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Abstract—Large Language Model (LLM) watermark has
emerged as a promising technique for copyright protection,
misuse prevention, and machine-generated content detection. It
injects detectable signals during the LLM generation process,
allowing for later identification by a corresponding detector. To
assess the robustness of watermark schemes, existing studies
typically adopt watermark removal attacks, which aim to erase
embedded signals by modifying the watermarked text. However,
we reveal that existing watermark removal attacks are subopti-
mal, which leads to the misconception that effective watermark
removal requires either a large perturbation budget or a strong
adversary’s capabilities, such as unlimited queries to the victim
LLM or its watermark detector. A systematic scrutinization of
removal attack capabilities as well as the development of more
sophisticated techniques remains largely underexplored. As a
result, the robustness of existing watermarking schemes may be
overestimated.

To bridge the gap, we first formalize the system model for
LLM watermark, and characterize two realistic threat models
constrained on limited access to the watermark detector. We then
analyze how different types of perturbation vary in their attack
range, i.e., the number of tokens they can affect with a single edit.
We observe that character-level perturbations (e.g., typos, swaps,
deletions, homoglyphs) can influence multiple tokens simultane-
ously by disrupting the tokenization process. We demonstrate
that character-level perturbations are significantly more effective
for watermark removal compared to token-level or sentence-
level approaches under the most restrictive threat model. We
further propose guided removal attacks based on the Genetic
Algorithm (GA) that uses a reference detector for optimization.
Under a practical threat model with limited black-box queries
to the watermark detector, our method demonstrates strong
removal performance. Experiments across five representative
watermarking schemes and two widely-used LLMs consistently
confirm the superiority of character-level perturbations and the
effectiveness of the reference-detector-guided GA in removing wa-
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termarks under realistic constraints. Additionally, we argue there
is an adversarial dilemma when considering potential defenses:
any fixed defense can be bypassed by a suitable perturbation
strategy. Motivated by this principle, we propose an adaptive
compound character-level attack. Experimental results show that
this approach can effectively defeat the defenses. Our findings
highlight significant vulnerabilities in existing LLM watermark
schemes and underline the urgency for the development of new
robust mechanisms.

I. INTRODUCTION

Large Language Models (LLMs) have become foundational
components in modern AI systems [1]–[3], powering a wide
range of consumer-facing applications and critical decision-
making systems, such as chat assistants [4], [5], educational
tools [6], [7], and content generation platforms [8], [9], etc.
However, as LLMs are increasingly used to generate high-
quality content indistinguishable from human-written text,
growing concerns have emerged about their potential mis-
use [10]–[15], including misinformation generation [16], auto-
mated phishing [17], and academic fraud [18], etc. In response,
there is a pressing demand for reliable mechanisms to attribute
machine-generated text and distinguish it from human-written
content. Among existing attribution techniques, the LLM wa-
termark has emerged as one of the most promising approaches
[19]–[26]. LLM watermarks work by subtly adjusting the
model’s generation process, embedding statistically detectable
signals into the output text. These changes are invisible to
users but can be identified by a watermark detector, which
typically uses statistical tests to distinguish watermarked text
from non-watermarked text.

However, the practical utility of such watermarks hinges
on their robustness, i.e., the ability to remain detectable after
adversarial edits. To assess robustness, researchers commonly
conduct watermark removal attacks [19], [20], [24], [27],
which attempt to erase embedded signals by modifying the
watermarked text, typically via token-level (e.g., synonym re-
placement) or sentence-level perturbations (e.g., paraphrasing).
However, existing approaches face several notable limitations.
First, prior work often relies on unrealistic assumptions about
the adversary’s capabilities, such as full knowledge of the
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watermarking scheme, unlimited queries to the victim LLM
or its watermark detector, or the availability of a similar
surrogate LLM [28]–[31]. Second, these methods primarily
rely on token-level or sentence-level perturbations [20], [32],
[33], which we have found to be suboptimal for efficient
watermark removal (see experiments in Section IV-D1 for
detailed results). Third, due to the lack of guidance, these
methods fail to prioritize tokens most critical to watermark
removal, leading to inefficient perturbations [33], [34]. These
limitations have led to a misleading perception that successful
watermark removal requires either a large perturbation budget
or strong adversary’s capabilities. As a result, the robustness
of existing watermarking schemes may be overestimated. This
highlights the urgent need for a systematic investigation of
watermark removal capabilities and the development of more
sophisticated attack techniques.

To this end, we firstly conduct a systematic study on LLM
watermark removal under realistic constraints. We assume
a black-box setting where the adversary can only access
the output texts of the victim LLM, with no access to its
architecture, parameters, or internal states (e.g., logits). Ad-
ditionally, the adversary has no knowledge of the underlying
watermarking scheme and is restricted to a limited number
of queries per input. Based on the adversary’s access to the
original watermark detector of the victim LLM, we consider
two distinct threat models: (1) the adversary has no access to
the detector; (2) the adversary can query the detector under
a limited budget per input. Based on our categorization of
adversary knowledge and capabilities, we classify existing
watermark removal methods accordingly (refer to Table I).
Existing approaches are not applicable under the two practical
threat models we consider.

To obtain the optimal perturbation operation, we begin with
evaluating the removal attack performance by using different
perturbation types, where the adversary has no access to
the original watermark detector. In this challenging setting,
the adversary can only apply random perturbations to the
watermarked text. As a result, the effectiveness of the attack
is largely determined by the attack range, which refers to
the number of tokens affected by a single edit. Through
analysis, we observe that character-level perturbations, such
as typos, deletions, swaps, insertions of zero-width or whites-
pace characters, and homoglyph substitutions, can disrupt the
tokenization process. This disruption often splits a single
token into multiple subword units, allowing each edit to affect
more than one token1. Motivated by this insight, we design
a character-level watermark removal attack and evaluate its
effectiveness through extensive experiments. Results show that
character-level perturbations consistently outperform token-
level and sentence-level methods, enabling watermark removal

1This phenomenon contrasts with the effects of character-level perturbations
on adversarial robustness in traditional NLP, where small input changes are
intended to cause significant changes in a model’s internal embeddings. From
this perspective, token-level and character-level perturbations follow similar
principles [35]–[39]. In contrast, the principles and effects of token-level and
character-level attacks on LLM watermarks are fundamentally different.

with a smaller perturbation budget.
To handle the lack of direct guidance, we propose using a

reference detector to improve the effectiveness of watermark
removal attacks, where the adversary is allowed only a lim-
ited number of black-box queries to the original watermark
detector. We first train a lightweight reference detector using
data collected within the allowed query budget. This reference
detector mimics the behavior of the original detector and
helps guide our following Genetic Algorithm (GA) method
in selecting impactful token positions. With the reference
detector in place, the GA iteratively finds tokens most removal-
relevant, enabling more focused and efficient perturbations
while overcoming the constraint of limited queries to the
original detector.

Our contributions are summarized as follows.
• Systematic formulation of LLM watermark removal.

We provide the first comprehensive analysis of watermark
removal attacks against LLMs. We formally characterize
threat models under different system settings, offering a
structured framework for evaluating attack effectiveness.

• Character-level perturbations and attack range anal-
ysis. We identify the attack range, the impact scope of a
single perturbation, as a key factor affecting the effective-
ness of watermark removal. We show that character-level
perturbations offer the widest attack range by disrupting
tokenization.

• Reference-detector-guided removal attack and adap-
tive strategy. Under the setting of limited access to
the original watermark detector, we propose a GA-based
removal attack guided by a reference detector, which is
trained to approximate the behavior of the original de-
tector using limited queries. We also highlight a key lim-
itation of the reference detector: the mismatch between
the reference and original detectors makes gradient-based
optimization unreliable. Furthermore, we highlight an
adversarial dilemma for potential defenses: for any fixed
defense, there always exists an effective perturbation
strategy that can bypass it. Guided by this insight, we
propose an adaptive compound character-level attack. Our
method is evaluated across diverse watermarking schemes
and consistently achieves strong performance.2

II. BACKGROUND

A. LLM Generation

Large Language Models (LLMs) generate text autoregres-
sively, producing one token at each step conditioned on the
given prompt (and the previously generated tokens), until an
end-of-sequence token is generated or a predefined maximum
length is reached. The generation process at each step t
involves three stages: computing the logits, deriving a proba-
bility distribution, and sampling the next token [1]–[3]. First,
the model takes the prompt and previously generated tokens
x<t = {x1, x2, . . . , xt−1} as input and produces a logit vector

2We release the source code at https://github.com/plll4zzx/CharacterRem
oval4WM
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TABLE I: Comparison of our study with existing typical
watermark removal methods. Adversary’s capabilities &
knowledge (CK): CK1: Limited query budget to victim LLM;
CK2: No access to original detector; CK3: Limited query
budget to original detector; CK4: No knowledge of victim
LLM; CK5: No knowledge of watermark scheme. Attack
perturbation type & strategies (PS): PS1: Character-level
perturbation; PS2: Token-level perturbation; PS3: Sentence-
level perturbation; PS4: Gradient-free guidance. Here,  de-
notes “Fully Considered”, and # denotes “Not Considered”.

CK1+CK2 CK1+CK3 CK4 CK5 PS1 PS2 PS3 PS4

Stealing
&Removal

[40]    # #  #  
[41]    # #  #  
[28] # #  # #  #  
[30]    # #  #  

Removal

[42]  #   # #  #
[32]  #   # #  #
[43]  #      #
[44]  #    #  #
[34]  #      #
[45]  #   #  # #
[46]        #
[31] # # #  #  # #

Ours         

ℓt ∈ R|V |, where |V | is the vocabulary size. Second, the
logits are transformed via a softmax function into a probability
distribution over the vocabulary. Third, the next token xt

is sampled from this distribution and then appended to the
sequence.

B. Injecting Watermark

LLM watermark aims to inject detectable signals into LLM-
generated content. In this study, we focus on inference-
time watermark, which injects watermark signals during text
generation without modifying the model’s parameters [19]–
[25]. Compared to training-time watermark methods, such as
trigger-based approaches [47], [48], inference-time methods
are more flexible and cost-effective, as they do not require
access to the model’s weights or retraining. Formally, at gener-
ation step t, the LLM computes a key kt using a hash function
hash(·) over the previous context ct = {xt−h, · · · , xt−1},
where h is the length of context. Beyond the typical range,
there exists a special case where h = 0, in which all tokens
generated by the same LLM share the same key. This key is
then used to subtly alter the LLM’s generation behavior. Ex-
isting watermarking techniques fall into three categories based
on the generation stage where the watermark is introduced:

• Watermark during logits generation: These methods
aim to shift the generation process by modifying the
LLM’s logits. At each generation step t, a pseudorandom
function and a key kt are used to partition the vocabulary
V into two subsets: a green list and a red list. A fixed bias
δ is added to the logits of green-list tokens, increasing
their likelihood of being sampled. So, generated texts are
biased toward green-list tokens and can be detected as
watermarked, such as KGW [19], Unigram [20].

• Watermark during token probability distribution gen-
eration: These methods aim to modify the token prob-
ability distribution. At each step t, a pseudorandom

function and a key kt are used to reorder the vocabulary
tokens. Tokens whose cumulative probability exceeds a
threshold γ are selected and reweighted to increase their
sampling probability, resulting in watermark insertion,
such as Unbias [21], DIP [22].

• Watermark during sampling: These methods aim to
embed watermarks by modifying the sampling process.
Two main strategies are commonly used. (1) A set of
candidate tokens is first sampled from the original token
probability distribution. Then, each candidate is assigned
a pseudorandom score derived from a key kt, and the
token with the highest score is selected as xt, such as
SynthID [23]. (2) Alternatively, a pseudorandom score is
derived from kt and used in inverse transform sampling
to deterministically select the next token [24], [25].

C. Detecting Watermark
Watermark detection is inherently tied to the watermark

injecting strategy, as each approach modifies the token gen-
eration process differently. The goal is to evaluate whether
a given text X exhibits statistical traces of watermarking,
typically via a global watermark score Sw(X). A higher
score indicates a stronger alignment with the watermark.
Formally, the input text is first tokenized into a sequence
X = {x1, x2, · · · , xt, · · · , xm}. For each position t, a key
kt is derived from a hash function over the prior context
ct = {xt−h, · · · , xt−1}, i.e., kt = hash(ct). Depending on
the specific watermark injection method (see Section II-B),
a watermark score st for each token xt might be computed
using the token itself and its associated key kt. If such scores
are used, they are typically aggregated across the sequence to
obtain the global score Sw(X); otherwise, detection relies on
aggregate statistics such as token counts. If Sw(X) exceeds
a predefined threshold τd, the sequence X is labelled as wa-
termarked. Detection methods for each category of watermark
scheme are detailed below:

• Watermark during logits generation: The detector
uses kt to determine the green list at position t and
checks whether xt belongs to it. The global watermark
score is typically computed using a one-sided z-test:
Sw(X) = |X|G−γ|X|√

γ(1−γ)|X|
, where |X|G is the number of

green-list tokens in X , γ is the ratio of the green list to
the entire vocabulary [19], [20].

