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Abstract—The rise of large language models (LLMs)
has introduced new privacy challenges, particularly during
inference where sensitive information in prompts may be
exposed to proprietary LLM APIs. In this paper, we ad-
dress the problem of formally protecting the sensitive infor-
mation contained in a prompt while maintaining response
quality. To this end, first, we introduce a cryptographically
inspired notion of a prompt sanitizer which transforms
an input prompt to protect its sensitive tokens. Second,
we propose Prϵϵmpt, a novel system that implements a
prompt sanitizer, focusing on the sensitive information
that can be derived solely from the individual tokens.
Prϵϵmpt categorizes sensitive tokens into two types: (1)
those where the LLM’s response depends solely on the
format (such as SSNs, credit card numbers), for which
we use format-preserving encryption (FPE); and (2) those
where the response depends on specific values, (such as
age, salary) for which we apply metric differential privacy
(mDP). Our evaluation demonstrates that Prϵϵmpt is a
practical method to achieve meaningful privacy guarantees,
while maintaining high utility compared to unsanitized
prompts, and outperforming prior methods.

I. INTRODUCTION

The recent advent of large language models (LLMs)
have brought forth a fresh set of challenges for protect-
ing users’ data privacy. LLMs and their APIs present
significant privacy concerns at inference time, which are
fundamentally distinct from the well-documented risks
of training data memorization [16, 40, 52, 85]. While
the potential adversary in training data scenarios could
be any API user, the threat during inference primarily
stems from the model owner—typically the organization
hosting the LLM. This inference stage poses a significant
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Fig. 1: Overview of Prϵϵmpt: Users begin with a one-
time registration to set up configurations, which are used
in all subsequent interactions. Users can then submit
prompts to Prϵϵmpt and receive their sanitized versions,
which are safe to be provided to the untrusted LLM. The
LLM’s responses (to the sanitized prompts) can then be
desanitized to recover high-utility responses.

privacy risk, as prompts in natural language may include
various types of sensitive information, from personally
identifiable data like SSNs or credit card numbers to
personal health or financial details.

The ensuing privacy threat is exacerbated with the
growing use of in-context learning, that involves pre-
senting the LLM with a few training examples as part
of the prompt during inference [14]. This has shifted
some of the concerns around privacy of training data
from training time to inference time. Furthermore, the
consumer-facing nature and widespread accessibility [27,
62, 48, 80, 46] of LLMs have significantly amplified the
scope of these privacy risks. What renders the privacy
risks particularly potent is the general lack of awareness
among users, leading to unwitting disclosure of sensitive
information [10]. Consequently, certain countries, such
as Italy [18], along with financial institutions [47, 88],
government agencies [82, 63, 83], medical institutions
[28] as well as companies, such as Samsung [77, 76],
Amazon [4] and Apple [7], have prohibited the use of
proprietary LLMs altogether, underscoring the signifi-
cance of these privacy concerns.
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Prior work on privacy-preserving LLMs [5, 54, 42, 73,
79, 60, 89], has primarily focused on mechanisms during
training. Unfortunately, these training-time mechanisms
can only protect the (pre)-training data: data provided as
part of the prompt poses additional privacy risks that are
not addressed by these mechanisms [29]. While recent
research has begun to address the privacy of prompts,
solutions based on homomorphic encryption and secure
multi-party computation [39, 21, 43] are computationally
expensive in practice, with state-of-the-art techniques
taking over sixteen minutes for a single inference on
BERT [70]. More efficient solutions either lack formal
privacy guarantees [55, 91], require changes to current
LLM APIs [58] or make impractical design choices [78,
49, 22] (see Sec. VI for more details).

To this end, we make the following contributions.
First, we introduce a cryptographically inspired notion
of a prompt sanitizer that takes a prompt and transforms
it in a way that protects sensitive tokens yet still preserves
the ability of the LLM to make a useful prediction.
We provide a formal analysis of both its privacy and
utility. Second, we propose Prϵϵmpt1, a system that
instantiates a prompt sanitizer. To the best of our knowl-
edge, Prϵϵmpt is the first prompt sanitizer with formal
privacy guarantees. As the first step in this direction, we
focus on the sensitive information that can derived solely
from the individual tokens. It is important to note that
addressing this aspect is paramount as it poses the most
immediate risk and represents a “low-hanging fruit” for
potential adversaries. This is because an adversary can
exploit the sensitive tokens (such as SSN, credit card
number) independently, without needing to process or
access additional context from the prompts. Moreover,
in many settings, sensitive information is often restricted
to structured (e.g., tabular) data that can be extracted as
tokens—for instance, in financial Q/A tasks as evaluated
in our experiments. The task of handling privacy risks
stemming from the contextual linguistic semantics2 of
the entire prompt [61, 13] is left as future work.

Prϵϵmpt operates on the assumption that sensitive
tokens can be categorized into two types: (1) tokens
for which the LLM’s response depends solely on their
format. (e.g., SSN, credit card number), (2) tokens
where LLM’s response depends on the specific numer-
ical value itself (e.g., age, salary). Consequently, we
propose encrypting the former using format-preserving
encryption [11]: a type of property-preserving encryption

1Privacy-Preserving Prompt
2This refers to cases where individual tokens may not be sensitive

but, when considered in the context of the full prompt, could leak
information because of the underlying natural language semantics.

scheme where the ciphertext and the plaintext have the
same format. For example, the ciphertext of a 16-digit
credit card number encrypted under a FPE scheme
would also be a 16-digit number. Tokens of the second
type are sanitized using differential privacy (DP) [31],
which is the state-of-the-art technique for achieving
data privacy. Specifically, we employ a relaxation of
DP, called metric DP [19]. Metric DP protects pairs
of inputs that are “similar” based on a distance metric,
meaning that the sanitized token will remain similar to
the original token. This approach maintains the relevance
of the responses generated to the original prompt while
providing meaningful privacy guarantees.

We demonstrate the practicality of Prϵϵmpt through
empirical evaluation. Specifically, we evaluate four types
of tasks: translation, retrieval augmented generation
(RAG), long-context reading comprehension Q/A and
multi-turn financial Q/A. We observe that Prϵϵmpt’s
sanitization mechanism preserves the utility of responses
across all tasks. For instance, the BLEU scores [72]
for sanitized prompts are nearly identical compared to
baseline unsanitized prompts for a German language
translation task with GPT-4o. When prompted with
Prϵϵmpt sanitized prompts, all RAG tasks achieved
100% accuracy. Prϵϵmpt is also quite successful in long-
context and multi-turn conversation tasks. For example,
responses based on Prϵϵmpt processed reference texts
used in long-context Q/A has a similarity score of 0.934
compared to responses based on unsanitized text, out-
performing a contemporary method [81] (PAPILLON)
without any additional overheads.

We provide a complete version of this paper, including
references to the appendices at [25].

II. BACKGROUND

Notation. Let V be the vocabulary (tokens) of a language
model and V∗ the set of possible strings over V (recall
that a prompt and its response are strings over V).
We represent a sequence of tokens σ ∈ V∗ with a
boldface. Let f be a LLM and ρ ∈ V∗ be a prompt
for it. A prompt is a sequence of tokens from V, i.e.,
ρ = ⟨σ1, · · · , σn⟩, σi ∈ V,∀i ∈ [n]. Let P(V) denote
the space of all probability distribution over V.

