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Abstract—Wireless security surveillance systems are widely
deployed due to their increased affordability. Motion detection
is often integrated into them as the linchpin of the security
they provide, detecting when someone is present in its range
and then triggering the system to start recording or notifying
the property owner. In this paper, we present PhantomMotion, a
new attack framework to fool the motion detection function of
those security systems. It can create fake motion stimuli stealthily
by aiming laser beams into the motion detection range, and it
confirms a r esponse t o t he s timuli v ia s niffing wi reless traffic.
PhantomMotion does not require any professional equipment or
to perform physical motion within the monitored area. It consists
of a novel hardware platform integrating laser control and WiFi
sniffing, and a new generative mechanism of motion injection.
We develop a smartphone app to implement PhantomMotion, val-
idating its efficacy a gainst 18 p opular w ireless motion-activated
security systems. Experimental results show that PhantomMotion
can always generate fake motion to successfully trigger the
systems, within an average of 12.8 seconds and via moving the
laser spot for a mean distance of 1.1 m. Notably, we verify that
PhantomMotion works from a distance of up to 120 meters.

I. INTRODUCTION

Wireless surveillance systems have made property security
accessible and are widely deployed in smart homes, as they
are easy to install and increasingly affordable [1]. Passive
Infrared (PIR) motion sensors are often integrated with such
systems and play vital roles in providing security. They
automate device controls (e.g., videotaping detected activity
and generating intrusion alarms) for an energy-efficient and
safe home. The global wireless video surveillance market was
valued at 21 billion US dollars in 2021 and is projected to
reach 64.1 billion US dollars by 2031 [2]. Also, the global
motion sensor market is expected to grow at an annualized
average growth rate of 12.3% from 2023 to 2033, reaching a
market size of 2 billion US dollars by 2033 [3].

The availability of wireless security systems is a two-edged
sword. On one side, such devices improve the safety of our
property and family by monitoring and reporting trespassing
or other unauthorized activity [4], [5]. On the other side, they
may be used for unauthorized tracking or video recording [6],
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[7], violating individuals’ privacy. The spy camera epidemic
problem, targeted mostly at women and girls [8], has been
a pressing issue in certain countries. For example, in South
Korea, more than 30,000 cases of surreptitious filming with
hidden cameras were reported to the police between 2013
and 2018 [9], [10]. People rightly value their privacy and do
not wish to be recorded in secret, and similarly, malicious
individuals such as burglars also do not wish to be recorded.

It is valuable to determine the existence of such cameras
or pinpoint them, whether for the innocent individual seeking
to protect privacy or the malicious individual seeking to get
away with a crime. Emerging research efforts explore wireless
camera detection or localization [11], [12], [13], [14], [15],
[16], [17], [18], but they share a common weakness, i.e., the
requirement to perform human motion in front of the camera.
Not all users are willing to perform preset motions, especially
a significant one such as jump [11], [12]. In case a user is
suffering from physical disabilities, he/she may find it difficult
to follow through the required motion schedules [15]. Also, the
person performing motion may inevitably expose themselves
to the risk of being recorded during the reconnaissance phase.
Hence, we are motivated to investigate the feasibility of
triggering wireless systems without labor-intensive or pre-
designed human motion near the target systems.

Embedded PIR sensors in wireless systems convert received
infrared radiation into a voltage. If the voltage exceeds a pre-
defined threshold, the system will be triggered. We explore
how to inject radiation similar to what humans generate and
fool the PIR sensor, and describe how to utilize a laser, a
narrow beam of concentrated light, as the attack signal. Our
key idea comes from the fact that lasers can rapidly heat
materials via energy transfer [19]. By controlling the laser
beams to simulate human motion in the detection area, an
adversary can generate fake motion signals to trigger motion-
activated wireless security systems, even with a long attack
distance. We refer to this attack as PhantomMotion.

We use a sample wireless camera as an example to illustrate
how PhantomMotion works. Figure 1 (a) shows a scenario
with real human motion, where a user comes inside the motion
detection range. The camera sits in standby mode in static
environments. Upon detecting motion, it immediately turns
on, starts recording to the cloud, and sends a notification to
the property owner’s phone. Accordingly, the network exhibits
sudden high wireless traffic.
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Fig. 1. Creating phantom motion to trigger cameras.

Now consider the scenario in Figure 1 (b): there is no human
motion in the camera’s motion detection area, but the attacker
wants to fool the camera into believing that motion similar to
Figure 1 (a) is occurring. To this end, the attacker shoots a
laser beam into the area through the window. The laser is
controlled to heat the chosen position for a period until a
desired temperature (i.e., around normal body temperature)
is reached. As a result, the radiation captured by the PIR
sensor embedded in the camera becomes similar to that of
a human, triggering the camera, which then generates high
traffic and sends out a motion alert. In practice, the camera
may be hidden, and the attacker may not know where the
exact motion detection range is or if the laser is within it.
We accordingly design a customized laser scanning method,
which plots a route consisting of evenly distributed points and
then determines whether the current laser point lies in the
motion detection zone by correlating observed wireless traffic
and laser heating time at the point.

Another important challenge is how to control laser heating
to generate appropriate radiation at each laser point to activate
the camera. Heating for a random duration may produce either
insufficient or excessive radiation. The former will not trigger
the camera, while the latter will make the relationship between
laser heating and traffic difficult to distinguish correctly. Our
research reveals that the attacker can achieve laser control by
reverse-engineering the motion detection mechanisms of PIR
sensors and calculating the laser heating time accordingly.

Besides these issues, there are a variety of wireless traffic
flows generated by varying devices. PhantomMotion sniffs
encrypted wireless packets to detect motion-activated wireless
systems. We first coarsely detect the device type by inspecting
the Media Access Control (MAC) addresses of captured pack-
ets. A MAC address is a persistent globally unique identifier.
Consequently, we can flag suspicious traffic flows generated
by wireless security systems. By controlling laser heating, we
can achieve more fine-grained detection of the security system
that monitors the target area.

Unlike existing laser-involved studies (e.g., [20], [21]),
which require users to manually operate laser beams, we
develop hardware/software prototypes that enable the user to
operate entirely through a non-rooted smartphone, making
PhantomMotion easily accessible to non-technical users. We
conduct a real-world evaluation, showing that an attacker can

always fool the PIR sensors to activate the wireless system by
injecting motion via laser heating, with a mean time of 12.8
seconds. We also verify that PhantomMotion can work at a
distance of 120 meters, and even when the laser beams are
within the non-line-of-sight (NLOS) of the target system.

Impact of Fake Motion Injection: The core value of

PhantomMotion lies in its ability to remotely simulate human
motion, triggering wireless security systems and enabling both
offensive and defensive use. Attackers can probe a location
without real motion to determine whether it is being moni-
tored, avoiding being caught and forensic exposure. If fake
motion triggers a noticeable response, the attacker can avoid
that location or select another target. Also, repeated false
triggers may harass or desensitize users through a “cry wolf”
effect, where frequent false alarms reduce the credibility of
true ones [22]. Besides, activation consumes energy, acceler-
ating battery drain for battery-powered systems. Defensively,
privacy-seeking individuals can use PhantomMotion to detect
hidden cameras without physically revealing themselves.

Our main contributions are summarized as follows.

e We propose PhantomMotion, the first practical method
to activate wireless systems without requiring physical
motion in close proximity to them. It can be carried
out with a smartphone and needs neither professional
equipment nor access to the target system’s network.

o We discover an inherent vulnerability of wireless motion-
activated systems, where a laser can create a controlled
heated position in motion detection zones to inject fake
motion signals and trigger the systems.

« We show how a visible laser triggers the system without
being recorded by the camera by taking advantage of
how the motion detection range and the field of view of
the camera’s optics are not exactly the same, and how
PhantomMotion stealthily works with a wall or other
obstacles between the camera and the laser.

e We build a low-cost platform with off-the-shelf sensors
and develop an app to automate PhantomMotion and
validate its feasibility, efficiency, and robustness.

