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ĩ

Nevertheless, as the internet becomes more deeply inte-
grated into everyday life, an increasing number of clients
are not only unwilling to share plaintext data but also wish
to maintain their anonymity. Research indicates that approx-
imately 86% of clients prefer to access the internet anony-
mously [22], [23], [24]. As a result, anonymous credentials
have emerged as an effective tool for safeguarding client iden-
tity (ID) privacy [25], and some data aggregation frameworks
have started incorporating anonymous credentials to ensure
client identity protection [26], [27].

However, a fundamental challenge arises when all clients
utilize anonymous credentials for data aggregation: it be-
comes impossible to trace clients submitting illegal data,
severely undermining legitimate accountability and regulatory
measures [28]. This challenge originates from the inherent
untraceability required by anonymity, wherein each client must
update their identity in every aggregation round, preventing
credentials from being linked across rounds.

Existing SAIV methods (e.g., ACORN [17], RoFL [16])
assume client identities are known, thus allowing servers to
easily identify and permanently exclude malicious clients.
When introducing anonymity, this identification mechanism
fails completely—clients obtain new anonymous credentials
every round, making banning impossible. To the best of our
knowledge, no existing SAIV framework addresses the chal-
lenge of holding malicious clients accountable while preserv-
ing client anonymity across-round. This limitation poses sig-
nificant risks, especially in sensitive real-world scenarios like
federated healthcare or financial analysis, where anonymity
and accountability must coexist.

To overcome this fundamental conflict between anonymity
and cross-round accountability, we introduce a novel extension
of the state-of-the-art SAIV framework ACORN [17], adapting
it specifically to enable anonymous yet accountable client
participation. We refer to this mechanism as the “WhiteCloak”
which ensures that once a client’s anonymous credential is
blacklisted, it is excluded from future aggregations—even if
it changes its credential each round. WhiteCloak achieves this
by integrating three designed Groth16 proofs [29] alongside
HICIAP [30]. These proofs verify (1) the legitimacy of the
registered client ID, (2) the binding between the current
credential and the registered identity, and (3) the client’s non-
blacklisted status. For any client flagged by ACORN as non-
compliant, WhiteCloak blacklists their credential and removes
both the corresponding input and secure aggregation key,
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I. INTRODUCTION

In many practical applications, data aggregation is a core
task that supports data-driven decision-making [1], such as
in statistical analyses within healthcare, education, voting,
and advertising, where machine learning enhances the client
experience. However, most clients are unwilling to disclose
their privacy, which is also protected by law [2].

Secure Aggregation (SA), such as those adopted by com-
panies like Apple [1], Facebook [3], and Google [4], are
designed to protect client input privacy while mitigating the
risks of privacy leakage (e.g., inference attacks [5], [6], [7]),
all while securely aggregating data from large-scale clients [8].
This technology has been widely implemented in areas such
as recommendation engines [9] and time-series analysis [10].
Existing research, such as ACORN and RoFL [11], [12], [13],
[14], [15], [16], [17], [18], extends SA by incorporating input
validation, forming Secure Aggregation with Input Validation
(SAIV), using technologies like homomorphic encryption,
secure multi-party computation, and zero-knowledge proofs
(ZKP) to verify data compliance and remove malicious clients
(e.g., with data poisoning attacks [19], [20], [21]).
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preventing further participation in subsequent rounds.

A. Main Contributions

The cost and functions brought by WhiteCloak are shown
in table I. The contributions are as follows:
• First SAIV system supporting cross-round accountability

under anonymity: Unlike existing schemes that assume
known client identities, WhiteCloak ensures that even if an
anonymous malicious client updates or fabricates credentials
across rounds, it cannot evade blacklisting—yet its identity
remains undisclosed.

• Removal under anonymity: In anonymous SAIV settings,
a client’s input and seed of key may be submitted under
different anonymous credentials, making them unlinkable.
WhiteCloak guarantees that once a credential is blacklisted,
both the associated input and key are removed without
recovering the real identity.

• Misjudgment tolerance: To prevent false positives, White-
Cloak adopts a multi-level blacklist that enforces banning
only after exceeding a configurable threshold q. It also
supports time-based automatic unblocking and clients can
appeal their ban by proving their innocence.

• Identification of incorrect-key clients: Current SAIV sys-
tems (e.g., ACORN) can detect inconsistent keys but can-
not localize the offending client. WhiteCloak introduces a
new zero-knowledge proof construction that enables precise
identification of anymous clients using incorrect keys.
To show that multiple SA application scenarios can benefit

from the cross-round anonymous accountability introduced by
WhiteCloak, we take federated learning as a representative
scenario (Table I). With 500 clients and 25 adversaries on the
q-th blacklist, WhiteCloak adds only 1.42 s of latency and 0.03
KB of per client (8.01 s and 5.70 KB in total). Because this
overhead is independent of the dimensionality of the aggre-
gated vectors, it remains virtually unchanged—never exceed-
ing 1.8 s and 0.03 KB per client—on the higher-dimensional
CIFAR-10L and Shakespeare tasks (Table II). Consequently,
production systems that already rely on SA—such as mobile-
telemetry platforms collecting anonymous statistics every few
minutes, smart-meter infrastructures reporting hourly house-
hold energy consumption, and privacy-preserving census sur-
veys aggregating demographic data across regions—can in-
corporate WhiteCloak with negligible additional bandwidth
and latency while gaining the ability to block repeat offenders
across rounds without revealing identities. When the blacklist
contains at most 25 clients, the incremental cost consistently
stays below 2 s and 0.1 KB per device, comfortably inside the
performance budgets of current deployments.

B. Related Work

Secure Aggregation. Bonawitz et al. [32] proposed a dual-
mask secure aggregation scheme that addresses the issue of
clients going offline and reconnecting. Building on [32], Bell
et al. [31] optimized the key generation scheme. Yiping et
al. [33] introduced Flamingo, a method that supports reusing
the same random seed across multiple rounds. Takeshita et

al. [8] customized lattice encryption for secure aggregation.
Karthikeyan et al. [34] reduce the number of communication
rounds per aggregation. These studies focus on improving effi-
ciency and reducing communication rounds, but do not address
client-side input validation or anonymous client accountability.
Secure Aggregation with Input Validation. Chowdhury et
al. [35] introduced EIFFeL, which uses SNIP [36] to verify
client data, but with high overhead. Lycklama’s RoFL [16],
based on Bell et al.’s SA [31], uses Bulletproofs to validate
client input norms, significantly reducing proof size and time.
Yizheng et al. [18] introduced RiseFL, which reduces ZKP
overhead through probabilistic checks. Bell et al. [17] further
optimized this method by combining techniques from Gentry
et al. [37] and Bulletproofs, greatly reducing proof size.
Zhi et al. [38] proposed LZKSA, which utilized a specially
constructed ZKP to accelerate the proof generation process.
Some research has focused on multi-server settings. Henry et
al. [36] and Surya et al. [12] proposed more efficient versions,
Prio and Prio+, respectively. Mayank’s ELSA [11] achieves
both efficiency and malicious privacy protection by leveraging
multi-party secure computation. Other methods [13], [14], [15]
focus on weaker security models. Existing SAIV schemes lose
cross-round accountability if real identities are replaced by
anonymous credentials, because each round’s credential is new
and cannot be linked back to the same client.
Anonymous credential. Accountable anonymous credential
schemes enable clients to anonymously prove possession of
valid credentials while holding them accountable for mis-
conduct through de-anonymization or blacklisting mecha-
nisms. Joakim introduced PAPR [39], which implements pub-
licly auditable privacy revocation, allowing clients to be de-
anonymized upon audit. Markulf proposed Blueprint [28],
which reveals the content of clients by comparing blueprint
data on the watchlist with their actual data. Tsang et al.
[40] introduced BLAC, which revokes credentials of malicious
clients without de-anonymizing them. Michael developed
SNARKBlock [30], employing a zero-knowledge blocklisting
mechanism where clients submit proof of non-blacklisted
membership, significantly reducing overhead.

Different from previous works, WhiteCloak adds anonymity
to the SAIV system for the first time and solves the problem
of “cross-round anonymous accountability” to be generated.
It is the first solution to maintain client anonymity, pin-
point misbehavior, enforce persistent injunctions, and support
grievance/recovery operations.

II. PRELIMINARIES

A. Groth16

Groth16 is a zero-knowledge proof (ZKP) system that relies
on a trusted setup [29]. It enables a prover to show that an
arithmetic circuit is satisfied using both public and private
inputs, and operates over a bilinear pairing e : G1×G2 → GT ,
where all groups share a prime order p > 2λ, with security
parameter λ. Due to its efficiency and compact proofs, Groth16
is well-suited for our fixed-circuit setting. Although alterna-
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TABLE I: Comparison of WhiteCloak with State-of-the-Art SAIV Schemes. Parameters: data dimension ℓ, number of clients
N , number of aggregated proofs n, elliptic curve pairing operation P , group element size |G|, scalar field element size F,
variable base multi-scalar multiplication in the group M , and length of the q-th blacklist |blkq|.

Method Sum SA [31] RoFL [16] ACORN-robust [17] WhiteCloak(CCS 2020) (S&P 2023) (USENIX 2023)

Communication ℓ|F| (ℓ+ logN)|F| (ℓ+N)|F| (ℓ+ log2 N)|F| (ℓ+ log2 N)|F|+ |G1|
+|G2|+ log|blk

q| |GT |

Computation 0 ℓ logN ℓN ℓ logN + log2 N
ℓ logN + log2 N +MGT

n(MG1
+MG2

+ P )

One round, N=500,ℓ=19k, |blkq | = 25 verify ℓ∞/ℓ2: 1.4MB/4.5MB 5.67KB/5.68KB 5.70KB/5.71KB
40s/47s 6.59s/6.65s 8.01s/8.07s

Privacy
Ciphertext ✗ ✓ ✓ ✓ ✓

Anonymous ✗ ✗ ✗ ✗ ✓

Accountability (Message and Key are private, client identity is anonymous)
Identify Incorrect Message ✗ ✗ ✓ ✓ ✓

Detect Incorrect Key ✗ ✗ ✓ ✓ ✓
Identify Incorrect Key ✗ ✗ ✗ ✗ ✓

Forbid Malicious with Tolerance ✗ ✗ ✗ ✗ ✓
Cross-round Accountability ✗ ✗ ✗ ✗ ✓

Credential Update Resistance ✗ ✗ ✗ ✗ ✓

tives like Plonk and Halo2 support more flexible or setup-free
constructions, they incur greater proof size and overhead.
• Groth16.Setup (Relation) → crs: Generates a common

reference string (crs) for a given arithmetic circuit.
• Groth16.Prove(crs; {ai}ℓi=0; {ai}mi=ℓ+1) → π: Produces a

proof π = ([η]1, [θ]2, [ι]1) that the circuit is satisfied, where
{a0, . . . , aℓ} ∈ F are public inputs, and {aℓ+1, . . . , am} ∈ F
are private inputs, where

η =α+

m∑
i=0

aiui(X) + rδ θ = β +

m∑
i=0

aivi(X) + sδ

l =

m∑
i=ℓ+1

ai (βui(X) + αvi(X) + wi(X)) + h(X)t(X)

δ

+ ηs+ θr − rsδ

• Groth16.Prepare(crs; {aij}tj=1) → Ŝ: Aggregates any sub-
set of public inputs into a single group element Ŝ =∑t

j=1 aijWij , where Wi are CRS values corresponding to
the i-th wire of the circuit.

