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[8], [9]. More fractional kernel mechanisms are involved
to isolate sensitive resources from other containers and the
host [10], [11], [12]. These patchworks operate independently,
yet provide complementary functionalities to prevent processes
within a container from accessing the resources outside.

However, this isolation model has been continuously weak-
ened with the emergence of new software architecture (e.g.,
microservice [13]) and cloud computing mode (e.g., server-
less [14]), which increasingly require namespace sharing
between containers or between the container and the host.
Microservice architectures decouple the traditional monolithic
applications into independent, self-deployable services that
communicate via APIs to deliver the same functionality [15].
Each service can be a stateless function with simpler logic than
a microservice. The flexible assembly of these functions can
achieve richer call chains at a lower cost than deploying mono-
lithic software [16]. For example, shared memory is widely
used to decrease the latency of data sharing between services
in serverless computing [17]. And namespace sharing becomes
an ideal solution to improve data transmission and status
synchronization [18], to simplify deployment and configura-
tion [19], and to facilitate debugging and monitoring [20]. Un-
fortunately, sharing namespaces weakens isolation guarantee
offered by other kernel mechanisms (e.g., cgroups), which con-
flicts with the original intention of the container design [21].

Understanding namespace sharing risks. In our research,
we discovered namespace-cgroup desynchronization (NCD) –
a new security risk introduced by namespace sharing across
containers or between a container and its host. We found
that the namespace sharing extends the isolation boundary
beyond one container instance, yet the protection provided by
cgroups still stays within the instance. More specifically, the
resources created by a container instance are managed within
its namespaces, while control of these resources, particularly
the restrictions on the consumption of the resources, is handled
by the cgroup. When the container is terminated, its cgroup
will be destroyed as well, but its namespace, once shared with
another container or the host, will not be released. As a result,

Abstract—The isolation offered by containers today is achieved 
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demands for resource sharing across namespaces. Such sharing 
weakens the container’s isolation model, inducing namespace-
cgroup desynchronization (NCD) vulnerabilities, as discovered in 
our research. In this paper, we present a study on such risks, 
aiming at identifying their root causes and understanding their 
implications. Our research reveals that popular container tools all 
suffer from NCD risks, as evidenced by our discovery of four new 
vulnerabilities and one bug. Fundamentally, namespace sharing 
expands a container’s isolation boundary, which may contravene 
the restrictions set by the cgroups, thereby undermining the com-
bined protection provided by both mechanisms. This contention 
often cannot be reconciled by existing container tools.

To address this challenge and meet the demands for namespace 
sharing, we propose a kernel-level solution to unify the frag-
mented responsibilities of namespaces and cgroups in monitoring 
the resources for container instances. Our design bonds the 
resource management handled by namespaces with the resource 
restrictions enforced by cgroups, and identifies the collaborative 
policies that they should follow. The analysis and evaluation 
demonstrate that our approach effectively mitigates the NCD 
risks, as well as incurs a negligible cost to the Linux kernel, 
mainstream container tools, and real-world applications, main-
taining full compatibility with these systems.

I. INTRODUCTION

Linux container technology promises a lightweight isolated
execution environment for applications [1], which is con-
structed by piecing together multiple kernel mechanisms on
demand, such as namespace and cgroup. As this technology
is widely used for high-productive software development and
deployment, the isolation guarantees provided by containers
have garnered continuous concern [2], [3], [4], [5], [6], [7],

*Corresponding authors: Weijie Liu and Zhen Xu.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231381
www.ndss-symposium.org



the resources associated with the namespace are no longer
under expected control, which is supposed to be enforced by
the cgroup. This opens the door for the adversary to exploit
the shared namespaces to gain unrestricted access to resources,
leading to a cgroup disruption attack. As an example, we
discovered that a pair of colluding containers sharing an IPC
namespace can collectively abuse memory resources beyond
their pre-allocated limits on a commercial platform without
incurring additional charges. One container asks for a large
amount of IPC resources and then promptly terminates itself,
while its cgroup for keeping track of the allocated resources
is removed; the other container can continue using those
resources without being traced by any cgroup.

All popular container tools, including the orchestration
platform (e.g., Kubernetes [22]) and management engines
(e.g., Docker [23], Podman [24], and Pouch [25]) support
sharing of IPC, network, PID, UTS, and user namespaces
across containers or between a container and its host. To
understand the impacts of the NCD risk we discovered, we
built a detector to analyze these tools’ susceptibility to the
NCD risks. Running our detector on those container tools,
we found that all of them are exposed to NCD risks, with
unignorable security implications. Moreover, our measurement
study shows that projects on GitHub are using those container
tools to deploy their applications, and many of them are
configured to share some types of namespaces, especially in
the form of Kubernetes pod [26] where containers share the
IPC, network, UTS, and user namespaces by default. As a
prominent example, most deep-learning, load balancing, and
high-performance computing services require containers to
share the IPC namespace.

We reported our findings to the Docker, Podman, Pouch, and
Kubernetes communities, all of which confirmed the serious-
ness of the NCD risks. Four new vulnerabilities (CVE-2024-
3056, CVE-2024-55528, CVE-2024-57688, and CVE-2024-
57689) and one bug have been discovered [27]. Even though
the Docker community has verified the problem, they claim
that it should be addressed by the providers of the orchestration
platforms (such as Kubernetes) rather than itself. Also, the
Docker community acknowledges that the problem cannot be
easily fixed, requiring nontrivial changes to the Docker engine.
The Red Hat community, which maintains the Podman project,
attributes the problem to the Linux kernel and considers it a
high-severity vulnerability (CVE-2024-3056) [28].

Strawman solutions. A straightforward solution is to create an
“oversight” cgroup at user space for the containers that share
namespaces, to keep an account of and impose restrictions
on the total resources consumed by all the processes in these
containers. In this way, even when a container’s cgroup is
destroyed, the total resources created in these containers are
still accounted for by the oversight cgroup. This approach is
available for public cloud environments where namespaces are
shared between containers only. It, however, cannot be applied
to private platform scenarios where the container is allowed to
share its namespaces with its host: otherwise, all processes in

the shared namespaces including host processes like system
services will be put under the resource restrictions set by
the cgroup, which undermines the host process’s functionality.
Therefore, a more fundamental solution is needed for private
platform scenarios.

Similar to the Podman community, we also hold the be-
lief that the NCD risks should be addressed by the kernel,
which is best positioned to coordinate the joint operations
of namespaces and cgroups to ensure proper control over
shared resources is always in place. A unique challenge here
is the independent operation of namespaces and cgroups in
the kernel, making their reliable and efficient coordination
difficult. More specifically, a namespace and a cgroup manage
resources at different granularities: the namespace handles
virtual resources like semaphores, while the cgroup keeps
track of and caps the consumption of the system resources
(e.g., memory pages) assigned to the virtual resources. It is
less clear how to map the system resources to their virtual
counterparts, especially when releasing those already losing
required control. We mark the virtual resources left within a
namespace after a container exits as residual resources. How to
securely manage such residual virtual resources should be well
thought out to avoid any significant impact on the usability of
container-based applications.

