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Abstract—As modern vehicles evolve into intelligent and con-
nected systems, their growing complexity introduces signifi-
cant cybersecurity risks. Threat Analysis and Risk Assessment
(TARA) has therefore become essential for managing these risks
under mandatory regulations. However, existing TARA automa-
tion methods rely on static threat libraries, limiting their utility in
the detailed, function-level analyses demanded by industry. This
paper introduces DefenseWeaver, the first system that automates
function-level TARA using component-specific details and large
language models (LLMs). DefenseWeaver dynamically generates
attack trees and risk evaluations from system configurations
described in an extended OpenXSAM++ format, then employs
a multi-agent framework to coordinate specialized LLM roles
for more robust analysis. To further adapt to evolving threats
and diverse standards, DefenseWeaver incorporates Low-Rank
Adaptation (LoRA) fine-tuning and Retrieval-Augmented Gen-
eration (RAG) with expert-curated TARA reports. We validated
DefenseWeaver through deployment in four automotive security
projects, where it identified 11 critical attack paths, verified
through penetration testing, and subsequently reported and
remediated by the relevant automakers and suppliers. Addi-
tionally, DefenseWeaver demonstrated cross-domain adaptability,
successfully applying to unmanned aerial vehicles (UAVs) and
marine navigation systems. In comparison to human experts,
DefenseWeaver outperformed manual attack tree generation
across six assessment scenarios. Integrated into commercial cy-
bersecurity platforms such as UAES and Xiaomi, DefenseWeaver
has generated over 8,200 attack trees. These results highlight its
ability to significantly reduce processing time, and its scalability
and transformative impact on cybersecurity across industries.
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I. INTRODUCTION

The automotive industry is rapidly advancing toward in-
telligent, networked vehicles, integrating technologies like
autonomous driving [24], [70], V2X [52], Over-The-Air up-
dates [17], car cloud [20], and Advanced Driver Assistance
Systems [14]. While these innovations enhance functionality
and user experience, they also increase the number of Elec-
tronic Control Units (ECUs) and the complexity of topologies
and interconnectivity within the In-Vehicle Network (IVN),
significantly expanding the potential attack surface of modern
vehicles. By 2030, an estimated 95% of new vehicles will
be connected, creating a vast cyber threat landscape [1],
[69]. Another growing concern is the risk of supply chain
safety, where vulnerabilities in third-party components can
compromise overall security. As component interconnectivity
increases, so too does the number of potential attack vectors,
highlighting the need to assess both the entire vehicle and its
individual components.

In response to the growing attack surface, TARA has
become a cornerstone of automotive cybersecurity, systemat-
ically identifying, analyzing, and prioritizing security risks.
At its core, TARA involves generating attack trees and
assessing risk levels, which together provide a structured
approach for understanding and mitigating potential threats
throughout the vehicle lifecycle. TARA is also a mandatory
regulatory requirement for automotive OEMs and suppliers,
in compliance with standards such as WP29 R155e [21] and
ISO/SAE 21434 [59]. Despite its critical importance, TARA
is still largely conducted manually, making it labor-intensive,
time-consuming, and difficult to scale. Security analysts must
repeatedly perform TARA for multiple threat scenarios, an
approach that becomes increasingly impractical as vehicle
systems grow in complexity and interconnectivity. This ineffi-
ciency, combined with the rise of supply chain vulnerabilities,
highlights the urgent need for scalable, automated solutions.
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Fig. 1: DefenseWeaver is capable of automating function-level
TARA by leveraging the power of LLMs for components with
detailed attributes.

Existing datalog-based approaches [29], [54] to automate
TARA for improved efficiency primarily focus on vehicle-
level assessments, leaving a critical gap in addressing function-
level TARA, as required by WP29 R155e and ISO/SAE
21434. Vehicle-level TARA identifies overarching threats that
affect the entire vehicle but often overlooks the specific
implementation details of individual components. In contrast,
function-level TARA examines detailed functions or com-
ponents, such as battery management systems or individual
ECUs, considering their interactions, hardware configurations,
software versions, communication channels, and interfaces.
This granularity is also crucial in the context of supply chain
risks, where vulnerabilities in third-party components can
compromise vehicle security. Thus, TARA at the function
level offers deeper insight into vulnerabilities and attack paths,
making it essential for comprehensive risk management.

Moreover, existing datalog-based approaches [29], [54] rely

on predefined threat libraries, which pose major limitations
when extending to function-level TARA. These libraries lack
the granularity needed to address component-specific threats
in function-level analyses and are difficult to maintain amid a
rapidly evolving cybersecurity landscape. This raises a critical
question: Can TARA be automated to enable detailed and
adaptive function-level assessments?
Our Approach: We introduce DefenseWeaver, a novel sys-
tem that automates the function-level TARA by leveraging
component-specific details and the LLMs. By incorporating
detailed, component-specific information, DefenseWeaver dy-
namically generates attack trees and evaluates associated risk
levels. As shown in Fig. 1, users only need to define relevant
threat scenarios—DefenseWeaver then conducts the TARA
process with minimal manual input, significantly reducing
the workload on security analysts. Importantly, the system
produces both attack trees and risk assessments, two founda-
tional components of TARA. Attack trees provide structured
visualizations of potential threat paths, while risk assessments
categorize their severity, enabling prioritized and informed
mitigation. When developing DefenseWeaver, we address the
following key issues.

Representing  Complex Automotive Configurations.
Function-level automotive configurations, created during
development phases, are diagrammatic models that detail
components (e.g., hardware, software), channels, interfaces,

and their associated attributes within the IVN. A suitable
representation must balance comprehensiveness, machine-
readability, and conciseness to ensure efficient processing by
LLMs. To address this, we propose the following designs: (i)
OpenXSAM-++ Format: a structured format to systematically
represent automotive configurations, capturing detailed
attributes while preserving the logical and visual topology of
IVNs. (ii) Logical Path Extraction: abstraction of connectivity
between units for each threat scenario, omitting specific attack
techniques or procedures to reduce unnecessary complexity.
(iii) Atom Segmentation: decomposition of logical paths into
atomic structures, the minimal units that preserve essential
topology, enabling efficient and accurate analysis.

Building Attack Trees and Assessing Risk Levels with
LLMs. Generating comprehensive attack trees for function-
level TARA requires detailed component-level reasoning and
the ability to infer attack methods without relying on static
threat libraries. To achieve this, we designed a multi-agent
framework built on LLMs, with each agent fulfilling a spe-
cialized role: (i) Sub-Tree Constructor: Creates sub-trees from
atomic structures, embedding detailed attack methods for
granular analysis. (ii) Attack-Tree Assembler: Integrates sub-
trees into complete attack trees, ensuring logical consistency
and coherence between consecutive nodes. (iii) Risk Assessor:
Analyzes the feasibility of attack methods and computes the
overall risk level for threat scenarios, providing actionable
insights into potential vulnerabilities. Together, these agents
ensure comprehensive attack trees and rational risk assess-
ments aligned with standard TARA requirements.

Adapting to Evolving Threat Landscapes and Diverse
Standards. For full-lifecycle security, the TARA process must
adapt to evolving threats and various evaluation standards
across regions and stakeholders. To address this, we incorpo-
rate Low-Rank Adaptation (LoRA) fine-tuning and Retrieval-
Augmented Generation (RAG) to dynamically provide relevant
examples and tailored prompts for LLM-based agents. This
ensures DefenseWeaver accommodates diverse requirements
while maintaining compliance and practicality, enhancing its
adaptability and robustness.

We evaluated DefenseWeaver across multiple dimensions to
assess its effectiveness, adaptability, and real-world applicabil-
ity in automating function-level TARA. Deployed across four
real automotive security projects, DefenseWeaver successfully
identified 11 realistic attack paths, which were validated
through penetration testing and subsequently confirmed and
patched by the corresponding automakers and suppliers. This
demonstrated its practical value in identifying and validating
critical attack paths. Beyond automotive applications, De-
fenseWeaver was tested in non-automotive sectors, includ-
ing unmanned aerial vehicles (UAVs) and marine navigation
systems. Its successful deployment in these safety-critical
industries highlights the system’s adaptability and robustness.

In comparison to human experts, DefenseWeaver consis-
tently outperformed manual attack tree generation across six
assessment scenarios, including these four automotive security
projects, UAV, and marine navigation systems. This perfor-



mance was driven by its ability to avoid common human lim-
itations, including 1) struggled to adapt to new system config-
urations and overlooked unconventional attacks; 2) inclusion
of incorrect elements due to subjective assumptions; 3) over-
looking system-specific differences. As a result, the system
excelled in novelty (+105.00%) and configuration alignment
(+43.68%), offering a more comprehensive and high-quality
risk assessment. Though there was a slight increase in redun-
dancy (-0.90%), it reflects the system’s comprehensiveness in
mining attack paths.