• Groth16.Vfy(crs;π; {a0}ℓi=0) → {0, 1}: Verifies the proof
π = (A,B,C) by checking the pairing relation:

e(A,B) = e([α]1, [β]2) · e(C, [δ]2) ·
ℓ∏

i=0

e(aiWi, [γ]2),

where [α]1, [β]2, [γ]2, [δ]2 are elements from the CRS.

B. Hidden Common Input Aggregate Proof (HICIAP)

HICIAP [30] is a ZKP that aggregates n Groth16 [29]
proofs into a single proof, ensuring all proofs verify and share
a concealed common input. See the Appendix for the detailed
HICIAP protocol. HICIAP consists:
• HICIAP.GenCk(n) → (ck; srs): Generates a commitment

key (ck1, ck2, ck3) ∈ Gn
2 × Gn

1 × G2 and a structured
reference string (srs) to aggregate Groth16 proofs.

• HICIAP.Prove((ck, crs); Ŝ; (a0, {πi}n−2
i=1 )) → (π̂, o): Pro-

duces a proof that all Groth16 proofs πi verify with respect
to the common witness a0 ∈ F, input Ŝi ∈ G1, and Groth16
CRS, along with an opening o to a0.

• HICIAP.Vfy(srs; comin) → {0, 1}: Verifies the aggregate
proof against the committed public input, or directly with
prepared Groth16 inputs.

• HICIAP.LinkProve({π̂i}ti=1; (a0, {oi}ti=1)) → πlink: Pro-
duces a link proof showing the aggregated proofs share the
witness a0 using openings oi.

• HICIAP.LinkVfy(πlink; {π̂i}ti=1) → {0, 1}: Verifies the link
proof for the aggregate proofs.

C. Secure Aggregation with Input Validation (SAIV)

SAIV [16], [17], [18], [35] is a technique that combines
Secure Aggregation (SA) [8], [31], [32], [33], [34], [41], [42]
and ZKP [29], [43], [44], [45] to ensure privacy-preserving
data aggregation in distributed data aggregation scenarios
[46], [47] while preventing malicious clients from submitting
incorrect message. The SAIV protocol (based on ACORN
[17]) consists of the following steps:
• SAIV.Setup() → {si, ri, {sij}j} : Each client i generates

seedi and seeds {seedij}j with clients j and shareing them
as [seedij ] by Shamir Secret Share [48]. then computes the
keys ri = Prf(seedi), sij = Prf(seedij). The encryption
key si is computed as Eq. 1 with feature as Eq. 2:

si = ri +
∑

δijsij , δij =

{
1, if i > j

−1, if i < j
. (1)

∑
i

si =
∑
i

(ri +
∑
j

δijsij) =
∑

ri. (2)

• SAIV.Enc(mi, si)→ yi: Clients encrypt message mi to get
input yi by Pedersen commitment [49] with generators g,h:

yi = Com(mi, si) = gmihsi . (3)

3



• SAIV.Prove(mi, si, V )→ πi: Leveraging Bulletproofs [43]
based on Gentry et al. [37], generates proof πi for relations
Rkey, Rnorm, verifying constraints such as ∥mi∥∞ ≤ V .
Each proof πi comprises commitments (A,S, T1, T2), chal-
lenges (b, z, x), and responses (τx, µ, t̂, l, r).

• SAIV.Vfy(yi, πi) → {0, 1}: Computes h′
i = h

(b−i+1)
i , P =

ASxg−zh′zbn+z22n

. Here 2n = {20, · · · , 2n−1} and ver-
ifies: t̂ ?

= ⟨l, r⟩, P ?
= hµglh′r,gt̂hτx ?

= V z2

gσ(b,z)T x
1 T

x2

2 .
If all checks pass, outputs 1; otherwise, outputs 0.

• SAIV.Agg({yi, ri, [seeddi]d∈Udrop
}i) → a: Server recon-

struct the dropped client’s key sdj by [seeddj ]. Then com-
pletes the aggregation and decrypts the combined result:

a =
∑

i∈Uonline

(yi − ri)−
∑

d∈Udrop

∑
j

δdjsdj

 . (4)

D. Threat model and Security requirements

WhiteCloak adopts the standard SAIV threat model shared
by ACORN-robust and related systems [16], [17], [18], [35]:
a single semi-honest server and n malicious clients. Building
on this baseline, we incorporate the accountability-preserving
anonymity guarantees of credential-based schemes [30], [40].
As [16] demonstrates, input validation neutralizes both single-
and multi-round attacks, so WhiteCloak matches ACORN’s
model utility while uniquely enabling the exclusion of anony-
mous repeat offenders—something ACORN and its predeces-
sors cannot. The formal threat model is defined as follows:

Definition 1 (Semi-honest server). The server follows the
protocol exactly, accepts only well-formed inputs/credentials
and rejects any that violate the public constraints. Yet passively
tries to (i) infer clients’ inputs, and (ii) link anonymous
credentials to real identities.

Definition 2 (Malicious client). A client may deviate arbi-
trarily, including (i) submitting constraint-violating inputs, (ii)
encrypting with inconsistent keys to corrupt the aggregate, (iii)
forging or refreshing anonymous credentials each round to
evade the blacklist or impersonate others, and (iv) inferring
honest clients’ inputs or identities.

If the server is malicious, it may deviate arbitrarily from
the protocol, misclassifying honest clients as malicious—or
vice versa. In SAIV schemes such as ACORN [17], a ma-
licious server is obliged merely to identify malicious clients
while still retaining their inputs, whereas WhiteCloak must
additionally penalize misbehaving clients, making such pun-
ishment unavoidable. To counter this stronger adversary, we
envisage a consensus list jointly maintained by the issuer, the
server, and the clients. Every verification—including the proof,
constraints, timestamp, and round identifier—is recorded, al-
lowing clients to audit. The full design of this mechanism is
beyond the present scope and is detailed in the appendix. The
security requirements are as follows:

Definition 3 (Privacy). No server or client can extract private
message of the client from the inputs.

Definition 4 (Compliance). A client is only considered mali-
cious if it submits inputs that not satisfy the constraints and
encrypts them using the incorrect key.

Definition 5 (Blacklistability). A client can only successfully
authenticate to an honest server if it holds a valid credential
that is not included in the blacklist.

Definition 6 (Non-Frameability). It is not possible to prevent
an honest client, who is not on the blacklist, from successfully
authenticating with an honest server.

Definition 7 (Anonymity). No server or client can distinguish
between the authentication records of two honest clients, nor
can they associate the authentication records with the clients’
registration or identity information.

III. WHITECLOAK DESIGN AND OVERVIEW

Anonymous 

Credential correct?

Client registered 

with the issuer?

Client not on q-th 

level Blacklist?

(e) Remove Malicious Input 

(b) Update 

Anonymous 

Credential 

(c) Prevents q-th blacklisted 

clients from participating in SA

blkp 

blkp τ

=

blk
p
 Find the seeds of malicious clients

Issuer

Honest 

Malicious 
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Issuer

Honest 

Malicious 

(a) Register

Cloak

...

blk1 blkq 

...

blk1 blkq 

(d) SA with 

Input Validation

Check Input

Remove malicious Input from result

Add malicious clients to blacklist

Fig. 1: (a) The client registers ID i with the issuer. (b) Updates
anonymous credential. (c) The client generates three proofs to
prove it is not on the blacklist. (d) Execute the SAIV to verify
the input. (e) For a malicious client, add it to the p-th blacklist,
and remove its input from the aggregation.

WhiteCloak introduces an innovative approach that enables
clients to anonymously participate in SAIV while ensuring that
malicious clients can be banned across rounds, as shown in
Figure 1. WhiteCloak consists of 4 main components:

• Client: Each client has a unique ID i authenticated by the
Issuer, which prevents Sybil attacks.The client generates an
anonymous credential ĩτ for round τ .

• Issuer: Issuer registers each client with a unique ID i and
generates a key pair (ski, pki) using the Schnorr.KeyGen()
protocol [50], [51]. If a single trusted issuer is unavailable,
credentials can be issued collaboratively via distributed key
generation and threshold signature schemes.

• Server: The server accepts inputs only from registered, non-
blacklisted clients. It detects any malicious clients, who are
then listed in blacklist and have their inputs removed.

4



System Initialization
1) Set τ = 0 and initialize {blkz

τ ,blk
z = ∅}qz=1.

2) Clients register with the issuer to generate the key pair (ski, pki) using the Schnorr protocol. Additionally, the
issuer signs a commitment Com(i, ri) for ID i with Schnorr, producing σid

i , where ri is a random value.
3) Each client i generates an anonymous credential ĩτ = Prfi(ξτ ) using a randomly chosen value ξτ and demonstrates

that its ID i is registered with the Issuer by computing πisu ← REG.CLI.(ck, σid
i , ri, i, Risu), where

(ck, srs)← HICIAP.GenCk(n), and n represents the number of proofs required for aggregation. Client i then
participates in the aggregation process with (̃iτ , ξτ ).
Forbid Malicious Clients:

4) The server broadcasts blacklists {blkz
τ}

q
z=1 to all clients ĩτ , then updates τ ← τ + 1 and sets {blkz

τ = ∅}qz=1.
5) If blkq

τ−1 ̸= ∅, the server and clients update (ck, srs)← HICIAP.GenCk(n). Each client i generates a new proof for
the concealed common input i, demonstrating that client i has been registered by the Issuer with
π̂isu ← REG.CLI.(ck, σid

i , ri, i, Risu). Additionally, client i generates a proof for the new q-level blacklist blkq
τ−1

and its concealed common input i’s proof with πblk, π̂blk ← BLK.PROOF(ck, i,blkq
τ , q, Rblk).