A. Language Model

Definition 1. A language model f is an auto-regressive
model over a vocabulary V. It is a deterministic algo-
rithm that takes a prompt ρ ∈ V∗ and tokens previously
produced by the model σ ∈ V∗ as input, and outputs a
probability distribution p = f(ρ,σ) for p ∈ P(V ).
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A language model’s response to a prompt ρ is a
random variable σ ∈ V∗ that is defined algorithmically
as follows. We begin with an empty sequence of tokens
σ = ⟨⟩. As long as the last token in σ is not ⊥ (which
we can be viewed as ”end of sequence” (EOS) token),
we sample a token σ from the distribution f(ρ,σ)
(using a decoding algorithm, such as multinomial
sampling, or greedy sampling of the single most likely
next token) and append it to σ. The algorithm stops
once a special token ⊥ is emitted. Once the decoding
algorithm is fixed, we can model f as taking a prompt
p in V⋆ and outputting a string in V ⋆. In a slight abuse
of notation, we will henceforth use f(ρ) to denote the
response string of the LLM on the input prompt ρ.

1) Tokens and Types: Given a sequence of tokens
σ ∈ V⋆, a typed sequence is a 2-tuple στ =
⟨(σ1, τ1), · · · , (σn, τn)⟩, where τi ∈ T is the type of the
substring σi of σ (we assume σ = σ1 · σ2 · · ·σn). Each
type is associated with a domain. We also assume the
existence of a type annotator.

Definition 2 (Type Annotator). A type annotator is a
deterministic algorithm Mτ : V∗ 7→ (V⋆ × T)∗ that
inputs a prompt ρ and outputs the corresponding typed
sequence ⟨(σ1, τ1), · · · , (σn, τn)⟩.

For example, consider the following prompt ρ:
“Kaiser Soze is 50 years old and earns 500,000 per
year. What is his ideal retirement plan?”Mτ (ρ) is given
as follows: “(Kaiser Soze, [Name]) is (50, [Age]) years
old and earns (500,000 , [Salary]) per year. What is his
ideal retirement plan?”, where [Name], [Age], [Salary]
are types of the tokens that precede it. For the ease of
notation, here we only annotate tokens with sensitive
types, i.e., all other non-annotated tokens have type
⊥ (which denotes non-sensitive token). Note that type
annotation is context dependent. For example, consider
the following two prompts: ρ1= “My age is 53 years.”
and ρ2= “I stay at 53 Broadway Street.” The same token
53 has two different types in the two prompts: type Age
and type Street Number in ρ1 and ρ2, respectively.

III. PROMPT SANITIZER

Given an input prompt ρ, a prompt sanitizer (denoted
by PS) transforms the entire prompt to a sanitized one ρ̂
with the goal of protecting the sensitive tokens contained
in ρ. It is formally defined as follows:

Definition 3 (Prompt Sanitizer). A prompt sanitizer
PS = ⟨S,Mτ ,E,D⟩ is a tuple of the following algo-
rithms:

• Setup (S). The setup algorithm takes no input and
outputs a secret key, as K← S.

• Type Annotator (Mτ ). The type annotator inputs
a prompt (token sequence) ρ ∈ V∗ and outputs
the corresponding type-annotated token sequence as
ρτ ←Mτ (ρ) (as defined in Def. 2).

• Sanitization (E). The sanitization algorithm takes
as input the secret key K and a type-annotated
token sequence ρτ ∈ (V⋆ × T)∗. It outputs a token
sequence ρ̂ ∈ V|ρτ |, as ρ̂← E(K,ρτ ).

• Desanitization (D). Desanitization takes a string
(token sequence) υ̂ ∈ V∗ and processes it with the
goal of reversing the effect of the sanitization algo-
rithm, using the secret key K. This is represented as
υ ← D(K, υ̂) with υ ∈ V|υ̂|.

Given a prompt ρ, the typical workflow of
PS proceeds as follows:
(1) type annotate the prompt to obtain ρτ =Mτ (ρ),
(2) sanitize the type annotated prompt using the secret
key K as ρ̂ = E(K,ρτ ),
(3) obtain the LLM’s response on the sanitized prompt
as υ̂ = f(ρ̂),
(4) desanitize the response to obtain υ = D(K, υ̂).

In the above workflow, the desanitization algorithm
restores information about the original prompt ρ in
its output, υ. In the special case where we run the
desanitization algorithm directly on the sanitized prompt
ρ̂ (which can be useful for instance if the PS is used to
store a set of sensitive prompts on an untrusted platform
for later use), we ideally expect υ = ρ.

We require that the sanitization and
desanitization algorithms are type preserving,
which means that if ρ = ⟨σ1, · · · , σn⟩ and
ρτ = ⟨(σ1, τ1), · · · , (σn, τn)⟩ ← Mτ (ρ) and
ρ̂ ← E(K,ρτ ) and ⟨(σ′

1, τ
′
1), · · · , (σ′

n, τ
′
n)⟩ ← Mτ (ρ̂)

then it must be that (τ1, · · · , τn) = (τ ′1, · · · , τ ′n).

A. Privacy Guarantee

The privacy game, denoted as Gpp
PS,L, is designed

to capture an adversary’s ability to distinguish between
the sanitized outputs of two different prompts. In the
game if the adversary picks two prompts that have a
very different structure (e.g. different type or number
of tokens), then the adversary can trivially distinguish
between the corresponding sanitized prompts. To rule out
pathological cases, we restrict the adversary to selecting
two prompts with a “similar structure”, formalized via a
leakage function. Different instantiations of the leakage
function lead to different instantiations of the game.
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The game is defined as follows:
INITIALIZE:

1: K← S()
2: b

$← {0, 1} ▷ Select a random bit
SANITIZE(ρ0,ρ1): ▷ Adversary selects two
prompts

3: L0 ← L(ρ0) ; L1 ← L(ρ1)
▷ L is the leakage function associated with PS

4: if L0 ̸= L1 then return ⊥
▷ Only prompt pairs with the same leakage are valid

5: ρ̂0 ← E(K,Mτ (ρ0)) ; ρ̂1 ← E(K,Mτ (ρ1))
6: return ρ̂b

▷ Return one of the sanitized prompts chosen at
random
FINALIZE(b′):

7: return [b′ = b] ▷ b′ is the adversary’s guess for b

We denote an adversary by A. We model the information
leakage from the sanitized prompts through a leakage
function, L. In particular, the leakage function L of a
prompt sanitizer takes as input a prompt ρ and captures
all the information about sensitive tokens that is leaked
by ρ̂ = E(ρ,K), given a key K. In the above game, an
adversary A aims to distinguish between the sanitized
prompts of ρ0 and ρ1 based solely on the sanitized
output and the leakage allowed by L. The adversary is
said to win the game if b′ = b and their advantage is
formally defined as:

Advpp
PS,L(A) = 2Pr[Gpp

PS,L(A) = 1]− 1.

Intuitively, the game implies that even after observing
a sanitized prompt, an adversary should not be able to
reliably differentiate between two prompts with the same
leakage. The definition of the leakage function, L, is
crucial and depends on the underlying sanitizer E. For
example, if E sanitizes a token by redaction, for prompt
ρ =“My age is 26”, the leakage function outputs all the
non-sensitive tokens, i.e., L(ρ) = “My age is [ ]”—this
represents the minimal possible leakage as redaction is
the strongest sanitization mechanism. Alternatively, if
E encrypts sensitive tokens, L might reveal the length
of these tokens to A. Note that leakage function is a
standard notion in cryptography [33]. For instance, the
leakage function for order-preserving encryption [57] is
essentially the numerical ordering of the input dataset.

The restriction in the above game, requiring the pair of
prompts to have the same leakage, aligns with standard
notions in game-based cryptographic security definitions.
For instance, this is similar to the definition of security
in order-preserving encryption (IND-FA-OCPA [57]),

where the adversary is restricted to selecting pairs of
data sequences that maintain the same order.

B. Utility Guarantee

Let Q : V∗ × V∗ 7→ RQ be a quality oracle that
evaluates the quality of a candidate response υ for a
prompt ρ. Specifically, Q(ρ,υ) is a measure of the
response’s goodness. Such a quality oracle has been used
in prior work on LLMs [90].

