, E. Wang, Y. Gao, B. Wang,
and K. Lu, “Game of hide-and-seek: Exposing hidden interfaces in
embedded web applications of iot devices,” in Proceedings of the ACM
Web Conference 2022, 2022, pp. 524-532.

B. Yu, P. Wang, T. Yue, and Y. Tang, “Poster: Fuzzing iot firmware
via multi-stage message generation,” in Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security, 2019,
pp. 2525-2527.

X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and
Y. Xiang, “Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference,” in Proceedings of the 2021 ACM SIGSAC conference
on computer and communications security, 2021, pp. 337-350.

M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in Proceedings of the 36th Annual Computer Security Applications
Conference, 2020, pp. 733-745.

Y. Zheng, Y. Li, C. Zhang, H. Zhu, Y. Liu, and L. Sun, “Efficient
greybox fuzzing of applications in linux-based iot devices via enhanced
user-mode emulation,” in Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2022, pp.
417-428.

W. Gibbs, A. S. Raj, J. M. Vadayath, H. J. Tay, J. Miller, A. Ajayan,
Z. L. Basque, A. Dutcher, F. Dong, X. Maso et al., “Operation mango:
Scalable discovery of {Taint-Style} vulnerabilities in binary firmware
services,” in 33rd USENIX Security Symposium (USENIX Security 24),
2024, pp. 7123-7139.

“Lua as the Future of Web Development Insights
and Trends — MoldStud,” https://moldstud.com/articles/
p- why-lua-is-the-future-of- web-development- insights- trends-and- \
innovations, 2025.

J. Xiang, L. Fu, T. Ye, P. Liu, H. Le, L. Zhu, and W. Wang, “Luataint:
A static analysis system for web configuration interface vulnerability of
internet of things device,” IEEE Internet of Things Journal, 2024.

X. Li, Q. Wei, Z. Wu, and W. Guo, “Finding taint-style vulnerabilities in
lua application of iot firmware with progressive static analysis,” Applied
Sciences, vol. 13, no. 17, p. 9710, 2023.

“mod_lua - Apache HTTP Server Support for Lua,” https://httpd.apache.
org/docs/trunk/mod/mod_lua.html, 2025.


https://iot-analytics.com/number-connected-iot-devices
https://iot-analytics.com/number-connected-iot-devices
https://nvd.nist.gov/vuln/detail/CVE-2024-20399
https://nvd.nist.gov/vuln/detail/CVE-2025-20184
https://nvd.nist.gov/vuln/detail/CVE-2025-30658
https://nvd.nist.gov/vuln/detail/CVE-2025-30659
https://moldstud.com/articles/p-why-lua-is-the-future-of-web-development-insights-trends-and-\ innovations
https://moldstud.com/articles/p-why-lua-is-the-future-of-web-development-insights-trends-and-\ innovations
https://moldstud.com/articles/p-why-lua-is-the-future-of-web-development-insights-trends-and-\ innovations
https://httpd.apache.org/docs/trunk/mod/mod_lua.html
https://httpd.apache.org/docs/trunk/mod/mod_lua.html

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

“OpenResty - an nginx distribution which includes the LuaJIT interpreter
for Lua scripts,” https://en.wikipedia.org/wiki/OpenRest), 2025.
“civetweb - a powerful embeddable web server with Lua support,” https:
/lgithub.com/civetweb/civetweb| 2025.

“lighttpd Support for Lua,” https://doc.lighttpd.net/lighttpd2/core_lua.
html| 2025.

“LuCI - OpenWrt Configuration Interface,” https://github.com/openwrt/
luci, 2025.

“CVE-2023-26317,” https://nvd.nist.gov/vuln/detail/CVE-2023-26317,
2023.
“CVE-2023-26319,”  https://nvd.nist.gov/vuln/detail/CVE-2023-26319,
2023.

C. Luo, J. Ming, J. Fu, G. Peng, and Z. Li, “Reverse engineering
of obfuscated lua bytecode via interpreter semantics testing,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 3891—
3905, 2023.