6) Client i updates its anonymous credential and proves that it was indeed generated from ID i by computing
(̃iτ , ξτ ), (πanc, π̂anc)← AC.PROOF(ck, i, Ranc), and links the proofs by πzkbl ← LINKPROOF(i, {π̂ope}, {πope}),
where ope ∈ {isu, anc, blk}. Client i then sends (πzkbl, ĩτ , ξτ ) to the server.

7) The server executes VERIFY(πzkbl, ξτ , ĩτ , blk
q
τ−1, q, srs) for all clients ĩτ . If all verifications are successful, the

server accepts client ĩτ as not blacklisted; otherwise, participation is prohibited.
SA Participation of Verified Clients:

8) Clients and the server execute the SA protocol with input validation, such as described in [16], [17], [18], and
utilize πsij to obtain secret shares Hs

ĩs
, where ĩs refers to the anonymous credential used for seed generation. The

aggregation result a is computed, and malicious clients {m̃τ} are detected and temporarily added to a blacklist blk.
If blk = ∅, go to step 4) to start the next round of SA; Otherwise, go to step 9).
Remove Malicious Clients:

9) For each m̃τ ∈ blk, identify the occurrence p at which its ID m was added to the blacklist, and subsequently
update the set blkpτ ← blkpτ ∪ (m̃τ , ξτ ).

10) The anonymous credentials of the malicious clients m̃τ ∈ blk are identified for seed generation, which encompasses
three scenarios to get remove list of secret key components Rseed. Then the server removes the inputs and secret
key components associated with the malicious clients from round τ to get final result a∗:

Rseed =


{m̃τ} ∈ blk, (single)
FINDSEED1(Rseed, ĩ0, ĩτ , blk), (multi)
FINDSEED2(Rseed, ĩ0, ĩτ , blk), (multi)

,a∗ =

{
REMOVEINPUT(a, blk,Rseed, ·), (single)
REMOVEINPUT(a, blk,Rseed, τ), (multi)

11) Go to step 4) to start the next round of SA.

Fig. 2: WhiteCloak overview, focusing on its new features, excluding SAIV content.

• Blacklist: When a client is flagged as malicious p times,
their anonymous credential is added to blkp. Upon reaching
blkq , the client is barred from further participation. This
design supports cross-round accountability without linking
client identities to their banned status. It is maintained
jointly by the server, the client and the Issuer.
In this approach, the system initializes with round τ = 0

and an empty blacklist {blkz
τ = ∅}qz=1. Clients register with

the issuer, generating a key pair (ski, pki) and a signature
Com(i, ri). The system then generates public strings, relation-
ships, and other public parameters. Before each round, the
server and clients update the round number τ , the blacklist
{blkz

τ}
q
z=1, and public parameters. Before participating in a

new round of SA, each client generates a new anonymous

credential ĩτ and proves three things: 1) whether the client
is a legitimate registered entity with the issuer; 2) whether
the anonymous credential was generated using a registered
ID; and 3) whether ĩτ does not share the same ID as any
credential in the blacklist blk. Only clients whose proofs
pass all checks are allowed to proceed to the SA phase.
The server then uses methods outlined in [16], [17], [18] to
verify the SA inputs and identify any malicious clients. If
any are detected, their anonymous credentials are added to the
blacklist, preventing them from participating in future aggre-
gation rounds. Furthermore, their inputs and associated keys
are removed from the aggregation result. All of these actions
are carried out while maintaining client anonymity. Despite
clients’ anonymity and message encryption, this method can
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detect malicious submissions and exclude malicious clients
from future participation, even if they attempt to rejoin using
new anonymous credentials. WhiteCloak can directly utilize
Mixnet [52] or Tor [53] technologies to conceal the IP address
and ensure anonymity at the network layer.

The overview of WhiteCloak is shown in Figure 2 and the
complete protocol is in the Appendix.

IV. FORBID MALICIOUS CLIENT IN ANONYMITY

Because anonymous credentials are refreshed each round
to break any link to real identities [54], tracking malicious
clients across rounds is challenging. We solve this by adopting
HICIAP [30], which hides Groth16’s common reference string
[29], and by introducing a hierarchical blacklist that stores
each offender’s pair (m̃τ , ξi,τ ) to reduce false positives. A
client is admitted only when all three checks pass: (i) the ID
is registered, (ii) the credential is bound to that ID, and (iii)
the credential is not on the blacklist. This design preserves
anonymity while enabling cross-round accountability.

A. Proof of Registration

In the anonymous credential system, clients register from
an issuer that verifies their identity, protecting against Sybil
attacks-that is, each client needs to have a unique immutable
real identity. During registration, each client presents a unique
ID i, which the issuer records within the relation Risu:

Risu :=
{
(i, pki, σ

id
i )

∣∣Verpk(Com(i, ri), σ
id
i )

}
(5)

Eq. 5 guarantees that the client is using the ID it originally
registered with the issuer, a prerequisite for both “Non-
Frameability” and “Anonymity”. It prevents malicious clients
from forging credentials.

Clients register with the issuer to generate a key pair
(ski, pki) ← Schnorr.KeyGen() and sign their ID i as
σid
i ← Schnorr.Signski(comi,r), where ri ← {0, 1}λ

and comi,r ← Com(i, ri), following the Schnorr proto-
col [50], [51]. The proof πisu is generated by the func-
tion REG.CLI.(ck, σid

i , ri, i, Risu), which initiates the Groth16
setup and proving process, as illustrated in Figure 3. In this
setup, the commitment key and short structured verification
key are computed by (ck, srs) ← HICIAP.GenCk(n), sup-
porting verification of HICIAP aggregates for up to n − 2
Groth16 proofs. Utilizing HICIAP [30], this setup generates a
concealed common input proof, π̂isu, thereby ensuring that the
client’s ID i is both verified and securely concealed. This is
a precondition to guarantee “Anonymity” and prevent servers
or clients from inferring or linking the true identities of other
clients.

B. Proof of Bound of Anonymous Credential

Once client i completes registration with the issuer, it can
generate an anonymous credential ĩτ = Prfi(ξi,τ ) using its
identity i and a randomly generated value ξi,τ ← {0, 1}λ for
each round, as shown in relation Ranc:

Ranc :=
{
(i, ĩτ , ξi,τ )

∣∣Prfi(ξi,τ ) = ĩτ
}
. (6)

1) REG.CLI.(ck, σid
i , ri, i, Risu)→ (πisu, π̂isu)

crsisu ← Groth16.Setup(Risu)
πisu ← Groth16.Prove(crsisu; i;σ

id
i , ri)

π̂isu ← HICIAP.Prove(ck; crsisu; i, πisu)
2) AC. PROOF(ck, i, Ranc) → (̃iτ , ξi,τ ), (πancπ̂anc)

crsanc ← Groth16.Setup(Ranc)
ξi,τ ← {0, 1}λ, ĩτ ← Prfi(ξi,τ )
πanc ← Groth16.Prove(crsanc; i, ĩτ , ξi,τ ; ·)
π̂anc ← HICIAP.Prove(ck; crsanc; ĩτ , ξi,τ ; i, πanc)

3) BLK.PROOF(ck, i, blkpτ , p, Rblk)→ (πblk, π̂blk)
crsblk ← Groth16.Setup(Rblk)
πblkpτ ← Groth16.Prove(crsblk; i, blk

p
τ ; ·)

π̂blkp ← HICIAP.Prove(ck, crsblk; ·; i, {πblkpz}τz=1)
4) LINKPROOF(i, {π̂ope}) → πzkbl

πlink ← HICIAP.LinkProve(i; {π̂ope}; i)
πzkbl ← (πlink, {π̂ope})

5) VERIFY(ck, πzkbl, ξi,τ , ĩτ , blk
p
τ , p, srs) → Result

Ŝblkpτ ← Groth16.Prepare(crsblk; blk
p
τ )

Ŝblkp ← HICIAP.Com(ck, {Ŝblkpz}τz=1)

Ŝisu ← Groth16.Prepare(crsisu; ·)
Ŝanc ← Groth16.Prepare(crsanc; ĩτ , ξi,τ )
Result← HICIAP.LinkVfy(πlink; π̂isu, π̂anc, π̂blkp)∧

ope∈{isu,anc,blkp} HICIAP.Vfy(srs; π̂ope; Ŝope)

Fig. 3: Functions in Blacklist of WhiteCloak

Here, τ represents the current round, and Prf(·) denotes a
pseudorandom function [55]. Eq. 6 guarantees the binding
between ĩτ and i, a prerequisite for both “Non-Frameability”
and “Anonymity”, and prevents malicious clients from forging
credentials or impersonating others.

The proof πanc and the concealed input proof π̂anc are
generated by the function AC.PROOF(ck, i, Ranc) as illustrated
in Figure 3, which constructs the anonymous credential ĩτ
along with a random value ξi,τ for the round τ . It then creates
a Groth16 proof related to the anonymous relation Ranc and
conceals the common input in π̂anc. πanc is used to prove that
the anonymous credential ĩτ was indeed generated using i.
This is a precondition to guarantee “Anonymity” and prevent
servers or clients from inferring or linking the true identities
of other clients.

C. Proof of Non-Blacklist

To implement accountability while preserving anonymity
and misjudgment tolerance, we designed a multi-level anony-
mous blacklist. This blacklist allows clients some leniency
in cases of incidental errors, permitting up to q infractions
before permanent blacklisting, thus balancing accountability
with tolerance. The multi-level anonymous blacklist comprises
q levels {blkp}qp=1. Before each aggregation round τ , every
client must demonstrate that this credential does not appear in
the q-th blacklist blkq , thereby fulfilling the relation Rblk:

Rblk :=
{
(i, blkq)

∣∣∀(m̃τ , ξi,τ ) ∈ blkq, Prfi(ξi,τ ) ̸= ĩτ
}

(7)
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Eq. 7 guarantees that the identity i responsible for ĩτ has
no anonymous credential recorded in blkq , thereby upholding
both “Blacklistability” and “Non-Frameability”.

If the condition is met, the client is allowed to partici-
pate in aggregation. Blacklist verification is based on proofs
πblkqτ−1

and concealed input proofs π̂blkqτ generated by the
BLK.PROOF(ck, i, blkqτ−1, q, Rblk) function as illustrated in
Figure 3, here, blkq

τ−1 represents the q-th level blacklist that
is added in round τ . This function uses HICIAP to create a
Groth16 proof πblkqτ−1

for the blacklist set blkqτ−1, effectively
concealing the common input and ensuring that clients can
prove they are not blacklisted without revealing their identity.
This is a precondition to guarantee “Anonymity” and prevent
servers or clients from inferring or linking the true identities
of other clients.

The blacklist blkq is composed of {blkq
1, . . . ,blk

q
τ−1}.