Definition 4. A prompt sanitizer PS satisfies (α, β)
utility for a given prompt ρ ∈ V∗,

α = Ef

[
Q
(
ρ, f(ρ)

)]
(1)

β = Ef,PS

[
Q
(
ρ,D

(
K, f(ρ̂)

))]
, ρ̂ = E

(
K,Mτ (ρ)

)
(2)

where the randomness is defined over both the LLM,
f, and PS.

The utility of the prompt sanitizer PS is evaluated by
comparing the quality of the original response f(ρ) with
the one obtained through the PS pipeline. The above
definition has two key characteristics. First, the utility is
defined w.r.t to a specific prompt, as response quality can
vary significantly across different prompts. For example,
consider the following prompt: ρ = “My age is 46. What
is the average age of the population of New York?” Here,
a high-quality LLM’s response should be invariant to the
sensitive token ([Age]) in the prompt. This means that
even after sanitization, we should be able to retrieve a
correct and relevant response. On the other hand, for
a conversational prompt used in a LLM-based chatbot
to seek medical advice, the quality of the responses
could vary significantly based on the specifics of the
sanitization and desanitization algorithms of PS. Note
that the quality oracle Q can take various forms based
on the type of the prompt. For instance, it might be a
human evaluator who assigns a quality score, or it could
be a predefined analytical expression in case the prompt
has some special structures. Second, utility is defined as
an expectation, since in general both the LLM f and
the prompt sanitizer PS, are probabilistic. Note that
when the distribution of f(ρ) matches the distribution of
D(K, f(ρ̂)), this represents the strictest form of utility.
If RQ is a metric space with a distance metric dQ, we
can quantitatively measure the mean degradation in the
quality of the response as dQ(α, β).

IV. PRϵϵMPT SYSTEM DESCRIPTION

This section introduces Prϵϵmpt: a system that in-
stantiates a sanitizer for prompts. First, we describe the
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primitives (FPE and mDP) in subsection IV-A. Next, two
sections describe our threat model and design goals. Our
system is described in subsection IV-D. We conclude
the section with privacy and utility analysis. Our last
subsection discusses other “strawman” solutions and
why they don’t address our threat model and goals.

A. Building Blocks

We start by describing the building blocks which will
be used to sanitize the sensitive tokens.

1) Format-Preserving Encryption (FPE): Under a
format preserving encryption (FPE) scheme, the plain-
text and the ciphertext have the same format, that is,
FPE ensures that the encrypted output is structurally
similar to the original input, including properties such
as length, character set, or format. This property allows
applications to process ciphertexts and plaintexts in the
same way. This backward compatibility makes FPE a
popular tool for secure data analytics in practice. For
instance, the ciphertext of a 16-digit credit card number
encrypted under a FPE scheme would also be a 16-digit
number3. As concrete examples, a plaintext Social Secu-
rity number such as 055-46-6168 might be transformed
into the ciphertext 569-83-4469, while an IP address
like 76.217.83.75 could be encrypted as 97.381.64.35.
Intuitively, FPE shuffles or re-encodes values within the
space of all valid values of the same type. Without the
decryption key, the ciphertext looks indistinguishable
from any legitimate value of that format, effectively
hiding the original data while remaining compatible with
systems that expect specific formats.

Definition 5 (Format Preserving Encryption (FPE)). A
format preserving encryption scheme is a tuple E =
⟨GF ,EF ,DF ⟩ of polynomial time algorithms:

• Key Generation (GF ). The key generation algo-
rithm is probabilistic polynomial time algorithm
that takes as input a security parameter κ and
outputs a secret key K as K← GF (1

κ).
• Encryption (EF )4. The encryption algorithm is de-

terministic polynomial time algorithm that takes as
input a secret key K, a plaintext x ∈ M, and a
format N ∈ N and outputs a ciphertext y ∈ M as
y ← EF (K,N, x).

• Decryption (DF ). The decryption algorithm is de-
terministic polynomial time algorithm that recovers
the plaintext as x← DF (K,N, y).

3One can add additional constraints, such as ensuring the last digit
is the Luhn checksum or the first four digit corresponds to a bank.

4FPEs also take a tweak space as an input which we omit here for
the ease of exposition

Typically, the format of a plaintext is described as a
finite set N over which the encryption function induces
a permutation. For example, with SSNs this is the set of
all nine-decimal-digit numbers.

2) Metric Local Differential Privacy (mLDP): Dif-
ferential privacy (DP) is a quantifiable measure of the
stability of the output of a randomized mechanism to
changes to its input. As a direct consequence of our
threat model (Sec. IV-B), we work with the local model
of DP (LDP) where each data point is individually ran-
domized. Metric local differential privacy (mLDP) [19,
3, 75, 45] is a generalization of LDP which allows
heterogenous guarantees for a pair of inputs based on
a distance metric d(·) defined over the input space.

Definition 6 (Metric Local Differential Privacy
(mLDP) [19]). A randomized algorithm M : X → Y
is ϵ-mLDP for a given metric d : X × X 7→ Z≥0 if for
any pair of private values x, x′ ∈ X and any subset of
output, O ⊆ Y

Pr
[
M(x) ∈ O

]
≤ eϵd(x,x

′) · Pr
[
M(x′) ∈ O

]
(3)

mLDP uses the distance between a pair of values to
customize heterogeneous (different levels of) privacy
guarantees for different pairs of private values. In par-
ticular, the privacy guarantee degrades linearly with the
distance between a pair of data points; that is, only
data points that are “close” to each other should be
indistinguishable. Still, mLDP captures the privacy se-
mantics of many real-world scenarios and is well suited
to settings where releasing approximate information is
acceptable. For example, it is often sufficient to reveal a
coarse location, such as a city block, rather than exact
GPS coordinates. Similarly, sharing an income range
(e.g., $60K–$80K) can preserve utility without exposing
precise figures. Alg. 3 in App. 1 of [25] outlines a
mechanism for achieving ϵ-mLDP for the ℓ1 distance
using a variant of the exponential mechanism [31].

Theorem 1. Mechanism Mϵ satisfies ϵ-mLDP for the
ℓ1 distance.

The proof of the theorem is standard and appears in
the appendix. However, we next justify why Mϵ is an
appropriate notion for our context. An input is more
likely to be mapped to one which is close to it, which
we formalize this using the following two properties.
Property 1.

Pr
[
Mϵ(x, ϵ, [k]) = x

]
> Pr

[
Mϵ(x, ϵ, [k]) = y

]
,∀y ∈ [k]
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Property 2.

|y1 − x| < |y2 − x| ⇐⇒
Pr

[
Mϵ(x, ϵ, [k]) = y1

]
> Pr

[
Mϵ(x, ϵ, [k]) = y2

]
,

∀y1, y2 ∈ [k]

B. Threat Model

Prϵϵmpt runs as an application on a user’s (trusted)
local device. Additionally, Prϵϵmpt can support multiple
users: envision it as an application maintained at the level
of an organization and available to all of its employees.
The user inputs a string (V∗) to Prϵϵmpt and obtains a
transformed string. Every such interaction constitutes a
separate session. In particular, consider the following
chain of events. An user U submits a prompt ρ to
Prϵϵmpt and obtains a sanitized version of it ρ̂. Next,
they obtain a response υ̂ from an LLM on ρ̂ and again
uses Prϵϵmpt to desanitize it into υ. This interaction
constitutes two separates Prϵϵmpt sessions: one for the
ρ → ρ̂ transformation and the other for the υ̂ → υ
transformation. The LLM is an untrusted third-party
application which represents the adversary (Fig. 1).