• Watermark during token probability generation:
These watermark methods modify the token probability
distribution during generation, without altering the logits
directly. To detect such watermarks, the detector com-
pares how likely each token is under the watermarked
LLM Mw versus the original LLM M . Specifically, for
each token xt, the token-level watermark score is com-
puted as the log-likelihood ratio: st = log Mw(xt|x<t,kt)

M(xt|x<t)
,

where Mw generates a key-conditioned distribution using
kt. The global watermark score is then aggregated as:
Sw(X) =

∑m
t=1 st. Watermarked texts tend to follow

the token probability distribution of Mw, resulting in a
higher Sw(X) than non-watermarked texts [21], [22].
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• Watermark during sampling: To detect the watermark,
the detector recovers the pseudorandom score assigned to
xt by using the key kt, and computes the token-level wa-
termark score st by checking whether xt aligns with the
pseudorandom score. The global watermark score of X is
then calculated by summing all st: Sw(X) =

∑m
t=1 st. If

xt is from watermarked text, it tends to get higher st, and
watermarked text tends to get higher Sw(X) [23]–[25].

D. Watermark Removal Attacks

We study watermark removal attacks, which aim to erase the
watermark embedded in LLM-generated text while preserving
its original semantics. Formally, given a watermarked text
X = {x1, x2, · · · , xt, · · · , xm}, the adversary applies an
attack A to generate a perturbed text X̃ = AP̃ (X), where
P̃ ⊂ {1, 2, · · · ,m} indicates the positions selected for per-
turbation. After perturbed, the global watermark score Sw(X̃)
is below the threshold, thereby evading watermark detection.
Existing watermark removal methods can be categorized based
on the level of perturbation:

• Character-level perturbations includes typos, character
deletion, character swapping, insertion zero-width char-
acter or withe space, and homoglyph substitution etc.,
denoted as X̃ = AC

P̃
(X), where P̃ is randomly selected

from {1, 2, · · · ,m} [34], [43], [44], [46].
• Token-level perturbations include word deletion, reorder-

ing, and synonym replacement etc., denoted as X̃ =
AT

P̃
(X), with P̃ also selected randomly [19], [20], [24].

• Sentence-level perturbations apply high-level transforma-
tions such as paraphrasing or translation, denoted as
X̃ = AS

P̃
(X), where P̃ is selected by a paraphraser or

translator [32], [42].
Summary. For character-level and token-level, perturbation
positions are typically chosen randomly without considering
the watermark structure [19], [20], [24], [34], [43], [44], [46].
For sentence-level methods, such as paraphrasing, the position
is selected according to the semantic demand [32], [42].
Consequently, we define these methods as random strategies,
as they lack awareness of watermark-related features while
removing. To remove the watermark, these methods typically
rely on altering as many tokens as possible. As a result, the
systematic scrutinization of removal attack capability — as
well as the development of more sophisticated techniques —
remains largely underexplored (refer to Appendix A-A for
more discussion about related work).
Evaluation Metric. Following prior works [19]–[24], we
adopt a set of metrics to assess the effectiveness of watermark
removal attacks. These metrics can be categorized into two
groups according to their purposes:

• Metric for perturbation budget: (1) Character editing
distance (EDC(X, X̃)): Number of modified characters.
(2) Character editing rate (ERC(X, X̃)): Ratio of mod-
ified characters, computed as EDC(X,X̃)

|X|C , where |X|C is
the character number of X . (3) Token editing distance
(EDT (X, X̃)): Number of modified tokens. (4) Token

Watermarked Text
Original

Watermark DetectorAdversaryVictim LLM

Watermark 
Scheme

Perturbed Text

Removal 
Perturbation

No Access

Original
Watermark DetectorVictim LLM

Watermark 
Scheme

Perturbed Text

Removal 
Perturbation

Limited Access

Adversary

No access during attack Limited access during attack

(AC2)

(AC1)

Non-watermarkedWatermark injection Watermark removal attack
Watermark detection

Watermarked Text

Fig. 1: Illustration of threat models in watermark removal.

editing rate (ERT (X, X̃)): Ratio of modified tokens,
EDT (X,X̃)

|X| , where |X| is the token number of X .
• Metric for removal performance: (1) Watermark score

dropping rate (Sw(X)−Sw(X̃)
Sw
max−Smin

): where, Sw
max is defined

as the maximum value of Sw(·) across all sentences
in watermarked dataset, and Smin is defined as the
minimum value of Sw(·) across all sentences in non-
watermarked dataset. (2) Attack success rate (ASR): The
percentage of watermarked texts where the watermark is
no longer detected after the attack, ASR is computed over
a dataset consisting of watermarked samples only.

Based on our analysis of the C4 dataset [49], each token con-
tains an average of 5.18 characters. Therefore, when a single
character is modified within a token, both the character-level
and token-level editing distances are 1, while the character-
level editing rate is approximately 1

5.18 of the token-level
editing rate. For a fair comparison, all editing distance (ED)
and editing rate (ER) in this paper refer to the token level
(EDT and ERT ) unless otherwise specified.

III. PROBLEM FORMULATION

A. System Model

We consider a LLM system where the model provider offers
a black-box API of a large language model (LLM), which
takes user input and returns text output embedded with a
watermark [8], [9], [50]. A corresponding watermark detector
API is provided to determine whether a given text contains a
watermark generated by the LLM. Based on the accessibility
of the watermark detector, we define two system models:

• System Model 1: The watermark detector is private and
can only be accessed by the model provider or authorized
parties.

• System Model 2: The watermark detector is provided as
a public API. Anyone can query the detector with a text
input and obtain the detection result.

Modern LLM systems typically deploy access controls to de-
tect and block malicious behaviors, such as reverse engineering
or data extraction [4], [5], [51]. Therefore, in practical scenar-
ios, adversaries are allowed only a limited number of black-
box queries to the LLM and (if applicable) the watermark
detector for each input and its slightly perturbed versions.
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B. Threat Model

Adversary’s Goal. We consider adversaries who aim to
remove watermarks from LLM-generated text using minimal
imperceptible perturbation. Formally, the goal is to find a
perturbed text X̃ such that the global watermark score Sw(X̃)
falls below a detection threshold τd, while minimizing the
editing rate:

argmin
X̃

ER(X, X̃), s.t. Sw(X̃) < τd. (1)

This goal aligns with practical scenarios where adversaries
seek to bypass watermark detectors while preserving the
text’s utility, enabling unauthorized use of the model output.
Moreover, analyzing the minimum perturbation required for
removal offers a precise measure of watermark robustness.
Adversary’s Knowledge. According to the system model, the
adversary only has access to the watermarked text generated by
the victim LLM API. As a result, they have no knowledge of
the underlying watermark scheme or its parameters (e.g., δ, γ,
h described in Section II-B). This limitation makes watermark
stealing attacks infeasible [28], [40], [41], as such attacks
typically rely on knowledge of the watermark embedding
mechanism. Due to the black-box nature of the LLM API, the
adversary cannot access the model’s architecture, weights, or
internal outputs such as logits. Consequently, they are unable
to perform model distillation or identify a similar open-source
surrogate, which rules out attacks that approximate the token
probability distribution using surrogate LLMs [29], [31], [52].
Adversary’s Capabilities. Based on the system model, we de-
fine two levels of adversarial capabilities (ACs), as illustrated
in Figure 1, each corresponding to different system models:

• AC1 (System model 1): The adversary has no access to
the original watermark detector. They can only interact
with the victim LLM through a limited number of black-
box queries per input.

• AC2 (System model 2): The adversary has limited access
to the victim LLM and its original watermark detector.
They can query them with a limited number of black-box
queries per input.

These capabilities reflect practical constraints imposed by
modern LLM systems, which implement access control to
prevent malicious behaviors [4], [5], [51].

IV. BENCHMARK OF REMOVAL ATTACK FOR LLM
WATERMARK

In this section, we systematically investigate the effec-
tiveness of watermark removal attacks under the setting of
AC1 and highlight the clear advantages of character-level
perturbations. We begin by analyzing the inherent strengths
of character-level attacks, particularly their broader impact on
watermarking mechanisms under constrained editing budgets.
Building on this insight, we introduce a simple yet effective
baseline that applies character-level perturbations in the AC1
scenario. Finally, we conduct a comprehensive experimen-
tal evaluation comparing character-level attacks with token-
level and sentence-level methods, demonstrating the supe-

Score

WDR: 𝟏𝟏
𝟐𝟐 WDR: 𝟐𝟐

𝟑𝟑

𝒕𝒕𝟐𝟐 𝒕𝒕𝟑𝟑 𝒕𝒕+1

Token-level
Removal Attack

𝒕𝒕𝟏𝟏𝒕𝒕 𝒕𝒕 𝒕𝒕+1

Token

Key

Watermark  
Text

Character-level
Removal Attack

WDR: 𝟏𝟏
𝟐𝟐

WDR: 𝟐𝟐
𝟑𝟑

𝒕𝒕𝟐𝟐 𝒕𝒕𝟑𝟑 𝒕𝒕+1

Token-level
Removal Attack

𝒕𝒕𝟏𝟏𝒕𝒕 𝒕𝒕 𝒕𝒕+1

Token

Watermarked  
Text

Character-level
Removal Attack

Key

Score
(4/4) (2/4) (2/6)

Fig. 2: Comparison of attack range between token-level and
character-level perturbations in watermark removal. Under a
context size of h = 1, modifying one token affects the
token itself and the key computation for h subsequent tokens,
resulting in an attack range of 2 (i.e., h + 1). Modifying a
single character (e.g., via homoglyph substitution) will split
the affected token into at least 3 subword tokens (e.g., splitting
token t into sub-tokens t1, t2, t3). This perturbation also influ-
ences the next h positions, yielding an attack range of 4 (i.e.,
h+3). Assuming each token watermark score st ∈ {0, 1}, with
dark shading indicating st = 1, the global watermark score of
the watermarked text is Sw(X) =

∑
st

|X| = 4
4 . After applying

token-level perturbations, the score drops to Sw(X̃) = 2
4 ,

yielding a watermark score dropping rate (WDR) of 1
2 . In

contrast, character-level perturbations result in WDR = 2
3 .

rior removal effectiveness and better text quality preservation
achieved by character-level approaches.

A. Motivation of Using Character-Level Perturbation in Re-
moval Attack

The goal of a watermark removal attack is to reduce
the global watermark score Sw(X) of a text X below the
detection threshold. This score is computed by aggregating
the individual watermark scores of all tokens in the sequence
X = {x1, x2, · · · , xt, · · · , xm}. When a token xt is modified,
its own score st will be affected. In addition, since the
watermark key kt+i is computed from the preceding context
ct+i = {xt−h+i, · · · , xt−1+i} (xt ∈ ct+i, if 1 ≤ i ≤ h),
a single modification can also affect the keys of the fol-
lowing h tokens (i.e., kt+i, i ∈ [1, h]). Consequently, this
also alters the watermark scores of those subsequent tokens
(i.e., st+i, i ∈ [1, h]). This means that the effectiveness of
a watermark removal attack depends not only on the editing
rate—how many tokens are changed—but also on the attack
range, i.e., how many tokens are affected by a single edit.
Under the constraint of keeping the editing rate small, it
becomes critical to choose perturbations that maximize the
attack range in order to reduce the global watermark score
more effectively.

To analyze the attack range more intuitively, we consider
that a token’s score is negatively affected (watermark score
decreases) if either the token itself or its key is changed. In
token-level attacks, modifying one token directly affects its
own score and the keys of the following h tokens, leading to
an attack range of h + 1. In contrast, character-level attacks
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can have a broader impact. As shown in Figure 2, replacing
a middle character of the t-th token with a homoglyph can
cause the token to be split into at least three subword tokens
(the subword before homoglyph, homoglyph, and the subword
after homoglyph) during tokenization—specifically xt1 , xt2 ,
and xt3 in the perturbed text. For example, replacing “t” in
“letter” with its homoglyph “ť” (U+0165) may split the word
into [“le”, “ť”, “ter”]. This means that a single character-level
edit can directly affect three tokens. Furthermore, because the
key kt+1 depends on the previous h tokens, the watermark
score of xt+1 token in the perturbed text will also be affected.
As a result, a single character-level modification leads to an
attack range of h+ 3.

Figure 2 illustrates this effect under the common setting
of h = 1. For simplicity, we assume that each token in
the watermarked text carries watermark information, with a
watermark score of 1 (shown in dark color, light color means
a watermark score of 0). In this case, the attack range of a
token-level attack is 2, while a character-level attack reaches
4, twice as much. In terms of reducing the global watermark
score, character-level attacks are significantly more effective.

Takeaway: Maximizing the attack range is crucial for
effective watermark removal under a low editing rate.

B. A Random Strategy for Character-Level Removal Attack

Based on the above analysis, we propose a simple baseline
method for watermark removal based on character-level per-
turbation. As described in the threat model in Section III-B,
in AC1, the adversary is not allowed to interact with a
local surrogate LLM and the original watermark detector of
the victim LLM. As a result, the attacker adopts a random
perturbation strategy: randomly selecting positions in the text
and applying character-level perturbation.

