
DOM-XSS Detection
via Webpage Interaction Fuzzing
and URL Component Synthesis∗

Nuno Sabino†‡, Darion Cassel‡°, Rui Abreu§, Pedro Adão†, Lujo Bauer‡ and Limin Jia‡
†Instituto Superior Técnico, Universidade de Lisboa, and Instituto de Telecomunicações

‡Carnegie Mellon University, §Universidade do Porto, INESC-ID °Work done prior to joining Amazon
{nsabino,lbauer,liminjia}@andrew.cmu.edu, darion.cassel@gmail.com, rma@fe.up.pt, pedro.adao@tecnico.ulisboa.pt

Abstract—DOM-based cross-site scripting (DOM-XSS) is a
prevalent form of web vulnerability. Prior work on automated
detection and confirmation of such vulnerabilities at scale has
several limitations. First, prior work does not interact with the
page and thus misses vulnerabilities in event handlers whose
execution depends on user actions. Second, prior work does not
find URL components, such as GET parameters and fragment
values that, when instantiated with specific keys/values, execute
more code paths. To address this, we introduce SWIPE, a DOM-
XSS analysis infrastructure that uses fuzzing to generate user
interactions to trigger event handlers and leverages dynamic
symbolic execution (DSE) to automatically synthesize URL
parameters and fragments. We run SWIPE on 44,480 URLs found
in pages from the Tranco top 30,000 popular domains. Compared
to prior work, SWIPE’s fuzzer finds 15% more vulnerabilities.
Additionally, we find that a lack of parameters and fragments
in URLs significantly hinders DOM-XSS detection, and show
that SWIPE’s DSE engine can synthesize previously unseen URL
parameters and fragments that trigger 20 new vulnerabilities.

I. INTRODUCTION

According to the National Vulnerability Database (NVD),
12.25% of all reported vulnerabilities are Cross-Site Scripting
(XSS) vulnerabilities [44], which allow attackers to execute
JavaScript code in a victim’s browser. These vulnerabilities
can lead to cookie theft and sensitive data leakage, which
can be used to impersonate the victim or perform undesired
actions on vulnerable websites [46]. XSS vulnerabilities come
in several forms, commonly classified as reflected XSS, stored
XSS and DOM-based XSS (DOM-XSS). The first two types
involve server-side code that fails to properly sanitize user
input before returning it to the client, while DOM-XSS occurs
entirely within client-side JavaScript code. As a result, the
server hosting the website is not able to block DOM-XSS
exploits. Such attacks may also not be detected by the server,
as the malicious payload could be in a URL fragment that
is not transmitted to the server [28]. This makes DOM-XSS

∗ Full version available at https://doi.org/10.1184/R1/30010783.

particularly challenging to detect and mitigate compared to
other types of XSS vulnerabilities, as server-side protections
like Web Application Firewalls (WAFs) are not as effective.

To measure DOM-XSS pervasiveness in the wild, prior work
developed systems to analyze webpages to find and confirm
DOM-XSS vulnerabilities [5, 31, 36]. They use a taint-tracking-
enabled browser to detect flows—transfers of information from
potentially attacker-controlled sources (e.g., URL) to API
calls that lead to code execution (e.g., document.write).
These flows represent potential attack vectors where attacker-
controlled input might lead to code execution in the browser.
However, infrastructures developed by prior work have limited
effectiveness in analyzing and exploring diverse JavaScript code
paths and enabling reproduction and comparison of analysis
results across different methods. First, most existing approaches
passively analyze the page without simulating user interactions.
Many DOM-XSS vulnerabilities only manifest when event
handlers are triggered by user actions such as clicks, keyboard
input, or form submissions, as evidenced by this work (Sec. IV).
Without triggering these events, vulnerabilities in event-driven
code remain undetected. Second, prior approaches typically
analyze each page based on a single URL string, without
systematically exploring how different URL components, such
as GET parameters and fragments (PFs), might enable new
code paths that could contain vulnerabilities. Third, existing
approaches do not address a key methodological challenge for
fair comparison of results across different DOM-XSS detection
techniques: webpages are dynamic and can change over time,
leading to different results when re-analyzed. This makes it
difficult to compare the effectiveness of detection approaches
under identical conditions. These limitations leave significant
blind spots in DOM-XSS detection, raising important research
questions: 1 How many vulnerabilities can only be triggered
by actively interacting with web pages? 2 Can we automat-
ically discover URL parameters and fragments that trigger
vulnerabilities, and how many of those vulnerabilities are new
(i.e., not found by any other tested method)? 3 How do we
enable fair comparisons between different DOM-XSS detection
approaches given the dynamic nature of web content?