In Prϵϵmpt, we focus on tokens where the sensitive
information can be derived solely from the individual
token, with no extra context. Examples of such token
types include SSN, credit card number, license number,
age, money, A/C number, zipcode. Privacy issues stem-
ming from the linguistic context of the prompts (e.g. a
prompt indicating the users’ mental health details) are
beyond Prϵϵmpt’s scope (see App. 9 in [25] for more
discussion).

C. Design Goals

Prϵϵmpt has the following design goals.

• Formal Guarantees. Prϵϵmpt should be able to
provide a formal privacy guarantee on the sanitized
prompts.

• High Utility. The responses based on sanitized
prompts should be “close” to the responses based
on the original prompt.

• Stateless. Finally, the sanitization and desanitization
process should be stateless, i.e., Prϵϵmpt should
not retain information (state) from any prior ses-
sion. This design choice offers dual advantages.
Firstly, storing sensitive information derived from
users’ prompts/responses post-session termination
would violate privacy and contravene legal frame-
works, such as the EU’s GDPR [38] and California’s
CCPA [15]. Additionally, these regulations grant in-
dividuals the Right to Deletion, allowing data owners

to retract authorization previously granted for the use
of their personal data. A stateful solution hinders the
Right to Deletion and desanitization, while a state-
less one offers flexibility and storage efficiency. For
example, consider these two user action sequences:

A1 = ⟨ Sanitize ρ1; Desanitize υ̂1; Sanitize ρ2;

Desanitize υ̂2; Sanitize ρ3; Desanitize υ̂3⟩
A2 = ⟨ Sanitize ρ1; Sanitize ρ2; Desanitize υ̂2,

Sanitize ρ3, Desanitize υ̂1, Desanitize υ̂3⟩.

Without perpetual retention of state information, a
stateful solution restricts a user to a specific action
sequence of sanitizing and desanitizing in order
(such as, A1). Moreover, multiple desanitization of
the same string cannot be supported without per-
petual storage of the state information. The issue is
exacerbated with multiple users as a stateful solution
entails storing separate state information for each
user. In contrast, a stateless solution provides the
flexibility of supporting arbitrary sequences of user
actions (such as, A2).

Note that while Prϵϵmpt is stateless, conversation with
the LLM can be stateful – the LLM is free to maintain
a history of all (sanitized) prompts to better respond to
user queries. We illustrate this experimentally in Sec. V.

D. System Modules

Prϵϵmpt supports three types of sessions, namely, User
Registration, Sanitization and Desanitization, which is
taken care of by the following modules.
Configuration Manager. The configuration manager
module of Prϵϵmpt generates a secret key KU → G(1κ)
for a given security parameter for an user U at the time
of the registration for a FPE scheme E . Subsequently,
for any session involving user U , this module initializes
all instances of the FPE scheme with the key KU .
Additionally, during registration, user U specifies the
privacy parameter ϵ for Mϵ, which is treated as the pri-
vacy budget for each individual sanitization session. The
module also initializes the data domain (equivalently,
format in the case of FPE) for each sensitive token
type. The domains can either be predefined or computed
based on some user-provided information. Lastly, various
parameters (e.g. format and privacy parameter) can be
dependent on the type τ .
Sanitizer. Recall that Prϵϵmpt only sanitizes sensitive
tokens that are alphanumeric or numeric (see Sec. IV-B).
To this end, Prϵϵmpt assumes that such sensitive tokens
fall into two distinct categories:
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• Category I (τI). These tokens are characterized by
the fact that the LLM’s response depends solely
on their format. Examples of tokens in this cate-
gory include names, Social Security Numbers (SSN),
credit card numbers, Taxpayer Identification Num-
bers (TIN), passport numbers, bank account num-
bers, driver’s license numbers, phone numbers, li-
cense numbers, and IP addresses. We provide empir-
ical evidence of this assumption in Sec. V.

• Category II (τII). This category encompasses tokens
where the LLM’s response hinges on the specific
numerical value itself, such as age, medical records5,
etc. That is, the LLM performs specific computations
based on the values of these tokens.

Algorithm 1 Prϵϵmpt: Sanitization

Input: ρ - Input prompt; KU - Sanitization key; ϵ -
Total budget
Output: ρ̂ - Sanitized prompt;

1: ρ′ = ⟨⟩
2: ρτ ←Mτ (ρ) ▷Mτ is instantiated with a named-

entity recognizer
3: (ψ, t) ← MPre(ρ,ρτ ) ▷ Ψ is a helper string

encoding some extra information about the type of
tokens
▷ t is the number of tokens in ρτ with type τII

4: for (σ, τ) ∈ ρτ

5: if (τ ̸=⊥)
6: if (τ == τI)
7: σ̂ = EF (KU ,Nτ , σ) ▷ Nτ is the format of σ
8: else
9: σ̂ =Mϵ(σ,

ϵ
t , kτ ) ▷ [kτ ] is the domain of σ

10: end if
11: else
12: σ̂ = σ
13: end if
14: ρ′.append(σ̂)
15: end for
16: ρ̂ ← MPost(ρ

′,Ψ) ▷ Performs some post-
processing on the sanitized tokens

17: return ρ̂

A prompt is sanitized as follows. We first perform type
annotation of the different tokens via Mτ . In addition
to annotating the type of a token, Mτ also indicates
its category. For Prϵϵmpt, we instantiate Mτ with a
named-entity recognizer (NER). Next, Prϵϵmpt uses a

5Note that in some cases, for instance, language translation, all
sensitive tokens are of τI since the LLM’s response should not depend
on the specific values.

pre-processor MPre that takes (ρ,ρτ ) as input and
computes two things; 1) it determines the number of
tokens belonging to the second category, denoted as t,
2) it computes a helper string Ψ to encode additional
information about token types and provide flexibility
during sanitization. Specifically, Ψ captures functional
dependencies between the tokens. We present examples
involving the helper string in Sec. IV-E and App. 7
of [25].

In Prϵϵmpt, each sensitive token is sanitized individ-
ually. In particular, all tokens of the first category are
sanitized using FPE with the user specific secret key KU .
On the other hand, all tokens of the second category are
sanitized to satisfy ϵ

t -mLDP using Mϵ, where ϵ is the
privacy parameter for the standard DP guarantee and t is
the maximum distance between protected values. No op-
eration is performed on tokens with non-sensitive types
(τ =⊥). Next, all sanitized tokens are concatenated and
passed to a post-processor MPost. The MPost enforces
the functional dependencies encoded in Ψ. Furthermore,
in Prϵϵmpt only the determinant is perturbed, and the
sanitized versions of the dependent tokens are derived
from this noisy encoding. If Ψ is empty (i.e. not func-
tional dependencies are provided), then each token is
handled independently and no functional dependencies
are enforced, which can adversely affect utility. The full
sanitization mechanism is outlined in Algorithm 1. Steps
3-17 in Alg. 1 instantiate the sanitization algorithm E of
the prompt sanitizer (Def. 3).

Algorithm 2 Prϵϵmpt: Desanitization

Input: υ̂ - Input sanitized response; KU - Sanitiza-
tion key;
Output: υ - Desanitized response;

1: υ = ⟨⟩
2: υ̂τ ←Mτ (υ̂) ▷Mτ is instantiated with a named-

entity recognizer
3: for (σ, τ) ∈ υ̂τ

4: if (τ == τI)
5: σ = DF (KU ,Nτ , σ) ▷ Nτ is the format of σ
6: else
7: σ = σ̂
8: end if
9: υ.append(σ)

10: end for
11: return υ

Desanitizer. Desanitization (Alg. 2) begins with the
same type annotator. All sensitive tokens of category
I can be desanitized using the decryption algorithm of
the FPE scheme. However, tokens sanitized with Mϵ
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cannot be desanitized without retaining additional state
information and are hence, left untouched by default.
Steps 3-11 in Algorithm 2 correspond to the desanitiza-
tion algorithm D of the prompt sanitizer (Def. 3).