W. Li, J. Ruan, G. Yi, L. Cheng, X. Luo, and H. Cai, “{PolyFuzz}:
Holistic greybox fuzzing of {Multi-Language} systems,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 1379—
1396.

W. Li, J. Ming, X. Luo, and H. Cai, “{PolyCruise}: A {Cross-
Language} dynamic information flow analysis,” in 31st USENIX Se-
curity Symposium (USENIX Security 22), 2022, pp. 2513-2530.

F. Wei, X. Lin, X. Ou, T. Chen, and X. Zhang, “Jn-saf: Precise and
efficient ndk/jni-aware inter-language static analysis framework for secu-
rity vetting of android applications with native code,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1137-1150.

S. Li and G. Tan, “Finding bugs in exceptional situations of jni
programs,” in Proceedings of the 16th ACM conference on Computer
and communications security, 2009, pp. 442-452.

H. He, X. Lin, Z. Weng, R. Zhao, S. Gan, L. Chen, Y. Ji, J. Wang, and
Z. Xue, “Code is not natural language: Unlock the power of semantics-
oriented graph representation for binary code similarity detection,” in
33rd USENIX Security Symposium (USENIX Security 24), PHILADEL-
PHIA, PA, 2024.

“Diaphora, the most advanced Free and Open Source program diffing
tool.” hhttps://github.com/joxeankoret/diaphora, 2025.

Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D. Liu, and K. Lu,
“Vulhawk: Cross-architecture vulnerability detection with entropy-based
binary code search.” in NDSS, 2023.

“Nginx Support for Lua,” https://docs.nginx.com/nginx/admin- guide/
dynamic-modules/lua/, 2025.

“luacheck: A tool for linting and static analysis of lua code.” https:
//github.com/mpeterv/luacheck, 2025.

“Tscancode: A static code analyzer for c++, c#, lua.” https://github.com/
Tencent/TscanCode, 2025.

“Semgrep: Lightweight static analysis for many languages.” https:/
github.com/semgrep/semgrep, 2025.

“Exploit (Almost) All Xiaomi Routers Using Logical Bugs,” https:
//hitcon.org/2020/agenda/638a09df-846b-4596-9600-e3727923974c/,
2020.

H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, S. Qin, H. Chen,
and Y. Sui, “Typestate-guided fuzzer for discovering use-after-free
vulnerabilities,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 999-1010.

M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, and M. Lemerre,
“Binary-level directed fuzzing for {use-after-free} vulnerabilities,” in
23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020), 2020, pp. 47-62.

S. Yang, Y. He, K. Chen, Z. Ma, X. Luo, Y. Xie, J. Chen, and
C. Zhang, “1dfuzz: Reproduce 1-day vulnerabilities with directed differ-
ential fuzzing,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 867-879.

R. Li, C. Zhang, H. Chai, L. Ying, H. Duan, and J. Tao, “Powerpeeler:
A precise and general dynamic deobfuscation method for powershell
scripts,” in Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, 2024, pp. 4539-4553.

J. Lee and W. Lee, “Simplifying mixed boolean-arithmetic obfuscation
by program synthesis and term rewriting,” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security,
2023, pp. 2351-2365.

L. Shijia, J. Chunfu, Q. Pengda, C. Qiyuan, M. Jiang, and G. Debin,
“Chosen-instruction attack against commercial code virtualization ob-

15

[50]

[51]

fuscators,” in Internet Society. https://www. ndss-symposium. org/ndss-
paper/auto-draft-210, 2022.

G. Menguy, S. Bardin, R. Bonichon, and C. d. S. Lima, “Search-based
local black-box deobfuscation: understand, improve and mitigate,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 2513-2525.

S. Alrabaee, M. Debbabi, P. Shirani, L. Wang, A. Youssef, A. Rahimian,
L. Nouh, D. Mouheb, H. Huang, and A. Hanna, Binary Analysis
Overview. Cham: Springer International Publishing, 2020, pp. 7-44.

[Online]. Available: https://doi.org/10.1007/978-3-030-34238-8_2

[52]

[53]

“Function
Function_prototype, 2025.
“Calling convention - Wikipedia,” https://en.wikipedia.org/wiki/Calling_

prototype

convention, 2025.