II. PRINCIPLE OF MOTION DETECTION

PIR sensors are widely used in wireless security systems,
due to their small size, low price, high sensitivity, and ability
to work in dark environments. A PIR sensor contains a py-
roelectric sensing element that produces voltage output when
exposed to heat in the form of infrared radiation (IR) [23].
Figure 2 shows its general structure. A Fresnel lens array
condensing light can provide a larger range of IR and focus
it to a small point (i.e., the focal point where the pyroelectric
sensing element is mounted) [24]. When a warm body, like a
person, moves from Location A to B, the emitted IR, denoted
as the red dot, passes through the Fresnel lens array. When the
person is at Location A, the IR intercepts only half of the sen-
sor (positive element), causing a positive differential change
between the two halves; likewise, when the person moves
to Location B, only the other half of the sensor (negative
element) recognizes the IR, leading to a negative differential



TABLE I
COMPARISON WITH PRIOR RESEARCH EFFORTS IN WIRELESS CAMERA DETECTION.

Motion in Front of | Carrying a Device dur- | Motion Type Motion Duration
Camera ing Motion
DeWiCam [11], [12] v v’ (a phone) walk/halt; wave hands; jump default: 15 sec
MotionCompass [13], [14] | v V' (a phone) walk along a specific route average: 135~143 sec
SCamF [18] v V' (a phone) stand still; wave hands in varying | 30 sec (20-sec standing and
postures 10-sec movement)
SNOOPDOG [15] v v’ (a phone and a lap- | stop-start-stop-start-stop; jump | Detection: 40 sec; n-trial lo-
top) jacks; walk; stand still calization: 30n sec
Lumos [17] v v’ (a phone or tablet) walk around the space’s perimeter within 30 minutes
CSI:DeSpy [16] v X sedentary/physical activities 8 sec or longer
PhantomMotion X X none 0 (no human motion)
Positive vpresnel Lens Array (e.g., 0.5 m) to the camera and scan every corner of the
o hement X \ Negative area. The near-distance and frequent scanning process may
7z one . . .
v, inevitably disclose the user to the camera.
e Location B . L.
T S ,{ Thermal/Electromagnetic emission-based: Thermal cameras
o N + - . .
. Location A can reveal heat traces on devices. A Deep Neural Network
] posiive G (DNN) model is built to detect cameras based on their heat
Negatve ¥/ Zone dissipation patterns in thermal images [31]. Such a method
Element

Fig. 2. Structure of a PIR sensor.

change. The sensor’s two elements generate respective output
voltages, V; and V_, yielding the final output V =V, —V_.
The absolute value of V' is quantized based on a pre-defined
threshold V) to generate a binary event [25]: motion is detected
if |V| > Vj; otherwise, no human presence is detected.

Heat Signature: PIR sensors detect the heat (infrared)
signature of an object, represented by the physical temperature
difference between the object and the background (referred to
as AT) [26]. According to Stefan-Boltzmann law [27], the
power density P, i.e., the energy in watts (W) per unit surface
area in unit time, of electromagnetic radiation emitted by a
black object (i.e., a hypothetical physical body absorbing all
incident electromagnetic radiation) is directly proportional to
the fourth power of its absolute temperature. Let ) denote
the increased generated heat (i.e., net heat) when the exposure
time of the object is t. Let T, denote the background apparent
temperature. Mathematically, we then have

Q=P t=[(T.+AT)* ~T* -0-s-t, (1)

where s is the size of the considered surface (in square meters),
and o is the Stefan-Boltzmann constant and equal to 5.67 x
10~8 W/m?K*. The SI (International System of Units) [28]
unit for T, or AT is the kelvin (i.e., K for short).

III. RELATED WORK

Wireless Camera Detection: Existing studies to detect a
wireless camera mainly include the following categories.

Optical reflection-based: Reflections may be observed as the
light bounces off a camera’s lens. Traditional optical detectors,
such as SpyGuy Camera Detector [29], emanate red light to
assist judgment with reflections. A recent study proposes to
detect cameras using high-intensity reflection from lenses [30],
while such methods require the user to be in close proximity

needs a training process to pre-build a dataset of visual and
thermal images. It thus may not be feasible in a strange
or uncontrollable environment. If a camera model is unseen
in training, the detection performance degrades accordingly.
Also, this technique needs the user to repeat trials of taking
pictures in front of the camera, posing a significant risk of user
disclosure. Another study [32] proposes a camera detection
method leveraging electromagnetic emissions stimulated via
light. However, its detection range is limited (around 40 cm),
and users moving this close may be recorded.

Wireless-based: Recently, many studies have shown the
success of leveraging wireless traffic to detect wireless cam-
eras (e.g., [11], [12], [13], [14], [18], [15], [17], [16]). By
stimulating the camera with human motion, the resultant
wireless traffic may disclose the existence or even the location
of the camera. However, all these techniques require the user to
laboriously perform motion in front of the camera, and most of
them require the user to carry a smartphone to sense the motion
via an accelerometer. Such preconditions may cause significant
discomfort to the user, and also bring risks of getting caught.
PhantomMotion gets rid of real human motion and can trigger
wireless cameras remotely. We compare our work and previous
wireless camera detection schemes in Table I.

WiFi Jamming or Deauthentication Against Cameras:
The attacker may utilize a WiFi signal jammer to send signal
interference with the same radio frequency as the wireless
camera [33], so that the traffic generated by the camera will be
disrupted. Also, the attacker can send deauthentication packets,
causing the camera to disconnect from the network and attempt
to re-authenticate. However, such two suppression methods
would wreak havoc on the network and disable all nearby
WiFi connections. Besides, as the camera goes offline, the
camera app will display an offline status message and an alert
accordingly. Moreover, deauthentication attacks do not work
for a network with WPA3 - a security protocol employing
protected management frames [34]. On the contrary, network



reconnaissance that PhantomMotion employs is non-invasive
and universal, having no impact on surrounding WiFi devices
and working with networks that use various security protocols.

Laser-based Attacks: Recent studies utilize lasers to attack
different systems such as unmanned aerial vehicles [35], voice-
controllable systems [20], optical beam smoke detectors [36],
Light Imaging Detection and Ranging (LiDAR) systems [37],
[38], and image recognition systems [21]. For example, as
microphones often unintentionally respond to light as if it was
sound, [20] injects commands into voice-controllable systems
via laser light; [21] manages to fool traffic light recognition by
exploiting the rolling shutter of the CMOS sensor. However,
such attacks require the laser to point directly at a small
area, such as one microphone port [20] or a camera on a
vehicle [21]. In contrast, our work is the first laser-based attack
targeting widely deployed wireless security systems. It does
not need to localize the target system in advance, as the motion
detection range is normally much wider, and the proposed laser
scanning method can help determine the laser destination.

Another work [39] triggers a PIR sensor by employing a
COg laser with a 6 W output that uses a carbon dioxide gas
mixture. However, the laser used in that setup is prohibitively
expensive, costing several thousand US dollars, and poses
significant safety risks due to its high power. Moreover, the
study does not evaluate any real-world security system. By
comparison, our attack is the first practical method for activat-
ing wireless security systems without specialized equipment,
with a total cost of approximately 80 US dollars. Meanwhile,
[40] uses a 5 mW laser but requires precise alignment with the
light sensor. If the laser beam is disrupted or misaligned, the
sensor detects a drop in light intensity, triggering the alarm.
In contrast, PhantomMotion uses a fundamentally different
mechanism: it triggers the security system by injecting fake
motion signals rather than altering light conditions.