Our solution. We came up with the first kernel-side defense
called CANs (Cgroup Associating with Namespaces), which
is carefully designed to ensure that the expected cgroup
control remains in place on the resources within shared
namespaces, without incurring any significant performance or
usability impact. CANs tags the virtual resources to identify
the responsible cgroup. It also maintains transparent oversight
cgroups to enforce the restrictions on the residual resources.
Note that this can only be done in the kernel space since
in the userland, a container tool does not have a direct
observation of the relationship between the resource usage
in a cgroup and the corresponding resources maintained in
a shared namespace. Therefore, our approach follows a set
of carefully designed policies to build the relationship and
properly manage these residual resources, while maintaining
functionalities of existing namespaces and cgroups.

We conducted a security analysis on our design, which
demonstrates its capability to eliminate the NCD risks and
shows that it does not introduce new attack surfaces. We
further evaluated our implementation on Docker, Podman,
Pouch, and Kubernetes. Our study reveals that CANs incur
less than 0.5% average overhead compared to native Linux,
a maximum overhead of just below 2.4% for these container
tools, and an average overhead of merely 3.6% for popular
real-world applications running with containers (Section V-B).
Also, CANs is fully compatible with all mainstream container
tools and completely transparent: it does not affect any oper-
ations of these tools and the applications.

Contributions. Our contributions are outlined below:
• New findings and understanding. We report the discovery
of the NCD risks – a previously unknown threat, and their
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impacts. We demonstrate that these risks are fundamentally
caused by the expanding gap between the container’s isolation
design and the growing demands for more aggressive resource
sharing, which renders namespaces and cgroups – two building
blocks of container isolation, no longer working effectively
together. Further, we responsibly disclose our findings to
affected parties.
• New defense. We developed a kernel-side protection to en-
hance container isolation, addressing the technical challenges
in efficiently eliminating NCD risks while maintaining com-
patibility and usability. Our approach was evaluated against
these risks in all mainstream container tools, demonstrating
that it only incurs negligible performance overhead. We have
released our code [29] and presented our solution as a proposal
for the Linux kernel, which has received positive responses
from the downstream Red Hat Linux [30].

II. BACKGROUND

A. Linux Namespaces

Linux kernel provides various types of namespaces to
isolate kernel resources between groups of processes [31].
Each namespace can be instantiated multiple times to serve
different groups of processes, with each instance indepen-
dently wrapping and managing its isolated resources. Linux
containers leverage namespaces to separate containers’ virtual
resources, defined as kernel-level resources isolated by names-
paces from the host system. Specifically, the process-related
resources (e.g., process IDs and inter-process communication)
are isolated by PID and IPC namespaces. Mount namespace
is responsible for separating the management of mount points
between the host and containers. The combination of network
and UTS namespaces provides an independent management
view of the network-related resources (e.g., virtual network
devices) and hostname/domain name for containers. In con-
tainers, most security-related identifiers (e.g., user/group IDs,
keys, etc.) are isolated by user namespace.

All types of namespaces support multiple instances to
independently maintain and manage isolated resources. For
example, each instance of the mount namespace has an in-
dependent tree formed by mount points, distinct from other
mount namespaces, dedicated solely to regulating the mount
points within that namespace. Moreover, all resources gov-
erned by a namespace instance are forcibly released upon
the destruction of that namespace. However, if the namespace
instance remains active, the resources it manages will not be
released, even if the process that created it exits. Typically, the
namespace instance is torn down automatically when the last
process within it terminates or leaves [32].

B. Namespace Sharing

Container technology promotes software architecture prac-
tices such as microservices and serverless computing. Tradi-
tional monolithic cloud applications struggle with efficient de-
velopment, updates, and maintenance due to their tightly cou-
pled components. Microservices architectures address these
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Fig. 1: Cgroup hierarchy

issues by decoupling applications into independent, self-
deployable services that communicate via APIs to deliver
the same functionality [15]. Moreover, serverless computing,
also known as Function as a Service (FaaS), supports the
deployment of function-level services [16]. Each service can
be a stateless function with simpler logic than a microservice.
The flexible assembly of these functions can achieve richer call
chains at a lower cost than deploying monolithic software.

The increasingly fine-grained splitting of cloud applications
makes their development and deployment more flexible, scal-
able, and easier to maintain. However, this comes at the cost
of performance loss due to data sharing or interaction between
separate services [21]. The need for resource sharing has
emerged within the isolated environment of these services to
enhance their intercommunication and expedite data transfer.
Container tools such as Docker, Podman, Pouch, and Kuber-
netes all provide interfaces for sharing namespaces between
containers to achieve isolated resource sharing. Especially, the
default configuration of containers within a Kubernetes pod
involves sharing the IPC, network, UTS, and user namespaces.
Namespace sharing meets the functionality and performance
requirements of modern cloud services. More real-world cases
are discussed in Section III-C.

C. Cgroup Architecture

In the Linux kernel, cgroup implementation relies on dif-
ferent resource controllers (or subsystems) to account for and
limit the consumption of various types of system resources,
including CPU time, memory, block I/O, network bandwidth,
etc. Linux containers leverage the cgroup to impose resource
constraints on each container and prevent a single container
from draining host resources. For the billing model in cloud
computing, cgroup maintains the resource accounting per
container and can be employed to constrain the usage of
system resources allocated to each container.

Cgroup hierarchy and controllers. In Linux, cgroups are
structured as a hierarchical tree (as shown in Fig. 1), with
each node representing a cgroup that tracks and limits the
resources used by the processes within it. A process can be a
member of only one cgroup per hierarchy, but its resource
usage is also restricted by all parent (ancestor) cgroups;
consequently, even if a process is to bypass the limitations
of the cgroup to which it belongs, it would still be subject
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to the resource constraints imposed by the ancestor cgroups.
It should be noted that the root cgroup, serving as the top-
level node to monitor system-wide resources, cannot have
any restriction imposed on it. Since all system services and
kernel processes are associated with the root cgroup, any
limitations applied at this level could unintentionally restrict
essential system functions, potentially resulting in degraded
performance or system instability. Moreover, the container
runtime (e.g., runc [33]) creates and configures one cgroup
for each container. All processes in the container join and
are restricted by that cgroup. By default, the parent of these
cgroups is the root cgroup, which typically does not impose
any limitations.

Controllers attached to cgroups are responsible for resource
accounting and restriction in practice, which are implemented
by hooking into various resource management units within the
kernel. For instance, the memory controller hooks the ker-
nel functions __alloc_pages and slab_alloc_node
called in the kmalloc function, which are parts of the
memory management unit. When a process allocates memory,
these hooks tag the allocated memory pages and slabs using
the associated cgroup as the label and count them into that
cgroup. Also, a check is performed in these hooks before
allocation. This check would block the allocations if they result
in the cgroup’s memory accounting exceeding the set limit.
Note that each cgroup only maintains the accounting of the
allocated system resources reported by the controllers, neither
managing them nor knowing which virtual resources occupy
them. Correspondingly, the kernel function kfree, used to
free allocated memory, is also hooked. These hooks trace the
tags on memory pages or slabs to identify their associated
cgroup and then subtract the corresponding accounting after
freeing them. As a result, resource accounting in the cgroup is
updated only upon resource allocation and release, not during
resource access.

