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Abstract—When a vulnerability is detected in a specific soft-
ware version, it is critical to trace the commit history to
accurately identify the first commit w here the v ulnerability was
introduced, known as Vulnerability-Introducing Commit(VIC).
This article proposes a method to accurately identify the VIC
based on differential analysis of vulnerability patching patterns.
Firstly, we compare the two files, before and after patching a vul-
nerability, to classify vulnerability-related statements in the patch
into different patching patterns, such as coding errors, improper
data flow, m isplaced s tatements, a nd m issing c ritical checks.
Then, based on the patching patterns, we extract a vulnerability-
critical statement sequence from the vulnerable file and match it
with the earlier commits to determine the introducing commit. To
evaluate the effectiveness of this method, we collected a dataset
comprising 6,920 CVEs and 5,859,238 commits from open-source
software, including the Linux kernel, MySQL, and OpenSSL, etc.
The experimental results demonstrate that the proposed method
achieves a detection accuracy of 94.94% and a recall rate of
86.92%, significantly o utperforming e xisting approaches.

I. INTRODUCTION

To mitigate the risks posed by vulnerabilities in source
code files, v arious a pproaches are e mployed, i ncluding code
reviews, automated vulnerability scans, penetration tests, and
timely software patches. However, a study by Blackduck [1]
revealed that, in larger companies, an average of 41% of
vulnerabilities identified w ithin 12 m onths r emain unpatched
and unresolved, leaving them susceptible to exploitation by
adversaries.

The failure to patch identified v ulnerabilities ¢ an b e at-
tributed to several factors, including the lack of available
patches or inadequate technical support for the applications.
One of the challenges faced by maintenance teams is determin-
ing whether a specific version is unaffected by the vulnerability
or if the patch is unsuitable for that version, particularly
when patching attempts fail. Currently, public vulnerabil-
ity databases, such as the National Vulnerability Database
(NVD) [2], the Open Source Vulnerability Database (OS-
VDB) [3], and Bugtraq [4], record the affected versions of vul-
nerabilities. For example, the National Vulnerability Database
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(NVD) provides detailed data on Common Vulnerabilities and
Exposures (CVEs), including their descriptions and affected
versions of software. At the same time, commercial security
services (such as Hakiri [3]], Snyk [6], and SourceClear [7]])
and open source security tools (such as BundlerAudit [8],
OWASP OSSIndex [9]], and Dependency-Check [10]) rely on
vulnerability information from the NVD to operate effectively.

However, the information in the database is not reliable.
It is shown that approximately 25% of the versions were
mistakenly marked as affected versions [11]. The error rate
is significant and cannot be overlooked. Dong et al. [12]]
developed a system to analyze 20 years of data, reveal-
ing that inconsistencies in vulnerable software versions are
widespread, with only 59.82% of vulnerability reports fully
matching the NVD. Other works [13], [[14] have also identified
some data quality problems with the NVD.

To decide whether a software version is affected by a
specific vulnerability, it is essential to trace the earlier commits
to identify the first commit, namely Vulnerability-Introducing
Commit(VIC), where the vulnerability was introduced. There
are several studies for the identification of VIC. For exam-
ple, B-SZZ [15]] and V-SZZ [16] are based on the deleted
statements in patches to trace the VIC, but other statements
that are critical to the vulnerability are ignored. Manually
identifying dangerous functions and building the complete
paths that trigger vulnerabilities can precisely detect vulner-
able files [17]. However, this approach lacks scalability and
requires a significant amount of expertise. This article proposes
an efficient and accurate method to identify the VIC based on
a refined patch analysis.

Challenges. A Security patch contains important informa-
tion about a vulnerability, so the patch is used to decide
whether a CVE exists or not by patch presence detection.
There are three challenges in identifying the VIC based on
patches. Firstly, patches are often specifically developed for
the software version in which a vulnerability is discovered.
The vulnerability may have been introduced into the software
project in an earlier version than the one in which it was
discovered, meaning that earlier versions may be vulner-
able. During software development, each software version
underwent numerous updates and changes, including feature



additions, performance improvements, and code refactoring.
The patch probably does not match the earlier version of
the vulnerable files exactly. Therefore, it is unsafe to deter-
mine the VIC solely based on an exact comparison with the
patch. Secondly, not all statements in the patch are related
to a vulnerability. For example, some statements are used
as positioning or context for the changed statements, while
others are used for styling and formatting adjustments. If we
include these statements in identifying the VIC, the result
is error-prone because a mismatch of these statements does
not deny the existence of the vulnerability. Lastly, not all
vulnerability-critical statements are included in the patch. For
example, to fix a buffer overflow, a condition check is added
to verify the boundary. However, the statement accessing the
buffer, which is essential to trigger the vulnerability, is not
contained in the patch. If these important statements are not
used in the VIC identification method, their changes are not be
taken into consideration, which degrades the precision of the
method. Therefore, it is challenging to automatically extract
the statements most closely related to the vulnerability based
on patch analysis.

Approach. Our key insight is that the insertion and deletion
statements contained in a patch are not independent, and their
relationship is crucial in revealing the logic of vulnerability
and identifying statements critical to a vulnerability. For
example, some insertion statements are used as replacements
for certain deletion statements or move statements to other
positions. We propose a differential analysis of vulnerability
patches, files, and their commits to capture the relationship
between statements and accurately identify the VIC. First,
we filter and remove the noise statements that are obviously
not relevant to the vulnerability. Based on our observations
of the patches, we select vulnerability noise statement types
that are apparent and frequently exist in the patches, and
perform filtering and removal of these statements based on
type features. Second, we extract the patching patterns. We
compare the control flows of two files, immediately before
and after patching a vulnerability, and classify vulnerability-
related statements in the patch based on their differences
in statement location, operator, and parameters into different
patching patterns, such as coding errors, improper data flow,
misplaced statements, and missing critical checks. Then, based
on the patching patterns, we extract a vulnerability-critical
statement sequence from the vulnerable file. Lastly, we match
the vulnerability-critical statement sequence with the earlier
commits to determine the introducing commit.

Contributions. Our contributions are listed below.

(1) We propose an approach to extract the vulnerability-
critical statement sequence by differential analysis of patching
patterns. By focusing on the differences in statements location,
operator, and parameters in the control flows of vulnerable
and patched files, we can capture the nuances of patching
semantics and accurately generate the vulnerability-critical
statement sequence.

(2) We implemented a tool, VicDiff, to identify the VIC.
Our tool relies on lightweight static analysis of patches and

commits, allowing it to be automated and scalable. VicDiff
effectively and accurately identifies the VICs on a large scale.

(3) We collect a data set comprising 6,920 CVEs and
5,859,238 commits from open-source software such as the
Linux kernel, MySQL, and OpenSSL. The experimental re-
sults demonstrate that the proposed method achieves a de-
tection accuracy of 94.94% and a recall rate of 86.92%,
significantly outperforming existing approaches.

II. BACKGROUND

In this section, we provide the background for an easy
understanding of our patch-based VIC detection.

Commit and Security patch. A commit updates a set
of files in a software project and produces a set of new
files at a specific point in time within a version control
system for software development. A security patch is a special
commit to files that fixes a security vulnerability. Each known
vulnerability has a unique CVE ID [18]], which is assigned by
the MITRE Corporation [19]].

Each commit comprises modifications to multiple files,
where the changes in each file consist of multiple diff
blocks. The diff block [20] is structured into sections,
in which the diff section contains: lines prefixed with
”+” (which represent statements inserted into the files,
called ’'Insertion Statements’), lines prefixed with ”-”
(which indicates statements deleted from the file, called
'Deletion Statements’), and lines without any prefix (which
represent the unchanged statements surrounding the inserted
or deleted statements).

Security Patch type. Security patches can be classified
into three types. Insertion-Only Patch(InsPatch): A patch
of this type only includes Insertion Statements with-
out Deletion Statement. For example, to fix a buffer
overflow vulnerability, a check statement may be inserted
into the boundary only before the memory access op-
eration without deleting any statements from vulnerable
files. Deletion-Only Patch(DelPatch): A patch of this
type only includes Deletion Statements and without any
Insertion Statement. For example, to fix a use-after-
free vulnerability, one can simply remove the statement
that refers to a data structure that is released by an old
instance. Insertion and Deletion Patch(InsDelPatch): A
patch of this type includes both Insertion Statements and
Deletion Statements, typically used to replace existing
flawed statements with new statements. For example, to fix
an integer overflow vulnerability, it may modify the flawed
statement by adding a forced type conversion. To accomplish
this modification, the flawed statement is deleted and the
corrected statement is inserted in the patch.

CVE Description and Gitlog/Changelog. CVE descrip-
tions typically include the vulnerability type (e.g., buffer
overflow, use-after-free), the location of the affected code
(such as file paths and function modules), and an analysis
of the trigger mechanism. Additionally, git log and changelog
provide summaries of key code changes, including the root
cause and the fix for the vulnerability. Several Git repository



websites, such as the Linux kernel, also indicate the commit
where the vulnerability was introduced. This information helps
researchers better understand the origin and remediation of
vulnerabilities.

III. DEFINITIONS
A. Problem Definition

When a vulnerability is detected in a specific software ver-
sion, determining which versions are affected is a crucial issue
for security maintenance. To resolve this issue, it is essential
to trace the history of commits to identify the VIC in which
the vulnerability was first introduced into the software project.
A VIC is the turning point of the vulnerability’s existence,
before which the vulnerability does not exist, and after which
the vulnerability is exploitable. We organize the commits
related to a specific source code file in reverse chronological
order, notated as C'omq,Coma,...,Com;, Comj,...,Comy,
where C'om; represents the commit where the vulnerability
was detected and fixed, C'om; denotes the commit where
the vulnerability was initially introduced. All versions of
the specific source code file are noted, respectively, as
Filey, Fileg, ..., File;, Filej, ..., File,, such that File; is
produced by commit C'om; to Flile; 1. Com; is the security
patch for a specific CVE, and Flile; is patched for the CVE
vulnerability. F'ile; is also denoted F},, which means this file is
patched, and F'ile, is F,, which means this file is vulnerable.
The relationship between commits and files is illustrated in

Figure

[ Coml(Patch)] [Comz ] [ Comi(VIC)] [ Com,vﬂ]

( File,(F,) J&—{ File;(F.)] -+ [ File; J&—{ File,,)-- [File.

