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The myriad of sensors and powerful processors in AR/VR
devices enable users to become deeply immersed in digital
content, whether in fully virtual environments or blended
physical–digital scenes. However, recent research has shown
that these capabilities also introduce novel side-channel vulnera-
bilities in these devices. These works include virtual keystroke
inference using WiFi signals [5] or embedded 2D infrared
sensors [63], as well as avatar typing observation [96], head
movement analysis [78], or a combination of computer vision
methods and motion sensors [41]. Additionally, other studies
have explored the inference of visual and audio activities during
device charging [40], and the reconstruction of high-quality
vital signals and speech content, employing embedded motion
sensors in AR/VR headsets [11], [97].

A recent work [98] proposed side-channel attacks that
recover gestures, voice commands, keystrokes, and detect
bystanders using a concurrent malicious app on AR/VR devices.
These attacks exploit memory allocation APIs and performance
counters exposed through SDKs provided by game engines such
as Unity and Unreal. Although the aforementioned work [98]
uses CPU and GPU frame rates obtained via SDKs as attack
vectors, it faces three key limitations.

First, it requires a concurrently running standalone back-
ground app to access these performance counters. However,
devices like the Meta Quest restrict concurrent app execution,
apart from a few Meta-approved apps (e.g., Messenger and
Meta Chat), rendering the attack infeasible. Second, their
approach relies on high-resolution profiling (60 Hz), which
makes it detectable and easily prevented by lowering the
resolution of the profiling tool. Lastly, their work focuses on a
small set of attack attributes and performance counters without
modeling the detailed relationship between 3D object rendering
and GPU usage. Hence, limited sensitive data, such as built-in
voice commands and simple gestures, can be captured.

In this paper, we revisit the threat landscape of GPU-based
side-channel attacks in immersive environments by focusing
on Meta devices, which expose GPU metrics with unusually
high and fine-grained correlation to application behavior. We
demonstrate that even low-resolution (1Hz) profiling of these
metrics can reveal fine-grained information and leak sensitive
application activity. To this end, we introduce OVRWATCHER

which leverages the built-in GPU profiling tool [16] to
fingerprint user activity with over 98% accuracy, without relying
on concurrent app execution or additional SDKs. We show
that even profiling a single GPU metric is sufficient to leak

Abstract—Over the past decade, AR/VR devices have drastically 
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malicious actors. Recent research has revealed that malicious 
apps can exploit such capabilities and monitor benign apps to 
track user activities, leveraging fine-grained profiling tools, such as 
performance counter APIs. However, app-to-app monitoring is not 
feasible on all AR/VR devices (e.g., Meta Quest), as a concurrent 
standalone app execution is disabled. In this paper, we present 
OVRWATCHER, a novel side-channel primitive for AR/VR devices 
that infers user activities by monitoring low-resolution (1Hz) GPU 
usage via a background script, unlike prior work that relies on 
high-resolution profiling. OVRWATCHER captures correlations 
between GPU metrics and 3D object interactions under varying 
speeds, distances, and rendering scenarios, without requiring 
concurrent app execution, access to application data, or additional 
SDK installations. We demonstrate the efficacy of OVRWATCHER 
in fingerprinting both standalone AR/VR and WebXR applications. 
OVRWATCHER also distinguishes virtual objects, such as products 
in immersive shopping apps selected by real users and the 
number of participants in virtual meetings, thereby revealing 
users’ product preferences and potentially exposing confidential 
information from those meetings. OVRWATCHER achieves over 
99% accuracy in app fingerprinting a nd o ver 9 8% a ccuracy in 
object-level inference.

I. INTRODUCTION

Augmented Reality (AR) and Virtual Reality (VR) platforms
have reshaped industries and are redefining h ow w e interact
with the digital and physical worlds [68], [72]. These immersive
systems integrate virtual elements into real-world environments
(AR) or create entirely simulated environments (VR). This
offers new ways of interaction, visualization, and engagement
with other people and the environment. Several companies have
designed their own AR/VR devices, e.g., Meta Quest [70], [71],
Microsoft HoloLens [54], and Apple Vision Pro [6]. These
devices comprise CPUs, GPUs, neural engines, various sensors
(e.g., visible light cameras and infrared cameras), and audio
components for real-time processing of multimodal sensory
information and rendering [76], [87].
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fine-grained information, which underscores the practicality
and stealthiness of this attack vector. These findings thus reveal
critical gaps in existing mitigation strategies [61], and highlight
the urgent need for more robust protections on current and
future XR platforms.

We therefore quantify these gaps by evaluating OVR-
WATCHER on XR platforms. OVRWATCHER achieves over 99%
accuracy in fingerprinting standalone AR/VR applications,
which are primarily rendered in 3D or occupy the full immersive
space, thus exerting a stronger impact on GPU metrics. Despite
the constrained setting of 2D, it achieves 99% accuracy in
fingerprinting WebXR apps, and with two GPU metrics yielding
more than 94% accuracy.

As suggested by prior works in the mobile domain [58],
[59], identifying user interests can be leveraged for targeted
advertising. Motivated by this, we demonstrate the feasibility
of identifying virtual objects within immersive environments.
Through case studies, we show that OVRWATCHER can fin-
gerprint realistic products in immersive shopping apps and
detect participant counts in virtual meeting apps with over 98%
accuracy. We further validate the effectiveness of OVRWATCHER

through a user study, where participants interact with the real-
world application Meta Layout [52], achieving accuracy of up
to 88%. These attacks broaden our understanding of the threat
models faced by emerging immersive AR/VR systems.

Our attack operates even on platforms such as the Meta Quest
by leveraging built-in GPU profiling tools, specifically, Meta’s
ovrgpuprofiler tool [16]. This attack requires no elevated
privileges, physical access, or additional SDK installations, and
it overcomes the key limitation of prior work that depends
on concurrent application execution. In contrast to existing
AR/VR side-channel attacks that primarily detect keystrokes or
application usage, OVRWATCHER is the first to reveal low-level
GPU metrics that can expose fine-grained information within
an app’s immersive environment.

In summary, we make the following contributions:
• We present OVRWATCHER, a method that uses a built-

in GPU profiler with low (1Hz) resolution to perform
side-channel attacks on AR/VR devices, without requiring
additional SDKs or concurrent app execution.

• We systematically analyze how virtual object rendering
in AR/VR affects GPU metrics, revealing indicators
correlated with scene complexity and user interactions.

• Through case studies, we show that OVRWATCHER

achieves near 100% accuracy in tracking foreground
standalone AR/VR and WebXR apps, and inferring fine-
grained user activities, such as identifying products in a
shopping app and participant counts in a private meeting
app, highlighting the significant privacy risks posed by
low-resolution GPU side channels in AR/VR.

• We demonstrate that virtual objects selected by real partici-
pants can be distinguished with up to 88% accuracy despite
the noise introduced by the surrounding environment.

• We evaluate OVRWATCHER in a cross-device setting,
showing its effectiveness even with limited GPU metrics,
achieving over 93% accuracy across all case studies.

Responsible Disclosure. We have disclosed our findings
with the Meta Quest development team through Meta Bug
Bounty [51]. The Meta Security Team acknowledged these
findings in the Meta Quest series and recognized our contribu-
tion with a Meta Bounty Award (Detailed in Section X).

II. BACKGROUND

A. Extended Reality (XR)

Extended Reality (XR) encompasses technologies such as
Virtual Reality (VR), Augmented Reality (AR), and Mixed
Reality (MR) that integrate digital elements into the real-world
environment to varying extents. XR is rapidly advancing with
applications in gaming, healthcare, education, training, and
data visualization. VR fully immerses users in an alternate
reality, isolating them from their physical surroundings, as
demonstrated by gaming apps such as Beat Saber [48]. In
contrast, AR overlays digital elements onto the user’s physical
environment, usually without allowing direct interaction be-
tween the digital and physical elements, as seen in apps such as
Pokémon Go [64] and IKEA Place [35]. MR, a subset of XR,
merges VR and AR, enabling users to view and interact with
virtual objects within their physical environment. For example,
Figmin XR [49] allows users to create, collect, and play in an
MR environment. In addition to these standalone apps, both
Meta Quest and HoloLens 2 support WebXR [33], a web-based
immersive environment.

B. GPU Performance Counter

To assist developers in tracking and optimizing the perfor-
mance of their apps, XR frameworks provide GPU performance
counters. Metrics provided by the GPU performance counter
reflect the graphical complexity of objects rendered on the
display. Similarly, to analyze GPU usage, development frame-
works offer tools to access real-time metrics and GPU profiling
data provided for Meta Quest headsets. For example, Meta’s
ovrgpuprofiler tool exposes 72 GPU metrics (78 for
Quest 3S) at 1 Hz sampling resolution. Apple Vision Pro’s
Xcode Instruments [8] offer over 150 GPU counters at up to
60Hz, and Microsoft HoloLens supplies memory and GPU
utilization metrics via Windows Performance Recorder [57]
and PIX [55] at 10Hz, accessible in the background.

Because maintaining high frame rates and low latency is
critical to user comfort and immersion in AR/VR, GPU profilers
are essential to identify performance bottlenecks. This makes
them impossible to remove without severely degrading the
experience. Each metric provides insight into different GPU
subsystems. For instance, in ovrgpuprofiler, GPU counter
cover utilization, memory bandwidth, and geometry throughput.

Users can also install the OVR Metrics Tool [50] from
the Meta Horizon Store, which runs entirely in user-space
and exposes various performance counters. This app provides
basic ovrgpuprofiler metrics, such as GPU utilization
and frame timing, to users either as an in-app HUD overlay
or as CSV reports, while developers can access advanced
metrics [18] within their apps.
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TABLE I: Comparison of related AR/VR side-channel attacks and OVRWATCHER. Each row presents (i) the type of side
channel, (ii) the specific sensor or API used, (iii) the extracted attributes and the corresponding number of labels, (iv) the
sampling resolution (Hz), (v) whether a standalone or concurrent app is required, and (vi) the tested AR/VR environment.
Symbols are used to denote an AR (4) and a VR (>). The attack denoted by † is not feasible on the Meta Quest series.