Different controllers implement specialized mechanisms for
imposing constraints on their associated resources.

Capacity-based resource control. Controllers like PID and
memory primarily restrict the quantity of system resources
that processes within the cgroup can allocate and retain.
Specifically, the PID controller imposes a quantitative limit on
the number of process IDs (PIDs) within a cgroup to prevent
unlimited process creation. Similarly, the memory controller
enforces a capacity limit on the total memory that can be
consumed by processes in a cgroup. Once the allocated system
resources reach the cgroup limits, processes in that cgroup will
be unable to acquire more of them; otherwise, a fault, such as
an out-of-memory error, will occur.

Time-based resource control. In contrast to PID and memory
controllers, which primarily aim to limit resource quantity,
CPU and blkio controllers focus on regulating access to
continuously available resources rather than preventing their
depletion. For example, CPU resources are controlled by
assigning distinct weights or quotas to each cgroup, thus
determining the relative share of CPU time available to pro-

cesses within different cgroups. If the allocated shares are
depleted, processes within the cgroup will be temporarily
throttled until the next CPU allocation cycle. Similarly, the
blkio controller configures I/O prioritization to regulate the
I/O bandwidth (e.g., the number of read/write operations or
total bytes per second) of processes in each cgroup. In this
paper, we concentrate on exploring the intricacies of capacity-
based resource management.

D. Threat Model

We consider both private and public container-based plat-
forms that use popular tools such as Docker, Podman, Pouch,
and Kubernetes to manage containers. Container instances
belonging to the same user or organization can share the same
host. The administrators employ cgroups to set the resource
limit for each container, preventing host resource exhaustion.

Public container services let users create container instances
priced by pre-allocated resources (vCPU and memory). These
instances of the same users can share namespaces. We assume
an attacker controls at least two namespace-sharing containers
and exploits NCD vulnerabilities to disrupt their cgroups,
thereby consuming unpaid host resources. Since public plat-
forms do not allow namespace sharing with the host, admin-
istrators can thwart attackers by implementing an oversight
cgroup for containers that share namespaces (see Section I).

On private platforms, owners can create containers from
any image (self-built or public registry), and they have the
choice to configure the container to share namespaces with
other containers or with the host. Attackers, whether internal or
external to the private platform, possess the capability to craft
malicious images with the self-activating cgroup disruption
attack scripts, designed to perform a DoS attack and disrupt
the quality of service on the host. The malicious images
can be spread through public registries (e.g., DockerHub)
or via the supply chain, often accompanied by READMEs
that recommend namespace-sharing settings for deployment. It
only requires the users of the private platform to follow these
instructions and launch a single container with the malicious
image, then this action could exhaust the host’s resources.

III. UNDERSTANDING NAMESPACE-CGROUP
DESYNCHRONIZATION RISKS

In this section, we first clarify the potential security risks
posed by namespace sharing and propose a detection tool for
their systematic detection. We then report the Namespace-
cgroup Desynchronization (NCD) vulnerabilities to all im-
pacted container tools. Subsequently, we dive into the impact
of these risks and measure the prevalence of shared names-
paces in real-world applications.

A. NCD Risks

The most prevalent method of resource sharing between
multiple containers or between a container and the host is
through namespace sharing. However, the isolation boundary
established by the shared namespace is no longer for the
single container instance. The potential cooperation between
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the shared namespace and cgroups working for a single con-
tainer instance could be compromised. Specifically, namespace
sharing disrupts the uniformity of the lifecycles between the
namespace and cgroups, potentially extending the lifecycle of
the shared namespace beyond that of the container instance
and its cgroup.

For an individual container, the creation and destruction
of its namespace and cgroup are synchronous. Upon the
container’s termination, the resources allocated within this
container are released following the destruction of the related
namespace, while the accounting of those resources is also
canceled as the container’s cgroup is destroyed. However,
namespace sharing disrupts this synchrony. When a container
shares its namespace with other entities (containers or the
host), the termination of this container does not destroy the
shared namespace, which continues to be sustained by those
entities. Additionally, the resources created by the terminated
container are also maintained within this namespace, but these
resources are no longer accounted for and restricted by that
container’s cgroup, which has been destroyed with the con-
tainer. This disorder between the management and constraint
of resources would weaken or undermine the isolation assured
by the container.

Cgroup disruption attacks. By exploiting NCD risks, an
attacker can manipulate the containers sharing namespaces to
disrupt their cgroups’ supervision. Specifically, as shown in
Fig. 2, the attacker controls two containers (Container-A
and Container-B) configured to namespace sharing, while
each container is governed by its own exclusive cgroup.
During the attack, Container-A is manipulated by the
attacker to continuously generate resources that are managed
by the shared namespace. Until reaching cgroup limits of
Container-A, the attacker could manually utilize interfaces
provided by container tools or public container services (e.g.,
Kubernetes feature of rolling update [34]) to destroy and recre-
ate this container. More commonly, Container-A is config-
ured by these tools or services to restart automatically when
it exceeds the cgroup limits. Meanwhile, Container-B
remains active to keep the shared namespace persistent. This
ensures that those resources generated by Container-A are
not released upon the destruction of Container-A and its
cgroup, as the shared namespace continues to maintain them.

Shared namespace
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program

Generator Container Verifier Container

Creating Resources Accessing Resources

cgroup Checker
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② Restart

Available 
Resources
Collection

Comparing
Results

④
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Fig. 3: Detector workflow

As a result, the resources created by Container-A become
residual resources, no longer traced by its cgroup or any other
container’s cgroup. Other containers (e.g., Container-B
and the restarted Container-A’) sharing that namespace
can still access those resources, but their cgroups do not
monitor or account for such access.

B. Vulnerability Discovery

All container tools provide interfaces to configure names-
pace sharing. We propose a detector to assess whether these
configurations are vulnerable to NCD, and identify exploitable
virtual resources managed within each namespace for resource
depletion or billing evasion attacks.

Detection method. Fig. 3 shows the pipeline architecture of
the detector. At the preparation stage, the tested container tool
first creates two containers with a specified namespace sharing.
In each detection round, one of the containers acts as a gener-
ator, creating a specific type of virtual resource (①) mentioned
in Table I and then restarting (②). Another container, acting
as a verifier, accesses the created virtual resource to confirm
its availability (③). Moreover, the cgroup checker records the
total resource accounting from both containers’ cgroups at the
end of the above stages (①, ②, and ③). Once the verifier-
container can obtain that virtual resource, the cgroup checker
will compare the recorded resource accountings at different
stages (④). If the resource accounting at stage ① falls back
to zero at stage ② and remains zero at stage ③, it means
that such virtual resource is not accounted for by any cgroup
after the generator-container restarts, even after being accessed
again by the verifier-container. In this case, the detector can
confirm that the tested container tool is vulnerable, and issue
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TABLE I: Detection setting and results

Shareable Namespace Namespace-related Resources Create Operations Exploitable for NCD risks Vulnerable Tools

IPC
shared memory shmget ✔ Kubernetes

Docker
Podman
Pouch

semaphore semget ✔
message queue msgget ✔

Network virtual network devices ip link add ✔

PID process ID fork ✔
Docker
Podman
Pouch

UTS hostname/domainname N/A ✕ N/A
User keys add key ✕ N/A

a bug report to document the exploitable virtual resource in
the namespace.