IV. ADVERSARY MODEL

PhantomMotion remotely simulates human motion, with
two general application domains, as aforementioned: (1) as
an attack targeting wireless security surveillance systems, and
(2) as a defense targeting spy cameras. In a typical offensive
scenario, a malicious user (e.g., a burglar) may (i) find blind
spots (i.e., areas not within the camera’s peripheral vision) to
evade being recorded [41]; (ii) trigger repeated false alerts
to harass or desensitize users; (iii) accelerate battery drain
by consecutively activating battery-powered cameras. A thief
reportedly exploited a surveillance camera’s blind spot to steal
5.1 million US dollars from a bank’s vault [42]. In a defensive
context, a normal user may detect unauthorized recording
and obtain corresponding motion detection zones, protecting
privacy without being recorded. For the remainder of this
paper, we define the “adversary” as an individual (avoiding
authority or seeking privacy) interested in triggering the target
wireless camera without being detected. Towards the goal, the
adversary uses a laser to stealthily simulate human motion,
tricking the camera to generate motion alerts when there is no

human present in the monitoring area. More specifically, we
have the following assumptions.

No Human Motion: Unlike all existing studies (e.g., [11],
[12], [13], [14], [15]) requiring human intervention within the
proximity of the cameras to activate them, PhantomMotion
removes such a requirement. Note that introducing real human
motion is not an optimal strategy for the adversary, as she
or her accomplice (who performs motion) may get caught
during this triggering process. We argue that our assumptions
are more reasonable than those of the related work, as the
adversary will prefer to stay hidden rather than intrude into
the monitoring area and disclose her location/identity.

WiFi Sniffing: We assume the adversary can sniff wireless
traffic. By triggering the camera and monitoring the resultant
traffic, the adversary can determine whether a camera is
monitoring the area. In this case, the camera will be activated
by the manipulated and fake motion, but will record no event.

Line-of-sight: We assume that the adversary is out of the
camera’s field of view, with line-of-sight access to the target
area, towards which the attacker directs the laser. A scope
can be used to observe targets remotely. As heat can transfer,
PhantomMotion works within the non-line-of-sight (NLOS)
of the target system. Note that pre-determining material is
unnecessary. The attacker calculates the required heating time
for different materials, as discussed in Section V-D2, and can
increase heating time as needed.

Knowledge of the Camera’s Location is Unnecessary:
Commonly, in the “attack” domain, wireless doorbells are
installed at doorsteps, and people make wireless security
cameras visible as deterrence. For example, property owners
may post signs or stickers to warn that the area is monitored by
a security camera. Such visibility could help the adversary to
quickly determine the possible motion detection range of the
camera. However, in the “defense” domain, the spy camera’s
location is often hidden. Note that when the camera’s location
is unknown, PhantomMotion still works, as it can recognize
the existence of wireless cameras by analyzing wireless traffic
induced by injected phantom motion.

V. INJECTING MOTION VIA LASER LIGHT
A. Feasibility Analysis of Motion Injection

Suppose the human temperature 73, is 37 °C (i.e., 310.15
K). The Celsius scale has an origin translated into 273.15 K as
regards the Kelvin one. A human body is not a perfect black
body, but it is proved that the difference between the radiation
emission characteristics of a human body and a black body is
small [43]. Considering the approximate size of a laser point
is 1 cm x 1 cm, we regard a unit area s=10"* m2. According
to Equation 1, when the background temperature 7 is 20 °C,
the power density of the radiation emitted by a human body
with a unit area can be denoted by

Po=(TW* =T 0-s
= (310.15* — 293.15%) x 5.67 x 10712 = 0.01 W.

A human may have to disclose at least U unit areas to the
sensor to generate enough radiation. Let P, denote the power

2
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of the utilized laser. When we have P, > P, - U, i.e., the
generated power of a laser point is equal to or higher than
that generated by a human, the laser is able to trigger the PIR
sensor with the generated radiation.

Empirical Verification: We utilize the two sources (i.e.,
laser and human) to simulate a PIR sensor (with model HC-
SR501 [44]) and compare the resultant responses from the
PIR sensor. We utilize a FLIR One Pro thermal camera [45]
attached to a phone to capture the infrared radiation, which
is invisible to the naked eye, and determine that the surface
temperature of a walking person is 37 °C, which serves as
a reference for the cut-off temperature of laser heating. As
discussed in Section II, the PIR sensor only provides a binary
output, i.e., 0 (representing no motion) and 1 (indicating
motion). The raw voltage output of a PIR sensor can provide
fine-grained information about the captured radiation.

We disassemble the HC-SR501 PIR sensor and identify its
controller BISS0001, which uses an amplifier to boost the
motion-induced voltage [46]. As shown in Figure 3, we use
a Raspberry Pi to connect with an ADS1115 module [47] via
GPIO 1, where GPIO stands for General Purpose Input/Output;
the ADS1115 is a 16-bit analog-to-digital converter (ADC),
and its the inputs (AO and Al) connect to the controller’s
two outputs (pins 12 and 16), allowing the Raspberry Pi to
calculate the PIR’s final voltage output V =V, — V_.

We let human motion (walking) trigger the PIR sensor.
Meanwhile, when no motion occurs, we use a laser to heat
the place where the user walks. We monitor the real-time
temperature of the heating point via the thermal camera and cut
off the heating once the temperature reaches the reference (i.e.,
37 °C). For both human motion and laser heating, we perform
100 trials. Likewise, all laser heating attempts successfully
activate the PIR sensor. Figure 4 plots the empirical cumulative
distribution functions (CDFs) of V' under both conditions. We
see that the generated voltage for human motion ranges from
9 to 14 mV, while laser heating induces a comparable voltage,
varying from 10 to 12 mV, verifying the possibility of using
a laser to mimic human motion for triggering PIR sensors.

B. System Overview

PhantomMotion consists of three core phases, target search,
spoofing preparation, and motion injection, as illustrated in
Figure 5. The initial phase obtains the wireless traffic associ-
ated with wireless surveillance devices. The attacker captures
the IEEE 802.11 traffic flows over the air, and groups the

Scan Path
Determination

Environmental
Perception

Nearby MACs
Collection

Device
Activation

Heating Parameters =
Calculation

Device Type =,
Confirmation

Target Search Spoofing Preparation Motion Injection

Fig. 5. Three core phases of the proposed scheme.

collected packets based on their embedded MAC addresses.
The device type for each scanned MAC can be predicted
accordingly. After flagging the traffic flows belonging to
potential target wireless security systems, the attacker enters
the second phase, consisting of two sequential tasks: (i) to
perceive key environmental factors (such as the temperature
and heating material); (ii) to determine the corresponding
parameters (e.g., heating time at each spot) for laser heating.
Finally, PhantomMotion monitors traffic flows flagged in the
first phase and initializes laser heating along the chosen scan
path to inject fake motion into the target wireless security
system. By correlating the laser heating time with the wireless
traffic that the monitored system generates, PhantomMotion
can figure out whether the target system is triggered or not.
We present the details of PhantomMotion’s design below.

C. Target Search

PhantomMotion needs to determine the traffic flow belong-
ing to the device. We identify candidates of the device via the
public manufacturer information embedded in MAC addresses.

1) Nearby MACs Collection: PhantomMotion cannot ac-
cess the same WiFi with the target device and needs to scan
all channels the device may operate on. Wireless sniffing tools,
such as Airmon-ng [48] that is open source, enable monitor
mode (i.e., monitoring all wireless traffic nearby) on wireless
interfaces. Modern Android smartphones with built-in WiFi
chips that support monitor mode can work as traffic sniffers,
while it is often required to root the devices [49] and pre-install
customized firmware (e.g., [50]).

IEEE 802.11 wireless protocols are used in almost all
commodity network devices [51], including various wireless
security cameras and alarm systems. Though WiFi networks
employ security protocols (WEP, WPA, WPA2, and WPA3) to
encrypt transmitted wireless data, IEEE 802.11 management
frames are unencrypted, from which we can extract the MAC
addresses of the devices that generate the corresponding pack-
ets. With a wireless interface in monitor mode, PhantomMo-
tion can capture raw wireless packets and collect all MACs,
which are fed to the next module for winnowing out the traffic
flows belonging to the target security system.