Fig. 1. The relationship between commits and files.

B. Definitions of Terminology

Noise Statements. Patches often contain statements appar-
ently unrelated to the vulnerability logic, which we denote as
Noise Statements. Formally, a Noise Statement is a statement
(including Insertion Statements and Deletion Statements) in
the patch Com; if the statement belongs to a non-semantic
modification type, such as function renaming, comment lines,
formatting changes, etc. Noise statements are commonly used
for code refactoring, where developers optimize the code
structure, enhance readability, and improve maintainability by
simplifying complex logic, reorganizing functions or classes,
and optimizing algorithms. Although such statements are
apparently not related to a vulnerability, they will adversely
affect the performance of the patch-based methods if they are
not excluded.

Vulnerability-related Statements. Formally, vulnerability-
related statements,V RStmt for short, are a set of statements,

1 @@ -6520,6 +6520,12 @@ static int nft_setelem_deactivate(const struct
net *net,
+static void nft_setelem_catchall_destroy(struct nft_set_elem_catchall
*catchall)

3 +{
4 + list_del_rcu(&catchall ->list);
5 + kfree_rcu(catchall, rcu);

6 +}

7 +

8 @@ -6528,8 +6534,7 @ @ static void nft_setelem_catchall_remove (const
struct net *net,

9 if (catchall->elem == elem_priv) {

10 - list_del_rcu(&catchall->list);
11 - kfree_rcu(catchall, rcu);
12 + nft_setelem_catchall_destroy(catchall);

13 break;

14 @@ -9678,11 +9683,12 @@ static struct nft_trans_gc *nft_trans_gc
catchall(struct nft_trans_gc *gc,

15 - struct nft_set_elem_catchall *catchall;

16 + struct nft_set_elem_catchall *catchall, *next;
17 const struct nft_set *set = gc->set;

18 + struct nft_elem_priv *elem_priv;

19 struct nft_set_ext *ext;

21 - list_for_each_entry_rcu(catchall, &set->catchall list, list) {

22 + list_for_each_entry_safe(catchall, next, &set->catchall_list, list) {
23 ext = nft_set_elem_ext(set, catchall->elem);

24 @@ -9700,7 +9706,13 @ @ dead_elem:

25 if (sync)

26 gc = nft_trans_gc_queue_sync(ge, GFP_ATOMIC);

27 else

28 gc = nft_trans_gc_queue_async(gc, gc_seq, GFP_ATOMIC);
29 if (Ige)

30 return NULL;

31 - nft_trans_gc_elem_add(ge, catchall->elem);

32 + elem_priv = catchall->elem;

33 + if (sync) {

34 + nft_setelem_data_deactivate(gc->net, gc->set, elem_priv);
35 + nft_setelem_catchall_destroy(catchall);

36 + }

37 + nft_trans_gc_elem_add(gc, elem_priv);

38}

39 return gc;

Fig. 2. The patch of the running example CVE-2023-6111.

including all Insertion Statements and Deletion Statements in
a patch Com; with subtraction of the set of noise statements.
There is a possibility that some statements in V RStmt are
not used to fix a vulnerability, but rather to add a new feature.
However, based on our observations, this is very rare in our
datasets.

Differential Analysis & Patching Patterns. Differential
analysis is the key method to classify the statements in
V RStmt into different categories (Patching Patterns) based
on the characteristics of this statement in the Control Flow
Graph(CFG). The method is based on an analysis of the dif-
ferences in location, operator, and parameters between the two
CFGs of the vulnerable and patched files, which flow across
each statement in V RStmt. After this analysis, every state-
ment in vulnerability-related statements V RStmt is assigned
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Fig. 3. The workflow of our approach.

a pattern label, denoted as a pair: < statement, pattern >.

Vulnerability-critical Statement Sequence. Vulnerability-
critical Statement Sequence(denoted as V C'Seq) is defined as
a set of statements from the vulnerable source file, and ar-
ranged in sequence, based on statement patterns after the anal-
ysis of V RStmt, the CFGs, and the Data Flow Graph(DFG)
of the vulnerable file F,,. We note that 1) the statements in
VCSeq are from the vulnerable source file F;,, but may not
be from the patches, and 2) the order of the statements in the
sequence should be the same as that in F,.

C. A Running Example

We present a running example of CVE-2023-6111 [21] and
its patch to illustrate our motivation and approach. The snippet
of statements is shown in Figure [2{and clearly shows the chal-
lenges in existing studies. This vulnerability is a typical use-
after-free (UAF) vulnerability. Specifically, when the function
nft_trans_gc_catchall is invoked with the parameter sync set
to true, it fails to remove the catchall set element from the
catchall_list. This oversight allows the same element to be
released multiple times, leading to a use-after-free condition.
This vulnerability illustrates the following challenges: (1) Not
all statements in a patch are directly related to fixing the
vulnerability. Lines 2—7 restructure the logic from lines 10-11
to reduce duplication: These are structural optimizations, not
part of the actual fix. The variable declarations in lines 15, 16,
and 18 are added or removed to support later patch logic but do
not impact the vulnerability itself. Including such statements
can interfere with accurately identifying the VIC. (2) Not
all statements related to the vulnerability are included in the
patch. In this case, the vulnerability is triggered when the
parameter sync is true and the element of the catchall set
fails to be removed from catchall_list in a timely manner,
leading to its repeated release. The patch fixes this vulnera-
bility by calling the functions nft_setelem_data_deactivate()
and nft_setelem_catchall_destroy() to remove the element.
Therefore, in the absence of these two function calls (on lines
34 and 35 of the patch), the vulnerability will still occur as
long as lines 25 and 30 exist. As a result, although line 26
was not modified in this patch, it serves as a critical trigger
for the vulnerability.

IV. OUR APPROACH

We propose an approach to identify the VIC on a large
scale automatically. The workflow of our approach is shown
in Figure

A. Workflow of our approach

o Filtering and Removal of Noise Statements. Takes
the CVE patch as input and removes non-functional
code (noise statements), outputting a refined set of
vulnerability-related statements, denoted as V RStmit.

« Differential Analysis. Uses V RStmt, along with the
vulnerable and patched versions (£, and F}), to classify
statements based on control flow analysis. The output is
a set of pairs: {< statement, pattern >}.

« Extraction. Combines control flow, data flow, and patch-
ing patterns from the previous output and F, and F), to
derive VC'Segq.

o Selection of Related Commits and Files. Analyzes the
full commit history of the vulnerable file to identify and
chronologically store commits and files related to the
vulnerable function.

« Matching. Matches V C'Seq against the filtered files. The
first commit where the match fails is identified as the
VIC.

B. Filtering and Removal of Noise Statements

We filter the five most common types of noise statements.
They are non-semantic modifications, defined as follows:

Function renaming: for readability or developer prefer-
ence, with no impact on program behavior and vulnera-
bility. However, function renaming can cause inconsistency
in commit-based trace-back processes. To maintain accurate
function tracking, it is necessary to record the mapping be-
tween the previous and the post name of the same function
during analysis.

Extract method: for reusability of statements by extracting
repetitive logic into separate functions, which complicates
vulnerability analysis.

Variable declarations: not critical because the statements
accessing these variables are critical and not filtered out.
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Comment lines: for human understanding only; irrelevant
to execution.

Empty lines: for formatting purposes, but introduce noise
in version comparisons.

The five types of noise statements in a patch are iden-
tified and removed by syntax analysis and regular expres-
sion matching. We do not filter all noise statements as it
is challenging to precisely identify some of them, such as
complicated refactoring statements. We selected five types of
noise statements because they are very clearly defined, easy
to detect, and frequently used. Meanwhile, according to our
study, other types, such as complicated refactoring or adding
new features in a security patch, are rare. We illustrate this
step with the running example. The noise statements in CVE-
2023-6111 patch are filtered out: the variable declarations in
lines 15, 16, and 17 are filtered and removed. The statements
related to the extract method in lines 2-6, as well as in lines
10, 11, and 12, are filtered out. The blank line, e.g. line
7 will be filtered out. V RStmt consists of the remaining
InsertionStatements and DeletionStatements. Filtering
out noise statements ensures that the analysis focuses on
meaningful code changes, thereby improving the accuracy of
our approach.

C. Differential Analysis

The purpose of this step is to analyze the relation-
ship between insertion and deletion statements to classify
vulnerability-related statements into patching patterns. The
idea of patching patterns was motivated by our observation
of different patching behaviors in patches and their various
consequences to vulnerability critical logic. Patching a file
generally includes the following three behaviors: addition,
removal, or modification of a statement.

So we first define three patterns: Pattern A, Pattern R, and
Pattern M, as shown in Figure

Removal of an error statement (Pattern R) Pattern R
involves removing unnecessary or erroneous statements to
eliminate potential vulnerabilities or errors. This typically
addresses logical errors or redundant operations in the original
statements, where simply deleting the faulty statement resolves
the issue.

Addition of a new statement (Pattern A) Pattern A
statements are often used to limit access or add other security

checks. If the program lacks specific logic or checks, the patch
supplements these omissions by inserting a boundary check
statement.

Modification (Pattern M) Pattern M involves more com-
plex modifications, typically requiring the deletion of erro-
neous statements followed by the insertion of correct state-
ments. The application of Pattern M usually occurs when
there are fundamental flaws in the original statements, and the
functionality is repaired or improved by replacing erroneous
logic.