To address these questions, we present SWIPE (Simu-
lator of Webpage Interactions and Parameter Explorer), a
comprehensive DOM-XSS detection infrastructure. SWIPE

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231467
www.ndss-symposium.org

uses fuzzing to systematically simulate a wide range of
user actions and trigger event handlers to detect DOM-XSS
vulnerabilities contained in the handlers or in code loaded
due to the execution of those handlers. Additionally, SWIPE
employs dynamic symbolic execution (DSE) to automatically
discover and synthesize URL components that can lead to the
execution of previously unexplored code paths. Our tool builds
upon and extends prior work by using an updated version
of a taint-enabled Chromium browser from DOMsday [36].
Furthermore, to improve reproducibility and fair comparisons
between detection approaches, SWIPE leverages web archiving
methodology [9], which archives the page resources and replays
them for analysis. Though archiving has been studied in the
past for general web security measurements [19], to the best
of our knowledge, SWIPE is the first work to incorporate web
archiving technology for DOM-XSS detection, specifically to
allow a fair comparison of different detection techniques.

This paper pursues two complementary goals: (1) measuring
the prevalence of DOM-XSS vulnerabilities using improved
methodology, and (2) evaluating the effectiveness of SWIPE.
For that, we conduct a large-scale empirical evaluation on
44,480 URLs found by visiting pages on the top 30,000
domains from the Tranco list [30]. SWIPE components
identified 114 unique DOM-XSS vulnerable flows in 146
pages. Our evaluation shows compelling evidence of SWIPE’s
effectiveness in improving DOM-XSS detection capabilities.
By actively interacting with web pages, our fuzzer increases
the detection of confirmed vulnerable flows by 15% compared
to passive analysis techniques from prior work and is more
effective in aiding DOM-XSS vulnerability detection than
CrawlJax [38], an existing user interaction automation tool. This
demonstrates that without effective user interaction exploration,
a significant number of vulnerabilities may remain hidden.
Our evaluation also reveals that systematically exploring URL
parameters and fragments (PFs) significantly enhances DOM-
XSS detection capabilities. We demonstrate that SWIPE’s DSE
engine finds new vulnerable flows by synthesizing additional
PFs, and most of those PFs cannot be generated by off-the-shelf
GET parameter fuzzing tools ffuf [20] and wfuzz [3]. With
the help of our DSE engine, SWIPE outperforms the web
scanner Wapiti [59], which also finds GET parameters. Finally,
SWIPE outperforms the black-box web scanner ZAP [45].

This paper makes the following contributions:
1) We identify and address key limitations in existing DOM-

XSS detection methods, particularly the lack of interac-
tion with pages and exploration of URL components.

2) We develop a novel fuzzer to simulate a wide range of
user actions. It can trigger event handlers and uncover
vulnerabilities that require interaction to manifest.

3) We integrate dynamic symbolic execution into DOM-XSS
detection to automatically synthesize URL parameters
and fragments that lead to new execution paths and
vulnerabilities.

4) We leverage web archiving to aid fair and reproducible
comparison of DOM-XSS detection approaches.

5) We conduct a large-scale evaluation on 44,480 URLs,

https://www.example.com/main?choice=1&name=john#<script>payload</script>

document.write(… + location.hash + …)

1

4

2

3

example.comUser’s
Browser

5

Fig. 1: Diagram illustrating a DOM-XSS attack.

providing empirical evidence of SWIPE’s effectiveness
and insights into the prevalence and characteristics of
DOM-XSS vulnerabilities in the wild.

We open-sourced the fuzzer, DSE and the web archive [51].

II. BACKGROUND

We review DOM-XSS vulnerabilities, discuss the method-
ologies used by prior work to detect and confirm them, and
present the methodologies used by our novel DOM-XSS
detection infrastructure, SWIPE. The project names of prior
studies on DOM-XSS vulnerabilities are abbreviated as follows:
25mFlows [31], DOMsday [36], and TalkGen [5].