Side-Channel Type Side-Channel Primitive Extracted Attributes (# Labels) Resolution (Hz) Standalone AR/VR

Physical
Facial Vibration Monitoring Belt [97] Gender (2), User (27), Body fat (-) 203 × >

Power Monitoring device [40] App (10), Website (10), Audio (5) 100 ✓ >

Motion/Gesture Sensors

Controller [95] Keystrokes (38) 60 ✓ >

IMU [78] Keystrokes (60) 72 × >

Camera [93] Keystrokes (4) 30 ✓ >

IMU (Accelerometer/Gyro) [11] Digits (10) 1000 × >

System-level APIs Performance Counters (Unity/Unreal) [98] Gestures (5), Voice (5), Digits (10), App†(12) 60 × 4, >

OVRWATCHER GPU Profiler (in-built) VR Object (35), App (100), Website (100), Avatar (10) 1 ✓ 4, >

III. RELATED WORK

Side-Channel Attacks on GPU. Researchers [24], [31],
[61] have introduced new side-channel attacks exploiting the
parallelism and resource sharing of modern GPUs in desktop
and mobile environments. Naghibijouybari et al. [61] exploited
GPU performance counters for website fingerprinting, keystroke
detection, and neural network recovery. These attacks, however,
can be mitigated by lowering the sampling rate and reducing
website fingerprinting accuracy to less than 40% at 2 samples
per second. Dutta et al. [24] extended side-channel attacks to
multi-GPUs using a Prime+Probe method targeting L2 cache
contention to infer sensitive data transfer patterns in multi-GPU
interconnects. These cross-GPU attacks can be mitigated by
disabling peer memory access between untrusted GPUs and
enforcing cache and memory partitioning across GPUs.

Privacy Leakage Attacks in XR. Prior works [27], [41],
[62], [77], [78], [98] have demonstrated various privacy leakage
attacks in XR environments. Zhang et al. [98] leveraged leakage
vectors, including memory allocation APIs and performance
counters from Unity [85] and Unreal [29], to recover hand
gestures, voice commands, virtual keyboard keystrokes, perform
application fingerprinting, and estimate bystander distance.
Slocum et al. [78] proposed a system to infer words or
characters typed by a victim on an XR device using a concurrent
application by extracting IMU motion signals. Ling et al. [41]
used computer vision and motion sensors to infer keystrokes
in virtual environments, while Shi et al. [77] exploited AR/VR
motion sensors to infer sensitive information from facial
dynamics associated with speech (e.g., identity, gender).

Beyond keystroke recovery and app fingerprinting, XR also
leaks higher-level attributes such as location and identity.
Farrukh et al. [27] presented a location inference attack for MR
devices, which employs geometric and semantic features from
3D spatial maps. In an analysis of a publicly available dataset,
Nair et al. [62] found that hand and head motion data captured
in a VR environment can uniquely identify a large number
of users. Tricomi et al. [88] developed a generic profiling
framework leveraging machine learning on behavioral data,
including head, controller, and eye movements, to identify users
and infer attributes such as age and gender. Unlike previous

works, our approach uses GPU metrics without relying on
motion sensors or camera data to analyze user activity in XR.

Table I compares our attack with existing side-channel attack
vectors and their target environments. While prior work relies
on high-resolution profiling for accuracy, our results show
that even 1Hz GPU sampling can effectively compromise user
privacy. We evaluate our attack in AR and VR environments,
demonstrating its effectiveness in both these settings.

IV. MOTIVATION

Our goal is to demonstrate that sensitive user information in
XR environments, such as active apps, virtual object properties,
and the number of participants in private meetings, can be
exploited by analyzing GPU metrics collected from the built-
in GPU profiler. The extracted sensitive data could enable
an adversary to launch various attacks, including targeted
advertising or the leakage of personal and organizational
information [9], [38], [39].

For example, in a virtual shopping app, an adversary
could correlate the GPU usage metrics patterns with the
rendering of complex virtual product assets, such as furniture
items, generating fingerprints for each item. These fingerprints
can be exploited to target users with recommendations or
malicious advertisements based on their preferences. Similarly,
a malicious background script could track periodic fluctuations
in GPU metrics corresponding to the rendering of participant
avatars in a virtual meeting environment. This allows inference
of the number of participants and their spatial arrangement,
which could be exploited by an adversary to craft tailored
phishing messages based on the inferred context of the meeting.

Prior AR/VR side-channel attacks have used high-frequency
performance counters (e.g., from Unity or Unreal SDKs) to
infer common gestures, voice commands, numeric inputs, and
application usage with up to 95% accuracy [98]. However,
their effectiveness drops below 40% at sampling rates under
10 Hz, and they rely on a malicious app running concurrently
with the target app, a model infeasible on Meta Quest devices
due to strict runtime isolation.

Beyond XR platforms, similar high-resolution side-channel
attacks have been demonstrated on desktops and smartphones,
such as website fingerprinting via GPU utilization [61],
achieving around 90% accuracy with high-resolution timers and

3



Victim

GPU profiler traces

Background

Foreground

ovrgpuprofiler

Targeting AdsMalicious App

Trigger Script

Script

User activity 

Information leakageb

ca

d

Fig. 1: Illustration of OVRWATCHER’s threat model.

GPU rasterization. However, their success rate drops to around
59% when the performance counter resolution is reduced or
rasterization is disabled.

Therefore, in this work, we aim to explore GPU profilers
on AR/VR devices, operating at a low sampling rate of
1Hz without requiring additional SDKs, elevated privileges,
or concurrent background app execution. We further aim to
investigate the relationship between GPU metrics and user
activity in AR/VR environments. To assess the extent to which
such activity can be recognized, we aim to evaluate the efficacy
of the attack through lab-controlled studies in both AR and
VR settings. Finally, we aim to examine the practicality of the
attack through a user study in which participants interact with
a real-world application.
Design Challenges. Achieving high accuracy in predicting user
activity at low sampling rates, however, entails overcoming
several technical challenges, as described below.
(C1) Disabled Concurrent Applications. Prior work [98]
shows that malicious apps can run concurrently with benign
apps, which enables profiler-based side-channel data collec-
tion. However, unlike Microsoft HoloLens and Apple Vision
Pro, Meta Quest devices restrict concurrent app execution,
permitting only selected Meta apps like Messenger or Meta
Chat. This limitation in Meta Quest devices makes prior attacks
infeasible for third-party applications and presents a particularly
challenging environment for side-channel attacks.
(C2) Efficient GPU Metric Selection. Accessing the full
spectrum of GPU performance metrics (72 available GPU
metrics on Quest2 and 78 on Quest3) using the built-in GPU
profiler introduces significant overhead due to high resource
consumption. This often results in missing or inconsistent
metric values. Consequently, Meta’s official documentation [47]
recommends not to request more than 30 real-time metrics
simultaneously. This limitation poses a challenge for reliably
profiling the GPU metrics required for the side-channel attacks.
(C3) Low-Resolution Attack Channel. Prior GPU side-
channel attacks rely on high-frequency sampling to achieve
high accuracy [61], [98]. In contrast, Meta Quest devices expose
GPU metrics at a low sampling rate of 1Hz, making fine-grained
activity inference more challenging.

V. THREAT MODEL

We consider an attacker whose goal is to infer a user’s
privacy-sensitive activities by analyzing GPU performance
metrics on an AR/VR device, as shown in Figure 1. To achieve
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Stage 2: 
Feature Engineering

Pixel Interaction
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OVRWatcher Inference

Dynamic Correlation

DL Classifier

Website
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Fig. 2: Architecture of OVRWATCHER.

this, we assume that a user installs a standalone AR/VR app,
such as games or productivity tools, provided by the adversary
( a ). While running in the foreground, this app initiates the
device’s GPU profiler tool to monitor and record GPU usage
patterns (e.g., frame timing, shading statistics) as the user
engages in user activity with other benign AR/VR apps ( b ,
c ). We load the adversary app in developer mode, which allows
installation of APKs and invokes shell commands via Android’s
API to execute a script file. Similarly, cross-compiling and
bundling the ovrgpuprofiler Executable and Linkable
Format (ELF) binary with the Android NDK [15], the user
space app can launch the profiler directly at runtime [4], [73],
which makes it accessible without root or special privileges. We
note that AR/VR app stores (e.g., Meta Store) allow apps with
a GPU profiler for legitimate performance analysis [50] and,
once the adversary app is activated, the profiler operates in the
background even after the app is terminated (See Section VI-C).

The captured GPU metrics are then stored within the app
or transmitted to a server. Both methods incur minimal energy
and computational overhead, which allows the attack to remain
undetected by the user and the OS (See Section VI-B). By
analyzing the resulting GPU profiler traces, an adversary infers
sensitive information about the user’s activities ( d ). This
information includes the apps a user is using, e.g., gaming, chat,
or shopping apps, and interactions with 3D objects, e.g., the
products that the user is browsing in a shopping app, as well as
in-app contextual information, e.g., the number of participants
in a meeting (See Section VII).

VI. OVRWATCHER DESIGN

We present OVRWATCHER, a side-channel attack that infers a
user’s augmented and virtual reality environment by leveraging
the built-in GPU performance monitoring tool. The tool not
only allows OVRWATCHER to monitor rendered content and
user interactions but also circumvents the need for elevated
privileges or direct sensor access from XR devices.

A. System Overview

Figure 2 illustrates three main stages in the OVRWATCHER

attack. First, OVRWATCHER creates a malicious script file that
runs in the background even though the malicious app is



TABLE II: A total of 30 selected GPU performance counters leveraged by OVRWATCHER.

Category Metric

GPU Utilization GPU Frequency, GPU Bus Busy, Preemptions / second, Avg Preemption Delay
Stalls Vertex Fetch Stall, Texture Fetch Stall, Texture L2 Miss, Stalled on System Memory

Memory Access
Vertex Memory Read (Bytes/Second), SP Memory Read (Bytes/Second), Global Memory Load Instructions,
Global Buffer Data Read Request BW (Bytes/sec), Global Buffer Data Read BW (Bytes/sec), Global Image Uncompressed Data Read BW (Bytes/sec),
Bytes Data Write Requested, Bytes Data Actually Written

Shader/Instruction
Vertex Instructions / Second, Local Memory Store Instructions, Avg Load-Store Instructions Per Cycle, Avg Bytes / Fragment,
L1 Texture Cache Miss Per Pixel

Geometry/Rasterization Pre-clipped Polygons/Second, Prims Trivially Rejected, Prims Clipped, Average Vertices/Polygon, Average Polygon Area
Texture/Filtering Nearest Filtered, Anisotropic Filtered, Non-Base Level Textures

terminated. The script file collects GPU metrics (i.e., frame
timing, shading performance, GPU memory usage and texture
details) for a certain period of time to capture the user activity
fingerprint dataset, which overcomes C1 by bypassing Meta
Quest’s restriction on side-by-side VR app execution.

