Artifact
Evaluated

ANDss

Available

Functional

DNN Latency Sequencing: Extracting DNN
Architectures from Intel SGX Enclaves with
Single-Stepping Attacks

Reproduced

Minkyung Park*, Zelun Kong*, Dave (Jing) Tian', Z. Berkay Celik!, Chung Hwan Kim*
*University of Texas at Dallas tPurdue University

*{minkyung.park, zelun.kong, chungkim} @utdallas.edu

Abstract—Deep neural networks (DNNs) are integral to mod-
ern computing, powering applications such as image recognition,
natural language processing, and audio analysis. The architec-
tures of these models (e.g., the number and types of layers) are
considered valuable intellectual property due to the significant
expertise and computational effort required for their design.
Although trusted execution environments (TEEs) like Intel SGX
have been adopted to safeguard these models, recent studies on
model extraction attacks have shown that side-channel attacks
(SCAs) can still be leveraged to extract the architectures of DNN
models. However, many existing model extraction attacks either
do not account for TEE protections or are limited to specific
model types, reducing their real-world applicability.

In this paper, we introduce DNN Latency Sequencing (DLS),
a novel model extraction attack framework that targets DNN
architectures running within Intel SGX enclaves. DLS employs
SGX-Step to single-step model execution and collect fine-grained
latency traces, which are then analyzed at both the function and
basic block levels to reconstruct the model architecture. Our key
insight is that DNN architectures inherently influence execution
behavior, enabling accurate reconstruction from latency patterns.
We evaluate DLS on models built with three widely used deep
learning libraries, Darknet, TensorFlow Lite, and ONNX Run-
time, and show that it achieves architecture recovery accuracies of
97.3%, 96.4%, and 93.6%, respectively. We further demonstrate
that DLS enables advanced attacks, highlighting its practicality
and effectiveness.

I. INTRODUCTION

Deep learning, particularly deep neural networks (DNNs),
has become foundational to a broad spectrum of applica-
tions, including image processing [1], sequence prediction [2],
and audio recognition [3]. The architectures of these models
(e.g., the number and types of layers, as well as various
hyperparameters) are often considered valuable intellectual
property, as their design demands significant human expertise
and computational resources. As a result, adversaries have
sought to extract proprietary DNN models and exploit this
knowledge to launch model extraction attacks, including ar-
chitecture stealing [4], [5], [6], [7], [8], [9] and parameter
stealing [10], [11], [12]. These efforts, in turn, can facilitate

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231455
www.ndss-symposium.org

T{daveti, zcelik} @purdue.edu

more advanced attacks, such as membership inference [13],
[14], [15] and evasion attacks [16], [17].

To protect the confidentiality of DNN models, researchers
have proposed using trusted execution environments (TEEs)
such as Intel SGX [18], [19], [20], [21], [22], [23], ARM
TrustZone [24], [25], [26], and AMD SEV [27]. However,
DNN models remain susceptible to sophisticated adversaries,
particularly those exploiting side-channel attacks (SCAs), even
in the presence of TEEs. Recent studies on model extraction
attacks [5], [6], [7], [28], [10], [29] have shown that existing
SCAs, including cache timing [30], [31], power consump-
tion [32], and ciphertext collisions in memory [33], can be
leveraged to infer information about DNN models. For clarity,
we use the term SCA primitive to refer to an SCA technique
employed for model extraction.

Although existing model extraction attacks have shown
promising results, they often overlook TEE protections or rely
on restrictive assumptions about the target models, limiting
their practicality (Table I). First, many attacks do not assume
the presence of a TEE, raising concerns about their feasibility
in protected environments. For example, Intel SGX enclaves
prohibit shared memory pages [4], rendering attacks such
as Flush+Reload [31] ineffective. Additionally, modern Intel
Xeon processors employ non-inclusive Last Level Caches
(LLCs) [34], which diminishes the effectiveness of LLC-
based attacks [5], [7]. Second, some attacks are limited to
specific model types rather than being generally applicable.
For instance, Cache Telepathy [5] can only extract models im-
plemented using the General Matrix Multiplication (GEMM)
algorithm. Or, the power-based attack within Intel SGX has
been shown to work only for models using ReLU layers [10].
Third, attacks that exploit TEE vulnerabilities [29], [10] typi-
cally target model parameters and assume prior knowledge of
the model architecture. As a result, a practical, generic, and
effective model extraction attack to recover DNN models from
within a TEE remains an open challenge.

In this paper, we present a new model extraction attack
framework, namely DNN Latency Sequencing (DLS), to
recover the architecture of a DNN model protected by Intel
SGX, without being limited to specific model types. By
leveraging SGX-Step [35], we single-step the execution of the
DNN model and record the latency at each step, producing a
time series that serves as a unique fingerprint of the model.

Table I: Existing model extraction attacks on DNN models using SCA primitives. LLC: Last Level Cache, FR: Flush+Reload,

PP: Prime+Probe, GEMM: General Matrix Multiplication.

Name TEE Protection SCA Primitives

Target Target DNN Models

Not Considered
Not Considered

DeepRecon [4]
Cache Telepathy [5]

LLC (FR) [31]
LLC (FR & PP) |

Il

Architecture Any Models

1 Architecture Models with Known GEMM Only

DeepCache [6] Not Considered LLC/L1 Cache (PP) [30] Architecture Models with Compiler Optimization Only
GANRED [7] Not Considered LLC (PP) [30] Architecture Any Models
DeepTheft [28] Not Considered Power [32] Architecture Any Models
HyperTheft [29] AMD SEV Ciphertext Collision [33] Functionality Any Models
Zhang et al. [10] Intel SGX Power [32] Parameters Models with ReLU Only
DLS Intel SGX IRQ Latency [35], [36] Architecture Any Models

To bridge the semantic gap between low-level instruction
latencies and high-level model architecture, DLS introduces an
intermediate representation based on the program’s execution
behavior. The key insight is that a DNN’s architecture is in-
herently encoded in its execution flows. Specifically, different
layer types trigger distinct function calls, resulting in unique
sequences of functions and, consequently, unique sequences
of instructions that align with the measured latency trace.

Based on this observation, we segment the latency sequence

at the granularity of functions and basic blocks, and then feed

these execution traces into our mapping models to infer the
architecture of the target DNN model. Prior studies on SCA
primitives themselves have demonstrated the feasibility of re-

constructing simple execution flows for isolated functions [37],

[311, [36], [38], [39], [40], [41]. In contrast, DLS addresses

the unique challenges of (1) extracting the complex execution

flows of DNN programs and (2) correlating these flows with
the structural characteristics of DNN models, as detailed in

§IV.

We implement DLS and evaluate its accuracy and effec-
tiveness using three widely adopted deep learning libraries,
Darknet [42], TensorFlow Lite [43], and ONNX Runtime [44],
within Intel SGX enclaves. Our results show that the latency
time series collected from randomly generated models can
be used to recover model architectures with high accuracy:
97.3% for Darknet, 96.4% for TensorFlow Lite, and 93.6%
for ONNX Runtime. In particular, for Darknet, using coarse-
grained, function-level execution flows allows the attacker to
recover the number of layers, layer types, and several key
hyperparameters with 99.2% accuracy. Additionally, leverag-
ing fine-grained, basic block-level execution flows enables the
recovery of further hyperparameters with an average accuracy
of 90.9%. To highlight the practical impact of DLS, we also
demonstrate it to facilitate evasion attacks.

The main contributions of DLS are as follows:

« A Novel Model Extraction Framework: We propose DLS,
a new attack framework for recovering the architecture of
DNN models running inside Intel SGX enclaves. Unlike
prior model extraction attacks on TEEs, DLS does not
require prior knowledge of the target architecture or rely
on specific DNN types.

« Bridging the Semantic Gap: DLS bridges the gap between

high-level model architecture and low-level instruction la-
tencies by partitioning the latency sequence at both the
function and basic block levels. These execution flows are
then analyzed to reconstruct the target model architecture,
effectively closing the semantic gap.

« Implementation and Evaluation: We apply DLS on
various models built using three well-known deep learning
libraries, Darknet, TensorFlow Lite, and ONNX Runtime
within SGX enclaves. Our experiments show that DLS can
accurately reconstruct the model architecture and potentially
facilitate further advanced attacks. To support reproducibil-
ity and future research, we release our code and datasets
publicly [45].

II. BACKGROUND
A. DNN Model Extraction Attacks

A model extraction attack compromises the privacy of a
trained DNN model by extracting details of the model and
reconstructing a similar or identical model [46]. These details
include the model architecture and model parameters, the
fundamental components of a DNN model that determine the
model’s performance. Model architecture is decided before
model training and includes the network structure and hyper-
parameters. Specifically, the network structure represents the
overall shape of the DNN, determined by the number of layers,
the type of each layer, and their connections. Hyperparameters
are configurable parameters of each layer, including activation
functions, the number of filters, and filter sizes. In contrast
to model architecture, model parameters include weights and
biases that are optimized during the model training.

To extract the model architecture, an attacker typically sends
queries to the trained model, treating the model as a black box,
and observes the model’s execution through various channels
that it has access to (e.g., query result and side channels).
Since the model parameters are contingent on the model
architecture, a prerequisite step of the attack is learning the
model architecture first, which can then be used to steal the
model parameters [10], [11], [12].

The model architecture is sensitive information and should
be kept private, as its exposure can compromise the security
and privacy of a DNN. An adversary can directly exploit the
architectural knowledge to launch various attacks, such as

I 141,

parameter extraction [I1], membership inference [
[15], and input data extraction [47]. Moreover, it can even
increase the success rates of functionality extraction [29] and
evasion attacks [16], [17]. Therefore, DLS focuses on the
extraction of model architecture.

Side-channel-based Model Extractions Attacks. A wide
range of well-established SCA primitives have been shown
to leak internal information from computing systems. These
primitives primarily focus on identifying and exploiting novel
side channels under diverse (micro)architectural properties.
Also, they demonstrate their effectiveness in controlled envi-
ronments by evaluating isolated functions that contain specific
secret-dependent branches [37], [36], [38], [39], [40], [41].