It is apparent that all statements in InsPatch are Pattern
A, and all statements in DelPatch are Pattern R, because for
Pattern M, there are insertion statements to replace deletion
statements in the same patch. On the contrary, it is more
difficult to classify a statement in a InsDel Patch into one of
the above three patterns. Furthermore, the statements of Pattern
M exhibit different patching behaviors and consequences for
vulnerability, necessitating further refinement of their classi-
fication. The modification statement includes modifying the
content of a statement without changing its location, modifying
its location without changing its content, etc. The challenge
in classifying such a statement is that there is no information
describing the type of the statement or the relationship between
the statements in a patch. To overcome this challenge, we
propose classifying patching behaviors into patterns based on
whether the location and content (operator or parameters) are
wholly or partially modified. We emulate all of them, then
combine some into a single pattern based on the semantic anal-
ysis of patching behaviors across a large scale of patches. We
also remove types without practical meanings (for example,
those where both content and position remain unchanged, as
they are meaningless for patching). Consequently, we defined
seven patching patterns for statements in a InsDelPatch so
that every pattern corresponds to a set of real-world patching
instances. Each statement in a patch can be assigned to one of
the patching patterns based on the information provided within
the patch and its related source code files.

To define the refined patterns formally, we first introduce
some notation. The set of Insertion Statements is denoted
as I, and the set of Deletion Statements is denoted as D.
Each statement in D is represented as D;, where D; € D.
Similarly, each statement in I is represented as I;, where
I; ¢ I. Here, 7 and j represent the respective positions of



the statement patterns in the sets Fj, and F,.

By generating the CFGs of the functions in F), and F),
using the aforementioned method, we can obtain the node
information for D; and I;, along with their complete control
flow and data flow. Since there may be more than one flow
through D; and I; in F), and F,, we preserve all control flow
information passing through F), and F,.

Taking a code snippet line 25-31, 39 from the vulnerability
function of CVE-2023-6111 in Figure [2] as an example, its
CFG is shown in Figure@ Line 31 (nft_trans_gc_elem_add) is
a vulnerability-related statement. One control flow path is: line
25 (if (sync)), line 26, 29, 31, 39. Another control flow path
is: line 25 (if (sync)), line 28, 29, 31, 39. In both paths, except
for the node itself (line 31), the remaining five statements are
considered positioning nodes.

v v

26: gc = nft_trans_gc_queue_sync 28: gc = nft_trans_gc_queue_async
(gc, GFP_ATOMIC); (gc, gc_seq, GFP_ATOMIC);

] v
31: nft_trans_gc_elem_add

30: return NULL;
(gc, catchall->elem);

Fig. 5. The partial CFG of CVE-2023-6111.

For each pair of vulnerability-related statements D; and
I; in the patch, we compare their locations, operators, and
parameters. Through an iterative comparison, vulnerability-
related statements are classified. Based on the results of the
comparison, these vulnerability-related statements are catego-
rized into patching patterns as follows. First, the locations of
D; and I; are compared, specifically examining whether there
are identical or partially identical positioning nodes between
Di and I j-

1 - if(A) 1 - if(A) 1 - function1(A)
2 + if(B) 2 + if(B) 2 + functionl(B)
3 statement1 3 statement | 3 < sl
4 statement2 4 - statement2 4 statement2
(a) M.1 (b) M.2 (©) M.3

Fig. 6. Schematic diagram of Pattern M.1,M.2,M.3.

Fully identical positioning nodes(Pattern M.1) For D,
and I, if there exist control flows such that all positioning
nodes between the statements are identical, except D, is
different from I;, we define statements D; and I; as Pattern
M.1. This pattern typically indicates a direct correction of

one statement, while the overall logic remains unchanged. As
shown in the code snippet in Figure [6]a, the modifications in
lines 1 and 2 exhibit the characteristics of Pattern M.1.

Identical previous and subsequent positioning nodes
(Pattern M.2) If there exist two control flows such that
adjacent positioning nodes of D; and I; are identical (for
example, the pair of direct previous nodes and the pair of
direct subsequent nodes are identical), then the statements
are classified as Pattern M.2. This pattern indicates that the
previous and subsequent positioning nodes remain unchanged,
with only the content of the vulnerability-related statements
modified. As shown in the code snippet in Figure [6}b, the
modifications in lines 1 and 2 satisfy the characteristics of
Pattern M.2.

Identical previous or subsequent positioning nodes
(Pattern M.3) If there exist two control flows such that
the previous or subsequent positioning nodes of D; or I;
are identical(but not both), and D; and I; have the same
control statement keyword, the statements are classified as
Pattern M.3. D; and I; have only partial similarity in their
positioning nodes, but perform the same operator. This pattern
suggests that while the new logic differs in implementation,
the functional intent remains consistent. As shown in the code
snippet in Figure [f]c, the modifications in lines 1 and 2 satisfy
the characteristics of Pattern M.3.

Suppose I; and D; do not meet any of the above criteria. In
that case, a further analysis of their operator and parameters
will be performed. We analyze the I; and D; by comparing
the operator and parameters. Based on the comparison results,
they are classified as follows:

1 - statementl 1 - functionl(A) 1 A=functionl(A)

2 - functionl(A) 2 + function2(B) 2 + function2(A)
. 3 statement
3 + functionl(B) 3 +

functionl(A) 4 function3(A)
4 statement2 4 statementl
(a) M4

(b) M.5 (c) A

Fig. 7. Schematic diagram of Pattern M.4, M.5,A.

Identical vulnerable operators (Pattern M.4) Suppose
there exist two control flows such that D; and I; have the
same operators but different parameters. In that case, the
statements are classified as Pattern M.4. Such changes usually
indicate that developers aim to optimize or adjust specific input
conditions while maintaining the original operator call, thus
improving overall program execution. As shown in the code
snippet in Figure [7}a, the modifications in lines 2 and 3 satisfy
the characteristics of Pattern M.4.

Identical vulnerable statements (Pattern M.5) If there
exist two control flows such that D; and I; have identical
vulnerable statements, the statements are classified as Pattern
M.5. This pattern may indicate that the developer needs to
apply the same logic at different positioning nodes, which is
common in handling conditional branches or loops. As shown
in the code snippet in Figure [7]b, the modifications in lines 1
and 3 satisfy the characteristics of Pattern M.5.



If D; and I; do not meet any of the above conditions, we
classify D; as Pattern R and I; as Pattern A.

The algorithm for classifying vulnerability-related state-
ments is described as follows, based on the definition of
patching patterns. Since InsPatch contains only insertion
statements, which match the characteristics of Pattern A, we
can directly classify the insertion statements in the catego-
rized InsPatch as Pattern A. Similarly, Del Patch contains
only deletion statements, which match the characteristics of
Pattern R, and thus the deletion statements in the categorized
DelPatch can be directly classified as Pattern R. This clas-
sification approach allows us to reduce unnecessary analysis
work for InsPatch and DelPatch, thereby improving the
efficiency of analysis. Because the insertion statements and
the deletion statements may have complicated relationships,
we use differential analysis to classify the statements in
InsDelPatch. The algorithm |1 illustrates how to perform
the classification of the deletion statements pattern. The input
is a deletion statement from the patch, and the output is the
deletion statement with a pattern label.

Algorithm 1 Differential Analysis.
Input: D; and 1
Output: < D;, pattern >
1: set pa to NULL
2: for I; € I do
3 if is_identical(pos(D;),pos(1;))
4 pa = pa U M.1
5: elif is_identical(pre_pos(D;),pre_pos(/;))
6
7
8
9

and is_identical(sub_pos(D;),sub_pos(/;))
pa = paU M.2
elif is_identical(sub_pos(D;),sub_pos(I;))
and is_identical(operator(D;),operator(/;))

10: pa = pa U M.3

11: elif is_identical(pre_pos(D;),pre_pos(/;))

12: and is_identical(operator(D;),operator(l;))
13: pa = paU M.3

14: elif is_identical(operator(D;),operator(l;))

15: and is_identical(parameters(D);),parameters(/;))
16: pa =paU M.5

17: elif is_identical(operator(D;),operator(l;))

18: pa =paU M.4

19: if (pa is NULL)

20: pa=R

21: end for

22: pattern = select_first(pa)
23: return <D;, pattern>

The algorithm iterates through the insertion statements
within the same patch to determine whether the current dele-
tion statement has a semantic association with any of them.
Specifically, it examines the relationship between the deletion
and insertion statements in terms of location, operator, and
parameters. The function called is_identical is to evaluate the
structural and semantic similarity between the two statements.

If a match is found, the algorithm assigns the corresponding
pattern label to the deletion statement. If none of the insertion
statements satisfies the is_identical condition, the deletion
statement is assigned Pattern R. After all insertion statements
are iterated, the final pattern of the deletion statement is
the one selected by the function select first. This function
selects the first pattern from a set of patterns ordered as
M.1,2,3,5,4 and R. This ordering is based on the conditions
of the patterns, the most stringent the first. The insertion
statement pairing(is_identical) with the deletion statement is
assigned the same pattern. We can use a similar algorithm to
assign patterns to the remaining insertion statements.

As an example, the statements in V RStmt of CVE-2023-
6111 are categorized as follows: For Deletion Statements,
we need to analyze line 21 and line 31. Because line 21 and
line 22 share identical previous and subsequent positioning
nodes, we categorize it as the Pattern M.2. The positioning
nodes of line 31 have changed, but it calls the same function
as line 37. The only difference lies in the data that flows
through it, so we categorize it as Pattern M.4. For the
Insertion Statements of lines 32 to 36, because they are
used to introduce new logic to conditionally deactivate and
destroy resources based on the synchronization state, which
aligns with the Pattern A type category, we classify them as
Pattern A.