In the second stage, OVRWATCHER performs reverse engi-
neering on GPU metrics using the collected fingerprints to
analyze how they manifest in fully immersive (VR) and pass-
through (AR) environments. For example, an increase in GPU
memory usage or texture usage obtained from GPU metrics
can indicate that a new virtual object has been rendered in the
immersive scene. We address C2 by selecting only the most
informative GPU metrics that capture real-time user interactions.
This reduces the profiling overhead of accessing all available
metrics, which would otherwise stall the GPU through frequent
counter reads, and also mitigates potential data loss.

The last stage illustrates how OVRWATCHER applies machine
learning classifiers such as Convolutional Neural Network
(CNN), Long Short-Term Memory (LSTM), Random Forest
(RF), and Support Vector Machine (SVM) models to the 1-
second sampled metric sequences. By learning patterns in
low-resolution data, it overcomes C3 and accurately infers user
activities such as app usage, virtual object interaction, and
virtual meeting inference.

B. GPU Metrics for AR/VR Scene Analysis

We explore the relationship between GPU metrics and
user activity in AR/VR environments. First, we identify GPU
metrics that can be exploited to infer such activity. Then, the
selected metrics are analyzed to determine their behavior based
on different pixel rendering in AR/VR scenes. This analysis
process lays the groundwork for understanding how low-level
GPU behavior can reveal sensitive activity in AR/VR apps.

GPU Metric Selection. Simultaneous monitoring of all 72
metrics using the built-in ovrgpuprofiler tool generates
substantial computational overhead, often straining the GPU
profiling pipeline. As a result, metric data may be missing
or inconsistent due to the excessive number of data buffer
access requests. We use a controlled baseline of rendering three
basic 3D objects (cube, cylinder, and sphere) in Unity [85]
and monitor each metric during the rendering process. This
approach enables us to systematically evaluate each metric and
its effectiveness in accurately classifying rendered objects.

Specifically, each 3D object is set to Unity’s default size of
1 unit1, placed on the screen for 5 secs. We repeat the process
20 times per object, creating a comprehensive dataset covering
all 72 metrics across 20 measurements for each of the 3D
objects. We then train a Convolutional Neural Network (CNN)
model to distinguish which virtual object is being rendered.

Based on our preliminary analysis, we identified 30 individ-
ual metrics that, consistently achieved over 60% classification
accuracy and exhibited variation across different rendering
objects within the AR/VR scene. These 30 selected metrics,
shown in Table II, reduce computational overhead and ensure
capturing fingerprints relevant to user interactions with higher
accuracy. Specifically, limiting profiling to this subset prevents
missing or inconsistent values as Meta recommends fewer than
30 simultaneous real-time counters [47]. Consequently, we
further refine these metrics for each case study (Section VII).

Beyond selecting metrics from the accuracy, we perform a
pairwise correlation analysis on GPU metric traces from a basic
3D cube. We compute Pearson correlation coefficients [10]
over each metric and measure highly redundant pairs (|r| >
0.90). This process reduces the metric set from 30 to 11 while
preserving the most informative traces (Appendix Table VII).

Non-Base Level Textures Metric. We systematically com-
pared all 72 metrics from ovrgpuprofiler under various
rendering cases. Our experiment involves rendering basic 3D
objects such as a cube and observing how each metric responds
to changes in object size and position from the user’s point of
view. From this evaluation, we found that Non-Base Level
Textures metric achieves the highest correlation among 72
metrics provided by the ovrgpuprofiler.

The Non-Base Level Textures metric represents the
percentage of textures that are not at the base mipmap [94]
level (level 0), which is simply the original, full-resolution
texture image that the application uploads into GPU memory.
The base mipmap level corresponds to the highest resolution
texture, delivering maximum detail when a 3D object is viewed
up close. For example, when a user interacts with large 3D
objects that occupy a significant portion of the screen in AR/VR
devices, the rendering process prioritizes visual clarity by using
lower mipmap levels (closer to the base level) to ensure the
textures of the objects appear sharp and detailed.

1Unity’s unit [90] corresponds to one meter in real-world space as a basic
measurement in the scene
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(a) Meta Quest 2 (b) Meta Quest 3

Fig. 3: Relation between pixel value and the Non-Base
Level Textures metric in both (a) Meta Quest 2 and (b)
Meta Quest 3.

As a result, a higher percentage of textures near the base
mipmap level leads to an increase in the Non-Base Level
Textures metric value, which indicates that the GPU is
processing more detailed textures to render the 3D object
accurately. Conversely, smaller objects occupying fewer pixels
on the screen require less texture detail, utilizing higher mipmap
levels (further from the base level). Hence, there is a positive
correlation between object size and the Non-Base Level
Textures metric for 3D objects.

Correlating Pixel and GPU Metric. In AR/VR devices,
virtual 3D objects are rendered as pixels within the immersive
environment. Therefore, we posit that pixel-level analysis is a
critical component for understanding user interactions with 3D
content. We further characterize the exact number of pixels
rendering on the screen with the selected Non-Base Level
Textures metric. This process assigns the target object
to a specific layer to isolate it from the black background,
R,G,B = (0, 0, 0). Next, we apply the RenderTexture
library to convert the 3D images into Texture2D objects
since it allows us to obtain the number of pixels for each
object. We then apply a color threshold technique, which filters
out the black background and retains only the pixels belonging
to the target object, resulting in an accurate measure of the
object’s rendered pixels.

We collect 1,000 GPU metric readings by varying the
size of the 3D object to observe a wide range of pixel
coverage. To achieve the correlation between pixels and
the Non-Base Level Textures metric, we employ
LinearRegression from the Python scikit-learn
library [67] and separately compute Pearson correlation co-
efficient, ρX,Y = cov(X,Y )/σXσY , where cov(X,Y ) =
E[(X−µX)(Y −µY )]. We employ linear regression to quantify
how well our chosen metric predicts pixel coverage and to
validate that the selected GPU metric remains robust across
both AR and VR scene configurations.

Our analysis yields a strong correlation in both AR and
VR scenes. We evaluate our method on both Meta Quest
2 and Meta Quest 3 to demonstrate it applies to different
hardware generations (Section VI-C). Specifically, Meta Quest
3 incorporates an upgraded system-on-chip (SoC) and improved
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Fig. 4: Correlation between Non-Base Level Textures
metric and VR Cube object rendering with (a) the speed, v
= 1 unit/second and distance coordinate z = 2 unit, (b)
increasing speed to v = 2 unit/second, and (c) move object
further from the point of view, z = 3 unit.

display hardware compared to Meta Quest 2, potentially
influencing GPU performance metrics. In AR mode, Meta Quest
2 achieves an R2 score of 0.90 with a correlation coefficient
of 0.95, while Meta Quest 3 achieves an R2 score of 0.71
with a correlation coefficient of 0.84. Similarly, in VR mode,
Meta Quest 2 achieves an R2 score of 0.98 and a correlation
coefficient of 0.99, whereas Meta Quest 3 records an R2 score
of 0.89 with a correlation coefficient of 0.94.

The higher VR correlations came from the fully rendered
virtual environment, where every pixel change reflects GPU
work. However, AR passthrough mode mixes camera feed and
overlays, introducing additional noise into the metric. These
values indicate a strong relationship between pixel coverage
and the Non-Base Level Textures metric in both AR
and VR scenes, as illustrated in Figure 3.
GPU Metrics in Relation to Speed and Depth. In this ex-
periment, we automatically launch the basic Unity application,
generating a single cube moving at two different speeds (1
and 2 unit/second). The cube travels left to right over a total
horizontal distance of 30 units (x-coordinates from -15 to 15).
We also vary the cube’s depth from the camera by placing
it at three distinct z-coordinates (2, 2.5, and 3 unit). Each
experiment runs for 30 seconds and is repeated 20 times to
ensure sufficient data capture. This setup allows us to measure
how moving speed and object depth affect the Non-Base
Level Textures metric. More metrics relation is depicted
in Appendix Figure 11.

When the cube moves slowly across the scene, the GPU’s
workload remains high for a longer duration, resulting in
a broader width in the fingerprint created from Non-Base
Level Textures. Conversely, when any 3D object moves
faster in the scene, the GPU metric value spikes appear narrower.
For instance, at a speed of 1 unit/second, a broader peak
width is observed, whereas at 2 unit/second, the peak appears
narrower, as illustrated in Figure 4a and 4b. However, due to
the low resolution of the GPU profiler (1Hz), our attack only
detects objects that traverse the scene in more than one second.

When the 3D object is rendered closer to the camera and
occupies a substantial portion of the screen, it causes an increase
in the Non-Base Level Textures metric value, along
with other ovrgpuprofiler metrics that are affected by
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Listing 1: Cross-compile to create binary.

1 export NDK=<Path to your NDK>/Android_ndk
2 export TOOLCHAIN=$NDK/toolchains/llvm/prebuilt/darwin-

x86_64 # MacOS
3

4 $TOOLCHAIN/bin/aarch64-linux-android21-clang++ \
5 -std=c++11 -O2 -fPIE -pie \
6 -I"$PWD/include" \
7 -L"$PWD/libs/arm64-v8a" -lOVRMetricsTool -pthread \
8 -o ovrgpuprofiler \
9 my_profiler.cpp # Wrapper code

the depth between the viewpoint and 3D objects. This visibly
higher peak within the sampled dataset indicates that the GPU
actively renders more detailed textures in both AR/VR scenes.
In contrast, if a 3D object is farther away and occupies fewer
screen pixels due to the smaller sizes, it creates minor changes
in the GPU metrics. For example, placing the cube object at
coordinate z = 2 significantly increases Non-Base Level
Textures values, resulting in higher peaks, whereas z =
3 produces smaller values, as shown in Figure 4a and 4c.
Consequently, these observations serve as a foundation for the
detailed case studies discussed in Section VII.