2) Device Type Confirmation: Wireless security systems
rely on systems-on-a-chip (SoCs) from manufacturers such
as Texas Instruments, Broadcom, and Qualcomm to provide
critical wireless communication capabilities. An SoC has a
MAC address consisting of 6 bytes (48 bits) that are typically
represented as 12 hexadecimal characters. The first 3 bytes are
the Organizationally Unique Identifier (OUI), which identifies
a manufacturer or a vendor, and the rest 3 bytes represent the
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unique device ID. PhantomMotion builds a library with public
OUI IDs of wireless security systems and utilizes it to look up
the device manufacturer for each collected MAC. If a match
is found, the traffic carrying the MAC is regarded as being
generated by a wireless security system.

MAC Spoofing: The MAC address can be spoofed or
randomized. Specifically, a wireless surveillance device can
utilize a MAC with OUI belonging to other types of devices.
Also, a non-surveillance device can use a MAC with OUI
indicating a surveillance system manufacturer. Both cases
would confuse OUl-based traffic identification. To overcome
such shortcomings, the studies [51], [52] propose to retrieve a
device’s original MAC with its Universally Unique IDentifier-
Enrollee (UUID-E) for building WiFi Protected Setup (WPS)
connections. Also, different types of devices may have varying
wireless traffic patterns [12], and we can take advantage of this
observation to distinguish wireless traffic flows belonging to
wireless security systems.

The SoC chip of a wireless system provides data processing
and encoding solutions. For example, a wireless camera’s
SoC (e.g., Ambarella’s CV2S SoC [53]) often pre-determines
the video encoding methods, including H.264, H.265, and
MIJPEG. If the wireless system has local storage, it normally
sends out event notifications and stores the recorded content
locally. To classify traffic flows, we utilize the scikit-learn
library [54] to train Support Vector Machine (SVM) models
with linear kernels for multi-class classification. The method
we use is one-versus-one (ovo). The common 80/20 split is
applied to the training dataset for training and validation.
Different types of devices may have varying data transmission
rates. We set a threshold based on the average data transmis-
sion rates of various wireless devices in the environment. For
each traffic flow, we calculate the difference between its data
transmission rate and the threshold. Figure 6 shows the results
after running 2 SVM models on 400 traffic flows from each of
the three classes: target device (i.e., wireless security system)
with local storage, target device with cloud storage, and non-
surveillance devices, demonstrating the success of the traffic
flow identification technique.

Limitations of MAC-based Passive Traffic Analysis:
MAC-based passive traffic analysis can reveal the presence
of wireless devices, but cannot confirm whether a camera

is actively monitoring a specific target area. To overcome
this, PhantomMotion introduces controlled fake motion and
correlates it with the resulting traffic patterns. If the observed
traffic indicates that the target camera has been activated, we
can infer that the injected motion occurred within the camera’s
motion detection range. Moreover, in crowded environments
where multiple cameras may coexist across different locations,
passive traffic analysis may yield several candidate devices.
Note that even when MAC spoofing occurs, target traffic
flows can still be recognized using the built SVM classifier,
which recognizes distinctive traffic patterns. PhantomMotion
then leverages fine-grained traffic-motion correlation to sig-
nificantly narrow down the set of possible candidates and
accurately winnow out the target device monitoring the area.

D. Spoofing Preparation

1) Environmental Perception: To determine the laser heat-
ing time at a chosen point, we need to know the environmental
temperature 7, and the solid heating material.

We utilize a temperature sensor (e.g., DHT11 [55]) to
capture T.. As the material’s temperature increases, the heat
is stored in its molecules. When the material cools down, the
stored heat is released. Let T denote the target temperature
that can trigger the motion-activated wireless security system.
We aim to simulate human motion with laser heating, and set
T; = 37 °C. Different materials may have varying densities
and specific heat capacities, which affect the amount of heat
required to raise the temperature of a unit volume of a
substance. For common building materials (such as wood, iron,
and steel), we build a library containing different materials’
densities and specific heat capacities, which is prepared for
the next step to calculate the heating parameters.

2) Heating Parameters Calculation: Let () denote the
amount of heat required to increase a substance’s temperature
by AT (i.e., Ty—T,) with a volume v. We then have

Q=p-c-v-AT, 3)

where p and c are the density and specific heat capacity of
the target object, respectively [56]. The laser beam has a spot
size of 1 cm X 1 cm and only needs to heat the surface of the
material. Without loss of generality, we consider heating a thin
layer with a thickness of 1 mm. Thus, we have v = 0.1 cmB.
When the heating power of the employed laser is P, we can
then obtain the time ¢,,;, that it takes for the laser to generate
the required heat, i.e.,
Q ) v - (Tt — Te)

5=PC B 4)

For three popular building materials including wood, stone,
and brick [57], we calculate t,,;, under varying environ-
mental temperatures based on Equation 4. Meanwhile, we
also perform real-world experiments to measure the required
time for each material to reach the temperature of 7; with
laser heating. Specifically, we utilize a FLIR One Pro thermal
camera to monitor the temperature of the laser spot. We
cut off the laser once the temperature increases to 7; and
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record the laser heating time. We perform 20 trials for every
temperature and compute the average laser heating time. We
use the pigpio library [58] to control a GPIO port connected
to the laser module, with a sampling rate between 100,000
and 1,000,000 times per second. As a result, we can achieve
initiating/stopping the laser heating with the 10 microseconds
level of time accuracy.

Figure 7 plots the required time for increasing each mate-
rial’s temperature to 7; with a 100 mW laser under different
scenarios, as well as the empirically obtained mean laser
heating time. We see that the theoretical and empirical laser
heating time values are consistent, and they are inversely pro-
portional to the environmental temperature. Also, regardless
of the environmental temperature, the required laser heating
time is in the increasing order of brick, stone, and wood.

E. Motion Injection

As discussed in Section IV, in a “defense” scenario, the
user may use laser heating to trigger wireless hidden cam-
eras without worrying about disclosing the laser beam; in
an “attack” scenario, the malicious user may want to avoid
arousing the suspicion of the security camera’s owner and thus
try to prevent the camera from recording visible laser beams.
Accordingly, we propose an outside-in scanning strategy to
spoof motion via laser heating for triggering most security
cameras (including Arlo Pro 2/3, Blue by ADT, and Ring),
whose field of view (FOV) is no larger than that of its
embedded PIR sensor. For example, a Ring floodlight camera
has an FOV of 140° while the FOV of its PIR sensor is
270° [59]. We consider a wireless camera deployed on a
vertical wall. Such a case aligns with most practical scenarios.
To obtain the maximum horizontal breadth, the camera body
is often mounted perpendicular to the wall. Thus, the leftmost
or rightmost areas may not be covered by the camera’s FOV.
Let L denote the distance between the laser and the wall.

As shown in Figure 8, the attacker performs laser heating
along the path, which should avoid the camera’s FOV and
meanwhile monitors the traffic, including the following steps,

1. Initially select a starting point P, at the leftmost (or
rightmost) area, and track the corresponding time .

2. Heat the selected position to the pre-determined temper-
ature for a period of ¢,,;y,.

Fig. 8. Outside-in scanning.
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Fig. 9. Cumulative packets.

3. If the camera is not activated, move the laser point for a
distance of D (referred to as the moving step) to the right
(or left), and jump to step 2; otherwise, at time ¢, the
ending location is marked as P, and record the moving
angle of the laser beam as 6.