Whenever a client’s anonymous credential ĩτ is detected for
the q-th infraction in round τ , the credential and its random
value pair (̃iτ , ξi,τ ) are added to that round’s blacklist blkqτ ,
forming part of the q-level blacklist blkq . In round τ , client i
only needs to prove that their ID does not appear in the latest
generated blacklist blkq

τ−1. For previous round blacklists
{blkq

1, . . . ,blk
q
τ−2}, the client can reuse their proof from the

last round, avoiding redundant verification.

D. Hide the true identity and aggregate the three proofs

We have now generated proofs associated with Risu, Ranc,
and Rblk. However, these proofs need to use the same i, which
requires linking them together. By utilizing HICIAP [30], we
can effectively conceal the shared input i within the underlying
Groth16 proofs [29], generating implicit proofs π̂isu, π̂anc,
and π̂blk. The aggregated multi-ZKP framework streamlines
the multi-stage verification process and handles private inputs
efficiently. Without aggregation, separate Σ-protocol proofs
[56] would need additional consistency checks to ensure every
instance references the same i. Leveraging aggregation, we
define the relation Rzkbl (Eq. 8), where (i, σid

i , ri) are private
inputs and (blkz)

τ
z=1, pki, ĩτ , ξi,τ are public. A valid proof

must satisfy Risu, Ranc, and Rblk simultaneously under the
same i. Concealing i yields Anonymity, while the three
combined constraints ensure both Blacklistability and Non-
Frameability. Thus, the system blocks malicious clients who
forge or refresh credentials to evade the blacklist or imper-
sonate others, and prevents the server or peers from inferring
honest clients’ identities.

Rzkbl :=

 ((blkz)
τ
z=1, pki, ĩτ , ξi,τ ; i, σ

id
i , ri)|

Ranc(i, ĩτ , ξi,τ )
∧τ

z=1 Rblk(i, blkz)
∧Risu(i, pki, σ

id
i , ri)

 (8)

The proof πzkbl ← LINKPROOF(i, π̂isu, π̂anc, π̂blk) function,
which links the various proofs in Figure 3. Using HICIAP,
this function generates πlink, merging multiple proofs into πzkbl,
thus enabling comprehensive anonymous blacklist verification.

The server uses the VERIFY(ck, πzkbl, ξi,τ , ĩτ , blk
q
τ−1, q, srs)

function to determine whether the client ĩτ appears in the q-th

level blacklist, verifying the validity of the aggregated proof
πzkbl. See the Appendix B for instantiation.

E. Tolerance for up to q Infractions
When an anonymous client ĩτ is flagged as malicious,

the system must learn how many previous infractions it has
accrued. If this is the p-th incident, the pair (̃iτ , ξτ ) already
appears in blk1

τ through blkp−1
τ . Starting the search at level

q − 1 locates the pair in O(q − p) time with a linear scan
or O(log q) with binary search. If found, it is promoted to
blkp

τ ; otherwise it enters blk1
τ . Efficiency improves if the

client discloses its current highest level p. The verifier then
inspects only levels p and p+1: absence from level p+1 places
the pair there, while presence sends it directly to level q. This
constant-time update is certified by Rzkbl, which subsumes the
constraints Ranc and Risu. Tune the tolerance dynamically via

q ← q + α
(
FPrate − TFP

)
,

where FPrate is the observed false-positive rate, TFP the target
rate, and α the adjustment step.

V. REMOVE MALICIOUS CLIENT IN ANONYMITY

When a client ĩτ is blacklisted, its encrypted input yĩτ
must be removed, while prior validated inputs remain safe
for SA. Direct deletion would break Eq. 2, since every
pairwise key sĩτ j̃τ must remain. Honest clients therefore use
Shamir recovery [48] to rebuild seedĩτ j̃τ and derive sĩτ j̃τ ←
Prfi(seedĩτ j̃τ ). With these keys restored, the server can safely
strip yĩτ

without exposing the client’s identity. This ensures
that WhiteCloak can remove malicious clients that submitting
constraint-violating inputs and keys.

A. One Seed Within One Interaction Round
In the SA protocol proposed by Bell et al. [17], [31],

each client uses a unique random seed seedij in each round,
which requires clients to generate a new random seed via key
exchange for every round of SA. In this context, even in an
anonymous setting, it remains feasible to directly remove the
inputs and associated keys of a malicious client. Specifically,
in the τ -th round, a malicious client m participates in the
aggregation with an anonymous credential m̃τ and generates
random seeds {seedm̃τ j̃τ

} with its neighboring clients set
Am̃τ

, where j̃τ ∈ Am̃τ
. This setup allows the server and

honest clients to directly remove the associated keys sm̃τ j̃τ
and the input ym̃τ

based on the anonymous credential m̃τ .
First, the anonymous credential m̃τ of the malicious client
is extracted from the newly generated blacklist blk for this
round. This credential, used to generate random seeds, is then
added to the set of seeds to be removed, Rseed. Next, the
function REMOVEINPUT(a, blk,Rseed, ·) is executed, as shown
in Figure 4, to remove the input ym̃τ

and its associated key
component sm̃τ j̃τ

from the aggregation result a. Here Aĩs
is

the set of verified neighbors of ĩs, Hs
ĩs

representing the secret
share. Because the entire process reveals neither the malicious
client’s identity, message, nor keys—and removes all non-
compliant term—it preserves “Anonymity” while maintaining
both “Compliance” and “Privacy”.
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1) REMOVEINPUT(a, blk,Rseed, τ ) → a∗

skĩs
= Recover(Hs

ĩs
)

seedĩs j̃s
= KA.Agree(skĩs,1

, pkj̃s,1
)

sĩs j̃s
= δĩs j̃s

Prf(seedĩs j̃s
, τ).

a∗ = a−
∑

m̃∈blk

ym̃ +
∑

ĩs∈Rseed

∑
j̃s∈Aĩs

δĩs j̃s
sĩs j̃s

2) FINDSEED1(Rseed, ĩ0, ĩτ ,blk) → Rseed
crssim ← Groth16.Setup(Rsim(i, (̃ik, ξi,k)k∈{τ,0}))

πsim ← Groth16.Prove(crssim; ĩ0, ĩτ ; i).
Groth16.Vfy(crssim;πsim; ĩ0, ĩτ ) = false ∨ ĩτ ∈ blk

=⇒ Rseed ← Rseed ∪ {̃i0}.
3) FINDSEED2(Rseed, ĩ0, ĩτ ,blk) → Rseed

(̃iτ̃ , ξτ̃ ), (π̂anc, πanc)← AC.PROOF(ck, i, Ranc);
(π̂blk, πblk)← BLK.PROOF(ck, i,blk, ·, Rblk);
crssim ← Groth16.Setup(Rsim(i, (̃ik, ξi,k)k∈{τ̃ ,0}));
πsim ← Groth16.Prove(crssim; ĩ0, ĩτ̃ , i; ·);
π̂sim ← HICIAP.Prove(ck, crssim; ĩ0, ĩτ̃ ; i, πsim);
πzkbl ← LINKPROVE(i; {πo}; {π̂o})o∈{isu,anc,blk,sim}.
VERIFY(ck, πzkbl, ξτ̃ , ĩτ̃ , blk, ·, srs) = false

=⇒ Rseed ← Rseed ∪ {̃i0};

Fig. 4: Functions of remove Malicious clients.

B. One Seed In Multiple Interaction Rounds:

Clients reuse the same random seed seedij to generate keys
across multiple rounds of SA, such as Flamingo [33]. We
assume this random seed, seedĩ0 j̃0

, was initially generated
in round τ = 0 through key exchange. For the τ -th round
of aggregation, the anonymous credential associated with the
client’s input is ĩτ , while the credential used for key generation
remains ĩ0. The generated key is:

sτ
ĩ0 j̃0

= δĩ0 j̃0Prf(seedĩ0 j̃0
, τ), δĩ0 j̃0 =

{
1, if ĩ0 > j̃0

−1, if ĩ0 < j̃0.

To remove the input and key of a malicious client ĩτ , the
“unlinkability” of the anonymous prevents the server and
other clients from associating ĩτ with ĩ0. As a result, the
key sτ

ĩ0 j̃0
cannot be removed as directly. To address this, it is

necessary to demonstrate that they share the same underlying
ID i, as specified by the relation Rsim:

Rsim :=
{
(i, (̃ik, ξi,k)k∈{τ,0}) | ∀k ∈ {τ, 0}, Prfi(ξi,k) = ĩk

}
.

(9)
This relationship ensures that honest clients do not satisfy
the constraints, but malicious clients will. Therefore, the
relationship RFin1 can be constructed:

RFin1 :=

{
(i, blk, (k̃, ξi,k)k∈{τ,0}) |
(̃iτ , ξτ ) /∈ blk ∧Rsim(i, (̃ik, ξi,k)k∈{τ,0})

}
(10)

Eq. 10 indicates that for any client that meets the condition
Rsim, it is not on the blacklist. Therefore, any client that
fails to provide this relation or whose verification fails will
be removed from the aggregation and its input and key

need to be removed. Consequently, the threat of malicious
clients submitting constraint-violating messages and keys is
eliminated. The key step here is to identify the set of seeds
that need to be removed, Rseed, which can be accomplished
through the function FINDSEED1(Rseed, ĩ0, ĩτ , blk) as shown
in Figure 4. First, all parties use Groth16 to generate the CRS
for Rsim, and each client generates a proof πsim. The server
then includes all m̃0 credentials that did not pass verification
into Rseed. The function REMOVEINPUT(a, blk,Rseed, τ ) is then
applied to remove the inputs and keys of malicious clients from
the aggregation result a, yielding a∗.

However, this approach presents a significant privacy con-
cern in linking ĩτ with ĩ0. If ĩ0 continues to be used for key
generation, it may compromise privacy by allowing adver-
saries to establish correlations across rounds, thereby breaking
unlinkability. Therefore, after executing FINDSEED1, it is
essential to use a new anonymous credential to generate a
fresh random seed.