Integrated into cybersecurity management systems used by
leading OEMs and suppliers like United Automotive Elec-
tronic Systems (UAES) and Xiaomi, DefenseWeaver has gen-
erated over 8,200 attack trees, showcasing its scalability and
operational efficiency. Notably, the system has enabled enter-
prises to reduce processing time, greatly improving operational
efficiency and supporting compliance with CSMS certification
under WP29 R155 regulations. In summary, this paper makes
the following contributions:

o We present DefenseWeaver, the first system to automate
function-level TARA using component-specific details
and LLMs, significantly enhancing efficiency, accuracy,
and scalability while reducing reliance on expert input.

e We propose OpenXSAM++, a structured, machine-
readable format that enables LLMs to effectively interpret
detailed automotive configurations.

o We design a multi-agent LLM framework that automates
TARA, enhanced with LoRA and RAG for adaptability
and robustness.

o DefenseWeaver has been validated in four automotive
projects and demonstrated its adaptability to UAVs and
marine systems. It is also integrated into industry systems
used by UAES and Xiaomi.

II. BASICS OF AUTOMOTIVE CYBER SECURITY
A. TARA in Automotive Industries

In the automotive industry, TARA should be conducted at
different scopes, including vehicle-level TARA and function-
level TARA, as shown in Figure 2. Function-level TARA
addresses cybersecurity threats specific to individual compo-
nents (e.g., the BCM component) or groups of peripheral
components (e.g., IVI, Gateway, OBD, and TPMS) that per-
form critical functions (Figure 2b), while vehicle-level TARA
operates at a higher level and assumes attackers cannot directly
access internal elements (Figure 2a). This distinction leads to
three main differences: (i) Function-level TARA can account
for attack entries that vehicle-level TARA may overlook. For
example, a JTAG interface connecting to the MCU, as shown
in Figure 2b, requires detailed information about the hardware
and software of internal elements (e.g., the MCU, radio
module, and SPI channel) to evaluate potential vulnerabilities
effectively. (ii) It provides more specific attack scenarios
tailored to different vehicle types, even with similar IVN
topologies. For instance, while logical attack paths like IVI-
GW-BCM may remain consistent across different vehicle mod-
els, the risk levels of these paths can vary significantly due to

differences in OEM implementations (e.g., hardware, software,
and suppliers). (iii) It enables full-lifecycle TARA with dynamic
risk assessment. Automotive systems often undergo updates,
including OTA updates, hardware replacements, and software
patches. Function-level TARA offers the flexibility to analyze
these changes in detail, ensuring threat analyses and risk
databases are updated to reflect the latest system state. This
adaptability is essential for maintaining cybersecurity across
the vehicle’s lifecycle, accounting for evolving vulnerabilities
and system configurations.

However, today’s TARA activities still rely heavily on
human analysts, and this manual approach presents two critical
limitations. First, cognitive biases, subjective assumptions, and
incomplete attention to component-specific details can produce
inconsistent or incomplete results—an issue that becomes
more acute at the function level, where far finer-grained infor-
mation must be considered. Second, because vehicle architec-
tures evolve rapidly, threat analyses and risk databases require
continual updates, which demand scarce specialist expertise
and ongoing training. Together, these challenges underscore
the need for more efficient, automated techniques that can
scale function-level TARA and sustain robust cybersecurity
throughout the vehicle lifecycle.

B. TARA Pipeline.

TARA, as outlined in ISO/SAE 21434, systematically iden-
tifies cybersecurity threats, evaluates associated risks, and
implements countermeasures to enhance vehicle security and
ensure regulatory compliance. It begins with Item Defi-
nition, where the system’s components and interfaces are
modeled, providing a basis for identifying Assets—critical
elements such as ECUs, communication interfaces, or sen-
sitive data—evaluated according to confidentiality, integrity,
and availability. Potential Threat Scenarios describe how
attackers might compromise these assets, followed by Attack
Path Analysis, often visualized with attack trees or graphs
to represent all possible routes. Next, a Feasibility Rating
estimates the effort, expertise, and resources needed for a
successful attack, while an Impact Rating quantifies possible
consequences (e.g., safety, financial, operational, privacy).
These ratings combine to yield a Risk Level, which informs
Risk Treatment Decisions—such as avoidance, mitigation,
sharing, or acceptance. Since threats evolve over time, TARA
must be continuously updated throughout the vehicle lifecycle
to ensure risk assessments remain accurate and comprehensive.

C. Mandatory Regulations

In 2021, the United Nations Economic Commission for
Europe (UNECE) introduced WP29 R155e, the first mandatory
automotive cybersecurity regulation. It established a two-tier
certification system for cybersecurity compliance: the Cyber
Security Management System (CSMS) for OEMs and the
Vehicle Type Approval (VTA) for individual vehicle types.
The CSMS focuses on manufacturers’ organizational processes
for managing cybersecurity risks across the vehicle lifecycle,
mandating that all OEMs in UNECE member countries hold
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Fig. 2: Comparison of (a) vehicle-level TARA and (b)
function-level TARA. Function-level TARA needs to con-
sider extra dimensions such as hardware configurations (e.g.,
TC399), software versions (e.g., OpenSSL 1.1.0a), commu-
nication channels (e.g., CAN bus), interfaces (e.g., JTAG),
internal connections (e.g., radio module and MCU) to com-
prehensively evaluate potential vulnerabilities.

(b) Function-level TARA

a certified CSMS. Meanwhile, the VTA ensures each vehicle
type meets specific regulatory standards through technical
tests, verifying that vehicles are developed under a certified
CSMS and can detect and respond to cyberattacks. These
certifications impose rigorous responsibilities on OEMs and
suppliers, requiring comprehensive, lifecycle-spanning cyber-
security assessments to uphold industry growth and regulatory
standards.

III. RELATED WORK

Automating Tools for TARA: Traditional TARA tools,
such as SAHARA [40], EVITA [53], HEAVENS [28][35],
and TVRA [26][27], provide systematic frameworks for iden-
tifying and assessing threats in automotive systems, relying
on methodologies like attack trees[55] or STRIDE. How-
ever, these tools are not automated, depending heavily on
manual effort and expert knowledge—an increasing challenge
in modern complex systems with numerous components and
potential attack paths. By contrast, datalog-based tools like
MulVal [46][47][48][49] automate parts of TARA by using
the logic programming language to encode vulnerabilities,
threats, and reasoning rules into a library, which then generates
possible attack paths. Building on MulVal, Saulaiman et al.[54]
and CarVal[29] tailored it for the automotive domain, with
CarVal incorporating expert interviews to manually establish
a more comprehensive threat database.

However, these datalog-based solutions remain unsuitable
for function-level TARA, which requires detailed, component-
specific assessments and must account for high system vari-
ability. Their applicability is limited by the difficulty of
constructing fine-grained threat libraries capable of distin-
guishing software versions and hardware architectures, the
high cost of maintaining these libraries amid frequent updates
and emerging risks, and the reliance on manual vulnerability
annotation in tools such as CarVal and MulVal, which restricts
scalability and responsiveness. Moreover, TARA applies to

a range of other systems—such as aircraft, ships, extended
reality (XR), and Space Information Networks (SIN)—where
constructing reusable, cross-domain threat databases remains
a major obstacle.

Attack Tree Generation: Attack trees are the core artifact
produced during TARA. By iteratively decomposing high-
level threats into concrete attack steps, they provide both a
systematic analysis framework and an intuitive medium for
communicating risk among engineers and regulators [55], [33].
Several studies have sought to automate their construction in
the automotive domain [30], [31], [16], but similarly, they are
rule-based and only work at the vehicle-level.

Success of Large Language Models (LLMs): LLMs have
profoundly advanced natural language processing and machine
learning, sparking transformative changes across diverse fields.
Since the introduction of the transformer architecture [61]
in 2017, models like BERT [18] (2018) and GPT-4 [13]
(2023) have demonstrated remarkable capabilities, owing to
billions or even trillions of parameters and training on massive,
varied datasets. They excel at generalizing across tasks and
adapting to new challenges. In cybersecurity, LLMs have
proven effective for vulnerability detection [71][50][68], code
fuzzing [43][65], phishing detection [36][32][37][39], and
content moderation [34], leveraging fine-tuning or prompting
to tailor solutions. Inspired by these advances, we ask: Can we
replace static threat libraries in traditional TARA tools with
the vast knowledge base of LLMs and thereby automate the
TARA process?

IV. DEFENSEWEAVER: APPROACH

In this section, we present the design of DefenseWeaver, an
LLM-based tool for function-level TARA automation.

A. System Overview

DefenseWeaver automates function-level TARA by leverag-
ing component-specific details and the capabilities of LLMs.
Unlike approaches relying on static threat libraries, De-
fenseWeaver dynamically infers attack methods and evaluates
risk levels using detailed component-specific information. This
scalable and adaptive system overcomes the limitations of
manual processes and static libraries, enhancing efficiency,
accuracy, and responsiveness to evolving cybersecurity chal-
lenges. Its architecture consists of five key components, each
contributing to its overall functionality and adaptability.
Automotive Configurations and Threat Scenarios (Input):
Automotive configurations detail component attributes, in-
cluding hardware setups, software versions, communication
channels, interfaces, and sub-component interactions. Threat
scenarios specify attack objectives, the endpoint, and entry
points, providing essential context for precise function-level
TARA and ensuring comprehensive vehicle configuration anal-
ysis.