Effectiveness and findings. We detect the widely-used con-
tainer tools, including Docker, Podman, Pouch, and Kuber-
netes, and confirm that they all suffer from NCD risks.
More details are shown in Table I. Specifically, containers
configured to share the IPC namespace can abuse shared mem-
ory, semaphore, and message queue in attacks to exhaust or
even abuse the host’s memory resources. Similarly, containers
that share the network namespace can exploit 39 types of
virtual network devices [35] in attacks. Moreover, containers
launched by Docker, Podman, or Pouch with shared PID
namespaces can exhaust the host’s process IDs by spawning
many zombie processes that are not reaped. Lastly, the virtual
resources managed within the UTS namespace only occupy
a fixed amount of memory resources to store the hostname
and domain name, making them not exploitable for gaining
more resources illegally. The virtual resource keys in the
keyrings [36] related to the user namespace is ignored in the
detection since cgroups do not monitor or account for this
resource [37]. Any container can allocate it without restriction
to directly cause a DoS on the host, which is beyond the scope
of our study. Note that no container tools support sharing the
mount namespace between containers and the host.

Responsible disclosure. We reported our findings to Docker,
Podman, Pouch, and Kubernetes, who have all determined the
existence of the NCD risks. Four new vulnerabilities (CVE-
2024-3056, CVE-2024-55528, CVE-2024-57688, and CVE-
2024-57689) and one bug have been discovered [27]. The
Docker community believes that the fix is the responsibility
of orchestration platforms, as Docker does not track container
dependencies. The Podman, Pouch, and Kubernetes communi-
ties confirmed that NCD risks arise from resource management
vulnerabilities or bugs when containers share namespaces.
Furthermore, the Red Hat community, to which the Podman
project belongs, believes that the root of these security issues
is traced to the Linux kernel [28], as cgroups fail to handle
the resources they are intended to restrict. This issue has been
treated as a high-severity vulnerability (CVE-2024-3056).

C. Real-World Impact Measurement

Unfortunately, namespace sharing is a widespread demand
for many practical applications, which undeniably exacerbates
the NCD risks in containerized environments. We measured

containerized applications on GitHub to quantify the scale of
namespace-sharing requirements, and also assessed the real-
world feasibility of the cgroup disruption attacks.

Real-world examples of namespace sharing. We searched
all GitHub repositories using GitHub APIs [38] and filtered
them by keywords in the README files or YAML files in
these repositories. If the README files contain keywords
(e.g., ‘docker run’ or ‘podman run’), it indicates that the
applications in those repositories can be deployed using pop-
ular container tools. Repositories that contain Kubernetes-
specific YAML files [39] are also search targets, which can
be identified by keywords in fields such as ‘apiVersion’ and
‘kind’. Moreover, all container tools provide different config-
uration parameters to set a container to share the namespaces
with other containers (e.g., --ipc=container:[id]
and --network=container:[id] for IPC and network
namespace respectively) or with the host (e.g., --ipc=host
and --network=host). We retrieved the parameters dis-
played after those matched keywords in the README files
and the Kubernetes-specific YAML files. We collected 824,353
GitHub repositories whose applications are able to be con-
tainerized. Scanning the configuration parameters of con-
tainers from those 824,353 repositories, 128,935 repositories
(15.64%) are flagged as requiring their applications’ con-
tainer(s) to run in namespace sharing mode.

We manually analyzed 541 flagged repositories with over
200 stars. Most of these require containers to share either
the IPC or network namespace, accounting for 10.10% and
86.14%, respectively. Their primary purpose is to fulfill
the functional and performance requirements of applications.
88.68% of the applications that require IPC namespace sharing
are associated with deep learning, stemming from their func-
tional requirements. These applications utilize the NVIDIA
Multi-Process Service (MPS) runtime architecture [40]; con-
sequently, sharing the IPC namespace with the host is essential
for their containers to communicate with the MPS control
daemon [41]. IPC namespace sharing for performance is
demanded by such as high-performance computing applica-
tions to reduce communication latency between containers.
75.54% of network namespace sharing aims to simplify net-
work configuration for containers, a necessity for applications
that involve constructing a Virtual Private Network (VPN) or
facilitating service discovery and load balancing within a mi-
croservices framework. The remaining 24.46% of applications
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recommend that their containers share the network namespace
with the host for better networking performance, as this allows
the containers to utilize the host’s native networking stack
directly [19]. The requirements for sharing the PID namespace
all originate from the monitoring tools for watching the status
of processes from multiple containers.

Feasibility analysis of the real-world attacks. Cgroup disrup-
tion attacks can produce varying impacts on private platforms
and public cloud services (see Section II-D). We assessed the
feasibility of achieving these impacts in the real world.

Resource depletion is a common attack that can be per-
formed after disrupting the cgroup on both private and public
container-based platforms. We validated its feasibility in a
testbed environment, and made its configurations along with
attack demonstration videos publicly accessible [42]. To con-
duct the attack, we built a malicious image that embeds an at-
tack script as its entrypoint. This script activates automatically
at container startup, continuously allocating the designated
resources (mentioned in Section III-B). We deployed this
malicious image and set its parameters to share namespaces
with another container (--ipc=[container]) and to auto-
restart upon exit (--restart=always). As a result, the
attack proceeds autonomously and depletes the host’s 8 GB
of memory resources in approximately 23 seconds.

Billing evasion is another feasible attack on public container
services. Due to ethical concerns, we refrained from executing
this attack on real-world services. Instead, we verified its
preconditions by checking the configurations of container
instances and their host in these services, all obtained via
Procfs and Sysfs from inside the containers [4]. Specifically,
on AWS and Baidu Cloud container services, we deployed
two container instances that we could restart or destroy via
the providers’ APIs. We inspected ‘/proc/self/ns/’ within each
container and found identical IPC and network namespace IDs,
confirming they share namespaces. This means that they are
able to collude to bypass cgroup restrictions. The container
instances are billed based on their pre-allocated resources
(vCPU and memory), while cgroups are employed to enforce
such capacity limits. Escaping the cgroup allows a container
to claim host memory beyond its paid quota. We verified
that both AWS and Baidu Cloud provide far more memory
than they sell: a glance at ‘/proc/meminfo’ shows that, on
Baidu Cloud, two 1 GB containers ran on a 32 GB host,
while on AWS the host offered exactly twice the containers’
combined limit. This surplus confirms the resource-abundance
prerequisite for the attack.

IV. DEFENSE

In this section, we first elaborate on the challenges of
addressing the vulnerabilities mentioned above. We then pro-
pose a mechanism of Cgroup Associating with Namespaces
(CANs) that enables the collaboration between namespaces
and cgroups, defending against the NCD threats.