For scenarios where the cost of replacing random seeds is
high, we propose a variant scheme. Each client i generates
a new anonymous credential ĩτ̃ in round τ when removing a
malicious client is required. Client i proves that ĩτ̃ is not in the
blacklist blk and further associates ĩτ̃ with ĩ0 to verify that they
correspond to the same identity i. This method circumvents
the need to directly link ĩτ and ĩ0. The client uses ĩτ to send
messages, while ĩτ̃ serves solely to prove non-membership
in the blacklist. Consequently, this ensures the unlinkability
between ĩτ and ĩ0. Thus, the required relation is RFin2 :

RFin2 :=


(i, blk, (k̃, ξi,k)k∈{τ̃ ,0}) |

∧q
p=1 Rblk(i, blk

p
τ )

∧Risu(i, pki, δ
id
i , ri) ∧Ranc(i, ĩτ̃ , ξτ̃ )

∧Rsim(i, (̃ik, ξi,k)k∈{τ̃ ,0})


(11)

Eq. 11 shows that ĩτ̃ must satisfy the constraints of Rblk,
Risu, Ranc, Rsim—i.e., ĩτ̃ must not be on the blacklist, its ID
must be registered, it must be generated from a registered
ID, and it must share the same ID as ĩ0. This relationship
is a precondition to guarantee “Anonymity” while also en-
sures “Blacklistability” and “Non-Frameability”, prevents
malicious clients from bypassing the blacklist by forging or
updating an anonymous credential.

Rseed can be obtained through FINDSEED2(Rseed, ĩ0, ĩτ , blk),
as shown in Figure 4. REMOVEINPUT(a, blk,Rseed, τ ) is then
called to obtain the final aggregation result a∗.

The functions FINDSEED1 and FINDSEED2 both rely on
Groth16 proofs, with the key difference being that FINDSEED1

only requires proving the relation RFin1 , where i is treated
as a private input. In contrast, in RFin2 , i is considered a
public input within Groth16. Therefore, in addition to proving
Rsim, Ranc, Risu, Rblk, HICIAP is used to conceal the public
input i.

The REMOVEINPUT only removes the malicious client (that
is, in line with existing ACORN and RoFL detection stan-
dards), not for any client outages. The tolerance for dropped
clients remains unchanged, and the protocol retains the original
SAIV dropped tolerance feature. If the server is malicious, this
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protocol will not be able to safely remove the client input,
only the malicious client flag, not the RemoveInput action.
Therefore, this extended security assumption is consistent
with the original SAIV drop tolerance feature and poses no
additional risk.

VI. IDENTIFY MALICIOUS CLIENTS WITH INCORRECT KEY

SAIV methods like ACORN [17] and RoFL [16] can
identify clients submitting incorrect inputs but fail to detect
those using incorrect keys. Thus, the proposed method can be
applied after key verification in RoFL or ACORN to identify
clients with incorrect keys.

Detection of clients using incorrect keys can be achieved
by verifying constraints on individual client keys, specifically
using the relation defined by Equation 1. Based on these con-
straints, we construct the relation Rsij , where {cij}j represents
the Pedersen commitments for each {sij}j :

Rsij =


(yi, ri, {cij}j); (mi, si, {sij}j) :
cij = Com(0, sij) ∧ yi = Com(mi, si)
∧si = ri +

∑
j δijsij

 (12)

Eq. 12 ensures that the cij , yi, and si share a consistent
sij , thus guaranteeing “Compliance” and preventing malicious
clients from submitting keys that violate the constraints. This
process ensures “Privacy” by preventing both clients and
servers from stealing keys and messages.

Here, we use pedersen commitment [49] because both RoFL
[16] and ACORN [17], in their architectures, use commitment
based on discrete logarithms for zero-knowledge proofs or
cryptograph commitments on inputs. In this way, more well-
formedness proofs can be avoided. A dedicated ZKP protocol
can be constructed based on this relation for verification. The
protocol process is shown in Figure 5. This ZKP ensures the
validity of the relationships among sij , si, and ri, but does not
guarantee the correctness of each sij individually. Therefore,
additional verification of each sij is required. Since sij is
generated by Prf(seedij), it should remain consistent between
clients i and j. The verifier can compare the commitment
Com(0, sij) sent by client i with Com(0, sji) sent by client
j. If they match, then sij and sji are consistent; otherwise, it
indicates that at least one client is dishonest. In such cases,
both clients i and j are required to reveal sij and sji. Other
clients can then use secret sharing to reconstruct sij (similar to
how SA recovers data from a disconnected client) and compare
it with the revealed values to identify the malicious client.
Even if clients i and j collude, their shared value sij will still
cancel out during aggregation, rendering collusion attempts
ineffective.

By executing the ZKP of the relation Rsij , we can effectively
identify malicious clients using incorrect keys and add them
to the blacklist blk.

VII. SECURITY ANALYSIS

Our security evaluation builds on the SAIV’s security foun-
dations, such as ACORN and RoFL. We do not repeat the
discussions on privacy and compliance which are provided

1) The prover randomly generates k sets of random
values αj ,βj ← Zℓ

q , where k represents the number
of neighboring clients with whom they jointly generate
keys. Using Eq. 3, the prover then generates commit-
ments {tj = Com(αj ,βj), cij = Com(0, sij)}j . Note
that yi is already used for SA aggregation, so it does
not need to be resent.
2) The verifier generates two random challenges c, b
from the challenge domain and sends them to the
prover. This process can also be made non-interactive
using the Fiat-Shamir heuristic [57], where c, b are
computed as the hash of cij , tij , ci.
3) The prover then computes responses using the
challenges c, b and their witness, (mi, si, {sij}j), as
follows:

Rm = cmi +
∑

j δijαj ,Rs = (c+ b)si +
∑

j δijβ.

The prover then sends these responses to the verifier.
4)The verifier checks whether the following equality
holds:

Com(Rm,Rs) =Com(xi, si)
cCom(0, ri)

b·∏
j

Com(αj ,βj)
δijCom(0, sij)

δijb.

If it does not hold, then the client key must be wrong.

Fig. 5: Protocol πsij , Client Key Correctness Proof

by SAIV. We focus on three key aspects introduced by
WhiteCloak. The following cryptographic assumptions hold:

Assumption 1. Groth16 and HICIAP proofs are knowledge-
sound and subversion zero-knowledge. Schnorr signatures are
unforgeable [50], [51]. Prf is pseudorandom [55]. Pedersen
Commitment Com [49] is both binding and hiding.

A. Forbid and remove Malicious

Theorem 1 (Forbid Malicious Security). The “Forbid Ma-
licious Clients” and “Remove Malicious Clients” protocols,
as described in Figures 2, 3, and Sections IV and V, ensure
blacklistability, non-frameability and anonymity under the
cryptographic assumptions specified in Assumption 1.

Proof. We use the same proof as SNARKBlock [30].

Blacklistabilty. Let A be an adversary that breaks Blacklista-
bility. Our goal is to prove that if A can bypass the blacklist
mechanism, then Assumption 1 will be violated. For A to forge
a verifiable proof (πzkb, ĩτ , ξi,τ ), we consider the following
scenarios:

1) A forges an anonymous credential such that ĩτ =
Prfi′(ξi,τ ), where i′ ̸= i, which breaks the randomness
of Prf.
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2) A forges a HICIAP proof, and the proof does not use
the corresponding Groth16 proof and the real identity i,
thereby breaking the knowledge soundness of HICIAP.

3) A forges a Groth16 proof, and the content of the proof
differs from the real content, which breaks the knowledge
soundness of Groth16.

4) A forges a signature σid
i

′, which is verified by pki and
corresponds to Com(i, ri). This breaks the unforgeability
of the Schnorr signature.

5) A forges a HICIAP.Link link proof and successfully verifies
it, which directly breaks the knowledge soundness of
HICIAP.Link.

6) A finds a pair (i′, r′i) ̸= (i, ri), such that Com(i′, r′i) =
Com(i, ri), directly breaking the binding property of Pe-
terson commitment Com.

In conclusion, the security of the components used by each
function in Figure 3, 4 has been proven, ensuring that clients
cannot forge identities or proofs to bypass the blacklist veri-
fication. Moreover, the server is secure under the semi-honest
assumption, ensuring it does not deviate from the protocol.

Non-Frameability. Let A be an adversary attempting to pre-
vent an honest, non-blacklisted client from successfully au-
thenticating.

If A successfully forges a valid pair (̃i′τ , ξ
′
i,τ ), it could cause

the honest client to be mistakenly added to the blacklist. How-
ever, since Prf is pseudorandom, without knowing the true
identity i, the adversary cannot guess the correct anonymous
credential Therefore, A cannot forge a valid pair(̃i′τ , ξ

′
i,τ ).

Furthermore, the anonymity guarantees that the adversary can-
not distinguish between the authentication records of different
honest clients, nor can they deduce a client’s identity from the
anonymous credential. Thus, the adversary cannot bypass the
authentication process by generating a fraudulent tag.

Since the adversary cannot forge a valid anonymous cre-
dential or circumvent the authentication, WhiteCloak satisfies
the non-frameability property.

Anonymity. Based on the hiding property of the commitment
scheme Com, the commitment com reveals no information
about the identity i. Additionally, random value ri is used
during the registration process, ensuring that the commitment
does not expose any sensitive information about the user.
Since HICIAP is a zero-knowledge protocol, the proof πzkb

does not leak any information regarding the user’s identity
or registration details to the server. The nonce ξi,τ used in
each session is chosen uniformly at random, ensuring that no
information about the identity i can be inferred from ξi,τ . Due
to the pseudorandomness of Prf, the tag is indistinguishable
from a random value for any client who does not know the
identity i, thus ensuring that the tag does not reveal any
information about i.

Therefore, since the commitment, ZKP, random values, and
anonymous credentials reveal no information about the client’s
identity, the entire scheme guarantees anonymity.

Thus, under Assumption 1, Theorem 1 holds.

B. Identify Malicious

Definition (three-move public-coin zero-knowledge proof)
The protocol is a two-party interaction between a prover
P and a verifier V which is called a three-step public-key-
protocol for relation R with challenge set C, instance w and
witness x, if it satisfies the following properties:
• 3-move form: 1) P generates and sends commitments to V;

2) V selects and sends a challenge to P; 3). P calculates and
sends responses to V . V then determines whether to accept
or reject based on the protocol transcript (commitments,
challenge, and responses).

• Completeness: If (w, x) ∈ R, V will accept the proof.
• Soundness: Any PPT prover that does not know the witness

should have a negligible probability of convincing an honest
verifier to accept a false instance.

• Zero-Knowledge: There exists a PPT simulator S, which,
given a challenge c from challenge set C, produces triples
(t, d, s) whose distribution is computationally indistinguish-
able from the distribution of the protocol’s real transcripts.

Theorem 2 (Identify Malicious Security). The protocol πsij

described in Section VI is a three-move public-coin zero-
knowledge proof , under the cryptographic assumptions in
Assumption 1.

Proof. 3-move form. This is trival.

Completeness. The verifier checks the right-hand side (RHS)
of the verification equation:

Com(mi, si)
cCom(0, ri)

b ·
∏
j

Com(αj ,βj)
δijCom(0, sij)

bδij

= gcmihcsi+bri ·
∏
j

(
gδijαjhδijβj · g0hbδijsij

)
= gcmi+

∑
j δijαj · hcsi+bri+

∑
j δij(βj+bsij) = RHS.