Atomic Structure Representation: This component decom-
poses complex configurations into manageable units, thereby
improving TARA efficiency and accuracy. Based on the struc-
tured OpenXSAM-++ format, it constructs a directed graph to
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Fig. 3: Framework of DefenseWeaver. Given a vehicle configuration and threat scenarios, DefenseWeaver will automatically
convert the visual diagrams into proper representations (atomic structures), generate specific attack methods for each node
(sub-trees) before assembling them into attack trees, and evaluate the risk level (from 1 to 5) according to the most feasible

attack path for each threat scenario.

identify logical paths within the IVN and segments these paths
into atomic structures. Each atomic structure retains essential
topological and functional information, facilitating subsequent
LLM-based analysis.
LLM Agent-Based Attack Methods Inference: De-
fenseWeaver employs a multi-agent framework to dynamically
infer attack methods, assigning specialized roles to LLMs
such as Sub-Tree Constructor, Attack Tree Assembler, and
Risk Assessor. For example, the Assembler links sub-trees
and may request the Constructor to regenerate methods if
inconsistencies arise.
Fine-tuning and RAG for Adaptation: To adapt to dy-
namic threats and diverse standards, DefenseWeaver integrates
Low-Rank Adaptation (LoRA) fine-tuning and Retrieval-
Augmented Generation (RAG), which learns from expert-
curated TARA reports and relevant contextual information
to refine analysis and tailor it to specific requirements. This
integration ensures adaptability across regions and organiza-
tional standards by leveraging real-time and domain-specific
knowledge.
TARA Report (Output): The output is a function-level TARA
report that consolidates identified attack methods, risk levels,
and analysis results into an actionable document. It provides
detailed insights into vulnerabilities, attack paths, and recom-
mended mitigations, serving as a critical tool for automotive
OEMs and suppliers to ensure regulatory compliance and
maintain robust cybersecurity throughout the lifecycle.
Compared to datalog-based approaches, DefenseWeaver is
able to: (i) automatically identify various attack paths/methods
even with identical logical paths by considering component-
specific details, (ii) discover new attack surfaces, thereby
adapting to evolving threat landscapes and enabling full-
lifecycle assessment, and (iii) easily deploy the pipeline to
other electronic systems (e.g., UAVs and ships, etc.) for cross-
domain applicability and peripheral devices of vehicles (e.g.,
cloud services and smartphones, etc.).

B. Atomic Structure Representation

In this section, we discuss how to efficiently describe vehicle
configurations using atomic representations.

@ Node ID

@ Channel ID
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Fig. 4: A simplified IVN topology with one unique attack
endpoint (BCM-MCU) and two entrypoints (IVI and OBD)
according to given threat scenarios (e.g., disrupt the availabil-
ity of BCM-MCU). The nodes are connected with channels.

1) Comprehensive Description of Configurations: Vehicle
configurations, as illustrated in Fig.4, are often represented
by visual diagrams that depict various components and the
connections among them. These diagrams capture key design
details but are difficult to interpret automatically, which is a
significant challenge for LLM-based parsing (see Sec.IV-C)
and dataset construction (see Sec. IV-D).

To overcome this issue, we convert these visual diagrams
into a structured format called OpenXSAM++, an extension
of OpenXSAM [3] (Open Xml Secure Analysis Model).
OpenXSAM is an XML-based framework designed for infor-
mation exchange in automotive cybersecurity and risk manage-
ment. It uses standardized, machine-readable documentation
to describe assets, threats, risks, and mitigation measures.
However, its original specifications do not include several
essential elements and attributes needed to cover automotive
configurations thoroughly.

To fulfill this gap, we add a Software attribute that
specifies each component’s operating system, software bill
of materials, or active network services. We also introduce a
Hardware attribute to outline hardware modules, chips and
debugging capabilities. Furthermore, we incorporate additional
elements, such as Channel and Interface, to capture the
breadth of automotive components and their interconnections.
While these enhancements focus on vehicle systems, they are
also applicable to other electronic or electrical systems. There-
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Fig. 5: (a) Logical paths without detailed attack methods in
each node, where irrelevant and redundant components (e.g.,
B) are removed. (b) The segmented node (C') and constructed
atomic structures (C7 and Cs) are derived based on the exit
channels (e.g, channel 5 and 6) for sub-tree generation.

fore, DefenseWeaver relies on OpenXSAM++ format for
configuration representation and database construction.

2) Logical Path Extraction and Atom Construction: Ve-
hicle configurations, with their many interconnected compo-
nents, often lead to very long OpenXSAM++ descriptions
that capture comprehensive details. These extensive descrip-
tions may overwhelm LLMs when generating attack trees, as
they introduce substantial irrelevant or distracting informa-
tion [64]. Therefore, and as illustrated in Fig. 5, we refine
the OpenXSAM++ description before fed into LLMs based
on the threat scenarios in two main steps: (i) logical path
extraction to remove redundant or irrelevant components, and
(i) atom construction to split the description into several
minimal units (atoms) while preserving topology.

Logical Path Extraction. Because each threat scenario
defines a unique attack endpoint (e.g., BCM-MCU (F)) as
well as several possible entry points (e.g., IVI (A) and OBD
(D)), our goal is to identify every path from each entrypoint
to the attack endpoint (for example, A — C — F in Fig. 5a).
By doing so, we discard any irrelevant or redundant elements
(e.g., component B and channels 2 and 4) and thus focus on
components and channels that genuinely matter to the threat
scenarios. Note that these logical paths do not include detailed
attack methods per node; such methods are the core of TARA
analysis and are inferred by LLMs in later steps.

To systematically generate these paths, we build a directed
graph from the OpenXSAM-++ description and apply a depth-
first search (DFS) to find all acyclic routes connecting each
entrypoint to the attack endpoint. We remove cyclic paths (for
example, D—C— D), as revisiting a previously compromised
component provides no further insights for practical TARA. If
there are multiple possible entry points, we simply find each
path independently and merge any shared segments.

Atom Construction. Directly supplying all nodes and
channels from the extracted logical paths to LLMs may still
degrade analysis quality by overloading the model with too
much information and complex interactions. To mitigate this,
we break each logical path into smaller, more manageable
structures (i.e., atoms), while preserving the relationships

among nodes. Specifically, an atom is defined as a single
node plus all its directly connected edges (i.e., channels).
The channel attributes store references to any other connected
nodes. For instance, in Fig. 5b, node C has two incoming
channels and two outgoing channels. Parsing node C with
these channels allows the LLM to infer the previous and next
nodes from the channel attributes. Since C' links to node F
through channel 6 and to node E' through channel 5, we split
it into two atoms, C; and C5. This ensures each atom has
exactly one local attack objective (e.g., propagating the attack
to F' via channel 6, or to E' via channel 5), thereby simplifying
the subsequent inference.

C. LLM-based Attack Methods Inference

Inferring potential attack methods for each node is central
to TARA analysis, accounting for the majority of the required
time and effort. In this section, we explain how to leverage
LLMs to automate the inference of attack methods.

1) Multi-Agent Roles for Automated TARA: Component-
specific details—such as software versions, hardware configu-
rations, communication channels, and interfaces—significantly
increase the complexity of attack method inference because
the number of potential attacks can grow exponentially. Addi-
tionally, generating attack trees must factor in the interactions
between components and channels while assessing the feasi-
bility of each attack method. Consequently, it is not feasible to
generate complete attack trees using simple Q&A approaches.

Recent advances in multi-agent systems have greatly en-
hanced the capabilities of LLMs in handling complex tasks,
including software development [25][51][19][62], game sim-
ulation [67], scene simulation [63], and multi-robot systems
[41]. The key idea of multi-agent systems is to mimic human
teamwork by dividing a complex task into several simpler
subtasks, each handled by an agent with specialized skills.
Through collaboration, these specialized agents reduce the
likelihood of errors, especially in tasks with high complexity.
Drawing on this approach, we divide TARA analysis into three
subtasks, each handled by a separate LLM-based agent. Their
roles are as follows, while detailed processes are described in
Sec.IV-C2 and Sec.IV-C3:

e Sub-Tree Constructor: Generate sub-trees for each atom.
Each sub-tree focuses on a single local attack objective for a
specific node and includes comprehensive attack methods with
corresponding logical relationships (e.g., AND/OR) among the
summarized attack methods to achieve the objective.

o Attack-Tree Assembler: Merges the sub-trees produced by
the Constructor into a complete attack tree for each threat sce-
nario. The Assembler also collaborates with the Constructor
iteratively to improve the coherence of connected sub-trees
(which are generated independently from different atoms) and
to remove leaf nodes that violate user-defined constraints.

e Risk Assessor: After constructing complete attack trees for
each threat scenario, the Assessor first evaluates the feasibility
of each attack method (i.e., step feasibility). It then assesses the
cumulative feasibility of the entire tree (i.e., focusing on the
most feasible attack path) and the potential impact of the threat



scenario. Based on these assessments, the Assessor determines
the risk level for each scenario according to the ISO/SAE
21434 standard.

In practical functional-level TARA processes, there may
be tens or even hundreds of threat scenarios, necessitating
repeated application of the above steps for each scenario.
Ultimately, the TARA reports provide a comprehensive risk
distribution that summarizes the risk levels of all potential
threat scenarios for the analyzed target.