To maximize the attack range of each perturbation, we mod-
ify only a single character for each selected token, preferably
one located near the center of the token. For example, the
token “position” may be modified to “pošition”, where “š”
(U+0161 in Unicode) is a homoglyph of “s”. This method
can be formulated as follows:

X̃ = AC
P̃
(X), s.t. P̃

rand←−− {1, · · · ,m}, |P̃ |
m
≤ ϵ, (2)

where AC is a character-level attack, P̃ ⊂ {1, 2, · · · ,m} is
sampled uniformly at random, m is the token number of X ,
and ϵ is upper bond of editing rate.

C. Experimental Setup

1) Watermarked Data: We follow the experimental setup
used in prior work [19], [20], [33], [46]. Specifically, the
prompts used to generate watermarked text are sampled from
the RealNewsLike subset of the C4 dataset [49]. Watermarked
text is generated by two victim LLMs: LLaMA-3-8B [2] and
OPT-1.3B [1]. All experiments are conducted on NVIDIA
A100 GPUs. We evaluate five representative watermark meth-
ods: KGW [19], DIP [22], SynthID [23], Unigram [20], and

TABLE II: Comparison of watermark removal performance
under token-level, character-level, and sentence-level attacks
across five watermarking schemes. For sentence-level attacks,
we use DIPPER (†) and AuthorMist (∗). The editing rate of
DIPPER can be approximately adjusted to ER ≈ 0.5, whereas
AuthorMist lacks editing rate controllability. Character-level
attacks consistently achieve higher WDR and ASR under
comparable editing rates.

Token Char Sentence
ER WDR(↑) ASR(↑) WDR(↑) ASR(↑) ER WDR(↑) ASR(↑)

OPT

KGW
0.1 0.0832 0.0224 0.1274 0.2228 0.6130† 0.2947† 0.7710†
0.5 0.3349 0.9725 0.4146 0.9949 2.5579∗ 0.3710∗ 0.9863∗

DIP
0.1 0.1847 0.5917 0.2000 0.6586 0.5832† 0.3539† 0.9784†
0.5 0.4206 0.9978 0.4226 0.9967 2.4413∗ 0.4194∗ 1.0000∗

SynthID
0.1 0.1698 0.0709 0.2191 0.1368 0.5068† 0.3587† 0.6229†
0.5 0.4259 0.9574 0.4486 0.9970 2.4469∗ 0.4750∗ 0.9933∗

Unigram
0.1 0.0437 0.0520 0.0788 0.0788 0.5911† 0.1540† 0.4377†
0.5 0.2176 0.8654 0.2663 0.9072 2.3805∗ 0.2077∗ 0.6815∗

Unbias
0.1 0.1760 0.5684 0.1964 0.6728 0.5797† 0.3682† 0.9823†
0.5 0.4030 0.9968 0.4151 0.9978 2.4596∗ 0.4286∗ 0.9965∗

LLaMA

KGW
0.1 0.0923 0.1359 0.1136 0.2261 0.5240† 0.2461† 0.7376†
0.5 0.3472 0.9675 0.3747 0.9830 2.3925∗ 0.3867∗ 0.9714∗

DIP
0.1 0.1724 0.7188 0.1977 0.8150 0.5033† 0.3355† 0.9292†
0.5 0.4069 0.9988 0.3983 0.9988 2.3680∗ 0.4234∗ 0.9875∗

SynthID
0.1 0.1499 0.1064 0.1849 0.1824 0.5112† 0.3089† 0.6801†
0.5 0.3739 0.9686 0.3842 0.9970 2.4235∗ 0.4200∗ 0.9933∗

Unigram
0.1 0.0243 0.0562 0.0529 0.1564 0.5320† 0.1775† 0.8625†
0.5 0.1233 0.5366 0.1855 0.8290 2.3342∗ 0.2328∗ 0.8812∗

Unbias
0.1 0.1812 0.7463 0.1983 0.7750 0.4804† 0.3264† 0.9625†
0.5 0.4105 0.9938 0.3963 0.9963 2.3913∗ 0.4217∗ 0.9958∗

TABLE III: Comparison of AUC scores before (BA) and after
applying watermark removal attacks.

Token Char
BA ER=0.1 ER=0.3 ER=0.5 ER=0.1 ER=0.3 ER=0.5

OPT

KGW 1.0000 0.9997 0.9838 0.8898 0.9990 0.9305 0.7043
DIP 1.0000 0.9786 0.7453 0.5700 0.9714 0.7091 0.5670

SynthID 0.9999 0.9947 0.8544 0.6337 0.9904 0.7639 0.5528
Unigram 1.0000 1.0000 0.9975 0.9625 0.9999 0.9945 0.9608
Unbias 1.0000 0.9795 0.7393 0.5896 0.9721 0.7142 0.5506

LLaMA

KGW 1.0000 0.9997 0.9836 0.8758 0.9996 0.9710 0.8447
DIP 0.9998 0.9722 0.7061 0.5783 0.9561 0.6854 0.5702

SynthID 1.0000 0.9933 0.8358 0.6342 0.9869 0.7874 0.6077
Unigram 1.0000 1.0000 0.9982 0.9859 0.9993 0.9879 0.9374
Unbias 0.9999 0.9692 0.7124 0.5748 0.9584 0.7005 0.5651

Unbias [21], using the official implementations provided by
MarkLLM [53]. For KGW, Unigram, DIP, and Unbias, we set
γ = 0.5. In KGW and Unigram, γ denotes the proportion
of the green list in the vocabulary. In DIP and Unbias, γ
represents the cumulative probability of the selected tokens.
For KGW and Unigram, we set δ = 2, which indicates
the logit bias added to green list tokens. For KGW, we set
the context length h = 1. Other hyperparameters follow the
default configurations in MarkLLM.

2) Implementation Details: We compare our baseline
character-level attack with token-level and sentence-level ap-
proaches for watermark removal. In the token-level attack,
we randomly select tokens and replace them with synonyms
generated using Gensim [54]. For sentence-level attacks, we
use DIPPER and AuthorMist to rewrite watermarked text.
DIPPER is a paraphrasing model specifically designed for
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watermark removal [32], while AuthorMist [55] is trained via
reinforcement learning to paraphrase AI-generated text into
a more human-like style, aiming to evade detection while
preserving semantic. As an aggressive paraphraser, AuthorMist
extensively alters the writing style and vocabulary of the
input, resulting in significantly longer outputs with most words
modified, and consequently a very high ER. For the character-
level attack, we consider five types of visually imperceptible
perturbations: (1) Typo: replace a character with a nearby
keyboard key (e.g., “t” → “r”). (2) Deletion: remove the
selected character from the token. (3) Swap: swap a character
with its adjacent one (e.g., “their” → “thier”). (4) Insertion:
insert a zero-width character (e.g., U+200B) or a whitespace
at a chosen position. (5) Homoglyph substitution: replace
a character with a visually similar Unicode homoglyph (e.g.,
“g” → “ǧ”, U+011F). Typo, Deletion, and Insertion usually
create at least 2 sub-tokens. Homoglyph substitution changes
often lead to 3 or more sub-tokens. Swap typically produces
at least 2 ∼ 4 sub-tokens.

TABLE IV: Comparison of text quality after watermark re-
moval using three types of perturbations across five water-
marking schemes. Evaluation is based on BLEU(↑), ROUGE-
F1(RF, ↑), and PPL rate(PR, ↓). Sentence-level methods in-
clude DIPPER (†), with editing rates roughly aligned to
ER ≈ 0.5, and AuthorMist (∗), which yields high and less
controllable editing rates.

Token Char Sentence
ER BLEU RF PR BLEU RF PR ER BLEU RF PR

OPT

KGW
0.1 0.7669 0.9078 1.5886 0.7714 0.8678 1.1198 0.6130† 0.3830† 0.7685† -0.0425†
0.5 0.1664 0.5586 15.9911 0.1739 0.4402 1.7028 2.5579∗ 0.0875∗ 0.4544∗ -0.1708∗

DIP
0.1 0.7683 0.9079 1.6342 0.7713 0.8675 1.1080 0.5832† 0.3944† 0.7756† 0.0391†
0.5 0.1615 0.5584 16.7235 0.1737 0.4395 1.8324 2.4413∗ 0.0890∗ 0.4596∗ -0.0947∗

SynthID
0.1 0.7680 0.9085 1.8014 0.7732 0.8688 1.3514 0.5068† 0.4551† 0.8072† 0.1647†
0.5 0.1621 0.5572 20.8919 0.1751 0.4425 2.7043 2.4469∗ 0.1079∗ 0.4778∗ 0.2673∗

Unigram
0.1 0.7658 0.9075 1.7040 0.7711 0.8669 1.0857 0.5911† 0.3904† 0.7676† -0.0263†
0.5 0.1643 0.5517 16.9014 0.1737 0.4351 1.4794 2.3805∗ 0.0966∗ 0.4596∗ -0.1705∗

Unbias
0.1 0.7683 0.9080 1.5725 0.7707 0.8676 1.1270 0.5797† 0.3801† 0.7733† 0.0292†
0.5 0.1626 0.5580 16.5869 0.1740 0.4391 1.8644 2.4596∗ 0.0871∗ 0.4578∗ -0.1012∗

LLaMA

KGW
0.1 0.7688 0.9088 1.7966 0.7718 0.8685 0.5560 0.5240† 0.4574† 0.8013† 0.3457†
0.5 0.1616 0.5570 23.0072 0.1763 0.4412 0.4952 2.3925∗ 0.1030∗ 0.4767∗ 0.1460∗

DIP
0.1 0.7680 0.9088 1.8353 0.7711 0.8676 0.5454 0.5033† 0.4800† 0.8111† 0.3818†
0.5 0.1619 0.5581 24.4797 0.1729 0.4399 0.4720 2.3680∗ 0.1075∗ 0.4834∗ 0.1549∗

SynthID
0.1 0.7683 0.9086 1.8186 0.7713 0.8678 0.5212 0.5112† 0.4643† 0.8074† 0.3171†
0.5 0.1608 0.5570 23.6556 0.1759 0.4413 0.4372 2.4235∗ 0.1060∗ 0.4737∗ 0.0791∗

Unigram
0.1 0.7691 0.9098 1.7713 0.7731 0.8699 0.5425 0.5320† 0.4385† 0.7908† 0.2600†
0.5 0.1602 0.5571 20.2958 0.1786 0.4473 0.4701 2.3342∗ 0.1006∗ 0.4790∗ 0.1947∗

Unbias
0.1 0.7683 0.9084 1.8765 0.7724 0.8678 0.5438 0.4804† 0.4799† 0.8112† 0.3939†
0.5 0.1619 0.5585 24.3046 0.1755 0.4407 0.4522 2.3913∗ 0.1024∗ 0.4789∗ 0.1555∗

D. Evaluation

In this section, we first compare the effectiveness of
character-, token-, and sentence-level perturbations for wa-
termark removal, showing the superiority of character-level
attacks (Section IV-D1). We then evaluate the impact of each
perturbation type on text quality (Section IV-D2) and analyze
how editing rate affects removal performance (Section IV-D3).
We further compare different character-level perturbation op-
erations and find homoglyph insertion to be the most effective
(Section IV-D4). In addition, we discuss the frequency-based
zero-feedback attack (Section IV-D5). Appendix A-B and A-C
present additional results on text length and cross-lingual
generalization, respectively.

1) Comparison with Token-Level and Sentence-Level Re-
moval Attacks: Table II compares the effectiveness of water-
mark removal using token-level, character-level, and sentence-
level perturbations across five watermark schemes. Each
method is evaluated on texts generated by two LLMs: OPT
and LLaMA. For sentence-level attacks, we use the DIPPER
and AuthorMist as paraphrasers. DIPPER is configured with
a lexical diversity of 20 and an order diversity of 0. These
settings yield an ER of approximately 0.5, ensuring a fair
comparison with other methods. For token-level and character-
level attacks, we report results under both low (ER = 0.1) and
high (ER = 0.5) perturbation budgets.

Our results show that character-level attacks consistently
outperform both token-level and sentence-level methods across
all settings. The advantage of character-level attacks is es-
pecially notable under low editing budgets. For instance, on
KGW, SynthID, and Unigram watermarks with ER = 0.1,
character-level attacks achieve an average ASR of 0.1672,
nearly double that of token-level (0.0740), aligning with our
analysis in Section IV-A on the benefits of broader attack
ranges. For weaker watermark schemes like DIP and Unbias,
token- and character-level attacks perform similarly. Both
achieve high ASR and WDR across ER settings, indicating
token-level perturbations are already effective, with limited
gains from character-level attacks.

Following prior work [19], [32]–[34], [45], [46], our previ-
ous experiments primarily used the optimal detection thresh-
olds provided by watermark designers to ensure the best
detection performance. Further, to evaluate whether our attacks
remain effective under varying detection thresholds τd, we
compare the Area Under the ROC Curve (AUC) of the original
watermark detector before and after the attack. Specifically,
we treat original non-watermarked texts as negative samples,
and watermarked texts and attacked watermarked texts as
positive samples before and after the attack, respectively.
By sliding τd, we compute the true positive rate and false
positive rate at each point and the resulting AUC. As shown
in Table III, the original detector achieves an average AUC of
1.0 before attack (BA), indicating a strong ability to distinguish
watermarked from non-watermarked text. After character-level
attacks, the average AUC drops to 0.9833, 0.8244, and 0.6861
at ER = 0.1, 0.3, 0.5, respectively; for token-level attacks,
the corresponding AUCs are 0.9887, 0.8556, and 0.7294.
These results indicate that, at the same ER, character-level
attacks consistently achieve lower AUC values, suggesting
better removal performance.