C. Experiment Setup

Software Configuration. We launch our experiments on
the most recently updated software of Meta Quest devices,
specifically, Meta Quest builds version 72.0, Android OS
version 12 [32], and Unity [34] version 2022.3.34f1.
Hardware Configuration. Meta Quest 2 is equipped with a
Qualcomm Snapdragon XR2 system on a chip (SoC). This
chip is an advanced product of the Snapdragon 865 model,
specifically designed for AR/VR devices. The SoC integrates
the Adreno 650 GPU operating at 587 MHz. Moreover, Meta
Quest 3 utilizes the Snapdragon XR2 Gen 2, an enhanced
version with Adreno 740 running at 599 MHz. Meta Quest
3S also employs a Qualcomm Snapdragon XR2 Gen 2
processor with 8GB of RAM. Our experiments are conducted
on different dates and at multiple locations by different authors
to validate cross-device and cross-environment. Furthermore,
our experiments are conducted across all available Meta Quest
series, which demonstrates the feasibility of our attack.
Attack Workflow. We explain the detailed step-by-step
process of OVRWATCHER on the victim’s device. As
an in-app attack workflow, the adversary downloads the
OVRMetric Tool packages [19]. Then uses the Android
NDK to cross-compile a ovrgpuprofiler by linking
libOVRMetricTool.so [73] with wrapper code, as shown
in Listing 1.

When the app launches, it copies the binary into the private
data directory and then starts ovrgpuprofiler by either
invoking ProcessBuilder [65] in Java or calling a Unity
JNI helper [86] that performs a double-fork method [66] as
depicted in Listing 2. This double-fork sequence (line 13-19)
creates a detached background process. First, fork creates a
child process and setsid() makes that child run its own
session, separating it from the app. The second fork creates

Listing 2: In-app profiler example.

1 # Copy and prepare the profiler ELF
2 dst = getFilesDir() + "/ovrgpuprofiler"
3 copyFile(src, dst)
4 setExecutable(dst)
5

6 # Option A: via Java ProcessBuilder
7 args = [ dst, "-r", <counters> ]
8 ProcessBuilder(args).start()
9

10 # Option B: Unity JNI helper double-fork
11 nativeStartDetached(dst, ["-r", <counters>])
12

13 function nativeStartDetached(path, args):
14 pid1 = fork() # first fork
15 if pid1 > 0: return # parent returns
16 setsid() # child detach
17 pid2 = fork() # second fork
18 if pid2 > 0: exit(0) # first child exits
19 execv(path, [path] + args) # Execute in grandchild

a grandchild while the first child exits immediately. Because
the first child exists, the grandchild process is left without
a parent and automatically adopted by Android’s main init
process (PID1). Therefore, the profiler is no longer tied to the
app’s process and will continue writing GPU counter metrics
to a file even within the sandbox environment.

This file can be later analyzed or transmitted when the
malicious app is relaunched by the user. Our attack does not
need any privilege escalation or access to sensitive sensors, as
the GPU profiler is directly accessible from the XR devices.

Classification. OVRWATCHER tracks the pre-selected 30 GPU
metrics from the built-in GPU profiler. The real-time metric
values, Mi are collected for n seconds, where i is the metric
index. The collected values generate an individual fingerprint,
where each metric is represented as Mi = {t1, t2, . . . , tn}.
The fingerprint uniquely characterizes the behavior of specific
AR/VR apps and user interactions over time. Then, the
fingerprint is preprocessed by normalizing the metrics using
standard normalization to remove the baseline and noise.

We evaluate the collected dataset using four classification
models: Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), Random Forest (RF), and Support
Vector Machine (SVM). For CNN and LSTM models, we
input the entire time series by padding multiple metrics for
each execution to ensure a total size of n × i across all
samples. In contrast, RF and SVM models require a fixed-
length feature vector. Therefore, we compute statistical values
(µ, σ, max, min) for each metric across all time steps, then
concatenate these values into a single feature vector.

The preprocessed fingerprint is fed into pre-trained ML
models to classify the standalone AR/VR or WebXR app
currently running in the foreground. Once the app is identified,
the collected GPU metric values are leveraged to infer the
VR object render in both AR/VR scenes. To ensure the
generalizability of OVRWATCHER, we conduct experiments
across a diverse set of devices within the Meta Quest family,
including cross-series models such as Quest 2, 3, and 3S.
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VII. EVALUATION THROUGH CASE STUDIES

Through four case studies, we evaluate the practical impli-
cations of OVRWATCHER framework on Meta Quest devices,
which prohibit concurrent standalone app execution (as detailed
in Section IV, C1), a challenge largely unexplored in prior
AR/VR side-channel research. Each case study compromises
a distinct privacy and security aspect of AR/VR interaction.
Collectively, they address and overcome the primary design
challenges (C1-C3) posed by our threat model. In the following
sections, we detail each case study. OVRWATCHER proceeds
in two stages: first, the attacker determines which (i) AR/VR
standalone app or (ii) WebXR website has been launched;
and second, it targets user privacy within these environments
to extract sensitive information, including (iii) rendered VR
objects and (iv) meeting room participants.

A. Case Study I: AR/VR Standalone App Fingerprint

The first stage of our attack performs AR/VR application
fingerprinting as the victim launches a standalone application
within the immersive environment of the Meta Quest series,
without requiring any user interaction.
Experiment Design. We target the top 100 most popular free
applications from Meta Quest App Store2, which consist of
six different categories: Gaming (31%), Entertainment (21%),
Fitness (10%), Social (7%), Productivity (27%), and Mixed
Reality (4%). Although these categories encompass a diverse
set of applications, gaming remains the most popular use case
for AR/VR headsets [45], where it dominates a large portion of
the App Store. We list those 100 apps with their main purpose
categories in Appendix Table XVI.
Data Collection. After selecting the target applications, we em-
ploy a malicious script file to run the OVRWATCHER framework.
Specifically, we automatically launch the target applications to
collect the app fingerprinting dataset. For each measurement,
we run an app for 30 seconds and simultaneously monitor the
30 selected GPU metrics as outlined in Section VI-B. Each
app is profiled 20 times, resulting in a dataset consisting of
2000 measurements across the Meta Quest family (Quest 2
and 3). For each device, we randomly split the dataset into
balanced subsets using 80% for training and 20% for testing.
Results. We observe that each AR/VR app exhibits a unique
fingerprint due to its immersive graphics and resource-intensive
design. Such high rendering complexity leads to distinct GPU
usage patterns. Examples of these fingerprints are shown in
Figure 5. In particular, before any application is launched, there
is a constant baseline of GPU usage attributed to the system
due to the background load, such as AR (passthrough) view
or VR (immersive) view. Once an AR/VR app starts, GPU
usage rises sharply due to the demands of rendering immersive
3D graphics. During the app’s runtime, GPU usage remains
elevated to handle real-time interactions and dynamic scene
updates. When the user closes the application, GPU usage
returns to its baseline level associated with either the AR view
or the VR view.

2https://www.meta.com/experiences/view/1321443348416166
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Fig. 5: Example of fingerprints collected from Meta Quest 2 for
AR/VR standalone apps based on the L1 Texture Cache
Miss Per Pixel metric: (a) Gorilla Tag, (b) Bigscreen
Beta, and (c) Multiverse.

TABLE III: AR/VR standalone app fingerprinting performance
on 100 standalone apps on Quest 2, using a combination of
30 GPU metrics (average scores).

Model F1 (%) Precision (%) Recall (%) Accuracy (%)

CNN 98.3 98.5 98.4 99.3
LSTM 98.7 98.9 98.9 98.6
RF 99.4 99.5 99.6 99.5
SVM 85.1 86.9 87.6 86.8

As shown in Table III, CNN, LSTM, and RF models achieve
accuracies of 99.3%, 98.6%, and 99.5% , respectively, in
classifying 100 different AR/VR standalone apps while utilizing
a selected combination of 30 metrics. Specifically, test accuracy
shows the overall percentage of correctly classified samples
across all class labels. For each class label, we compute the F-1
score, precision, and recall metrics individually, and we report
the average values. Additionally, we evaluated the classification
performance using each GPU metric individually. Notably,
each 10 metrics achieves more than 90% F-1 score (Appendix
Table VIII) using the RF model, indicating that even a single
metric from the ovrgpuprofiler tool is feasible to perform
an AR/VR app fingerprinting attack.

Overall, OVRWATCHER successfully identifies the foreground
app with 99.5% accuracy using 30 metrics on Quest 2 and
maintains over 90% accuracy even with a single metric.
Furthermore, we achieve similar 95.8% classification accuracy
throughout the cross-device setting (Appendix Table XV). This
indicates that the pre-trained model is feasible to identify user
rendering AR/VR apps across different device setups.

B. Case Study II: WebXR App Fingerprint

WebXR API enables users to explore and engage with virtual
environments directly through the browser of any HMD. Users
can access a WebXR app in a manner similar to accessing a
standard website through a browser. Before entering the 3D
mode, the app loads within the 2D browser screen displayed
on the HMD. By default, WebXR enables the rendering of
WebGL scenes, allowing websites and browsers to utilize the
GPU for rendering. This capability makes our attack feasible
for fingerprinting WebXR apps.
Experiment Design. We selected 100 popular and free WebXR
apps based on recommendations from social media lists [69],
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Fig. 6: Example fingerprints for WebXR apps based on the L1
Texture Cache Miss Per Pixel metric. (a) Vartiste,
(b) Moon Rider, and (c) Towermax Fitness.

[79], [83], [84] and example showcases from development
platforms such as A-Frame [12], WebXR [33], as well as free
apps hosted on Glitch [82]. We selected applications from
five distinct categories: Gaming & Entertainment (19%), Art
& Creativity (11%), Tours & Exploration (18%), Health &
Fitness (8%), and Demonstration (44%) as detailed in Appendix
Table XVII. Although most of the applications are showcase
examples from standard WebXR sites (Demonstration category
(44%)), they effectively demonstrate the diverse capabilities
offered by WebXR. These capabilities include anchors [37],
positional audio [36], animation [1], as well as minimal
demonstrations such as shopping [3] and reading [2].
Data Collection. After selecting the target applications, we
execute the OVRWATCHER framework. Similar to the stan-
dalone AR/VR apps, we monitor the metrics provided by
ovrgpuprofiler for 30 seconds. We collect 30 metrics out
of the 72 available GPU metrics using a similar methodology,
as detailed in Section VI-B, repeating the process 20 times for
each selected WebXR app.