Wikipedia,”

APPENDIX A

META FIELD RECOVERY.

https://en.wikipedia.org/wiki/

FirmCross primarily deobfuscates array-like fields, i.e., in-
structions, constants, and protos fields, during structure and
data deobfuscation. Nevertheless, some other fields can also be
obfuscated. We observe that all these fields, except fields that
convey debugging information (e.g., file line numbers), rep-
resent meta characteristics of previously deobfuscated fields,
and can be inferred from those array-like fields. Specifically,
these meta fields contain Upvalue Num, Param Num, Is_Varg,
and Stack Size fields. We infer the values of these fields by
conducting further analysis of the recovered normal constants
and instructions regions through mature call convention recov-
ery techniques [S1]], [52f], [S3l]. For example, the Param Num
field represents the number of prototype parameters. Since
Lua bytecode retrieves parameters through registers, we can
analyze the number of registers that are directly accessed but
not previously assigned values to determine the value of the
Param Num field.

TABLE VIII: Assigned Vulnerability IDs

Vendor  Product Assigned ID Security Impact
xiaomi Multiple Devices CVE-2024-45350 CI
xiaomi Multiple Devices CNNVD-2025-01403377 CI
xiaomi Multiple Devices CNNVD-2025-19781912 CI
xiaomi Multiple Devices CNNVD-2025-63764701 CI
xiaomi Multiple Devices CNNVD-2025-88867500 CI
xiaomi Multiple Devices CNNVD-2025-65640701 CI
xiaomi ~ Multiple Devices CNNVD-2025-09046796 CI
xiaomi Multiple Devices CNNVD-2025-81356786 CI
xiaomi Multiple Devices CNNVD-2025-95841416 CI
xiaomi Home Mesh CNVD-2025-14713 CI
xiaomi ~ Home Mesh CNVD-2025-14162 CI
tplink TL-R470GP-AC CNNVD-2025-92053103 CI
tplink TL-R498GPM-AC  CNNVD-2025-22752752 CI
tplink Multiple Devices CNNVD-2024-75859171 CI
tplink Multiple Devices CNNVD-2024-72222829 CI
tplink Multiple Devices CNNVD-2024-14275696 CI
netgear ~ Multiple Devices CNNVD-2025-07587675 CI
netgear ~ Multiple Devices CNNVD-2025-94673056 CI
netgear ~ Multiple Devices CNNVD-2025-99184612 CI
netgear ~ Multiple Devices CNNVD-2025-44664084 CI
tenda 5G03 CNNVD-2025-90302764 CI
tenda 5G03 CNNVD-2025-21518636 CI
tenda 5G03 CNNVD-2025-38206496 CI
tenda 5G03 CNNVD-2025-61543504 CI
tenda 5G03 CNNVD-2025-30568258 CI
tenda 5G03 CNNVD-2025-81178109 CI
tenda 5G03 CNNVD-2025-55608524 CI
tenda 5G03 CNNVD-2025-30123348 CI
tenda 5G03 CNNVD-2025-48547128 CI
tenda 5G03 CNNVD-2025-74078812 CI
dlink 823X CNNVD-2025-08830318 CI

CI: OS Command Injection.
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APPENDIX B
DISCOVERED 0-DAY VULNERABILITIES.

The 610 0-day vulnerabilities represent 610 unique (vulner-
ability, firmware version) pairs, which remain unreported in
major vulnerability databases (e.g., CVE, CNVD, CNNVD).
Based on our manual verification, 110/610 vulnerabilities
share similar root causes (i.e., sink functions and vulnerability-
triggering call chains) but affect different firmware versions of
the same device. The assigned vulnerability IDs are presented
in [Table VIIIl

APPENDIX C
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: FirmCross’s source code is available on
Github El The artifact corresponding to the paper is available
on the Zenodo

2) Hardware dependencies: We conducted experiments on
a host machine with a 56-core Intel(R) Xeon(R) CPU and
128GB of RAM.

3) Software dependencies: We implemented FirmCross us-
ing Python 3.11. The dependencies for FirmCross (and the
following experiments) are detailed in README . md.