2) Impact on Text Quality: Table IV evaluates the impact
of watermark removal on text quality across three types
of perturbations using OPT-generated watermarked text. We
evaluate text quality using three widely adopted metrics:
BLEU [56], ROUGE-F1 [57], and perplexity rate (PPL rate =
PPL(X̃)−PPL(X)

PPL(X) ), where PPL is measured by the victim LLM.
Higher BLEU and ROUGE-F1 indicate better preservation of
semantic quality, while lower PPL rate reflects better fluency.
Results are reported at editing rates ER = 0.1 and 0.5, using
100 token inputs. Character-level attacks achieve comparable
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Fig. 3: ASR and WDR of token- and character-level attacks
at varying ER ∈ [0.05, 0.5], evaluated on 100-token texts.

TABLE V: Performance of frequency-based zero-feedback
watermark removal attacks in the AC1 setting.

Token (OPT) Char (OPT) Token (LLaMA) Char (LLaMA)
ER WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑)

KGW
0.1 0.0880 0.0788 0.1542 0.3322 0.1003 0.1893 0.1340 0.2786
0.5 0.3457 0.9623 0.4045 0.9932 0.3677 0.9643 0.3995 0.9821

DIP
0.1 0.1794 0.5827 0.2049 0.7050 0.1928 0.7167 0.2085 0.7542
0.5 0.4239 0.9964 0.4135 0.9964 0.4287 1.0000 0.4195 0.9917

SynthID
0.1 0.1818 0.0673 0.2367 0.1481 0.1668 0.1077 0.2065 0.1919
0.5 0.4611 0.9596 0.4824 1.0000 0.3956 0.9562 0.4120 0.9966

Unigram
0.1 0.0982 0.1336 0.1249 0.2705 0.0934 0.3716 0.0493 0.1609
0.5 0.4747 0.9966 0.4530 0.9932 0.4548 0.9962 0.2589 0.9693

Unbias
0.1 0.1820 0.5603 0.2090 0.6773 0.1911 0.7208 0.2019 0.7792
0.5 0.4267 0.9965 0.4113 0.9965 0.4123 0.9958 0.4117 1.0000

or superior semantic fidelity to token-level attacks, especially
under higher perturbation. For OPT, at ER = 0.1, their
average BLEU/ROUGE-F1 scores (0.7715/0.8677) are close
to token-level (0.7675/0.9080); at ER = 0.5, the scores
(0.1741/0.4393) remain similar to token-level (0.1634/0.5568),
though ROUGE-F1 is slightly lower. This is because ROUGE
is based on n-gram overlap, and character-level perturbations
increase token fragmentation, thereby decreasing the propor-
tion of overlapping tokens. Character-level attacks also yield
much lower perplexity, indicating better fluency. At ER = 0.1,
the average PPL rate is 1.1584 compared to 1.6601 for token-
level. The same pattern can also be observed on watermarked
texts generated by LLaMA. Although sentence-level attacks
produce more fluent text, they require a very high editing rate
to be effective.

3) Impact of Editing Rate: Figure 3 compares the effective-
ness of token-level and character-level watermark removal at-
tacks under different ER. Overall, character-level attacks con-
sistently outperform token-level attacks in both attack success
rate (ASR) and watermark score dropping rate (WDR), across
all watermark schemes and editing rates. This performance gap
is especially evident for KGW, Unigram, and SynthID when
ER ≤ 0.2, where character-level attacks achieve a significantly
higher average ASR than token-level ones (0.2840 vs. 0.1461
for OPT; 0.2197 vs. 0.1325 for LLaMA). These findings align

with our earlier analysis (Section IV-A), which highlights the
broader impact range of character-level attacks. In summary,
character-level attacks are more effective than token-level
attacks at removing watermarks, making them a more reliable
tool for evaluating watermark robustness.

4) Comparison Among Different Character Perturbations:
Figure 4 presents the ASR of five character-level perturbation
types: Deletion, Homoglyph substitution, Insertion, Swap, and
Typo, across five watermark schemes as the editing rate
increases. Overall, all perturbations show improved ASR with
increasing editing rates. Notably, Homoglyph substitution con-
sistently achieves higher ASR than other methods, especially
at lower editing rates (e.g., 0.05 and 0.1). This effectiveness
can be explained by the attack range analysis in Section IV-A.
Homoglyph substitution tends to disrupt tokenization more
severely by splitting a single token into at least three sub-
word tokens. In contrast, other perturbations (e.g., deletion,
insertion of whitespace or zero-width characters, swap, and
typo) typically cause only a two-subword split. Therefore, we
adopt homoglyph substitution as the primary character-level
type in the following study.

5) Frequency-Based Zero-Feedback Attack: In this exper-
iment, we aim to evaluate whether general knowledge about
watermarks can enhance removal effectiveness under the AC1.
As discussed in Section II-B, watermark schemes affect the
frequency of generated tokens, we therefore use token fre-
quency as general knowledge for removal. Specifically, we
compute each token’s frequency in watermarked (fqw) and
non-watermarked (fqn) texts, and define the frequency metric
as fqw/fqn. Tokens in each text are ranked by this metric
in descending order, and perturbations are applied until the
target editing rate (ER) is reached. For character-level attacks,
perturbations target high-ranking tokens directly. For token-
level attacks, we substitute high-ranking tokens with their
lower-frequency synonyms.

Table V shows the effectiveness of this strategy. The results
show that character-level attacks still outperform token-level
attacks across all settings. Compared to the random strategy
in Equation (2) and Table II, this frequency-based approach
yields similar performance in terms of ASR and WDR for all
watermarks except Unigram. When ER = 0.1, the average
ASR improvement over the random strategy is only 0.009
(OPT) and 0.0685 (LLaMA) for token-level; 0.0429 (OPT)
and 0.0020 (LLaMA) for character-level attacks. When ER =
0.5, the average improvement turns to −0.0024 (OPT) and
0.0895 (LLaMA) for token-level; −0.0001 (OPT) and 0.0272
(LLaMA) for character-level attacks, suggesting no consistent
benefit from frequency. An exception is the Unigram wa-
termark. Unlike other watermarking methods that use token-
specific green lists, it applies a shared green list to all tokens
to enhance robustness [20]. This causes the frequency of green
tokens in Unigram watermarked text to be significantly higher
than others, making the frequency-based attack more effective.

6) Human Evaluation of Text Quality under Random
Character-Level Watermark Removal: We conducted a human

8



0.05 0.10 0.15 0.20
Editing Rate

0.0

0.2

0.4

0.6

0.8
AS

R
KGW

Delete
Homoglyph
Insertion
Swap
Typo

0.05 0.10 0.15 0.20
Editing Rate

0.2

0.4

0.6

0.8

1.0

AS
R

DIP

0.05 0.10 0.15 0.20
Editing Rate

0.1

0.3

0.5

0.7

AS
R

SynthID

0.05 0.10 0.15 0.20
Editing Rate

0.0

0.1

0.2

0.3

0.4

AS
R

Unigram

0.05 0.10 0.15 0.20
Editing Rate

0.2

0.4

0.6

0.8

1.0

AS
R

Unbias

Fig. 4: ASR of five character-level perturbation types, including typos, deletions, swaps, insertions, and homoglyph substitutions,
across five watermark schemes. The length of watermarked text is 100 tokens, and they are generated by OPT.

TABLE VI: Human evaluation results for watermarked text and perturbed text from the three types of attacks. The table reports
the average scores across all raters for each dimension, along with the 95% confidence interval of the overall score based on
the t-distribution. We use CEFR levels [58] to indicate English proficiency (ranging from A1 for beginners to C2 for proficient
users), and mark native English speakers with “#”.

ID Age Gen CEFR Edu Field
WM Sentence Token Char

Gram Corr Flue Overall Gram Corr Flue Overall Gram Corr Flue Overall Gram Corr Flue Overall

1 25 F B2 PhD IT 2.758 2.636 2.788 2.73±0.16 2.322 2.610 2.593 2.51±0.14 1.298 1.404 1.404 1.37±0.16 2.255 2.294 2.333 2.29±0.19
2 24 M C2# Master Nurs 2.455 2.636 2.636 2.58±0.20 2.424 2.508 2.492 2.47±0.14 1.298 1.263 1.175 1.25±0.14 2.118 2.255 2.333 2.24±0.19
3 35 F C2# PhD Chem 2.576 2.727 2.788 2.70±0.17 2.525 2.441 2.661 2.54±0.14 1.316 1.333 1.298 1.32±0.16 2.118 2.216 2.490 2.27±0.19
4 24 M C1 PhD IT 2.727 2.788 2.848 2.79±0.15 2.542 2.508 2.678 2.58±0.14 1.404 1.333 1.316 1.35±0.16 2.157 2.353 2.431 2.31±0.19
5 27 F C1 Master Chem 2.424 2.545 2.667 2.55±0.18 2.407 2.390 2.525 2.44±0.15 1.158 1.298 1.439 1.30±0.16 2.157 2.157 2.275 2.20±0.19
6 27 M C2# PhD IT 2.697 2.606 2.515 2.61±0.18 2.254 2.627 2.593 2.49±0.15 1.404 1.263 1.123 1.26±0.16 2.196 2.196 2.314 2.24±0.18
7 26 F C1 PhD IT 2.394 2.576 2.758 2.58±0.18 2.475 2.542 2.559 2.53±0.14 1.368 1.175 1.456 1.33±0.16 2.196 2.157 2.235 2.20±0.18
8 33 M C1 Master Nurs 2.515 2.424 2.606 2.52±0.25 2.356 2.373 2.542 2.42±0.15 1.351 1.211 1.281 1.28±0.16 1.765 2.275 2.490 2.18±0.18
9 27 F C2# PhD Chem 2.182 2.818 2.818 2.61±0.18 2.441 2.441 2.593 2.49±0.14 1.211 1.193 1.228 1.21±0.15 1.980 2.196 2.412 2.20±0.19
10 30 M C1 PhD IT 2.545 2.576 2.788 2.64±0.17 2.610 2.492 2.576 2.56±0.14 1.316 1.211 1.211 1.25±0.14 2.216 2.176 2.373 2.25±0.19
11 21 F C2# Master Nurs 2.545 2.727 2.727 2.67±0.17 2.169 2.475 2.525 2.39±0.15 1.070 1.351 1.158 1.19±0.15 2.314 2.098 2.235 2.22±0.18
12 28 M B2 PhD IT 2.788 2.697 2.697 2.73±0.16 2.339 2.593 2.542 2.49±0.14 1.105 1.281 1.351 1.25±0.16 2.039 2.314 2.529 2.29±0.19
13 23 F C1 Master IT 2.545 2.667 2.879 2.70±0.17 2.424 2.492 2.610 2.51±0.14 1.386 1.158 1.035 1.19±0.16 2.235 2.275 2.314 2.27±0.18
14 30 M C1 PhD Chem 2.727 2.606 2.758 2.70±0.17 2.153 2.576 2.593 2.44±0.14 1.316 1.439 1.088 1.28±0.14 2.176 2.294 2.294 2.25±0.19
15 34 F C1 PhD IT 2.212 2.333 2.455 2.33±0.25 2.220 2.136 2.458 2.27±0.17 1.246 1.123 1.000 1.12±0.13 2.275 2.039 2.039 2.12±0.19

Avg 2.54±0.10 2.62±0.07 2.72±0.07 2.63±0.06 2.38±0.08 2.48±0.07 2.57±0.03 2.48±0.04 1.28±0.06 1.27±0.05 1.24±0.08 1.26±0.04 2.15±0.08 2.22±0.05 2.34±0.07 2.24±0.03

evaluation to assess visual imperceptibility. Following the
setup in [20], [23], we recruited 15 participants, who were
selected based on factors including age (20-35), gender (8
female, 7 male), education (5 Master’s, 10 PhD), language
(all participants are proficient in English, including 5 native
English speakers), and professional background (including IT,
nursing, chemistry). Each participant rated 200 anonymized
texts—including original watermarked samples and outputs
from three watermark removal attacks—based on grammat-
icality/coherence, correctness, fluency, and overall quality,
using a 0–3 scale (with higher scores indicating better quality).
Table VI reports the average scores and confidence interval
from each rater across the four evaluation dimensions. The
results show that watermarked texts received the highest aver-
age overall score (2.626), followed by sentence-level (2.476)
and character-level attacks (2.235), both of which scored
significantly higher than token-level attacks (1.263). These
results indicate that character-level attacks better preserve text
quality and provide stronger visual imperceptibility than token-
level attacks.

V. GUIDED CHARACTER-LEVEL ATTACK FOR LLM
WATERMARK

As discussed in Section III-B, the objective of watermark
removal is to reduce the global score Sw(X̃) of a modified
text X̃ below the detection threshold. However, a closer look at
the watermark injection and detection process in Section II-B
and II-C shows that not all token modifications effectively
lower Sw(X̃). For example, in KGW [19], only modifications
that convert green tokens into red tokens reduce Sw(X̃); con-

versely, converting red tokens into green ones strengthens the
watermark. Therefore, to achieve effective watermark removal
with minimal editing rate, it is essential to identify and perturb
removal-relevant tokens, i.e., whose modification is most likely
to decrease the global watermark score. This requires guidance
beyond the random strategy.