To move the laser point for a distance of D, we need to turn the
laser beam for an angle of about arcsin(£). Suppose that the
laser scans N locations along the path. Accordingly, the length
S of the laser scan path can be computed as S ~ L -sinf =
N - D. For the total time T, for the spoofed motion to activate
the camera, we thus have T, = t. —ts = N - tyin + (N —
1) - to, where ¢, is the time spent for shifting the laser beam
from one location to another. When the laser angle adjustment
process is fast, ty becomes negligible, causing T, = N - t,in-
Occasionally, a whole scan path is not within the target motion
detection range, leading to the failure of triggering the camera
at all locations along the initially chosen scan path. A new
scan path can then be selected, and the above three steps are
repeated until the attack succeeds.

System Activation Detection: When the wireless security
system is triggered from the standby mode, it enters the work-
ing mode and responds accordingly (e.g., starting to record
videos and send push notifications). The total wireless packets
generated by the security system would thus increase at a
faster speed within the activation period. The large deviation
between the packet generation rates in standby and working
modes provides a clue to distinguish the two modes.

We also empirically verify such a phenomenon by installing
an Arlo Pro 3, a Blink XT2, and a Ring Stick Up Cam on
a wall to monitor a target area. We perform a 30-second
test for each device and collect its generated packets. For
the beginning 15 seconds, the cameras are in standby mode,
while we trigger the cameras for the remaining 15 seconds.
Figure 9 plots the count variation of the cumulative packets. In
standby mode, the packet count increases quite slowly as only
a small number of packets, i.e., periodic heartbeat signals, are
generated for synchronization with the server. On the contrary,
in working mode, the count of cumulative packets increases
with time at a much higher rate, and they show a nearly linear
correlation regardless of the camera type.

The discovered correlation between the working duration
(when the camera is activated) and total packet count can be
explored to determine whether the camera is activated by the
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spoofed motion induced by laser heating.

E. Exploring Stealthy Attacks

Occasionally, if the laser beam happens to appear in the
FOV of the camera and triggers the camera, it may be spotted
via the recordings. To further improve optical stealthiness,
the attacker can use an invisible laser wavelength [60] to
avoid having the user spot the laser light aimed at the target
area. However, there are three disadvantages associated with
using an invisible laser: (1) normally, an invisible laser is
significantly more expensive than a visible one; (2) an invisible
laser is also invisible to the attacker, complicating attack ver-
ification; (3) as the body’s protective glare aversion response
(i.e., blink reflex) can be triggered only by visible light, the
exposure risk to invisible laser beams is increased.

Attack in Non-line-of-sight Scenarios: Furthermore, con-
sidering that heat can transfer over opaque obstacles/walls,
PhantomMotion also works within non-line-of-sight (NLOS)
of the target wireless system. We can utilize a solid daily
object or wall as camouflage. One side of the object faces the
camera while we shoot the laser beam at the opposite side of
the object. The camera can be triggered once enough heat is
transferred to the side facing it.

Let AT, denote the difference in temperature between the
hot surface (heated by the laser) and the cold side (within the
motion detection range). The distance between the hot and
cold sides (i.e., the material’s thickness) is denoted as Aw.
Accordingly, the quantity of heat energy transferred (denoted
with ¢) can be obtained from Fourier’s law [61],

q ATy

AT AP R ©)
where At is the time taken, A is the area of the surface
that emits heat, and k is the thermal conductivity (i.e., a
property indicating the ability to transfer heat). As the heat
flows from the side at a higher temperature to the one at a
lower temperature, the heat transfer rate - is always negative.

Meanwhile, during the heat transfer process, there may exist
heat loss, causing a temperature drop ATj, which can be
modeled via Newton’s Law of Cooling [62],

AT = ATy(1 — e~ 2t), (6)

where ¢ signifies the elapsed time.

TABLE II
TESTED WIRELESS SECURITY DEVICES.

ID Model WiFi Chipset PIR Amount
1 Arlo Pro 2 Cypress 1
2 Arlo Pro 3 Cypress 1
3 Blue by ADT Cypress 1
4 Blink XT2 TI 1
5 eufyCam E Hisilicon 1
6 Google Nest Cam Ambarella 1
7 Google Nest Doorbell Ambarella 1
8 IHOXTX DF22 Cam MediaTek 1
9 LaView N15 Cam MediaTek 1
10 Reolink Argus 2 MediaTek 1
11 Ring Spotlight TI 2
12 Ring Spotlight Pro TI 2
13 Ring Stick Up Cam TI 2
14 Simplisafe Cam Telit 1
15 Wyze Cam Outdoor v2 Ingenic 1
16 Arlo Home Security System Cypress 1
17 Ring Alarm System Quectel 1
18 Simplisafe Safety Alarm Espressif 1

Let Q represent the heat generated by laser heating, which
can be determined with Equation 3. The power of the laser is
P and the laser heating time is ¢,,. Thus, we have Q) = P-ty,,.
With Equation 5, we can calculate the time t; needed for
heat transfer, i.e., t; = m. With obtained ¢; and
Equation 6, we can obtain the temperature drop AT} and
further compute the laser reheating time ¢5, for compensating
the heat loss. The total time needed for the heat produced
and transferred to the target surface equals tp, + tp, + t¢.
Figure 10 shows a camera triggered by using a laser to heat
the backside of an object whose front faces the camera. We
see that although the camera is triggered, the captured image
remains identical to that in the normal (no-attack) situation.

VI. EXPERIMENTAL EVALUATION

We build PhantomMotion with low-cost commercial devices
and develop an Android app for controlling the hardware
platform, with its user interface (UI) presented in Appendix A.

A. Evaluation Setup

To sniff all WiFi data, existing techniques usually utilize
specific models of laptops [15], [63] or rooted Android plat-
forms [13], which can enter monitor mode. However, not all
laptops support monitor mode, and it may not be convenient to
bring a bulky laptop. Also, rooting a smartphone is non-trivial
and may make the device vulnerable to cyberattacks [64], [65].

Alternatively, we design a comprehensive, low-cost, and
portable system that integrates WiFi sniffing and laser control,
as shown in Figure 11, including (1) a temperature sensor (e.g.,
DHT11) for measuring environmental temperature, (2) a WiFi
adapter (e.g., AWUS1900 [66]) in monitor mode, (3) a laser
module (e.g., LD-F405E04 100 mW) with a laser level swivel
base, and (4) a Raspberry Pi 4B controller interacting with
other components. The app connects to the Raspberry Pi board
via Bluetooth Low Energy (BLE) to obtain system information
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such as laser exposure time and environmental temperature. It
can also send commands to the board to turn on/off the laser
remotely as well as tilt or rotate the laser level swivel base.

We test 18 popular wireless security devices (15 cameras

and 3 alarm systems), as listed in Table II. Three cameras
(ID 11-13, referred to as Type 2) have two PIR sensors, while
the rest (categorized as Type 1) have one. Figure 12 shows the
testing setup: a 400 square feet (20 ft x 20 ft) living room with
a wireless security device mounted on the wall for monitoring.

Metrics: We use the following four metrics.

e Success Rate: the ratio between the number of successful
injection attacks (i.e., activating the target device) and the
total number of attack trials.

e False Positive Rate: the possibility that the device is
inadvertently triggered by other heat sources (other than
real motion and generated fake motion).

e Operation Time: the total time spent on triggering the
device via the laser-generated fake motion.

e Scan Distance: the distance between the initial and the
final laser point, at which the device is triggered.

B. Case Study

A Ring Stick Up wireless camera is installed in the room,
as shown in Figure 12. PhantomMotion is launched 10 times,
each with the camera repositioned to cover a different area.
The laser module is placed six meters away from the wall with
the mounted camera. We set the moving step length D (i.e.,
the distance between two successive laser points) as 0.5 m.

Figure 13 depicts the nearby traffic flows. The user injects
fake motion, and we observe a strong correlation between the
camera traffic throughput and the laser heating. The other
two traffic flows do not have an obvious relationship with
the phantom motion, and they belong to an iPhone in use
(online chatting) and a MacBook Pro laptop in web browsing
mode, respectively. PhantomMotion successfully triggers the
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target camera for all 10 tests, i.e., the success rate reaches
100%. The false positive rate is 0. The operation time and
scan distance are shown in Figures 14 and 15. We see that the
average operation time and scan distance are 2.9 sec and 1.25
m, respectively, indicating the efficiency of PhantomMotion.