2) Attack Tree Generation: Attack tree generation aims to
construct comprehensive and coherent attack trees for given
threat scenarios. Note that, we need to generate an attack sub-
tree for each atom before assembling them into a complete
attack tree. Fig. 6 provides an example of an attack tree
that consists of sub-trees for nodes A, Cy, and I, under the
threat scenario “Disrupt the availability of BCM-MCU”. The
attack methods for each node are derived based on component-
specific details, which are hardly included in predefined static
libraries.

a) Sub-Tree Construction: To generate sub-trees, the
Constructor needs to summarize specific attack methods for
the input atoms, relating them to the threat scenario and node
attributes. However, some attributes of the node may only have
simple descriptions; for example, the software attribute of the
IVI might be as simple as “Linux 6.1”, which may cause
LLMs to overlook some attributes, resulting in incomplete
analysis. Additionally, understanding the logical connections
among the generated attack methods for each node is crucial
for improving the readability and quality of the entire attack
tree, but it is often challenging for LLMs to consider so many
details simultaneously.

To make the attack methods comprehensive and tightly
connected to the threat scenario, we adopt the concept
of Chain-of-Thought (CoT) to guide the construction
of sub-trees through the following steps: (1) attack sur-
face inference, (2) threat scenario analysis and local attack
objective understanding, and (3) attack sub-tree generation.
First, inferring the potential attack surfaces of the given node
ensures comprehensive identification of the vulnerabilities
of each component. Second, the Constructor combines the
threat scenario (e.g., “Disrupt the availability of BCM-MCU”)
and attack surfaces to infer the local attack objective (e.g.,
“Make gateway send incorrect data...” for the gateway node
and “Make IVI send erroneous lighting commands...” for the
IVI node). After that, the Constructor formulates a series of
specific attack methods closely related to the local objective,
combining key information from the node, the attack surface,
and its extensive cross-domain knowledge. Note that each
attack method contains only one operation to better support
feasibility rating in Sec. IV-C3. In other words, there might
be several attack methods required to launch an attack against
one attack surface.

As a result, the logical relationships among attack methods
are also important to demonstrate the practical attack path. If
several attack methods rely on the “Linux 6.1 attribute and
must be executed in sequence to launch an attack, the process

BCM-MCU

Sub-Tree O

Disrupt the availability of
BCM-MCU.

Send malicious UDS
packets to BCM-MCU ...
¥

Make gateway send
Incorrect data...

Fault injection
on TC399 chip ...

Gateway

Sub-Tree O

Replay malicious

channel 6. [ CAN bus signals ...

Physically cut
firmware via JTAG ...

][ Corrupt Gateway J s

I

Sub-Tree O

Fig. 6: Simplified attack tree assembled from sub-trees for IVI
(A), Gateway (C7), and BCM-MCU (F'). The realizations of
attack methods for each node are derived based on component-
specific details, which hardly be included by predefined static
libraries.
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open door commandes...

Exploit Linux 6.1
CVE-2023-0179 ...

Intercept IVI firmware during
cellular network upgrade ...

might involve obtaining the Linux system firmware from the
IVI, reverse-engineering the firmware to identify vulnerabili-
ties, and exploiting a known Linux vulnerability (e.g., CVE-
2023-0179) to gain control of the IVI. These sequential attack
methods should be connected with a logical AND. Conversely,
if completing any one of the attack methods is sufficient to
achieve the attack objective, they can be connected with a
logical OR. Therefore, based on the attack objectives, the
Constructor further analyzes the logical relationships between
the attack methods and connects them together with logical
nodes (e.g., AND and OR) to form the final attack sub-tree. For
example, as shown in Fig. 6, if the attack objective is “Make
the gateway send incorrect data to the BCM-MCU,” and
accomplishing either one is sufficient to achieve the objective
(i.e., Accessing the gateway via JTAG to corrupt the BCM-
MCU firmware or Replaying malicious CAN bus signals on
channel 6 to the BCM-MCU), they can be connected with an
“OR” node.

b) Attack Tree Assembling: The Assembler is responsible
for assembling the attack sub-trees generated by the Con-
structor into a complete attack tree. Therefore, the Assembler
needs to determine how to connect two sub-trees with multiple
attack methods. The key observation is that only attack
methods related to the channels can propagate the attack
outcomes of one component to another, which can be
easily distinguished from the attack surfaces. For example,
an attacker can exploit the IVI to replay malicious CAN bus
signals over Channel 1, conducting a Denial-of-Service (DoS)
attack on the gateway. Consequently, the Assembler connects



the sub-tree generated for the IVI to the corresponding attack
method related to the communication channel in the sub-tree
of the gateway (e.g., “Replay malicious CAN bus signals on
channel 6 to BCM-MCU.”).

In addition to simply connecting sub-trees, another impor-
tant task of the Assembler is to validate the quality of
the Constructor’s generation. For example, since these sub-
trees are generated independently, the attack methods related
to the channels (shared by two nodes) may lack coherence
due to the lack of a global perspective of both nodes. In
such cases, the Assembler can request the Constructor to
improve the coherence of these attack methods by providing
essential information about the two sub-trees (e.g., the local
attack objective of the previous node and the attack method
of the input channel of the next node). Furthermore, the
Assembler can be easily customized to adapt to users’ different
requirements by providing explicitly defined constraints for
attack methods, such as excluding social engineering attacks
(e.g., stealing key fobs or passwords), physical destruction
of components (e.g., damaging signal transceivers, cutting
hardware, or chip replacement), and physical attacks (e.g.,
side-channel analysis, fault injection, or chip decapping), etc.
Therefore, the attack method “Physically cut channel 6 will
be removed.

The main difference between the Constructor and the As-
sembler is that the Constructor focuses on generation and
inference, while the Assembler focuses on validation. There-
fore, the Assembler can double-check the generated sub-trees
and request the Constructor to regenerate some of them if
necessary.

3) Risk Assessment of Threat Scenarios: In an automotive
system—or even within a single component—there can be
tens or hundreds of threat scenarios. Therefore, it is required
to build attack trees independently for each threat scenario
in a TARA report. The next challenge is how to assess
the risk level of each threat scenario to provide an
overall analysis result to security analysts and prioritize
countermeasures. Since it is usually impossible to address all
threats simultaneously and manual analysis of all attack trees
requires a huge amount of human effort (as currently done in
industry TARA analysis), efficient risk assessment is crucial.

As suggested by the ISO/SAE 21434 standard, the risk level
of threat scenarios can be divided into two parts: overall attack
feasibility and potential impact of the threat. After determining
the scores of these two factors (i.e., high, medium, low, and
very low for attack feasibility, and severe, major, moderate,
and negligible for potential impact), the risk levels (from 1
to 5) can be summarized in a risk distribution table. An
example is shown in Fig. 7. For example, according to the
standard, a threat with High Feasibility and Serious Impact
is assigned the highest risk level 5 and decrement the risk
level as feasibility and impact decrease. Notably, threats with
a risk level greater than risk level 3 (i.e., Moderate Impact and
High Attack Feasibility; Major Impact and Medium Attack
Feasibility; Serious Impact and Low Attack Feasibility) have
practical inspection value and need to be verified in subsequent
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Fig. 7: Risk distribution for more than 100 threat scenarios
of the IVN configuration shown in Fig. 4. For each threat
scenario, the attack tree and risk evaluation will be generated
independently.

penetration testing. The Risk Assessor determines the attack
feasibility and potential impact of each threat.

a) Attack Feasibility Assessing: It is often unreliable to
directly analyze the entire attack tree to determine the feasi-
bility of a threat scenario. Therefore, our high-level strategy is
to analyze the step feasibility of each individual attack method
before evaluating the cumulative feasibility score. Further-
more, for each attack method, we score it across the following
five dimensions according to the ISO/SAE 21434 standard:
elapsed time (ET), specialist expertise (SE), knowledge of the
item or component (KoIC), window of opportunity (WoO),
and equipment (Eq). For each dimension, a lower score means
higher feasibility. To compute the step feasibility for each
node, the Risk Assessor is first required to choose a score from
a given range for each dimension, before providing a brief
explanation to ensure reasonable scores. Note that the scoring
standards may vary across different regions, companies, and
even products, which can be customized by users as discussed
in Sec. IV-D.

The attack feasibility of a specific threat scenario is deter-
mined by the most feasible attack path (i.e., the one with the
lowest overall cumulative score), although there are usually
multiple attack paths in an attack tree from leaf nodes to
the root node. Moreover, the cumulative feasibility of one
attack path is determined by the hardest attack method (i.e.,
the one with the highest score). Therefore, the principles
for computing the cumulative feasibility (divided into five
dimensions) are as follows: (1) For sequential nodes, the
cumulative scores of the current node are the maximum of the
cumulative scores of its child node and its own step-feasibility
scores; (2) For logical AND nodes, the cumulative scores are
the highest scores among their child nodes; (3) For logical OR
nodes, the cumulative scores are assigned the scores of the
child node with the lowest overall score. To summarize, the
cumulative feasibility is computed in a bottom-up approach,
and the cumulative feasibility of each first leaf node equals
its step-feasibility score. Therefore, the cumulative scores at
the root node represent the scores of the most feasible attack
path, and the sum of the cumulative scores is the overall attack



feasibility of the threat scenario.

b) Potential Impact Assessing: Assessing attack feasibil-
ity is more challenging since it involves technical details of
the system (i.e., it is product-specific). In contrast, assessing
potential impact only requires a high-level understanding of
threat scenarios and system usage. In practice, impact assess-
ment is conducted by evaluating potential consequences across
four dimensions, including Safety, Financial, Operational, and
Privacy. Since impact assessment is not product-specific, De-
fenseWeaver scores each of the four dimensions separately,
before calculating the potential impact based on the ISO 21434
standard.