In this section, we introduce Genetic Algorithm (GA) to
guide watermark removal under the AC2 setting, where the
adversary has limited black-box access to the original wa-
termark detector. Since GA involves iterative evaluation of
numerous perturbed candidates, directly querying the original
detector throughout the optimization would be impractical un-
der limited query budgets. To address this constraint, we train a
lightweight reference detector to approximate the original de-
tector’s behavior, allowing the GA to locate removal-relevant
tokens even under strict query budgets. We also evaluate the
GA under an excessive setting in which the original detector is
fully accessible, verifying its ability to identify tokens relevant
to watermark removal (refer to Appendix A-D).

A. Genetic Algorithm-Based Attack with Limited Access to the
Original Watermark Detector

1) Reference Detector: As discussed in Section II-B, water-
marking alters the token selection behavior of LLMs, resulting
in measurable statistical deviations between watermarked and
non-watermarked outputs. These differences make it feasible
to predict the watermark through learned models. We follow
the setting of previous work [59], which assumes that the
watermark detectors return a confidence score (e.g., the global
watermark score). This setting is aligned with real-world
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Algorithm 1 GA-based Removal with Reference Detector
Require: Watermarked text X , the number of token in text m,

reference detector Dref, iteration rounds n, population size p,
parent size ps, loss threshold δl, score threshold τl, weight for
editing rate λ, maximum editing rate ϵ.

1: // Filter high-gradient tokens from {1, · · · ,m}
2: Initial position set P
3: Initial population P1 = {P̃(q)}pq=1, P̃(q) ⊂ P, |P̃(q)|

m
≤ ϵ

4: for iteration j = 1 to n do
5: for q = 1 to p do
6: X̃(q) = AC

P̃(q)(X), P̃(q) ∈ Pj

7: Compute reference score w(q) = Dref(X̃
(q))

8: Compute editing rate e(q) = ER(X̃(q), X)
9: if w(q) > τl then

10: // Stage 1: Minimize reference score only
11: L(q) = w(q)

12: else
13: // Stage 2: Joint optimization
14: L(q) = w(q) − λ · (ϵ− e(q))
15: end if
16: end for
17: Select parents Qj = top-ps(Pj) in ascending L(q)

18: Best perturbed text X̃ = argminX̃(q) L(q), q ∈ [1, p]
19: Lj = minq∈[1,p](L(q))
20: if |Lj − Lj−1| < δl and j > 1 then
21: Qj = Qj−1 // Keep previous parent
22: end if
23: Next population: Pj+1

mutation←−−−−
crossover

Qj

24: end for
25: return Final perturbed text X̃

scenarios, where practical AI detection APIs often return soft
predictions (e.g., confidence scores or watermark probabilities)
rather than just binary labels [60]–[62]. Motivated by these,
we design the reference detector as a regression model that
predicts the global watermark score Sw(X) for an input X .

However, reference detectors inherently differ from original
detectors. While the original detector is rule-based and tightly
coupled with a specific watermarking scheme (Section II-C),
the reference detector is data-driven and typically relies on
a neural network to approximate its behavior. As a result,
they may be overly sensitive to high-gradient tokens, reacting
strongly to local changes that have limited effect under the
original detector. This mismatch poses challenges for removal
strategies guided by the reference detector, particularly those
relying on gradient-based optimization [35]–[37] (more anal-
ysis about the mismatch refer Appendix A-E).

Takeaway: Gradient-based optimization guided by the
reference detector is unreliable for watermark removal.

2) Genetic Algorithm: Since GA is gradient-free, it is less
affected by the mismatch between the reference detector and
the original detector. Under the AC2 setting, where access
to the original detector is limited, the GA leverages the
prediction from the reference detector to identify the removal-
relevant positions. Specifically, it seeks a minimal subset of
token positions whose perturbation substantially reduces the

watermark score predicted by the reference detector Dref. The
objective function is defined as follows:

argmin
P̃⊂{1,··· ,m}

Dref(AC
P̃
(X)) + λ · |P̃ |

m
, (3)

where λ is the weight for editing rate, P̃ ⊂ {1, · · · ,m} is
an individual in the GA population that represents a set of
token positions of the input text, and m is the number of
tokens in X . This objective is consistent with the adversary’s
goal in Section III-B after applying Lagrange multipliers. In
each iteration of GA, it generates perturbed texts, evaluates
them with reference detector, and updates the best solution if
a significant improvement is observed. The best individuals
are selected as parents Q, which are then used to generate the
next population through crossover and mutation. The process
continues until a maximum number of iterations is reached. To
further improve the stability of the optimization process and
mitigate the impact of the mismatch between the reference
detector and the original detector, we incorporate three key
components into the GA framework: filtering high-gradient
tokens, a two-stage optimization objective, and a convergence
threshold. We summarize the full procedure in Algorithm 1.
Filtering High-Gradient Tokens. As discussed above, the
reference detector tends to assign disproportionately large
gradients to a few influential tokens, which may not align
with the original detector. To mitigate this mismatch, we
exclude such high-gradient tokens from the initial population,
preventing them from misleading the search process. Specif-
ically, we first compute the gradient magnitude ∥∂Dref (X)

∂xt
∥2

for each token xt with respect to the output of the reference
detector Dref . We then calculate the mean µ and standard
deviation σ of all gradient values in the text X . Tokens whose
gradient magnitudes exceed µ + α · σ are considered high-
gradient tokens and are filtered out, where α is a scaling factor
controlling the sensitivity of filtering.
Two-Stage Optimization Objective. The GA is designed to
jointly optimize two objectives: (i) minimizing the predicted
watermark score Dref(X̃) and (ii) minimizing the editing rate.
However, these objectives typically converge at different paces.
In practice, the editing rate often decreases more quickly, as
reducing the number of perturbations is generally easier than
effectively suppressing Dref(X̃). This early convergence of
the editing rate can hinder further reduction in Dref(X̃), as
a smaller editing rate restricts the search space. To address
this issue, we adopt a two-stage optimization strategy. In the
first stage, the GA focuses solely on minimizing the watermark
score until it falls below a predefined threshold τl. Once this
threshold is reached, the algorithm enters the second stage,
where both Dref(X̃) and editing rate are jointly optimized.
The overall objective is formally defined as follows:

L =

{
Dref(X̃), if Dref(X̃) > τl,

Dref(X̃)− λ · (ϵ− ER(X, X̃)), otherwise,
(4)

where λ is the weight for editing rate, ϵ is the upper bond for
editing rate.

10
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Fig. 5: Scatter plots comparing reference detector predictions
(y-axis) with original detector scores (x-axis) for KGW, with
Ref-0, Ref-5, and Ref-9 shown from left to right.

Convergence Threshold δl. Due to the mismatch between
the decision boundaries of the reference detector Dref and
the original detector Dori, small decreases in Dref(X̃) may
not correspond to meaningful reductions in Dori(X̃). Relying
solely on marginal improvements in Dref may mislead the opti-
mization process, causing the GA to converge to suboptimal or
ineffective perturbed text. To mitigate this issue, we introduce
a convergence threshold δl (Line 20 in Algorithm 1). If the
improvement in loss between two consecutive iterations is less
than δl, the algorithm retains the previous best solution. This
prevents the GA from overreacting to insignificant changes in
Dref(X̃), thereby improving the stability of the optimization.
Best-of-N with Reference Detector. To highlight the ad-
vantages of the GA, we introduce a simplified version as a
baseline, referred to as the Best-of-N Attack. This method sets
iteration rounds in Algorithm 1 as 1. In this case, the adversary
generates N perturbed candidates {X̃(q)}Nq=1, and evaluates
them using the reference detector Dref . The candidate with the
lowest watermark score Dref(X̃

(q)) is selected and submitted
to the original detector as a transfer attack.

B. Experimental Setup

1) Reference Detector: To support guided attacks, we train
a separate reference detector for each watermark scheme. For
each watermark scheme, we construct a dataset containing
5000 watermarked and non-watermarked text samples. The
reference detector is implemented by fine-tuning a BERT [63]
regression model to predict the normalized global watermark
score. To improve the reliability and generalization of the
reference detector, we apply light data augmentation by using
token-level and character-level perturbations. Given the limited
access under the AC2 setting, we restrict the augmentation to a
small number of variants per sample. Specifically, we consider
three configurations for each watermark scheme: Ref-0 (no
augmentation), Ref-5 (five augmented variants per sample),
and Ref-9 (nine augmented variants per sample).

2) Baseline Method: We adapt the watermark removal
method introduced in [45] as a baseline for our study, referring
to it as “Sand”. In their original design, perturbations are
added to the text incrementally over N rounds. At each round,
the victim model is used to verify whether the perturbation
degrades text quality. If not, the perturbation is accepted. In
contrast, our work focuses on evaluating the robustness of wa-
termark schemes under the AC2 setting, rather than preserving
text quality. To accommodate these constraints, we modify

their strategy: we still apply perturbations incrementally over
N rounds, but at each round, we evaluate whether Dref(X̃)
decreases, if so, the perturbation is accepted.

C. Evaluation

In this section, we present a comprehensive evaluation
of our GA-based watermark removal method guided by a
reference detector. We begin by assessing its effectiveness
across multiple watermarking schemes (Section V-C1), fol-
lowed by an analysis of the reference detector’s quality and
its impact on removal performance (Sections V-C2, V-C3,
and Appendix A-F). We also evaluate gradient-based attacks
using the reference detector (Section V-C4) and discuss the
computational complexity and resource overhead of our meth-
ods (Section V-C5). Additional ablations are provided in Ap-
pendix, including the effect of GA iterations (Appendix A-F1),
the choice of N in Best-of-N (Appendix A-F2), and high-
gradient token filtering (Appendix A-F3).

1) Performance Comparison of Guided Attack: Table VII
presents the effectiveness of the GA-based watermark removal
attack, Best-of-N attack and Sand attack [45]. For GA, we
set the iteration rounds n = 15 and population size p = 100,
resulting in 1500 queries to the reference detector. For the
Best-of-N strategy, we consider two settings: (1) N = 10,
and (2) N = 1500, which uses the same query budget as
GA’s query budget. All experiments are conducted with
text length set to 100, Ref-9 is chosen as the reference
detector. The editing rate of all methods is constrained by
an upper bound ϵ = 0.1, meaning that each attack can
modify at most 10 tokens per text. The results show that GA
consistently outperforms both Best-of-N (N = 10) and Sand
in terms of ASR and WDR. For example, under character-
level perturbations, GA achieves ASR scores of 0.6514 on
OPT and 0.6615 on LLaMA, significantly higher than Best-
of-N (0.4414 / 0.4466) and Sand (0.2622 / 0.3099). Under
the same query budget (N = 1500), Best-of-N achieves
ASR scores of 0.4555 (OPT) and 0.4468 (LLaMA) with
character-level perturbations, similar to its performance at
N = 10. This is due to the lack of optimization and potential
mismatch with the reference detector, which limits the benefit
of additional queries. In contrast, GA still outperforms Best-
of-N under the same query budget, suggesting that GA can
more effectively utilize the guidance from reference detectors
and mitigate mismatch issues between the reference and
original detectors. Additionally, Sand performs worse than
Best-of-N under both perturbation types. This is likely due
to its incremental design: at each step, Sand applies a small
perturbation and accepts it only if the reference detector
score decreases. However, due to the mismatch between the
reference and original detectors, small perturbations often fail
to provide reliable feedback. Moreover, character-level attacks
consistently outperform token-level attacks, reaffirming their
superior effectiveness in watermark removal.

2) Performance of Reference Detector: Figure 5 visualizes
the predicted watermark scores from the reference detectors
versus the original detectors for KGW (refer to Appendix A-F4
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TABLE VII: Comparison of watermark removal performance across three guided strategies (Best-of-N , Genetic Algorithm,
and Sand) using both token-level and character-level perturbations.