Building on these SCA primitives, recent research has
proposed model extraction attacks, which aim to reconstruct
complex DNN models. In particular, when the target model
is protected by Intel SGX, existing model extraction attacks
are limited to those leveraging cache-based [5], [6], [7], [4],
software-based power [28], [10], and ciphertext-based [29]
side channels, as summarized in Table I. For example, model
extraction techniques that rely on hardware-specific features
of ASICs or GPUs are not applicable under our threat model,
as detailed in §VII. Several of these approaches [5], [6], [7],
[4], [28] were not initially designed for TEE-protected models
and their effectiveness has been demonstrated in standard CPU
environments.

Attacks leveraging CPU caches typically exploit
Prime+Probe [30] or Flush+Reload [31]. Since Flush+Reload
relies on shared memory, which is forbidden in enclave
applications, DeepRecon [4], which depends only on
Flush+Reload, cannot be applied to SGX-protected models.
Cache Telepathy [5] and DeepCache [6] infer matrix
dimensions by observing cache operations optimized by
Goto’s algorithm [48] and deep learning compilers [49],
[50], respectively. The matrix operations are further mapped
to model architectures. The effectiveness of these attacks
decreases when implementations change, as they rely on
specific optimizations. GANRED [7] leverages a Generative
Adversarial Network (GAN) where the discriminator compares
the victim’s LLC cache trace against a candidate trace. For
the first layer, it evaluates all potential model architectures
to find a match between the two traces. This process is
then repeated for each subsequent layer until reaching the
final layer. GANRED assumes that the victim model uses a
predefined set of model architectures. It limits its applicability
when the victim model employs a hyperparameter not in this
set. Also, the attacks based on inclusive LLC cache [5], [7]
would be limited when targeting Intel Xeon processors with
non-inclusive LLC [34].

Intel Running Average Power Limit (RAPL) interface al-
lows an adversary to analyze fine-grained power consumption
patterns to extract model architecture [28] or parameters [10].
However, due to these security implications, recent microcode
updates obfuscate power information when Intel SGX is
enabled, hindering the feasibility of such attacks.

HyperTheft [29] aims to recover model functionality via

surrogate training, rather than reconstructing the exact model
architecture or parameters. It targets AMD SEV by exploit-
ing ciphertext leakage [51], [33] resulting from deterministic
encryption in AES-XEX mode. In terms of generality, the
reliance on ciphertext leakage limits its applicability to AMD
architectures. Memory Encryption Engine (MEE) in Intel SGX
for single-socket servers employs a non-deterministic AES
mode [52], [53]; for multi-socket servers, Intel Multi-Key
Total Memory Encryption (TME-MK) relies on deterministic
AES-XTS mode, but how this is integrated with Intel SGX
remains unclear [54], [55]. Also, since ciphertexts in Intel
SGX are inaccessible even with root privileges, alternative
approaches (e.g., memory bus snooping [56] or cold-boot
attacks [57]) are required to observe them. However, these
methods introduce additional challenges, including the need
for physical access and susceptibility to noise. Moreover,
HyperTheft leverages the CipherLeaks primitive [51], which
can be mitigated through the microcode patch [33]. Lastly,
HyperTheft achieves higher accuracy when the architecture
knowledge is available. Therefore, DLS can complement it
and enhance its overall effectiveness.

B. Single-Stepping Attacks on SGX Enclaves

Among various side channels on Intel SGX, SGX-Step [35]
provides a fine-grained side-channel attack framework, allow-
ing the attackers to single-step enclave execution. It enables a
user-level application to trigger an APIC timer interrupt on a
target enclave. When the interrupt is fired, an Asynchronous
Enclave eXit (AEX) routine is triggered, causing the enclave
to exit temporarily. The enclave resumes the execution after
the interrupt is handled by an interrupt request (IRQ) handler.
An attacker can control this to trigger an interrupt repeatedly
at a high CPU frequency and establish a channel to single-step
the enclave forcefully at a fine granularity (i.e., a single CPU
instruction). This capability has been leveraged by various
attacks to leak sensitive information about enclave programs,
such as page table entries [58], [59], [60], [61] and instruction
latency [36], [39]. Note that these attacks have also been ported
to other TEEs, as detailed in §VIII.

We leverage SGX-Step to single-step the execution of a
DNN model within an enclave and measure the IRQ latency
of individual instructions. Similar to prior work [36], we record
the elapsed time between subsequent enclave resumption and
exit, and use the time to reflect the latency of each instruction.
Although the single stepping generally provides a low-noise
side channel, there are still various sources of measurement
noises that it suffers from. For example, multiple instructions
may be executed within a single measurement period (multi-
stepping) or no instruction may be executed (zero-stepping),
due to inconsistent duration of IRQ handling, privilege level
switches, and cache pollution [62], [63]. Therefore, extracting
the model architecture of a DNN model within an enclave
should be robust against such noise in order to perform a
successful model extraction attack.

III. THREAT MODEL

DLS considers a scenario where a victim DNN model is
pre-trained and subsequently deployed on an untrusted third-
party environment, such as edge devices or MLaaS platforms.
While the model can be trained on any platform (e.g., GPU),
the deployment environment is assumed to be equipped with
Intel SGX. In this setup, the victim DNN model, represented
by a victim DNN program, is protected by SGX so that
the inference process operates only within an enclave. An
attacker’s goal is to learn the architecture of the victim model.

Our threat model aligns with the standard SGX threat
model. A privileged adversary has full control over privileged
system software, such as the OS or hypervisor. For example,
untrusted cloud providers may access their hosting servers.
Alternatively, an attacker can gain direct access to an edge
device by rooting it. In addition, the victim model is regarded
as a black box. The adversary is capable of initiating the
inference process (repeatedly) on the victim model. For in-
stance, open APIs provided by MLaaS platforms enable the
attacker to submit queries to request inference. Lastly, it is
assumed that the victim model is developed using an open-
source deep learning framework, and the attacker is aware of
the library with its version used to develop the model and its
binary running inside the enclave for analysis.

Under this threat model, the adversary leverages the single-
stepping attack to measure instruction latencies at the inference
process, as explained in §II-B. The adversary then uses the
latency trace for its analysis. We note that the attack does
not require physical access to the victim machine nor prior
knowledge about the victim model. The measurement can be
conducted remotely without physical access.

IV. CHALLENGES

The goal of DLS is to learn the execution flows of a DNN
program. We define two types of execution flows: the function-
level execution flow (FEF) and the basic block-level execution
flow (BBEF). The FEF represents a sequence of executed
functions, and the BBEF represents a sequence of executed
basic blocks.

Instruction latencies are obtained from the executed instruc-
tions of the victim DNN program, and thus the latency trace
reflects the program behavior, such as called functions and
taken branches. On the other hand, the model architecture
is a semantic representation of the program whose behavior
is decided by the model architecture. Consequently, the FEF
and BBEF, which provide information on program execution
behavior, bridge the gap between the low-level instruction
latency and the high-level model architecture.

To correlate latencies with execution flows, several technical
challenges arise due to instruction latency characteristics.

C1: Indistinguishability of a Latency. Firstly, an individual
instruction latency is indistinguishable. Since each instruction
is typically processed within a few cycles, the latency falls
within a narrow range, making it difficult to reliably identify
specific instructions based solely on one latency value. To

tackle this, DLS analyzes a series of latencies to capture the
sequential context within the trace.

C2: Excessive Trace Length. A subsequent challenge is
the impracticality of learning the sequential context across
an entire trace. A DNN model can generate an enormous
volume of instructions, resulting in an excessively long trace.
Thus, DLS adopts a two-step approach to narrow down the
problem incrementally. Initially, the latencies are transformed
into a coarse-grained FEF using short-term contexts. It is
subsequently refined into a fine-grained BBEF. It deduces a
latency’s corresponding basic block by considering the full
context of a given function.

C3: Noise in Measurement. Lastly, the noise inherent in
latency measurement further complicates the accurate iden-
tification of the execution flows. As mentioned, the latency
is influenced by various factors such as processor microcode,
memory transfer speeds, preceding or succeeding instructions,
memory or cache status, and speculative execution. Also, a sin-
gle latency measurement may encompass multiple instructions.
Thus, its measurements may fluctuate with each execution.
In this paper, we address the above challenges to correlate
the latencies with execution flows. DLS learns distinct latency
patterns within each function and across multiple functions,
which captures the sequential context for challenge c1. A
specific series of instruction produces a unique latency pattern,
which can be used to identify functions within the trace over
short time intervals. Once functions are identified and the FEF
is generated, basic blocks are subsequently recognized. To
achieve this, DLS extracts latency patterns for basic blocks
within a function, learns the sequential relationships between
these patterns, and models how they appear throughout the
function. This model is then used to estimate the sequence of
basic blocks (i.e., BBEF) that best aligns with the trace. This
two-step approach can address challenge c2. Additionally,
to overcome challenge c3, DLS reduces noise by averaging
latency measurements across multiple traces based on page
index, enhancing the stability and accuracy of the attack.

Our Contributions Beyond SCA Primitives. SCA primitives
typically explore new side channels under varying threat mod-
els or (micro)architectural properties. While these attacks often
exploit secret-dependent branches to demonstrate feasibility,
they primarily evaluate isolated functions (e.g., an inverse
cosine discrete transform function [37] or a binary search
function [36]) in controlled environments. As a result, key
questions remain when applying such SCA primitives to model
extraction attacks: Which real-world DNN applications are ac-
tually vulnerable, and why? How can side-channel information
be effectively processed for realistic DNN workloads? What
challenges arise in applying these techniques?

DLS is designed to address these questions. We first observe
that model architectures can be reflected in side-channel traces
as distinctive execution flows. Then, we design DLS to tackle
the above technical challenges (c1-C3), which arise in prac-
tical model extraction. For example, simple latency-pattern
matching is insufficient, as certain patterns may recur across

N

Latency Trace i

Preprocessing ($V.B)

Network Structure
& Hyperparameters

,"I/ ﬁ%%%

: Function
' | Hdentification (§V.C)

Function-level
Execution Flow
(FEF)

Ex i
@ Basic Block-level Flow Mapping

e Execution Flow (§V.E)
== (BBEF)

; Basic Block

\ \ Identification (§V.D)

Figure 1: Overview of DLS.

multiple functions throughout an excessively long trace. DLS
incorporates more sophisticated mechanisms to disambiguate
and extract meaningful structural information; we provide
further details in §V. This makes DLS fundamentally different
from SCA primitives themselves, enabling scalable and robust
model extraction in real-world DNN scenarios.