D. Fine-Tuning and RAG for Adaptation

To cope with evolving threat landscapes and diverse
standards, DefenseWeaver adopts a differentiated adapta-
tion strategy: using Retrieval-Augmented Generation (RAG)
for the Risk Assessor agent and Low-Rank Adaptation (LoRA)
fine-tuning for the Sub-Tree Constructor agent. The Assessor
(which generates step-feasibility scores and impact scores)
benefits from real-time retrieval of authoritative references and
up-to-date enterprise guidelines. In contrast, the Constructor
(which builds attack sub-trees) is fine-tuned via LoRA to
internalize expert attack logic. We found that applying RAG
to the Constructor may introduce irrelevant or incompatible
examples (e.g., pulling QNX-specific nodes into a Linux
analysis), thereby degrading generation quality. LoRA fine-
tuning avoids this by embedding the correct patterns in the
model’s parameters instead of relying on potentially noisy
external retrieval.

Specifically, we leverage the OpenXSAM++ format (Sec-
tion IV-B1) with three critical fields added to each analyzed
node: “Sub-Tree” (the expert-annotated attack subtree), “Step-
Feasibility” and “Impact” (the expert-assessed scores). These
fields support our two adaptation processes. For the Construc-
tor, we construct a supervised training set using each node’s
system attributes (e.g., hardware configurations, software ver-
sions) as the input and the corresponding expert “Sub-Tree”
as the output. We then apply LoRA fine-tuning to the base
LLM using this dataset, teaching the model to generate attack
sub-trees in line with expert logic. This fine-tuning updates
only a small portion of model weights (preserving over 95%
of the original parameters), thus retaining the model’s general
language capabilities while infusing domain-specific patterns.
We also apply regularization (dropout 0.3) and early stopping
(halting training if validation F1 stagnates for 3 epochs) to
prevent overfitting. For the Assessor, we implement RAG-
based prompt augmentation by retrieving similar prior attack
methods and their scores (i.e., feasibility and impact) from our
knowledge base. An embedding-based similarity search [15],
[45] finds the most relevant historical cases (from both expert
and enterprise data), and the top matches are inserted into the
Assessor’s input prompt [38]. This gives the LLM concrete
reference points for scoring, ensuring its assessments are
grounded in authoritative examples and can dynamically adapt
to the latest enterprise context via real-time retrieval.

Our adaptation strategy is grounded in two primary
databases with domain knowledge, which feed the LoRA
training and RAG retrieval components: (i) Expert-Curated
TARA Reports: A corpus of 116 vetted automotive threat
scenarios (from an industry reference library) provides over
1,000 standardized attack sub-trees and impact scores, and
about 5,000 step-feasibility entries. The sub-trees serve as
high-quality training targets for LoRA fine-tuning, while the
score ratings populate the Assessor’s RAG reference library.
(ii) Enterprise-Specific TARA Reports: DefenseWeaver also
ingests feedback from enterprise-specific assessments col-
lected via a GUI (Section V-A). When users adjust an attack
tree or scores in practice, the corrected sub-tree is added as
incremental training data to further refine the LoRA-based
Constructor, and the updated scoring data is immediately
incorporated into the RAG retrieval library.

V. EVALUATION

In this section, we apply DefenseWeaver to real-world
scenarios and compare its attack trees with those crafted
by human experts. We demonstrate that DefenseWeaver can
identify practical attack paths (validated via penetration tests)
and produce higher-quality attack trees.

A. Implementation

Setup: We developed an interactive web application for
DefenseWeaver with a user-centered design. Users can draw or
import system models and specify a threat scenario (defining
the attack entry point(s) and endpoint). Based on this input,
DefenseWeaver automatically generates a detailed attack tree
and evaluates the feasibility of each attack path. The interface
allows users to interactively refine results: for example, they
can modify or add attack methods and logic nodes, adjust
feasibility ratings, or reuse portions of attack trees when sys-
tem components are updated. Once an attack tree is finalized,
the tool serializes it in the extended OpenXSAM++ format
(including fields such as “Sub-Tree”, “Step-Feasibilit” and
“Impact”). These results are stored as the training set for LORA
fine-tuning and update the RAG dataset for future analyses.
The base model in our implementation is ChatGPT-4 [13]. To
ensure adaptability, we perform one-time LoRA fine-tuning
of the base LLMs to align it with the DefenseWeaver, which
remains static thereafter. In contrast, the RAG corpus evolves
dynamically. As users’ TARA projects pass external audits, the
validated artifacts are manually confirmed and automatically
ingested, with updates occurring in line with project cycles.

Integration in Industry: DefenseWeaver has been inte-
grated into leading automotive manufacturers including Xi-
aomi Auto and United Automotive Electronic Systems (UAES)
as a core component of their cybersecurity solutions. Accord-
ing to system operation statistics, it has consumed around
300 million tokens in 3 months and generated more than
8,200 attack trees (around 36,500 tokens per attack tree on
average). In daily operation, the system evaluates 90+ produc-
tion threat scenarios, giving engineers continuous, fine-grained
risk visibility. Participants from these enterprise deployments



highlight DefenseWeaver’s real-world impact: The UAES se-
curity manager commented, “We rely on DefenseWeaver for
TARA analysis and attack tree generation, which has been
instrumental in achieving R155 compliance. Its efficiency
makes it indispensable for our operations.” Similarly, Xiaomi
TARA manager noted, “DefenseWeaver’s automated attack
tree generation effectively solves critical issues and greatly
improves our workflow efficiency.” These large-scale deploy-
ments prove that DefenseWeaver’s effectiveness meets the
cybersecurity demands of modern automotive development.

B. Open Science and Ethics Considerations

Since DefenseWeaver has been integrated into commercial
automotive cybersecurity management platforms, we cannot
fully open-source the source code of DefenseWeaver due to
proprietary licensing constraints. However, in accordance with
open science principles, we will release a community version
of our web application and open-source the database built from
expert-curated TARA reports in [4], thereby enabling scien-
tific research in this field. We validated DefenseWeaver on
PX4 drones and ECDIS using architectures from three recent
studies [66], [56], [57]. Our model reproduced all reported
attack paths without identifying additional ones, so we did
not pursue further disclosure. All vulnerabilities discovered in
real vehicles have been reported to the responsible parties and
have since been resolved. We have a demo video in [5].

C. Experimental Analysis on Real Vehicles

1) Vehicles Under Examination: To evaluate
DefenseWeaver’s effectiveness in function-level TARA,
we deployed it in four real automotive security assessment
projects. These involved four distinct in-vehicle components:
two Body Control Modules (BCM) in different vehicles
(Car A and Car B), one Cockpit Domain Controller (CDC,
Car C), and one Passive Keyless Entry and Start system
(PKES, Car D). The OEMs provided detailed configuration
models for each component (see Fig. 8a-8d), which we
imported into DefenseWeaver. For each case, we defined a
representative threat scenario and generated the corresponding
attack tree with feasibility and risk evaluations. In accordance
with industry practice (WP.29 R155 and ISO 21434), we
treated any path rated with at least “Medium” feasibility as
a candidate for penetration testing, since such paths warrant
deeper security analysis. Guided by DefenseWeaver’s output,
we conducted targeted security tests on Cars A-D and
ultimately confirmed 11 practical attack paths (each with risk
level > 3) via proof-of-concept (POC) exploits. (github [4]
provides the complete attack trees and detailed attack steps
for these scenarios.)

For the two BCM cases (Car A and Car B), we chose
an identical threat scenario aiming to disable the BCM'’s
door control function (i.e., compromise its availability). This
scenario has the same high-level attack entry point (the IVI in-
fotainment unit) and endpoint (the BCM’s microcontroller) in
both vehicles, following a logical path IVI—Gateway—BCM.
For Car C (CDC), the threat scenario targeted the OTA update

mechanism, aiming to install unauthorized firmware on the
CDC. For Car D (PKES), the scenario focused on unlock-
ing the vehicle’s doors without the owner’s authorization by
exploiting the wireless key system. All four components have
complex setups of hardware, software, and network interfaces,
providing a rigorous testbed for DefenseWeaver.

After DefenseWeaver generated the initial attack trees and
risk assessments for each scenario, we examined the output to
identify high-feasibility attack paths for validation. All attack
paths discussed below were rated at least “Medium” feasibility
by the system, and thus merited real-world testing. We next
describe the results for each scenario, including the proof-of-
concept (PoC) attacks we performed and key insights derived
from each case.

2) BCM: Identical Logical Paths but Different Attack Meth-
ods Due to Configuration Variations: Modern vehicle E/E
architectures are increasingly centralized, often placing a BCM
behind a gateway that mediates inbound and outbound com-
munications (e.g., software updates via Unified Diagnostic
Services, UDS). Thus, similar threat scenarios against dif-
ferent BCMs may share the same high-level logical chain
(IVI—Gateway—BCM), yet yield distinct attack paths due to
differences in hardware/software configurations. To illustrate,
we analyzed the BCM of two vehicles (Car A and Car
B, see Fig. 8a and Fig. 8b) under the same scenario of
disabling the door-unlock function. DefenseWeaver produced
similar logical attack trees for both, but with divergent specific
exploits reflecting each vehicle’s nuances. For example, Car
A’s gateway runs OpenSSL 1.1.0a, which is vulnerable to a
known buffer overflow (CVE-2016-6309 [11]), whereas Car
B’s gateway uses a newer OpenSSL 3.3 (not affected by that
CVE) but exposes a UART debug interface absent in Car
A’s gateway. DefenseWeaver accordingly identified different
feasible attack vectors: exploiting the OpenSSL CVE in Car
A for remote code execution, versus leveraging the UART
interface and a Linux kernel vulnerability in Car B.