Best-of-N (10) Token Best-of-N (10) Char Best-of-N (1500) Token Best-of-N (1500) Char GA Token GA Char Sand Token Sand Char
WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑)

OPT

KGW 0.0985 0.0842 0.1591 0.2626 0.0956 0.1164 0.1490 0.3082 0.1128 0.1233 0.2110 0.4966 0.0305 0.0103 0.0763 0.0685
DIP 0.1833 0.5791 0.2033 0.6871 0.1797 0.6151 0.2057 0.6727 0.1864 0.6187 0.2433 0.8453 0.0686 0.0935 0.1624 0.5000
SynthID 0.1896 0.0606 0.2536 0.1650 0.1886 0.0774 0.2611 0.2121 0.2262 0.1145 0.3093 0.4209 0.1091 0.0168 0.2160 0.0976
Unigram 0.0639 0.0741 0.1271 0.2907 0.0916 0.1370 0.1508 0.4110 0.1629 0.4829 0.1950 0.6575 0.0382 0.0274 0.0915 0.1164
Unbias 0.1787 0.5532 0.2067 0.6667 0.1781 0.5496 0.2006 0.6738 0.1864 0.6187 0.2530 0.8369 0.0609 0.1489 0.1717 0.5284

LLaMA

KGW 0.0980 0.1667 0.1216 0.2558 0.0950 0.1750 0.1295 0.2643 0.1176 0.2321 0.1693 0.4214 0.0384 0.0357 0.0849 0.1179
DIP 0.1827 0.6833 0.2056 0.8175 0.1869 0.7042 0.2116 0.8000 0.1805 0.6917 0.2580 0.9042 0.0889 0.3458 0.1720 0.6708
SynthID 0.1604 0.1010 0.1915 0.1996 0.1586 0.1010 0.2054 0.2054 0.1779 0.1448 0.2447 0.3603 0.0369 0.0034 0.1601 0.1010
Unigram 0.0296 0.0651 0.0596 0.1724 0.0292 0.0575 0.0557 0.1686 0.0694 0.1686 0.1888 0.7356 0.0127 0.0345 0.0148 0.0307
Unbias 0.1843 0.7167 0.2074 0.7875 0.1804 0.6750 0.2055 0.7958 0.1841 0.7208 0.2379 0.8667 0.0749 0.2833 0.1614 0.6292

TABLE VIII: Effect of reference detector quality on water-
mark removal. We compare ASR(↑) of GA, Best-of-N , and
Sand attacks using three Dref: Ref-0, Ref-5, and Ref-9.

KGW DIP SynthID Unigram Unbias
Ref Token Char Token Char Token Char Token Char Token Char

GA
0 0.3112 0.3596 0.3714 0.5504 0.0456 0.1145 0.4169 0.6007 0.4432 0.6418
5 0.3270 0.3801 0.5276 0.7842 0.0633 0.4209 0.4268 0.6096 0.5431 0.7730
9 0.3744 0.4966 0.5622 0.8453 0.0535 0.3603 0.4343 0.6575 0.5795 0.8369

Best-
of-N

0 0.0924 0.2464 0.5931 0.6623 0.0487 0.1379 0.0915 0.2927 0.5622 0.6395
5 0.1170 0.2567 0.5714 0.6883 0.0751 0.1866 0.0894 0.2886 0.5451 0.6395
9 0.0842 0.2626 0.5791 0.6871 0.0606 0.1650 0.0741 0.2907 0.5922 0.7021

Sand
0 0.0068 0.0240 0.0540 0.0288 0.0404 0.0000 0.0274 0.0822 0.1277 0.0461
5 0.0137 0.0822 0.0683 0.4568 0.0101 0.1178 0.0308 0.1336 0.0745 0.4078
9 0.0103 0.0685 0.0935 0.5000 0.0168 0.0976 0.0274 0.1164 0.1489 0.5284

TABLE IX: ASR and WDR of gradient-based transfer attacks
using TextBugger and DeepWordBug.

Textbugger DeepWordBug
WDR(↑) ASR(↑) WDR(↑) ASR(↑)

KGW 0.0450 0.0095 0.0422 0.0095
DIP 0.0239 0.0288 0.0293 0.0360
SynthID 0.0748 0.0067 0.0729 0.0067
Unigram 0.0273 0.0189 0.0092 0.0034
Unbias 0.0560 0.0490 0.0293 0.0390

for additional results on other watermark schemes). The x-
axis shows the global watermark scores computed by the
original detector, while the y-axis shows the predictions of
the reference model. The red dashed line (y = x) indicates
perfect prediction. Shaded regions correspond to misclassified
samples, while white regions in the top-right and bottom-left
represent true positives and true negatives, respectively. As
data augmentation increases, the reference detector’s predic-
tions become more aligned with the original scores, and the
number of misclassified samples decreases.

3) Impact of Reference Detector in Removal Attack: Ta-
ble VIII evaluates the impact of reference detector quality,
improved through data augmentation, on the effectiveness of
watermark removal. We report ASR results on five watermark-
ing schemes (generated by OPT) using three removal methods:
GA, Best-of-N , and Sand, each tested with three reference
detectors: Ref-0, Ref-5, and Ref-9. As data augmentation
increases, the quality of the reference detector improves,
resulting in more effective watermark removal. This trend
indicates that enhanced detector quality enables more reliable
guidance during removal. GA consistently achieves higher
ASR than Best-of-N and Sand under the same reference
model. Sand is the most sensitive to detector quality, likely
due to its incremental strategy: it adds one perturbation at a
time and decides whether to retain it based on small changes in

TABLE X: ASR comparison under different adaptive settings
against 4 defenses. “GA” denotes the normal GA-based attack
in Algorithm 1. “Adaptive GA (·)” represents the adaptive
GA-based attacks in Equation (5). Detector type indicates
whether the victim watermark detector is the original (Dori)
or enhanced with defense modules (such as FSC).

Detector type KGW DIP SynthID Unigram Unbias

GA Dori 0.4214 0.9042 0.3603 0.7548 0.8667

Adaptive
GA (SC)

Dori 0.5429 0.9125 0.3644 0.9502 0.9125
Dori ⊕ FSC 0.4250 0.8917 0.4049 0.8697 0.8917

Adaptive
GA (OCR)

Dori 0.5214 0.8333 0.4122 0.5896 0.8333
Dori ⊕ FOCR 0.5036 0.9500 0.5405 0.4776 0.9333

Adaptive
GA (DE)

Dori 0.4507 0.8583 0.4595 0.9776 0.9000
Dori ⊕ FDE 0.3028 0.9083 0.3311 0.7612 0.8583

Adaptive
GA (UN)

Dori 0.4718 0.9333 0.4459 0.9776 0.8750
Dori ⊕ FUN 0.4507 0.9167 0.4324 0.7016 0.8667

Dref(X̃). As shown in Figure 5, minor variations in Dref may
not accurately reflect the original detector’s behavior, which
severely limits Sand’s effectiveness.

4) Gradient-Based Adversarial Textual Attack is Not Ef-
fective: Table IX reports the performance of gradient-based
adversarial attacks that attempt to transfer from a reference
detector to the original detector. Following our analysis in
Section V-A, the inherent mismatch between the reference
and original detectors prevents gradient-based methods from
reliably identifying watermark-relevant tokens. We evaluate
two representative methods: TextBugger [35] and DeepWord-
Bug [37], both of which rank tokens by gradient magnitude
and iteratively apply hybrid perturbations (token-level and
character-level) to reduce the reference detector’s predicted
watermark score below a decision threshold using minimal
edits. As shown in the table, both methods achieve an
ASR < 0.1 across all watermark schemes. These results are
significantly lower than those of Best-of-N and GA-based
strategies, demonstrating that gradient-based transfer attacks
are largely ineffective for watermark removal in this setting.

5) Query Cost Overhead: Our attack is designed for the
offline setting, where a reference detector is trained once and
reused for multiple attacks. Its training data can be collected
incrementally, making the cost flexible and amortizable. To
train the reference detector, we collect 5000 watermarked and
5000 non-watermarked samples. We consider three detector
variants (Ref-0/5/9), which require 1, 6, and 10 queries per
watermarked sample, respectively—resulting in a total of
5000, 30000, and 50000 queries. In comparison, the online
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Best-of-N attack uses N queries per sample; at N = 10,
attacking 5000 samples requires 50000 queries, which is equal
to or greater than the number of queries required to train the
reference detectors.

In terms of runtime on an NVIDIA A100 GPU, Best-of-N
attacks complete within 1s/sample. GA converges in < 20
iterations (each 1 ∼ 3s), with total time < 30s/sample.

VI. DISCUSSION

In this section, we explore potential defenses against
character-level watermark removal attacks. A natural de-
fense strategy is to apply preprocessing techniques to reverse
character-level perturbations. We consider four representative
defense mechanisms: (1) Spell-checking and correction (SC),
which automatically detects and corrects spelling errors in the
text; (2) Optical character recognition (OCR), which renders
the text as an image and re-extracts its content; (3) Unicode
normalization (UN), which converts semantically equivalent
characters into a standard form to ensure consistent text
representation; (4) Deletion (DE) of anomalous characters,
which directly removes invalid or suspicious symbols.

In these adaptive scenarios, where the attacker designs
perturbations that proactively account for defense mechanisms,
watermark robustness presents an adversarial dilemma. For
any fixed defense, there always exists at least one perturbation
strategy capable of bypassing it. To systematically study
this problem, we propose an adaptive compound character-
level attack based on a two-level optimization framework.
The inner optimization selects, for each token position, the
perturbation combination (C‡) that minimizes the edit distance
EDC after applying the defense function, indicating that it best
bypasses the defense. The outer optimization searches over
token subsets to find those whose modification most reduces
the watermark score Dref. This can be formalized as:

argmin
P̃⊂{1,··· ,m}

Dref

(
argmin

C‡
EDC

(
X̃, Fdef(X̃)

))
+ λ · |P̃ |

m
,(5)

where X̃ = AC‡

P̃
(X), C‡ denotes compound character-level

perturbations, Fdef denotes one of OCR, SC, UN, or DE.
Compound character-level perturbations are defined as the
application of one or more character modifications at the
same position. Such as: Swap + homoglyph substitution (e.g.,
“compound” → “compuǒnd”); Typo + homoglyph substitu-
tion (e.g., “compound” → “compǐund”); Zero-width character
insertion + homoglyph substitution (e.g., “compound” →
“compo{U+200B}ǔnd”).

To the best of our knowledge, existing defenses lack
adversarial robustness. However, even when enhanced with
robustness mechanisms, they remain vulnerable, because com-
pound character-level perturbations introduce complex distor-
tions that hinder accurate recovery of the original token. The
more complex the perturbation, the greater the ambiguity in
recovery. Consequently, even if the defense removes suspi-
cious artifacts (e.g., special characters or misspellings), it still
cannot reliably recover the original token, thereby disrupting
the watermark key and signal.

Evaluation. We evaluate the effectiveness of our adaptive GA-
based attack under common character-level defenses. Specif-
ically, we consider widely-used tools as modules: Language-
Tool [64] for SC, Python Tesseract [65] for OCR, Python
unicodedata [66] for UN.

Table X compares the ASR of two types of GA-based
attacks: normal GA and adaptive GA, across five watermark
schemes. Each adaptive GA is evaluated under two detector
settings: the original detector Dori and the defended detector
Dori ⊕ Fdef, where Fdef represents specific defense modules
(SC, OCR, UN, DE). The maximum editing rate is set to ϵ =
0.1. For SC, DE, and UN, adaptive GA raises the average ASR
from 0.6631 to 0.7365, 0.7293, 0.7407, and after applying
these defenses, ASR slightly drops to 0.6966, 0.6323, 0.6736,
respectively, but remains close to the normal GA. This shows
that compound character-level perturbations are effective and
resistant to these defenses. For OCR, adaptive GA achieves an
ASR of 0.6380, slightly lower than normal GA, but applying
OCR increases ASR to 0.6810, indicating that the perturba-
tions induce OCR recognition errors that disrupt watermark
detection. An exception is the Unigram watermark, where
adaptive GA (with OCR) shows a notable ASR drop, as
Unigram computes the key independently of context, making
it harder to find effective perturbations. Overall, these results
demonstrate that our adaptive GA approach can effectively
enhance watermark removal while exhibiting resilience to
potential character-level defenses.

VII. CONCLUSION

In this work, we demonstrate that character-level pertur-
bations provide a significantly stronger watermark removal
capability than token-level and sentence-level methods, due to
their larger attack range. We further show that, under limited
access to the original watermark detector, training a reference
detector and optimizing perturbation positions using a Genetic
Algorithm can offer effective guidance for watermark removal.
This enables adversaries to successfully remove watermarks
with a low perturbation budget. To address potential defense
mechanisms such as spell checking and OCR, we propose an
adaptive strategy by using compound perturbations. Overall,
our findings reveal that the vulnerability of current LLM
watermarking schemes has been substantially underestimated.

Our results highlight the urgent need for dedicated defenses
against watermark removal attacks. One promising research
direction is to enhance robustness against such attacks by
improving tokenization strategies and watermark schemes.
Moreover, while this work primarily focuses on watermark
removal, we also see research opportunities in watermark
spoofing. With improved guidance techniques, adversaries may
exploit character-level perturbations to spoof watermark and
falsely attribute texts to LLMs.
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APPENDIX A

A. Related Work

Some works have evaluated the robustness of various water-
marks against character-level perturbations — such as typos,
misspellings, and homoglyph substitutions — demonstrating
that these attacks can be effective at degrading detection
performance [19], [34], [43], [44], [46]. However, these works
do not investigate the underlying reasons why character-
level attacks achieve higher removal success, nor do they
explore more sophisticated attacks that systematically exploit
the advantages of such perturbations. Liang et al. proposed an
adaptive black-box transfer attack by using a gradient-based
textual adversarial attack [46]. Due to the mismatch between
the decision boundary of the reference detector and the original
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Fig. 6: ASR of token-level and character-level watermark
removal attacks under varying text lengths (from 50 to 200
tokens) with ER = 0.2. Solid lines represent character-level
attacks, and dashed lines represent token-level attacks.

watermark detector, their method relies on injecting substantial
noise to ensure effectiveness. Stealing detailed information of
watermark schemes is another option of guided removal attack
[28], [30], [40], [41]. While effective in some scenarios, these
attacks are computationally expensive and require strong as-
sumptions (i.e., adversaries need to know detailed information
about watermark schemes). Specifically, each stealing-based
method is tailored to a narrow class of watermark schemes,
limiting their general applicability in practice.