V. DESIGN
A. Overview

Figure 1 shows the process of DLS, which consists of four
steps: (i) Preprocessing, (ii) Function Identification, (iii) Basic
Block Identification, and (iv) Execution Flow Mapping. Given
a victim latency trace, the attacker first preprocesses the trace,
which smooths out noise. Then, function and basic block
identifications extract FEF and BBEF. These flows are sub-
sequently mapped to specific layer types or hyperparameters.

For function and basic block identification, the attacker
must prepare training traces and build a Latency to Function
classifier (L2F classifier) and a Latency to Basic Block model
(L2BB model) in advance. Specifically, the attacker learns
the sequential context of latencies to identify each function,
with the L2F Classifier categorizing each latency into its
corresponding function. To achieve this, DLS employs a CNN-
BiLSTM (a Convolutional Neural Network with a Bidirec-
tional Long Short-Term Memory network) network to extract
features from latencies and learn their sequential dependencies.
The function-classified trace is then reduced to derive the FEF.
For the basic block identification, the attacker builds the L2BB
model to represent the relationship between latencies and the
BBEF using a Hidden Semi-Markov Model (HSMM). This
model is used to capture the basic blocks (i.e., hidden states),
their control flows (i.e., transitions between them), and the
latencies (i.e., observations).

Execution flow mapping information is obtained through a
semi-automated process by analyzing the target library. The
attacker can extract common layer types and hyperparameters
from training traces with the same FEF, and this process can

Index Latency Index Latency Index Latency Index Latency
P1 9273 P1 9733 P1 9317 P1 9441
P1 8675 P1 8955 P1 8637 P1 8756
P1 8978 P1 8537 P1 9013 P1 8843
P1 9978 P1 9426 P1 9103 P1 9502
P2 8464 P2 8856 P2 8102 P2 8660
P2 8734 P2 8954 P2 8823 P2 8844
P2 9524 P2 9462 P3 9302 P2 9493
P3 9245 P3 9215 P3 9103 P3 9259
P3 9163 P3 9145 P3 9045 P3 9124
P3 8967 P3 8964 P3 9013 P3 9005
P3 8953 P3 9045 P3 9001 P3 9029
P1 9267 P3 9134 1 9352 P4 9068
P1 8998 P1 8999 1 8892 P1
Trace T1 Trace T2 Trace T3 Averaged Trace

Figure 2: Latency traces of DLS. Multiple traces are averaged
based on their page index. The rows with the same color are
averaged while the white-colored rows are ignored.

be automated. To identify the BBEF mapping information, the
attacker has to determine relationships between basic blocks
and hyperparameters. We observe that model hyperparameters
often affect program control flow; for example, the number of
loop iterations is usually determined by the number of filters
and their sizes in a convolutional layer [9]. Thus, the attacker
needs to understand how hyperparameters influence the control
flow of a function. Note that this mapping process only needs
to be performed once per target library.

B. Data Preparation

The initial process is to collect a training dataset of latency
traces. Because this dataset is used to train the L2F classifier
and the L2BB model, it must comprehensively cover all func-
tions exercised by the victim DNN program. In our evaluation,
we used 300 models that is used to yield approximately 1,000
segments per class for the L2F classifier, ensuring redundant
coverage of diverse execution paths and variations in latency
patterns. Moreover, to mitigate noise impact, multiple traces
(e.g., ten traces) are averaged for each model. Since individual
traces may unexpectedly omit instructions, the attacker uses
page index information to average the traces effectively. For
each latency measurement, the attacker checks the index of the
accessed page by examining the page table entry. Within each
sequence of consecutive page identifiers, the attacker counts
the number of latencies, identifies the most frequent count, and
averages latencies with that count. For example, as illustrated
in Figure 2, trace T1 and trace T2 have three instructions in
page p2, while trace T3 has only two. Then, only traces T1
and T2 are averaged for page P2. While this method cannot
completely eliminate inaccuracies from averaging different
instructions’ latencies, it helps minimize their impact.

Finally, we normalize the averaged trace using Z-
normalization to standardize the mean to zero and the standard
deviation to one. This normalization ensures a consistent data
scale across all traces and effectively handles outliers with sig-
nificant noise. Consequently, the attacker collects normalized
and averaged training traces from multiple models in advance.
The attacker preprocesses the victim trace in the same way,

by averaging and normalizing it. For the sake of brevity, we
use a ‘trace’ to refer to a normalized and averaged trace.

C. Function Ildentification

The next step involves determining the specific function
associated with each instruction latency. Due to the inherent
characteristics introduced in §IV, the L2F classifier analyzes
consecutive instruction latencies to identify unique patterns
embedded within functions, thus recognizing the correspond-
ing functions.

We design the L2F classifier as a hybrid CNN-BiLSTM
model that processes a trace and classifies each latency into
its respective function. This model combines a Convolutional
Neural Network (CNN) model with a Bidirectional Long
Short Term Memory (BiLSTM) model. The CNN serves
as an efficient mechanism to automatically learn distinctive
features (patterns) in input data, while the BILSTM captures
the temporal dependencies within the input data. In the CNN-
BiLSTM model, the CNN first extracts patterns from the input,
and the extracted patterns are interpreted across time steps by
the BILSTM.

When the L2F classifier is trained, the CNN learns the
features of functions from latencies in the training traces.
The BiLSTM then captures the temporal and bidirectional
dependencies across the features. The detailed architecture of
the L2F classifier can be empirically optimized. Our evaluation
consists of three convolutional layers with padding and two
BiLSTM layers, followed by one fully connected layer. We
observe that short subsequences of instructions (e.g., fewer
than five) lack unique patterns, resulting in high similarity with
other subsequences. Thus, to identify meaningful patterns, we
set the kernel size of the CNN model to more than 16 and the
number of filters to exceed the number of distinct functions.

To train the L2F classifier, each latency should be labeled
with a function name, which can be obtained from the function
symbols in an enclave’s shared object file. However, rather
than using the function name directly, DLS may merge mul-
tiple functions into a single label (pattern-based merge and
depth-based merge) or split a function into multiple labels
to enhance accuracy. Although the CNN-BiLSTM classifier
is designed to learn unique patterns for each function, not
all functions exhibit unique patterns. For example, commonly
occurring patterns, such as iterative value assignments, may
appear in multiple functions. In such cases, functions that share
the same patterns are merged into a group and labeled as such.

Additionally, functions are merged based on call depth.
A function often invokes other functions, which collectively
characterize it, as the instructions of the called functions help
in identifying the primary function. Therefore, if a function’s
call depth exceeds a predefined threshold, it is labeled with
the name of its nearest parent function within the threshold.
This depth threshold should be determined based on the
characteristics of the target library.

Similarly, a function can be divided into multiple labels
based on its operational branches. Consider the following code
snippet from Darknet.

float activate (float x,
{

ACTIVATION a)

switch (a) {
case LINEAR:
return x;
case LOGISTIC:

return 1./(1. + exp(-x));

}

The activate function takes different branches depending
on the activation function type. Even though all activation
functions (e.g., linear, logistic, efc.) are implemented within
one function (i.e., activate), the execution patterns vary
by branch. In this case, we label branches of activate
with additional information, such as activate-LINEAR and
activate-LOGISTIC. It aids in identifying the activation
function type through the FEF and improves classification
accuracy, especially when a specific branch shares a pattern
with other functions.

The labels impact the accuracy of the L2F classifier, but
determining the correct labels initially is challenging. There-
fore, we incrementally update the labels as follows. Initially,
DLS applies a depth-based merge and trains the L2F classifier
with these labels. If latencies associated with a function are
frequently misclassified as another, adjustments are made by
either merging or diverging the labels for that function. After
the label update, the L2F model is retrained, and this process
is repeated until high accuracy is achieved. For the sake of
exposition, we use ‘function’ to refer to one or more functions
that share the same label.

Given the extensive length of the trace, we divide it into
fixed-size segments (e.g., 500 instructions to avoid gradient
vanishing), which facilitates a more manageable analysis. Ad-
ditionally, to address the class imbalance, frequently occurring
classes, such as matrix multiplication in the convolutional
layer, are downsampled to balance the dataset.

When the attack is launched, the victim trace is segmented
and processed by the L2F classifier. Its output, where each in-
struction is labeled, is then reduced by eliminating consecutive
identical functions, as shown in the following example:

(fl, ceny fl, fz, vy fé, fﬁ, .“) — (f]_7 fé, f3,..$
This reduced sequence is then segmented by layer, resulting
in an FEF for each layer, by identifying functions that demar-
cate a boundary of layers. For instance, the code snippet below
from the Darknet library delineates a boundary function:

void forward_network (network xnetp)

{
for(i = 0; 1 < net.n; ++1i){
layer 1 = net.layers|[i]
1.forward(l, net);

’

}

In this instance, the for loop iteratively invokes the for-
ward function of each layer (i.e., 1.forward), identifying
“forward_function” as the boundary function. At this

stage, the attacker can infer the number of layers and obtain
an FEF for each layer.

D. Basic Block Identification

To identify the basic block of each instruction and construct
a BBEF for each function, we build an L2BB model by extend-
ing the Hidden Semi-Markov Model (HSMM). The HSMM,
similar to the Hidden Markov Model (HMM), represents a
system with hidden states, where state transitions are governed
by a Markov process, and each state produces observable
outputs. In a standard HMM, the system transitions from one
state to another with each step, associating observations with
the current state. On the other hand, the HSMM models state
duration, which allows each state to persist for a designated
number of time steps before transitioning.

The concept of duration in the HSMM aligns well with
modeling basic blocks. In a given function, basic blocks, which
serve as hidden states, are executed inside the enclave, and
thus they are hidden from the attacker. Still, each basic block,
composed of multiple instructions, produces a sequence of
instruction latencies observable to the attacker. The number of
these latencies corresponds to the duration of the current basic
block. Once this duration is complete, another basic block
executes, which represents the state transition (or, control
transition from one basic block to another). On the other
hand, there exists a difference between the original HSMM
and the L2BB model due to the control flow of basic blocks.
Since each basic block transition depends on the control flow
dictated by the program, we approximate these transitions
by applying constraint-based modeling [64] where transition
probabilities are conditioned on predefined control paths.

The L2BB model is defined by the following parameters:
o The set of hidden states S corresponds to the basic blocks.