A. DOM-XSS vulnerabilities

DOM-XSS is a type of cross-site scripting attack wherein
the attacker’s payload is injected into the page’s DOM purely
as a result of client-side JavaScript code execution. The general
flow of such an attack is shown in Fig. 1. First, the attacker
crafts a URL to a page vulnerable to DOM-XSS (the vulnerable
page) and adds an attacker-controlled payload (e.g., with code
that sends cookies via document.cookie to the attacker) (1).
The attacker then tricks a user (the victim) into visiting the
URL (2). When the victim visits the URL (3), the vulnerable
page is loaded (4), executing JavaScript code that allows the
attacker-controlled URL components (e.g., the URL fragment
accessible via location.hash) to reach sensitive DOM-XSS
sinks which modify the DOM, such as document.write (5).

B. DOM-XSS detection

Most proposed techniques for detecting DOM-XSS vulnera-
bilities rely on dynamic taint analysis [5, 31, 36, 47]. Inputs
from attacker-controllable sources (e.g., URL) are marked
as tainted, and taint is propagated through the execution
of JavaScript. When tainted data reach an API that can
cause script execution, which is called a sink, the analysis
reports a flow, a possible vulnerability. Examples of attacker-
controllable sources are the URL, which is accessed via
document.location; cookies; the HTTP referrer, accessed
via document.referrer; and cross-origin messages sent
via the postMessage API. Sinks include JavaScript-based
primitives like eval or the new Function constructor and
HTML-based primitives like document.write calls and
assignments to innerHTML or event-handler properties such
as onclick. The list of considered sources and DOM-XSS
sinks can be found in our companion tech report [50].

25mFlows [31] used dynamic taint analysis and demonstrated
the prevalence of DOM-XSS vulnerabilities in the wild with

2

Tainted URL http://example.com/page?q=tainted&a=b

Prior work Example confirmation URL

25mFlows [31] http://example.com/page?q=tainted&a=b#PAYLOAD
DOMsday [36] http://example.com/page?a=b#&q=PAYLOAD
TalkGen [5] http://example.com/page?q=PAYLOAD&a=b

TABLE I: Confirmation URLs from existing methodologies.

byte-level taint tracking of JavaScript code [31]. It crawled the
Alexa Top 5,000 domains and subpages and found DOM-XSS
vulnerabilities on 9.6% of those domains. DOMsday [36] used a
similar approach but implemented a more precise confirmation
methodology (discussed below). DOMsday performed a broader
but shallower crawl than 25mFlows, targeting the Alexa Top
10,000 websites with five subpages each. DOMsday found
a similar prevalence of DOM-XSS potential flows but was
able to confirm the vulnerability of 83% more than measured
by 25mFlows. More recently, TalkGen also implemented a
byte-level dynamic information flow analysis but focused on
extending the confirmation methodology with targeted exploit
generation [5]. It also extended the breadth of the evaluation
of 25mFlows and DOMsday, crawling the Tranco top 100,000
websites at a depth of 10 subpages.

SWIPE builds off of prior work’s taint analysis and
confirmation methodology — but extends it with a novel user
action fuzzer (Sec. III-B) and dynamic symbolic execution
(Sec. III-C) to trigger execution of more webpage code.

C. DOM-XSS vulnerability validation

The presence of a flow does not necessarily imply that a
vulnerability exists. This happens, for example, when the input
is correctly sanitized before being passed to the vulnerable sink.
A common way to sanitize inputs is to URL encode them, such
that special characters (e.g., double quotes) are encoded into
a safe representation, preventing the attacker from exploiting
a vulnerability. A flow is considered to be potential by our
and previous works if the source is URL-based, the sink is
JavaScript or HTML-based, and if the tainted input that reaches
the sink is not URL encoded.

Once a potential flow is found, all three prior works try to
confirm that a vulnerability actually exists by following the
recipe below: (1) Collect the URL of the potentially vulnerable
resource where the flow was uncovered. (2) Find a location
within that URL where the attacker payload is to be injected.
This is the part of the input that eventually reaches the sink
and can specify JavaScript code to execute. (3) Inject a payload
at the identified location such that it allows validation of
vulnerability’s exploitability once the URL is visited.