PoC attack. We validated DefenseWeaver’s suggested at-
tack paths on both vehicles. Car A: We first obtained physical
access to the BCM’s microcontroller via its JTAG debug port
and dumped the firmware. From this, we reverse-engineered
the BCM’s seed2key authentication algorithm for the UDS
SecurityAccess service [60], giving us the ability to bypass
its security handshake. We then compromised the IVI unit
(e.g., via an existing weakness) and sent crafted TCP pack-
ets to the gateway, exploiting the OpenSSL CVE-2016-6309
vulnerability to gain a remote shell on the gateway. Using
this shell access, we injected CAN messages to the BCM,
ultimately reprogramming the BCM’s firmware once the UDS
authentication was bypassed. This multi-step attack was rated
Medium feasibility, with Major potential impact, yielding an
overall risk level 3. Car B: Here, DefenseWeaver also guides
us to reverse-engineer the algorithm for the UDS SecurityAc-
cess service in the BCM’s firmware. Using this knowledge,
we reconstructed the BCM’s unlock authentication and then
connected to the gateway via its UART interface. Through the
UART, we exploited a privilege escalation vulnerability in the
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DefenseWeaver’s ability to generate distinct attack paths by considering the component-specific details. (¢) CDC of Car
C. DefenseWeaver can comprehensively cover peripheral devices and cloud services in its anaylsis. (d) PKES of Car D.
DefenseWeaver successfully discovers recently emerged attack surfaces. (e) PX4 architecture of UAV and (f) ECDIS of Ship
show that DefenseWeaver can be applied to various electrical and electronic systems.

gateway’s Linux OS (CVE-2023-0179 in Linux 6.1) to fully
compromise the gateway. From the gateway, we were able
to send UDS commands to overwrite the BCM’s firmware.
This Car B attack path was assessed as High feasibility, Major
impact, and risk level 4.

Insights. Despite an identical high-level attack chain,
Cars A and B demanded different exploits—highlighting two
broader risk factors. (i) UDS access: Automotive security
analysts often assume that UDS-based attacks require direct
physical access (e.g., via OBD-II ports); however, our results
show that network-facing vulnerabilities can enable remote
exploitation of UDS services. (ii) Outdated software: Legacy
software versions (e.g., running an obsolete OpenSSL library)
can expose a vehicle to N-day vulnerabilities like CVE-2016-
6309, which attackers can remotely leverage. These find-
ings demonstrate DefenseWeaver’s strength in generating
distinct, practical attack paths by accounting for each
vehicle’s specific configuration. In contrast, static, datalog-
based TARA tools [29], [54] that rely on predefined threat
libraries would treat these two BCM scenarios similarly and
likely miss such configuration-dependent attack vectors.

3) CDC: New Attack Vectors from Cloud Services: Modern
intelligent vehicles often include a Central Domain Controller
(CDC) with Over-The-Air (OTA) capabilities, allowing man-
ufacturers to remotely push software updates from the vehicle
cloud. In addition, various external systems—such as cloud
servers and mobile apps—interact with the CDC without a
direct physical connection to the car, thereby introducing new

attack surfaces in automotive TARA. Attackers can leverage
vulnerabilities in the cloud infrastructure or in the CDC’s
firmware-verification logic to construct malicious update pack-
ages and bypass integrity checks, ultimately tampering with
critical components. We used DefenseWeaver to examine
the OTA update process of the CDC in Car C' (Fig. 8c),
generating an attack tree that highlights multiple threat vectors
(as detailed in github [4]). For instance, one path involves ex-
ploiting an Apache remote-code-execution vulnerability (such
as Log4j2 [10]) on the server side, or obtaining SSL certificates
and keys to perform a man-in-the-middle (MITM [2]) attack
on the HTTPS channel between the vehicle cloud and the
TBOX. Then we can tamper with the firmware update and
push it via the TBOX and gateway to the CDC-MCU.

PoC Attack. We validated this attack on Car C' by dis-
covering hardcoded CA certificates[6] and private keys in the
TBOX, which allowed us to bypass TLS/SSL verification and
execute a MITM attack on the connection between the cloud
and the TBOX. As a result, we could inject malicious code
into the OTA firmware. Furthermore, reverse-engineering the
firmware’s verification process revealed a logical flaw: the
CDC would proceed with an upgrade even if the firmware’s
hash check failed. Exploiting this flaw, we successfully in-
stalled our modified firmware onto the CDC-MCU. This attack
path has an overall feasibility of Medium, a potential impact
classified as Serious, and a final risk level of Level 4.

Insights. This attack path demonstrates how OTA updates
delivered through the vehicle cloud can serve as a conduit for
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injecting malicious code into a modern vehicle’s core systems.
Additional external components—such as smartphones (see
Fig. 8d), satellites, or ground stations—also act as potential
off-vehicle entry points for functional-level TARA, expanding
the overall attack surface beyond in-vehicle networks. The
results show that DefenseWeaver can comprehensively
cover peripheral devices and cloud services in its analysis,
providing a more holistic view of potential attack vectors
in modern vehicles. However, it is difficult for the datalog-
based approaches [29], [54] to capture all of these off-vehicle
attack surfaces due to their static library-based design.

4) PKES: Discovering Unforeseen Attack Surfaces: Passive
Keyless Entry and Start (PKES) systems provide convenient
vehicle access by using radio-frequency signals to unlock and
start the car. Nevertheless, they are susceptible to relay attacks,
wherein attackers trick the system into believing the key fob
is nearby, enabling unauthorized entry or ignition. To mitigate
such threats, the latest PKES implementations (Fig. 8d) in-
tegrate Ultra-Wideband (UWB) technology according to the
CCC protocol. UWB offers a “secure ranging” feature that
effectively counters standard relay attacks [22]. Even so,
advanced PKES technology can still present unforeseen attack
surfaces. Using DefenseWeaver, we simply added a software
annotation indicating that “the latest PKES system adds UWB
modules to prevent relay attacks.” We then configured a
threat scenario (attack entry at the user’s phone and attack
endpoint at the door motor) under the objective “illegally
open the car door.” The resulting attack tree (as detailed in
github [4]) reveals that bypassing PKES involves two core
steps: first, intercepting UWB signals and injecting malicious
ones to disrupt the normal UWB ranging process; second,
using a relay attack against the system’s Bluetooth Low Energy
(BLE) channel. Together, these actions deceive the PKES into
maintaining outdated distance data, enabling an unauthorized
door unlock once the authorized user moves away.

PoC Attack. We validated DefenseWeaver’s results on
Car D. After sniffing both the UWB and BLE signals, we
identified system parameters like connection intervals and
window offsets on BLE. By continually interfering with UWB
ranging while the legitimate user was present, the PKES
retained the user’s proximity data even after the user left.
We then relayed the BLE signals to complete the unlock
procedure. In this scenario, the system relied on outdated
UWB measurements, thus erroneously concluding that the user
was still nearby. This attack path has an overall feasibility of
High, a potential impact classified as Serious, and a final
risk level of Level 5.

Insights. This attack path illustrates how UWB—though
designed to bolster PKES security—can itself become an
attack surface when coupled with relay attacks on other
channels. Moreover, DefenseWeaver demonstrates its ability
to synthesize various methods (BLE, UWB manipulation,
and relay attacks) into coherent, novel attack paths.
Such comprehensive analyses underscore the importance of
integrating both traditional and emerging communication stan-
dards in function-level TARA. In comparison, the datalog-

based approaches [29], [54] can only reason the known attack
surfaces based on predefined threat libraries.

5) Responsible Disclosure and Summary: All penetration
tests were conducted jointly with the vehicle manufacturers
under ethical guidelines. In total, we identified 11 distinct
vulnerabilities/attack paths across Cars A-D, each of which
was promptly reported to the responsible OEM or supplier
and has since been patched. Due to confidentiality agreements,
we omit specific manufacturer names and certain low-level
details. These four cases cover a wide range of automotive
technologies (multiple ECUs, wireless interfaces, OS software,
etc.), and in each case DefenseWeaver discovered component-
specific attack methods beyond the scope of existing threat
libraries. Traditional approaches require analysts to manually
select likely vulnerabilities from a database and write custom
reasoning rules for each scenario, whereas DefenseWeaver
automates the end-to-end process of attack tree generation and
feasibility evaluation. The real-world results above confirm
that DefenseWeaver can drastically reduce the manual effort
while uncovering critical, non-intuitive attack paths in complex
vehicle systems.

D. Case Studies on Other Electronic Systems

Although our primary evaluation is in the automotive do-
main, DefenseWeaver’s methodology is general. We performed
two case studies on non-automotive cyber-physical systems to
demonstrate cross-domain applicability.