A. Challenges of Addressing NCD Risks

The NCD vulnerabilities arise from failed collaboration
between a container’s cgroup and its shared namespaces. The
sharing of the namespace can prolong the lifecycle of its man-
aged resources beyond the lifecycle of the container’s cgroup,
creating a gap between resource management and constraints.
Intuitively, banning namespace sharing might be the simplest
solution to eliminate NCD vulnerabilities. Unfortunately, it
would necessitate modifications to all popular container tools
and compromise their compatibility with a large number of
applications measured in Section III-C. Addressing this issue
at the container tool level is also challenging, as it involves
specific resource-sharing requirements inherent to certain con-
tainer operations (e.g., --ipc=host).

A possible strawman solution is to designate an “oversight”
cgroup as the parent for cgroups of containers that share
namespaces. Establishing the parent cgroup can impose col-
lective resource constraints for those containers. For example,
Podman and Kubernetes allow grouping containers into a pod
with a pod-level cgroup to enforce resource limits. Even after
a container and its cgroup are terminated, the previously allo-
cated resources remain subject to the pod-level cgroup’s limits.
This solution effectively prevents attacks in scenarios per-
mitting inter-container namespace sharing, like public clouds.
Unfortunately, it is impractical when the container shares the
namespace with the host process. In this case, such a solution
should set all containers and the host processes under a parent
cgroup, which effectively means configuring the root cgroup
(mentioned in Section II-C). Although cgroup limits are essen-
tial for constraining container resource usage, applying unified
restrictions on containers and host processes is unreasonable.
Containers and host processes have fundamentally different
resource requirements; various system services on the host
do not have any cgroup limits. The root cgroup is designed
for monitoring system-wide resources rather than enforcing
restrictions. Limiting it could inadvertently restrict critical
system functions (e.g., init systems, logging daemons, and
kernel threads), then destabilize the system.

On the other hand, upon the termination of a container, the
associated cgroup also stops functioning, but the resources it
monitored are not automatically released upon the cgroup’s
shutdown. If the container tool is to release these resources
forcibly, it needs to identify them first. However, determining
which resources in a shared namespace belong to the termi-
nated container at the user space is a challenge.

B. Guidelines

To preserve original design choices of namespaces and
cgroups, and ensure synchronized resource management and
restriction between them, we have identified the following
requirements for practical applications.

Effective protection. To permanently resolve NCD vulnerabil-
ities when namespace shares, CANs must possess the ability
to force the namespaces to cooperate with the cgroups for
handling the residual resources after the container exits. CANs
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Fig. 4: Defense architecture

should also keep those residual resources within the limits to
ensure that the host’s resources cannot be abused.

Full compatibility. We aim to deliver seamless protection for
user applications with full compatibility, ensuring that there are
no changes required to the container tools or the applications
they host. CANs should also maintain compatibility with all
Linux ABIs, including syscall interfaces, without altering the
functionality of namespaces and cgroups in the kernel or the
usage of container tools at user space.

Service continuity. In our design, ensuring service avail-
ability holds paramount importance. Our defense mechanism
must guarantee the robustness and resilience of services,
maintaining their accessibility and functionality even under
adversarial conditions. Furthermore, our defense framework is
designed to seamlessly accommodate auto-scaling and rolling
updates. These features are ubiquitous in modern container
orchestration systems.

Minimal performance penalty. The lightweight and swift de-
ployment are key features of Linux containers and are required
by the container-based cloud computing mode. Therefore,
CANs is expected to be simple and elegant, not significantly
compromising the performance of container tools, while main-
taining comparable performance to native Linux.

C. Overview

Fig. 4 illustrates the architecture overview. While names-
paces are primarily designed for management purposes and
cgroups are intended for resource restriction, these two func-
tionalities currently exist at different levels within the Linux
implementation. As illustrated in Fig. 5, although their func-
tionalities are complementary, they are realized at distinct lay-
ers, with namespaces targeting virtual resources and cgroups
targeting system resources. CANs bridges the namespace and
the cgroups by placing a cgroup tag on the virtual resources
managed within the namespace (detailed in Section IV-D).
The tags not only link these resources to their responsible
cgroup but also help pinpoint residual resources upon cgroup
termination. To prevent the residual resources from evading

the control of the exited cgroups, CANs employs ‘balloon’
cgroups that serve exclusively to retrieve such resources for a
set of containers that share namespaces. The balloon cgroup
imposes strict limits on resource usage, ensuring that the
residual resources it monitors are controlled. No attacker can
breach the safeguards enforced by the balloon cgroup. Through
this mechanism, our defense solution eliminates the NCD
problem at its root cause.

More specifically, CANs firstly labels each container’s
resource with its dedicated cgroup (①). Subsequently, when
a cgroup is set to exit, CANs initiates a resource transfer
(②), redirecting the outgoing cgroup’s resource accounting to
the balloon cgroup (detailed in Section IV-E). This ensures
continuous monitoring of residual resources, maintaining
the integrity of cgroup’s restriction functionality. After
that, if the residual resources are in use or required again,
CANs recycles these resources from the balloon cgroup (③),
allocating them to the specific container in need (detailed in
Section IV-F). It is important to note that other containers
within the same namespace may still be accessing the
shared residual resources after the resource creator exits.
To address this, CANs continuously reassigns and correlates
the residual resources with the cgroup of the container that
explicitly requests them. Upon completion of this recycling,
the previously residual resources are claimed by the container,
tagged under its cgroup’s governance, and consequently, they
are excised from the balloon cgroup’s holdings.

The functionalities of CANs are integrated into the Linux
resource management framework through kernel hooks. The
advantage of doing so is that CANs can be very lightweight
and compact during construction, reducing as much redundant
code as possible, and also minimizing performance overhead.
We have designed CANs to be compatible with Linux kernel
v6.2.7 on x86 architecture, and made it open source [29].

D. Bridging of Namespace and Cgroup

Cgroups and namespaces have different granularities in
resource management. Namespace manages virtual resources,
while cgroup limits the system resources occupied by the
virtual resources. This would hinder the construction of co-
operation between namespaces and cgroups. For instance,
cgroup subsystems concentrate on allocating system resources,
such as memory pages, that are utilized by virtual resources
within namespaces, including shared memory or semaphores.
However, cgroups are unable to distinguish which system
resources correspond to specific virtual resources. Therefore,
to ascertain which cgroup is accountable for restricting these
resources, we label the virtual resources with tags. These tags
serve as the critical link that binds namespaces and cgroups
together, bridging the two to facilitate seamless coordination.

Establishing cgroup-namespace mapping. Cgroup cannot 1)
determine the specific namespace instance associated with the
resources it monitors, 2) nor can it identify which resources
need to be released upon termination within the namespace.
Therefore, we create a global hash table cg_ns_map in the
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kernel to establish associations between cgroups and names-
paces using key-value pairs. Each key in the hash table is
a cgroup pointer that maps to sets of namespace instances
where the processes in this cgroup reside. This hash table is
updated whenever a process enters a cgroup. The instances
of each process’s namespaces (e.g., IPC, network, and PID
namespaces) are joined into the corresponding set dynamically,
ensuring an accurate and up-to-date mapping. The hash table
helps the lookup of associated namespace instances after a
cgroup terminates (detailed in Section IV-E).