Sit,:t,) = @ means that the state 7 stays in the period from

t1 to ta. S}y =i or S| represents that the state i starts or

ends at time ¢, respectively.

o The end state F is a subset of hidden states S. It represents
the last basic blocks in the function.

o Each basic block emits a series of observations O, which
are latencies.

o Initial probability is denoted by . m; ; is set to 1 if the
state ¢ is the entry basic block and j is its length (i.e., the
number of its instructions). It is set to 0, otherwise.

« We denote the constrained state transition probability from
state ¢ to state j as

aij = P[Sp11 = jl Sy = i]-

If a control flow exists from basic block ¢ and basic block
j, then a;; = 1 /N where N is the number of hidden
states. Otherwise, a;; = 0 when no direct control flow exists
between basic block ¢ and j.

o The constrained transition probability from state ¢ having
duration h to state j having duration d can be expressed as

a@inG.d) = PlSi+1:t+d) = J|St—ht1:) = 1.

agi,ny(j,d) = 0 if the length of basic block ¢ does not equal
to h or the length of basic block j does not equal to d.
Otherwise, it is a;;.

o The state duration D is a set of lengths of basic blocks in
S.

o The reference state K is a set of ground truth latency
sequences of S. K is the reference sequence for the basic
block 1.

o The emission probability, denoted as b, represents the prob-
ability of state j producing d observed latencies.

bj,d(O[t+1:t+d]) = P[O[t+1:t+d]‘s[t+1:t+d] = jl.

We design the emission probability as the normalized sim-
ilarity between the observation sequence oy 1.;44 and the
reference sequence K; where d is the length of the basic
block j. Consequently, the greater the similarity between
the observation sequence and the basic block’s reference
sequence, the higher the likelihood that the latency sequence
originates from that basic block.

To construct the L2BB model, the attacker analyzes the
training traces to extract hidden states .S, end states S, initial
probability 7, constrained transition probability a, and their
reference sequences K. The hidden states S are identified
by analyzing unique instruction sequences within the training
traces, with each sequence treated as an individual state. To
get details such as an instruction pointer (RIP) corresponding
to latency, the attacker can utilize Intel SGX’s debugging
capabilities. This includes sequences that omit latencies dur-
ing the measurement, which are treated as separate states
to capture potential measurement variances. Also, if a state
contains only a few latencies, it may not exhibit discernible
patterns, potentially impacting the reliability of the emission
probability. To avoid it, the attacker aggregates consecutive
basic blocks into a single state to ensure that each state
possesses a sufficient number of latencies. Thus, while a state
might not directly represent a single basic block, we use this
term for the sake of exposition. The reference sequence K;
is calculated by averaging the latency values at each time
step across corresponding sequences in the training trace.
The constrained transition probability a is determined by
examining valid transitions in the training traces. If a state
transition from state i to state j exists, a;; is set to 1 /N;
otherwise, it is set to 0.

Once the L2BB model for a given function is built, the
attacker identifies the BBEF of a victim trace by applying an
extended Viterbi algorithm [65]. The details of this algorithm
are provided in Algorithm 1 where the emission probabil-
ity b is computed with the normalized similarity function
NormSim and the Euclidean distance FuD as follows:

bj.a(0pt1:44+aq) = NormSim(EuD(o[t + 1 : t +d], Ky))

In our evaluation, although we employ a logistic function to
normalize the emission probabilities, alternative methods can
also be used. Finally, this process enables the attacker to obtain
the most similar state sequence, which is the BBEF.

Algorithm 1: Algorithm for the basic block identification.
len(s) represents the number of latencies in a given state s.

Input: HSMM (S, E, O, K, 7,a,b, D,C)
Output: Most likely state sequence

Q: (q17QQ»'~'aqT)
1 foreach state s € S do

2 foreach duration dinD do

3 g (87 d) = Ts,d - bs,d(o[lzd]);

4 B Uy (s,d) =0;

s fort=2to T do

6 foreach state s € S do

7 foreach duration d € D do

8 Oy(s,d) =

/ ca -] .

s,erg%D[&_h(s vh) ass - bs(ontra—1)ls
T k) / Ca

9 (s*,h*) = argslelg%)é[)[ét_h(s Jh) - ags
bs(Ot:t+d—1)];)

10 | Wi(s,d) = (t—h*,s*,h");

n j* = argr]neag[(st—len(j)(svd)];

12 d* =len(j*);
B t*=T—len(5%);

4q =7J%

151=1;

16 repeat

17 1=1+4+1;

18 (t*’.]*ad*) = \I/t*—len(j*)(j*vd*);
v | =75

20 until ¢* >=0;
21 return BBEF Q = ¢;,¢;—1, -, 1

E. Execution Flow Mapping

To reconstruct the model architecture of the victim model,
we establish a mapping between execution flows and specific
layer types or hyperparameters.

1) FEF Mapping: Through our observation, we find that
different layers are implemented using unique combinations
of functions and some hyperparameters also impact the in-
voked functions. To create the FEF mapping information, the
attacker first recovers FEFs from the training traces, and then
identifies common layer types or hyperparameters associated
with these FEFs. For example, from the training traces,
the attacker observed that a convolutional layer with ReLU
may produce the FEF £1-f2-£3, the same layer with ELU
may yield £1-£2-£4, and a fully connected layer may pro-
duce £1-£5-£6-£7. If the reconstructed victim FEF matches
f1-£2-£3, the attacker can infer that it is a convolutional layer
with ReLU. This allows the attacker to link a victim’s FEF
with corresponding layer types and hyperparameters. However,
inaccuracies in the L2F classifier may introduce errors into
the FEFs, making it difficult to find an exact match. If the
precise FEF sequence is not found, the most similar one is
determined using edit distance. The edit distance is defined

as the minimum number of operations (i.e., replacement,
insertion, and deletion) required to transform a victim FEF
into an FEF listed in the map. Based on this distance, the
attacker can identify the most similar FEF from the mapping
information.

2) BBEF Mapping: Certain hyperparameters commonly
influence the number of loop iterations or the paths taken by
branches of the victim program. Consider the following code
snippet from the Darknet library, which is executed in a fully

connected layer:
void add_bias (float +output,
<« batch, int n, int size)

{

float +biases, int

for(i = 0; 1 < n; ++1i)
for(j = 0; J < size; ++7J)

output [(b*n + 1i)xsize + j] += biases[i];

}

In this code, the parameter n indicates the number of out-
puts, which allows the attacker to correlate the BBEF with
this specific hyperparameter. Constructing the BBEF mapping
requires some manual effort for the attacker; however, it
can be reused once established. The attacker examines the
target library to determine the relationships between loop
iteration or branch path and relevant hyperparameters. Note
that the attacker only needs to identify BBEFs for functions
related to the hyperparameters. Finally, this process enables the
attacker to reconstruct the network architecture of the victim
model. For example, consider a recovered BBEF sequence
bl-b2-b3-b2-b3-b2-b3-b4, where the number of occur-
rence of basic block b3 indicates the number of outputs n. In
this case, the attacker can infer that n = 3.

FE. Attack Workflow

Algorithm 2 presents the workflow of our attack. The offline
phase includes three main stages: preprocessing process (Line
1-3), function identification (Line 4-10), and basic block
identification (Line 11-12). While most of the procedures
are automated, four sub-algorithms marked with an asterisk
require manual analysis. Rulepep:n 1S an integer threshold
(e.g., 3 or 4) that denotes the maximum call depth used to
determine a single functional unit. This value is manually
chosen by analyzing the source code to ensure that each
labeled function encapsulates a self-contained semantic unit
(e.g., an activation function or matrix multiplication).

Rulemerge s a list of label groupings to be merged based
on analysis of the confusion matrix C'. The confusion matrix
quantifies misclassifications during training, and we merge two
labels when more than 2% of the instructions from one label
are misclassified as another. In cases where misclassification
occurs only under specific branch conditions, especially when
those conditions reflect hyperparameter values, splitting the
label may be more effective than merging. Technically, label
merging suffices for function identification. In our evaluation,
all label updates involved merging, except for one instance: the
activate function in the previous example, which required
branching-based labeling to distinguish activation types. If
not split, such branching behavior can still be identified later

Algorithm 2: Algorithm illustrating the attack workflow. C'
represents a confusion matrix. Procedures marked with *
involve manual analysis.

Input: Latency trace dataset for training D, victim
latency trace V, and DNN library (binary) l:b.
Output: Identified model structure S and identified
hyperparameter H
// Off-line phase
Dy + Average(D)
Rulepeptn < AnalyzeDepth*(lib)
Dy, < Label(D 4, lib, Rulepeptn)
repeat
MLQF, C, o — TrainModengp(DL)
Rulepterge < AnalyzeMatriz*(C)
Dy, < UpdateLabel(Dy,, lib, Rulepserge)
until accuracy a > 0.99;
Rulepoynd < Analyze Boundary™* (lib)
Maprgr + FindFEF Mapping(Dr,, Rulegound)
Fpp,Mappp < AnalyzeH P*(lib)
MLQBB — TrainModengBB(DL, FBB)
// On-line phase
13 V4 + Average(V)
14 V, « InferenceModel(V4)
15 S, hy < Mappingrer(Ve, Maprer, RuleBound)
16 ho < Mappingeprr(Vy, Mrogs, Fe, Mapgg)
17 return Identified architecture S, H = hy + ho

o 0 9 R W N =

-
N =D

through basic block analysis. It is important to note that
the final labeling configuration is not unique, as different
groupings can still yield similarly accurate identification re-
sults. Rulepoung specifies how to extract individual layer
boundaries from a full execution trace. For instance, in our
analysis, each layer begins with over ten instructions belonging
to the forward_network function.

Fpp denotes a set of functions that require basic block-level
hyperparameter analysis, and Mappp represents the map-
ping between BBEFs and the corresponding hyperparameters.
Mappp takes a BBEF sequence as an input and returns the
inferred hyperparameter (e.g., the number of occurrences of a
specific basic block). Once the relevant functions are selected,
the L2BB model is trained automatically. It automatically
identifies HSMM-related parameters such as a list of states.
Among all manual steps, deriving Mappp is the most labor-
intensive, as it demands domain-specific knowledge of the
target DNN library’s implementation. Nevertheless, since most
libraries rely on well-established algorithms (e.g., GEMM),
relevant documentation are typically available.

