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Abstract—Local Differential Privacy (LDP) protocols enable
the collection of randomized client messages for data analysis,
without the necessity of a trusted data curator. Such protocols
have been successfully deployed in real-world scenarios by major
tech companies like Google, Apple, and Microsoft. In this paper,
we propose a Generalized Count Mean Sketch (GCMS) protocol
that captures many existing frequency estimation protocols. Our
method significantly improves the three-way trade-offs between
communication, privacy, and accuracy. We also introduce a gen-
eral utility analysis framework that enables optimizing parameter
designs. Based on that, we propose an Optimal Count Mean
Sketch (OCMS) framework that minimizes the variance for
collecting items with targeted frequencies. Moreover, we present a
novel protocol for collecting data within unknown domain, as our
frequency estimation protocols only work effectively with known
data domain. Leveraging the stability-based histogram technique
alongside the Encryption-Shuffling-Analysis (ESA) framework,
our approach employs an auxiliary server to construct histograms
without accessing original data messages. This protocol achieves
accuracy akin to the central DP model while offering local-
like privacy guarantees and substantially lowering computational
costs.

I. INTRODUCTION

Differential Privacy (DP) is a mathematical definition of
privacy that provides strong worst-case privacy guarantees
for individuals within a dataset, while enabling data analysis.
While numerous differentially private algorithms have been
created for various analysis tasks, most high-profile real-world
applications focus on the Local Differential Privacy (LDP)
model. The LDP model is particularly attractive because it
does not require trust in a central data curator; instead, it
ensures that data is obfuscated at the source, before being
collected. Some successful deployments in major tech compa-
nies include Google’s RAPPOR [1], [2], a protocol integrated
into Chrome, to collect web browsing behavior; Apple [3]
collecting type history and emojis; and Microsoft [4] collecting
telemetry across millions of devices.

Frequency estimation, where the goal is to estimate the
occurrence of items within a dataset, is a common task in
data analytics that has seen various implementations under the
LDP model. The process for achieving this usually has several
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steps: clients first encode their responses (inputs) into a des-
ignated format, then perturb these encoded values to generate
outputs. These outputs are sent to an aggregator, who collects
and decodes the values to estimate the number of clients
associated with each specific input. One notable framework
is the “pure” Local Differential Privacy (LDP) framework [5]],
which includes many existing protocols (e.g., Basic RAPPOR)
as special cases. This enables us to precisely analyze and
compare the accuracy of different protocols and also offers
optimal parameters in the randomization step. However, their
framework has limitations in scenarios requiring extensive data
collection, particularly within large domains. Some protocols
have incorporated with hash functions to encode data into a
more manageable domain size. The hash functions, on one
hand, reduce communication cost and enable encoding data
from unknown or unlimited domains; on the other hand, they
introduce collisions during encoding, where multiple items are
mapped to the same hash value. These collisions make the
raw data values hard to distinguish, leading to reduced utility
in terms of the accuracy of aggregation. To counter the utility
reduction caused by collisions, RAPPOR adopts client cohorts
and extra LASSO clustering in aggregation [6]. However, it is
not straightforward to derive an error bound for utility. Compa-
rably, Apple’s Count Mean Sketch (CMS) is more favorable, as
it utilizes a statistical data structure to average out other values
in the collision and features a closed-form variance expression
for the aggregation. However, Apple’s CMS has deterministic
perturbation/aggregation parameters which are not optimized
to balance the accuracy and communication tradeoff. In this
paper, we propose a Generalized Count-Mean-Sketch (GCMS)
protocol that builds upon and extends the foundational ideas
of Apple’s CMS.

Our proposed mechanism aims to improve the existing
framework by accounting for both the randomness inherent
in truthful responses and the complications arising from hash
collisions. By doing so, we enhance the accuracy of frequency
estimation under the LDP model. One of the key advantages
of our GCMS protocol is its ability to achieve a significantly
smaller communication cost in terms of plaintext length while
maintaining the same level of privacy protection as the orig-
inal CMS. Furthermore, we provide a utility guarantee for
our general CMS protocol, enabling the optimal design of
parameters tailored to specific item frequency regimes. This
ensures that our protocol is not only more efficient in terms
of communication cost but also adaptable to various data



collection scenarios to further boost the estimation accuracy.

To further amplify privacy, we present our protocol within
the Encryption-Shuffling-Analysis (ESA) framework. Each
client’s encoded and randomized output is encrypted, and
these encrypted outputs are then shuffled by a trusted shuffier,
which involves randomly permuting the data to break the direct
link between clients and their responses. This randomness
in permutation significantly amplifies privacy by making it
even harder to trace any response back to an individual client,
1 — e €0 e<0(1/9)

n
DP. The server then aggregates the shuffled and encrypted data
and performs the analysis.

Note that these frequency estimation protocols only work
effectively when the data domain is known. There are many
scenarios where the server does not have full knowledge of
the clients’ input dictionary. For example, in word typing,
new words are constantly being invented alongside the existing
dictionary. Another example is URL collection: whenever new
content is uploaded, a new URL is generated. Existing fre-
quency estimation protocols for unknown domains primarily
operate under the pure LDP model, but this comes at a cost.
Fanti et al. [2] use RAPPOR to segment and reconstruct inputs
via the EM algorithm, but the approach is computationally
expensive. The private sequence fragment puzzle method [3],
based on CMS, also segments and reconstructs data but
struggles with trade-offs between fragment size and privacy
leakage. PrivateTrie [7] constructs a trie structure for iterative
data collection, but its communication overhead scales still
quadratically with data length. These protocols all aim to
ensure strong local privacy guarantees in the standard client-
server setting but suffer from limited scalability or utility,
which hinders their practical deployment.

To address these limitations, we introduce a protocol de-
signed for unknown-domain data collection that offers a dis-
tinct trade-off. While our method improves performance and
achieves accuracy comparable to central DP, it relies on a
semi-trusted architecture. Specifically, we use the stability-
based histogram technique [8]], originally proposed in the
central DP model, and implement it via the ESA framework to
preserve privacy. An auxiliary server receives only encrypted
and hashed messages, preventing it from tracing raw inputs.
Messages are additionally encrypted with the auxiliary server’s
public key before passing through the shuffler. Our protocol
avoids input segmentation and reconstruction, offering an
efficient alternative to existing solutions.

However, unlike pure LDP protocols, our approach provides
a quasi-local differential privacy guarantee, and it improves
utility but requires stronger trust assumptions. Therefore, we
recommend that practitioners select the protocol that best fits
their deployment setting, as each method presents a unique
trade-off between trust, privacy, and utility.

In summary, our paper makes the following contributions:

1. We propose a unified framework for LDP frequency
estimation. By instantiating the corresponding parameters, our
framework can be used to analyze many protocols that falls
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in the“pure” Local Differential Privacy framework, as well
as Apple’s CMS. Moreover, our design allows the length of
the privatized message to be a tunable parameter, which of-
fers flexibility for different communication considerations. By
choosing the appropriate parameter, this approach significantly
reduces communication costs while maintaining the same level
of privacy protection.

2. We provide a general utility guarantee of our framework,
beyond which, we propose a parameter optimization algo-
rithm, tailored to specific item frequency regimes. In addition,
we present a correction to the variance expression in Apple’s
original paper [3]. Our results also suggest that most of the
LDP frequency estimation protocols, such as Apple’s CMS,
choose suboptimal parameters for the randomization step when
there is a target frequency regime.

3. We propose a protocol for collecting data from an
unknown domain that trades stronger trust assumptions for
improved accuracy and lower computational overhead. By
combining the stability-based histogram technique with the
Encryption-Shuffling-Analysis (ESA) framework, and incor-
porating an auxiliary server that constructs the histogram
without access to raw data, our protocol achieves accuracy
comparable to the central DP model, while providing quasi-
local privacy guarantees. It avoids the segmentation and re-
construction steps required by existing LDP methods, offering
a more efficient and practical solution.

4. We visualize our theoretical analysis and conduct exten-
sive experiments with real data. Our results suggest that: 1.
GCMS constantly provides better utility than CMS under the
same communication cost and under the same privacy leakage.
2. With optimized mechanism parameters, our OCMS achieves
lower variance for specific target frequencies, enabling clients
to obtain more precise results for query items within certain
frequency ranges.