D. Extraction of the Vulnerability-critical Statement Sequence

We utilize the patching patterns of vulnerability-related
statements to extract the vulnerability-critical statement se-
quence from the CFG and the DFG. Since the insertion state-
ments do not exist in earlier commits, they are not included
in VC'Seq. However, these insertion statements play a crucial
role in our analysis, as they help identify key statements both
within and outside the patch.

Pattern A statements insert new statements I into the source
code. This pattern often indicates missing logic in the program,
which leads to potential vulnerabilities. I; is used to fix the
missing logic. We analyze the data flow through I;, and search
upstream for statements that modify the variable found in I,
and downstream for statements that use the variable found in
I;, then add the statements that are nearest to I; in the DFG
into VCSeq. As shown in the code snippet in Figure [7]c,
the list contains the data flow that passes through the third-
line statement. Given that line 2 is of Pattern A, we need to
find the upstream statement that modifies parameter A and is
closest to line 2, which turns out to be the first line. Next, we
need to find the downstream statement that uses parameter A
and is closest to line 2, which turns out to be line 4. Finally,
we add the statements of lines 1 and 4 to V(' Segq.

Pattern R contains errors or defects; therefore, we include
Pattern R statement D; in V(CSeq.

For Pattern M.1 statement D;, control flow remains the
same except for this specific node, whose content is modified.
This indicates a coding error, making it a critical statement.
Therefore, it is added to VCSeq. For Pattern M.2 and M.3



statements, the vulnerability function has multiple modifica-
tions. The M.2 and M.3 statements are similar to M.1 at the
level of local code blocks. Thus, the M.2 and M.3 statements
themselves are critical and are also added to V(CSeq.

The pairing Pattern M.4 statements D; and I; invoke
the same operator but with different parameters, suggesting
that the functionality remains unchanged; however, the data
flowing through may be inappropriate. We include D; in
VCSeq. At the same time, we apply the same processing as
in Pattern A. We analyze the data flow through I; and search
upstream for statements modifying the variable found in I,
and downstream for statements using this variable. We then
add the statements nearest to I; in the DFG to V(C'Seq.

Pattern M.5 statement D; only changes in its location, which
indicates that D, itself is not defective, but its location may be
inappropriate or the logical control dependencies are flawed.
We analyze the control flow that goes through D;, and add the
adjacent statements (both preceding and subsequent) to D; in
the CFG to the vulnerability-critical statement sequence. As
shown in the code snippet in Figure[7}b, line 3 is of type M.5.
We need to add its adjacent control flows, which are lines 2
and 4, to VCSeq.

We remark that the InsertionStatements in Pattern M.1-
M.3 and M.5 are not used in the above process because
their paired DeletionStatements, which brought the vul-
nerabilities during differential analysis, have been taken into
consideration.

Based on the above steps, we effectively extract the
vulnerability-critical statements.

For example, the VC'Seq of CVE-2023-6111 is extracted as
follows: For Pattern A type statements, their associated data
dependencies are added to VC'Seq. In this case, that includes
lines 26. For Pattern M.2 type statements, the statement itself
is directly added to VCSeq. In this case, this includes line
21. For Pattern M.4 type statements, the statement itself is
directly included, along with its preceding and subsequent data
dependencies. In this case, that includes lines 31 and 37. How-
ever, since insertion statements do not appear in the vulnerable
file, only line 31 is included in the V' CSeq. Ultimately, the
extracted V' CSeq for this vulnerability includes lines 21, 26,
and 31.

E. Selection of Related Commits and Files

The input for the final step also requires filtering out
vulnerability-related commit files. Not every commit has an
impact on vulnerability. Therefore, it is essential to select
vulnerability-related commits and files.

First, the function modified by each commit can be identi-
fied through the function declaration in the header of the hunk,
and then we select those commits that involve vulnerable func-
tions. Next, we download the source files that are generated
by these commits.

A key detail to note in this step is that, in large systems,
function declarations typically change over time, especially
in cases of frequent updates and iterations, which increases
the likelihood of name changes. To address this challenge, we

designed a function declaration stack that can automatically
record both the old and new names of the functions, ensuring
that regardless of how the function name evolves, the origi-
nal name can still be successfully matched, thus preventing
potentially vulnerable commits from being overlooked.

F. Matching Files for Vulnerability

In this step, VC'Seq is compared with the related file ver-
sions to identify the commit that introduced the vulnerability.
Note that the commits and the related source code file versions
are arranged in reverse chronological order. As shown in the
algorithm [2] the matching procedure searches for the first
statement in the sequence V' CSeq within vulnerable function
in the first target file (the latest source file version), starting
from the beginning of the file; if found, then searches follow-
ing statement in VCSeq within the target file starting from
the following statement after the previous matched statements
in the target file, and so on. If all statements in VCSeq
are matched, the target file and its commit are labeled as
vulnerable. Then repeats the above procedure with the second
target file until it encounters a mismatch. The last vulnerable
commit is the VIC. In this procedure, we adopt an exact
matching approach in the search for critical statements because
even minor changes to critical statements may change their
semantics. The performance of similarity-based matching is
sensitive to the similarity threshold, and tends to vary with
different datasets.

Algorithm 2 Matching.

Input: VCSeq, related_commits and related_files
Output: Vuln_files

1: for file € related_files do

2: function_codes=extract(file, function_name)
//The current line index of the sequence to be matched.

3: seq_idx = 0,

4: for line € function_codes do

5: if compare(line, VCSeq[seq_idx])

6: seq_idx +=1

//Proceed to the next line of the sequence.
//All statements have been successfully matched.
7 if seq_idx == len(VCSeq)
: Vauln_file = Vuln_file + file
9: end for

10: if seq_idx < len(VCSeq)
11: return
12: end for

V. IMPLEMENTATION

We implemented our system using Python 3.10, taking ad-
vantage of its extensive library ecosystem for source code anal-
ysis. We implement our system with three main components:
(1) Data Crawling, for efficient and automated acquisition of
data; (2) Static Pattern Analysis, for filtering and removing
noise statements, as well as performing differential analysis;
(3) Identification, for extracting vulnerability-critical statement



sequences, selecting relevant commits and files, and matching
vulnerability-related files.

A. Data Crawling Module

This module crawls CVE metadata, CVE-ids, commit-
ids (for patches) from nvd.nist.gov, and patches, source
code files, and history commit-ids from git.kernel.org for
the Linux kernel. Our crawler utilizes the lxml/etree li-
brary for extracting vulnerability-related content through ef-
ficient HTML/XML parsing and web scraping. To simplify
the crawling process, we extract the patch commit-id from
the URL with a different domain name in NVD (such as
github.com/torvalds or git.kernel.org) and crawl all patches
from git.kernel.org/pub/scm. For other projects with small
CVE datasets, such as MySQL and OpenSSL, we use the NVD
crawler to get CVE IDs, and then manually download other
relevant data.

B. Static Pattern Analysis Module

This module classifies statements into corresponding pat-
terns through filtering, removing noise statements, and per-
forming differential analysis. This module utilizes the Python
library re to define filtering rules and match each type of
noise statement using regular expressions. Specifically, (1)
Function renaming: identified by searching a neighboring
delete-insert pair in the patch, where both lines have the
format of function definition syntax. (2) Extract method: the
block of insertion statements together are recognized as a
new function by syntax matching. (3) Variable declarations:
matched via variable declaration syntax analysis as (data type,
variable name, semicolon). (4) Comments and empty lines:
identified by comment symbols (e.g., //, /¥ */, #) or null
content. After applying the filtering rules, the statements are
stored in a list V RStmt. During the analysis of vulnerability
files and patched files, we use the pycparser/c_parser and
pycparser/c_ast libraries to parse the source code of the
vulnerable function into an Abstract Syntax Tree (AST). The
AST is converted into CFG using Python libraries networkz,
preserving its parent-child structure. The generated CFGs
are stored in a list, where each element is a directed CFG
(networkx.DiGraph()).

C. Vulnerability Identification Module

This module integrates three functions: the extraction of the
vulnerability-critical statement sequence, selection of related
commits and files, and matching vulnerability files. Before
constructing the data flow graph, the Python library re is used
to extract the parameters from the classified statements. We
implement our algorithm to generate the data flow graph(DFG)
relevant to the parameters, and then the vulnerability-critical
statements are extracted from the DFG. To identify related
commits and files, we implement a stack-based mechanism
that tracks function declarations to detect changes in func-
tion declarations. When a modification is found, the original
declaration is pushed to the stack. Since commits are ana-
lyzed in reverse order, this ensures accurate tracing of the

vulnerability’s evolution. This implementation of matching
with vulnerable files employs a line-by-line and character-
by-character matching approach to ensure that the statements
in VCSeq appear exactly and in the same order within the
target file, except that it ignores minor formatting changes,
such as spaces. Regular expressions are used to tolerate non-
semantic edits, such as whitespace or comment changes, then
the statements from V' C'Seq and the target file are compared
as two character strings.

VI. EVALUATION

We conducted the evaluation on a desktop machine
equipped with an Intel(R) Core(TM) i7-14700KF running at
3.40GHz, and 64 GB of RAM. We evaluated VicDiff by
answering four research questions.

« RQ1: What are the statistics of patching patterns? Are

the patterns balanced or not?

« RQ2: How effective are the key components in VicDiff?

« RQ3: How precise is VicDiff on datasets from different

projects? How effective is VicDiff compared to state-of-
the-art patch-based methods?

« RQ4: How efficient is VicDiff in terms of running time?

« RQS: What are the failure modes and potential areas of

improvement for VicDiff?