A representation of the three injection methodologies from
prior work is shown in Tab. I. 25mFlows implements a breakout
method where the parsed abstract syntax tree (AST) of the
HTML or JavaScript string that reaches the sink is analyzed
to determine what characters are needed to complete what
comes before the tainted input. A candidate is then generated
and appended to the end of the potentially vulnerable page’s
URL, e.g., in the URL fragment (hash). DOMsday improves

upon this technique by determining the exact bytes in the
URL where the payload needs to be injected, based on the
observation that the data reaching the sink are often a URL
GET (query) parameter. TalkGen extends this by replacing
tainted query parameter values by the payload, as opposed to
always injecting the payload after the hash. However, injecting
GET parameters before the hash causes these parameters to be
sent to the web server, which makes testing less safe.

On step (3), DOMsday always injects the same payload
marker<>’" instead of trying to execute real code to confirm
vulnerabilities. It is important to note that the special characters
on that payload (i.e., the HTML tags, the single and the double
quotes) are there to ensure the attacker has the ability to
escape the necessary context and execute JavaScript code. To
confirm a vulnerability, DOMsday visits this synthesized URL,
validates that the sink is still being called and checks whether
the substring marker<>’" is present on the sink argument
without any encoding. DOMsday authors sampled 40 cases
that were flagged as vulnerable using this method and validated
that all those cases were indeed vulnerable (i.e., true positives).

SWIPE adopts the same payload generation algorithm as
DOMsday because its algorithm is open-source. For injection,
SWIPE generates multiple confirmation URLs for each poten-
tial flow, one for each of the three injection methodologies. With
respect to flow uniqueness, SWIPE deduplicates potential and
confirmed flows using the same criterion adopted by all prior
work, based on the domain and the vulnerability location [31].
The location is defined as the URL of the script without PFs
and the line and column offset of the sink call within that
script. For inline scripts, the URL and line offset are omitted.

D. DOM-XSS flow encoding

For a flow to be exploitable, the sink argument cannot be
URL encoded, so the attacker can inject special characters like
quotes to successfully inject arbitrary JavaScript code. Over
the years, browsers have improved their built-in mechanisms
that encode such characters if they are placed on the GET
parameters or fragment value of the URL. In 2013, a third of
the exploits generated by 25mFlows were successful against
Internet Explorer because that browser did not have many of
these built-in URL encoding mechanisms. In 2017, DOMsday
injected its payloads on the fragment value, which was not
encoded by default in the version of Chromium that DOMsday
used. In 2020, TalkGen used a modified version of Firefox
that disabled URL encoding. Nowadays, all modern browsers,
including the Chromium browser that SWIPE uses, enforce
URL encoding on the PFs, and Internet Explorer is discontinued.
In Sec. IV, we discuss the impact of encoding in detection.

III. METHODOLOGY

We first present an overview of the end-to-end architecture
of SWIPE, then describe its three novel components: 1) a
fuzzer that simulates user interactions with a webpage to elicit
new behaviors (Sec. III-B); 2) a DSE engine that synthesizes
new URLs from the analysis of the constraints in the webpage
to discover new parameters and fragments that can be of use

3

(Sec. III-C); and 3) a web archive that proxies all requests
and responses to the target website to reduce the sources of
randomness and improve reproducibility (Sec. III-D). SWIPE
uses a version of Chromium from DOMsday [36] updated to
the base Chromium version 126.0.6478.264 (released Feb. 7th,
2025). This browser has an instrumented V8 JavaScript engine
that dynamically tracks taint of strings.

A. SWIPE architecture overview

Given a list of pages to be analyzed, we spawn multiple
containers at the same time. Each container is responsible
for analyzing a single page and running one of SWIPE’s
components, which we refer to as the analysis condition:
Passive, Fuzzer or DSE. In Fig. 2, we present the end-to-end
execution of the infrastructure against a single page inside
a container. We start by launching a Chromium instance
under a given condition and navigate to the target URL (1).
The Chromium instance is configured to use our proxy that
intercepts the navigation to the target URL (2). The proxy
manages web archiving for reproducibility and optionally
instruments the code for DSE.

The proxy loads the appropriate archived page and reads
the content (e.g., HTML, JavaScript, CSS, etc.) corresponding
to the requested path and query parameters. If no such web
archive exists, then it contacts the live webpage and requests its
contents (3 , 4 , 5). Otherwise, the live page is only requested
if no similar request was archived previously. When running
DSE (5c), regardless of being a fresh or an archived webpage,
the proxy instruments the HTML and JavaScript files with
our dynamic symbolic execution code using Jalangi2 [54, 55].
Then, Chromium loads the archived page content (6), which
is instrumented in the DSE case (6c).