II. PRELIMINARIES

In this section, we introduce several techniques relevant to
this paper.

A. Privacy Models

Differential privacy [9] is a mathematical guarantee about
database privacy.

Definition 1 ((¢,d)-DP [9]). A randomized algorithm M :
X — R is (¢ 0)-differentially private if for every pair of
neighboring datasets X, X' € X, and for every event S C R,

Pr(M(X) e S) <e-Pr(M(X') € S) + 4. (1)
When § = 0, we say it is e-DP (or pure DP).

In central DP model, there is a trusted server collecting raw
data from clients and applies a randomized algorithm to the
aggregated dataset to produce differentially private outputs. We
define the neighboring datasets as the datasets that arbitrarily
differ in the values at most one entry. Thus, guarantees
that the presence or absence of an individual’s data in a dataset



does not significantly affect the outcome of queries, controlled
by the privacy parameters € and §.

Local Differential Privacy (LDP) [10] removes the need
for a trusted servers by ensuring that the privacy of each
individual’s data is protected before it is collected by the
server. In LDP, each client applies a randomized algorithm
to their own data locally, and only the perturbed data is sent
to the server. Here, we define the neighboring datasets as any
pair of values from the input support, and (I)) guarantees that
any input values are indistinguishable.

Shuffle Differential Privacy (Shuffle DP) [11] is an interme-
diate model between Central DP and LDP that enhances the
privacy guarantees of LDP by adding a shuffling step. In this
model, each client first perturbs their data locally (as in LDP)
and then submits it to a shuffler, which randomly permutes
the data before sending it to the server. Feldman et al. [12]]
have shown that the random permutation has a strong privacy
amplification effect.

Theorem 1 (Privacy amplification by shuffling [12]]). For local
randomizer with

e<log|— " —1
=% 8log(2/9) ’
for any § € [0,1], shuffling can achieve (€., 0)-DP with

ec§10g<1+(ee—1) (W-&-i))’ (2)

where n denotes the number of data items.

The Encryption-Shuffling-Analysis (ESA) framework builds
on the principles of Shuffle DP to further enhance security:
clients encrypt their output with the server’s public key.
Therefore, only the server can decrypt and obtain the plaintext.
This model has been widely adopted by Apple[3], Google[6],
and Microsoft[4].

B. Pure LDP Protocol

The LDP mechanisms designed specifically for frequency
estimation are called Frequency Oracles. Oracles vary in their
construction, accuracy guarantees, and the size of the domain
for which they are best suited. In terms of the design of
the frequency oracle, the concept of a “pure” protocol is
introduced in [13]. A pure protocol requires the probability
that any value d; is mapped to its own support set to be the
same for all values. We use p to denote this probability. It also
requires a value dy # d; to be mapped to d;’s support set with
probability ¢g. This must be the same for all pairs of dj,ds.
The pure protocol has the following two major advantages:

o The pure protocol simplifies the privacy analysis for LDP.
A pure protocol satisfies e-LDP as long as

p/q < e.

o The pure protocol provides a closed-form estimator for
frequency estimation. Let v; be the privatized data sub-

mitted by client i. The unbiased estimator for number of
times that d occurs is

f(d) = Yoty Ldesupport(v)) — ng.
»—a)?
The corresponding variance is
f(d)p(X —p) + (n = f(d)g(1 —q)
(p—q)?
ITI. RELATED WORKS

Var[f(d)] =

In this section, we present related works to this paper, in-
cluding LDP mechanisms and real-world implementations for
frequency estimation, as well as works that provide functions
for data collection with unknown domain.

A. LDP Mechanisms for Frequency Estimation

Many existing protocols can be viewed as special cases
of a pure protocol. Let us start with direct perturbation for
a basic binary model. Binary Randomized Response (BRR),
where p = eeﬁ and ¢ = ﬁ is proven to be optimal
[14] for binary data collection. General Randomized Response
(GRR), also known as Direct Encoding (DE) [13]], where
p= ﬁ and ¢ = ﬁ, can handle high-dimensional
data for d > 2, but its utility decreases significantly for large
d.

Unary encoding (UE) reduces the sensitivity of high-
dimensional data by converting a value d € D into a binary
vector of size |D|, where only the d-th bit is 1, and the
rest are 0s. Symmetric Unary Encoding (SUE) [13] perturbs
each bit of the unary encoded vector independently using €/2
BRR, ensuring a symmetric property p + ¢ = 1. However,
this symmetry does not minimize variance. Optimized Unary
Encoding (OUE) [13] improves upon SUE by minimizing
variance, specially under small € and low frequencies. While
UE-based methods enhance utility for direct encoding, they
require each client to send at least |D| data to the server,
increasing communication overhead.

To reduce communication cost, transformation-based ap-
proaches, such as Hadamard Randomized Response (HRR) [3]
and S-Hist [[15], compress high-dimensional data into a smaller
domain. Subset Selection (SS) [[16] reduces communication by
randomly selecting s items from the domain D. Among these,
the hashing-based methods are most widely studied. Hash
encoding maps high-dimensional data to a smaller domain
[13], then uses either direct perturbation or unary encoding
to release the hashed data.

Real-world LDP implementations, such as Google’s RAP-
POR [6], O-RAPPOR [17], and Apple’s Count Mean Sketch
[3]], usually combine hash-based methods with UE. That is,
the data is first hashed to a smaller domain, then released
with UE. RAPPOR uses cohorts and LASSO regression to
reduce information loss from hash collisions, while Apple’s
Count Mean Sketch uses a probabilistic data structure to
average aggregated hashed items. With a large number of hash
functions, the summation of the counts for the specific hashed
values obtained by different hash functions converges to the



true count plus a calculable bias. However, the parameters used
in this protocl are suboptimal, both in terms of accuracy and
communication cost, as we will show later in this paper.

There are a line of work focusing on improving the three
way tradeoff between accuracy, efficiency, and privacy of
the LDP-based frequency estimation frameworks. Projective
Geometry Response[18]] uses geometric transformations for ef-
ficient, accurate estimations, while Adaptive Online Bayesian
Estimation[19] applies Bayesian updates to adjust estimations
in real-time, though both can be computationally complex.
Wiener Filter-Based Deconvolution [20] enhances noise re-
duction using filter-based techniques, at the cost of higher
computational overhead. Notably, PK-RAPPOR [21]] incorpo-
rates prior knowledge of item frequency rankings, improving
accuracy specifically for frequently occurring items. However,
obtaining accurate item frequency rankings is challenging in
practice, and these rankings can change over time. Nonethe-
less, the concept of leveraging prior information for improved
mechanism design remains a valid and valuable approach,
which also motivates our design.

There has been a growing body of work aimed at enhancing
pure LDP protocols for specific data types and tasks. For
example, Zheng et al. [22] introduce Joint Randomized Re-
sponse, which leverages user group correlations to improve
utility under LDP. Feng and Zhang [23]] propose a multi-level
personalized local differential privacy method, which allocates
privacy budget for different attributes for different sensitivities;
Vijayachandran [24] explores LDP mechanisms tailored for
key-value pair data; Zhang et al. [25] design sketches-based
techniques for join size estimation under LDP. These works
complement our paper in that they focus on improving LDP
utility for specialized tasks or specific data structures, while
our work targets general-purpose frequency estimation.

We acknowledge a concurrent and independent work by
Pan [26l], which, like ours, revisits the Count-Mean Sketch
(CMS) protocol. While both papers correct the bias in Apple’s
CMS, Pan focuses on optimizing parameter selection (e.g.,
hash width and depth) within the standard CMS framework to
minimize worst-case MSE. In contrast, our work generalizes
the CMS protocol to improve utility across a broader fre-
quency regime and, importantly, propose a protocol to support
unknown-domain data collection.