TABLE IV: WebXR app fingerprinting performance on 100
standalone apps on Quest 2, using a combination of 30 GPU
metrics (average scores).

Model F1 (%) Precision (%) Recall (%) Accuracy (%)

CNN 97.5 98.3 97.6 97.6
LSTM 96.1 96.7 96.4 96.4
RF 99.2 99.4 99.0 99.0
SVM 72.8 74.8 74.5 74.5

Results. We observe distinct fingerprints for each app based on
the selected 30 metrics. When a WebXR app is launched, GPU
usage spikes sharply from its baseline and returns to normal
upon termination. For example, based on L1 Texture
Cache Miss Per Pixel metric, Figure 6 shows distinct
fingerprints for three applications, VARTISTE [91], Moon
Rider [60], and Towermax Fitness [28], which represent the
categories Gaming & Entertainment, Art & Creativity, and
Health & Fitness, respectively.

As shown in Table IV, the RF and CNN models achieves
accuracies of 99.0% and 97.6%, respectively, in classifying
100 WebXR applications using 30 metrics, while the LSTM
model achieves 96.4%. Moreover, the top four metrics listed in
Appendix Table IX individually achieve over 72% accuracy in

classifying 100 WebXR apps using the RF model. Additionally,
OVRWATCHER achieves over 94% accuracy in the RF model
using only the top two metrics and 98.7% accuracy combining
the top four metrics, demonstrating the effectiveness of the
attack with a reduced set of metrics. Furthermore, across Quest
2, 3 and 3S, the RF model maintains an accuracy of 97.15%
(Appendix Table XV) demonstrating cross-device robustness.

Unlike the fingerprinting of standalone AR/VR applications
rendered in 3D mode, this case study demonstrates that even
rendering a WebXR application within a 2D browser interface
is sufficient for OVRWATCHER to achieve high classification
accuracy, despite operating at a significantly lower sampling
resolution compared to prior GPU profiler-based website
fingerprinting attacks [61].

C. Case Study III: Virtual Object Detection

After OVRWATCHER infers the standalone AR/VR or WebXR
app, it can further compromise the user’s privacy by identifying
the rendered objects within the immersive environment. For
example, applications like IKEA Place [35] enable users
to virtually place furniture, allowing them to visualize how
different pieces would fit into their existing environment
using mobile devices. Similarly, immersive virtual showrooms
developed by Demodern enable users to explore and arrange
furniture in simulated environments, providing a realistic and
interactive platform for home design [14], [21].

Inferring details about a user’s home layout and the types of
products they explore within a shopping app can be exploited
for targeted advertising, unauthorized surveillance, and more
advanced privacy attacks. In this case study, we evaluate
the ability of the OVRWATCHER framework to accurately
detect and identify virtual product placement within both AR
and VR scenes. Specifically, we focus on realistic product
prefabs designed to resemble IKEA-style furniture, which are
commonly used in XR environments to help customers virtually
visualize and place products within their homes or offices.
Experiment Design. We evaluate the object detection attack
in both AR and VR environments. We selected product prefabs
from five free asset packages available on Meta Asset Store [46],
including Toon Furniture [26], Free Furniture Set [20], HDRP
Furniture Pack [89], Apartment Kit [80], and Chair and Sofa
Set [30]. From these assets, we chose a representative subset
of 35 items, spanning large pieces (sofas, beds, desks) to
smaller home accessories (lamps, coffee machines, toasters) to
ensure coverage of diverse shapes, sizes and usage contexts
in a shopping scenario. We also select multiple items from
the same furniture category. This 3D object selection will
demonstrate OVRWATCHER’s ability to distinguish between
visually analogous 3D objects.

We design four experimental scenes to simulate real-world
usage scenarios: (i) an empty VR environment as a baseline, (ii)
a VR living room setup mimicking a typical living room layout
with multiple VR objects, (iii) an AR living room where actual
objects are placed within the physical living room environment,
and (IV) an AR office environment with an actual office space
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(a) Default VR Scene (b) VR Living Room Scene

(c) AR Office Scene (d) AR Living Room Scene

Fig. 7: Experiment scenes for furniture classification. Two VR
scene setups (a) without VR objects and (b) with VR objects
(living room layout). Two AR scene setups in an (c) office and
(d) living room.

and real furniture such as desks, chairs, and monitors. Figure 7
illustrates these four experimental setups.
Data Collection. We simulate typical user interactions with
a virtual product, such as moving items to explore optimal
placements or moving the viewpoint (headsets) to better
visualize the overall arrangement. In each AR/VR scene, the
selected prefab is rendered with speeds of v = 1, 10, 50
unit/second from left to right. Furthermore, we vary the
distance values between the user’s origin and the virtual product
position. Specifically, the selected object distance coordinates
are set at z = 0, 5, 10 unit, with the camera positioned at
z = −3 unit relative to the user’s default origin. The variations
in distance and movement speed mimic realistic user interaction
with virtual objects and exploration of product placement. We
collect 20 iterations for each combination of speed and distance
values with 35 prefabs.

To automate this process, we developed a Unity code that
reads a configuration file, which is saved as a text file in the
application directory. This text file specifies the prefab name,
position, movement speed, and distance for each iteration. A
bash script then saves this configuration into the app’s working
folder and invokes ovrgpuprofiler to start GPU profiling,
while the Unity code reads the configuration text file and moves
the object. For each iteration, this unified automation workflow
logs GPU metrics to a local file over a total duration of 40
seconds. Specifically, the first 10 seconds allow the AR/VR
scene to fully load and stabilize to ensure consistent tracking
and rendering, while the remaining 30 seconds capture the
user moving the selected virtual furniture object at one of the
predefined speed values to simulate realistic interaction.
Results. We deploy the same ML model types used in Case
Study I and II, which are CNN, LSTM, RF with 100 estimators,
and SVM, to ensure consistency in our evaluation. As shown
in Table V, CNN, LSTM, and RF models achieve the highest
accuracies of 96.5%, 92.6%, and 98.1%, respectively, in

TABLE V: Fingerprinting performance of virtual products on
Quest 2 using a combination of 17 GPU metrics (average
scores in %).

VR Scene AR Scene

Default Living room Office Living room

Model F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec

CNN 96.5 96.6 94.3 88.3 90.6 90.2 95.1 94.6 96.7 94.4 94.6 94.5
LSTM 92.6 92.3 94.3 75.8 80.1 80.9 89.8 90.9 91.3 91.4 91.1 93.0
RF 98.1 98.2 98.2 95.6 96.4 96.2 98.1 98.1 98.2 96.6 97.0 97.0
SVM 50.6 50.7 59.6 36.7 39.6 43.3 50.6 50.7 59.6 56.0 57.6 62.6

the default VR scene with 17 selected metrics (Appendix
Table XI). Averaging across all four scenes, these three models
maintain robust performance with 93.6%, 87.4% and 97.1%,
respectively. Specifically, the selected 17 metrics (out of the
30 collected metrics) individually achieve more than 80%
classification accuracy (CNN) applied in the default VR
scene with v = 1 unit/second speed and distance coordi-
nate with z = 0. Notably, Non-Base Level Textures
and Global Buffer Read L2 Hit metrics individually
achieve 100% classification accuracy, which demonstrates that
a single metric is feasible to classify the VR objects.

The VR living room scene (Figure 7b) presents the most
challenging environment due to the presence of default VR
objects (living room furniture) within the scene. This introduces
significant complexity and noise since several overlapping
objects and complex textures make it more challenging to
distinguish GPU activities caused by an individual furniture
object. In this challenging VR living room scenario, we still
maintain 87% classification accuracy with a single metric,
Prims Trivially Rejected.

The GPU metrics show minimal impact due to the scene
complexity in AR environments because the objects in the
AR are not rendered through GPU components. The real-
world background is directly taken from the headset’s built-
in camera feed (passthrough mode) rather than being fully
rendered by the GPU. Hence, the GPU only handles the virtual
objects overlaid on top of the camera feed. Consequently,
OVRWATCHER achieves nearly 100% accuracy in both AR
scenes (Figure 7c and 7d) by leveraging only the Non-Base
Level Texture percentage metric that captures the subtle
pixel changes as demonstrated in Section VI-B.

When all 17 metrics are combined to create a single
fingerprint, the classification models achieve consistently high
accuracy across all four experimental scenes. In particular,
RF surpasses 95% accuracy even in the VR living room
scene (v = 1, z = 0), while CNN and LSTM each maintain
accuracies above 90% in all four scenes. However, SVM shows
significantly lower accuracy, ranging from 37% to 60% in all
scenes, as shown in Table V. While SVM requires extensive
tuning and struggles to handle complex data effectively, the
RF model leverages an ensemble of decision trees to handle
multidimensional data, and CNN/LSTM models efficiently
capture important features in a sequential dataset.

Beyond the accuracy-based metric pruning, we apply Pearson
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Fig. 8: Example of fingerprint dataset of meeting partic-
ipant inferences in default VR scene setup (Figure 7a).
(a) Non-Base Level Texture, (b) Avg Load-Store
Instructions Per Cycle, and (c) Prims Clipped
metric in AR scene. The number on the graph represents the
number of participants joining the target meeting room.

correlation-driven selection (Section VI-B). We narrow 5 core
metrics (Appendix XII) by taking the intersection with our
selected 17 metrics in Case Study III (Appendix Table XI) and
11 metrics from correlation-driven metric selection (Appendix
Table VII). We retrain our object detection models on a 5-
pruned metric set and achieve 91%. We gain only a slight
drop (4%) in the RF model in the VR living room scene,
while CNN still maintains 90% accuracy. This additional
comparison demonstrates that a minimal subset of uncorrelated,
high information metrics can obtain robust performance with
lower computational overhead. The cross-device setting across
Quest 2, 3, and 3S also demonstrates a high accuracy of
93% (Appendix Table XV).