The remaining steps depend on the SWIPE condition that
is running. Under the Passive condition, the browser simply
loads the page and waits, executing JavaScript code until the
time budget runs out (7a). The Fuzzer condition will execute
UI fuzzing (see Sec. III-B) on the page guided by coverage
information (7b). For the DSE condition, upon loading the
page, the DSE analysis will execute and gather constraints to
construct an SMT formula and attempt to solve it using Z3
(7c , see Sec. III-C).

For all conditions, once the time budget is exhausted, the
final coverage is retrieved (8 , 9). Passive and Fuzzer also
return a list of flows that were found by the modified browser
(10 , 11), while DSE returns a list of derived URLs.

B. Fuzzing user interactions

Webpages use event handlers to define how user actions
are dynamically handled. Fig. 3 shows a code snippet of real-
world JavaScript from our crawl.1 Lines 1–10 show a vulnerable
function, which uses the GET parameter q (line 3), applies URL
decoding to it (line 4), and creates a DOM element (line 6).
Line 7 is the problematic assignment: attacker-controlled input
from the URL (the value of q) is assigned to the href attribute

1To reduce the risk of exposing a vulnerability, we omit the URL and apply
basic semantic-preserving code transformations to not be searchable

Fig. 2: Core proxy and browser interactions in an end-to-end
SWIPE workflow for a single page. Specific component actions
(of Fuzzer and DSE) occur within the browser context.

of the newly created DOM element. An attacker could thus pass,
for example, q=javascript:alert() in the GET parameters.
When renderResult is called, a malicious link is injected
in the page, and when the link is clicked, attacker-supplied
code will be executed. This example requires a user interaction,
a click to trigger the event handler (lines 11–14), for the
vulnerability to be explored and detected by dynamic taint
analysis, as renderResult function (line 13) is not called as
a result of page loading.

Next, we describe our fuzzer, which can automatically
trigger event handlers on the page. Our fuzzer only reports
vulnerabilities replicable by a real user interacting with the
page. To achieve this, we do not simply force the execution of
all event handlers available in the page, as this method could
find vulnerabilities that cannot be triggered by a real user (e.g.,
by triggering event handlers on invisible DOM elements).

Our fuzzer supports a total of 55 event handlers. Given
our target of fuzzing user interaction, we only support event
handlers that depend on a user’s actions, are supported by
Chrome, and can be simulated through Chromium’s DevTools

4

1 function renderResult(){
2 var search = location.search;
3 query = new RegExp(/[?&]q=([^&]*)/).exec(search);
4 query = decodeURIComponent(query[1]);
5 ...
6 var b = document.createElement("a");
7 b.href = query;
8 ...
9 element.appendChild(a)

10 }
11 document.addEventListener("click", (function(e) {
12 var a = e.target.closest(PAGE_LINK_SELECTOR);
13 a && renderResult()
14 }));

Fig. 3: Simplified vulnerable code found in the wild.

Protocol API. We provide a list of event handlers and their
support from the fuzzer in our technical report [50].

1) Collect event handlers: Once a page is loaded, SWIPE’s
fuzzer iterates over all DOM elements and retrieves the asso-
ciated event listeners via the getEventListeners function.
In the example described in Fig. 3, the fuzzer learns that the
target document has an onclick listener.

2) Generate high-level actions: Our fuzzer’s units of input
are user actions such as ClickElement, which we call high-
level actions (HLA). The fuzzer manipulates HLAs, which
can be parameterized, to interact with the webpage (e.g.,
ClickElement receives a X-path reference to the DOM
element to be clicked).

Our fuzzer initializes a pool of actions by mapping supported
event handlers into sets of triggering HLAs. For example,
when the fuzzer finds an onclick event associated with DOM
element e, it adds to the pool the following sequence of HLAs:
SequenceActions(MakeVisible(e),ClickElement(e))

The MakeVisible action attempts to make a specified DOM
element visible by scrolling down or up the page. Without
it, the ClickElement action could try to move the mouse
to coordinates that are not in the visible area of the page,
deviating from what users can do.

To simulate interactions, the fuzzer uses Chrome DevTools
Protocol (CDP), which allows programs to interact with the
page. For the ClickElement action, the fuzzer uses CDP to
first obtain the position of the element, then move the mouse
to it and finally press and release the left button.