B. Data Collection with Unknown Domain

Most of the existing works on LDP for frequency estimation
requires that the server knows the data domain D. However,
there are cases where the server does not fully know the input
dictionary, especially for lengthy strings like URLs or full
names. Few works address data collection with an unknown
domain. Fanti et al. [2] propose an algorithm for RAPPOR that
splits a message into disjoint segments, releases each segment
with RAPPOR, and reconstructs the message using expectation
maximization (EM). This process is highly costly due to the
exhaustive search needed for EM. A private sequence fragment
puzzle method based on CMS [3]] also uses a segmentation-
release-reconstruct approach. This method faces similar issues:

small fragment sizes lead to numerous fragments and high
reconstruction costs, while large fragment sizes increase pri-
vacy leakage. PrivateTrie [[7]] constructs a trie data structure to
store string values iteratively from each client, reducing the
reconstruction from a graph to a tree. However, it comes with
quadratic communication cost relative to the data length.

IV. GENERALIZED COUNT MEAN SKETCH

We first study the problem of privacy-preserving frequency
estimation of clients’ private data. We consider a set of n
clients, each possessing private data d; € D, where i denotes
the client index. Each client aims to collaborate with a server
to receive some service but does not fully trust the server and
will only contribute their data if it is properly privatized and
secured. To achieve this, each client submits a privatized and
secured version v; of d; to the server. The server, requires the
following functionalities:

« Upon receiving the set {v;}7,, the server aims to esti-
mate the number of clients who possess a specific data
d, denoted as f(d).

o The server may have complete, partial, or no knowledge
of the domain D. Therefore, the server requires some of
the popular data strings collected to keep itself up-to-
dated.

Utility Definition: When performing frequency estimation,
the servers hopes that the estimator f(d)({v;}/—;) has a small
mean square error (MSE) with respect to the true frequency
f(d):

B[(f(d) - f(d))?].

Local mechanisms feature lightweight designs, and com-
munication cost and computation cost should be considered as
part of the system requirements. We define the communication
cost as the number of bits needed to transmit the plaintext
message of each client. We note that the actual bits transmitted
end-to-end can increase after encryption. However, the length
of the plaintext is a more accurate representation of the
communication cost across various encryption protocols. Each
client’s input should not burden the server during aggregation.
To this end, the framework should feature low computation
cost, which is defined as the computation time at the server
per client’s message.

Given these considerations, we propose the Generalized
Count Mean Sketch (GCMS) protocol. The term “generalized”
refers to the increased flexibility in designing parameters such
as p and ¢, compared to Apple’s CMS. Building on this,
we propose our optimal Count Mean Sketch (OCMS) that
optimizes p and ¢ for specific frequency regimes. We present
our protocol within the ESA framework.

A. General Count Mean Sketch (GCMS) Framework

Preparation: Before data collection, the server generates k
independent hash functions H 2 {h1, ha, ..., hi}, where each
hash function deterministically maps any input to a discrete
number in [m] = [1,...,m], with m being the hashing range,



Algorithm 1 On-device LDP Algorithm

Algorithm 3 Frequency Estimation

Input: H: the hash universe; [m]: extension domain; d:
raw message; s: message size; p: inclusion probability; pk:
server’s public key.

Output: Encrypted privatized message v.

Randomly select hj; ~ H;
Calculate the hashed value r = h;[d];
Initiate output vector x as an empty set;
Add r to x with probability of p;
if r is added to x then

Randomly select s — 1 elements from [m]/7;
else

Randomly select s elements from [m]/r;
end if
Add selected elements to x;
Encrypt with Server’s public key

v = Epk[xaj]v

return v

Algorithm 2 Constructing Sketch Matrix
Input: m: domain of hash function, k: size of the hash
universe, (X;, ;)" ;: decrypted clients’ messages.
Output: Sketch matrix M.
Initialized M = [0][™ ]
for Each pair of (x, j) do
for Each value = € x do
Mla] & Myla] + 1
end for
end for
return M

‘H being the universe of hash functions. The server then sends
‘H and its public key pk to each client.

The entire data collection pipeline is illustrated in Figure 1.
It consists of three distinct phases, each operating on different
platforms:

1) The initial phase involves all on-device algorithms,
including hash encoding and privatization, and encryp-
tion with the server’s public key pk, as described in
Algorithm 1.

2) The encrypted privatized data is then transmitted through
an end-to-end encrypted channel and received by the
shuffler. The shuffler then forwards the data to the server
after a random shuffling operation.

3) Finally, the server decrypts the input data, performs data
aggregation, and obtains the Frequency Lookup Table -
a sketch matrix M, via Algorithm 2.

We now detail operations in each phase.

Phase 1: On-device operations. We present the process
for a single data privatization and encryption in Algorithm 1,
which consists of the following steps.

Hash Encoding: Each client first uniformly selects a hash
function from {hq, ha, ..., hi} and calculates a hashed value

Input: d: item to check frequency, p: inclusion proba-
bility, s: message size, m: domain of hash function, #: hash
universe, M: aggregated sketch matrix.

Output: Estimated frequency f(d).

Calculate g according to:

_ps—1)+ (1 —-p)s
q= )
m—1
Initialized count C(d) = 0;
for j €[1,2,...,k] do
C(d) = C(d) + M;[h;[d]];
end for
Get f(d) according to:
. C(d)— 22 —gn(1-1)

f(d): (p_mq)( _%)m;

return f(d)

r = h;(d) of their raw data d. By construction, r is an integer
within [1,m].

Probabilistic Inclusion: Each client initializes their priva-
tized vector x as an empty set, then adds 7 to x with probability
p € [0.5,1].

Probabilistic Extension: Set the extension domain for each
client as [m]/r = {1,2,...,r—1,7+1,...,m}. If r is added
to x, then uniformly select s — 1 elements from [m]/r and
append them to x. If 7 is not added to x, then uniformly select
s elements from [m]/r and append them to x. Return the
privatized vector along with the selected hash index (x, j).

Encryption and Release: Each client encrypts (x, j) with the
server’s public key pk to obtain v = E,;[X, j], then releases
v to the shuffler.

Compared to the original CMS, our GCMS uses a novel
method to constructing the privatized message (steps (b)&(c)):
the length of our privatized message is s, with s < m/2,
whereas in Apple’s CMS, each client’s input is a binary vector
of size m. Our construction ensures that the probability of
adding r is p, and the probability of adding all other hash
values [m]/r is g, where

g=-——F 3)

m—1

This achieves the same randomness as in perturbing a binary
vector, while significantly reduces the communication cost in
terms of plain text length.

Phase 2: Shuffler’s anonymization and shuffling. This
phase, which is standard, involves Anonymization and Shuf-
fling after receiving each client’s input. The shuffler re-
moves all id traceable information from the received message,
e.g., the communication header. It then randomly shuffles
the anonymized messages in batches and then releases the
data to the server. The shuffled sequence is denoted as
7 (v1,v2,...,0,), where 7 is a random permutation function.
Additionally, the shuffler may block clients who have already
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Fig. 1. Illustration of the optimal Count Mean Sketch with the ESA framework.

sent | messages to limit their contributions. This helps filter
out heavy clients or counter data poisoning attacks, effectively
limiting sensitivity for client-level DP analysis.

Phase 3: Server’s frequency estimation.

The server first decrypts messages with the secret key and
obtains:

T (<X17j1>7 <X2aj2>7 SR <Xn7.jn>) .

Then, the server-side algorithm constructs a sketch matrix, in
which the rows are indexed by hash functions, and each row
j is the sum of the privatized vector of clients who selected
the hash function h;. We present this step in Algorithm E}
To estimate the frequency of a message d, the server
calculates the all hashed value of d: {h;[d]}%_,, and then
aggregates the total count from the sketch matrix M:

O(d) =

An unbiased estimator for estimating the numbers of d occur-
ring is

. C)

R et e

m m , 4
P—9 -1 @

where ¢ is given in (3).

In contrast to a fixed probabilities p, ¢ in Apple’s CMS, our
GCMS allows for flexibility in designing p and s, thus enables
optimal design tailored to specific item frequency regimes. We
will discuss this in detail in Section [V-Cl

Remark 1. The communication cost, measured by the size of
plaintext, is O(slogm): there are s values to transfer, and
each value requires logm bits. Comparably, We note that
the communication cost for Apple’s CMS is O(m) for each
client. The computation cost at the server for aggregation is
O(ns) for our GCMS, implying that the matrix M needs to be
updated for n times, each contains s operations. In contrast,
Apple’s CMS requires a computation cost of O(nm), as each
bit contained in the message needs to be de-biased and then
aggregated.