1) Systems Under Examination: Leveraging its broad
knowledge base, DefenseWeaver can generate attack trees for
diverse embedded systems (without any code modifications).
We applied it to two distinct platforms: (i) a PX4-based
unmanned aerial vehicle (UAV) system with an inertial mea-
surement unit (IMU) and GPS sensors, and (ii) an Electronic
Chart Display and Information System (ECDIS) used in ship
navigation (responsible for map display, route planning, etc.).
In these case studies, we did not perform live penetration tests;
instead, we built system models from publicly available docu-
mentation [42], [9] and prior research [66], [56], [5S7]. We then
compared DefenseWeaver’s generated attack paths to known
vulnerabilities reported in the literature. The complete attack
trees for the UAV and ECDIS are provided in github [4]).
These experiments demonstrate that DefenseWeaver’s ap-
proach to function-level TARA can be easily extended to
complex, safety-critical environments beyond automotive.

2) Unmanned Aerial Vehicle (UAV): Drones require thor-
ough threat assessments, as mandated by national and interna-
tional safety standards (e.g., GB 42590-2023 [8]). These stan-
dards span the entire drone lifecycle, from data-link protection
to electromagnetic compatibility. A recent work [66] manually
identified 2 novel multi-round attack paths to degrade drone’s
sensor reliability over time. By applying DefenseWeaver to
a PX4-based UAV (Fig. 8e), we identified not only these
two reported 2 multi-round attack paths in [66], but also
1 additional attack path against drone clusters. (i) Electro-
magnetic Interference on the IMU. Broadcasting interference
signals at frequencies matching the MPU6000 hardware chip
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can distort gyroscope outputs. The resulting unstable flight
dynamics cause blurred images that lead to target misclassi-
fication. (ii) Forged GPS Signals. Emitting counterfeit GPS
data disrupts accurate positioning, again producing blurred
or misplaced images and undermining flight autonomy. (iii)
Swarm-Level Manipulation for Drone Clusters. Exploiting the
communication channels between drones in a swarm allows
attackers to tamper with the collective positioning signals. This
can delay or misroute multiple drones, potentially compro-
mising time-critical missions like search and rescue. Though
this attack path is not covered and validated in [66], it is
well discussed in [58]. The above 3 diverse paths highlight
how DefenseWeaver takes hardware, software, and operational
context into account—ultimately revealing new drone-specific
vulnerabilities (e.g., swarm communication) not covered in
earlier automotive studies.

3) ECDIS of Ships: Ships also face stringent cybersecurity
requirements. For instance, the UR E27 Rev.1 standard [12]
explicitly mandates risk assessments for on-board systems
and equipment. Existing works [56], [57] show that ECDIS
platforms often contain high-risk vulnerabilities such as (i)
outdated services (e.g., SMB or RDP) lacking authentication
and (ii) third-party software (e.g., web servers) prone to N-
day exploits such as Log4j2 or CVE-2021-41773. By applying
DefenseWeaver to a typical ECDIS system (Fig. 8f), we also
identified the 2 known threats and 1 additional risk factor:
(i) Exploiting Remote Desktop Services. Vulnerabilities like
CVE-2019-0708 enable unauthorized remote access, poten-
tially leading to arbitrary code execution. (ii) Leveraging
Third-Party Software Flaws. Known Apache server exploits
allow attackers to exfiltrate data or upload malicious code.
(iii) Malicious ENC Files and USB Interfaces. By injecting
counterfeit electronic navigational chart (ENC) files through
the system’s USB update port, an attacker can alter critical
route data. This tactic not only exploits a physical interface
but also poses immediate risks to maritime navigation safety.
Although this attack path is not covered and validated in [56],
[57], it is involved in the ECDIS cybersecurity guidelines [7].

E. Comparison with Human Experts

While the above experiments show DefenseWeaver guiding
the discovery of real attack paths, we also quantitatively
evaluated the quality of its attack trees against those designed
by human experts. We assembled a seven-member review team
of security professionals (with backgrounds in automotive
TARA, penetration testing, and cybersecurity management;
see Appendix A, Table II) to score attack trees generated
by DefenseWeaver versus those created by human experts.
Experts were blinded to LLM involvement, and at least four
weeks elapsed between their own tree design and scoring tasks
to avoid anchoring effects. Each human expert was required
to spend sufficient time to familiarize themselves with the
system configurations for the six scenarios we considered
(four automotive components and two additional case-study
systems) before independently creating attack trees. The re-
view team assessed all attack trees on five key dimensions

of quality—logical rationality, non-redundancy, novelty, level
of detail, and configuration alignment—following ISO/SAE
21434 guidelines and industry best practices. During rat-
ing, we employed a double-blind review process and lightly
paraphrased LLM-generated trees to mask their provenance
(without altering content). Each dimension was rated on a 1-4
scale (higher is better). DefenseWeaver’s trees were rated by
all seven reviewers, whereas each expert-designed tree was
scored only by the other six reviewers (preventing authors
from rating their own work). Scores for each dimension
were averaged across reviewers, and we visualized overall
performance using five-dimensional radar charts (Fig. 9). We
believe seven reviewers were sufficient, as the seventh expert’s
trees were already subsumed by the outputs of the prior six
experts, indicating output saturation. Further details on the
evaluation process are provided in Appendix A.

Results and Analysis: We identify three major limitations
in the human-crafted attack trees that DefenseWeaver was
able to overcome: (i) Human experts struggled to adapt to
new system configurations, often failing to consider uncon-
ventional attacks outside their experience. (ii) Some expert-
designed trees introduced superfluous or incorrect elements
(e.g., non-existent components) based on subjective assump-
tions. (3) Experts sometimes overlooked critical yet subtle
system-specific differences (for instance, they treated the two
BCM cases too similarly, missing Car B’s UART vector).
By avoiding these issues, DefenseWeaver’s trees exhibited
significantly higher novelty and system alignment. On aver-
age, as shown in Table I, the DefenseWeaver-generated trees
scored +105.00% higher in novelty (identifying many more
unconventional attack paths) and +43.68% higher in system
alignment (strictly mapping to actual system components and
interfaces) than the human experts. DefenseWeaver’s trees
also contained far more detail in attack steps (+41.46% on
the detail dimension), providing granular step-by-step paths.
The logical rationality of DefenseWeaver’s attack trees was
on par with experts (a slight +5.79% gain in rationality
score). Notably, DefenseWeaver’s comprehensive approach led
to only a 0.90% increase in redundancy, indicating it did not
suffer from excessive duplicate paths despite its thoroughness.
Overall, in all six scenarios, DefenseWeaver’s automatically
generated attack trees achieved equal or higher scores than
the human-crafted trees in every dimension. Notably, the time
consuming of DefenseWeaver for each case is only 0.43min,
which is significantly reduced by 98.8% compared with that of
human experts. These results indicate that DefenseWeaver

TABLE I: Overall Comparison with Human Experts (Average)

RAT! NRD?> NOV® LOD* CA’ Time
DW* 3.62 3.67 2.73 388 371 043m
Expert 3.43 3.70 1.33 274 258 36.12m

! RAT: Logical rationality 2 NRD: Non-redundancy > NOV: Novelty
4 LOD: Level of detail > CA: Configuration alignment & DW: De-
fenseWeaver
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Fig. 9: Comparison of DefenseWeaver and seven human experts in different dimensions.

can produce attack trees of substantially higher quality
than expert-driven methods, offering more complete cov-
erage of potential threats without sacrificing coherence or
correctness.

VI. DISCUSSION

While DefenseWeaver already automates the generation and
assessment of attack paths, it still relies on user-provided threat
scenarios, which are high-level concepts that do not account
for component-specific details. Recognizing the importance of
automating threat scenario generation, we propose a potential
approach to achieve this by integrating the STRIDE [44]
threat modeling framework with the atomic structures of
OpenXSAM++ using LLMs. This approach could involve
three key steps: (i) extracting expert-designed threat scenarios
from historical TARA reports, (ii) manually annotating these
scenarios to classify them into one of the six STRIDE threat
categories (Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privilege), and
(iii) associating these scenarios with the atomic structures of
target components in OpenXSAM-++ to create structured train-
ing data pairs. This methodology could enable comprehensive
and systematic automation of threat scenario generation, lever-
aging the structured representation of OpenXSAM++ and the
adaptability of LLMs to potentially enhance scalability and
coverage across diverse electronic systems. Future work could
explore the feasibility and implementation of this approach to
improve the automation level of DefenseWeaver.

Although recent research [23] notes that fully formaliz-
ing attack tree correctness remains an open problem, in
DefenseWeaver we adopt the five ISO 21434 dimensions
(elapsed time, specialist expertise, item knowledge, window of
opportunity, and equipment) to assess the feasibility of attack
paths and confirm high-priority paths through penetration
testing. Future work could explore techniques such as model
checking or automated theorem proving to achieve stronger
formal guarantees. To enhance the security and robustness
of DefenseWeaver, we have implemented two measures: (i)
prompt-injection defenses to mitigate adversarial inputs to the
LLM, ensuring the safety of model behavior, and (ii) strict
OpenXSAM-++ schema checks to reject malformed or incon-
sistent inputs, thereby improving the robustness of generated
attack trees. These implemented mechanisms can collectively

strengthen the system’s resilience against erroneous or mali-
cious inputs.