3) Coverage-guided fuzzer: Once a pool of actions is
initialized, the fuzzer repeatedly executes the actions in the
pool and removes, adds, or modifies actions from the pool
based on the amount of code executed by previous actions, until
its time budget is exhausted. After the initial round, the fuzzer
combines actions sequences that achieved high coverage into
composite actions. Each round, the fuzzer changes the pool of
actions by only keeping those that executed the most code. It
also exchanges inner actions between composite actions in the
pool, a process known as cross-over [63], to obtain a diverse
set of actions that trigger event handlers in different orders.

4) Replaying actions: To reproduce the HLAs generated
by the fuzzer for later confirmation of flows, all HLAs that
require randomness use a pseudo-random number generator

1 function getJsonFromUrl() {
2 var result = {};
3 var query = location.search.substr(1);
4 query.split("&").forEach(function (part) {
5 var item = part.split("=");
6 result[item[0]] = decodeURIComponent(item[1]); });
7 return result; }
8 ...
9 var paramsMap = {’custom1’:’GP1’, ’custom2’:’GP2’, ...};

10 function buildUrl(baseUrl) {
11 var urlParams = getJsonFromUrl();
12 for (var key in paramsMap) {
13 if (urlParams[key] != undefined) {
14 baseUrl += ’&’;
15 baseUrl += paramsMap[key] + "=" + urlParams[key];
16 }}
17 return baseUrl;
18 ...
19 var post = buildUrl(basePost);
20 document.write(’’);

Fig. 4: Vulnerable code requiring specific URL parameters

(PRNG) initialized with the same seed. When confirming flows
found by the fuzzer, we replay all fuzzing actions that were
performed during analysis.

C. Synthesis of GET parameters and fragments

The execution of a page’s JavaScript code can be affected by
components of the page’s URL, namely, the GET parameters
and URL fragment (collectively named PFs), and certain
execution paths may only be reachable if specific parameter
keys and values, or fragment values are present.

A real-world example where the execution of a vulnerable
page script depends on the presence of a specific key/value pair
in its GET parameters is shown in Fig. 4. The script first builds
a urlParams object (line 11) from attacker-controllable URL
GET parameters keys and URL decoded values (lines 1–7).
Next, selecting only the keys in paramsMap (line 9), it creates
a new URL with GET parameters assigned to the attacker-
controllable values from urlParams (lines 12–15). Finally,
it writes the created URL to the DOM as the src attribute
of an img (line 20). To find this vulnerability, we need to
have a URL that has one of the allowed GET parameters, e.g.,
’custom1’. We employ Dynamic Symbolic Execution (DSE)
to analyze and generate PFs that trigger these code paths.

1) DSE loop: An overview of the end-to-end execution of
the DSE component is shown in Fig. 2. Given a URL of the
form domain.tld/path/?search#fragment, Chromium
will load the DSE-instrumented page content and treat the
URL’s location.search (parameters) and location.hash

(fragment) as concolic values, which store both a symbolic and
a concrete component. Upon loading, the DSE analysis begins
to execute and gather the constraints on operations performed
on these concolic values. Upon receiving a set of constraints
from the analysis, DSE generates an SMT formula from these
constraints and invokes an SMT solver, in our case Z3, to solve
it. If the formula is satisfiable, the solver provides concrete
values for the symbolic components. The DSE component then
gets a URL with new query and fragment components that is
added to a queue. The process is then repeated with a URL
from the queue. We call this process a DSE loop.

5

1 function binary(op, lhs, rhs, res) {
2 if (isConcolic(lhs) || isConcolic(rhs)) {
3 res = handle(op, lhs, rhs) }}
4 function handle(op, lhs, rhs) {
5 if (op == "+") {
6 sendConstraints("str.++", lhs.smt(), rhs.smt())
7 return lhs.concrete + rhs.concrete }}

Fig. 5: DSE instrumentation for string concatenation.

The DSE instrumentation also records coverage information
during execution: textual ranges of JavaScript script characters
whose code was executed. Execution of the iterative DSE loop
can be halted after a number of iterations, a given time budget,
or a particular coverage threshold is reached.

2) DSE instrumentation and concrete models: In Fig. 5, we
show an example of DSE instrumentation for binary operations,
which intercepts the string concatenations in Fig. 4 (lines 15
and 20), generating constraints that link the attacker-controlled
search parameter to the final URL written to the DOM sink.