B. Theoretical Analysis of GCMS

In this section, we provide theoretical analysis of the privacy
and utility of our GCMS. We first provide the LDP guarantee
for each client’s privatized vector.

Theorem 2 (Privacy of GCMS). The privatized vector X in
GCMS is e-locally differentially private, with

Since the hashing domain m is a constant, the privacy loss
e mainly depends on two parameters: p and s. For a large p
and small s, the mechanism tends to release only the true hash
value, resulting in a weak guarantee. Conversely, when p is
small (close to 0.5) and s is large (close to m/2), the inclusion
of the true hash value alongside other potential values becomes
random, approximating a probability of 0.5. This randomness
ensures that the true hash value cannot be distinguished, thus
achieving a strong privacy guarantee.

We note that shuffling process can further amplify the above
LDP guarantee by Theorem [I]

Next, we show the unbiased property of our estimator and
give a general formulation for the MSE (variance) of the
estimator in the following theorem.

Theorem 3 (Utility of GCMS). The estimator given in is
an unbiased estimator of f(d):

€< (&)

E[f(d)] = f(d).
The variance of this estimator is
2N Var[C(d))
W= G = e — 1 mp
where
varic (@] = 1(@) (5 )
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Fig. 2. Choices of p in OUE-LDP, Apple’s CMS, and our OCMS. Optimal
p depends on the ratio of n/f(d) and k, and is independent of m.

Our variance formulation is general, and captures the origi-
nal CMS and pure LDP protocols as special cases. The original
CMS is with parameters p = 85}722“ q = eeTlﬂ and &k
hash functions with a hashing domain of [m)]. By instantiating
these parameters within our framework, we can get the same
utility guarantee as Theorem 4.2 in [3]], with a correction to an
error in the variance calculation on page 21. For a pure LDP
protocol, setting k¥ = 1 and m = oo within our framework
yields the same utility guarantee as in [S].

Corollary 1 (Theorem 2 in [5]). The variance of the pure
LDP protocol is
Varl(d)] = ngl-q)  fdA-p-q)
(p—q)? P—q
Among all unbiased estimators, the one with the least
variance is desired. Our general formulation characterizes the
dependence of the variance with all the parameters of the
protocols, thus provides guidance to optimize the designed
protocol.

(6)

C. Optimal CMS (OCMS) for Targeted Frequency Estimation

In Wang et al. [5]], Optimal Unary Encoding (OUE) was
proposed to optimize the overall variance. However, OUE only

considers optimizing the variance term with respect to n, based
on the argument that most values appear infrequently and that
low estimation variances for these infrequent values help avoid
false positives when identifying more frequent ones. However,
when analysts have a specific target frequency regime they
aim to track, especially when f(d) is at the same order as n,
optimizing the entire variance including the term with respect
to f(d) can achieve more accurate estimation of these specific
frequencies.

In many applications, there can be some specific frequency
region that is of particular interest. For example, for online
shopping, the data engineers might be interested in the fre-
quency of the most popular items, to find the top-k heavy
hitter, and use them for recommendation. For emoji dashboard
editing, the least popular emojis are of more interest, as
to be substituted in the next version. Another example is
the popularity tracking of a news or video link, where the
frequency could vary from time to time.

From the formulation of the utility of the algorithm, a
natural question is, can we optimize the algorithm parameters
p and q, to achieve the minimized variance, while making the
algorithm achieve e-LDP. We note that the total client number
n is usually known as a priori; The variance monotonically
decreases with the message size m and the number of hash
functions k. On the other hand, large m increases the com-
munication cost and server storage. Large k also enlarges the
server storage and the complexity of hash function design.
Therefore, the selection of m, k£ should be the maximum that
allowed by the specific implementation requirement.

We also note that when € is given, ¢ can be expressed as a
function of p and m: From (3) and ().

m—e‘+ep—p
(m—l)(%—ef—i—l)

Therefore, when n, m, k e are considered as constant
variables. The variance can be expressed as a function that
determined by f(d) and p. Then for any f(d), the optimal
mechanism parameter p can be derived from the optimization
problem in the following lemma:

>

)

Lemma 1. For the Optimal CMS mechanism, for a given e,
and for a targeted frequency f(d), the optimal perturbation
parameter p can be derived from the following optimization
problem:

—ar min{kw—p—l—)\(w—1)(kw—p—wp)}
poas k(1 —p)*p ’

where
w2 e(1 —p)+p, and X\ = f(d)/n.

Remark 2. Under a given privacy budget €, the optimal
selection of p depends on the ratio of f(d)/n and k, and
does not depend on m.

Remark 3. The optimal parameters p, q derived from Algo-
rithm [] and Eq. can be adapted to enhance the “pure”
protocols in [5], by setting k =1 and m = oc.



Algorithm 4 Optimal CMS parameters

Input: e: privacy parameter, \: ratio of f(d)/n, k: size
of the hash universe.
Output: Optimal perturbation parameter p, s.

Create function f(p) that returns:
kw —p+ Mw —1)(kw —p — wp)
k(1—p)?p ’
Initialize p; = 0.5 and p, = 1;
while p; < p,. do
po = pi + BB
p1 = pr — PP
if f(po) < f(p1) then
Pr = P15
else
bt = Do
end if
end while
P (i +pr)/2, s« (WL
return p, s

In Algorithm 4] we present an efficient algorithm to derive
the optimal p under the set of parameters of {\, ¢, k}.

It is important to note that s is an integer, and the optimal
s derived by Algorithm [4] involves a ceiling operation, which
may result in a slightly smaller e than the targeted one, yielding
a stronger privacy guarantee.

We note that under the CMS or similar structure, such as
unary encoding, RAPPOR, etc. the total privacy budget € is
allocated to p and ¢, and the proportion is approximately the
following:

ecr 1
el and q ~ 1

The operational meaning of p is the probability of including
the true item in the output, and ¢ represents the probability
to include a false item to provide confusion in the result.
Therefore, a mechanism with a large probability of p and a
small probability of ¢ leads to accurate output and enhanced
utility. The extent of the increase in p and the decrease in ¢
is restricted by the privacy budget e.

In terms of the allocation of the total budget, different
mechanisms have different merits. In general, there are two
different allocation principles. 1. Evenly divide € to €/2 for p
and ¢/2 for ¢. Therefore: p = ef/z/il, q= ee/iﬂ. Google’s
RAPPOR and Apple’s CMS, etc., fall into this category. 2.
grant all € to ¢, and ¢, = 0 to p, therefore, p = 1/2,
q= ﬁ The intuition behind this selection is that the true
item is only included once with p, and all other items all have
the probability of ¢ being included. Therefore, with a limited
budget, the mechanism should prioritize minimizing ¢g. The
Optimal Unary Encoding (OUE) falls into this category.

However, we argue that none of these solutions is optimal
for any targeted frequency under the general CMS framework.
In Fig. |2} we show two different cases regarding the values of

pN

m and k, for each case, we plot normalized variances derived
in Theorem 3 with three different values of \. Specifically,
A=1/2, A =1/10, A = 1/50, corresponding to three levels
of popularity for items. Then we fix ¢ = 5 and vary the value
of p from 0.5 to 1 and showcase the corresponding variance.
We highlight the optimal value of p corresponding to each
case, along with the selection of p in CMS alike mechanisms
and OUE alike mechanisms.

V. PRIVACY-PRESERVING DATA COLLECTION WITH
UNKNOWN DOMAIN

In the previous section, we introduced the GCMS algorithm
for known item frequency estimation. However, this algorithm
only functions effectively when the server knows the name of
the item being queried.

When collecting unknown data strings, the server wants to
recover and reconstruct as many data strings as possible as
long as the privacy guarantee is not violated. Collecting data
with an unknown domain in an LDP manner is intrinsically
challenging due to:

o Encoding algorithms for preprocessing (e.g., UE or hash-
ing) require agreement on D between the server and the
clients.

o Segmenting the message increases the privacy loss to ke,
where k denotes the number of pieces.

o Reconstructing the original input from segments incurs
high computational costs, growing exponentially with the
number of segments.