Finally, when a target library version is changed, any part of
the pipeline that involves manual analysis must be re-executed.
However, since libraries often share common algorithms, and
even updated versions often retain similar source code, the re-
analysis typically requires less effort than the original process.

VI. EVALUATION
A. Experimental Setup

We instantiate our attacks on SGX-protected DNN models
implemented using Darknet, TensorFlow Lite, and ONNX
Runtime. Darknet is a widely-used deep learning library,
which has been frequently adopted in recent studies on SGX-
based DNN protection [19], [20], [21], [66], [25], [26], [23].
We first present the evaluation results for Darknet and discuss
those for TensorFlow Lite and ONNX Runtime in §VI-E.
We run these models on a Linux desktop equipped with
Intel Core 17-10700 CPU 2.90GHz with SGX support and 48
GB memory. As recommended in SGX-Step, we configure
the system parameters to mitigate the measurement noise by
isolating a CPU core and disabling dynamic frequency scaling.

Training Model. To build the L2F classifier and the L2BB
model, we randomly generate model architectures for training.
This randomness ensures both comprehensiveness and gen-
eralization. Given the infinite number of potential network
structure and hyperparameters, the generated models should
be designed to inclusively reflect the diversity of the potential
models. Also, the random generation helps prevent overfitting
to specific models, thereby reducing dependency on specific
latency patterns.

We take into account ten commonly used types of layers:
a convolutional layer, a fully connected layer, an activation
layer, a maxpool layer, an avgpool layer, a softmax layer,
a route layer, a shortcut layer, a dropout layer, and a cost
layer. To avoid runtime errors that may arise from entirely
random configuration, we select a layer structure from one
of 24 predefined layer combinations for each generation. For
example, we enforce rules such as starting with a convolutional
layer and ending with a softmax or cost layer. Additionally, we
choose 12 hyperparameters frequently used in practice based
on both established library guidelines and our experiences.
These include the number of filters, filter size, activation
function type, stride, padding, and batch normalize for the
convolutional layer, output size, activation function type, and
batch normalize for the fully connected layer, pool size and
stride for the maxpool layer, and activation function type for
the activation layer. The hyperparameters are also randomly
selected from predefined sets to maintain consistency and con-
trol. As a result, we generate 300 random models, collecting
and averaging ten traces for each model.

Victim Model. We validate our attacks on two types of victim
models. First, we generate 100 random models using the same
rules as for the training model generation. Additionally, we
utilize two well-known models to demonstrate attack effective-
ness in §VI-D: VGG-7 [67], which includes four convolutional
layers and three fully connected layers, and LeNet [68], which
includes two convolutional layers and three fully connected
layers. For each victim model, we average fifty traces. For
simplicity, we assume that the input image dimensions are
known and that the height and width are equal.

In the following subsections, we justify our assumptions that
FEFs and BBEFs can be used to identify hyperparameters by

C = C . . .
[9 [9 3 9
> > > > o o > >
i) k) i) K] 7] & &
i _i i I > I _i
© © © c = © > > ®©
c c c f = c © © c
o o o o £ £ o £t £ O
B =] B 5 = = B ® & B
E > E 2 2 2 2) o 2
e g e S 5§ £ E 5 S
c c c e o =) c > > c
o [*] 3 o o @© @© [} B = 9
o O o O o Q o o O S O
| I O | (- [} I & relu ® |
T s B J® T B T £ 3 e
T & 8 § & E & © T 8 5 O -
2 9% 3 & 2 E 2 3 2 - 2 H 3
S = 6 E S g 6 &6 68 % & i [
L FE L E L @ e e e & 8 linear : &
; (Y » ; 1
= tanh
filter size= batch_norm= activation=
{1, not 1} {0, 1} {RelU, ...}
(a) Convolutional Layer
o] & 5 8 g] 5
> > > 3 B > >
K] k) o 2 = KRS >
| I (- ! () © |
© bl - £ € °T = T
Q Q Q= = 0 © s O
= = + o o + | B
o o o £ c o o
] [[< o 2 L 2
c c S G o S ® T <
§ § ©53 & 5% £ 5
8 8 S =o o S B g S
| | 1 | ("} I @ relu & 1
T 5 T T © T & © kel
° 2 2 B 2 2 2
S 2 8 E & & s 9 S ""'O’""]
3 , 3 g 3 3 3 - 3 3
g 1 g £ £ £ 53 5 i £
e E L w L & e ® & | linear el
------------------ ' J- tanh
activation=
batch_norm={0,1} {ReLy, ...}

(d) Fully Connected Layer

yer
yer
yer

y

>

)
c
o
=
©
>
=
s}
©
©
2
©
3
c
2

yer
yer

relu

., activate_arra

- activate_arra

forward_softmax_la
forward_softmax_la

() forward_activation_la
softmax

()forward_activation_la

linear

| tanh |
activation=
{ReLU, ...}

(b) Activation Layer (c) Softmax Layer

yer

. o .
EY N 2 > > &
k] = & [5 5
I { 5 5 < > >
= = = S B B
> > > | I 5 £ L
£ £ e 28 2 o o
T >
S s 3 o 8 2 B 5 5
5 5 % & % 8 5 3 8 8
=3 I o | o = S o
| 2 [| © relu © | | a |
T5338%F O T 5 %
— i v © ©
2z 2 § 2 2 2 -y 2
£ 2 2 ¢ & i < I = 2
e 8 & § & ! linear L K] 5] K]
00060 G-0-00 OO
i tanh
activation=
{ReLy, ...}

(e) Shortcut Layer (f) Route Layer

Figure 3: FEF sequences for the fully connected, shortcut, and route layers (nodes) used in Darknet.

presenting the execution flow mapping information. Next, we
demonstrate the accuracy of reconstructing the victim models.
To further illustrate the effectiveness of model architecture ex-
traction, we show how the reconstructed architecture enhances
the success rate of evasion attacks. Finally, we evaluate the
attack accuracy on additional platforms, TensorFlow Lite and
ONNX Runtime.

B. Darknet Library Analysis

First, we analyze how FEFs and BBEFs are mapped
to layer types and hyperparameters. In our evaluation, we
merge five functions for the pattern-based merges. Addi-
tionally, although activation functions are implemented as a
single function, we differentiate instruction sequences based
on the specific type of activation function. Thus, during
the forwarding pass, we classify instruction latencies into
33 distinct classes (function groups). Under this setup, Fig-
ure 3 illustrates FEF sequences for each of the layers.
Each of the maxpool, avgpool, dropout, and cost layers
consists of one function (i.e., forward_maxpool_layer,
forward_avgpool_layer, forward_dropout_layer, and
forward_cost_layer, respectively.) We can observe that
FEF sequences vary distinctly depending on layer type. Also,
hyperparameters such as filter size, batch normalization, ac-
tivation function type influence the FEF depending on their
specific values.

10

Next, we analyze how BBEFs correlate with hyperparam-
eters. As shown in Table II, BBEFs can effectively reveal
eight hyperparameters (i.e., fsizecony, #filtercony, outpute ..,
stridecony, paddingc,,,, Outputyc, sizéMaxpool and stridenaxpool)-
For instance, some hyperparameters, such as the dimension
of the output (outputy), can be inferred from the BBEFs of
several different functions. This redundancy allows the attacker
to recover hyperparameters accurately even if noise affects one
function’s BBEF. These findings support the conclusion that
Darknet model architectures can be reconstructed using DLS.

C. Accuracy of Extracted Model Architecture

We evaluate the accuracy of the network structures and
hyperparameters reconstructed by DLS. In all test cases, DLS
accurately recovers the number of layers. The accuracy is
measured as the ratio of correctly identified model architec-
tures to the total number of them. Figure 4(a) presents the
accuracy of reconstructed layer types and hyperparameters
recoverable through the FEF mapping relationships across the
100 random models. Similarly, Figure 4(b) shows the accu-
racy of reconstructed hyperparameters that can be recovered
through the BBEF mapping relationships. We can find that
most layers were accurately identified. Also, we find that
although the dropout layer and cost layer invoke different
functions, they share identical instructions as they do not
process input during the forward pass. Nonetheless, they are

Table II: Mapping relationships between each BBEF and its corresponding hyperparameter. ¢(X) represents the number of
iterations extracted from a function X’s BBEF. A notation A|B means A or B. A notation A&B means A and B.

HPLayer Type Description

Basic Block-level Execution Flow (BBEF) Mapping

#filtercony The number of filters in the convolution
fsizecony The size of the convolution filter
outputyy,, The width and height size of the output
stridecony The stride size of the convolution filter
padding,,, The size of padding of the input
outputyc ;l“he output size of the fully connected
ayer
SizeMaxpool The size of the pooling window
stridemaxpool ~ The stride size of the sliding window

¢(gemm_nn | im2col_cpu) & Input

¢(add—biasbalch_norm:0 I gemm_cpu ‘ gemm_nn)

channel

¢(add_bias | fill_cpu | normalize_cpu | scale_bias | ggmm_cpu | gemm_nn | im2col_cpu)
(Inputheigh[+ 2 x paddingg,,,, — fsizecony)/ (outputey,, — 1)

(stridecony X OUtpUtceyy — 1 + fsizecony — Inputyigh) /2

¢(forward_maxpool_layer)

¢(forward_maxpool_layer)

¢(fill_cpu | gemm_nt | gemm_cpu | normalize_cpu | scale_bias | add_bias)

Convolutional
Fully Connected 1
Activation
Maxpool §
Avgpool
Softmax

Route 4

Dropout 1
Shortcut §

Cost 1

98%

99%
100%
100%
100%

99%
100%
100%

96%

100%

80

85 90 95 100

(a) Layer Type Accuracy (%)

#filtercony 1
fsizecony 1
outputcony 1
stridecony 1
paddingConv 1
outputec 1

96%
98%
99%
96%
96%
100%
71%

s'izeMaxpoo\ 1
stridemaxpool 1 71%

20 40 60 80

100
(b) Hyperparameter Accuracy (%)

Figure 4: Accuracy across layer types and hyperparameters.

distinguished by examining the preceding or following layers.
Regarding hyperparameters, unlike those associated with the
maxpool layer, the other hyperparameters can be identified
through multiple functions, potentially improving the accuracy.