Associating virtual resource to cgroup. We next introduce
how the virtual resources in a namespace instance are linked to
their associated cgroup instances. Associating cgroup instances
with namespace instances only enables tracing the namespace
instances connected to an exited cgroup. However, a single
namespace instance could be shared by multiple containers,
each with a dedicated cgroup to record resource usage. It is
still unclear which virtual resources maintained in a traced
namespace are attributed to the exited cgroup. This stems
from the different levels at which cgroups and namespaces
manage resources. Cgroups identify only low-level system
resources (e.g., memory pages) and cannot determine which
specific high-level virtual resource (e.g., IPC semaphores,
virtual network devices) these pages belong to. Therefore, it
is essential to establish a clear association between virtual
resources and cgroups.

Fig. 5 shows the interaction between containers, virtual
resources, and system resources, emphasizing that different
virtual resources correspond to different system resources.
Cgroups inherently tag system resources during their imple-
mentation, allowing for the identification of the container that
owns the memory (mentioned in Section II-C). However, this
tagging mechanism does not extend to determining ownership
of virtual resources (e.g., semaphore), which requires addi-
tional hooks to be integrated into the virtual resource layer.
Thus, we add a member to the structures of all isolated virtual
resources with a cgroup tag that corresponds to the cgroup
instance. Linux provides kernel functions for each kind of
virtual resource to manage its lifecycle, including creation
and traversal. For example, in the case of semaphores, Linux
uses functions such as ksys_semget to create and access
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them. When a semaphore resource is created, we intercept the
ksys_semget function. We then tag the instantiated object
kern_ipc_perm mapping to that semaphore resource, as
shown in Fig. 5, with the identifier of the cgroup associated
with the process that invokes the creation.

E. Residual Resources Retrieval

Upon establishing the linkage between the cgroup and
namespaces, it becomes feasible to implement the reclamation
of virtual resources confined by a cgroup upon its termination.
Given that the accumulation of unconstrained resources can
pose NCD risks, this reclamation process is designed to
retrieve resources left behind by the terminated cgroup and
reestablish appropriate constraints upon them.

Balloon cgroup initialization. For resource retrieval, we
create the balloon cgroup that catches and monitors residual
resources across a set of containers, as any container in this
set exits. This set includes all containers that share at least
one namespace with others in the set, thereby covering all
containers belonging to the same party. Note that one or
more containers sharing the same type of namespace with
the host will also be grouped into one independent set. When
implementing the balloon cgroup, the partitioning of container
sets is integrated into the namespace creation procedure within
the kernel. Moreover, we establish a global hash table to map
the balloon cgroup with its governed container set. The key
in the hash table is the pointer of balloon cgroup, which
maps to a linked list of pointers, representing cgroup instances
assigned to the containers within that set. The balloon cgroup
is instantiated when the residual resources first arise due to
the exit of one cgroup in the set.

Intercepting cgroup exiting. The lifecycle of a cgroup does
not align with the lifecycle of its associated resources. When
a cgroup exits, the resources it monitors are not automat-
ically destroyed. Therefore, it is necessary to handle the
cgroup’s accounting during its exit through a comprehensive
interception. During the cgroup destroy, the kernel function
cgroup_rmdir is invoked to deallocate the cgroup instance.
We hook this function to check whether residual resources
exist when the cgroup is terminated, as depicted in Fig. 6.
If residual resources are detected, they are transferred to the
corresponding balloon cgroup. First of all, as described in Sec-
tion IV-D, we look up all namespaces linked to the departing
cgroup through the hash table cg_ns_map (①), then trace the
virtual resources from these namespaces (②). Subsequently,
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CANs verifies the resource tags to ensure they correspond
with the exiting cgroup instance (③). Upon confirming a
match, these residual resources are relabeled with identifiers
of the balloon cgroup (④). Responsibility for monitoring
and restricting these resources henceforth is transferred to
the balloon cgroup (⑤). The dashed lines here denote the
implementation specific to CANs, while the solid lines indicate
the underlying Linux implementation invoked by CANs.

In addition, according to our design, the accounting of the
residual virtual resources must be migrated from the cgroup
being destroyed to the balloon cgroup. However, the functions
provided by the kernel (such as obj_cgroup_uncharge
and obj_cgroup_charge that are designed to handle the
transferring) can only identify the underlying system resources
consumed by the virtual resources themselves. Therefore to
facilitate this transferring, we first identify which system
resources underpin the virtual resources since we already
associate virtual resources with the cgroup’s system resources.
Then, our defense leverages the cgroup-related functions to
transfer the corresponding system resources to the balloon
cgroup. For instance, after our defense tracks memory pages
or slabs (specifically, a system resource) associated with
the semaphore (i.e., a residual virtual resource), the sub-
sequent transferring process involves two steps: first, the
memory accounting is uncharged from the exiting cgroup
utilizing the function obj_cgroup_uncharge, and then,
it is recharged to the balloon cgroup through the function
obj_cgroup_charge, ensuring that the resource account-
ing is accurately reflected.
Balloon cgroup configuration. The balloon cgroup works
as a safeguard to prevent residual resources from growing
unrestrictedly. The container owner on public platforms can
purchase space for the balloon cgroup to cache residual
resources. A Max Limit can be set on the balloon cgroup by
the system administrator to ensure that the sum of residual
resources across all containers does not exceed this threshold.
This approach not only ensures the security of the system but
also defers the release of resources.

When containers exit, it is expected that all resources
should be freed. Ideally, the balloon cgroup size should be
set to zero. However, to accommodate functionalities such
as the rolling update feature in Kubernetes [34] where we
need to retain residual resources for a period, we allow the
balloon cgroup to manage these resources temporarily. This
ensures that active containers can draw from these resources
as needed, maintaining service continuity during updates.
Therefore, when determining the size of the balloon cgroup,
administrators must consider the practical requirements and
set the size accordingly. The balloon cgroup acts as a buffer,
preserving the residual resources that other containers might
need during a rolling update, while also guaranteeing that the
system’s resources are managed securely.

F. Resource Recycling

Since the residual resources would continue to be used
by the containers, these kinds of residual resources should

be reassigned to those containers and re-monitored by their
cgroups. Additionally, when the space reserved for residual
resources within the balloon cgroup reaches its maximum limit
(e.g., usage reaching the allowed Max Limit), a mechanism
should be implemented to forcibly reclaim a portion of these
resources. The handling strategies for these two steps have
been described as follows.

Reassigning usable resources. When one container exits, the
resources shared between containers in the same namespace
might become residual. Yet, these resources often continue
to serve other containers. In this scenario, responsibility for
monitoring these residual resources will shift from the balloon
cgroup to the cgroup of the container actively using them. We
implement this transition by hooking the kernel functions that
are called upon to interact with the residual resources within
the namespace. For instance, as mentioned in Section IV-D,
the kernel function ksys_semget is designed to access the
semaphores managed by a namespace instance. If a semaphore
is identified as a residual resource, a transfer procedure is
triggered within this function. Each virtual resource is linked
to a specific kernel function, providing a controlled access
point. By enforcing resource transfers at these access points,
we ensure comprehensive coverage of resource management.