Datasets. We selected the Linux kernel for evaluation
for the following reasons: (1) a large number of vulnera-
bilities with diverse types; (2) frequent and complex code
upgrades; and (3) well-maintained and publicly available
documentation. To further evaluate the generalizability of
our approach, we also randomly constructed a small set
of data from other software projects, including OpenSSL,
Wget, MySQL, and FFmpeg. We first collected CVEs of
the Linux kernel or other projects from the NVD. If
the patch URLs of a CVE entry are not found or, for
Linux kernel, the patch URLs are distributed on web-
sites other than git.kernel.org/stable/, github.com/torvalds/,
git.kernel.org/pub/scm/, and git.kernel.org/cgit/, these CVEs
are excluded from our data set. Finally, the data sets consist
of (1) 6,920 CVEs and 5,859,238 code commits for the Linux
kernel; (2) 6 CVEs and 15 commits for OpenSSL; (3) 3 CVEs
and 7 commits for Wget; (4) 10 CVEs and 22 commits for
MySQL; and (5) 4 CVEs and 12 commits for FFmpeg. In
total, there are 6943 CVEs in the datasets.

Ground truth. In our evaluation, verification of TP, FP,
and FN relies on manual labeling of the ground truth because
there are no open-source ground truth datasets for our task.
As it requires much work for labelling all CVEs, commits,
and files in our datasets, we employed probability sampling
to ensure representativeness and the reliability of statistical
inference through the principle of randomness. After VicDiff
processed all CVEs in our datasets, we randomly selected and
manually labeled 112 CVEs and their 880 files/commits with
ground truth for the Linux dataset. For other datasets with a
small number of CVEs, we labeled all records with ground
truth. Therefore, we have 135 CVEs and 936 files/commits
with ground truth labels. We adopted a systematic verification



approach to ensure the accuracy and credibility of the ground
truth by manually inspecting CVE descriptions, changelog,
and source code.

A. Patching Patterns(RQ1)

Firstly, we ran VicDiff with all patches in the datasets and
classified each patch into one of the three patch categories:
Insertion-Only Patches, Deletion-Only Patches, and Insertion
and Deletion Patches. The statistical analysis, as shown in Ta-
ble[l] shows that (1) Insertion-Only Patches account for 23.56
%, these patches usually repair vulnerabilities such as buffer
overflow or integer overflow by adding check conditions. (2)
Deletion-Only Patches account for only 1.82%, because the
statements in the patches of this category are unnecessary for
the functionality, simply deleting them does not disrupt the
original function of the source code. As it is a rare situation in
a software project, the percentage of this category is tiny; and
(3) Insertion and Deletion Patches dominate with a proportion
of 74.62%. This proportion indicates that simply removing
erroneous statements or adding new statements is not sufficient
to fix vulnerabilities; the majority of patches require both
removing existing statements and introducing new statements
to achieve the necessary fixes.

Project | Ins | Del | InsDel | Total
Linux-kernel 1 635 1 26 51 59 6920
Openssl 6
Wget 3
FFmpeg 10
Mysql 4
Total | 1636 | 126 | 5181 | 6943
Proportion | 23.56% | 1.82% | 74.62% | 100%
TABLE I

PATCH CLASSIFICATIONS IN OUR DATASET

Then VicDiff classified each statement in a patch. At first,
every statement in an Insertion-Only patch is classified as
Pattern A, and in a Deletion-Only patch as Pattern R. Then,
VicDiff classified each statement in an Insertion and Deletion
patch into one of the seven patterns based on differential
analysis. The results are shown in Table |lI] and Table
The reported data are 135 patches and 683 statements from
the ground truth datasets. In all these patches, there are 314
statements of Pattern A, and the percentage reaches 45.97%,
which is the highest. Pattern M.5 is 15.67%, the highest among
Pattern M, and M 4 is 3.95%, the lowest.

The experiments show that the distribution of statements
in different patterns is roughly balanced, and every patch-
ing pattern is supported by real-world cases.

B. Ablation Study(RQ2)

VicDiff consists of three key components: noise filtering,
statement sequence extraction, and matching. To validate the
effectiveness of these components, we conducted an ablation
study.
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Project | A | R | M | Total
Linux-kernel 238 35 243 516
Openssl 13 1 12 26
Wget 19 3 12 34
FFmpeg 7 2 22 31
Mysql 37 16 23 76
Total | 314 | 57 | 312 | 683
Proportion | 45.97% | 835% | 45.68% | 100%
TABLE II

STATEMENT PATTERN A-R-M
Project | Ml | M2 | M3 | M4 | M5
Linux-kernel 46 46 32 23 96
Openssl 8 4 0 0 0
Wget 0 8 0 0 4
FFmpeg 12 6 0 4 0
Mysql 4 12 0 0 7
Total | 70 | 76 | 32 | 27 | 107
Proportion | 10.25% | 11.13% | 4.68% | 3.95% | 15.67%

TABLE III
PATTERN M.1-M.5

First, we validated the effectiveness of the noise filter
module through ablation experiments. Specifically, we com-
pared two settings: one with the noise filter (referred to
as VicDiff) and one without it (referred to as VicDiff-nf).
We conducted experiments on 135 CVEs where other mod-
ules in VicDiff were unchanged. The experimental results
are shown in Figure as FN (False Negatives) and FP
(False Positives). The results show that VicDiff-nf has 14
more false negatives than VicDiff. For example, in CVE-
2023-45863, the function definition was changed from static
void fill_kobj_path(const struct kobject *kobj, char *path, int
length) to static int fill_kobj_path(const struct kobject *kobyj,
char *path, int length), causing a failure in matching with
earlier commits and resulting in FN for VicDiff-nf. As another
example, in CVE-2023-6111, the method extraction for the
function nft_setelem_deactivate was not filtered by VicDiff-nf;
therefore, the statement if (catchall->elem == elem_priv) was
included in the V' C'Seq. This statement was modified earlier
than the VIC, causing an increased false negative (FN) rate.
Furthermore, our case study confirmed that none of the critical
statements were removed by the noise filtering process.

Then we evaluated two critical statement identification ap-
proaches: one is the method based differential analysis(referred
to as VicDiff), and one is the method using all deletion
statements as critical statements(referred to as VicDiff-ds).
We keep other components unchanged in this experiment.
The final results are shown in the figure as the FP and FN
of VicDiff-ds. Experimental results show that compared to
VicDiff, VicDiff-ds produces significantly more FPs and FNs.
The reason for the poor performance of VicDiff-ds is that many
critical statements are not included.

The experimental results demonstrate that noise filtering



is effective in reducing the false negative. The overall
improvement in performance is mainly attributed to the
approach of vulnerability-critical statements taken by
VicDiff.

Proi | VicDiff-nf | VicDiff-ds | VicDiff
roject

| FP | FN | FP | FN | FP | FN
Linux-kernel 39 124 196 314 39 110
Openssl 0 1 5 2 0 1
Wget 0 0 2 0 0 0
FFmpeg 1 3 1 4 1 3
Mysql 2 3 2 4 2 3

TABLE IV

ABLATION OF FILTERING AND REMOVAL OF NOISE STATEMENTS

C. Effectiveness (RQ3)

To evaluate the efficiency of VicDiff, we experimented on
the datasets with ground truth labels. To demonstrate the
improvement of our approach, we chose three tools, namely
B-SZZ [15l], V-SZZ, and Redebug for comparison. These three
tools are used for the detection of vulnerable source code and
are based on patch analysis, like ours. We did not use VIC
tools based on symbolic execution or PoC migration because
they require PoC as input; however, for CVEs in our datasets,
some of the PoCs are unavailable.

Table V| presents the precision and recall rates of the four
tools. The results show that VicDiff has a precision of 94.94%
and a recall of 86.92% for the Linux kernel, significantly
outperforming the other three tools. B-SZZ has the lowest
precision and recall, and V-SZZ is better than B-SZZ and
Redebug. Compared to V-SZZ [16], VicDiff has much lower
false positives while false negatives remain low, as VidDiff
has a larger set of vulnerability-critical statements.

For example, there are 3 commits in Figure[§]for CVE-2023-
6111. COM1 is the security patch, COM2 is the VIC, and
COM3 is the last commit to generate a source file without this
vulnerability before the VIC. The commits between COM1
and COM2 are not illustrated. Among the four tools, only
VicDiff correctly identifies COM2 as VIC.

B-SZZ traced all deletion statements and determined the
file versions committed by COM2 and COM3 as bug-inducing
changes. V-SZZ is based on the assumption that VIC is the
first commit that introduced a deletion statement in the patch;
therefore, it identified the files committed by COM3 as the first
vulnerable file. Redebug [22] encountered an earlier mismatch
between COM1 and COM2, as it is a general-purpose tool
that uses exact line matching to locate vulnerabilities, by
matching all statements in a patch, including the positioning
lines. VicDiff significantly outperforms other baseline methods
in OpenSSL and Wget projects, demonstrating generalizability
and effectiveness. However, its performance in the FFmpeg
and MySQL datasets is slightly lower than that of V-SZZ. As
shown in |V] VicDiff has only one more false negative than V-
SZZ, and one more false positive for MySQL. By investigating
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these cases, we found that V-SZZ had a smaller set of critical
statements; therefore, it was less affected by refactoring.

Tool | TP | FP | EN | Precision | Recall
B-S7Z7Z 357 | 196 | 327 64.56% 52.19%
V-S77 533 | 259 | 108 64.30% 83.15%
Redebug 371 138 | 156 72.89% 70.40%
VicDiff 731 39 110 94.94 % 86.92 %

(a) Linux-kernel Result

Tool | TP | FP | FN | Precision | Recall
B-S7Z7Z 10 2 5 83.33% 66.67%
V-S77 9 4 2 69.23% 81.82%
Redebug 7 7 1 50% 87.5%
VicDiff 14 0 1 100% 93.33%

(b) Openssl result

Tool | TP | FP | FN | Precision | Recall
B-S7Z7Z 5 2 0 71.43% 100%
V-S77 5 2 0 71.43% 100%
Redebug 2 4 1 33.33% 66.67%
VicDiff 7 0 0 100% 100%

(c) Wget Result

Tool | TP | FP | FN | Precision Recall
B-S7ZZ 17 1 4 94.44% 80.95%
V-S77 16 4 2 80% 88.89%
Redebug 8 5 9 61.54% 47.06%
VicDiff 18 1 3 94.74% 85.71%

(d) FFmpeg Result

Tool | TP | FP | FN | Precision | Recall
B-S7Z7Z 6 2 4 75% 60%
V-S77 9 1 2 90% 81.82%
Redebug 1 8 3 11.11% 25%
VicDiff 7 2 3 77.78% 70%

(e) Mysql Result

TABLE V
PERFORMANCE OF DIFFERENT APPROACHES

We conducted a performance analysis based on the type of
vulnerabilities. The ground truth dataset includes 135 CVEs
across 44 types of vulnerabilities. We identified the top five
most common vulnerability types in the dataset and reported
their performance, as shown in Figure [V1]

CWE-362 and CWE-20 achieved the highest precision and
recall, mainly because this type of vulnerability is typically
patched by adding or removing locking statements, resulting in
a relatively small number of statements in the V' C'Seq, which
leads to fewer false positives during trace-back.