B. Impact of Text Length for Random Watermark Removal

Figure 6 shows how input length (ranging from 50 to 200
tokens) affects the ASR at a fixed editing rate of ER = 0.2.
For each watermarking scheme, character-level attack results
are shown as solid lines, and token-level attacks as dashed
lines. Character-level attacks consistently outperform token-
level attacks across all input lengths and watermark schemes.
This performance gap is especially evident for KGW, Uni-
gram, and SynthID. Notably, ASR decreases with increasing
input length for KGW and Unigram, but remains relatively
stable, or even slightly increases for SynthID. This behavior
stems from differences in detection mechanisms. As described
in Section II-C, KGW and Unigram use a z-test formulation
where the denominator depends on text length m, meaning
longer texts require a greater proportion of green tokens to be
detected as watermarked. In contrast, SynthID aggregates per-
token watermark scores, making it less sensitive to text length
under fixed ER. For DIP and Unbias, ASR remains consis-
tently high across all lengths, suggesting weaker robustness.

C. Generalization to Other Languages

Beyond English, we further evaluated whether our approach
generalizes to other Latin-script languages. Table XI presents
results on French text generated by LLaMA and watermarked
by KGW and SynthID. We compare the effectiveness of
token-level and character-level attacks under the AC1 setting.
Specifically, we evaluate text lengths of 100 and 200 tokens,
and for each length, we test two editing rates: 0.1 and 0.5. The
results show that character-level attacks consistently achieve
higher ASR than token-level attacks under the same editing
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TABLE XI: Watermark removal performance on French wa-
termarked text under the AC1 threat model. We evaluate both
token-level and character-level attacks on LLaMA-generated
text embedded with KGW and SynthID watermarks. Results
are reported with input lengths of 100 and 200 tokens, and
ER of 0.1 and 0.5.

Token Char
ER WDR(↑) ASR(↑) WDR(↑) ASR(↑)

KGW (100)
0.1 0.0693 0.0736 0.0940 0.1207
0.5 0.2865 0.9264 0.3472 0.9816

KGW (200)
0.1 0.0674 0.0040 0.0907 0.0080
0.5 0.2740 0.7062 0.3304 0.9135

SynthID (100)
0.1 0.1342 0.0825 0.1719 0.1538
0.5 0.3802 0.9537 0.3953 1.0000

SynthID (200)
0.1 0.1596 0.0584 0.1889 0.0966
0.5 0.4359 0.9879 0.4547 1.0000
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Fig. 7: ASR comparison under the Best-of-N attack with
increasing N ∈ {1, 10, 50, 100} for five watermark schemes.
Evaluated using Ref-9 as the reference detector and editing
rate ER = 0.1. Solid lines represent character-level attacks;
dashed lines represent token-level attacks.

rate. This trend holds across both watermark schemes and text
lengths. These findings are consistent with our observations on
English data: character-level perturbations effectively remove
watermarks with minimal edit distance by disrupting the
tokenization process.

D. Genetic Algorithm-Based Attack with Unlimited Access to
the Original Watermark Detector

We begin by evaluating the GA-based attack in an excessive
setting, where the adversary has unrestricted access to the orig-
inal watermark detector Dori. Due to the use of pseudorandom
functions in its detection rules (refer to Section II-C), Dori is
non-differentiable. So we adopt a Genetic Algorithm (GA)
to optimize it. In this setting, the GA directly leverages the
true detector scores to identify the most impactful perturbation
positions for watermark removal. Specifically, it aims to find
a minimal subset of token positions whose perturbation leads
to a substantial reduction in the watermark score predicted by
the original detector Dori. The objective function is defined as:

argmin
P̃⊂{1,··· ,m}

Dori(AC
P̃
(X)) + λ · |P̃ |

|X|
, (6)

where λ is the weight for editing rate, P̃ ⊂ {1, · · · ,m} is an
individual in the GA population that represents a set of token

positions of the input text, and m is the number of tokens
in X . In each iteration of GA, it generates perturbed texts,
evaluates their watermark scores using Dori, and updates the
best solution if a significant improvement is observed. The best
individuals are selected as parents Q, which are then used to
generate the next population through crossover and mutation.
The process continues until a maximum number of iterations
is reached. We summarize the full procedure in Algorithm 2.

Algorithm 2 GA-based Removal with Original Detector
Require: Watermarked text X , the token number of text m, original

detector Dori, iteration rounds n, population size p, parent size
ps, weight for editing rate λ

1: Initialize population P1 = {P̃(q)}pq=1, P̃(q) ⊂ {1, · · · ,m}
2: for iteration j = 1 to n do
3: for q = 1 to p do
4: X̃(q) = AC

P̃(q)(X), P̃(q) ∈ Pj

5: Compute reference score w(q) = Dori(X̃
(q))

6: Compute editing rate e(q) = ER(X̃(q), X)
7: L(q) = w(q) + λ · e(q)
8: end for
9: Select parents Qj = top-ps(Pj) in ascending L(q)

10: Best perturbed text X̃ = argminX̃(q) L(q), q ∈ [1, p]

11: Next population: Pj+1
mutation←−−−−
crossover

Qj

12: end for
13: return Final perturbed text X̃

Best-of-N Attack. To highlight the advantages of the full
Genetic Algorithm (GA), we introduce a simplified version
as a baseline, referred to as the Best-of-N Attack. This
method removes the iterative refinement of GA and instead
performs a one-shot random search. Specifically, Best-of-N
corresponds to a special case of the GA-based approach in
Algorithm 2, where the number of optimization iterations is
set to 1. In this setting, N candidate texts are generated using
the random perturbation strategy defined in Equation (2), and
the one with the lowest watermark score Dori(X̃) is selected.
As N increases, the likelihood of sampling removal-relevant
tokens improves, leading to stronger candidates for watermark
removal. The strategy is formally defined as follows:

X̃ = argmin
X̃(q)∈Bϵ(X)

q∈[1,N ]

Dori

(
X̃(q)

)
,

X̃(q) = AC
P̃ (q)(X), P̃ (q) rand←−− {1, · · · ,m},

(7)

where AC
P̃ (q) denotes the character-level perturbation method

introduced in Section IV-B, which applies perturbations to the
central characters of tokens at randomly sampled positions.
The set B represents the collection of candidate texts con-
strained by a maximum editing rate, ER ≤ ϵ. Although simple,
this approach lacks a guidance and relies entirely on random
sampling. In contrast, the full GA performs guided selection
and iterative refinement, allowing it to consistently identify
more effective perturbation positions at a lower editing cost.
Evaluation. Table XII compares the watermark removal ef-
fectiveness of Best-of-N and the Genetic Algorithm under
the setting where the original watermark detector is fully
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Fig. 8: Scatter plots comparing predicted watermark scores from the reference detector (y-axis) against ground-truth scores
from the original detector (x-axis) for the rest watermark schemes (columns). Each row corresponds to a reference model
trained with increasing levels of data augmentation: Ref-0 (top), Ref-5 (middle), and Ref-9 (bottom). The red dashed line
represents perfect prediction (y = x). White regions indicate correct classifications (top-right and bottom-left), while shaded
regions show misclassified samples.

TABLE XII: Comparison of Best-of-N and Genetic Algorithm attacks under unlimited access to the original watermark
detector. The table reports WDR and ASR for each watermark scheme. Best-of-N is evaluated with different values of
N = 1, 10, 50, 500. GA uses a population size of 100 and 5 iterations (query budget: 5 ∗ 100), matching the query budget of
Best-of-N (500). GA consistently achieves higher performance, even when the total number of detector queries is matched.

KGW DIP SynthID Unigram Unbias
WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑) WDR(↑) ASR(↑)

Best-of-N (1) 0.1278 0.2238 0.2045 0.6883 0.2165 0.1318 0.1090 0.2053 0.1959 0.6223
Best-of-N (10) 0.1958 0.5503 0.3103 0.9805 0.2961 0.4645 0.1616 0.4797 0.3108 0.9828
Best-of-N (50) 0.2278 0.7372 0.3634 0.9978 0.3308 0.6815 0.1845 0.6280 0.3631 0.9979
Best-of-N (500) 0.2602 0.8706 0.4142 1.0000 0.3978 0.8451 0.2111 0.7534 0.4171 1.0000
GA (5 ∗ 100) 0.3232 0.9144 0.4253 1.0000 0.4083 0.8788 0.2245 0.7979 0.4256 1.0000

accessible for the adversary. We evaluate Best-of-N under
four different values of N (1, 10, 50, 500), and set the
GA with a population size of 100 and 5 iterations, which
means it needs to query the original detector 500 times.
Across all five watermark schemes, GA consistently achieves
higher WDR and ASR scores than Best-of-N . While the
performance of Best-of-N improves with larger N , e.g., for
KGW, ASR increases from 0.2238 (at N = 1) to 0.8706
(at N = 500). Note that GA outperforms Best-of-N even
when both approaches make an equal number of queries (500)
to the original detector. So, GA’s advantage stems not only
from more query budget but also from its ability to efficiently
identify removal-relevant tokens through optimization.

E. Mismatch Between Reference and Original Detectors

An intuitive approach for leveraging a reference detector in
watermark removal is to use its gradients to identify important
tokens and apply perturbations. This idea follows the standard
practice in adversarial NLP, where gradients are often used
to rank token importance [35]–[37]. However, this strategy
fails in our setting due to a fundamental mismatch between

TABLE XIII: Effect of GA iterations (n) on watermark
removal. Watermarked texts are generated by OPT. We report
ASR(↑) for both token-level and character-level perturbations
with ϵ = 0.13 in GA. Increasing n improves ASR, with
character-level perturbations showing greater gains.

KGW DIP SynthID Unigram Unbias
n Token Char Token Char Token Char Token Char Token Char

5 0.3567 0.4144 0.5578 0.8273 0.0610 0.3468 0.4106 0.5959 0.5385 0.7766
10 0.3511 0.4384 0.5624 0.8273 0.0633 0.3737 0.4279 0.6404 0.5650 0.7979
15 0.3744 0.4966 0.5622 0.8453 0.0634 0.4209 0.4343 0.6575 0.5795 0.8369

the reference detector and the original detector. In original
detectors, such as watermark during logits generation (e.g.,
KGW [19]), each token is categorized as either green or red.
The global watermark score is computed using token counts:
Sw(X) = (1−γ)|X|G−γ|X|R√

γ(1−γ)|X|
, where |X|G+|X|R = |X|. Under

the common setting γ = 0.5, all tokens contribute equally to
the score, regardless of their position.

In contrast, reference detectors are typically neural networks
trained to approximate the original detector’s output. Due
to the nature of neural networks, their predictions are often
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TABLE XIV: ASR(↑) of the GA on OPT-generated water-
marked texts under different filtering thresholds for high-
gradient tokens. Smaller α values result in more aggressive
filtering. None indicates no filtering is applied. The results
show that appropriate filtering improves ASR.

α KGW DIP SynthID Unigram Unbias

1 0.4315 0.8129 0.4108 0.5788 0.7908
2 0.4555 0.8129 0.4209 0.6096 0.8121
3 0.4966 0.8453 0.4175 0.6267 0.8191
4 0.4555 0.8058 0.4074 0.6575 0.8369

None 0.4555 0.8237 0.3737 0.6370 0.7943

dominated by a small number of high-gradient tokens. As a
result, gradient-based strategies may focus on tokens important
only to the reference detector but insignificant to the original,
limiting their effectiveness.

F. Experiment for Genetic Algorithm-Based Attack with Lim-
ited Access to the Original Watermark Detector

1) Impact of Iterations in GA: Table XIII shows the impact
of the number of GA iteration rounds (n) on watermark
removal effectiveness, with maximum editing rate ϵ = 0.13.
Results are reported for n = 5, 10, and 15, using both token-
level and character-level perturbations across five watermark-
ing schemes. As n increases, the ASR improves consistently.
For instance, in the KGW scheme with character-level per-
turbation, ASR increases from 0.4144 (at n = 5) to 0.4966
(at n = 15), yielding a gain of 0.0822. Moreover, character-
level attacks not only achieve higher ASR, but also benefit
more from increased iterations. On average, ASR of token-
level perturbation improves by 0.0178 from n = 5 to n = 15,
while character-level improves by 0.0592. These results further
highlight the advantage of character-level perturbations in GA-
based watermark removal.

2) Impact of N in Best-of-N: Figure 7 illustrates the effect
of increasing N in the Best-of-N strategy on attack success
rate (ASR), evaluated under five watermark schemes with ER
set to 0.1 and Ref-9 used as the reference detector. We compare
both token-level (dashed lines) and character-level (solid lines)
perturbations. Across all watermark schemes, character-level
attacks consistently outperform token-level attacks. Moreover,
the ASR gap between the two methods widens as N in-
creases. For example, on OPT-generated watermarked text, at
N = 1, the average ASR across 5 watermark schemes is
0.2670 for token-level attacks and 0.3614 for character-level
attacks, yielding a gap of 0.0944. At N = 100, the token-
level ASR remains similar (0.2642), while the character-level
ASR increases to 0.4412, expanding the gap to 0.1771. This
trend highlights that reference detector guidance is especially
beneficial for character-level perturbations, and its advantage
grows with larger search budgets. These results demonstrate
that reference detectors effectively enhance watermark removal
performance for both perturbation types.