The left-hand side (LHS) of the verification equation is:

LHS = Com(Rm,Rs) = gRmhRs

= gcmi+
∑

δijαjh(c+b)si+
∑

δijβj .

The exponents of g on both sides match. Since ri +∑
j δijsij = si, the exponent of h can be rewritten as:

LHS = (c+b)si+
∑
j

δijβj = csi+bri+
∑
j

δij(βj+bsij) = RHS.

The verifier accepts the proof if and only if both sides of the
formula are equal. So it satisfies completeness.

Soundness. Soundness assumes that the prover P does not
know the witness (si, {sij}) and ensures that if Rsij , as defined
in Eq. 12, is not satisfied, the verifier V will reject the proof.
The verifier checks:

Com(Rm,Rs) = Com(xi, si)
cCom(0, ri)

b

·
∏
j

Com(αj ,βj)
δijCom(0, sij)

bδij .
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Simplifying the above expression: hbsi = hbri+b
∑

j δijsij .
Since b is a challenge randomly selected by V from the

challenge set C, the prover P must know si, ri, and {sij} to
satisfy this equation. However, P only knows ri and does not
know the witness (si, {sij}).

A prover without the correct witness (si, {sij}) cannot
compute valid Rm and Rs to satisfy the verification equation,
due to the binding property of the Pedersen commitment and
the unpredictability of the challenge b chosen by V .

Hence, a dishonest prover succeeds only with negligible
probability, ensuring soundness.

Zero-knowledge. Assume a simulator S which generates a
triple (t, d, s) that is indistinguishable from a real proto-
col πsij ’s transaction (commitments, challenges, responses),
where commitments are {Com(αj ,βj)}j , {Com(0, sij)}j , the
challenges are (c, b), the responses are (Rm,Rs), using only
challenges (c, b) and the instance (Com(xi, si), ri).

The triple (t, d, s) are constructed as: 1) S sets (c, b) as chal-
lenge d. 2) S randomly select ({t(1)j , t

(2)
j }j) as commitments

t. 3) S randomly selects s1, and uses it and t, d to compute
s2 = Com(xi, si)

c(t(0))b
∏

j(t
(1)
j )δij (t

(2)
j )bδij/s1. Then, S

sets (s1, s2) as response s. This guarantees that the triple will
pass the verification.

For the commitments, {t(1)j }j are randomly generated, and
{Com(αj ,βj)}j are also random. Therefore, they are indis-
tinguishable. For {Com(0, sij)}j , sij is the witness, which is
unknown to the verifier V , and sij itself is generated using a
random seed. Hence, just like t

(2)
j , it is indistinguishable to

V . Therefore, the commitment and t are indistinguishable.
For the challenge, similarly, (Rm,Rs) is a linear com-

bination of xi, si from the witness and the random values
{αj ,βj}j , along with the challenge c, b. Apart from c and b,
it is unknown to V . Thus, it is indistinguishable from (s1, s2),
which is also computed randomly. Therefore, the response and
s are indistinguishable.

Consequently, the triple (t, d, s) is computationally indistin-
guishable from the real protocol πsij ’s transaction (commit-
ments, challenges, responses). Thus, Protocol πsij is a three-
move public-coin ZKP.

VIII. EVALUATION

A. Overhead under Different Configurations

1) Forbid Malicious Client in Anonymity Tests: This experi-
ment evaluates the time overhead of using a blacklist to prevent
malicious clients in blkq from rejoining the aggregation pro-
cess under anonymity. The experiment’s primary parameters
are divided into two parts: the size M of the newly added
q-level blacklist blkqτ in the current round, and the cumulative
number n of q-level blacklists from the previous τ rounds.

For testing the variable M , we assume 14 q-th blacklists
have already been added in prior rounds, resulting in a total

Fig. 6: Time Computation and Bandwidth for Blacklist in
WhiteCloak with blacklist size M and aggregated proofs
number n. For (a) and (c), n = 16, for (b), M = 100.

of 16 proofs to be aggregated. These include 14 previously
proven blacklists blkqz ∈ blkq , one joint proof Ranc, Risu (for
acceleration), and one new proof for the blacklist blkqτ . The
experimental results, shown in Figure 6-(a), indicate that only
the proof Rblk has a linear relationship with the blacklist
length |blkqτ | = M , while the time overhead of other proofs
or verifications remains unaffected by M , as their inputs are
independent of blkqτ . Since these proofs can be transformed
into non-interactive proofs using the Fiat-Shamir [57] trans-
formation, only one transmission is needed. As shown in
Figure 6-(c), bandwidth remains independent of M because
the only item sent is πzkbl, whose size does not depend on
M . For testing the variable n = |blk|, since the generation
of Risu, Ranc, Rblk is independent of n, we only tested the
generation and verification of Rzkbl. The results, shown in
Figure 6-(b), reveal that Rzkbl includes the aggregated proof
of n blacklists, as well as the proofs Risu and Ranc, totaling
n + 2 proofs, which creates a linear relationship. Similarly,
the verification of Rzkbl also shows a linear relationship, as
illustrated by VERIFY in Figure 6.

2) Remove Malicious Client in Anonymity Tests: The ex-
periment consists of two parts. In the first part, “Removal of
Malicious Client inputs by clients and server,” we measured
the time overhead concerning the following four variables:
data dimension ℓ = {103, 104, 105}, the number of malicious
clients in the blacklist M = {1, 10, 100}, the threshold
t = {10, 50, 100} for secret sharing used in SA, and the
total number of participating clients N = {103, 104, 105}.
The time measured includes the server’s runtime and the total
time for all participating clients (client time is serialized, not
parallelized). The experimental results are shown in Figure 7
(a)-(d). The time overhead has minimal dependency on data
dimension ℓ, as it involves only addition and subtraction of
ℓ-dimensional vectors, making little impact on the result. The
time overhead is linearly proportional to the number of mali-
cious clients M , as it relates to the number of inputs and key
shares to be removed. The overhead scales exponentially with
the secret sharing threshold t, due to the O(t2) complexity of
Shamir secret recovery operations. Finally, the time overhead
scales logarithmically with the total number of clients N , as
each client’s number of neighbors is O(logN). These results
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Fig. 7: Performance Evaluation of WhiteCloak’s Malicious
Client Input Removal Across Different Seed Retrieval Sce-
narios and Parameter Settings. The default parameters are
ℓ = 103,M = 10, t = 50, N = 103.

are consistent with theoretical predictions.
For the second part “Find the remove list of seed” operation

in the three scenarios, in the one interaction round case,
the anonymous credential of the seed matches that of the
participating client, so no additional seed search is needed.
The experimental results are shown in Figure 7 (e)-(f). For
FINDSEED1, a Groth16 proof is generated for each instance,
verifying that the anonymous credential of the seed matches
that of the client for the same ID i, and thus is independent of
the number of malicious clients M . In the case of FINDSEED2,
a series of proofs must be generated to ensure that the new
anonymous credential is valid and not in the blacklist blk,
where |blk| = M . As M increases, the input size for the
corresponding Groth16 proofs also grows. According to the
experimental results, in the “one seed in multiple interaction
rounds” scenario, FINDSEED2 is preferable when there are
fewer malicious clients or when renegotiating the random
seed is costly. When the number of malicious clients is high,
executing FINDSEED1 is more appropriate.

Since the time overhead for determining which p-th blacklist
a malicious client should be added to is similar to the time
shown in Figure 6 (a), an additional plot is not provided here.
The only difference is that this process requires generating
proofs solely for Rblk and Rzkbl, without the need for other
proofs. Furthermore, for previously generated blacklists, the
corresponding Rblk proof does not need to be regenerated.
Thus, the time for this function can be directly referenced
from Figure 6.

3) Detect Malicious Clients’ key Tests: In this experiment,
we tested the protocol πsij proposed in Section VI, which
serves as a supplement to RoFL [16] and ACORN [17] within
WhiteCloak, aiming to identify the specific client using an
incorrect SA key. The protocol’s performance is primarily
influenced by two variables: the number of clients participating
in the aggregation N (where each client’s key is composed of
key shares from logN clients) and the data dimension ℓ (where
the key dimension matches the data dimension). Accordingly,
we set N = {103, 104, 105} and ℓ = {103, 104, 105}. The
experimental results are shown in Figure 8. The time taken

Fig. 8: Performance of Protocol πsij in Identifying Malicious
Clients through SA Key Validation. The default parameters are
ℓ = 103, N = 103.

Fig. 9: WhiteCloak introduces anonymity to secure aggre-
gation, utilizing blacklisting to block malicious clients and
remove their inputs, resulting in additional system overhead.

for a client to generate a proof has a logarithmic relationship
with the total number of clients N , at O(logN), while the
server’s verification time and bandwidth are independent of the
number of clients, as the responses Rm,Rs sent to the server
by the client do not depend on N . The experiment validates
the theoretical correctness of this relationship. The time for
a client to generate a proof is linearly proportional to the
data dimension ℓ, as the time required to generate a constant
Pedersen commitment is O(log q), so for ℓ dimensions, it
is O(ℓ log q). Similarly, the server’s verification time and
bandwidth exhibit a linear relationship with ℓ, as the responses
Rm,Rs sent by the client to the server are ℓ-dimensional.

4) The impact when malicious clients are added to the
blacklist: We set the maximum blacklist level to q = 2,
meaning that clients reaching the second-level blacklist are
permanently prohibited from participating in future aggre-
gation processes. The total number of participating clients
is N = 102, the dimension of the data sent is ℓ = 105,
and the threshold for secret sharing is t = 10. SA based
on Bell’s [31] one seed within one interaction round was
used. The experiment is designed to examine the cumulative
impact of different blacklist configurations and malicious
client behaviors on system resource consumption throughout
the continuous process:

(1) Clients register with the issuer. (2) |blkq| = 0,M = 0:
Clients update their anonymous credentials. (3) |blkq| = 0,
M = 5: Five malicious clients are detected and added to
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blk1, excluding their inputs from the aggregation. Clients
update their anonymous credentials. (4) |blkq| = 0,M = 0:
No malicious clients are present, and clients update their
anonymous credentials. (5) |blkq| = 0,M = 5: 5 malicious
clients are detected, one of whom is a repeat offender. The
repeat offender is moved to blkq , while the remaining four are
added to blk1. All malicious inputs are excluded, and clients
update their anonymous credentials. (6) |blkq| = 1, M = 0:
Updates parameters for the new blkq , and clients update their
anonymous credentials. (7) |blkq| = 1, M = 9: 9 malicious
clients, all repeat offenders, are detected and added to blkq ,
excluding their inputs from the aggregation. Clients update
their anonymous credentials. (8) |blkq| = 10, M = 0: Updates
parameters to for the new blkq . Clients update their anonymous
credentials. (9) |blkq| = 10, M = 0: Clients update their
anonymous credentials.