The implementation of such resource transferring is the
same procedure as collecting the residual resources into the
balloon cgroup (detailed in Section IV-E). Additionally, an
audit precedes this transfer to verify that the relocation of
resources does not exceed the destination cgroup’s capacity.
If the audit determines that the transfer would violate the
cgroup’s limits, the procedure is halted, and the residual
resources are forcibly released. Subsequent kernel function
calls seeking these resources will return an error.

Freeing expired resources. When the surge of new residual
resources approaches the balloon cgroup’s capacity threshold,
a release of older residual resources is mandated. Upon
reaching full capacity, the balloon cgroup employs a recur-
sive release strategy, continually releasing the oldest residual
resources until there is enough space to accommodate newly
added ones. To facilitate this process, we have added a
timestamp as a new field into the tag of each resource. The
timestamp allows the balloon cgroup to manage its capacity
effectively, ensuring that the oldest residual resources are
prioritized for release.

G. Security Analysis

To understand the security guarantee, we investigate
whether CANs can enforce the following security property:
all virtual resources allocated by the container should be
accounted for and restricted for their whole life cycle.

Mitigating attacks. CANs can perceive all residual resources
by tracking the creation and destruction of all namespace and
cgroup instances in the kernel. A dedicated balloon cgroup is
always assigned to manage such residual resources generated
by the same set of containers, regardless of whether these
containers share namespaces with each other or with the host.
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Fig. 7: Effectiveness evaluation on CANs

The existence of the balloon cgroup eliminates such risks by
imposing additional constraints on each set of containers.

• Mitigating resource depletion. Virtual resources created in
a container are either actively released by the process, or
are destroyed along with the namespaces when the container
exits. In the first case, the resources released before container
termination will be handled by the container’s cgroup, which
cancels their accounting correctly. This ensures that these
resources cannot become residual resources, which will not
incur security issues. In the second scenario, resources may
become residual if the container’s namespaces persist after
the exit of both this container instance and its cgroup. Such
residual resources could potentially lead to security issues.
CANs monitors all namespaces and provides the balloon

cgroup to retrieve the residual resources (detailed in Sec-
tion IV-E) that should be charged and restricted by the exited
cgroups. The balloon cgroup inherits the duties of those de-
stroyed cgroups to control such resources that were previously
restricted. Therefore, CANs can constrain all resources created
by containers until their release, preventing the resource de-
pletion attacks from exhausting the host’s resources.

• Mitigating billing evasion. The virtual resources accessible
to a container can be classified into two types: those created by
this container, and the residual resources maintained within its
shared namespace. Those resources created by the container
are charged and restricted by this container’s cgroup at their
creation, which is ensured by the cgroup architecture. The
billing evasion becomes a risk because residual resources ac-
cessed by a container rather than the creator are not perceived
or restricted by that container’s cgroup.

Billing evasion attack takes an extra step compared to the
resource depletion attack by continuing to use these residual
resources. CANs not only prevent resource depletion attacks
but also defend against billing evasion attacks by implement-
ing resource recycling (see Section IV-F). A check is enforced
to identify residual resources before they are accessed by
a process. This identification is achieved by hooking kernel
functions that manage interactions with residual resources.
Enforcing resource transfers at these access points ensures
comprehensive coverage of residual resource management.
This ensures that even the residual resources are stolen by
the billing evasion attacks they can still be accounted for and
restricted again once being accessed.

No new attack surfaces. At the kernel layer, implementing
CANs does not introduce any new interface to user space. As
the interfaces communicating with the Linux kernel remain
unaltered, no new attack surfaces are introduced that could
compromise the kernel. Moreover, only system administrators
have the capability to use the existing interfaces provided by
cgroupfs [43] to configure the balloon cgroup like a regular
cgroup. Since cgroupfs interfaces are unavailable to containers,
the attacker owning any container set cannot manipulate or dis-
able the balloon cgroups of its own or other sets. Furthermore,
each balloon cgroup built by CANs is dedicated to containers
owned by the same party. It is exclusively used for managing
resources for its designated containers, without interference
from other container sets. This mechanism ensures that resid-
ual resources resulting from an attacker’s operations (such as
container creation, restart, or deletion) within any container
set will not affect the balloon cgroups (e.g., occupying its
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Fig. 8: SPEC 2017 overhead

capacity) belonging to other container sets.

V. EVALUATION

In this section, we evaluate the effectiveness of our pro-
totype, and examine its performance impact on benchmarks,
container tools, and real-world applications. All experiments
were conducted on Ubuntu 22.04, with the Linux kernel
v6.2.7, and the hardware settings include a system with an
8-core 2.30GHz Intel Xeon Gold 6129 CPU and 16 GB RAM.

A. Effectiveness Analysis

We evaluated the effectiveness of CANs against the NCD
attacks that are conducted by repeating the procedures dis-
cussed in Section III-B. During these attacks, we track the
overall resource consumption of the whole system, using either
one or ten sets of containers as the launch points for NCD
attacks. Each container set consists of two container instances
sharing a specific namespace, with resource limits set to 256
MB of memory and 2,048 PIDs. Additionally, the balloon
cgroup limits for each container set are configured as 128
MB of memory and 0 PIDs. Fig. 7 presents the fluctuations in
global resource usage during resource depletion attacks, with
and without CANs. Regardless of the type of namespaces (IPC,
Network, or PID) shared by malicious containers, the results
demonstrate that without CANs, these containers can readily
break out of their allowed resource limits. In contrast, with
CANs enabled, the resource usage of those malicious contain-
ers is consistently restricted within the maximum permitted
limits. By conducting the billing evasion attack, we traced
the cgroupfs [43] and observed that the stolen resources were
correctly re-charged by the cgroup assigned to the attacker’s
container, thus effectively preventing such attacks.

B. Performance Analysis

Performance of benchmarks. We evaluated the performance
impacts of CANs using SPEC 2017 benchmarks [44], [45]
and UnixBench [46], [47]. The overheads on SPEC 2017
and UnixBench are presented in Fig. 8 and Table II. Our
results indicate that CANs introduces only minor overhead
on computing operations in SPEC 2017. Specifically, after
successfully running 43 benchmarks on the kernel with CANs,
the overhead on all of them was observed to be below 2.10%,
with 34 of them having an overhead below 1.00%. The

TABLE II: UnixBench overhead

Benchmarks Mean Max Min
UnixBench 24/24 0.33% 2.14% 0%

overheads on 22 out of 43 benchmarks are almost zero, with an
average overhead across these benchmarks is 0.47%, deemed
negligible. Moreover, the highest overhead on UnixBench
caused by CANs was observed at 2.14%, with overheads on
10 of 24 benchmarks being almost zero. The average overhead
on these benchmarks was 0.33%, being practically negligible.