On the other hand, CWE-476 has the highest number of
false negatives (FNs). This is mainly because patches of this
type tend to contain a larger number of statements, resulting
in a larger V'C'Seq.



- nft_trans_gc_elem_add
(gc,catchall->elem);
+ elem_priv = catchall->elem;

+ nft_trans_gc_elem_add(gc, elem_priv);

- gc=nft_trans_gc_queue_async
(gc, gc_seq, GFP_ATOMIC);

+ if (sync) + if (sync) + (gc, gc_seq, GFP_ATOMIC);
+ gc=nft_trans_gc_queue_sync +if (!gc)

+ nft_setelem_data_deactivate + (gc, GFP_ATOMIC); + return NULL;

+ (gc->net, gc->set, elem_priv); + else +

+ nft_setelem_catchall_destroy(catchall); + gc=nft_trans_gc_queue_async + nft_trans_gc_elem_add(gc,

+} + (gc, gc_seq, GFP_ATOMIC); + catchall->elem);

+ +

+ gc =nft_trans_gc_queue_async

Comj Comy Comg
Fig. 8. The commit history of the running example CVE-2023-6111.

CWE ID | CWE Name | CVE |  precision | Recall
416 Use After Free 18 87.16% 87.56%
476 NULL Pointer Dereference 18 94.7% 80.65%
362 Concurrent Execution using Shared Resource with Improper Synchronization 6 100% 100%
119 Improper Restriction of Operations within the Bounds of a Memory Buffer 6 100% 86.96%
20 Improper Input Validation 5 100% 100%

TABLE VI
THE PERFORMANCE OF VICDIFF BY TOP 5 CWE

Finally, we compared the results of VicDiff with the Known
Affected Software Configurations data provided by NVD on
the 6920 CVEs of the Linux kernel project. We found that
3826 CVEs had no corresponding entries in the Known
Affected Software Configurations or records of the VICs; 767
VICs from NVD mismatched with Viclff, and only 2327 CVEs
matched with VicDiff.

The experimental results show that VicDiff outperforms
state-of-the-art tools, especially in reducing false positives.

D. Efficiency (RQ4)

VicDiff is a static analysis tool specially designed to find
Vulnerability-Inducing Commits (VIC). We experimented with
VicDiff on our datasets and evaluated the efficiency of our
approach. To obtain these results, we measured the execution
time over all CVEs in the ground truth dataset, running the
experiments three times and reporting the average. VicDiff
generates a V' CSeq for each patch and then matches it with
the commit history. The time required for patch analysis to
generate the V(C'Seq is 0.269 seconds. For commit matching,
the average time taken to match against 100 commits is
0.255 seconds. Overall, the time for finding a VIC—including
both patch analysis and commit history matching—ranges
from 0.199 seconds to 2.125 seconds, with an average of
0.889 seconds. By comparison, methods based on symbolic
execution are much slower. For example, SymSetion allocated
a single CPU core for a maximum of 10,000 seconds for a
single symbolic execution [23]].

The experiments show that VicDiff is efficient in finding
VIC and is scalable up to large-scale projects.
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E. Case Study (RQ5)

In our experiment, we have 117 false negatives and 42 false
positives for VicDiff. We did a case study and found three
reasons attributed to the failure of VicDiff: (1) refactoring of
critical statements, (2) including non-critical statements, and
(3) failure to include critical statements.

False negative analysis. The leading cause of false neg-
atives (FN) is that some statements in the V(CSeq un-
dergo refactoring that does not affect the existence of the
vulnerability. For example, CVE-2016-10044 was refactored
from return mount_pseudo(fs_type, “aio:”, NULL, <&ops,
OxalOalOal); to return mount_pseudo(fs_type, "aio:”, NULL,
&ops, AIO_RING_MAGIC);. Although this change does not
affect the vulnerability’s existence, the mismatch causes VicD-
iff to terminate too early. Another reason is the inclusion
of non-critical statements into V'CSeq, whose subsequent
refactoring also leads to mismatches. For instance, in CVE-
2023-3776, the V(CSeq includes the non-critical statement
else if (head->mask != OxFFFFFFFF), whose modification
is irrelevant to the vulnerability but causes a match failure.

False positive analysis. The main reason for FP is the
failure to include critical statements. For example, CVE-2023-
3212 is a Use-After-Free vulnerability. Our tool automatically
extracted a vulnerability-critical statement sequence that in-
cludes three statements. However, another critical statement
ret = gfs2_trans_begin(sdp, 0, sdp->sd_jdesc->jd_blocks) is
located in a function other than the one in the patch. Therefore,
it was not included in the extracted sequence by VicDiff.

The findings suggest that VicDiff can be improved by
better matching strategy for refactoring and more accurate
identification of critical statements.



VII. DISCUSSION
A. Scope and Limitations

The datasets in our evaluation contain only C/C++ projects.
Because the syntax, semantics, and types of vulnerabilities
of one language are different from those of other languages,
our approach cannot be used directly on other languages.
Nevertheless, it is promising to extend to other languages
such as Java and Python with specific adaptations. Our ap-
proach is limited to single-file patches and in-function analysis
due to challenges such as state explosion when construct-
ing vulnerability-critical statement sequences for multi-file
patches and cross-function analysis. We argue that while most
statements on the path to the vulnerability triggering point
are essential, when a new vulnerability is introduced, during
version upgrades, the most critical statements lie around the
patch statements, so it is effective to consider only in-function
analysis.

B. Applicability

Our approach produces vulnerability-critical statement se-
quences with minimum length. Therefore, even if earlier
versions of the vulnerable file underwent radical code changes,
the adverse effect will be minimized. The availability of
vulnerability patches is required. Although some patches are
hard to find, in most cases, the patches are available from the
official websites or can be identified in the commit history.
Another concern is the incorrectness of patches. The errors
in the patches primarily concern the correction logic for the
vulnerabilities, such as the insert statements in the patch.
However, when the variables associated with the vulnerability
are correctly identified, the performance of our algorithm will
not be adversely affected. For any new CVEs, our approach
is applicable as long as patches are available.

VIII. RELATED WORK

Patch based detection for VIC Sliwerski et al. [15]first
developed the method to detect bug introduction changes,
which was later named B-SZZ (basic-SZZ) and improved
as AG-SZZ [24], DJ-SZZ [25], MA-SZZ [26], and L&R-
SZ7 |27)]. However, these methods primarily focus on deletion
statements in patches but fail to consider other statements that
contribute to the bug. V-SZZ [16] is based on the assumption
that vulnerabilities are introduced in the initial version that
are related to the deletion statements. This method signifi-
cantly improved the recall rate compared to other methods.
However, its assumption is not always valid, and its failure to
account for renaming behaviors in historical versions limits its
improvement in precision and recall. Shi et al. [17]] employed
a method based on manually defined vulnerability functions to
accurately identify vulnerabilities-affected versions. However,
it has a heavy dependence on manually defined rules, limiting
its adaptability in large-scale data sets. He et al. [28]] utilized
information from developers’ changelogs to improve the preci-
sion. However, they applied matching of deletion statements to
detect the initial vulnerable version in earlier versions, such
as SZZ. Our approach is also patch-based and outperforms
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other work in the precision of vulnerability logic by patching
patterns analysis.

Triggering analysis based detection for VIC If a vulner-
ability can be triggered with a seed input, it can safely claim
that the software version under test is vulnerable. Fuzzing tech-
nique is generally used for finding unknown vulnerabilities.
Directed fuzzing can also be used to verify that an earlier
version of software is vulnerable to a known CVE [29]], [30]],
[31], [32]. However, it is usually tough to reach and trigger
a vulnerability. It takes time, especially for vulnerabilities
with deep paths and complicated triggering conditions. The
execution traces of Proof of Concept (PoC) are used to guide
seed generation [33]] or symbolic execution [23] to verify if
earlier versions are vulnerable; however, PoC for a CVE is not
commonly available.

Al assisted detection for VIC Machine learning can be
used to train models on vulnerable source files and other
vulnerability reports to detect known and unknown vulnerabil-
ities [34], [33], [36], [377]. However, these methods face a sig-
nificant challenge: the changes between earlier vulnerability-
related commits are often subtle, making it difficult for
machine learning algorithms to distinguish these variations.
Risse et al. [38] conducted research and experiments to
confirm the existence of this problem. Large language models
(LLMs) [39], [40], [41], [42]] are applied not only in natural
language processing but also in programming language and
vulnerability detection. Although they are promising in assist-
ing the understanding of vulnerability reports and vulnerability
logics of patches, it was demonstrated that the state-of-the-art
LLMs are challenging to capture the nuanced semantics among
patched and unpatched file versions [43]].