One drawback of this approach is that tokens from
the first category that did not appear in the original
prompt (and consequently were never sanitized) might
also undergo desanitization. Users can mitigate this by
providing the original prompt ρ as auxiliary information.
In this scenario, Prϵϵmpt will exclusively desanitize to-
kens that appeared in the prompt. Note that the only thing
required to desanitize is the secret key KU : Prϵϵmpt does
not store any sensitive information post the termination
of a session thereby making our solution stateless.

E. Setting up Parameters

In this section, we provide guidelines on how to
choose the parameters for Prϵϵmpt.

Setting up ϵ. If a user desires a privacy parameter of
ϵ for the standard DP guarantee and wishes to protect
values that differ by at most distance l, then use ϵ′-
mLDP with ϵ′ = ϵ

l . Any ϵ-mLDP protocol is ϵ · lmax-DP
where the distance between any pair of inputs is at most
lmax.

Using the helper string Ψ. The helper string Ψ en-
codes auxiliary knowledge that captures functional de-
pendencies among sensitive tokens. These dependencies
typically fall into two categories: (1) Common knowl-
edge, such as mathematical or definitional identities (e.g.,
Annual Salary = 12×Monthly Salary), and (2) Domain-
specific knowledge, such as medical or financial formulas
(e.g., BMI = Weight

Height2 ).
For common knowledge, the dependencies can be

stored in a knowledge base and appended directly to
the prompt to aid reasoning or consistency. Since these
are standardized and widely accepted relationships, they
can be programmatically injected with little ambiguity.

Handling domain-specific dependencies is more com-
plex. One possible approach is to use a local LLM to
infer dependencies between sensitive attributes identified
by NER, producing structured representations of causal
or computational links. These dependencies can then
be modeled as a directed acyclic graph (DAG), where
each node corresponds to a sensitive attribute and edges
represent dependencies (e.g., computation or inference).
The root nodes represent the base sensitive values and
are directly noised using mLDP. These values are then
propagated along the DAG via the encoded dependen-
cies, ensuring that related fields (such as income and
tax, or weight and BMI) are sanitized consistently.

F. Privacy and Utility Analysis

Privacy Analysis. The formal privacy guarantee of
Prϵϵmpt is given as follows:

Theorem 2. Let S be the set of all token pairs of type
τII that are different in the prompt pairs (ρ0,ρ1) in the
privacy game Gpp

PS,L. Then, for Prϵϵmpt we have:

Advpp
Prϵϵmpt,L(A) ≤ e

lϵ + negl(κ) (4)

where l = max(σ0,σ1)∈S{|σ0−σ1|} and κ is the security
parameter of the underlying FPE scheme.

Proof Sketch. First, we compute the adversary’s advan-
tage in Prϵϵmpt when the two prompts (ρ0,ρ1) differ
by only a single token, denoted as Advpp

Prϵϵmpt,L=1(A).
Next, using the classic hybrid argument [66], we estab-
lish an upper bound on the adversary’s advantage in the
general case, expressed in terms of its advantage when
the prompts differ by just a single token. Finally, Eq. 4
can be derived by substituting Advpp

Prϵϵmpt,L=1(A) into
this result. The full proof is presented in App. 10 of [25].
Practical Privacy Considerations.
Error due to NER. Prϵϵmpt’s privacy guarantee is
cryptographic and orthogonal to NER. Specifically,
Prϵϵmpt uses NER as a black-box and the above theorem
aligns with the standard FNER-hybrid model of security
where FNER is an ideal functionality for NER [67].
Importantly, the performance of NER should not be
conflated with the efficacy of the sanitization scheme.
While the practical performance depends on properly
identifying sensitive tokens, this is inherent to our
task. As NER continues to improve, so will Prϵϵmpt’s
practical performance without any modifications to the
design. Additionally, domain-specific pattern matching
with regular expressions can achieve high performance
for structured data.

Nevertheless, we provide Theorem 4 (App. A), which
formalizes how to analyze privacy in the presence of
NER errors. The main idea is to model errors within the
leakage function L of our privacy game Gpp

PS,L. If the
false negative rate of the NER is λ, we define a leakage
function LNER that additionally leaks up to λ% of the
sensitive tokens. To construct the two prompts ρ0 and
ρ1 for the corresponding privacy game Gpp

PS,LNER
, we

proceed as follows: we start with the original prompt
pair as in the unmodified game Gpp

PS,L, and then modify
ρ1 by replacing λ% of its sensitive tokens with the
corresponding tokens from ρ0. In other words, this
construction models the scenario where the adversary
gains access to a fraction of sensitive tokens that were
missed by the NER.
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Correlated Tokens. To mitigate correlation attacks,
Prϵϵmpt adopts a conservative approach by dividing the
privacy budget equally among all tokens of type τII.
This ensures that, via composition, the total privacy loss
remains bounded by ϵ. However, leveraging the helper
string Ψ can yield a better privacy-utility tradeoff. For
example, in the prompt, “My age is X , I was born in Y .
I am X years old.”, [Age : X], [Y ear : Y ] and [Age : X]
are the sensitive tokens. By default, Prϵϵmpt distributes
the privacy budget equally (ϵ/3) among all type τII
tokens, however, the helper string Ψ can indicate that
X and Y represent the same ground-truth and that
X is repeated. Using Ψ, Prϵϵmpt applies ϵ-mLDP to
the first occurrence of X , yielding X̂ = 25 (suppose).
Prϵϵmpt then derives the corresponding Ŷ = 2000 by
post-processing and reuses X̂ for the second occurrence
of age. This incurs no additional privacy loss due to
the post-processing immunity of mLDP [32]. Thus,
the resulting sanitized prompt is given by: “My age
is 25, I was born in 2000. I am 25 years old.”. We
present additional illustrative examples in App. 7 of [25].

Utility Analysis. We analyze Prϵϵmpt’s utility below.
Prompts with Perfect Utility. Recall that, for assessing
utility, we compare the responses of the LLM to the
original prompt ρ and the sanitized prompt ρ̂ produced
by Prϵϵmpt. For many practically useful prompts, the
response of the LLM remains the same for both (ρ, ρ̂)
except for the substitution of the sensitive tokens σ ∈ ρ
with their sanitized counterparts σ̂. In other words, the
sanitized response υ̂ generated from ρ̂ preserves perfect
utility (after desanitization). We refer to such prompts as
invariant prompts, where the LLM’s response should be
invariant to the specific values (or small variations) of
the sensitive tokens. This property holds in particular for
prompts containing only type τI tokens. Translation is
exemplar: all sensitive tokens will be classified as type
τI and sanitized using FPE since the LLM’s translation
should not depend on their specific values. As a result,
sanitized tokens can be perfectly desanitized from the
translated text. The quality score (the output of Q) can
be evaluated using metrics such as BLEU score [71].

We now turn to the case of invariant prompts that in-
clude sensitive tokens of type τII. One such example is a
factual information retrieval task for RAG. Consider the
following prompt in the context of financial documents:
“Please return all bank accounts with balance greater
than $2000.” Here the two sensitive tokens [Bank A/C]
and [Bank Balance] are sanitized via FPE and mLDP,
respectively. mLDP, by construction, noisily maps an

input to a value that is close to it (as per Properties
1 and 2 in Sec. IV-A2). As a consequence, the bank bal-
ance is perturbed only slightly, allowing correct numeric
comparisons with high probability. This is precisely
the rationale for our choice of mLDP: sanitized tokens
preserve ordinal relationships and remain close to their
original values, enabling useful computations while still
providing strong privacy guarantees. The quality score
here is the accuracy of the answers (count of the correct
bank A/Cs returned). The above discussion is validated
by our experimental results in Sec. V. Formally, we have:

Theorem 3. For invariant prompts, Prϵϵmpt satis-
fies (α, α)- utility where α = Ef

[
Q
(
ρ, f(ρ)

)]
=

Ef,Prϵϵmpt

[
Q
(
ρ,DPrϵϵmpt

(
K, f(ρ̂)

))]
.