For the LeNet model, all layer types are correctly identified.
Although three layers have errors in their FEFs, in one
instance, the ground truth is matched by the candidate with
the highest similarity, while for the other two, the top two
candidates with the same highest similarity include the ground
truth. In the case of hyperparameters, hyperparameters for
one convolutional and one maxpool layers are not correctly
reconstructed through BBEF mapping. In the case of VGG-
7, four FEFs do not match the FEF mapping information.
Three of them are corrected using the edit distance approach.
However, for the remaining FEF, while the layer type is cor-
rectly identified, an error occurs in determining the activation
function type. All hyperparameters are correctly reconstructed
through BBEF mapping. Note that these two architectures do
not conform to any of the predefined 24-layer combinations,
thereby showing the attack robustness.

11

£1.00 1.00
Q
©0.95 0.95
c;.) 0.90 0.90
20.85 0.85
o
20.80 0.80
>
©0.75 0.75

0 10 20 30
Error Rate (%)

(a) FEF

0

20 40 60 80 100
Error Rate (%)

(b) BBEF

Figure 5: CDFs of the error rates for two execution flows.

1) Accuracy of Function Identification: To further analyze
the accuracy, we measure the performance of the L2F classi-
fier, as it plays an important role in classifying each latency
to its corresponding function, which subsequently influences
the accuracy of the basic block identification. We measure
precision, recall, and F1 score for each of the 33 classes, all of
which achieve 100% macro-average. On average, our victim
trace dataset comprises approximately 4 million latency points.
Across 100 traces, latencies in 87 traces are accurately classi-
fied. Among the remaining 13 traces, 12 traces have fewer than
10 misclassifications. The number of misclassifications within
the other trace is around 570. For this case, we average the
trace based on RIP and re-classify it using the L2F classifier,
which reduces misclassifications. This analysis highlights that
measurement noise is the primary cause of misclassification,
and noise in the other traces is successfully mitigated.

Lastly, we evaluate the accuracy of the identified FEFs using
the execution flow error rate (ER), defined as follows:

ED (EFT,EF)
max (|EF ™|, |EF|)

ER =

where ED(EFJ“7 EF) represents the edit distance between the
ground truth execution flow EF and the identified execution
flow E'F, and |E'F| represents a length of the execution flow
EF. Figure 5(a) shows the cumulative distribution function
(CDF) of the error rate across all found FEFs. The results
indicate a high accuracy in the identified FEFs, with 98% of
FEFs correctly recovered.

2) Accuracy of Basic Block Identification: Likewise, we
assess the accuracy of the identified BBEFs using the same
error rate metric used for the FEFs. Figure 5(b) illustrates
the CDF of the error rate across all identified BBEFs. Unlike
the FEF results, some BBEFs exhibit a 100% error rate. This
occurs when function identification errors prevent the correct
determination of the function’s start and end ranges. Those
cases are classified as 100% error cases. Nonetheless, the
results demonstrate high accuracy in the identified BBEFs,
with 93% of BBEFs accurately recovered.

D. Evasion Attacks via DLS

We show that the extracted model architectures can be fur-
ther utilized to facilitate downstream attacks to compromise a
target model’s functionality. Specifically, evasion attacks [16],
[17] undermine a victim model by exploiting adversarial ex-
amples. The adversarial images closely resemble the originals
but include small perturbations, that lead to misclassification.
These adversarial examples are transferable across different
models. This transferability means that adversarial examples
generated via one model can also lead to misclassification
in other models. In addition, the likelihood of a successful
attack increases when models share similar network structures
and hyperparameters [17], [8]. Thus, we demonstrate the
effectiveness of DLS by evaluating the success rate of evasion
attacks on the LeNet model.

We employ the Fast Gradient Sign Method (FGSM) [69]
to generate adversarial examples. To achieve this, we use
TensorFlow to compute gradients and implement attacks,
converting the Darknet victim model into a TensorFlow model.
Fashion-MNIST [70] is used as the dataset for both training
and testing. For evaluation, we randomly select 500 images
from the test set and generate adversarial examples using
the reconstructed model. For comparison, we also generate
adversarial examples using other models. Specifically, we test
four well-known architectures (VGG-16, ResNet50, AlexNet,
and MobileNet) along with 50 randomly initialized models.
We then apply these adversarial examples to the LeNet and
VGG-7 models. As shown in Figure 6, the success rates of the
adversarial examples are calculated by dividing the number
of misclassified examples by the total number of test cases
(i.e., 500). Consistent with previous findings [8], our attack
demonstrates an increased success rate for evasion attacks
compared to using black-box models.

E. DLS on Other Platforms

1) TensorFlow Lite: We instantiate our attack on another
popular deep learning library, TensorFlow Lite [43]. Tensor-
Flow Lite is a lightweight version of TensorFlow, optimized
for memory efficiency and computational performance for
DNN models. It is also employed in secureTF [18], an SGX-
based model protection solution. For the evaluation, we use
the open-source port for Intel SGX [71].

Since TensorFlow Lite supports only forward pass opera-
tions, we first train a DNN model using TensorFlow and then
convert it to TensorFlow Lite without further optimization.

12

—_ ~2)
SR &
= ~ P
@ 601 0 m
)

©

& 40

(V)]

(7]

(O]

O 20

(@]

=}

V)]

o

(a) LeNet (b) VGG-7

Figure 6: Effectiveness of evasion attacks.

Similar to our Darknet setup, we use 300 random models for
training and 100 random models for testing. While Darknet
utilizes eight activation functions, we use five activation func-
tions in TensorFlow Lite that overlap as built-in functions.
Additionally, we use the default stride mode for convolutional
layers. In TensorFlow Lite, each model is represented as
multiple nodes, with each layer comprising one or more nodes.
These nodes are processed sequentially in a for-loop similar
to Darknet. Therefore, to reconstruct the model, we identify
node operations as follows: logistic, average pool, reshape,
add, elu, mul, conv, softmax, fully connected, tanh, and max
pool. For the sake of consistency, we use the term ‘layer’
to refer to node. In our evaluation, we apply a depth-based
merge with a threshold of three and a pattern-based merge for
four functions. Overall, the forward pass in TensorFlow Lite
involves 105 functions, and we classify instruction latencies
into 68 groups.

Similar to Darknet, each layer exhibits a unique
FEF. Notably in TensorFlow Lite, certain hyperparameters
(i.e., fsizecony, #filtercony, outpute,,,, and padding.,..) can be
identified by analyzing the frequency of function occurrences.

For example, the convolutional layer (i.e., CONV_2D) in-
vokes the following code, simplified here for readability.

1 inline void Conv{(...)

2 {

for (int i

3
4 = 0; 1 < filter_height; ++1i)

5 e

6 for (int j = 0; j < filter_width; ++73)

7 e

8 for (int k = 0; k < input_depth; ++k) {
9 float iv = input_data[Offset(...)];

10 float fv = filter_data[Offset(...)];

11 total += (input_value » filter_value);

}
}
}

output_data[Offset (...)]

ActivationFunctionWithMinMax (...);

—

}

When the inner loop in Line 8 is repeated, the number of
instructions between two Of fset functions (from Line 10 to
Line 9) is relatively small. In contrast, when the outer loop
(Line 4) is evaluated, a larger number of instructions exists
between the same Of fset functions (from Line 10 to Line 9).

In addition, there is always a fixed number of instructions
between two Of fset functions when moving from Line 9 to
Line 10. By analyzing the instruction counts for the Offset
and Conv functions, we can deduce the relationship between
the FEF and filter size (i.e., fsizecony). Similarly, we can infer
values for #filtercoqy, outpute,,,, and paddingc,,.. For that, we
record the instruction counts for each function in FEF and use
these counts to inform the FEF mapping.

In our analysis of the 100 victim models, we successfully
recovered the exact number of layers and layer types in
every model. Additionally, #filtercony, fsizecony, outputyp,.
padding.,,. and outputy. achieve 89%, 100%, 88%, 88%,
and 100% accuracy through the FEF mapping. The accuracy of
the FEF mapping is attributed to the high precision of the L2F
classifier: with a victim trace dataset containing approximately
600 million latency points and only around 1,200 misclassified
instances, we achieved macro-average F1 score, precision, and
recall values of 1.

For the BBEF mapping, we can recover four hyperparam-
eters (i.e., , SiZ€Maxpool> Stridemaxpool> SIZEAvepools SIAEAvepool)-
Specifically, 58% of Sizemaxpool and strideyaxpool Values were
accurately identified, while 88% of sizeaygpool and strideaygpool
values were correctly inferred. The results demonstrate that our
attacks are not limited to a specific library or implementation,
although these may influence accuracy. As a result, DLS can
be applied to other platforms as well.

2) ONNX Runtime: Lastly, we evaluated our attack on

ONNX Runtime [44], using the same sets of training and
testing models converted from the TensorFlow Lite models.
We identify 13 node operation types, including AveragePool,
Softmax, MatMul, Sigmoid, Relu, Tanh, Elu, MaxPool, Mul,
Transpose, Add, Reshape, and Conv. A fully connected layer is
implemented using a combination of MatMul and Add. From
a total of 493 function labels, we grouped instruction latencies
into 216 distinct categories. Across the 100 victim models, we
successfully recovered the exact number and types of layers
using the FEF mapping. For hyperparameter inference, the hy-
perparameters #filtercony, fSizeécony, OUtpUtyy,,. Stridecony and
padding,,, were inferred with accuracies of 83%, 92%, 88%,
88%, and 83%, respectively. The hyperparameter outputpc
was recovered with 98% accuracy. Additionally, sizemaxpools
strideMaxpools S1Z€Avgpool and strideaygpoor Were recovered with
72%, 2%, 83% and 83% accuracy, respectively. We provide
the mapping relationships for TensorFlow Lite and ONNX
Runtime in our repository [45].
Summary. Figure 7 presents a histogram of the accuracy of
the extracted model architectures for each of the 100 models.
For each model, we measure an accuracy as the ratio of
correctly identified model architecture components to the total
number of them. The average accuracy for Darknet is 97.3%,
with a range of 75.0% to 100% (0=5.2). For TensorFlow Lite,
the average accuracy is 96.4%, with a range of 68.2% to
100% (0=3.6). For ONNX Runtime, the average accuracy is
93.6% with a range of 65.5% to 100% (0=9.4). DLS achieves
high attack accuracy across the libraries, demonstrating its
effectiveness in recovering model architectures.