The experimental results are presented in Figure 9. Each
time blkq is updated, the total number of proofs n to be
aggregated also increases, necessitating the regeneration of
HICIAP public parameters ck and srs. When a client generates
a proof for blkq in Stage 6, this proof can be reused in
subsequent stages. However, it is still necessary to verify that
the ID i used in the proof matches the one in the newly
generated anonymous credential, resulting in a fixed time
overhead for each round.

B. Overhead Comparison with state-of-the-art methods

In our testing framework, we adopted the same experimental
setup as ACORN [17], with N = 500, 50 dropout clients, and
50 malicious clients. For WhiteCloak, since malicious clients
are prohibited from participating in aggregation, we assume
|blk| = 25, |blkq| = 25. WhiteCloak uses the same input
validation as ACORN and RoFL, so performance under attack
is identical. The difference is that WhiteCloak works under
anonymity and still prevents re-entry by malicious clients,
which ACORN or RoFL [16] cannot do if made anony-
mous. To evaluate federated learning (FL) across different
data modalities, we conducted experiments on four datasets:
1) MNIST [58] using CNN [59], 2) CIFAR10-S [60] using
LeNet-5 [61], 3) CIFAR10-L [60] using ResNet [62], and 4)
Shakespeare using LSTM [63]. Client time is based on the
maximum client time, representing the duration required by
the slowest client to recover keys for all malicious clients.

The experimental results are presented in Table II. White-
Cloak incorporates the FL model training process, SA key
generation and secret recovery, and the input validation pro-
cess from ACORN, while adding a blacklist mechanism to
block malicious anonymous clients and remove their inputs.
The results show that WhiteCloak’s additional overhead is
comparable to the FL training time on small datasets, such
as MNIST, and is only 3% of the time required for RoFL
and 21% for ACORN. This gap widens as the dataset size
increases, with WhiteCloak’s added anonymity mechanism
scaling minimally with data dimensions. For example, on
the Shakespeare dataset, WhiteCloak’s additional overhead is
only 1.77s, compared to 284.16s for training and 235.28s

for verification, making the overhead nearly negligible. It is
just 0.07% of the time required for RoFL and 0.34% for
ACORN. Therefore, WhiteCloak is highly suitable for the FL
scenarios in common SA. Other SA scenarios with similar
data dimensions can also benefit from it.

TABLE II: N = 500, |blk| = 25, |blkq| = 25, t = 50. The
result for RoFL and ACORN are derived from [16], [17].

Method Max Client time/bandwidth for one round

MNIST CIFAR-10 S CIFAR-10 L SHAKESPEARKE

RoFL 47s 110s 800s 2526s
4.5MB 14.2MB 62.4MB 186.6MB

ACORN 6.65s 18.81s 100.33s 519.92s
5.68MB 11.20MB 77.97MB 29.12MB

WhiteCloak 8.07s 20.23s 101.86s 521.69s
5.71MB 11.23MB 78MB 29.15MB

Overhead introduced by WhiteCloak is Blacklist and Input Removal.
The cost of each part of the WhiteCloak system for one round

FL Train Blacklist SA Verify ℓ2 Input Removal

MNIST (19kparams,160rounds)
1.17s 0.76s 0.02s 5.48s 0.66s
None 34.9KB 5.41MB 0.27MB 0.78KB

CIFAR-10S (62kparams,100rounds)
0.83s 0.76s 0.03s 17.95s 0.66s
None 34.9KB 11.02MB 0.18MB 0.78KB

CIFAR-10L (273kparams,160rounds)
20.75s 0.76s 0.16s 79.42s 0.77s
None 34.9KB 77.66MB 0.31MB 0.78KB

Shakespeare (818kparams,20rounds)
284.16s 0.76s 0.48s 235.28s 1.01s
None 34.9KB 29.08MB 0.15MB 0.78KB

IX. CONCLUSIONS

WhiteCloak is the first secure aggregation scheme support-
ing cross-round accountability under anonymity. Each anony-
mous client must provide a zero-knowledge proof showing
they are not banned. To prevent false positives and offer
clients a degree of tolerance, we allowing clients to make
up to q mistakes before a ban is enforced. These features
collectively protect both input and identity privacy, without
linking the ban status to identifiable client information or
associating anonymous credentials across aggregation rounds.
Furthermore, WhiteCloak introduces small additional over-
head—only 1.42s and 0.03KB in an FL scenario with 500
clients—remaining independent of model dimension and well-
suited for high-dimensional data scenarios. Future work could
explore extending to a fully malicious server threat model,
developing decentralized credential issuance schemes to elimi-
nate single-point trust, and optimizing the blacklist mechanism
to reduce overhead growth.

X. ETHICAL CONSIDERATIONS

We believe that our work on WhiteCloak does not pose
any significant ethical risks. The primary goal of WhiteCloak
is to improve the security and privacy of federated learning
by protecting against malicious clients while maintaining
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user anonymity. The system ensures that malicious users can
be detected and blacklisted without revealing any sensitive
information about honest users. The research does not involve
human subjects or the collection of personal data, and it
does not introduce any risks to individuals or organizations.
Furthermore, WhiteCloak operates within the constraints of
existing privacy and security mechanisms, adhering to widely
accepted cryptographic protocols, such as zero-knowledge
proofs and secure aggregation techniques. We have taken
care to design the system in a way that prevents abuse or
misuse while ensuring accountability for malicious behavior.
No ethical or legal issues related to the implementation, use,
or publication of this research are foreseen.
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S. Craver, and A. D. Ker, Eds., vol. 6958. Springer, 2011, pp. 118–132.
[Online]. Available: https://doi.org/10.1007/978-3-642-24178-9 9

[43] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,”
in 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA.
IEEE Computer Society, 2018, pp. 315–334. [Online]. Available:
https://doi.org/10.1109/SP.2018.00020

[44] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science (sfcs 1987), 1987, pp. 427–438.

[45] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
O. Goldreich, Ed. ACM, 2019, pp. 329–349. [Online]. Available:
https://doi.org/10.1145/3335741.3335757

[46] H. B. McMahan, E. Moore, D. Ramage, and B. A.
y Arcas, “Federated learning of deep networks using model
averaging,” CoRR, vol. abs/1602.05629, 2016. [Online]. Available:
http://arxiv.org/abs/1602.05629

[47] B. Defend and K. Kursawe, “Implementation of privacy-friendly
aggregation for the smart grid,” in SEGS’13, Proceedings of the
2013 ACM Workshop on Smart Energy Grid Security, Co-located
with CCS 2013, November 8, 2013, Berlin, Germany, B. Defend
and K. Kursawe, Eds. ACM, 2013, pp. 65–74. [Online]. Available:
https://doi.org/10.1145/2516930.2516936

[48] A. Shamir, “How to share a secret,” Commun. ACM,
vol. 22, no. 11, pp. 612–613, 1979. [Online]. Available:
https://doi.org/10.1145/359168.359176

[49] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” in Advances in Cryptology - CRYPTO
’91, 11th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1991, Proceedings, ser. Lecture Notes
in Computer Science, J. Feigenbaum, Ed., vol. 576. Springer, 1991, pp.
129–140. [Online]. Available: https://doi.org/10.1007/3-540-46766-1 9

[50] C. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings, ser. Lecture Notes in Computer Science,
G. Brassard, Ed., vol. 435. Springer, 1989, pp. 239–252. [Online].
Available: https://doi.org/10.1007/0-387-34805-0 22

[51] C. P. Schnorr, “Efficient signature generation by smart cards,” J.
Cryptol., vol. 4, no. 3, pp. 161–174, 1991. [Online]. Available:
https://doi.org/10.1007/BF00196725

[52] D. Chaum, “Untraceable electronic mail, return addresses, and digital

15



pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.
[Online]. Available: https://doi.org/10.1145/358549.358563

[53] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA, M. Blaze, Ed.
USENIX, 2004, pp. 303–320.

[54] S. A. Kakvi, K. M. Martin, C. Putman, and E. A. Quaglia, “Sok: Anony-
mous credentials,” in Security Standardisation Research, F. Günther and
J. Hesse, Eds. Cham: Springer Nature Switzerland, 2023, pp. 129–151.

[55] D. Boneh and X. Boyen, “Short signatures without random oracles,”
in Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, ser.
Lecture Notes in Computer Science, C. Cachin and J. Camenisch,
Eds., vol. 3027. Springer, 2004, pp. 56–73. [Online]. Available:
https://doi.org/10.1007/978-3-540-24676-3 4

[56] J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” Technical Report/ETH Zurich, Department
of Computer Science, vol. 260, 1997.

[57] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Advances in Cryptology —
CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1987, pp. 186–194.

[58] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[59] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan,
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APPENDIX

A. Experimental Environment

Our experimental platform is a desktop computer equipped
with an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and
32GB of RAM. The WhiteCloak implementation is built
using RUST 1.84, with the encryption module based on
Curve25519 [64], secret sharing implemented as described
in [65], Pedersen commitments based on [66], and Groth16

following the implementation in [67]. The HICIAP component
uses Rosenberg’s implementation [68]. Each data dimension
is represented with 32-bit precision. The federated learning
implementation is based on Python, following the approach
of Lycklama et al. [69]. The additional performance overhead
introduced by WhiteCloak is the average value obtained from
10 experiments. For the neural networks of FL, the configu-
rations are as follows:

• CNN [59] with parameters ℓ = 19k, τmax = 160.
• LeNet-5 [61] with parameters ℓ = 62k, τmax = 100.
• ResNet [62] with parameters ℓ = 273k, τmax = 160.
• LSTM [63] with parameters ℓ = 818k, τmax = 20.

B. Instantiation for Detecting Malicious Clients Using New
Credentials

To better understand the core concept of the WhiteCloak
protocol, which ensures that ”even if the client updates the
anonymous credentials in each round, the server can still detect
the client that was previously added to the blacklist without
knowing the client’s identity,” we instantiate the protocol’s
operations here. This allows for an intuitive understanding of
how WhiteCloak updates credentials, generates proofs, links
proofs, and verifies these proofs.