4) Benchmarks: None. The artifact is self-contained.

B. Artifact Installation & Configuration

Our repository includes README.md files with step-by-
step installation instructions for FirmCross and its dependen-
cies. We have also prepared a virtual machine with a pre-
installed experimental environment.

C. Major Claims

We make the following claims in our paper:

e (C1): FirmCross can detect vulnerabilities within C-Lua
hybrid web services of real-world firmware. This is
proven by the experiment (E2) whose results are reported
in Table II.

(C2): FirmCross can identify Lua-specific sources within
web services automatically. This is proven by the exper-
iment (E3) whose results are reported in Table VI.

(C3): FirmCross can detect the cross-language date prop-
agation. This is proven by the experiment (E4) whose
results are reported in Table VII.

(C4): FirmCross can deobfuscate the obfuscated bytecode
within real-world firmware. This claim has been verified
and approved in the AE phase, with verification results
consistent with Table III and V. The related code of this
claim is not open-sourced, with reasons detailed in

D. Evaluation

You can find more detailed explanation for each experiment
in the README .md in the artifact.

Zhttps://github.com/prankster009/FirmCross
3https://doi.org/10.5281/zenodo.16950418
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1) Experiment (El): [Minimized Evaluation] [5 human-
minutes + 2 compute-hours]: Since large-scale experiments
cannot be completed within 24 hours, we first use a minimized
test case to analyze a firmware instance, which allows us to
get the minimized results related to C1, C2, and C3 in short
time.

[Preparation] Go to
firmcross_ae/minimize_testcase folder.

[Execution] Run the command bellow.

the

$ sudo ./begin_vul_detection.sh

[Results] Run the command bellow.

$ python3
do_statistic_for_minimize_testcase.py

A similar output as follows should be shown.

(Cl)totoal_wvul: 106
lua_vul: 100
c_vul: O

cross_vul: 6

(C2)identified source: 1148

(C3)total_times: 616
IPC_times: 240
API_times: 376

2) Experiment (E2): [Overall Vulnerability Detection] [5
human-minutes + 162 compute-hours]: The experiment corre-
sponds to the evaluation of the overall vulnerability detection
in Table II.

[Preparation] Go to the firmcross_ae folder.

[Execution] Run the command bellow.

$ sudo ./large_scope_c_vul_detection.sh

$ sudo python3
large_scope_lua_vul_detection.py

$ sudo python3
large_scope_cross_vul_detection.py

[Results] Run the command bellow, and the result is in the
vul_detection.xlsx.

$ python3 large_scope_statistic.py -vul

3) Experiment (E3): [Source Identification] [5 human-
minutes + 5 compute-minutes]: The experiment corresponds
to the evaluation of the Lua-specific source identification in
Table VI.

[Preparation] This can be done right after (E2).

[Execution] Run the command bellow.

$ python3 large_scope_statistic.py -si

[Results] The result is in the source_identify.xlsx.


https://github.com/prankster009/FirmCross
https://doi.org/10.5281/zenodo.16950418

4) Experiment (E4): [Cross-Language Data Propagation]
[5 human-minutes + 5 compute-minutes]: The experiment
corresponds to the evaluation of the cross-language data prop-
agation in Table VII.

[Preparation] This can be done right after (E2).

[Execution] Run the command bellow.

$ python3 large_scope_statistic.py -clc

[Results] The result is in the

cross_communication.xlsx.
E. Not Open-Sourced Code and Data

The following code and dataset are not open-sourced:
(1) The deobfuscation code. Directly open-sourcing this code
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would expose manufacturers’ protected code (which is guarded
by obfuscation), harming their intellectual property rights.
Additionally, manufacturers may struggle to design new ob-
fuscation schemes to counter our deobfuscation technology in
the short term. To ensure the smooth verification of subsequent
experiments, we have provided already deobfuscated Lua
bytecode in the dataset. (2) Ten firmware filesystem samples
guarded by manufacturers’ encryption protection. We have
provided the file dataset_60_fw.xlsx, which records detailed
information about all tested firmware that we newly collected
to facilitate further research by other researchers.
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