Performance of container tools. We next evaluated the over-
heads introduced by CANs on the container restart procedures
(including creating and destroying containers) conducted by
different container tools. These overheads primarily arise from
retrieving residual resources made by the restarted container.
To quantify such overheads, we measure the elapsed wall
time of restarting a container that contains various NCD-
exploitable resources with different amounts (discussed in Sec-
tion III-B). More specifically, we utilized docker-ce v24.0.5,
Kubernetes v1.29.3, Podman v4.8.3, and Pouch v1.3.1 to
create two containers that share IPC and network namespaces,
and generated one kind of resources (including semaphore,
shared memory, message queue, and virtual network devices)
within the restarted container for each restart iteration. The
amounts of semaphores, shared memory, and virtual network
devices in each evaluation range with their memory usage
from 128 MB to 1 GB, and the number of message queues
ranges from 8,000 to 32,000. The exploitable resource in the
shared PID namespace is the process, which is not included
in our evaluation, as such processes will not be retrieved but
terminated by CANs, thereby avoiding additional overheads
during container restarts.

Fig. 9 depicts the overheads on Docker, Podman, Pouch,
and Kubernetes to restart a container respectively, and demon-
strates that CANs only introduces tiny performance overheads.
Specifically, Fig. 9a, 9b, 9c, and 9d depict the performance
overheads of restarting a container that contains shared mem-
ory, semaphores, message queues, and virtual network devices
with various amounts. While the overheads increase with the
amounts of exploitable resources getting larger, the maximum
overheads imposed by CANs for all container tools are not over
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Fig. 9: Overheads on container tools

2.36%, caused by retrieving 1 GB of virtual network devices. It
is worth noting that the overheads observed in the experiments
might exceed those encountered in real-world scenarios, where
the amount of residual resources is unlikely to reach 1 GB.
Further, the performance impact of CANs on Docker, Podman,
and Pouch is similar but exceeds the overhead on Kubernetes,
with the latter suffering a maximum overhead of only 1.32%.
This is because the base time Kubernetes requires to restart
containers surpasses that of other tools.

Fig. 10: Overheads on real-world applications

Performance of real-world applications. According to the
architecture of CANs, the overhead is introduced at the
creation phase of benign applications, when the connection
between cgroups and namespaces of all container instances is
established. The strawman solution also introduces overhead
at this phase from creating and assigning an oversight cgroup
as the parent cgroup for containers that share namespaces.
To evaluate and compare their overheads, we sampled 150
top-starred applications from the repositories discussed in
Section III-C. These applications are deployed by Docker,
Podman, Pouch, and Kubernetes using multiple containers that
are configured to share namespaces, either with each other or
with the host, as required. We measured the elapsed wall time
of deploying these applications, both with and without the
mitigation, and evaluated the performance degradation. Note
that the measured duration excludes image pulling, as it is
unaffected by the mitigation and can be time-consuming.

Fig. 10 presents the distributions of the performance degra-
dation caused by both solutions to those real-world applica-
tions. The boxplot bounds represent the 5th and 95th per-
centiles of overheads across all sampled application deploy-
ments, with outliers shown as dots outside the boxes. We
observe that across all container tools, CANs and the strawman
solution show comparable relative overheads. Their average
is highest in Kubernetes, at 3.59% and 3.44% respectively,

with corresponding absolute overheads averaging 42ms and
38ms. With the comparable overheads introduced, note that the
strawman approach does not work in the presence of sharing
namespaces with the host, while CANs does.

VI. RELATED WORK

Container security has been extensively studied, revealing
vulnerabilities and incompleteness in OS-level container tech-
niques. Existing research has primarily focused on two key
areas: cgroup limitations and namespace weaknesses.

A. Resource Accounting in Cgroups

As one of the cornerstones of container technology, cgroup
is a focal point of research. Gao et al. [48] first disclosed that
the cgroups are inadequate to account for and restrict all types
of system resources. This inadequacy allows attackers within
the container to leverage these unmonitored resources, launch-
ing a Denial of Service (DoS) attack on the host machine. Yang
and Shen et al. [49] revealed that the abstract resources in the
kernel, such as kernel variables and data structure instances,
are also not governed by the cgroups and can be exploited
by a container to exhaust the resources of the host. Yang et
al. [37] proposed a detection method specifically designed to
identify the types of kernel resources whose memory usage
is not charged and restricted by cgroups. McDonough and
Gao et al. [50] designed a fuzzing framework to discover the
resources that the cgroups cannot restrict appropriately and
can be exploited at userland by containers. Prior works have
highlighted that cgroups cannot completely account for certain
types of system resources that fall outside their monitoring
scope. However, since NCD risks arise from monitored re-
sources evading cgroup restrictions, their proposed solutions
do not apply to our work.

B. Isolation Deficiencies in Namespaces

Deficiencies of namespaces to guarantee container isolation
are another key research point. Gao et al. [4] reported that
the Proc filesystem within containers does not entirely isolate
from the host and exposes many information leakage channels
for profiling host activities. Lin et al. [3] discovered that
the settings for different Linux security mechanisms are not
isolated among containers and pose challenges for setting
independently. Sun et al. [51] implemented a security names-
pace to virtualize IMA for each container, which can verify
the container’s integrity independently. Li et al. [8] revealed
the inadequate isolation on the filesystem between the host
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and containers, and implemented a kernel-level approach to
enhance the filesystem isolation. Liu et al. [52] proposed
a detection framework to discover resource isolation bugs
resulting from the incomplete implementation of namespaces
or a lack of isolating mechanisms. All these works concentrate
on the weaknesses of individual isolation mechanisms for
container technology, yet overlook the security risks caused
by their interplay.

VII. CONCLUSION

In this paper, we report the first systematic study on
the NCD risks aroused from the collaboration breakdown
of namespace and cgroup during namespace sharing. Our
research discloses the wide impact of NCD risks across
mainstream container tools and various real-world applications
they deploy. Further, we reveal the underlying cause of the
NCD risks and clarify the vast obstacle to eliminating them at
userland. Therefore, we present a kernel-level solution called
CANs to collaborate namespaces and cgroup. Our security
analysis demonstrates that CANs eliminates the NCD risks
effectively. Our approach incurs only a negligible performance
impact on the kernel, container tools, and real-world applica-
tions, while providing excellent compatibility. Our discoveries
and new isolation enhancement have made a step toward better
designing the robust isolation for OS-level virtualization.

APPENDIX A
ETHICAL CONSIDERATIONS

Disclosures. We have reported our findings to Docker, Pod-
man, Pouch, and Kubernetes, who have all confirmed the
existence of the NCD risks we discovered [27] and allowed
us to disclose it with the GitHub issue. Thus, we believe
that publishing our work will not expose people to negative
outcomes, such as harms or rights violations.

Experiments with live systems without informed consent.
We believe that our experiments did not have any negative
impact on the live systems involved in our work. Firstly, the
local environment is enough for us to verify the effectiveness
of the attacks and defense. Thus, we conduct all experiments
with the local simulated environment, which will not impact
any live systems. Secondly, for our measurement, we use the
open APIs provided by GitHub at the allowed rate to collect
data from public repositories. All use of the GitHub APIs in
our work is in full compliance with their Terms of Service.
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