13

VII. RELATED WORK

Privacy Attacks on Deep Learning Models. Side-channel
attacks have proven effective in extracting DNN model in-
formation across various target platforms, each leveraging
different hardware features. Beyond CPUs and TEEs, as
discussed in §II, many studies have demonstrated attacks on
FPGA [72], [73], [74], [75], Application-Specific Integrated
Circuit (ASIC) [76], and GPU [8], [9], [77], [78]. These
attacks can exploit electromagnetic emanations [72], [&], [75],
memory access patterns [73], bus snooping [8], GPU PCle
traffic [9], DRAM [11], [76], remote power analysis [74], etc.

In addition to hardware-based side channels, adversaries can
exploit DNN binaries [79], [80] or query responses [81], [82],
[83]. Binary-based approaches decompile DNN executables,
where victim models are compiled and embedded, to conduct
symbolic analysis [79] or static analysis [80]. These attacks
can be mitigated in the SGX setup, where the executable
can remain confidential [84]. On the other hand, query-based
attacks send numerous queries to the victim model using
different inputs. Then, the attacker infers model behavior from
the corresponding results. The input-output pairs are used to
train a model to achieve comparable fidelity to the victim
model. Those approaches leverage algorithmic features such as
predicted class labels [81], gradients of objective function [82],
and labeling oracle [83]. Because these attacks assume prior
knowledge of the model architecture, DLS can be employed
to obtain this information beforehand.

Side-channel Attacks on Intel SGX. Since Intel SGX
assumes a privileged attacker, it enables an attacker to manip-
ulate the system state (e.g., core isolation) or exploit resources
unavailable to non-privileged attackers. Numerous studies have
reported side-channel attacks targeting Intel SGX under this
environment.

When adversarial and victim processes run on the same
core, the attacker can exploit per-core resources such as
Branch Prediction Units [38], [37], L1/L2 caches [85], and
Translation Lookaside Buffer (TLB) [86]. While these per-
core resources generally produce lower noise and are easy
to deploy in practice, they may not always be accessible
to the attacker. Still, the adversary can exploit cross-core
resources such as last-level cache (LLC) [87] and DRAM
row buffer [86]. Additionally, the untrusted OS can utilize
page access patterns for controlled-channel attacks [88], [61].
It monitors a trace of page accesses to analyze deterministic
patterns. Furthermore, after the discovery of microarchitectural
vulnerabilities such as Spectre [89] and Meltdown [90], its
variant has been successfully demonstrated on Intel SGX as
well [91], [92], [93]. These attacks allow the attacker to breach
security boundaries or gain control over the victim’s control
transfer.

These attacks often demonstrate their efficiency by targeting
specific secret-dependent branches [38], [37], [39], and cryp-
tographic algorithms such as AES [40], [4]] and RSA [94].
Although only a few studies [29], [10] have focused on side
channels to extract SGX-protected DNN models, DLS can

80 80 60
601
L = 40
C C
340 401 3
(@] @)
20
20 201
0 R s I 0 = ol L
75 80 85 90 95 100 65 70 75 80 85 90 95100 65 70 75 80 85 90 95 100

Accuracy (%)

(a) Darknet

Accuracy (%)

(b) TensorFlow Lite

Accuracy (%)

(¢c) ONNX Runtime

Figure 7: Accuracy of the extracted model architectures.

incorporate these attacks to gather additional side information
and extract other model details that are dependent of the
victim’s execution flow.

VIII. LIMITATIONS AND DISCUSSION
A. Countermeasures

Our attack extracts features from instruction latencies that
are unique to each function. One type of countermeasure is
algorithm hardening to obscure these unique patterns [95],
[96], [97], [98]. The compiler rewrites a victim program
to eliminate secret-dependent branches. However, our attack
identifies patterns through a consecutive series of instruction
latencies rather than relying on specific branch conditions.
Therefore, it limits the effectiveness of such countermeasures.

In addition, several obfuscation techniques specifically tar-
geting DNN models have been proposed [99], [100], [101],
[102], [103]. However, these methods were not designed with
single-stepping attacks or TEEs in mind, making their adapta-
tion to our threat model infeasible. For example, NeurObfus-
cator [99] transforms a model into a functionally equivalent
but architecturally different version. Since the transformed
model often maintains high inference accuracy, it can become
a new target for model extraction. ObfuNAS [102] intention-
ally degrades model performance under FLOPs (floating-point
operations) constraints. Also, these approaches require the
development of the specific full-stack ML inference frame-
work [104]. Moreover, ModelObfuscator [101] focuses on
software-level reverse engineering rather than side-channel
attacks, NNReArch [103] assumes the prsence of specialized
hardware, and DNNClock [100] targets memory side-channel
attacks.

Since DLS leverages single-stepping attacks, it can po-
tentially be mitigated at the outset. A single-stepping attack
utilizes APIC interrupts, which cause the running enclave
to frequently exit asynchronously (AEX) to handle IRQs.
Although interrupts are only delivered to the OS kernel, recent
studies [105], [106], [107], [108] propose software-based
approaches to recognize AEX events in the enclave. Some
approaches [107], [108], [106] depend on Intel Transactional
Synchronization Extensions (TSX) features, which enable
atomically executing a set of instructions. An interrupt in the
middle of the transaction results in an abort, which triggers
a fallback mechanism for its inspection. Hyperrace [105]

14

secures a trusted time source inside the enclave, thereby it
can periodically check the number of resume routines exe-
cuted. However, these AEX-awareness approaches introduce
significant overhead and carry the risk of false negatives or
false positives. Additionally, Intel TSX is not widely adopted.

AEX-Notify [109] proposes a solution to address the root
cause of single-stepping attacks by introducing a new in-
struction, EDECCSSA [110]. It allows developers to secure
a trusted handler that preemptively prepares page accesses
before the enclave resumes. By doing so, it disturbs deter-
ministic single stepping and can thus mitigate our attack. In
practice, AEX-Notify requires both hardware support (i.e., the
EDECCSSA instruction) and software support (i.e., the trusted
IRQ handler). Although Intel SGX SDK (from version 2.22)
includes such a handler, most dominating enclave develop-

ment frameworks (such as Fortanix EDP [111], Enarx [112],
OpenEnclave [113], Gramine [I14], Asylo [115], Certifier
Framework [116], and Occlum [117]) do not yet support AEX-

Notify. Moreover implementing the trusted handler demands
expert knowledge of SGX internals, further limiting its adop-
tion in practice.

B. Generality

While confidential DNN applications [118], [119] are ac-
tively supported on Intel SGX, such applications are also
widely supported across other TEE platforms. As described
in §V-F, DLS operates on latency trace as input, making it
decoupled from platform-specific mechanisms. Consequently,
it is not limited to SGX and can be extended to other TEEs.
While the latency traces used in DLS are collected using
techniques originally introduced for SGX, recent work [120],
[121], [122], [123], [124] has demonstrated that this primitive
is not tied to SGX, and can be effectively replicated across
a range of TEE architectures, including AMD SEV [120],
ARM TrustZone [121], [122], and Intel TDX [123], [124]. For
instance, SEV-Step [120] leverages APIC-based interrupts to
enable single stepping on AMD SEYV, successfully reproducing
the Nemesis attack and showing that instruction latency re-
mains measurable and distinguishable. Similarly, the interrupt-
based single stepping is used for fine-grained cache attacks
on ARM TrustZone [122], [121] and RISC-V [125], and
instruction counting attacks on Intel TDX [124]. These studies
demonstrate that the single-stepping mechanism is applicable

across various TEE platforms. As long as latency traces can
be reliably collected, DLS remains directly reusable. This
cross-platform compatibility highlights the generality of our
approach.

We show that our attacks are applicable to CNN-based
neural networks on well-known libraries. The feasibility of
our approach stems from the fact that victim DNN models
exhibit distinct execution flows across the entire program,
influenced by sensitive information (i.e., network structure and
hyperparameters). Second, each function or layer, performing
a specific role, is likely to produce a unique latency pattern.
Further, certain hyperparameters inherently impact control
flow elements like branch decisions and iteration counts. Since
these characteristics are generally applicable, DLS can be
extended to other deep learning libraries and deep learning
model types such as recurrent neural networks (RNN), GAN,
and autoencoder. Note that DLS measures the latency of ma-
chine instructions and is independent of language or software
versions.

IX. CONCLUSION

DLS demonstrates that a privileged adversary can collect
an instruction latency trace of a victim DNN model and iden-
tify its distinctive execution behaviors. The behaviors extend
beyond simply identifying the sequence of executed functions
(i.e., FEF); they also include the sequence of executed basic
blocks, achieving instruction-level granularity (i.e., BBEF). By
leveraging FEF and BBEF, our approach can successfully
reconstruct the network structure and hyperparameters. We
demonstrate the attack on the three DNN libraries, which
are common in current DNN model protection research. Our
results indicate that DLS can recover model architecture with
high accuracy. Looking ahead, we recommend that developers
of TEE-protected DNN models implement effective counter-
measures, such as AEX-Notify, to mitigate these risks.

ETHICAL CONSIDERATIONS

This study adheres to ethical guidelines throughout the
entire process. Our attack is conducted under a controlled
experimental setup. We collect our dataset exclusively from
this environment, ensuring that no attacks are launched against
any external entities. Furthermore, we make our datasets and
source code publicly available in our repository [45].

Importantly, our work does not introduce any new vulner-
abilities in SGX. Instead, DLS builds upon existing single-
stepping attacks [35], [36], which have been documented in
prior literature [109], [110]. Our contribution lies in demon-
strating the impact of these attacks on DNN libraries and
proposing a methodology. DLS is not tailored to the three
evaluated libraries or their specific implementations; rather, it
demonstrates a general technique applicable to a broader class
of enclave applications.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
feedback. This work was supported in part by the Texas

15

A&M Engineering Experiment Station on behalf of its Se-
cureAmerica Institute, National Science Foundation under
grant 2229876, Department of Homeland Security, IBM, and
Office of Naval Research under grant N00014-23-1-2157.
Any opinions, findings, recommendations, and conclusions
expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES

M. 1. Razzak, S. Naz, and A. Zaib, “Deep Learning for Medical Image
Processing: Overview, Challenges and the Future,” Classification in
BioApps: Automation of decision making, pp. 323-350, 2018.