Our unknown-domain collection protocol introduces a dis-
tinct trade-off compared to existing methods. Prior approaches
achieve local differential privacy with the standard client-
server model but suffer from limited performance, which
makes them impractical for real-world applications. In con-
trast, our protocol provides better performance; however, it
relies upon stronger assumptions, which require a semi-trusted
authority, and only ensures a quasi-local differential privacy
guarantee. Consequently, we advise the users to choose the
protocol most suitable for their specific use-case requirements,
as no single protocol uniformly outperforms the others.

The key to avoid segmenting the original messages and the
computational cost for the reconstruction is by encryption.
Therefore, we take a different approach by using central DP
techniques and leveraging cryptographic tools and the ESA
framework to achieve local-like privacy guarantees.

A. The Protocol

Our protocol uses the stability-based histogram technique
[8]] for collecting new data. To safeguard against direct data
collection and tracing by the server, we integrate the ESA
framework. Beyond the ESA framework, we introduce an
auxiliary server to construct the histogram, akin to a central
curator under the central DP model, but with a crucial distinc-
tion: it does not access the original data messages. Instead,
the auxiliary server only receives an encrypted version of
the original message d by the server’s public key, Ep1[d],
along with its hashed value H|[d]. This ensures the auxiliary



On Device

= N
e

x By |EpaldilIHI|
1

d
Eya [Eyalaal1a1]
_—V

O\
Aux. Server

.
\; B [Euld. 1G] y
d,

Fig. 3. Illustration of the framework of privacy-preserving data collection with unknown domain.

server gains no knowledge of the original messages but the
hash, which is irreversible. To avoid common attacks against
hash functions such as the brute-force attack, we replace the
conventional hash with a keyed-hash function. For notational
convenience, this keyed variant is denoted by H|[d] as well
throughout the remainder of the paper. To construct the his-
togram the auxiliary server can count the number of message d
occurring by counting the hashed value H|[d], and each bin is
represented by a sampled E,1[d] (two encrypted d with the
same pk1l can different), which can only be decrypted by the
server. To add additional layer of security protection, messages
passing through the shuffler between the auxiliary server and
clients are further encrypted using the auxiliary server’s public
key: Epr2[Epri[d]||H][d]]. The overall framework contains
four phases and is shown in Fig. 3] We next detail every step
below.

Before the data collection, the server and the aux. server
send their public keys, pkl and pk2 to each client. The server
and the aux. server agree on a set of privacy parameters (e, d)
for the DP guarantee of the release.

Algorithm 5 On-device algorithm for unknown data string
collection
Input: H: unique hash function, pk1: server’s public key,
pk2: aux. server’s public key, d: raw data.
Output: Encrypted message v
Calculate the hashed value H|[d];
Encrypt d with pkl < Ep1[d];
Encrypt H[d] and E,i1[d] with pk2:

v = Eppa|Epra [d]|| H[d]];

return v

Phase 1: On-device processing. In this phase, each client
secures his data through the following process.

Data encryption with Server’s public key: The private data
is encrypted with the server’s public key, the cyphertext is
denoted as Epi1[d].

Data hashing: The private data is then hashed by an hash
function, denoted as H (unique across clients). The hash
function is identical for all clients. The hashed result is denoted
as H|[d].

Algorithm 6 Aux. Server’s DP protection

Input: 7{vy,..,v,}: shuffled encrypted messages, T":
Threshold for DP, b: scale of Laplacian noise.
Output: Encrypted message set.

Initiate hash map F', release set S;
Decrypt each message in w{vy, ..,v,} and obtain:
At = { By [ || H{dh ] s By (4[| H[d]):
for E,i1[d], H[d] in Arr do
if H[d] in F then
F[H[d]).append(Ep1[d)]);
else
F[HId]] = [Epr1[d]];
end if
end for
for key in F' do
if len(F'[key]) + Lap(b) > T then
Randomly select E,x1[d] from Flkey];
Add Ep1[d] to S;
end if
end for
return S

Encryption with the aux. server’s public key The encrypted
data and the hashed result are then encrypted with the aux.
Server’s public key. The encrypted message is denoted as
v = Eppa[Epr1[d]||H[d]] The on-device process is described
in Algorithm [5] Then the encrypted message is passed on to
the shuffler through an end to end encrypted channel.

Phase 2: Shuffler’s anonymization and shuffling This phase
is standard, and identical to the process described in Phase 2
of GCMS, we omit the details for simplicity.

Phase 3: Aux. server’s DP protection In this phase, the aux.
server provides DP protection for releasing the item names.
This is achieved via the following process, and is detailed in
Algorithm [6]

Decrypt message: The first step is to decrypt the messages
received from the shuffler with the secret key. Then the aux.
server observes {Ep1[di]||H[d1], ..., Epk1[dn]|| H[dn]}-

Hash frequency calculation: Since each client uses the same
hash function, the hashed results from different clients with
identical item must be identical. The aux. server calculates the



frequency of each hashed result and attaches the corresponding
encrypted data to it.

Add DP noise: The aux. server adds Laplacian noise with
scale b to frequency of each hashed result. For those hashed re-
sults with noisy frequency larger than a threshold 7', randomly
sample from its corresponding encrypted data and release to
the server.

Phase 4: Server decrypts messages Finally, the server de-
crypts messages received from the aux. server and obtains the
plaintext that contains the item names.

B. Privacy Analysis

The privacy is immediate from the stability-based histogram
[8]. The relationship between the privacy parameters, the
threshold 7" and the scale of the Laplacian mechanism is
presented in the following Theorem.

Theorem 4 (Privacy of Algorithm [6). The released encrypted
item set S is (e, d)-differentially private with

1
E:max{ (1"‘26(,1.,1)/1)_1)},

0= %exp(e(l -1)). )

The steps for proving Theorem 4 follow directly from [8].

1
70 IOg (8)

b
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VI. SECURITY ANALYSIS

When each party in the framework is honest but curious,
the security and privacy of each client’s data are inherently
guaranteed by LDP and encryption. Therefore we put more
focus on potential risks if we extend our analysis to the
malicious setting. Typically, the adversary aims to accomplish
several objectives: (1) extract additional information about the
honest clients and their messages, (2) downgrade the utility of
the LDP results, and (3) disrupt the protocol, causing parties
to abort. In a synchronized network setting, if some malicious
parties decide to halt the protocol, it can be easily detected
and the honest parties can simply exclude those parties from
the next execution. So we mainly focus on the first two goals.

1) Analysis for GCMS/OCMS: In the context of our fre-
quency estimation framework, three types of entities exist:
clients, the shuffler, and the server. From an attacker’s perspec-
tive, we assume all these parties could be malicious, what’s
more, different types of parties could collude.

Malicious Clients: For malicious clients, the worst attack
they can do is similar to the data poisoning attack [27]]:
the adversary can send garbage messages as LDP reports,
or register a huge amount of fake clients and let them send
garbage messages as LDP reports. While truncating clients’
maximum contribution can counter the former, the latter type,
is considered outside the scope of this paper, as it cannot
be mitigated by designing a better LDP protocol. Typically,
strategies such as authentication or access control can be
employed to counteract such Sybil attack.

Malicious Shuffler: Since all the client messages are en-
crypted with the server’s public key, even a malicious shuffler
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cannot break the confidentiality of the messages. However,
the malicious shuffler can still deviate from the protocol. For
instance, the shuffler could launch a data poisoning attack by
injecting false information as LDP reports or dropping LDP
reports from honest clients. Since the shuffler represents a
single point of failure, these attacks are feasible. Consequently,
the shuffler must be enforced as a semi-honest party, and
there exist several mechanisms to achieve it. For example,
multiple servers can collaboratively perform shuffling using
secure multi-party computation. This approach ensures that
the shuffling process is executed correctly without revealing
any additional information, thereby eliminating the poten-
tial for malicious behaviors. Alternatively, we can also put
the shuffler functionality into trust execution environments
(TEE) [28]], which provide verifiable security. If all these
requirement cannot be met in deployment, we note that GCMS
can also operate in a pure local differential privacy (LDP)
setting without a shuffler, just as Apple’s CMS does. In this
standalone mode, the privacy guarantee is fully provided by
the local randomization mechanism. The use of a shuffler is
optional and offers privacy amplification via shuffling. This
is consistent with how shufflers are employed in other LDP
deployments (e.g., Apple, Google).