Our classification accuracy in the variation of speeds (v =
1, 10, 50) and distance coordinates (z = 0, 5, 10) for the
default VR scene reveals that the attacker can detect virtual
objects in different scenarios, as shown in the Appendix Table X.
The accuracy drops by roughly 25% at the extreme speed,
v = 50 with the same distance z = 0, but only 4% drop at
the furthest distance z = 10. This is because the speed and
size of the object are directly related to its distance from the
origin. When the object is closer to the user (smaller z values),
it occupies a larger portion of the screen, spanning a greater
number of units within a specific time frame. This relationship
can be expressed as vscreen ∝ s×v

z , where s is the size of the
object. Although high speed changes may reduce distinctive
GPU changes due to OVRWATCHER’s low resolution, the results
demonstrate that the high speed and small size virtual objects
are still detectable.

D. Case Study IV: Meeting Room Inference

As XR platforms such as Spatial [81], AltspaceVR [53],
Horizon Workrooms [44], and VRChat [92] become popular
venues for hosting social and professional gatherings, concerns
over potential leakage of private information related to these
meetings become more critical. The use of realistic AR/VR
meeting applications, featuring detailed 3D representations of
participants, introduces significant GPU workloads. These GPU
usage patterns can inadvertently expose sensitive information,
creating new vectors for privacy leakages.

(a) Office VR Scene (b) Conference Room AR Scene

Fig. 9: Experiment scenes for meeting room inference. (a)
Office VR scene and (b) conference room scene.

In this case study, we simulate both AR and VR meeting
rooms to infer the number of participants by analyzing GPU
performance metrics. OVRWATCHER demonstrates the ability to
infer the number of meeting participants accurately, revealing
meeting attendance without any user interaction.
Experiment Design. For this case study, we designed three
different AR/VR scenes to simulate various meeting environ-
ments: (i) the default VR empty environment as shown in
Figure 7a, (ii) office room-like VR scene [25] with limited
space size as shown in Figure 9a and (iii) actual conference
room as depicted in Figure 9b.

To simulate different numbers of participants in a virtual
meeting, we use standard humanoid avatar [23] prefabs obtained
from the Unity Asset Store. These avatars are positioned within
each scene to ensure they remain visible from the user’s point
of view. In the simulated AR environment (Figure 9b), the
relatively larger room accommodates up to four humanoid
avatars at a distance coordinate of z = 3, all within the user’s
field of view. However, the more confined VR scene, resembling
a small office room (Figure 9a), can fit only two avatars without
overlap, while maintaining visibility from the user’s view.

To further mimic real-world scenarios, we introduce an
additional five humanoid avatars alongside the initial four,
resulting in a total of nine avatars within the AR and VR
meeting scene. These additional avatars create overlapping
situations that commonly occur in practical AR/VR meetings,
e.g., when participants move within the environment and some
avatars become partially obscured by others. We selected a total
of 9 humanoid avatars to simulate these overlapping situations,
ensuring they are positioned to fit entirely within the AR/VR
scene without exceeding the spatial constraints.
Data Collection. We use the same set of 30 metrics selected
during the feature selection process (Section VI-B). During
the data collection, we execute OVRWATCHER across different
scene setups and render up to 9 humanoid avatars (two avatars
in the VR office scene).

To simulate participants joining a virtual meeting, avatars are
incrementally rendered within the scene. Each avatar remains
within the user’s field of view for 5 seconds before the next
avatar appears in the scene. In practice, scenes with up to four
avatars require a total rendering duration of approximately 30
seconds, accounting for app initialization, avatar transitions,
and a final stabilization period. For scenarios involving all
nine avatars, the total rendering time extends to 55 seconds to
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ensure the complete sequence is captured.
We construct datasets for the two scenes, the default VR

scene (Figure 7a) and the AR meeting scene (Figure 9b).
Each dataset is formed of different scenarios, with each
scenario representing a specific number of participants in the
scene, ranging from 0 to 9. For each scenario, we collect 10
measurements, each with a duration of 70 seconds. For the
VR office scene (Figure 9a), we construct the scenarios with 0
to 2 participants due to spatial constraints, and similarly, 10
measurements are collected per scenario.
Results. Analysis of the 30 GPU metrics reveals dis-
tinct changes based on the number of participants across
three distinct scenes. In the AR office scene, 22 met-
rics show noticeable jumps from the baseline values as
the number of participants increases, as illustrated in
Figure 8. These jumps indicate a direct correlation be-
tween GPU workload and the number of participants.
Interestingly, four specific metrics, Prims Trivially
Rejected, Prims Clipped, Average Vertices /
Polygon, and Average Polygon Area, show decreas-
ing step behavior as the number of participants increases in
the scene (Figure 8c).

Specifically, the Prims Trivially Rejected metric
measures the percentage of basic shapes (primitives) the GPU
can immediately ignore from the rendering pipeline if they do
not contribute to rendering in the immersive scene. For example,
in the empty scene, many primitives are rejected (ignored),
resulting in a high baseline value. As more participants
join, more primitives become relevant, so the GPU rejects
fewer primitives. This causes the metric value to decrease
in noticeable steps. The Prims Clipped indicates the
percentage of primitives cut off by the camera view, Average
Vertices / Polygon captures geometric complexity by
measuring the average number of vertices per polygon, and
the Average Polygon Area measures the screen space
each shape covers. Therefore, these metrics exhibit decreasing
values if more participants join the scene.

We train the same types of machine learning models to
accurately determine the number of participants in VR and AR
meeting scenarios and perform a 5-fold cross-validation on our
dataset to ensure robust evaluation and avoid the overfitting
risk. We achieve 100% accuracy in detecting the number of
participants by monitoring 20 metrics individually with the
RF model in the default VR scene and 18 metrics in both the
VR office scene and AR meeting room setup. We identified
13 common individual metrics resulting in 100% accuracy in
inferring the number of participants across all three scenes by
employing the RF classifier. Furthermore, from cross-device
setup, we achieve 100% accuracy as mentioned in the Appendix
Table XV. These overall results demonstrate that OVRWATCHER

can perfectly infer the number of participants in both complex
VR and the realistic AR meeting setup.

Across all four case studies, OVRWATCHER achieves consis-
tently high accuracy on Meta Quest 2, 3, and 3S by leveraging
the GPU metrics. This demonstrates that our method bypasses
Meta Quest’s strict concurrent app policy (C1), operates

effectively with a minimal set (1-3) of metrics with avoiding
profiling overhead and data loss (C2), and extracts user activity
at a low 1Hz sampling rate (C3).

VIII. OPEN WORLD USER INTERACTION

AR/VR applications depend heavily on natural user move-
ments and gestures, yet our earlier case studies rely on
developer-designed applications and evaluation in a controlled
environment. Furthermore, AR/VR shopping and home-design
apps such as IKEA Place [35] let users preview virtual furniture
in their own living spaces, but they are only accessible in
selected retail locations [14]. To demonstrate that OVRWATCHER

remains effective when users drive the experience, we evaluate
its performance in an open-world AR setting using the pre-built
Meta application called Meta Layout [52].

This app enables users to browse, scale, rotate, and position
realistic furniture models directly within their physical environ-
ment via AR passthrough, which mirrors the IKEA experience.
We leverage the Layout app with real users as they freely
place, hold, and remove virtual objects. We demonstrate that
OVRWATCHER can distinguish virtual objects under real-use
conditions with the 1Hz, low-resolution GPU profiling tool.
Data Collection. We obtained Institutional Review Board
(IRB) approval and recruited six volunteers from our university.
Participants are diverse in age, height, weight, and prior
AR/VR experience, with more details provided in the Ethical
Considerations section. Prior to the experiment, they received
a brief training session on Quest 3S and the Meta Layout app.
We design two separate scenarios for data collection.

(i) In the static scenario, participants hold a Quest controller
button to generate one of the five 3D furniture items (chair, sofa,
table, desk, and bed) into the user’s view for 5 seconds, then
make the 3D object disappear for another 5 seconds by pressing
the button on the controller. This render-remove cycle takes
10 seconds and is repeated 10 times for each furniture item, a
total of 100 seconds of GPU profiling traces per participant.

(ii) As users are expected to interact with virtual objects
in real-world VR applications, we also designed a dynamic
scenario in which the participant opens the in-scene panel in
the Layout app, selects a furniture item, and drags it into their
field of view for 10 seconds. After 10 seconds, the participant
drags the 3D object out of their view. This scenario takes
around 40 seconds and is repeated 5 times for each 3D object.
Including brief rest breaks and menu navigation, the dynamic
scenario requires approximately 25 minutes per participant to
complete all 3D object interactions.
Results. We leverage the 17 selected metrics from Case Study
III VII-C (Appendix Table XI) and employ RF, XGBoost, and
SVM models to distinguish the objects. During data collection,
we noticed that participants sometimes pressed or released the
controller button early or late. Therefore, GPU readings didn’t
line up exactly with our intended 5-second cycles. To handle
these misalignments in the dynamic scenario, we first count
how many samples each trace actually captures per second,
then extract the 10-second window as the object fingerprint. For
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TABLE VI: Accuracy of RF, XGB, and SVM in the static and
dynamic user-study scenarios on Meta Quest 3S.

Scenario Model Test (%) 5-Fold (%)

Static Interaction RF 83 86± 6
XGB 82 88± 6
SVM 30 38± 4

Dynamic Interaction RF 81 77± 5
XGB 67 66± 9
SVM 78 80± 10

each window, we compute the per-metric mean and standard
deviation and concatenate these values into our feature vector.

In the static scenario, all the fingerprints from each user are
combined to generate the dataset, where 20% of the dataset is
used for the test dataset while the remaining is used for training.
The RF model achieves 83% accuracy while XGBoost reaches
82%. We then train all models and perform hyperparameter
tuning via grid search with 5-fold cross-validation. Under this
evaluation, the RF model shows the robustness by achieving
86%± 4 and 88%± 6 accuracy for the XGB model.

In the dynamic scenario, where users incorporate addi-
tional real-time movement, including dragging, dropping, head
movement, and continuous cursor movement, the overall
classification accuracy slightly declines. We achieve 81%
accuracy with the RF model on the same 80/20 test split.
Applying the same 5-fold cross-validation approach, the RF
achieves 77%± 5 as shown in Table VI. The accuracy drop
from the static to dynamic scenario shows the impact of
extensive user interaction, which introduces noise in each
object’s fingerprint.

Additionally, we evaluate the accuracy for unseen users by
applying the leave-one-participant-out (LOPO) cross-validation
method. We achieve an accuracy of 72% using the transformer
model. These results demonstrate the effectiveness of the
OVRWATCHER attack in practice, which can be further improved
through training on a larger and more diverse user base.