Known vulnerability detection Vulnerability introducing
commit identification is a specific case of the known vul-
nerability detection. Open source tools such as SonarQube
and CppCheck are used for general-purpose security review
of source code and are not capable of accurately identifying
VIC. Clone detection [44]], [43]], [46]] is an important technique
to detect known vulnerabilities in projects with source code
reuse. The method is based on comparing the vulnerable
files to the files from other projects that possibly reuse the
known vulnerable components. This method is based on the
assumption that if a file is similar to the vulnerable file, then it
is also vulnerable. However, this approach is not suitable for
identifying VIC, as files from earlier versions are primarily
similar to the vulnerable file. Patch presence detection [47]],
[48] is based on comparing the patch with files. If the patch is
present in a file similar to the vulnerable file, the file is fixed
to prevent vulnerability. However, the method cannot be used
for VIC identification, because most patches are developed for
the latest version; the patch for the earlier version simply does
not exist.

IX. CONCLUSION

Identifying VIC is an important and challenging problem.
To utilize the rich semantics in the patches, we propose the
concept of patching pattern and the technique of differential



analysis. By focusing on the differences in statements’ lo-
cation, operator, and parameters in the control of flows of
vulnerable and patched files, we can capture the nuances
of patching semantics and generate the vulnerability-critical
statement sequence. Our method is a lightweight static analysis
of the patches and commits, making it efficient and scal-
able. The experimental results demonstrate that the proposed
method significantly outperforms the existing approaches in
accuracy.
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APPENDIX A
MOTIVATING EXAMPLES FOR M PATTERNS

Pattern M.1 CVE-2023-40791 [49] is a vulnerability of
memory leak or reference count overflow. As shown in Figure
E], this vulnerability involves an error in extract_user_to_sg()
function in the Linux kernel, which releases a user space page
that is still pinned. The patch replaces put_page() (line 4) with
unpin_user_page() (line 5), to unpin the page and decrease the
reference count, which fixes the problem. By removing line 4
and adding line 5, the deletion statement in CFG of F, and
the insertion statement in CFG of F), are in the same position
of the same function extract_user_to_sg, and the positioning
nodes, including line 3 (while) and line 6 (return) in the two
CFGs, remain unchanged, so that the control flows through this
pair of statements in F,, and F}, are identical. According to the
rule of fully identical positioning nodes, this pair of deletion
and insertion statements is classified as Pattern M.1. According
to the vulnerability-critical statement sequence extraction rule
in Pattern M.1, line 4 in VCSeq.

1 @@ -1148,7 +1148,7 @@ static ssize_t extract_user_to_sg(struct iov_iter
*iter,

2 failed:

3 while (sgtable->nents ; sgtable->orig_nents)

4 - put_page(sg_page(&sgtable->sgl[-sgtable- >nents]));

5 + unpin_user_page(sg_page(&sgtable->sgl[—sgtable->nents]));
6 return res;

Fig. 9. CVE-2023-40791.

Pattern M.2 CVE-2023-1476 [50] is a use-after-free vul-
nerability. As shown in Figure [I0], when a thread is in a
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mremap() system call, the move_page_tables() function is used
to migrate page table entries from an old virtual address range
to a new one. If another thread (e.g., try_to_unmap_one())
simultaneously performs reverse mapping (rmap) operations
and accesses the old page address, a race condition may occur.
If the rmap lock is not held by the first thread, the old physical
page (old_pfn) is freed while stale TLB entries still reference
it. User-space accesses to new_addr may still point to the
freed old_pfn, resulting in illegal memory access or a use-after-
free vulnerability. The patch addresses this issue by replacing
need_rmap_locks() with a forced true value in two calls to
the move_pgt_entry() function (by removing lines 3 and 8§,
and adding lines 4 and 9). This modification ensures that the
rmap lock is always acquired when performing page table
migrations at the PMD or PUD level.

By removing line 3 and adding line 4, the deletion state-
ment in the CFG of F, and the insertion statement in the
CFG of F), appear in the same position within the function
move_page_tables, as their previous and subsequent position-
ing nodes, such as line 2 and line 5, remain unchanged. This
ensures that the control flows through this pair of statements in
F, and F), have identical previous and subsequent positioning
nodes. According to the rule of identical previous and sub-
sequent positioning nodes, this pair of deletion and insertion
statements is classified as Pattern M.2. The same applies to
line 8 and line 9.

Note that lines 2—-3 and 7-8 are split across two lines due to
the length of the statements. For analysis purposes, we treat
each pair as a single statement. According to the extraction
rule defined for vulnerability-critical statement sequences in
Pattern M.2, we directly trace back to lines 2, 3, 7, and 8 in
earlier commits.

l@@ -504,7 +504,7 @@

vm_area_struct *vma,

unsigned long move_page_tables(struct

2 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,

3 - old_pud, new_pud, need_rmap_locks))

4 + old_pud, new_pud, true))

5 continue;

6 @@ -504,7 +504,7 @@ unsigned long move_page_tables(struct

vm_area_struct *vma, gfp_mask)
if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
old_pud, new_pud, need_rmap_locks))

+ old_pud, new_pud, true))

7
8
9
0 continue;

1

Fig. 10. CVE-2023-1476.

Pattern M.3 CVE-2023-45871 [51] is a vulnerability of
incorrect calculation of buffer size. As shown in Figure [T T] the
igb_set_rx_buffer_len() function is responsible for configuring
the size of each receive ring buffer. If the buffer is too
small, it may not be able to accommodate the actual incoming
network frames, under one of two conditions: (1) the frame
size exceeds the maximum value allowed by the default skb
construction (IGB_MAX_FRAME_BUILD_SKB); or (2) the
hardware enables the Store Bad Packet (SBP) flag, allowing
the reception of erroneous frames for analysis or logging.
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In the earlier version, in line 12, only the first condition
was checked. However, this ignored the case where the SBP
flag is set. In that situation, the receive buffer must also be
large enough to hold “bad frames”; otherwise, it may lead
to memory overwrite or packet loss. Lines 12, 13, 16, and
17 collectively introduce a new condition in the patch: if the
EI000_RCTL_SBP (Store Bad Packet) flag is set (line 17),
the large buffer is forcibly enabled. This ensures that, even
if the frame size does not exceed the skb construction limit,
sufficient buffer space is still allocated when SBP is enabled.

By removing line 12 and adding line 16, the deletion
statement in the CFG of F), and the insertion statement in the
CFG of F), appear in the same function extract_user_to_sg,
with identical previous or subsequent positioning nodes—for
example, line 11 remains unchanged in both CFGs. Moreover,
both line 12 and line 16 are if statements, indicating the
same type of control structure. According to the rule of
identical previous or subsequent positioning nodes with the
same control statement type, this pair of deletion and insertion
statements is classified as Pattern M.3.

1 @@ -4814,6 +4814,10 @ @ void igb_configure_rx_ring(struct igb_adapter
*adapter,

2 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3 struct igb_ring *rx_ring)
4

5 + #if (PAGE_SIZE <8192)
6 + struct e1000_hw *hw = &adapter->hw;

7 + #endif

8 /* set build_skb and buffer size flags */

9 clear_ring_build_skb_enabled(rx_ring);

10 @@ -4824,10 +4828,9 @@ static void igb_set_rx_buffer_len(struct
igb_adapter *adapter,

11 #if (PAGE_SIZE <8192)

12 - if (adapter->max_frame_size <= IGB_MAX...)
13 - return;

14 -

15 - set_ring_uses_large_buffer(rx_ring);

16 + if (adapter->max_frame_size >IGB_MAX... ||
17 + rd32(E1000_RCTL) & E1000_RCTL_SBP)

18 + set_ring_uses_large_buffer(rx_ring);

19 #endif

20 }

Fig. 11. CVE-2023-45871.

Pattern M.4 CVE-2023-46862 [52] is a vulnerability of null
pointer dereference. As shown in Figure the vulnerability
is caused by a race condition: when io_uring_show_fdinfo()
attempts to access the pid and cpu information of the sg-
>thread, another thread may concurrently free the data struc-
ture associated with the SQ (Submission Queue) thread. This
can result in sq->thread == NULL, and any further access to
sq->thread will trigger a NULL pointer dereference. Although
lines 17 and 18 include a sqg conditional check, it is not
sufficient. If the sq->thread is freed immediately after the
check (due to the absence of proper locking), it can still lead
to a NULL pointer dereference. To address this, lines 8 and
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13 introduce a lock acquisition (sq->lock) before accessing
sq->thread, ensuring the pointer remains valid during use.

In the patch, lines 17-20 fall under Pattern M.4 (Identi-
cal vulnerable operators). The data flow context statements
of the parameter sq flowing through line 17 (seq_printfim,
"SqThread:\t%d\n”, sq ? task_pid_nr(sq->thread): -1);)
and line 18 (seq_printfim, “SqThreadCpu:\t%d\n”, sq ?
task_cpu(sq->thread): -1);) are line 3 (sq = ctx->sq_data;)
and line 5 (sq = NULL,), respectively.

l1@@ -143,13 +143,19 @@ __cold void io_uring_show_fdinfo(struct
seq_file *m, struct file *f)

2 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
3 - sq = ctx- >sq_data;
4 - if (Isq->thread)
51 sq = NULL;
6 +  struct io_sq_data sq = ctx- >sq_data;
7 +
8 + if (mutex_trylock(&sg->lock)) {
9 if (sq->thread) {
10 + sq_pid = task_pid_nr(sq->thread);
11 + sq_cpu = task_cpu(sq->thread);
12 + }
13 + mutex_unlock(&sq->lock);
14 + }
15 }
16
17 - seq_printf(m, "SqThread:\t%d\n”, sq ? ...(sq->thread)...);
18 - seq_printf(m, "SqThreadCpu:\t%d\n”, sq ? ...(sq->thread)...);
19 + seq_printf(m, "SqThread:\t%d\n”, sq_pid);
20 + seq_printf(m, "SqThreadCpu:\t%d\n”, sq_cpu);

seq_printf(m, “UserFiles:\t%u\n", ctx->nr_user_files);

Fig. 12. CVE-2023-46862.