Malicious Server: The malicious server has no motivation
to downgrade the utility as it benefits from better LDP
outcomes. Therefore, we only check if the malicious server
can infer more information about the clients. However, since
all messages accessed by the server are protected by LDP, it
is assured that the server cannot learn additional information
beyond what is allowed by the LDP protocol.

Collusion between parties: When the shuffler colludes
with the server, the worst-case scenario is that the shuffler
fails to shuffle the messages, thereby eliminating the privacy
amplification effect. However, the results of the protocol
are still protected by LDP, although at a reduced level of
privacy. In cases where the server colludes with a group of
malicious clients, the server still gets no extra information
of the rest of the clients due to the LDP guarantee. When
the shuffler colludes with malicious clients, the worst-case
situation is that the shuffler consistently accepts inputs from
the malicious clients while refusing to serve the honest ones.
This issue cannot be addressed through LDP design alone. It
can be mitigated by implementing measures such as enforced
scheduling or adopting a decentralized shuffling solution, such
as MPC.

2) Analysis for the aux. server: Our unknown item dis-
covery framework introduces another entity: the aux. server.
It is important to emphasize that this party must be enforced
as honest, since a malicious aux. server could launch several
powerful attacks. For instance, the aux. server can compute
the hash of the specific value and compare it with the hash
in each client message. In this way, the aux. server can check
whether the client message is a specific value. What’s more,
the aux. server can also purposely decrease the frequency of a
specific value. To do so, the aux. server simply computes the
hash of the value and drops all messages with the same hash.



These attacks are unavoidable even when the message space
is large, and can only be mitigated through techniques such
as keyed hash functions, where the key is negotiated directly
between the clients and the server. Finally, the aux. server
can also obtain a list of frequencies, but without knowing
which frequency corresponds to which item. This still enables
targeted attacks, such as deleting all records associated with
the most frequent item. Notably, such attacks are unavoidable
even when keyed hash functions are used.

However, if we restrict the aux. server to be an honest-
but-curious party—meaning it follows the protocol correctly
but may attempt to infer additional information—our protocol
maintains sufficient privacy guarantees. All plaintext messages
are encrypted using the final server’s public key, preventing
the aux. server from learning their values. This also applies to
hashed values when keyed hash functions are used, as the aux.
server cannot compute corresponding hashes without the key.
Moreover, all messages are shuffled before reaching the aux.
server, preventing it from linking messages to their senders.

To conclude, the malicious aux. server could significantly
change the result of the protocol, therefore, we suggest de-
ploying the aux. server with a trusted authority, or imple-
menting the aux. server in trust execution environments [28]].
The requirement of a semi-trusted authority is what enables
the performance improvements relative to existing methods;
therefore, our protocol may not be suitable for scenarios in
which such an authority cannot be assumed.

VII. KEY RESULTS VISUALIZATION AND EXPERIMENTS

This section visualizes the key results and experimental
evaluation for our GCMS, OCMS and related works. We start
by visualizing the accuracy in terms of variance, demonstrating
that our approach can achieve lower variance for items with
specific frequencies. Additionally, we identify the optimal
choices of p under various parameter settings. Finally, we
conduct tests of our approach and related works using real-
world databases, providing a comprehensive comparison of
their performances.

A. Utility of GCMS

We use variance as the metric to measure accuracy, which
can be directly translated to the mean square error of the
estimation. To provide better visualization, we slightly modify
original variance to relative square root variance, which is in
the same order as the absolute error or relative error, and is

defined as:
\/ Var(£(d))/ f(d).

This modification does not affect the optimality of the mech-
anism. There are multiple factors jointly determining the
variance, such as k (the number of hash function), m domain
(hash domain size), f(d) (true frequency of the queried item),
and n (number of LDP reports). Figure [ shows the accuracy
of our approach and Apple’s CMS under different parameter
settings. We fix the number of LDP reports to be 100, 000,
and the communication costs of different mechanisms at the
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Fig. 4. Variance comparison between our approach and Apple’s CMS under
different epsilons. Lines with the same color indicate the same parameter
setting. #.bits represents the bit length of the LDP reports, which is directly
related to the hash function range m. k is the number of hash functions, n
is the total number of LDP reports, and f(d) is the true frequency of the
queried item. The perturbation parameter p for our approach is 0.5.

same level. Then, we focus on two target query items with true
frequencies f(d) of 1000 and 10000. The results demonstrate
that our approach achieves lower variance when the privacy
budget € is not excessively large. Apple’s CMS outperforms
our approach only when the f(d) of the queried item is
considerably large and the privacy budget is extremely high,
which rarely happens in real-world scenarios.

B. Utility of OCMS

Lemma [T] suggests that the perturbation parameter p can be
adjusted for a specific frequency f(d) to minimize the variance
for target frequency. We conduct experiments to compute
optimal selection of p under various parameter settings, and
the results are presented in Figure [5] The findings reveal
an interesting observation: when € is small, the optimal p
remains 0.5 across a wide range of f(d). This is consistent
with the assertions in [13|] that the optimal choice of p
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Fig. 5. Optimal selection of p in various parameter settings. n = 10000, k =
200, m = 200.

is 0.5 when the privacy budget is small. However, as the
privacy budget increases, the optimal p begins to diverge from
0.5, increasing with ¢ and f(d) beyond a certain threshold.
Therefore, our solution can also be viewed as generalization
of the optimal unary encoding approach, offering improved
performance when a larger e is available. Figure [5(b)|illustrates
the relationship between the optimal p and the number of
hash functions k. generally, a larger k corresponds to a higher
optimal p. This trend indicates that our approach yields greater
benefits when implemented with a more complex hashing
mechanism.

With the optimal selection of p, our approach has more
advantages when we are interested in querying items within
a specific frequency range. By adjusting the parameter p, our
approach can achieve better accuracy for a target frequency,
resulting in lower variance for query items with similar
frequencies. Figure [f] displays the best theoretical variance
achievable for each target frequency, with the variance of
Apple’s CMS with a fixed p serving as the baseline. To ensure
a fair comparison, we use the same parameter settings as in

12

\ —.- Apple's CMS, e =4

0.0101 \ Our GCMS with optimal p for each f(d), € = 4
'\ — - Apple's CMS, e=5

0.008 4 \ '\ —— Our GCMS with optimal p for each f(d), e=5

0.006

0.004

Relative square root variance

0.002 1

Fig. 6. Variance of our approach with optimized p for each target frequency
f(d). n =1000000, k = 65536, m = 1024.

100001 __._ Apple's CMS

GCMS with p =0.6, £=3 e
£ 4000 — GCMS withp=0.5,£=3 i
< —— GCMS with p =0.6, =5 //
7 —— GCMS withp =0.5, =5 _°
S 6000 Xt
c Rd
% /'/
L 4000 4 /‘
C .
=] Rd
S 7
§ 2000 1 Z
o R

7

RS
o]
6 20'00 40b0 6600 80'00 10600
Hash size m

Fig. 7. Communication cost comparison between GCMS and Apple’s CMS
under fixed es and ps.

Apple’s CMS experiments: m = 1024, k = 65536, ¢ = 4.
The results indicate that our approach significantly improves
variance across all target frequencies.

C. Communication Costs

We compare the communication costs of GCMS against
with that of Apple’s CMS. As we described in Remark 1, the
communication cost of the GCMS is O(slogm), compared to
O(m) for Apple’s CMS. Note that while the communication
cost for Apple’s CMS only depends on the hash size m and is
independent of the mechanism parameters, the communication
cost of GCMS depends on s, which can be viewed as a
function of € and p.