IX. COUNTERMEASURES AND LIMITATIONS

A. Countermeasures

Restrict GPU Profiler Access. The ovrgpuprofiler tool
utilizes Performance Interface Library (PIL), a low-level on-
device library within the Oculus OS that exposes real-time
GPU metrics. Because developers depend on this profiler for
legitimate performance tuning, we cannot simply remove or
disable it without breaking valid workflows. Instead, PIL calls
should be restricted to apps running in developer mode and
the app store’s vetting process should block unapproved uses
of these APIs. This aligns with previous works to prevent
access to OS-level sensors such as frequency scaling [22], [43],
power consumption [42], [99], and API accesses to performance
counters [61], [98].
Dynamic Detection. A defense mechanism can monitor system
calls using tools such as perf trace to detect repetitive access
patterns to the GPU profiler. Upon detection, the system can
inform the user with a warning on the screen. Since the
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Fig. 10: Example fingerprints for standalone MR apps on
HoloLens 2 based on the GPU Utilization metric. (a)
Algorithmic Nature, (b) Graffiti 3D, and (c) Insight Heart.

profiler samples GPU metrics at a low resolution, this detection
approach incurs minimal performance overhead.
Noise Injection. Introducing artificial noise into the GPU
components by executing dummy instructions can disrupt
fingerprinting attacks. Such a mechanism can be built by
rendering random, non-intrusive objects, similar to noise
injection strategies used against website fingerprinting in
network traffic [75] and browsers [13], [74]. However, noise
injection method introduces additional overhead, potentially
slowing down object rendering. Hence, the trade-off between
the attack success rate reduction and performance overhead
needs to be considered for the noise injection countermeasure.

B. Limitations

Applicability to Diverse Devices. XR devices from other
vendors expose different profiling interfaces. For example,
Apple Vision Pro [7] supports concurrent app execution and
offers extensive GPU counters via Xcode Instruments (over 150
metrics) [8], while Microsoft HoloLens [56] provides profiling
through Windows Performance Recorder (WPR) [57] and PIX
[55] for detailed GPU profiling.

To validate OVRWATCHER’s broader applicability, we also
tested it on Microsoft HoloLens 2 by running publicly available
MR apps from the Microsoft Store. By collecting the device’s
built-in GPU metrics such as Utilization, Dedicated
Memory, System Memory, and System Memory Used,
we confirmed that our methodology can capture rendered app
behavior as shown in the Figure 10. In future work, we aim
to expand our attack framework to encompass various AR/VR
devices, including the Apple Vision Pro’s Xcode Instruments
and other vendor-specific tools.
Generalizability. Our case studies (Sections VII-A and VII-B)
utilize publicly available standalone AR/VR and WebXR appli-
cations, demonstrating their generalizability. In Sections VII-C
and VII-D, we selected a diverse set of objects and varied
parameters (speed and distance) to prove the concept of
object and avatar identification. Moreover, our setup focuses
on a single-app scenario. However, in real-world scenarios,
users may open multiple browsers or switch between apps,
which can affect attack accuracy. Additionally, rapidly moving
(< 1s) virtual objects within the scenes might influence attack
effectiveness. Future work will extend our evaluation to multi-
app and highly dynamic environments.
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X. CONCLUSION

We introduce OVRWATCHER that exploits real-time GPU
profiling metrics to extract sensitive user activities from AR/VR
users. This finding invalidates the common defense of simply
lowering profiler resolution. Across app detection, website
classification, object detection, meeting participant counting,
and open-world user interaction with 3D objects, OVRWATCHER

achieves high accuracy with a 1Hz sampling rate. Our findings
underscore the need for more restrictive permission models in
AR/VR operating systems to safeguard user privacy against
sophisticated side-channel attacks.
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ETHICAL CONSIDERATIONS

We introduce OVRWATCHER, a GPU-based side-channel
attack on AR/VR headsets that abuses vendor-provided GPU
metrics and exposes sensitive user activities, undermining both
user privacy and service-provider trust. To address these ethical
concerns, we responsibly disclosed our findings to Meta via
their bug bounty program [51] on January 15, 2025.

In March 2025, Meta confirmed that user-space applications
can indeed access basic GPU performance counters and
awarded us a Bug Bounty for identifying this side-channel
vulnerability. We are waiting for their response on the upcoming
firmware update.

As of June 4, 2025. Meta has tightened developer access
requirements for native Android AR/VR development [17].
Developer mode now requires users to join or create a
verified developer organization via the Meta Horizon Developer
Dashboard. While these changes may not directly prevent
misuse of performance metrics, they raise the barrier for
arbitrary access by requiring stronger identity validation for
developer mode access.

We conducted a user study to validate the attack’s effective-
ness in a real-world scenario, recruiting six participants (age
18+) from our university through an IRB-approved process.
To ensure participants’ well-being during Mixed Reality
interaction, interested individuals were asked to complete an
online screening survey assessing medical conditions such
as vision or hearing impairments, seizures, motion sickness,
and neurological disorders. Only individuals without any
of the listed conditions were invited to the in-lab study.
Throughout the study, participants were monitored for safety
and informed of their right to withdraw at any time. To protect
participant privacy, no personally identifiable information (PII)
was collected during the in-lab sessions.
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APPENDIX A
GPU METRICS SELECTION BY PEARSON CORRELATION

TABLE VII: Pruned 11 GPU metrics and reasons after pair-
wise Pearson correlation analysis. If the threshold is redundant,
drop the second metric in each pair. Metrics that never appear
in a high-correlation pair are kept (Uncorrelated).

Metric Name Justification
GPU Bus Busy Prims Clipped (r = -0.995)

Vertex Fetch Stall

Texture Fetch Stall (r = 0.911)
Texture L2 Miss (r = 0.907)
Stalled on System Memory (r = 0.913)
Prims Trivially Rejected (r = 0.908)
Nearest Filtered (r = 0.906)
Avg Bytes / Fragment (r = 0.907)
Global Image Uncompressed Data Read
(r = 0.918)

Anisotropic Filtered Uncorrelated
Non-Base Level Textures Uncorrelated

SP Memory Read (Bytes/Second)
Global Buffer Read L2 Hit (r = -0.932)
Bytes Data Actually Written (r = -0.909)
Global Buffer Data Read BW (r = 1.000)

Preemptions / second Global Buffer Data Read Request BW (r =
0.919)

Avg Preemption Delay Uncorrelated
Global Memory Load Instructions Uncorrelated
Local Memory Store Instructions Uncorrelated
Avg Load-Store Instructions Per Cycle Uncorrelated
Bytes Data Write Requested Uncorrelated

APPENDIX B
GPU METRICS IN RELATION TO SPEED AND DEPTH
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Fig. 11: Correlation between Texture L2 Miss metric
and VR Cube object rendering with (a) the speed, v =
1 unit/second and distance coordinate z = 2 unit, (b)
increasing speed to v = 2 unit/second, and (c) move object
further from the point of view, z = 3 unit.

APPENDIX C
AR/VR STANDALONE APP FINGERPRINT

TABLE VIII: Accuracy and F1 scores for the top-performing
metrics employing a Random Forest classifier on 100 stan-
dalone AR/VR apps.

Metric Name Accuracy F-1 Score
Average Vertices / Polygon 0.945 0.935
Vertex Memory Read (Bytes/Second) 0.940 0.931
Prims Trivially Rejected 0.935 0.921
Average Polygon Area 0.920 0.905
Vertex Instructions / Second 0.920 0.912
L1 Texture Cache Miss Per Pixel 0.915 0.900
Prims Clipped 0.910 0.885
Global Image Uncompressed Data Read BW 0.902 0.868
Texture L2 Miss 0.900 0.881
Pre-clipped Polygons/Second 0.897 0.890
Avg Bytes / Fragment 0.895 0.860
GPU Bus Busy: Accuracy 0.890 0.860
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APPENDIX D
WEBXR APP FINGERPRINT

TABLE IX: Accuracy and F1 scores for the top-performing
metrics employing a Random Forest on 100 WebXR apps.

Metric Name Accuracy F-1 Score
Average Polygon Area 75.7 75.2
Average Vertices / Polygon 73.25 72.9
% Texture L2 Miss 72.75 72.21
% Texture Fetch Stall 72.0 71.1
% Prims Clipped 68.5 67.8
L1 Texture Cache Miss Per Pixel 68 68.1
GPU % Bus Busy 65.7 65.6

APPENDIX E
VIRTUAL OBJECT DETECTION

TABLE X: CNN F1 score (%) across varying speeds (v) and
distances (z) in the default VR scene (Figure 7a).

Speed (v) Distance (z)
0 5 10

1 96.5 97.1 95.7
10 72.1 86.7 93.1
50 68.5 78.9 89.1

TABLE XI: Accuracy and F1 scores for the top-performing
17 metrics employing a Random Forest classifier on 35 virtual
products.

Metric Name Accuracy F-1 Score
Avg Bytes / Fragment 0.993 0.992
Global Image Uncompressed Data Read BW 0.979 0.978
Global Memory Load Instructions 0.964 0.961
% Non-Base Level Textures 0.964 0.968
% Texture L2 Miss 0.957 0.960
Global Buffer Data Read Request BW 0.943 0.941
SP Memory Read 0.893 0.866
Global Buffer Data Read BW 0.893 0.866
% Prims Clipped 0.864 0.806
Reused Vertices / Second 0.864 0.855
% Prims Trivially Rejected 0.836 0.779
Pre-clipped Polygons/Second 0.779 0.744
Vertex Memory Read 0.750 0.743
% Vertex Fetch Stall 0.736 0.686
Vertices Shaded / Second 0.736 0.695
Vertex Instructions / Second 0.714 0.651
% Anisotropic Filtered 0.621 0.649

TABLE XII: Core GPU metrics retained after correlation-driven
pruning in Case Study III VII-C

Metric Name
% Vertex Fetch Stall
SP Memory Read (Bytes/Second)
Global Memory Load Instructions
% Anisotropic Filtered
% Non-Base Level Textures

APPENDIX F
PER-DEVICE AND CROSS-DEVICE EVALUATION

To verify that OVRWATCHER generalizes across the entire
Meta Quest family, we repeated all four case studies (AR/VR
standalone (I) and WebXR (II) app fingerprint, virtual object

detection (III), and meeting room participant inference (IV)) on
Quest 2, Quest 3, and the most recent Quest 3S headsets. For
each device, we collected the same GPU metrics under identical
scene setups, focusing on the top 3-4 metrics identified based
on our prior analysis.