C. Influential Factors

1) Impact of Moving Step Length D: When D is small,
the laser may need to point to many spots until triggering the
camera, while a large D may lead to a long laser scan path. We
vary D from 0.1 to 1.0 m in 0.1 m increments and perform 100
PhantomMotion trials for each D, with the camera’s location
and motion detection range randomized after each attempt. The
success rate maintains 100%, and no false positive is observed.
As shown in Figure 16, we observe that the median operation
time is inversely proportional to D. It is 1.5 sec when D is 1.0
m, and becomes 17.8 sec when D decreases to 0.1 m. This
is because a small D requires heating more points until the
device is triggered. Figure 17 shows the relationship between
D and the scan distance. We see that the median scan distance
increases with D, from 0.8 mat D = 0.1 mto32matD =1
m. These results show that selecting D is a tradeoff between
scan distance and operation time. To achieve a desired scan
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distance (less than 1 m) and a comparably short operation
time, we employ D =0.2 m for the following discussions.

2) Impact of Heating Material: We compare four com-
monly used residential materials: brick, aluminum (abbrevi-
ated as alumi), stone, and wood. Their specific heat capacities
are 800, 900, 1,000, and 1,700 J/kg - K. For each material, we
perform 100 trials of PhantomMotion. Again, we achieve a
100% success rate and a zero false positive rate for all heating
materials. Figure 18 shows that the operation time increases
with the specific heat capacity, while it remains consistently
small (less than 10.5 sec) for varying materials. We obtain
the median operation time values of 4.2, 5.2, 5.6, and 9.4 sec
for brick, aluminum, stone, and wood, respectively. Figure 19
presents the corresponding scan distances. We observe that
the scan distance slightly changes with the heating material.
The median scan distances for all materials are below 1.0 m.
Besides, Appendix B shows that PhantomMotion easily adapts
to varying heating materials even in NLOS scenarios.

3) Impact of Glass: Soda-lime glass, the most widely used
type of glass globally, accounts for around 90% of the flat
glass market due to its cost-effectiveness and durability [67].
We select soda-lime flat glass samples with five typical thick-
nesses: 3/32 inch (single-strength), 1/8 inch (double-strength),
5/32 inch, 3/16 inch, and 1/4 inch [68]. Thicker window glass,
including 3/16 inch or greater, is often recommended or re-
quired for enhanced protection in hurricane-prone regions [69].

We use 18-inch x 24-inch soda-lime glass sheets of varying
thicknesses to simulate residential window glass. For each
thickness, we perform 100 trials of PhantomMotion, directing
the laser through the glass sheet. Experiments without any
glass in the laser transmission path are also conducted as
a baseline for comparison. Figure 20 presents the obtained
operation time. We see that PhantomMotion remains effective
within a short time (less than 15 seconds), regardless of the
glass thickness. As the thickness increases, the mean operation
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time slightly increases. Specifically, with 3/32-inch glass, the
operation time ranges from 9.1 to 12.2 seconds, while at
1/4-inch thickness, it increases to a range of 11.8 to 14.6
seconds. This slight increase appears to result from laser power
attenuation, as thicker glass leads to marginally increased
absorption and scattering of the laser beam. Figure 21 shows
the corresponding scan distances. We see that the scan distance
remains consistent across varying glass thicknesses. With
glass, PhantomMotion dynamically adjusts the laser heating
time, while the scan distance is largely unaffected.

4) Impact of Laser Transmission Path Length: We vary
the distance L between the laser and the system (i.e., laser
transmission distance) from 7 to 15 m in 1 m increments.
For each L, we perform 100 trials of PhantomMotion and all
succeed. Figure 22 shows the obtained operation time. We see
the median operation time is always less than 10 sec. With L
increasing, the operation time slightly decreases. This appears
as for a larger L, the required angle that the laser needs to turn
is smaller for moving the laser point with a distance of moving
step (i.e., D). The decreased time for laser angle adjustment
lowers the operation time. Figure 23 plots the corresponding
scan distances. We observe for different L, the scan distance
ranges are similar and the median scan distances are all less
than 0.9 m, showing L has little influence on the scan distance.
This is because the scan distance is mainly affected by the
moving step distance D, which remains constant.

Long-distance Tests: The above experiments verify that
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PhantomMotion always works for a short laser transmission
distance, while focusing the laser with the small lenses for
a longer laser transmission distance (e.g., above 20 m) is
difficult. To address this, we adopt a telephoto lens (Opteka
650-1300mm [70]) to focus the laser, and achieve laser
transmission distances of up to 120 meters (the maximum
safety distance restricted by the testing environment). The
experiments were conducted on a secured 35-acre private
farmland, enclosed by fences, as shown in Figure 25. We
implemented all laser safety measures and confirmed that all
occupants of the farmland had left before starting our tests.
Access to the experimental area was restricted to other people,
and during the whole tests, we always directed the laser
towards the designated area. We also use a scope (TRUGLO
TRU-BRITE 30 TGS8539TL [71]) for providing a clear view
of targets up to 600 yards (about 549 meters).

The maximum attack distance is bounded by the sniffing
distance, i.e., the maximum distance between the sniffer
and the target where the sniffer can capture wireless signals
generated by the target. The sniffing distance depends on the
target, the communication environment, and the sniffer. We
utilize Alfa AC1900 to sniff wireless traffic, and its distance
of range is 500 feet (i.e., 152.4 m) in an open area. To
explore the attack distance, we install each device in two
typical environments, (i) a dense area: a room in an apartment
complex where there are walls and other objects (e.g., cars)
interfering, and (ii) an open area: a farmhouse with an open
field surrounding it. For every device in each environment, we
perform 15 independent trials to measure the sniffing distance,
and calculate average values, as shown in Figure 24. We
see that the sensing distances for all devices are quite large
(ranging from 129 to 167 m) in an open environment, while
they consistently plummet in a dense scenario.

We vary L from 20 to 120 m with increments of 20, and
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perform 100 trials for each L. The environmental temperature
remains the same. We consistently obtain a 100% success rate
and a 0 false positive rate. Figures 26 and 27 display the
operation time and scan distances. We see shorter operation
time compared with short-distance tests. The median operation
time for 20 m is 8.9 sec, and decreases to 8.2 sec at 120 m.
Again, a larger L requires a smaller rotation angle of the laser
beam, leading to decreased operation time. The observation
for scan distance is similar to that in short-distance tests.

5) Impact of Environmental Temperature: We utilize a dig-
ital thermometer (Smart Thermostat Premium [72]) working
with the HVAC to adjust the room temperature from 5 to
30 °C, with increments of 5. We conduct 100 attempts for
each specified temperature. The success rate and the false
positive rate still maintain 100% and 0, respectively. Figure 28
illustrates the operation time. We observe that the median
operation time slightly increases as the temperature decreases,
and it is 5.3 sec at 30 °C, while it increases to 6.3 sec at 5 °C.
This is because a lower temperature results in a longer laser
heating time. On the other hand, the scan distance exhibits
minor fluctuation with the temperature, as shown in Figure 29.
Particularly, the median scan distance remains consistently
below 0.9 m for varying temperatures.