In Fig. [/} we present the communication costs when varying
p and e. We fix the privacy parameter ¢ to be 3 and 5,
respectively, and p to be 0.5 and 0.6, corresponding to the
p in OUE-LDP and in OCMS for some targeted frequency.
We then vary the hash size m from 0 to 10,000 and obtain
the corresponding communication costs. We can observe that
our subset-selection feature improves the communication costs
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the p = 0.74 case, and € = 3.75 for the rest two cases.

significantly. Additionally, a small p and large ¢ can further
reduce the communication cost in GCMS.

D. Experiments with Real-world Datasets

We conduct experiments with the “Adult Census Income”
dataset[29], which contains census information with 48, 842
records and 15 attributes. Our focus is to count the frequency
of the “education” column, which contains 16 possible values
with frequencies ranging from 80 to 16,000. We use Python
code to simulate the operations on both the client side and the
server side, and ask the server to reconstruct the frequencies
of all 16 possible values. We launch the code on a Mac
Book Pro with M1 chips and 32GB RAM. We target the
highest frequency value of % = 16,000 and apply Lemma |I|
to determine an optimal p of 0.74. For mid-range frequency
values, we pick p = 0.57 to achieve the best performance
for items with a frequency around 1500. Additionally, we
include p = 0.87 as the baseline because it corresponds to
the parameter setting used in Apple’s CMS, which is treated
as a special case in our framework. The result is depicted
in Figure 8] We observe that each specified case achieves
lower variance at its target frequency, though the performance
slightly decreases for non-target frequencies. Specifically, in
the case of Apple’s CMS, the resulting target frequency
exceeds n due to the large p. Consequently, our approach
demonstrates better performance almost the entire range of
true frequencies.

E. Unknown Domain Data Collection

We conduct experiments for our unknown domain DP solu-
tion with Kaggle’s URL dataselﬂ For convenience, we select
the first 100, 000 data records and limited our analysis to the
first 20 characters of each URL. This is because many URLs
contain a client-ID-like string towards the end, making them
unique and thus difficult to analyze effectively for frequency-
based approaches. We observe that as the privacy budget ¢
decreases, the threshold 7' increases. Consequently, a smaller
number of URLs is collected, reflecting a higher level of

Link:
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Fig. 9. Relationship between privacy budget and the amount of discovered
url with our approach using Kaggle’s URL dataset. Experiment setting: n =
100000. Each experiment is repeated 30 times, and the mean value is reported.

privacy protection at the expense of data availability. This
trend is clearly illustrated in Figure [0} Additionally, as e
increases, the number of collected URLs tends to converge.
The convergence number (approximately 5,500 URLs) still
significantly differs from the total number of distinct URLs
(around 40, 000). This indicates that even at higher levels of e,
the method does not capture all unique URLs. The underlying
reason is that, according to Theorem 4, T' is approximately
1 — log(20)/e, which is greater than 1 for most values of e.
Given that the majority of URLSs in the dataset have a count of
1 and the Laplacian mechanism adds zero-mean noise, most
of these URLs remain unrevealed. This feature ensures that
user data with outliers is intractable.

It is worth noting that our protocol offers significant im-
provement in accuracy. We also conduct experiments on the
Twitter dataset, following [7]. When compared to other exist-
ing LDP unknown domain data collection methods, PrivTrie
is the only solution that obtains a practical level of accuracy
(over 0.8 F-score) under ¢ = 2. Under these same conditions,
our unknown domain protocol achieves an F-score of 0.962,
demonstrating a notable improvement in accuracy. However,
we note that this is not a completely fair comparison, as all
the methods mentioned are pure LDP protocols, whereas our
approach is quasi-LDP, leveraging cryptographic techniques.

VIII. CONCLUSION

In this paper, we present a comprehensive framework for
privacy-preserving data collection and frequency estimation,
utilizing the Encryption-Shuffling-Analysis architecture. We
introduce a Generalized Count Mean Sketch (GCMS) proto-
cols that captures and optimizes various existing frequency
estimation protocols. We provide its privacy and security
analysis, as well as a general utility analysis that enables
optimal parameter design, leading to the development of
the Optimal Count Mean Sketch (OCMS) which minimizes
variance for targeted frequency regimes. Additionally, we
propose a protocol for data collection with unknown domains,
addressing scenarios where the data domain is not predefined.
Our approach achieves accuracy comparable to the central
differential privacy (DP) model while providing local-like
privacy guarantees and substantially lowering computational


https://www.kaggle.com/datasets/teseract/urldataset?resource=download
https://www.kaggle.com/datasets/teseract/urldataset?resource=download

costs. We also visualize our theoretical analysis and provide
extensive experimental results demonstrating the effectiveness
of these protocols in terms of utility-privacy trade-offs and
communication cost.
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APPENDIX A
PROOF OF THEOREM 2

Denote r and 7’ as the hashed results of two different input
d and d'. Note that r and ' can be resulted from different
hash functions. We next examine the likelihood ratio of r and
r’ resulting the same x.

Case 1: r € x and v’ € x:

Pr(X =x|D=d) Pr(X=x|R=r)
Pr(X =x|D=d) Pr(X=x|R=1r")
7p/(7;l—_11) —1
=, — b
p/(571>
Case 2: r ¢ x and 7’ ¢ x:
Pr(X =x|D=d) Pr(X=xR=r)
Pr(X =x|D=d) Pr(X=x|R=1")
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Case 3: r € x and 1’ ¢ x:
Pr(X =x|D=d) Pr(X=x|R=r)
Pr(X =x|D=d) Pr(X =x|R=1')

p(T:ll)

_» (")

lip(nsl:f)

_ p (m=1)/sl(m—s—1)!
L—p(m—1!/(s=1)!(m - s)!
_p (s=1)l(m—s)!
T1—p sl(m—s—1)!

p m=s

1—-p s
Case 4: r ¢ x and ' € x:
Similar to case 3.
Pr(X =x|D =d)
Pr(X =x|D=d')

_Pr(X =x|R=r)

CPr(X =x|R=1)

(1-p) (")
p(?:ll)

1-p s

T p m-—s

Therefore, when p € [0.5,1] and s € [m/2, m]

Crerrerd R ey

This completes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 3

For simplicity, let M;[h;[d]] = >, Zj(-i)(d). Here,

2{(d) = L=y {B(l{w:d} + Lgao 2ay Lin, (@0)=n, (@)})
+Y1{d<i>¢d}ﬂ{hj<d<i)>¢hj<d>}} ,

where B and Y are Bernoulli random variables representing
the randomized response: B = 1 with probability p and B = 0
with probability 1 — p; Y = 1 with probability ¢ and Y =0
with probability 1 — gq.

Before we prove Theorem 3, let us first prove several
helping lemmas.

Lemma 2.

i P P 1.q
Proof. By substituting into ]l{hj(dm):hj(d)}) = i, we can
observe that the lemma holds. O

Lemma 3.
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Proof.

E [(Z]() (d)ﬂ

1
=5 BB’ Lae =gy + Lgao 0y (BLi, a0 =1, ()}

+ Ly, a0y ny @)Y )]

p p l.q
= twom + (o + 0= D7) o
—F[7®
=E[Z}"(d)].

Lemma 4. For any indices i1 # i,

1) Cou(Z{(d), 28 (d)) = 0 when jy # jo:
2) C’OU(Z](-il)(d),ZJ(iZ)(d)) = 0 when d) = d or
d2) = d or d(i) £ dli2),
3) Coo(Z™ (). 2" () = (54)" (% — %) when
d) =dl2) = d' and d' # d.
Proof. Case 1: When j; # jo, since the hash func-
tions hj; and hg-2 are chosen independently, we have
(21) (@ _
Cov(Zjl1 (d),Zj; (d))=0.
Case 2: When j; = jo = j, the calculation of covariance de-
pends on the expectation of their product E[Z J(-Il) (d)Z ](;2) (d)].
Let Bi,Bs (and Y7,Y5) denote the randomized response
probabilities for i1,9, respectively. We first consider when
d™) = d, and we have

B2V (d) 25 (d)]
1
=1z E[B1(B2(Ligen =ay + Lgato)zay Ln, a620)=n, (@)})

+ Yol ay Lin, @), (@)

p p 1
p io
= B2 ()]
=E[Z{"(d)|B[Z{*) (d)].