First, we performed per-device evaluation by splitting each
device’s dataset into 80% for training and 20% for testing.
Then we trained four classifiers (CNN, LSTM, RF, and SVM)
independently on each device (Table XIII). Because Quest 3
and Quest 3S share the same GPU specification (Section VI-C),
we report standalone (I) app fingerprinting only on Quest 2
and Quest 3. Next, to account for hardware variability even
within the same model, we conducted a two-device test on
Quest 2 with Case Study 1 to demonstrate effectiveness on
app fingerprinting attacks. We trained our models on data from
one Quest 2 headset and saved the pretrained weights. Then
we evaluated 15 standalone apps without retraining the ML
models (Table XIV). Finally, we merged 80% of the training
and 20% of the testing data from all three headsets to train a
single cross-series model (Table XV).

Our results show that OVRWATCHER remains highly effective
across hardware generations and headset variations, using as
few as 3–4 GPU metrics.

TABLE XIII: Per-device accuracies for each model across
Quest 2, Quest 3, and Quest 3S.

Case Study
(# of GPU Metrics) Model Accuracy (%)

Quest 2 Quest 3 Quest 3S

I. AR/VR Standalone App (4) LSTM 95.70 89.25 —
CNN 97.31 87.90 —
RF 98.39 95.97 —
SVM 94.89 80.65 —

II. WebXR App (3) LSTM 83.74 83.25 83.50
CNN 87.62 87.75 91.00
RF 92.72 96.25 93.50
SVM 40.29 38.00 36.00

III. Virtual Object Detection (3) LSTM 90.71 60.00 72.14
CNN 94.29 68.57 95.71
RF 99.29 92.86 100.00
SVM 75.71 19.29 28.57

IV. Meeting Room Inference (3) LSTM 80.00 80.00 70.00
CNN 100.00 100.00 100.00
RF 100.00 100.00 100.00
SVM 100.00 95.00 90.00

TABLE XIV: Two-device cross-evaluation on Quest 2 for
AR/VR standalone app fingerprinting (Case Study I).

Case Study
(# of GPU Metrics) Model Quest 2

Accuracy (%) Precision Recall F1

I. AR/VR Standalone (4) LSTM 70.67 0.596 0.707 0.621
CNN 80.00 0.693 0.800 0.730
RF 37.33 0.306 0.373 0.310
SVM 53.33 0.435 0.533 0.461
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TABLE XV: Cross-device evaluation of OVRWATCHER: final
test results (Accuracy, Precision, Recall, F1) for four classifiers
(CNN, LSTM, RF, SVM) across the four case studies on the
entire Meta Quest series.

Case Study
(# of GPU Metrics) Model Accuracy Precision Recall F1

I. AR/VR Standalone App (4) LSTM 89.38% 0.913 0.894 0.889
CNN 89.92% 0.924 0.899 0.899
RF 95.83% 0.963 0.958 0.958
SVM 72.72% 0.755 0.727 0.716

II. WebXR App (3) LSTM 68.09% 0.668 0.667 0.639
CNN 70.66% 0.734 0.703 0.672
RF 97.15% 0.968 0.969 0.966
SVM 13.39% 0.124 0.153 0.127

III. Virtual Object Detection (3) LSTM 67.62% 0.731 0.657 0.649
CNN 37.38% 0.398 0.407 0.331
RF 93.57% 0.933 0.935 0.930
SVM 24.76% 0.209 0.263 0.209

IV. Meeting Room Inference (3) LSTM 90.00% 0.850 0.900 0.867
CNN 100.00% 1.000 1.000 1.000
RF 100.00% 1.000 1.000 1.000
SVM 88.33% 0.878 0.883 0.876

APPENDIX G
AR/VR STANDALONE APPLICATION LIST

TABLE XVI: Categorization of top 100 AR/VR standalone
applications from the Meta Quest app store.

Category Application Name

Gaming (31) Gorilla Tag, PokerStars VR, GunRaiders, CardsTankards, Super-
natural Shootout, ForeVR Cornhole, Roblox, Yeeps, Innerworld,
SHARKS, Big Ballers VR, Noclip VR, Monkey Doo, HyperDash,
Primal Apes, Beastcraft, Hell Horde:Mixed Reality Survival,
Dissection Simulator:Frog Edition, Truck Parking Simulator VR
Demo, Gun Shooting Range with Pistol, Running Monkeys, A2RL
VR, Animal Company, Scary Baboon, Untangled, Gorilla Warzone,
Modified Bed Bath Simulator, WIN Reality Baseball, Machine
Shop Simulator, NeVR Fear The Dentist, Preflight Simulator

Entertainment (21) Bigscreen Beta, Anne Frank House VR, Epic Roller Coasters,
Amazon Prime Video, Oktoberfest, 4XVRVideoPlayer, Pianogram,
Campfire, VENTA X, Notre-Dame de Paris, StartVR Streaming
Video Player, FloatVR Relaxation and Focus, Mobile VR Station,
PlayAniMaker Beta, Wolvic, ecosphere, Fluid, Spaceframe, Prism,
Maloka, Viso

Fitness (10) Xtadium, Alcove, TRIPP, FitXR, Shado Running, VRFS, Litesport,
XRWorkout, Baseball Softball Training, Hoame

Social (7) Horizon Worlds, Multiverse, VRChat, WhatsApp, Twitch:Live
Streaming, MeetinVR, Flipside

Productivity (27) Immersed, Horizon Workrooms, Meta Quest Browser, Engage,
Spatial, Human Anatomy VR, Lab Monkey, GRAB, vSpatial,
ALVR, Hard Drive, Nanome, VR Anatomy Lab, SketchUp Viewer,
IMMERSE–Language Learning, Arkio, ShapesXR, Doodle Board,
Gravity Sketch, Resolve, Mistika VR Connect, DelTrain Adult
ICU Delirium, Arthur, Noda, Naer, Masterpiece, Open Brush–3D
Painting

Mixed Reality (4) A2RL VR, Hell Horde:Mixed Reality Survival, Hello Dot, Holo-
light Space

APPENDIX H
WEBXR APPLICATION LIST

TABLE XVII: Categorization of 100 WebXR applications.

Category Application Name

Gaming & Entertainment(19) moonrider.xyz/, webvr.soundboxing.co/,
plockle.com/play, spiderman.webvr.link/,
jorgefuentes.net/projects/halloVReen/, aboveparad-
owski.com/, anumberfromtheghost.com/,
jorgefuentes.net/projects/vuppets/vuppets 6DOF,
spacerocks.moar.io, blocksarcade.xyz/,
xrpet.me/, crossthestreet.fun/game/, aframe.io/a-
blast/, micosmo.com/trajectilecommand,
beatknightxr.web.app, play.js13kgames.com/human-
not-found/, worldsdemolisher.totalviz.com,
slime-freighter.glitch.me/?autoplay=true,
play.js13kgames.com/teleport/

Art & Creativity (11) aframe.io/a-painter/, brushworkvr.com/paint,
vartiste.xyz/, esc.art/, flowerbed.metademolab.com/,
artsalad.net/, castle.needle.tools/, ce-
cropia.github.io/thehallaframe, de-
mos.littleworkshop.fr/track, hatsumi.netlify.app,
framevr.io/frame-tutorial

Tours & Exploration (18) immersive-web.github.io/webxr-samples/360-
photos.html, immersive-web.github.io/webxr-
samples/stereo-video.html, aframe.city/,
jorgefuentes.net/projects/puppetrilla, a-frame–
360-vr-tour.glitch.me, forestwave.glitch.me,
3xr.space, travisbarrydick.github.io/vr-planets/dist,
xrdinosaurs.com, msub2.github.io/hello-webxr,
live.arrival.space/welcome, codercat.xyz/ma,
anvropomotron.com, codercat.xyz/dying-to-find,
a.flow.gl/flow/i2nxns/display, codercat.xyz/three-body,
new-cesium-a-frame-test.glitch.me, modelo-3d-a-
frame.glitch.me

Health & Fitness (8) towermax.fitness/tower/, towermax.fitness/peakfreak/,
towermax.fitness/reaction/, tower-
max.fitness/punchingballgames/, tower-
max.fitness/slingsurf/, towermax.fitness/towerhockey/,
towermax.fitness/stepuprun/, tower-
max.fitness/drilltrack/

Demonstration (44) From af rame . io /a f rame/examples/—anime-UI,
shopping, comicbook, spheres-and-fog, dynamic-lights,
hand-tracking-grab-controls, boilerplate/ar-hello-world,
test/fog, test/visibility, performance/animation-raw,
animation/arms, animation/pivots, animation/unfold,
performance/multiview-extension/?multiview=on,
test/shadows, primitives/torus, docs/aincraft; From
immersive-web.github.io/webxr-samples—Reduced-
bind-rendering.html, room-scale.html, input-
tracking.html, input-selection.html, controller-
state.html, positional-audio.html, anchors.html; From
https://glitch.com/—a-frame-particules-rain.glitch.me,
tree-by-a-frame-by-jenjira-santaw.glitch.me, a-
frame-goofs.glitch.me, ma3120-a-frame-space-
image-02.glitch.me, ma3120-a-frame-image-layered-
repetition.glitch.me, ma3120-a-frame-texture-and-
grab.glitch.me, military-heathered-creator.glitch.me,
fluttering-robust-kiwi.glitch.me, a-frame-spinosaurus-
for-vr.glitch.me, a-frame-physics-entities-balls-fall-
from-the-sky.glitch.me, a-frame-wolf.glitch.me,
a-frame-stationary-caustics.glitch.me, celda-de-trabajo-
automatizada-en-a-frame.glitch.me, a-frame-snowman-
rv.glitch.me, simple-solarsystem-a-frame.glitch.me,
city-whit-a-frame-5a.glitch.me, lmc-2700-a-frame-
project.glitch.me, a-custom-a-frame-scene.glitch.me,
dune-a-frame-navmesh.glitch.me, a-frame-tree-model-
loading.glitch.me
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