Robustness to Inaccurate Environmental Sensing: We
simulate environmental temperature estimation errors by vary-
ing the estimated temperature from 10 to 30 °C in steps
of 2 °C, while the ground-truth temperature is set as 20
°C. This results in a temperature estimation error AT,
from -10 to +10 °C. For each ATy,.., we perform 100 trials
of PhantomMotion. PhantomMotion works under all tested
values of ATy,.,.. This is due to the fact that the temperature
estimation is used primarily as a coarse-grained guideline, and
the actual heating time can be flexibly adjusted (shortened or
extended) based on real-time traffic analysis that determines
when the camera switches to its working mode. Figure 30
shows the corresponding operation time, which is consistent
and shows no significant fluctuations across all AT,,.. values.
At AT, = 0, the operation time ranges from 8.5 to 10.5 sec.
For AT, # 0, it is similarly stable, ranging from 8.3 to 10.8
sec. Figure 31 plots the associated scan distances, which are
also consistent under different AT,,, values, remaining below
1 m. These results confirm that the inaccurate temperature
estimation can be effectively corrected by real-time traffic
analysis, confirming reliable performance of PhantomMotion.
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D. Overall Attack Impact

We perform 100 attack trials for each device and have
18 x 100 = 1,800 attempts in total. Again, PhantomMotion
achieves a 100% success rate and a zero false positive rate. For
each attempt, we record the operation time and scan distance,
as shown in Figures 32 and 33. We see three tendencies. First,
PhantomMotion always achieves a short operation time (from
8.1 to 14.7 sec) and a small scan distance (from 0.8 to 1.3
m). Second, on average, a device with two PIR sensors (Type
2, ID 11-13) causes a shorter operation time and requires a
smaller scan distance than a device with one PIR sensor (Type
1, ID 1-10&14-18). This is because a Type 2 camera has a
larger motion detection zone, requiring fewer heated positions
to trigger activation. Third, the performance is quite consistent
across devices with the same amount of PIR sensors. For Type
1 or 2 devices, the mean operation times range from 13.2
to 13.8 sec, and 9.5 to 9.7 sec, respectively. Meanwhile, the
respective mean scan distances stay around 1.2 and 0.9 m.

Figures 34 and 35 plot the CDFs of the operation time 7,
and the scan distance S. We see for Type 1, T, is less than
14.5 sec with a 97.5% probability; for Type 2, T, is less than
10.8 sec with a 98.3% probability. Also, S is less than 1.26
m for Type 1 with a probability of 92.0%, and less than 0.96
m for Type 2 with the same probability. These results again
show that more PIR sensors may lead to a shorter operation
time and a smaller scan distance, and confirm conclusively
that PhantomMotion is robust against different devices.

E. User Study

We conduct a user study to evaluate the real-world practical-
ity of PhantomMotion, focusing on whether non-experts can
successfully perform the attack and achieve consistent results.
We recruited 12 volunteers (U1-U12; aged 19-36 years old;
6 female and 6 male), from our institution via email lists
and campus flyers. All volunteers were non-experts with no
prior experience in camera detection. We target non-experts to
demonstrate that the attack does not require specialized skills,
thereby highlighting the broad applicability and accessibility
of the attack. Given their technical background, expert users
are expected to perform the attack with equal or greater effec-
tiveness. This participant-based evaluation is consistent with
previous camera detection studies (e.g., [11], [12], [13], [15],
[17], [18]). Our institutional office of compliance provides
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TABLE III

OFFICIAL VS. EMPIRICAL BATTERY LIFE: NORMAL USE VS. ATTACK.

D Official Battery Life Impact
Battery Life Under the Attack (%, x faster)

1 5 months [73] 11.5 hours 0.32, 313
2 6 months [73] 11.3 hours 0.26, 382
3 2-3 months [74] 6.2 hours 0.29-0.43, 232-348
4 up to 24 months [75] 15.7 hours > 0.09, <1,101
5 12 months [76] 13.3 hours 0.15, 650
6 3 months [77] 7.5 hours 0.35, 288
7 2.5 months [77] 6.0 hours 0.33, 300
8 12 months [78] 9.7 hours 0.11, 891
9  up to 200 days [79] 8.5 hours > 0.18, <565
10 20 days-6 months [80] 6.7 hours 0.16-1.4, 72-645
11 12 months [81] 12.5 hours 0.14, 691
12 6-12 months [82] 9.3 hours 0.11-0.22, 465-929
13 6-12 months [83] 8.5 hours  0.10-0.20, 508-1,016
14 up to 3 months [84] 5.2 hours > 0.24, <415
15 6 months [85] 12.7 hours 0.29, 340

training slides and a safety quiz for participants. To minimize
bias, no performance feedback or coaching was provided
during the trials. Our app only operates the laser once the user
affirms the safety measures. Each user performed PhantomMo-
tion 100 times to trigger a wireless motion-activated device
randomly selected and deployed at a random location inside
the living room, as shown in Figure 12. We make sure that
the motion detection area is not fully blocked. Each participant
received a $20 Amazon gift card as compensation.

Consistently, all users achieve a 100% success rate and no
false positive is observed. Figure 36 shows their operation
time. We see the maximum operation time for each user is
always below 6.5 sec, and some users (e.g., users 3 and 7)
can obtain an operation time as short as 5.2 sec. Figure 37
presents the scan distances. We see a consistent median scan
distance for all users varying between 0.88 and 0.91 m. These
results demonstrate consistent attack efficiency across users
and verify the practicality of PhantomMotion.

F. Impact on Battery Consumption

We measure how quickly the battery of each tested security
camera depletes when PhantomMotion consecutively activates
the camera. Each camera is fully charged and positioned to
monitor the same residential front yard. We conduct two
groups of experiments: (i) without the attack, where the camera
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is triggered by natural motion (e.g., passing pedestrians or
vehicles); (ii) with the attack, where the camera is continuously
triggered by PhantomMotion. We record the battery level using
the camera’s mobile app every 10 minutes, collecting 100
samples over 16 hours and 30 minutes.

Figures 38 and 39 show the battery drain of the first six
cameras (ID 1-6 in Table II) over time without and with the at-
tack. We observe under normal usage (i.e., without the attack),
all cameras retain at least 97% of their battery capacity after
16.5 hours. In contrast, with the attack, the cameras experience
accelerated battery drain, with lifespans ranging from 6.2 to
15.7 hours. We record the battery life of all cameras under
the attack and obtain the officially advertised battery life on a
single charge from camera vendor websites under normal or
default usage. Table III presents both values, along with the
percentage of remaining battery life with the attack relative to
the official specification, and the corresponding fold increase
in battery drain rate caused by the attack. The accelerated
battery drain results from PhantomMotion keeping the camera
continuously active in its high-power operational state.

VII. DISCUSSION
A. Limitation

Line-of-sight Access: Like other light-based attacks, Phan-
tomMotion inherits the limitations of light-related physics, i.e.,
it requires line-of-sight (LOS) to the heating material. How-
ever, for PhantomMotion, the material does not necessarily lie
in the LOS of the target system due to radiation heat transfer.

Customized Motion Detection Zones: Our experiments are
performed with the security systems in factory default settings.
Some systems do not support activity zone customization, such

Elapsed Time (hours)
Fig. 39. Battery drain under the attack.
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Frame Difference
Fig. 40. CDFs of frame differences.

as Simplisafe Cam and Ring Alarm System, while some allow
manually creating activity zones in certain circumstances.
For example, users can customize the motion zones of an
Arlo wireless camera when they purchase an Arlo Secure
Subscription plan [86]. If a user manages to narrow the motion
detection zone, PhantomMotion still works while it may need
to scan a larger area, resulting in an increased operation
time. Meanwhile, a decreased motion detection zone may also
degrade the system’s ability to detect intrusion accordingly.

Security Systems Without WiFi Connection: Phantom-
Motion sniffs WiFi and does not work with non-WiFi net-
works such as 4G-LTE or 5G. The cellular space brings new
challenges. For example, a cellular device does not broadcast
its MAC and uses the Temporary Mobile Subscriber Iden-
tity (TMSI), which can be changed frequently. However, by
combining techniques that can achieve cellular traffic tracking
(e.g., [87], [88], [89]), PhantomMotion may still work.

B. Defense Strategies

One straightforward defense is to manually turn off the mo-
tion sensor [90], disabling motion-triggered alerts. However,
this is impractical, as it prevents timely intrusion detection.