DefenseWeaver is designed to analyze electronic systems
where all components, including software, hardware, inter-
faces, and communication channels, can be represented within
the OpenXSAM++ framework. Additionally, the internal re-
lationships of these components must be discretizable into
a graph structure with clear node-edge representations. Sys-
tems that do not meet these criteria fall outside the scope
of DefenseWeaver. For example, quantum key distribution
networks, which rely on quantum processes not representable
in OpenXSAM++, are one such case.

VII. CONCLUSION

We introduced DefenseWeaver, a novel system that auto-
mates function-level TARA by leveraging LLMs. Unlike ex-
isting methods bound by static threat libraries, DefenseWeaver
adapts to evolving vulnerabilities due to the adoption of LLMs,
offering flexibility across diverse standards and platforms. In
extensive evaluations on four real automotive security projects,
DefenseWeaver uncovered 11 practical attack paths, each
validated via penetration testing and responsibly disclosed.
We also deploy DefenseWeaver in UAV and ECDIS systems
to demonstrate its cross-domain applicability, revealing new
attack surfaces beyond traditional automotive contexts. Inte-
grated into commercial cybersecurity management platforms,
DefenseWeaver has produced more than 8,200 attack trees
in the industry to date. Compared with human experts, De-
fenseWeaver significantly reduced time consumption of TARA
process by 98.8%. Overall, DefenseWeaver provides a robust,
adaptive approach to TARA, significantly advancing the state
of practice in automotive cybersecurity and beyond.
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APPENDIX A: COMPARISON WITH HUMAN EXPERTS

1) Study Setup: To scientifically and objectively assess
whether the attack trees designed by DefenseWeaver are supe-
rior to those designed by human experts, we conducted a three-
step scoring process: establishing scoring criteria, designing
attack trees by experts, and scoring by experts.

TABLE II: Seven-member review team

ID Exp' Co. Position® Task*
Expert A 5 C3 TARA, Test Dsgn, Scr
Expert B 3 C3 TARA, Test Dsgn, Scr
Expert C 10 C3 TARA, Test Crt, Dsgn, Scr
Expert D 6 Cl TARA, Manag Crt, Dsgn, Scr
Expert E 5 C2 TARA, Manag Crt, Dsgn, Scr
Expert F 12 C4  TARA, Manag, Reg  Crt, Dsgn, Scr
Expert G 5 C4  TARA, Manag, Reg  Crt, Dsgn, Scr

! Years of working experience in security;

2 Cl, C2: Ist party vehicle manufacturer,C3: 3rd party supplier;
C4: TARA assessment agency.

> TARA: Threat Analysis and Risk Assessment; Manag: Project
manager; Reg: Regulation-related study; Test: Security testing.

4 Crt: establishing scoring criteria; Dsgn: designing Attack Trees;
Scr: conducting scoring .

Recruitment. To ensure the professionalism and objectivity
of the results, we invited experts from the automotive cyberse-
curity field of first-tier automotive manufacturers (2 persons),
third-party suppliers (3 persons), and TARA ssessment agency
(2 persons) from multiple countries (China and Germany) to
form a seven-member review team, with their information
presented in Table II. On average, the team members have
about 6 years of experience in the security field, with Expert
¢ and Expert f having over 10 years of experience. Their posi-
tions include TARA, security testing, project management, and
regulation study. Tasks were assigned based on their positions
and interviews (5 persons establishing the scoring criteria, all
experts designing the attack trees, and conducting scoring),
ensuring that all participants have sufficient experience to
competently perform their tasks.

Procedure. To ensure a thorough and unbiased evaluation
of the attack trees, we assembled a seven-member review
team to conduct a comprehensive scoring analysis. The team
assessed the attack trees designed by DefenseWeaver and those
created by seven experts (each expert contributed six attack
trees targeting four automotive components and two other
electronic systems). Experts selected five key scoring dimen-
sions—rationality, non-redundancy, novelty, level of detail,
and configuration alignment—based on ISO/SAE 21434 to
capture different aspects of attack tree quality. Each dimension
was scored on a scale of 1 to 4 points, allowing for a nuanced
comparison (Table II). To maintain fairness and minimize
potential bias, we implemented a structured scoring process:
(1) DefenseWeaver’s attack trees were evaluated by all seven
reviewers to ensure broad consensus. (ii) The experts’ attack
trees were scored only by individuals not involved in their
creation, preventing author-related biases. For consistency, the
score for each dimension was calculated as the average based

on the total points and the number of reviewers. To visually
represent the overall performance differences, we plotted the
five-dimensional scores into radar charts (Fig. 9) and compared
their areas. This approach allowed us to objectively quantify
the comprehensive superiority of the attack trees, rather than
relying on subjective judgments.

TABLE III: Overall Comparison with Human Experts

System  Dimension DefenseWeaver  Expert Improv.
Rationality 3.40 3.10 1 9.68%
Non-redundancy 3.40 3.70 J 8.11%

BCM_A Novelty 2.60 1.30 1 100.00%
Level of detail 4.00 3.00 1 33.33%
System align. 3.60 2.15 1 67.44%
Rationality 3.40 3.05 1T 11.48%
Non-redundancy 3.40 3.55 1 4.23%

BCM_B Novelty 2.20 1.25 1 76.00%
Level of detail 4.00 2.90 1 37.93%
System align. 3.60 2.20 1 63.64%
Rationality 3.60 3.30 1 9.09%
Non-redundancy 3.60 3.30 1 9.09%

CDC Novelty 2.60 1.20 1 116.67%
Level of detail 3.80 2.45 1 55.10%
System align. 3.80 2.85 1 33.33%
Rationality 4.00 3.90 1 2.56%
Non-redundancy 3.60 3.75 1 4.00%

PKES Novelty 3.00 1.35 1T 122.22%
Level of detail 3.80 3.35 1 13.43%
System align. 3.80 3.05 1 24.59%
Rationality 3.67 3.58 1+ 2.51%
Non-redundancy 4.00 3.90 1 2.56%

UAV Novelty 3.00 1.70 1 76.47%
Level of detail 3.67 2.50 1 46.80%
System align. 3.67 2.75 1 33.45%
Rationality 3.67 3.62 1T 1.38%
Non-redundancy 4.00 4.00 =

Ship Novelty 3.00 1.20 1 150.00%
Level of detail 4.00 2.25 1 77.78%
System align. 3.80 2.50 1 52.00%
Rationality 3.62 343 1 5.79%
Non-redundancy 3.67 3.70 1 0.90%

Overall ~ Novelty 2.73 1.33 1 105.00%
Level of detail 3.88 2.74 1 41.46%
System align 3.71 2.58 1 43.68%

2) Scoring Criterion: Experts have selected five core
evaluation dimensions (Table IV)—Ilogical rationality, non-
redundancy, configuration alignment, level of detail, and nov-
elty—based on ISO/SAE 21434 and industry white papers to
comprehensively assess the quality of attack trees(as shown
in Table IV). The rationale for each dimension is as follows:
(i) Logical Rationality : ISO/SAE 21434 requires each attack
path should be logically sound and follow security reasoning
(no implausible leaps). This includes ensuring that the local
attack objectives are clearly defined and realistic, the attack
methods are technically feasible and relevant to the context, the
logical nodes accurately represent the steps and relationships
in the attack process, the feasibility and impact ratings are
reasonable, and the overall attack path is consistent with the
defined threat scenarios; (ii) Non-redundancy: According to
TARA optimization principles, the attack tree should avoid
duplicate or redundant paths, focusing on unique attack vectors
and avoiding analytical redundancy aligns with the minimal
attack tree criterion; (iii) Configuration Alignment: ISO/SAE
21434 mandate that attack tree nodes strictly correspond
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TABLE IV: Attack Tree Scoring Criteria

Dimension Score Level Description
Logical rational- 1 Poor All paths are considered
ity unreasonable
2 Limited Only very few paths are
reasonable
3 Good Most paths are reasonable with
some exceptions
4 Excellen' Nearly all paths are reasonable
Non-redundancy 1 Poor All reasonable paths are

completely repetitive

2 Limited Majority of paths are redundant
3 Good Few paths are repetitive
4 Excellen' All paths are unique
Configuration 1 Poor Uses substantial irrelevant
alignment information
2 Limited Uses some relevant information
mixed with irrelevant data
3 Good Uses 60% of system modeling
information
4 Excellen: Uses 80% of system modeling
information
Level of detail 1 Poor Incomprehensible to users
Limited Specifies target objects (e.g.,
attacking TBOX)
3 Good Specifies objects with attack
techniques (e.g., MITM on
TBOX’s WiFi)
4 Excellen' Includes objects, techniques, and
examples (e.g., MITM on TBOX’s
WiFi using CVE-XXXX)
Novelty Poor No new attack methods provided

Limited 1-2 unexpected attack methods

Good 2-3 unexpected attack methods

Excellen More than 3 unexpected attack
methods

B W=

to system modeling elements (e.g., ECUs, communication
protocols), ensuring TARA’s practical applicability; (iv) Level
of Detail: the attack steps should be described with sufficient
technical detail and specificity (e.g., including concrete attack
techniques or CVE examples); (v) Novelty: While ensuring
compliance, the attack tree should include creative attack
methods beyond well-known threat templates to enhance the
comprehensiveness of threat coverage. Each dimension was
scored on a four-point scale from Poor (1) to Excellent (4). The
final score for each dimension is the average of all reviewers’
ratings for that criterion on a given tree.
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