Assume that there are two clients in the system, with IDs 1,
2, and the system is in round τ , set blacklist level q = 1. At
this point, the blacklist contains only the anonymous credential
and random number pair {Prf2(ξ2,ν), ξ2,ν} generated by client
2 in round ν. The WhiteCloak protocol proceeds as follows:

Client i first updates its anonymous credential to Prfi(ξi,τ ),
and uses the Groth16 proving system to generate three proofs
πisu, πanc, πblk. The detailed format for each proof can be found
in Section 2.1. Notably, for the proof πblk, it serves to verify
whether Prf2(ξ2,ν) was generated by client i. Thus, for client
2, this verification will fail; however, for client 1, this verifi-
cation will succeed. For the proofs πisu and πanc, their purpose
is to verify whether Prfi(ξi,τ ) was generated using client i’s
registered ID. Therefore, as long as the client generates the
anonymous credential using the ID registered with the Issuer,
both verifications will succeed. This step effectively identifies
malicious clients’ new anonymousF credentials.

Since the identity information i is leaked in the above
proofs, it is necessary to link the three proofs together while
hiding the identity i. To achieve this, the three proofs are
transformed as π̂isu, π̂anc, π̂blk. These proofs are generated
through interaction with the verifier, and during this process,
intermediate values are produced. These intermediate values
will be used in subsequent linking proofs. For example, a
commitment is generated as com(o)

a0 ← a0P1+z
(o)
1 P2+z

(o)
3 P3,

where P1, P2, P3 are the Pedersen bases, and (z
(o)
1 , z

(o)
3 ) are

the opening values of com(o)
a0 , with a0 being the ID i and o ∈

{isu, anc, blk}. The HICIAP.Link protocol, as a Σ-protocol
[56], uses {Pi}3i=1, π̂o as the instance, and a0, (z

(o)
1 , z

(o)
3 ) as

the witness. It then generates random numbers α, {βo, γo} and
produces a new commitment como ← αP1 + βoP2 + γoP3.
This commitment is sent to the verifier, who then returns a
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challenge c and computes r ← α − ca0, so ← βo − cz
(o)
1 ,

µo ← γo− cz
(o)
3 . The verifier checks if como

?
= rP1+soP2+

µoP3 + ccom
(o)
a0 . The detailed format for each proof can be

found in Appendix C.

C. HICIAP details

For more detail about HICIAP.Prove, please check the
Figure 4 of [30] at page 9. For more detail about HICIAP.Link,
please check the Figure 9 of [70] at page 28.
• HICIAP.Prove((ck, crs); Ŝ; (a0, A

′, B′, C ′))→ (π̂, o): Gen-
erates proof π̂ and output o = (z1, z3) where (A′, B′, C ′)←
Groth16.ReRandM(A′, B′, C ′), and the following steps are
performed: A = A′ ∥ [z1]1 ∥ [z2]1,

B = B′ ∥ [γ]2 ∥ [δ]2 ∈ Gn
2 , C = C ′ ∥ [1]1 ∥ [z2]1 ∈ Gn

1 ,

coma0 = a0P1 + z1P2 + z3P3, comA = A ∗ ck1,

comB = ck2 ∗B, comC = e([z4]1, ck3) · (C ∗ ck1),

where r = (r, r2, . . . , rn), r′ = r[n−2], aggin = Ŝr, aggC =

Cr, W = [z1r
n−1] +

∑n−2
i=1 ria0W0, G1 =

∑n−2
i=1 riW0,

G2 = [rn−1]1, and aggAB = A′ ∗ B are the variables that
interact with the verifier intermediate.

• HICIAP.Vfy(srs, crs; comin) → {0, 1}: Verifies the input
commitment comin and outputs 1 if valid, 0 otherwise. The
verification steps are as follows:

J = e(aggin, [γ]2), G1 =

n−2∑
i=1

riW0, G2 = [rn−1]1

aggAB =

n∏
i=1

e ([α]1, [β]2)
ri · J · e(W, [γ]2) · e(aggC , [δ]2)

• HICIAP.LinkProve
(
{Pi}3i=1, {com(i)

a }ti=1; a0, {z
(i)
1 , z

(i)
3 }ti=1

)
→ {comi}ti=1: Produces commitments comi for i = 1, . . . , t
by performing the following steps:

r = α− ca0, α, βi, γi ← F, comi = αP1 + βiP2 + γiP3

si = βi − cz
(i)
1 , ui := γi − cz

(i)
3

• HICIAP.LinkVfy
(
{Pi}3i=1, {com(i)

a }ti=1

)
→ {0, 1}: Veri-

fies that the commitments {comi}ti=1 are valid by checking
the following conditions:

comi = rP1 + siP2 + uiP3 + c · com(i)
a

D. Tolerance for Malicious Clients

The multi-level blacklist mechanism inherently mitigates the
risk of misclassification by requiring a client to accumulate at
least q misbehaviors before being permanently banned. This
approach reduces the likelihood of erroneous blacklisting, as it
provides an opportunity for clients without facing immediate
and severe consequences.

In addition to the appeal process, timed bans and automatic
unbanning offer another layer of flexibility and fairness. When
a client is added to the q-blacklist, a timestamp is recorded,
marking the start of the ban period. Once the predefined time

duration, T , has elapsed, the client will automatically be re-
moved from the blacklist, provided they have not accumulated
additional infractions during this period.

E. Misjudgment and Malicious Server
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RL
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C

Next round of (b)

Pass

Fig. 10: (a)-(d), (e) same as Figure 1. (e) Client sends the proof
π to the consensus list, while the server send left-hand side
L and right-hand side R of the verification formula, sending
the verification result C to the consensus list. Verify whether
the linear combination of elements in π matches and L,R. If
matched, the verification is correct, and the verification result
is malicious, the client is marked as malicious.

To address rare misclassification events, a benign client can
initiate an appeal process. The client submits the original ZKP
they provided during their initial participation, along with the
corresponding hash that was previously submitted to ensure
data integrity and transmission authenticity. The server can
then efficiently re-verify the proof against the client’s behavior
and history. If the proof is validated and it is determined
that the client was wrongly flagged, the server can promptly
remove the client from the blacklist, restoring their access to
the system. This process is conceptually similar to mitigating
attacks by malicious servers, where the server may misclassify
honest clients as malicious or vice versa. The design of this
appeal process is illustrated in Figure 10.
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F. The whole WhiteCloak

Notice: Blue represent newly added modules by WhiteCloak. The red text indicates modifications we have made to the
ACORN in WhiteCloak. The black text denotes original components of ACORN.

System Initialization
1) Set τ = 0 and initialize {blkz

τ ,blk
z = ∅}qz=1. Generate system parameters as follows: crsisu/anc/blk ← Groth16

.Setup(Risu/anc/blk) and (ck, srs)← HICIAP.GenCk(n), where n is the number of aggregated proofs.

2) Each client registers with the issuer to generate the key pair (ski, pki) using the Schnorr protocol. The client

then commits to their identity i with a random value ri by computing comi,ri ← Com(i, ri). The issuer signs

this commitment, generating σid
i ← Schnorr.Signsk(comi,ri), and demonstrates registration with the issuer by

producing a proof πisu := Groth16.Prove(crsisu, (i), (σ
id
i , ri)).

3) Each client i generates an anonymous credential ĩτ = Prfi(ξτ ) using a randomly chosen value ξτ ← {0, 1}λ

and uses (̃iτ , ξτ ) to participate in the aggregation process, verifying its registration with the issuer through the

generated proof.
Blacklist Prevention

1) Server broadcasts the blacklists {blkz
τ}

q
z=1 to all clients ĩτ , then updates τ ← τ + 1 and sets {blkz

τ = ∅}qz=1.

2) If blkq
τ−1 ̸= ∅, clients participating in this round must prove they are not listed in the updated blacklist blkq

τ .

Each client i generates a proof for the hidden common input i with π̂isu ← REG.CLI.(ck, σid
i , ri, i, Risu). Client

i proves they are not in the blkqτ−1 using Groth16 by computing πblk ← Groth16.Prove(crsblk, (i,blk
q
τ )).

3) Each client i updates its anonymous credential ĩτ = Prfi(ξτ ) using a random value ξτ . The client generates a

series of proofs: πanc ← Groth16.Prove(crsanc, (i, ĩτ , ξτ )), demonstrating that ĩτ is derived from the registered ID

i. Additionally, HICIAP is used to generate further proofs: π̂isu ← HICIAP.Prove((ck, crsisu), (i, πisu)), π̂anc ←

HICIAP.Prove((ck, crsanc), (̃iτ , ξτ )), and π̂blk ← HICIAP.Prove((ck, crsblk), (i, {πblkz}τ−1
z=0)). The client then links

these proofs with πlink ← HICIAP.LinkProve(i, {π̂isu, π̂anc, π̂blk}) and sends (πzkbl, ĩτ , ξτ ) to the server.

4) The server verifies each client’s proof by preparing verification parameters Ŝblk ← Groth16.Prepare(crsblk, blkτ ),

Ŝanc ← Groth16.Prepare(crsanc, (̃iτ , ξτ )), and Ŝisu ← Groth16.Prepare(crsisu). Server also generates commitment

comzkbl := HICIAP.Com(ck, {ZKBz}τ−1
z=0). Verification is performed by checking HICIAP.LinkVfy(πlink, {π̂isu,

π̂anc, π̂blk}) and HICIAP.Vfy(srs, π̂isu, {Ŝisu}). Clients failing verification are prohibited.
Commitments, Distributed Graph Generation, Seed Sharing, Masking stages are not changed
Dropout Agreement and Unmasking (We only marked the changed protocols, and omitted the unchanged parts.)

1) No change.
2) No change.
3) Add: Add the failed clients’ anonymous credential ĩτ to the blacklist blkτ , if any of them fails.
4) No change.
5) Add: Ask clients to give the proof of keys by πsij if verification fails. Add the failed clients’ anonymous credential

ĩτ , ξτ to the blacklist blk and remove all the keys of malicious clients. Finally, if the |blk| = 0, the server outputs∑
ĩτ∈S xĩτ

as G−1(Decode(sk,
∑

ĩτ∈A′
2
yĩτ

)), else, it go to “Removal of Malicious Clients”.
Removal of Malicious Clients

1) For each client m̃τ in the blacklist blk, determine the blacklist level p at which its identity m was initially add-
ed. This is done by having each client prove they are not in any specific blacklist level p, as outlined in the Bl-

acklist Prevention step. Once the appropriate level p is identified, update the set blkpτ ← blkpτ ∪ (m̃τ , ξτ ).

2) The server identifies malicious clients m̃τ ∈ blk to generate a seed removal list Rseed = {m̃τ} ∈ blk.

3) The server then removes the inputs and secret key components linked to the malicious clients from round τ to

obtain the final result a∗ = REMOVEINPUT(a, blk,Rseed, ·). Go back to Blacklist Prevention.
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