Multi-factor Motion Authentication: A practical way to
detect the attack is to incorporate another type of sensor (e.g.,
an ultrasonic detector [91], RGB color sensor [92], wireless
transceiver [93], [94], [95], [96], or geophone [97], [98])
unaffected by injected thermal radiation for verifying motion.
However, they require deploying extra hardware and effort.
Also, each new sensor may introduce a new attack surface.

Video Processing based Solutions: A wireless camera
can analyze the recorded video to verify motion authenticity.



This solution entails advanced computer vision and machine
learning algorithms to distinguish human motion (e.g., [99],
[100], [101]). Specifically, the camera may achieve motion
detection by employing light-weight frame-by-frame com-
parison (e.g., [102], [103]) or performing video analysis in
the cloud using resource-intensive machine learning without
significantly increasing device cost or reducing battery life.
Also, modern SoCs may support computer vision tasks and
image processing on edge devices. Among them, Ambarella
CV-series chips with the “S” suffix are optimized for secu-
rity cameras and intelligent surveillance, while TI’s AM6xA
processors are designed for vision applications. For instance,
the Ambarella CV22S SoC [104] can perform real-time,
lightweight frame comparisons locally for 4K video at 30 FPS,
and the TI AM62A low-power SoC [105] achieves real-time
performance for advanced image processing at the edge. These
recent advancements, which enable low-latency on-device
video processing, make this defense direction promising.

We utilize a Ring Stickup Cam at 15 frames per second
(FPS) to capture 100 clear clips of 5-second video footage
in three scenarios, (i) a static case in which PhantomMotion
launches in NLOS of the camera and generates fake motion
to trigger the camera; (ii) an environment with neither real
nor fake motion; and (iii) where real motion is performed to
trigger the camera. Figure 40 presents the corresponding frame
differences (i.e., the sum of all pixel differences between two
successive frames) under the three scenarios. We can see that
the frame differences for cases (i) and (ii) are quite similar,
while they both share some overlap with that for the third
case with real motion. The results indicate that the technique
of frame differencing may be able to successfully determine
whether the large-amplitude motion (leading to high frame
differences) is true or fake, while it may not be able to
distinguish subtle motion (causing comparably smaller frame
differences) from generated phantom motion.

The accuracy of video-based techniques, however, highly
depends on the light condition. Also, if the fake motion
appears only in the non-overlapping area that belongs to the
motion detection zone but not the camera’s field of view,
this method fails as the camera cannot capture the position
where the motion occurs. Besides, performing detection on
raw videos may reveal the privacy of innocent people in
the video [106], and these systems may suffer from image
injection attacks [107], where an attack makes a camera
misperceive an actual scene or perceive a non-existent scene.

VIII. CONCLUSION

We present PhantomMotion, a novel technique for remotely
triggering wireless motion-activated security systems (such as
widely deployed IoT cameras and alarm systems) with a laser.
It is the first to activate security systems requiring neither
penetrating into the same network with target systems nor
physical human motion in close proximity to the systems.
By exploiting the working mechanisms of motion sensors, we
manage to create fake motion signals and inject them into an
area to stimulate a security system monitoring this area to
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emit wireless traffic, which can be collected and correlated
with the laser-based stimulus to check whether the system
activates. Our real-world evaluation with 18 popular off-the-
shelf wireless security systems shows the effectiveness and
efficiency of PhantomMotion under varying conditions.

ETHICS CONSIDERATIONS

Laser Safety: For lasers with intermediate power (5-500
mW), i.e., Class 3b laser, they may heat skin and other
materials, but are not considered a burn hazard normally [108].
Class 3b lasers are often used for entertainment light shows.
The more powerful the laser, the sooner the heat will build up.
Direct viewing of the Class 3b laser beam may be hazardous to
the eye, while diffuse reflections from paper or matte surfaces
are not harmful. We used a Class 3b laser with a power of
100 mW at the low end. This study has been approved by
our institution’s IRB, and experiments were conducted under
a Standard Procedure approved by our institutional Office
of Compliance. The office examined our laser devices and
procedures; safety precautions were taken to ensure no harm
was caused, such as avoiding direct viewing of the laser beam,
providing users with laser goggles, and adequately covering
windows with laser safety curtains to prevent any inadvertent
laser escape. We urge that researchers receive formal laser
safety training and approval of experimental designs before
attempting to reproduce our work.

Responsible Disclosure: Following the practice of respon-
sible disclosure, we have reported our findings to mainstream
camera vendors, including Arlo, Blink, Google, Ring, Sim-
pliSafe, and Wyze. They have acknowledged receipt of our
vulnerability report and appreciated our submission. Arlo has
successfully validated our identified vulnerability, confirmed
that it could be replicated, and awarded us a bug bounty.
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APPENDIX
A. User Interface

We develop a mobile app PhantomMotion and its designed
user interface (UI) is presented in Figure 41.

B. Non-Line-of-Sight Scenarios

We test a 1-centimeter-thick wall with six common materials
that can block visible lasers, including: aluminum, brass,
copper, brick, stone, and wood. Their respective values of
thermal conductivity rate A, denoting the material’s intrinsic
ability to conduct heat [109], are 130, 146.9, 398, 1.03, 1.3,
and 0.13 watts per meter kelvin (W/mK). A fraction of a side
of the wall is inside the motion detection range of the camera,
while the laser is shot from the opposite side of the wall.
Some heat may thus traverse the wall to trigger the camera.
The camera is unable to record the laser beams when it is
activated. As )\ of wood is too low, its heat transmission is too
inefficient to generate phantom motion within an appropriate
time (e.g., several minutes). We focus on the rest materials, and
perform 100 trials of PhantomMotion for each. The success
rate stays at 100%. Table IV presents the mean, minimum, and
maximum operation time. We observe the operation time is
almost inversely proportional to A, which indicates the thermal
transfer efficiency. A high A would reduce the laser heating
time at each point along the scan path. As shown in Figure 42,
the scan distances for different materials are similar, within the
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Fig. 41. The UI snapshot when the target camera is activated.

TABLE IV
OPERATION TIME VS. MATERIAL IN NLOS SCENARIOS.

. Operation Time (seconds
Material Averagi Minimum( Maxi)mum
Copper 5.7 53 6.2

Brass 6.7 6.2 7.1
Aluminum 10 9.7 10.3

Stone 308.4 299.4 319

Brick 399.3 392.6 406.5

range of 0.82 to 0.97 m. The material has no apparent impact
on scan distance.

Impact of Material Thickness: We test aluminum sheets
(with the designation 6061-T651) of varying thicknesses,
including 1/16, 1/8, 1/4, 1/2, and 1 inch, sold on Amazon.
We heat one side of the sheet with the laser, monitor the
temperature of the other side, and record the heating time spent
for it to reach the target temperature to trigger the camera. We
perform 50 independent such experiments. Figure 43 presents
the average heating time. We also plot the theoretical heating
time, as discussed in Section V-F (with the temperature 7, =20
°C and the target temperature 73 = 37 °C). We can see that
the required heating time increases with thickness, and the
empirical values are slightly higher than theoretical ones.

Special NLOS Case: For a more covert attack, we develop a
“black-box™ attack method, in which we put a laser system in
a closed box made of opaque materials that can transfer heat
within a reasonable time, such as the five materials we test
above. The laser can be controlled wirelessly via the smart-
phone. It can then heat the interior surface of the box, and also
the corresponding exterior surface of the box via a spontaneous
heat transfer process. When this exterior surface of the box
happens to face the target camera, the generated fake motion
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Fig. 42. Scan distance vs. material. Fig. 43. Required heating time vs.
material thickness.
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Fig. 44. Camera feeds before and after the black-box attack.

signals may trigger the camera accordingly. Figure 44 demon-
strates such an attack case, where PhantomMotion successfully
triggers the camera. By comparing the camera feeds before and
after the attack occurs, we see that there is no visual difference.
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