T. Sun, B. Zhou, L. Lai, and J. Pei, “Sequence-based Prediction of
Protein Protein Interaction using a Deep-Learning Algorithm,” BMC
Bioinformatics, vol. 18, pp. 1-8, 2017.

L. Deng, G. Hinton, and B. Kingsbury, “New Types of Deep Neural
Network Learning for Speech Recognition and Related Applications:
An Overview,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. 1EEE, 2013, pp. 8599-8603.

S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow, K. Kulda,
D. Dachman-Soled, and T. Dumitrag, “Security Analysis of Deep
Neural Networks Operating in the Presence of Cache Side-Channel
Attacks,” 2020. [Online]. Available: https://arxiv.org/abs/1810.03487
M. Yan, C. W. Fletcher, and J. Torrellas, “Cache Telepathy: Leverag-
ing Shared Resource Attacks to Learn DNN Architectures,” in 29th
USENIX Security Symposium (USENIX Security 20), Aug. 2020, pp.
2003-2020.

Z. Liu, Y. Yuan, Y. Chen, S. Hu, T. Li, and S. Wang, “DeepCache:
Revisiting Cache Side-Channel Attacks in Deep Neural Networks
Executables,” in Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2024.

Y. Liu and A. Srivastava, “GANRED: GAN-based Reverse Engineering
of DNNs via Cache Side-Channel,” in Proceedings of the 2020 ACM
SIGSAC Conference on Cloud Computing Security Workshop, 2020,
pp. 41-52.

X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding,
C. Liu, T. Sherwood et al., “Deepsniffer: A dnn model extraction
framework based on learning architectural hints,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 385-399.
Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes Attack: Steal DNN
Models with Lossless Inference Accuracy,” in 30th USENIX Security
Symposium (USENIX Security 21), Aug. 2021, pp. 1973-1988.

X. Zhang, A. A. Ding, and Y. Fei, “Deep-Learning Model Extraction
Through Software-Based Power Side-Channel,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). 1EEE,
2023, pp. 1-9.

A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “Deepsteal:
Advanced model extractions leveraging efficient weight stealing in
memories,” in 2022 IEEE symposium on security and privacy (SP).
1EEE, 2022, pp. 1157-1174.

R. Joud, P-A. Moéllic, S. Pontié, and J.-B. Rigaud, “A Practical
Introduction to Side-Channel Extraction of Deep Neural Network
Parameters,” in International Conference on Smart Card Research and
Advanced Applications. Springer, 2022, pp. 45-65.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks against Machine Learning Models,” in 2017 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2017, pp. 3-18.

Y. Long, L. Wang, D. Bu, V. Bindschaedler, X. Wang, H. Tang,
C. A. Gunter, and K. Chen, “A Pragmatic Approach to Membership
Inferences on Machine Learning Models,” in 2020 IEEE European
Symposium on Security and Privacy (EuroS&P). 1EEE, 2020, pp.
521-534.

H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang,
“Membership Inference Attacks on Machine Learning: A Survey,”
ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1-37, 2022.
Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into Transfer-
able Adversarial Examples and Black-box Attacks,” arXiv preprint
arXiv:1611.02770, 2016.

N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in
Machine Learning: From Phenomena to Black-box Attacks using
Adversarial Samples,” arXiv preprint arXiv:1605.07277, 2016.

(1]

[2]

(3]

[4

—

(5]

[6

—_

[7

—

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

https://arxiv.org/abs/1810.03487

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

D. L. Quoc, F. Gregor, S. Arnautov, R. Kunkel, P. Bhatotia, and C. Fet-
zer, “secureTF: A Secure TensorFlow Framework,” in Proceedings of
the 21st International Middleware Conference, ser. Middleware ’20.
New York, NY, USA: Association for Computing Machinery, 2020.
K. Kim, C. H. Kim, J. J. Rhee, X. Yu, H. Chen, D. J. Tian, and B. Lee,
“Vessels: Efficient and Scalable Deep Learning Prediction on Trusted
Processors,” in Proceedings of the 11th ACM Symposium on Cloud
Computing (SOCC), 2020.

P. Yuhala, P. Felber, V. Schiavoni, and A. Tchana, “PLINIUS: Secure
and Persistent Machine Learning Model Training,” in Proceedings of
the 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2021.

Y. Li, D. Zeng, L. Gu, Q. Chen, S. Guo, A. Zomaya, and M. Guo,
“Lasagna: Accelerating Secure Deep Learning Inference in SGX-
enabled Edge Cloud,” in Proceedings of the 12th ACM Symposium
on Cloud Computing (SOCC), 2021.

F. Tramer and D. Boneh, “Slalom: Fast, Verifiable and Private Ex-
ecution of Neural Networks in Trusted Hardware,” arXiv preprint
arXiv:1806.03287, 2018.

Z. Gu, H. Huang, J. Zhang, D. Su, H. Jamjoom, A. Lamba, D. Pen-
darakis, and I. Molloy, “Confidential Inference via Ternary Model
Partitioning,” arXiv preprint arXiv:1807.00969, 2018.

J. Choi, J. Kim, C. Lim, S. Lee, J. Lee, D. Song, and Y. Kim,
“GuardiaNN: Fast and Secure On-Device Inference in TrustZone Using
Embedded SRAM and Cryptographic Hardware,” in Proceedings of the
23rd ACM/IFIP International Middleware Conference, 2022, pp. 15—
28.

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, 1. Leontiadis,
A. Cavallaro, and H. Haddadi, “DarkneTZ: Towards Model Privacy
at the Edge using Trusted Execution Environments,” in Proceedings
of the 18th International Conference on Mobile Systems, Applications,
and Services, 2020, pp. 161-174.

A. Gangal, M. Ye, and S. Wei, “HybridTEE: Secure Mobile DNN
Execution Using Hybrid Trusted Execution Environment,” in 2020
Asian Hardware Oriented Security and Trust Symposium (AsianHOST).
IEEE, 2020, pp. 1-6.

M. Misono, D. Stavrakakis, N. Santos, and P. Bhatotia, “Confidential
VMs Explained: An Empirical Analysis of AMD SEV-SNP and Intel
TDX,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 8, no. 3, pp. 1-42, 2024.

Y. Gao, H. Qiu, Z. Zhang, B. Wang, H. Ma, A. Abuadbba, M. Xue,
A. Fu, and S. Nepal, “DeepTheft: Stealing DNN Model Architectures
through Power Side Channel,” in 2024 IEEE Symposium on Security
and Privacy (SP), Los Alamitos, CA, USA, 2024, pp. 3311-3326.

Y. Yuan, Z. Liu, S. Deng, Y. Chen, S. Wang, Y. Zhang, and Z. Su,
“HyperTheft: Thieving Model Weights from TEE-Shielded Neural
Networks via Ciphertext Side Channels,” in Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security,
2024.

E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache Attacks on
AES, and Countermeasures,” Journal of Cryptology, vol. 23, pp. 37-71,
2010.

Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in 23rd USENIX security
symposium (USENIX security 14), 2014, pp. 719-732.

M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “PLATYPUS: Software-based Power Side-Channel At-
tacks on x86,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 355-371.

M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth, R. Teodorescu, and
Y. Zhang, “A Systematic Look at Ciphertext Side Channels on AMD
SEV-SNP.” in 2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 2022, pp. 337-351.

Intel, “What Is the Difference in Cache Memory Between CPUs for In-
tel Xeon Scalable Processors,” https://www.intel.com/content/www/us/
en/support/articles/000027820/processors/intel- xeon- processors.html,
[Online; accessed April 21, 2025].

J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control,” in Proceed-
ings of the 2nd Workshop on System Software for Trusted Execution,
2017, pp. 1-6.

——, “Nemesis: Studying Microarchitectural Timing Leaks in Rudi-
mentary CPU Interrupt Logic,” in Proceedings of the 2018 ACM

16

[37]

[38]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

SIGSAC Conference on Computer and Communications Security, 2018,
pp. 178-195.

H. Yavarzadeh, A. Agarwal, M. Christman, C. Garman, D. Genkin,
A. Kwong, D. Moghimi, D. Stefan, K. Taram, and D. Tullsen,
“Pathfinder: High-Resolution Control-Flow Attacks Exploiting the
Conditional Branch Predictor,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, 2024, pp. 770-784.

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “In-
ferring Fine-grained Control Flow Inside SGX Enclaves with Branch
Shadowing,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, 2017.

I. Puddu, M. Schneider, M. Haller, and S. Capkun, “Frontal Attack:
Leaking Control-Flow in SGX via the CPU Frontend,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 663-680.

A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How SGX
Amplifies the Power of Cache Attacks,” in Proceedings of the 19th
International Conference on Cryptographic Hardware and Embedded
Systems (CHES). Springer, 2017.

A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “MemJam:
A False Dependency Attack Against Constant-Time Crypto Implemen-
tations,” International Journal of Parallel Programming, 2018.

J. Redmon, “Darknet: Open Source Neural Networks in C,” http:/
pjreddie.com/darknet/, [Online; accessed April 21, 2025].

Google, “TensorFlow Lite,” https://www.tensorflow.org/lite, [Online;
accessed April 21, 2025].

Microsoft, “ONNX Runtime,” https://github.com/microsoft/
onnxruntime-openenclave.git, [Online; accessed July 20, 2025].
“Public GitLab Repository for DLS,” https://gitlab.com/s3lab-code/
public/dls, 2025.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 601-618.

L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I Know What You
See: Power Side-Channel Attack on Convolutional Neural Network
Accelerators,” in Proceedings of the 34th Annual Computer Security
Applications Conference (ACSAC), 2018, pp. 393—406.

K. Goto and R. A. V. D. Geijn, “Anatomy of High-Performance Matrix
Multiplication,” ACM Transactions on Mathematical Software (TOMS),
vol. 34, no. 3, pp. 1-25, 2008.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning,” in /3th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018,
pp. 578-594.

N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein et al., “Glow: Graph
Lowering Compiler Techniques for Neural Networks,” arXiv preprint
arXiv:1805.00907, 2018.

M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “Cipherleaks: Breaking
constant-time cryptography on amd sev via the ciphertext side channel,”
in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
717-732.

S. Gueron, “A Memory Encryption Engine Suitable for General
Purpose Processors,” Cryptology ePrint Archive, Paper 2016/204,
2016. [Online]. Available: https://eprint.iacr.org/2016/204

V. Costan, “Intel SGX