Pattern M.5 The patch is the same as Pattern M.3
of CVE-2023-45871, shown in Figure E} Lines 15 and
18 represent the setting of a flag in the rx_ring ob-
ject, indicating that the ring should use large-page mem-
ory allocation. These match the criteria of Pattern M.5
(Identical vulnerable statements) and are thus classified
under Pattern M.5. The control predecessor and succes-
sor nodes of line 18(set_ring_uses_large_buffer(rx_ring),)
are line 16 and line 17(if (adapter->max_frame_size
>IGB_MAX_FRAME_BUILD_SKB ||rd32 (EI000_RCTL) &
E1000_RCTL_SBP))

APPENDIX B
DETAILS OF THE CASE STUDY

We present two case studies in detail, which highlight the
failure modes and potential areas of improvement for VicDiff.
False negative analysis. For example, in CVE-2023-
45863(Figure @I) [53], which is an Out-of-Bounds Write
vulnerability, the root cause lies in the lack of validation after
subtracting cur from length. If length becomes negative or



zero, subsequent operations such as memcpy or *(path + —
length) may result in out-of-bounds writes. For this vulnera-
bility, our tool extracted a vulnerability-critical sequence that
includes lines 2, 5, 15, 18, and 23. During the process of
tracing back to the VIC, the original line 15 in the code
path = kmalloc(len, gfp_mask); was refactored to path =
kzalloc(len, gfp_mask),, a change that preserves semantics, but
alters syntax. Because this change caused the vulnerability-
critical statement sequence to no longer match exactly, the
tool incorrectly concluded that earlier versions did not contain
the vulnerability, resulting in a false negative.

1 @@ -121,12 +121,16 @@ static void fill_kobj_path(const struct kobject
*kobj, char *path, int length)

2 length -= cur;

3 + if (length <= 0)

4 + return -EINVAL;

5 memcpy(path + length, kobject_name(parent), cur);

6 *(path + —length) = */’;}

7 pr_debug(“kobject: *%s’ (%p): %s: path = *%s’\n”, kobject_name

(kobj),kobj, __func__, path);

8 +

9 + return O;

10 @@ -141,13 +145,17 @@ char *kobject_get_path(const struct kobject
*kobj, gfp_t gfp_mask)

11 +retry:

12 len = get_kobj_path_length(kobj);
13 if (len == 0)

14 return NULL;

15 path = kzalloc(len, gfp_mask);

16 if (!path)

17 return NULL;

18 - fill_kobj_path(kobj, path, len);
19 +  if (fill_kobj_path(kobj, path, len)) {
20 + kfree(path);

21 + goto retry;

22 + }

23 return path;

Fig. 13. A Example of False negative.

False positive analysis. Since we adopt an automated
approach to extract the vulnerability-critical statement se-
quence within the vulnerable file and vulnerable function, the
complete vulnerability-triggering path is not fully covered. As
a result, in cases involving multi-level function calls, some
critical statements may reside outside the vulnerable function
or even outside the vulnerable file. These critical statements
are not included in the extracted sequence. However, if such
statements are modified in earlier commits, they may still have
a substantial impact on the triggering of the vulnerability,
potentially leading to false positive results.

Taking CVE-2023-3212(Figure [[4) as an example, this
vulnerability is categorized as a Use-After-Free issue. When
the function init_journal() fails, the program follows the
fail_jindex path and executes gfs2_jindex_free(), which frees
the pointer sdp->sd_jdesc and sets it to NULL. Immedi-
ately afterward, the program calls iput(sdp->sd_jindex), trig-
gering the evict() operation, which eventually leads to the
gfs2_evict_inode() function. However, gfs2_evict_inode() does
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not check whether sdp->sd_jdesc is NULL before invoking
the following line in the evict_linked_inode function: ret
= gfs2_trans_begin(sdp, 0, sdp->sd_jdesc->jd_blocks);. This
results in a dereference of a previously freed pointer, leading to
a Use-After-Free or NULL pointer dereference vulnerability.

Our tool automatically extracted a vulnerability-critical
statement sequence that includes lines 3, 21, and 23. However,
the statement that ultimately triggers the vulnerability ret =
gfs2_trans_begin(sdp, 0, sdp->sd_jdesc->jd_blocks); in the
evict_linked_inode function—was not included in the extracted
sequence. As a result, during the process of tracing back to
the VIC, the modification to this critical statement occurred
earlier than the changes in the identified vulnerability-critical
sequence. Consequently, the tool mistakenly concluded that
the vulnerability was still present in earlier versions, leading
to a false positive result.

] @@ -1419,6 +1419,14 @@ static void gfs2_evict_inode(struct inode
*inode)

2 struct super_block *sb = inode->i_sb;
3 struct gfs2_sbd *sdp = sb->s_fs_info;
4 struct gfs2_inode *ip = GFS2_I(inode);
5 struct gfs2_holder gh;
6 int ret;
7  if (inode->i_nlink sb_rdonly(sb) lip->i_no_addr)
8 goto out;
9 + [*
10 + *In case of an incomplete mount, gfs2_evict_inode() may be called
11 + *for system files without having an active journal to write to.
12 + *In that case, skip the filesystem evict.
13 + */
14 + if (!sdp->sd_jdesc)
15 + goto out;
16  gfs2_holder_mark_uninitialized(&gh);
17 ret = evict_should_delete(inode, &gh);
18 if (ret == SHOULD_DEFER_EVICTION)
19 goto out;
20 if (ret == SHOULD_DELETE_DINODE)
21 ret = evict_unlinked_inode(inode);
22 else
23 ret = evict_linked_inode(inode);

Fig. 14. A Example of False positive.



APPENDIX C
ARTIFACT APPENDIX

A. Description & Requirements

How to access

The complete artifact is available on GitHub at the following
URL: https://github.com/x-s-g/Vuln-Intro. The DOI link is
https://doi.org/10.528 1/zenodo.17064690.

Hardware dependencies

e Memory: At least 32GB RAM (e.g., we used systems
equipped with 64GB RAM in our evaluation).

e CPU: Commodity CPUs (e.g., we used Intel(R)
Core(TM) i17-14700KF or equivalent models in our eval-
uation).

Software dependencies

o python 3.13

e pycparser 2.22

e networkx 3.5

o requests 2.32.3

e Ixml 5.3.2

B. Benchmarks

Since the complete dataset used in our evaluation is large,
this artifact only includes a sample dataset for demonstration
purposes. The complete set of CVE entries and associated
data used in our evaluation can be accessed through the links
provided via DOI and GitHub.

C. Artifact Installation & Configuration

To prepare the environment for the evaluation, it is recom-
mended to create a conda environment and install all software
dependencies listed in the README file. Our release requires
no installation. Detailed instructions on using and running the
tool are provided in the README.

D. Experiment Workflow

Our workflow consists of four main components:

Data Collection: The first step of our work is designed
to support the automated collection of vulnerability-related
datasets.

Data Crawling: This phase involves processing the collected
data, including preprocessing and filtering out noise state-
ments.

Static Analysis: Perform differential analysis to extract
patterns corresponding to code statements.

Identification: Extract vulnerability-critical statement se-
quences and match them against candidate files to obtain the
final results.

E. Major Claims

(C1): The patterns we summarized have been validated on
real-world datasets. This conclusion is supported by Exper-
iment (E1), and the corresponding results are presented in
Tables II and III of the paper.

(C2): The system outperforms other approaches in terms
of accuracy on the vulnerability-introduction point detection
task. This conclusion is also verified by Experiment (E1), with
detailed results shown in Table V.
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FE Evaluation

To evaluate our work, several steps are required, including
dataset downloading and model setup. We have included the
data collection module and experiment execution module in
the artifact package to facilitate quicker reproduction of the
experimental results.

Experiment (E1) [72 human-hours + 3 compute-hours]:
This experiment performs vulnerability-introducing commit
detection on a source code dataset. Although we manually
verified only a subset of the data, the samples were randomly
selected and consist of real-world vulnerabilities, which is
sufficient to support our conclusions. Our evaluation metrics
include precision and recall.

[Preparation] After setting up the environment, the user
can utilize the scripts in the Dataset_Dataset_getCV Elink
directory to collect all CVE entries along with their corre-
sponding detailed information links. The Dataset directory
contains the code and examples for dataset collection. The
complete list of CVE entries and dataset links can be found
in CV E_list.txt.

In this project, we have only uploaded a subset of runnable
examples. The remaining examples can be automatically
downloaded and constructed using the provided crawler
scripts, load_file.py and patch_list.py. The full download
and processing of all examples is estimated to require approx-
imately 72 compute-hours.

For each CVE, the ground truth data is located in the
groundtruth.txt file within the corresponding CVE directory.
The experimental output results are stored in the CV E /result
directory, with each file named after the corresponding commit
ID.

[Execution] The Data_Crawling directory is used for
data preprocessing and filtering noise statements to obtain
vulnerability-related statements. Specifically, re.efactor.py
and filter.py output the noise statements that have been
filtered out.

The Static_Analysis directory is responsible for differ-
ential analysis and modeling of vulnerable functions by con-
structing their ASTs and CFGs.

In particular, af_cfg.py and bf_cfg.py are used to gener-
ate the control flow graphs (CFGs) of the vulnerable functions.

The Identification directory is used to extract vulnerability-
critical statement sequences and perform matching with earlier
commits and corresponding files. Patterns corresponding to
vulnerability-related statements can be obtained by running
patch_label.py, while the evolution of vulnerable function
names can be traced by running rename_lower_version.py.
Finally, the overall matching results can be obtained by
executing match.py.

[Results] The contents of the groundtruth.txt file need
to be manually analyzed to identify the actual commit that
introduced the vulnerability. Based on this analysis, the ex-
perimental output should be evaluated accordingly. The results
are consistent with those presented in Table V.
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