Other Prompts. Given the complex and open-ended na-
ture of prompts and responses, it is challenging to assign
a utility score for any general prompt. Nevertheless,
we provide some guidelines for when Prϵϵmpt is likely
to perform well. Note that Prϵϵmpt introduces only
small perturbations in the sanitized prompt ρ. Hence,
intuitively, Prϵϵmpt should perform well where small
changes in the original prompt result in only limited
changes to the generated response. There can be two
natural ways to capture these changes in the response.
First, consider cases where the prompt satisfies Lips-
chitz continuity [65], as given by dV(f(ρ), f(ρ̂)) ≤
KdV(ρ, ρ̂) for some K ∈ R>0 and distance metric
dV : V∗×V∗ 7→ R>0. Distances defined over a document
embedding space could be apt for dV. For example, when
using an LLM as a financial advisor with a prompt “My
monthly salary is $12,000. Suggest a monthly savings
plan.”, the response should ideally remain consistent (and
hence, very close in the embedding space) even if the
salary value is slightly altered to $11,500 (via Mϵ).
A second way of bounding changes in the response
is when the operations of the LLM on the sensitive
tokens can be expressed as a symbolic computation. For
example; “My height is 158 cm and weight is 94lb.
Compute my BMI.” The BMI is computed via a fixed
formula (i.e., a symbolic computation). These type of
prompts ensure that the responses on ρ̂ can deviate from
the original response in only a well-structured and pre-
dictable manner. Additionally, if this symbolic mapping
is known, Prϵϵmpt could leverage this information during
desanitization to improve utility further.
Usability. A key advantage of Prϵϵmpt is its ease of
use: after type annotation, Prϵϵmpt employs predefined
sanitizers to protect sensitive tokens without any manual
configuration of custom rules or execution of ad hoc san-
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itization strategies. In the current prototype, Ψ is treated
as an optional user input. Importantly, while Ψ can
be used to improve performance—for example, through
better privacy budget allocation—omitting it does not
affect the privacy guarantees of Prϵϵmpt. As discussed
in Sec. IV-E, Ψ can also be automatically generated
from the input prompt to capture functional dependencies
between sensitive tokens, further enhancing usability.

G. Comparison with Strawman Solutions

Strawman Solution I: Redaction. One intuitive solution
is to redact all sensitive tokens from the prompt. While
this approach ensures perfect privacy, it severely impacts
utility dependent on those sensitive tokens and can
sometimes lead to a complete loss of functionality. We
present an example in App. 5.1 of [25].
Strawman Solution II: Substitution. An intuitive so-
lution is to replace sensitive tokens with others of the
same type using a lookup table. However, this method
is not stateless, as desanitization requires access to the
lookup tables, leading to scalability and security issues
(see Sec. IV-C). The table size grows linearly with
the number of sensitive tokens, and a separate table is
needed for each user to prevent information leakage. In
contrast, Prϵϵmpt only requires a fixed-size key per user,
regardless of prompt number or length.
Strawman Solution III: Suppression. Consider the
following sanitization strategy for the tokens of the
second category (τII): a numerical token is sanitized
by simply setting its k lowest order digits to 0, the
intuition being that the LLM’s response is most likely
to depend on the higher-order digits, thereby preserving
utility while only leaking information about the numeri-
cal value at a coarser granularity. However, it is difficult
to formally quantify its privacy guarantees. Prior work
shows that such ad-hoc approaches are often vulnerable
to attacks [30, 26, 64]. In contrast, the mLDP-based
approach used in Prϵϵmpt offers a principled way of
balancing this privacy/utility trade-off.
Additional Baseline: LLMs assisted obfuscation and
deobfuscation. One could also attempt to use a LLM to
obfuscate and deobfuscate sensitive information based
on rules in the system prompt, and maintaining a state
to recover information, such as [81]. However, the prob-
abilistic nature of the LLM and lack of specifications
preclude any rigorous privacy analysis.

V. EXPERIMENTS

We evaluate the following questions:

Q1. How does Prϵϵmpt impact utility of realistic
tasks compared to unsanitized performance?
Q2. How does Prϵϵmpt compare against prior
LLM based sanitization approaches?
Q3. What is the impact of different technical
design choices on Prϵϵmpt’s utility?

A. Utility Loss from Prϵϵmpt Sanitization

We tackle Q1 by applying Prϵϵmpt to four tasks: trans-
lation, retrieval-augmented generation (RAG), multi-turn
financial question answering (Q/A), and long-context
reading comprehension Q/A. These tasks represent a
broad spectrum of real-world LLM applications where
input prompts are likely to contain sensitive information.
Models. We use GPT-4o [68], Gemini-1.5 [36],
and OPUS-MT for translations, RAG, and question-
answering tasks. For named entity recognition (NER),
we use Uni-NER [92], Llama-3 8B Instruct [2], and
Gemma-2 9B Instruct [37]. We also use Llama-3 as a
Q/A model for the long-context task.
Translation. Translation is a common use case for lan-
guage models. However, business or bureaucratic emails
containing sensitive information face major privacy con-
cerns pertaining to leakage of sensitive information [56].
For this task, we employ an LLM for named entity recog-
nition (NER) of sensitive tokens belonging to the types
of ([Name], [Age] and [Money]). We evaluate Prϵϵmpt’s
performance on 50 English-French and English-German
samples obtained from WMT-14 [12] dataset. These
samples are single sentences containing one or two PII
values. We seek exact translations in this context and
use BLEU scores as the quality oracle Q to assess
their similarity to reference translations. We use FPE to
sanitize [Name] and [Money], and use mLDP for [Age].
Results. We report the BLEU scores for the translations
of the original sentences and the ones obtained via
Prϵϵmpt in Table III. We observe that the BLEU scores
are nearly identical in both cases, with only minor differ-
ences due to the performance variation of the translation
model, nuances of language and NER. Details regarding
the statistics of PII values, NER performance, details
regarding encryption and ablations with larger privacy
budgets can be found in App. 4.2 of [25]. We present
comparisons with Papillon [81], a contemporary privacy
preserving framework in Section V-B.
Retrieval-Augmented Generation (RAG). Retrieval-
augmented generation is also commonly employed for
a variety of LLM use cases [35], including extraction
of information from potentially sensitive documents.
Typically, documents are split, embedded, and indexed
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in a vector database. At query time, the most rele-
vant shards are retrieved based on lexical and semantic
similarity, then provided as context to the LLM for
answer generation. Our experiments focus on this final
step: generating answers given a query and its relevant
context. We consider two types of question-answering
scenarios: numerical comparisons, and retrieval of fac-
tual information. We assess these settings by using
GPT-4 [68] to generate tuples of Context C, questions
Questions Q, and answers Answers A; jointly sanitizing
C and Q so that copies of the same sensitive attribute
appearing in both C and Q are replaced with the same
token, and comparing the desanitized LLM responses
with A. Our numerical comparison questions involve
comparing credit card balances and determining which is
higher, while factual retrieval questions require returning
specific aspects about a generated e-commerce order.
The quality oracle Q is the accuracy of the answers.
Results. We observe that Prϵϵmpt achieves 100% accu-
racy for both the RAG tasks. Additional experimental
details can be found in App. 4.5 of [25].
Long-Context Q/A. LLMs can be tasked with not only
retrieving specific information from long documents, but
also integrating and reasoning about the information they
contain. To simulate this, we use NarrativeQA [51], a
long-context, reading comprehension task. We answer
questions about book or movie summaries, including
character-related queries, using only the provided con-
text. Character names are treated as sensitive attributes
and sanitized using FPE. Summaries have 534 words on
average with a standard deviation of 210.