3) Effect of Filtering High-Gradient Tokens: Table XIV
shows the impact of filtering high-gradient tokens on the per-
formance of the GA-based watermark removal. As introduced

TABLE XV: Performance of reference detectors with three
levels of data augmentation across five watermark schemes.
Each model is evaluated by the Pearson correlation between
predicted and ground-truth watermark scores, and detection
accuracy (ACC) when using the predicted scores for binary
watermark classification.

Ref-0 Ref-5 Ref-9
Pearson(↑) ACC(↑) Pearson(↑) ACC(↑) Pearson(↑) ACC(↑)

OPT

KGW 0.5941 0.7129 0.9471 0.9003 0.9677 0.9369
DIP 0.2980 0.5351 0.7942 0.7002 0.8777 0.8188
SynthID 0.4832 0.4947 0.8891 0.8906 0.9308 0.9233
Unigram 0.9527 0.9739 0.9923 0.9970 0.9933 0.9977
Unbias 0.2743 0.5298 0.8201 0.7527 0.8850 0.8181

LLaMA

KGW 0.6611 0.7607 0.9762 0.9792 0.9806 0.9850
DIP 0.3240 0.5871 0.8106 0.7687 0.8721 0.8225
SynthID 0.3920 0.6261 0.8683 0.8241 0.9022 0.8312
Unigram 0.2422 0.5516 0.9606 0.9459 0.9673 0.9557
Unbias 0.2915 0.6057 0.8043 0.7582 0.8730 0.8069

in Section V-A, we identify high-gradient tokens based on their
gradient magnitudes with respect to the reference detector, and
exclude those whose gradients exceed µ + α · σ, where µ
and σ are the mean and standard deviation of gradient values,
respectively. A smaller α results in more aggressive filtering.
The table reports ASR for various α values ranging from 4 to
1, as well as the case with no filtering (“None”). We observe
that filtering high-gradient tokens leads to improved ASR
across most watermark schemes. Without filtering, the average
ASR across the five watermark schemes is 0.6169. The
best-performing filtered setting achieves an average ASR of
0.6514, corresponding to an absolute improvement of 0.0346.
However, the optimal value of α varies across watermark
schemes, suggesting that the effect of gradient-based token
is scheme-dependent.

4) Performance of Reference Detector: Figure 8 compares
the watermark scores predicted by the reference detectors with
those from the original detectors for Unbiased, SynthID, Uni-
gram, and DIP. For each row, as data augmentation increases,
the reference detector’s predictions become closer to the origi-
nal detector’s scores. However, samples near the classification
threshold (around the boundaries of the shaded regions), are
very sparse, which makes it difficult for the reference model
to predict reliably in these areas. Even in denser regions, the
reference detector often struggles to accurately capture small
variations in the original watermark scores.

Table XV presents the performance of reference detectors
trained to regress the watermark scores produced by the
original detectors. This table reports the Pearson correlation
between predicted and ground-truth watermark scores, as well
as detection accuracy when using the reference model as
a binary classifier. The results show that data augmentation
significantly boosts performance. On OPT-generated text, Ref-
5 and Ref-9 achieve average Pearson improvements of 0.3681
and 0.4104, and accuracy improvements of 0.1988 and 0.2497,
respectively. On LLaMA-generated text, Ref-5 and Ref-9
improve average Pearson by 0.5018 and 0.5862, and accuracy
by 0.2290 and 0.2540, respectively.
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APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

In this artifact evaluation, we provide a scaled-down version
of the experiments to validate the two primary claims pre-
sented in the paper: (1) character-level perturbations achieve
superior watermark removal effectiveness compared to token-
level perturbations under the same editing rate, and (2) Genetic
Algorithm-based optimization can leverage the guidance of
a reference detector to further improve removal attack per-
formance. Our paper received a “Major Revision” decision,
and in the revised version we are suggested to include more
ablation studies and evaluation metrics to systematically in-
vestigate the effectiveness of character-level removal. These
new components have already been integrated into the source
code, and do not affect the artifact evaluation presented here.

1) How to access: The artifact can be accessed via GitHub
(https://github.com/plll4zzx/CharacterRemoval4WM) or
DOI (https://doi.org/10.5281/zenodo.15872569). We recom-
mend downloading the code using the following command:
git clone https://github.com/plll4zzx/CharacterRemoval4WM.
The datasets required for artifact experiment are available
through the DOI and Google Drive (https://drive.google.c
om/file/d/1ZRPbyv8vHs rh4fxIPEE3TzHNa-SU54E/view?u
sp=sharing).

2) Hardware dependencies: A commodity desktop machine
with at least 8 CPU cores and 16GB RAM. GPU with at least
10GB of memory (e.g., NVIDIA GPU with CUDA) is strongly
recommended for faster execution, especially for collecting
watermarked text and reference detector training.

3) Software dependencies: Ubuntu, Python 3.9, Conda,
other dependencies are listed in requirements.txt

4) Benchmarks: We use the C4 dataset as the source of
prompts to query the victim LLMs and generate watermarked
text3. In this evaluation, we employ OPT-1.3B4 as the victim
language model to produce watermarked outputs. Our refer-
ence detectors are finetuned from BERT5. All model weights
can be obtained from HuggingFace model repositories.

B. Artifact Installation & Configuration

The high-level configuration steps consist of two main
components: dependency installation and data preparation:

1) Dependency Installation. Install all required dependen-
cies by running sh install.sh. After installation,
using conda activate test_char to activate the
Conda environment.

2) Data Preparation. Download the C4 dataset and gen-
erate watermarked text using the victim LLMs. For
convenience, we provide sample data via Google Drive

3The C4 dataset is publicly available at h t t p s : / / h u g g i n g f a c e .
c o / d a t a s e t s / a l l e n a i / c4. We recommend downloading it via git for
convenience. The commands are: GIT LFS SKIP SMUDGE=1 git clone
https://huggingface.co/datasets/allenai/c4; cd c4; git lfs pull –include “real-
newslike/*”

4https://huggingface.co/facebook/opt-1.3b
5https://huggingface.co/google-bert/bert-base-uncased

and the DOI link. After downloading, you can extract
and place the saved_data, saved_attk_data,
and saved_model directories into the project folder.

C. Experiment Workflow

The artifact supports a 2-step experimental workflow to
reproduce the main results presented in the paper:

1) Baseline Removal Evaluation. Execute the scripts for
random attacks to validate that character-level perturba-
tions outperform token-level perturbations in removing
watermark (refer to Table II).

2) Guided Removal Evaluation. Train reference detectors
on dataset of the watermarked data. Then, run the
guided removal attacks, including Best-of-N and Genetic
Algorithm (GA) -based optimization, to demonstrate
their superior performance (refer to Table VII).

D. Major Claims

The artifact is designed to reproduce the following major
claims of the paper:

• C1: Character-level perturbations have significantly
higher attack success rates and watermark score reduction
than token-level approaches under the same editing rate,
as reported in Table II (see Appendix B-E1).

• C2: Guided removal attacks based on reference detector,
including Best-of-N and Genetic Algorithm (GA) -based
attacks, improve removal effectiveness under black-box
conditions, as reported in Table VII (see Appendix B-E2).

E. Evaluation

1) Experiment (E1): In E1, we aim to evaluate whether
character-level removal attacks outperform token-level ap-
proaches under the AC1 setting, which assumes no access
to the original watermark detector. Consistent with the paper,
we test five representative watermarking schemes: KGW, DIP,
SynthID, Unigram, and Unbias.
[Preparation] To run this experiment, the C4 dataset
is needed. We recommend storing it in the path
"../../dataset/c4/realnewslike", where ".."
refers to the parent directory relative to the current working
directory. Watermarked text is generated using the OPT-
1.3B model. The model weights do not require a separate
download, as they are automatically retrieved during script
execution. This process can be performed with the script
collect_wm_text.py, which requires specifying the
watermark name, dataset path, model name, the number of
text, and the GPU device. For example:

python collect_wm_text.py --device 0 \
--wm_name "KGW" --dataset_name \
"../../dataset/c4/realnewslike" \
--model_name "facebook/opt-1.3b" \
--file_num 50 --file_data_num 100

This command generates 5000 (file_num ∗
file_data_num) watermarked samples using the
facebook/opt-1.3b model with the KGW watermark
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on GPU device 0. To produce watermarked text with other
watermarking schemes, simply modify the --wm_name
parameter6. We recommend generating at least 5000
examples to support reference detector training in E2.

Although using a GPU can accelerate text generation,
the process remains time-consuming. For convenience, pre-
generated watermarked data are provided in the saved_data
directory to facilitate artifact evaluation.
[Execution] The following command can be used to evaluate
the effectiveness of token-level and character-level perturba-
tions in the Random strategy removal attack:

python test_rand_sh.py \
--llm_name "facebook/opt-1.3b" \
--wm_name_list "[’KGW’]" \
--atk_style_list "[’token’,’char’]" \
--max_edit_rate_list "[0.1, 0.5]" \
--do_flag "True" --atk_times_list "[1]" \
--max_token_num_list "[100]"

In this example, the editing rates are set to 0.1 and 0.5,
and the length of the watermarked text is fixed to 100
tokens, consistent with the settings reported in the paper. In
this random strategy, the adversary performs only a single
random attack per text sample, so atk_times_list= 1.
To evaluate additional watermarking schemes, simply add their
names to the wm_name_list.
[Results] The results of this script are saved as log
files in attack_log/Rand and as JSON files in
saved_attk_data. Alternatively, setting the do_flag
parameter to "False" prints the results directly to the
terminal. The output demonstrates that, for the same editing
rate, character-level perturbations consistently achieve higher
watermark score dropping rate (WDR) and attack success
rates (ASR) compared to token-level perturbations (refer to
Table II in the paper). Additionally, by adding more values into
max_edit_rate_list and max_token_num_list re-
produces the results in Figure 3&6, respectively.

2) Experiment (E2): In Experiment (E2), we aim to eval-
uate the effectiveness of watermark removal under the AC2
scenario, where the adversary has limited access to the original
watermark detector. In this setting, a reference detector is
first trained using a limited number of queries to the original
detector. Subsequently, the trained reference detector is used
to guide the watermark removal process.
[Preparation] Command for training the reference detector:

python train_ref_detector.py --device 0 \
--wm_name "KGW" --num_epochs 15 \
--rand_char_rate 0.15 --rand_times 9 \
--llm_name "facebook/opt-1.3b" --ths 4

In this example, the watermarking scheme is set to KGW.
Each sample is augmented 9 times, with an editing rate of
0.15 (rand_char_rate). The ths is detection threshold
used to evaluate the performance of the reference detector.

6the alias of “Unbias” is “Unbiased” in the code

The number of training epochs is set to 15. Due to both
data augmentation and model training are computationally
intensive and time-consuming, preprocessed datasets and pre-
trained reference detector are provided in the saved_data
and saved_model to facilitate artifact evaluation.
[Execution] We evaluate the two proposed guided removal
attacks (Best-of-N and GA) along with a baseline method
(Sand). All of these attacks leverage the trained reference
detector to provide guidance.

Best-of-N: python test_rand_sh.py \
--llm_name "facebook/opt-1.3b" \
--wm_name_list "[’KGW’]" \
--atk_style_list "[’token’,’char’]" \
--do_flag "True" --atk_times_list "[10]" \
--max_token_num_list "[100]" \
--max_edit_rate_list "[0.1]" \
--data_aug_list "[9]"

In this command, the atk_times_list parameter specifies
the value of N in the Best-of-N strategy, determining how
many perturbation candidates are sampled for each input. The
data_aug_list is used to choose reference detector. Due
to we set rand_times to 9 when training the reference
detector, data_aug_list is also set to 9.

Sand: python test_rand_sh.py \
--llm_name "facebook/opt-1.3b" \
--wm_name_list "[’KGW’]" \
--atk_style_list \
"[’sand_token’, ’sand_char’]" \
--data_aug_list "[9]" --do_flag "True" \
--max_edit_rate_list "[0.1]" \
--atk_times_list "[1]" \
--max_token_num_list "[100]"

GA: python test_ga_sh.py \
--llm_name "facebook/opt-1.3b" \
--wm_name "KGW" --atk_style "char" \
--num_generations 15 --do_flag "True" \
--max_edit_rate 0.13 --data_aug 9 \
--max_token_num_list "[100]"

[Results] As in E1, the results of these three methods are
saved by default as log files in the attack_log/Rand
and attack_log/GA directories and as json files in the
saved_attk_data folder. Setting the do_flag parameter
to False will print the results directly to the terminal.

The output shows that, under comparable editing rates, the
GA consistently achieves higher attack success rates (ASR)
than both the Best-of-N and sand attacks (refer to Table VII).
Additionally, for all three methods, character-level perturba-
tions yield higher ASR compared to token-level perturbations.

Because this evaluation process can be time-
consuming, precomputed json results are provided in
the saved_attk_data directory to facilitate artifact
verification.
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