Therefore,
Cov(2{)(d), 20 (d))
=B[2{(d) 2 ()] - B2 (d)| (2] (d)]
=0.

Similarly, we also have Cov(Z](il)(d),ZJ(iQ)(d)) = 0 when

d2) = d. Then it remains to consider the case when they
both are not equal to d: d) # d and d*2) # d. We further
divide it into two cases.
Case 3: When d\"") #£
B, Ba, Y1, Y2, Lygeo zays Lin a6y 2n;(d)rs Ling @)k, (a)}
are independent, so we have C’ov(Zj(-“)(al)7 Zj(-lz)(d)) =0.

d(®) all random variables



Case 4: When d(") = d(2) = ¢’ and d’ # d, we have Again, by Lemma 4 (1), we need only consider
E[Z(il)(d)Z(iQ)(d)] S Z§=1 VaT(Z](z)(d)) for the first term in (T0):

1 - (@)
=13 BIB1B2 L, )=y apy) + V1Yo Lin, (), 0] > Var(2(d)
i=1 j=1

1 - 2 1 n
2 (Zﬁq (1—m>v =sz:E[(Z§“(d))2] —
and by Lemma 2] i=1 j=1

“pf@+ (L + 0= 200) (n- 7(@)

it iz L (p 1)
B2 @IBZ @) = 5 (£ +a0- ) e
S (Zea- D) - @) an
k k\m m
Then,
‘ _ Then we turn to consider the second term in (I0). By
COU(ZJ(-“) (d),Z ](-12) (d)) Lemma 4 (2) and (3), we need only consider the indices where
i in i in d@1) = dl2) = g* and d* # d.
=B(Z;(0) 7,7 () - B2 (@] (Z)" (d)] ) ’
2 . .
_ (p—q> laoty S5 Cou(2)(a), 22 (a)
k jm m iniz j=1

—q\’ 1 1

i1:d1) =d* ia 701

—q\’ 1 1
pf) D DY

d*#d 41 :d() =d*

(
—(779) La- %) d%;d(f(d*) - f)
(

We are now ready to prove Theorem 3.

Proof. By Lemma 2, we have

E[C(d)]
AT (2) - [ X s - - s
j=1i=1 d*#d
1 (12)
Z(d)<1—)(p—q)+p+<1—)nq .
m m Combining (TT) and (I2)), we have
Therefore, Var(C(d))
2 2 2 1
R ElC(d)] -2 —gn(1- 2L - _ P _ o2
i) = HC@D = —an (L= 5) ) F@)(p =)+ (= f(d) (- + (1= —)
(V) (1 - E)
: (r—q)? 1 2
We can decompose the variance as follows. + W(l - E) Z JACAN I
d*#d
Var(C(d)) By Proposition 1, we have the following relation between
I Var(f(d)) and Var(C(d)):
=Var Zl > Z;"(d) . Var(C(d))
j=1i= = )
R - = aP(1— 1/m)?
= Z Var(z Z](,l)(d)) + Z Cov(Zj(fl)(d), Zj(;?)(d)) completing the proof.
i=1 j=1 in#is o
L k . APPENDIX C
=> Var(Z"(d)+ Y Cou(Z})(d ZJ(Z)(d))) PROOF OF LEMMA 1
=V :1k h#i2 In this section, we prove the result in lemma 1, which shows
i i the optimal p can be derived from the following optimization
+ Z ZCOU(ZJ( 1)(d) Z( 2)(d))’ (10) problem:
i1 #£0 j=1
B . w—p+ AMw —1)(kw — p — wp)
where (10) follows from Lemma 4(1). p = argmin k(1 —p)2p ’
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We start from simplifying variables defined in the expres-
sion of the variance.
) 2
(1-

p(m—e(1—p)—p)

~ (es(i—=p)+p)(m—1) 1

: |

Qg =

km m
_ Pw=1)"
= ka(m_ 1)’
and
_p (o L) pm =1 =p) = p)
aq 7m+ <1 m) (ee(l—p)—&-p)(m—l)
- £+p(m*66(1fp)*p)
m m(e(1 —p) +p)
= pm
m(e<(1—p) +p)
-__r _P
ee(l—p)+p w’
Also
(p = a)*(1=1/m) = azk(m —1) = 172(17;1)2.

Then minimizing Var(f(d)] is equivalent to minimize

2
o [F@0 =B - @) - ] o
Asw—1= (e—1)(1—p), and ec—1 > 0, (I3) is equivalent
to
e =Dk - sy - L]
_fd) (kw? — w?p) + (n = f(d)) (kw — p)
B k(1 —p)p
n(kw—p)  f(d) (kw® —w’p — kw + p)
k(1 -p)?p k(1 —p)?p
_n(kw—p)  fd) (kww—1)+p(1 —w)(l +w))
k(1 —p)%p k(1 —p)%p
:n{ (kw — p) A(w—l)(kw—p—wp)}.
k(1 —p)?p k(1 —p)?p

This completes the proof for Lemma 1.

APPENDIX D
REMARKS FOR IMPLEMENTATION

Choice of threshold and the privacy-utility trade-off. The
choice of T" and b is critical in balancing the utility-privacy
trade-off. The privacy guarantee becomes stronger with larger
T and b, while T" and b determine the utility from different
perspectives: a larger T ensures that only popular data is
revealed to the server, which is not ideal if the server’s goal
is to collect as much unknown data as possible. Conversely, a
large b introduces more more randomness, reducing accuracy
when the server aims to learn the most popular data strings.
Therefore, the choice of T and b should align with the specific
application scenarios.
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Joint usage of the two frameworks. The two data collec-
tion frameworks proposed in this paper can be used jointly in
a more on-demand manner in practice. For example, the server
can collect popular data strings through the unknown domain
collection framework and then check their frequency with the
sketch matrix in the GCMS. The server can also track the
popularity of targeted data by calculating an optimal p and s
according to OCMS with previously estimated frequency, and
send p and s to each client as their mechanism parameters
in the next iteration. Another use-case example is the server
maintaining a list of top-k popular items. The server can
fine-tune p and s according to the frequency regime of the
required popularity and send them to each client. Each time
the server obtains a list of data strings from the unknown
domain collection framework, the server checks the frequency
and updates the list. The overall privacy guarantee is obtained
by composition of the privacy of GCMS amplified by shuffler
(Theorem 1)) and the privacy of data string collection (Theorem

4.

APPENDIX E
PERFORMANCE BENCHMARKS

We conduct experiments to evaluate the performance of our
approach and Apple’s CMS using the following metrics:

e Client Runtime: The time required for the client to
generate a single LDP report. This excludes the commu-
nication time between the client and server, as it highly
depends on network conditions, which are beyond the
scope of this work.

Server Runtime: The time needed for the server to
construct the LDP matrix.

Client Communication Cost: The size of each LDP
report sent by one client.

Server Memory Cost: The storage required on the server
to store the LDP matrix.

It is important to note that our prototypes were implemented
in Python without extensive optimization such as message
compression; thus, actual performance may be better in a
production environment. This experiment is conducted solely
to demonstrate the comparative performance of the two ap-
proaches.

The experimental settings are identical to those described in
Section and the hardware setting is Mac Book Pro (M1
chip, 32GB RAM). Benchmark results are presented in Table
Both client and server runtimes for GCMS outperform those
of Apple CMS, primarily because GCMS uses a much smaller
message vector. It also leads to smaller client communication
cost. Additionally, the server-side computation in GCMS in-
volves only simple counting operations, whereas Apple CMS
requires floating-point arithmetic. As a result, GCMS achieves
better server-side performance. In terms of memory usage,
both approaches require the server to store matrices of the
same size, resulting in equivalent storage costs.



PERFORMANCE COMPARISON BETWEEN OCMS AND APPLE CMS

Metric OCMS | Apple CMS

Client Runtime (ms) 0.00659 0.01782

Server Runtime (s) 0.0346 0.2209

Server Memory Cost (bytes) 86752 86752

Client Communication Cost (bytes) 171.84 912.00
TABLE T
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