To assess the impact of Prϵϵmpt on reasoning and
reading comprehension, we use semantic textual similar-
ity (STS) [74] between the answers based on the original
summaries and the answers based on Prϵϵmpt sum-
maries. This score also acts as the quality oracle Q.
We do not use BLEU scores for this experiment, as
the reference answers only have a few words and do
not capture any paraphrased response. We discuss the
performance of NER and present examples in App. 4.5
of [25]. We present comparisons with Papillon [81], a
contemporary privacy preserving framework in Sec. V-B.
Results. We report the STS scores in Table I. We find
that Prϵϵmpt captures a significant amount of semantics
of the plaintext response, with the GPT-4o response
having an STS score of 0.934. For context, if we don’t
desanitize the LLM response, the score drops to 0.523
with respect to the plain responses. If the LLM gives
a completely irrelevant response (such as the answer to
an unrelated question), the score drops to around 0.146.

TABLE I: Semantic Textual Similarity scores of different
methods for the Long-Context Q/A task. Higher value
implies more similarity with the reference answer. “Plain
Responses” refer to the responses for unsanitized inputs,
and “References” indicate the ground truth responses.
We find that Prϵϵmpt has a particularly high utility
with respect to GPT-4o, outperforming prior methods.
Prϵϵmpt uses Gemma-2 9B Instruct as the NER model
for Gemini-1.5, and UniNER for Llama-3 and GPT-4o.

STS Score Prϵϵmpt Papillon
Llama-3 Gemini-1.5 GPT-4o GPT-4o

Plain Responses 0.839 0.849 0.934 0.854
References (GT) 0.514 0.722 0.510 0.458

This demonstrates the robustness of the metric. Further
details and ablations can be found in App 4.5 of [25].
Multi-Turn Financial Q/A. LLMs are also frequently
used in multi-turn conversational settings, and may
be tasked with performing numerical reasoning over
sensitive information. Thus, we assess Prϵϵmpt on a
financial multi-turn question answering benchmark Con-
vFinQA [23].The dataset consists of financial reports
written by experts [24] followed by a sequence of
conversational, numerical-reasoning questions guiding
the model through solving a multi-step problem. Each
prompt includes background text and a table with yearly
financial data spanning over several years. All numerical
information (except years) is extracted using regex and
sanitized using mLDP. To handle repeated values within
parentheses in the table, we use the helper string Ψ in
the regex updating of text to ensure that this structure is
preserved in the sanitized text. ConvFinQA performance
is typically reported in terms of exact match accuracy
of responses. Since sanitization introduces noise in the
numerical values, exact matching is no longer an appro-
priate evaluation criterion; instead, we measure utility
after sanitization with the relative error of the prediction.
Moreover, we observed that for this dataset, the answers
returned by a model are occasionally correct up to the
target answers sign or magnitude—often due to the
questions being underspecified rather than model error.
To account for the sensitivity of relative error to incorrect
magnitudes of predictions, we check if the relative error
of the magnitude and sign adjusted response is less
than .1 of the correct answer. If the adjusted error is
sufficiently small, we record it instead.
Results. We report the 25th, 50th, and 75th percentiles
of the relative error in GPT-4o’s answers for sanitized
and clean prompts. We further report the 25th, 50th,
and 75th percentiles of “consistency”, measured as the
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TABLE II: Performance evaluation on ConvFinQA
benchmark with varying degrees of prompt sanitization
(ϵ represents the privacy parameter for mLDP). Higher
relative error indicates larger deviation from ground
truth, while lower prediction consistency indicates a low
relative discrepancy between sanitized and unsanitized
responses. “Base” here indicates the baseline.

Impact of Prϵϵmpt on ConvFinQA Performance

ϵ
Relative Error Prediction Consistency

25th Median 75th 25th Median 75th
0.1 0.0581 0.4000 4.4115 0.0698 0.3661 0.9994
0.5 0.0154 0.0776 1.0000 0.0167 0.1345 0.9898
1.0 0.0075 0.0408 0.9881 0.0084 0.0736 0.9899
2.0 0.0040 0.0244 0.8686 0.0044 0.0447 0.9899
Base 0.0000 0.0000 12.6749 - - -

relative difference between the model’s prediction on the
sanitized query compared to the prediction on the clean
query. We report the results in Table II, observing a clear
trend of performance improvement with a larger privacy
budget, however, we note that at the 75th percentile,
consistency does not change much. We also observe that
the relative error of the sanitized prompts at the 75th per-
centile is lower than for unsanitized prompts, suggesting
that addition of noise regularizes model behavior and
prevents large outlier responses. We provide additional
results with higher privacy budgets in App. 4.6 [25].

B. Comparison of Prϵϵmpt with Prior Methods

We compare Prϵϵmpt with Papillon [81], a contempo-
rary privacy-preserving framework. It uses a local LLM
to create a proxy of the user query that omits all PII
values, while attaining high utility with respect to a
remote, task-performing model. We consider two tasks
in our setting: Translation and Long-Context Q/A. We
use GPT-4o for all steps of Papillon, with Llama-3.1 8B
Instruct [2] as the local model.
Translation. We consider 100 samples for each sensitive
attribute ([Name],[Age],[Money]) for both languages, for
a total of 600 samples. Following Papillon, we create
optimized prompts for each attribute-language pair.
Results. We report BLEU scores in Table III. We find
that Prϵϵmpt significantly outperforms Papillon, except
for the [Age] and [Money] PII categories for the English-
French translation task, where it is comparable. Fur-
thermore, the average leakage of privacy due to NER
failure is 71% of unique PII values compared to 97%
for Prϵϵmpt. We detail their relative performance in App.
5.2 of [25].

TABLE III: BLEU scores for the English→German and
English→French translation tasks, with UniNER-7B-PII
for NER. All scores are w.r.t the reference translations
from WMT-14. Higher value implies more similarity
with the reference translation. We find that Prϵϵmpt has
nearly identical performance with the translations of un-
modified sentences and also outperforms prior methods.

English → German, NER: UniNER-7B-PII

Attribute Gemini-1.5 GPT-4o
Plain Prϵϵmpt Plain Prϵϵmpt Papillon

Name 0.334 0.341 0.287 0.278 0.175
Age 0.235 0.252 0.243 0.231 0.135
Money 0.245 0.274 0.217 0.200 0.153

English → French, NER: UniNER-7B-PII
Name 0.423 0.408 0.432 0.419 0.290
Age 0.486 0.490 0.480 0.479 0.409
Money 0.329 0.333 0.294 0.279 0.299

Long-Context Q/A. We consider 50 samples for prompt
optimization. Each sample contains a unique summary,
a question based on it, and the corresponding answer.
Results. We report the STS scores in Table I. We find
that Prϵϵmpt performs somewhat better than Papillon.
However, Papillon as implemented, is mostly unsuccess-
ful in preventing leakage for long context tasks. We
observed that 80% of all prompts passed to the remote
model contain character identities. These prompts are
just the questions and do not include the summary. As the
summaries are based off Wikipedia entries, the remote
model is able to identify those characters and correctly
respond to the query. We discuss NER performance and
examples of successes and failures in App. 5.3 of [25].

C. Impact of Design Choices on Prϵϵmpt Utility

To address Q3, we examine design choices for two
components: NER and encryption format.
Named-Entity Recognizer (NER). Uni-NER [92] is
an LLM trained for generic named entity recognition.
We finetune it on 10 high-risk categories from the
AI4Privacy dataset [1]. We evaluate the NER as a type
annotator on a held out subset of the dataset, consisting
of text in English, German and French, with 50 samples
per category, per language. We tabulate results for the
following categories: “Money”, “Name”, “Age”, “SSN”,
“Credit Card Number”, “Zipcode”, “Date”, “Password”,
“Sex”, “Phone Number”. We make comparisons with
off-the-shelf proprietary and open-source models, includ-
ing: GPT-4.1 [69], Claude 4 Sonnet [6], Gemini 2.5 [50],
Llama-3.1 8B Instruct [2] and Gemma-2 9B Instruct [37]
(details in App. 6.1 of [25]). As our experiments only
deal with Name, Age and Money, we use another Uni-
NER model, specifically finetuned on these attributes.
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TABLE IV: Named entity recognition (NER) F1 scores for English (E), German (G), and French (F). Our finetuned
version of UniNER either matches or outperforms all other models on almost every sensitive attribute. “CCN” and
“PN” stand for Credit Card Number and Phone Number respectively.

Attribute
Part A: Open-source Models Part B: Closed-source Models

Uni-NER-7B-PII Gemma-2 9B Inst Llama-3.1 8B Inst GPT-4.1 Gemini-2.5 Claude 4 Sonnet
E G F E G F E G F E G F E G F E G F

Name 1.00 1.00 1.00 .907 .893 .846 .836 .766 .715 .843 .883 .845 .742 .903 .840 .791 .867 .872
Age 1.00 1.00 1.00 1.00 .951 .990 .960 .884 .822 .970 1.00 .990 .990 .990 .990 .980 1.00 .990
Money .940 .860 .880 .940 .827 .824 .820 .710 .820 .882 .941 .959 .990 1.00 1.00 .990 .980 1.00
SSN .990 1.00 .990 .640 .760 .653 .843 .871 .827 .875 .959 .960 .990 1.00 1.00 .969 .969 .929
CCN .980 .960 1.00 .952 .962 .873 .916 .926 .855 .971 .971 .980 .980 .990 .970 .980 .980 .980
Zipcode 1.00 .990 .980 .980 .990 .980 .952 .925 .936 .980 .962 .981 .990 .980 .990 .990 .942 .990
Date 1.00 1.00 1.00 .778 .708 .649 .960 .846 .895 1.00 .980 .970 .860 .733 .784 1.00 .971 .980
Password .980 1.00 1.00 .885 .887 .833 .238 .087 .163 1.00 .970 .950 .980 .810 .970 .990 .970 .922
Sex 1.00 1.00 1.00 .971 .943 .980 .926 .673 .830 .962 .945 .971 .971 .925 .990 .971 .954 .980
PN .980 1.00 1.00 .952 .971 .962 .926 .971 .971 .980 .970 .990 .990 1.00 .990 .980 .980 .990

Results. As seen in Table IV (App. 6.1 of [25]), fine-
tuning Uni-NER on these high-risk categories yields
100% F-1 scores across most attributes, often exceeding
the performance of state-of-the-art proprietary models.
Encryption Format. Prϵϵmpt assumes that the LLM’s
performance depends on preserving the format of type
τI tokens. We validate this assumption by evaluating the
LLM on two other sanitization algorithms: (1) that does
not preserve the format at all, and (2) that preserves an
incorrect format. For the first case, we sanitize the type
τI tokens with AES, which replaces the sensitive tokens
with 16 bytes of random strings. In the second case, we
randomly substitute the tokens without maintaining the
correct format (e.g. replacing a 5-digit ZIP code with
a randomly chosen 8-digit value). We assess this in the
context of a RAG task by generating 31 tuples of con-
texts (C), questions (Q), and answers (A) corresponding
to a factual retrieval task. For each tuple, we evaluate the
percentage of correct, desanitized answers using GPT-4.
Results. We observe that our model achieves 100%
accuracy in factual information retrieval when employing
FPE. However, performance drops to 70.97% with AES
encryption and 77.42% with random substitution using
incorrect formats. This confirms that format preserva-
tion is crucial for the LLM’s performance. We provide
additional results for the Translation and Multi-Turn
Financial Q/A tasks with different privacy budgets in
App. 4.2 and App. 4.6 of [25] respectively.

VI. RELATED WORK

A line of work proposes to sanitize the prompts via
substitution using a local LLM[78, 49, 22]. However,
such solutions cannot be stateless if they intend to
provide utility by desanitizing LLM responses. Crypto-
graphic methods have also been explored for protecting

user privacy at inference [43, 39, 21]. However, these
approaches impose high computational and communi-
cation overheads. One line of approach for protecting
privacy at inference involves employing DP for in-
context learning by generating a synthetic dataset [29,
84, 41, 86]. However, these approaches are only ap-
plicable when a large collection of data is available,
and are different from sanitizing an individuals sensitive
information when they are submitting a simple query
to an LLM. More similar to our setting are local DP
based approaches. However, a key difference from our
work is the way in which noise is added. A line of
prior work employs metric DP by adding noise to text
embeddings, and then decoding the private embeddings
back into text [34]: this violates the definition of a
prompt sanitizer as this might not preserve the types of
the tokens (Sec. III). Another approach noisily sample
a token from a pre-defined list of “similar” tokens [17,
8, 9, 20] which require carefully selecting the list of
similar tokens. Another line of work generates a noisy
paraphrase of the prompts [59, 87, 53, 44]. However,
these methods suffer from the curse of dimensionality as
the amount of noise grows proportionally with the length
of the generated text leading to poor utility. Table V
provides a summary comparing Prϵϵmpt with prior work.

VII. CONCLUSION

LLMs introduce new challenges for protecting sensi-
tive information at inference time. We address this by
introducing a cryptographically inspired primitive—the
prompt sanitizer—which transforms prompts to protect
sensitive tokens. We then present Prϵϵmpt, a system that
implements this primitive with provable privacy guar-
antees. Experiments show that Prϵϵmpt maintains high
utility across both structured and open-ended prompts.
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TABLE V: A comparison of prompt sanitization frameworks as per the design goals in Sec. IV-C. We find that
Prϵϵmpt is the only framework that has all the desirable qualities of a secure and high utility prompt sanitizer.

Method Stateless Formal Privacy Guarantee High Utility Resource-Efficient

Prϵϵmpt (Ours) ✓ ✓ ✓ ✓
Papillon [81] ✗ ✗ ✓ ✓
Substitution-based [78, 49, 22] ✗ ✗ ✓ ✓
Cryptography-based [43, 39, 21] ✓ ✓ ✓ ✗
DP-based noising of text [29, 84, 41, 86] ✓ ✓ ✗ ✗
DP-based noising of text embeddings [34] ✓ ✓ ✗ ✓
DP-based noising of tokens [17, 8, 9, 20] ✓ ✓ ✗ ✓
DP-based text paraphrasing [59, 87, 53, 44] ✓ ✓ ✗ ✓
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APPENDIX

A. Error due to NER

Prϵϵmpt protects sensitive tokens under error due to
NER as follows:

Theorem 4. Let S be the set of all token pairs of type
τII that are different in the prompt pairs (ρ0,ρ1) in the
privacy game Gpp

PS,LNER
. Then, for Prϵϵmpt we have:

Advpp
Prϵϵmpt,LNER

(A) ≤ elϵ + negl(κ) (5)

where l = max(σ0,σ1)∈S{|σ0−σ1|} and κ is the security
parameter of the underlying FPE scheme.

Proof. Note that the proof of Theorem 2 is modular. The
additional leakage introduced by NER errors is already
explicitly captured in the prompts constructed with the
modified leakage function. Consequently, the remainder
of the proof proceeds in exactly the same way. Our
security argument remains unchanged, as it relies on a
hybrid argument over prompts that differ in only a single
token. So our starting point is two prompts which differ
in a single token that falls in the (1 − λ)% tokens that
were not replaced.
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