Line 1 shows the instrumented function binary, which takes
the operation (op), left-hand side (lhs), right-hand side (rhs),
and a placeholder for the result (res). Line 2 checks if either
operand is concolic (i.e., derived from the URL parameters or
fragment), and if so, then line 3 calls the handle function to
process the symbolic operation. When evaluating an operation
involving a concolic value, the instrumentation calls a handler
(like handle in Fig. 5), which generates SMT constraints
representing the operation’s effect on the symbolic value.
The handle function (lines 4–7) generates SMT constraints
based on the operation. For string concatenation (op == "+"

on line 5), it sends a str.++ constraint to the solver via
sendConstraints (line 6), using the SMT representations
of the operands (lhs.smt(), rhs.smt()).

It then evaluates the operation using a concrete model
that replicates the exact semantics of the original JavaScript
operation using the concrete parts of the concolic values (e.g.,
lhs.concrete + rhs.concrete on line 7). This ensures
that the page’s JavaScript execution proceeds normally with
a valid concrete value, even when dealing with concolic
inputs. The instrumentation preserves the original semantics
for operations involving only concrete (non-concolic) values.

Our concrete models are carefully implemented JavaScript
functions that mimic the behavior of native JavaScript oper-
ations, especially for strings, as our initial symbolic inputs
(location.search and location.hash) are strings. Ensur-
ing the models are correct is challenging due to JavaScript’s
complex semantics and edge cases. For example, the na-
tive string operations charCodeAt and codePointAt have
similar semantics but differ subtly in their return values
for out-of-bounds indices: charCodeAt returns NaN, while
codePointAt returns undefined. Our concrete models must
replicate these specific behaviors precisely, as page code might
rely on them (e.g., a branch checking specifically for NaN would
behave differently if undefined were returned instead).

Our instrumentation and concrete models should not alter
the observable behavior of the JavaScript code compared to its

1 : [(not (≥ (indexOf a b 0) 0))]κ ↪→ (= (indexOf [a]κ [b]κ 0) − 1)

2 : [(not (= −1 (indexOf a b 0)))]κ ↪→ (≥ (indexOf [a]κ [b]κ 0) 0)

Fig. 6: String.indexOf transformers used by DSE.

native execution, except for the collection of constraints. This
property is commonly referred to as semantic transparency. We
strive for semantic transparency because altering the execution
flow could lead the DSE to explore irrelevant paths or miss
vulnerabilities present in the original code. We validated the
semantic transparency of our models using a comprehensive
suite of 357 unit tests covering numerous edge cases and
standard behaviors for each modeled JavaScript operation,
according to the ECMAScript specification [8].

3) DSE string constraint solving: SMT constraints asso-
ciated with common JavaScript string operations such as
substring extraction, substring membership, and substring
replacement fall into the category of extended string terms,
whose solving is undecidable in general [49]. Different seman-
tically equivalent encodings of a set of constraints can vary in
solver performance; for example, modeling a JavaScript string
operation via SMT array operations can be inefficient [6]. We
develop a rewriting algorithm that takes an SMT formula and
first applies a set of built-in Z3 simplifiers [6], followed by
a set of custom transformers we define. These transformers
cover common patterns of string operations in web scripts.

The general form of the transformer is [s]κ ↪→ [s′]κ′ ; the
transformer takes an SMT statement AST s and context κ and
transforms it to a statement s′ and context κ′. The transformer
can be applied recursively within the structure of s′. The context
κ is a set of new string constant declarations that are introduced
by the transformer. In Fig. 6, we show an example transformer
for rewrite constraints that involve the indexOf operation. We
re-encode comparisons of string indexOf operations where the
solver is being asked if a substring is not at a position ≥ 0 in
the string. This asks Z3 to check if the position is any negative
integer. However, there is only a single negative integer result
of indexOf permitted by the JavaScript semantics, that is −1.
We thus reduce the search space by equivalently asking the
solver if the substring index in the string is exactly −1.

To handle the cases where rewriting worsens solving time, we
implemented a portfolio solving strategy, running two solvers
in parallel: one Z3 instance solves rewritten constraints; another
solves the original constraints. The portfolio solver then returns
the result of whichever solver returns first. This strategy enables
us to take advantage of the cases where rewriting improves
solving time, while still being able to fall back to the original
SMT formula if rewriting increases the run time.

D. Web archive

The dynamic nature of the web makes it challenging to
fairly compare web analysis approaches. For example, a page
found in our crawl chooses which resources to load based
on a random number (Fig. 7). A key feature of SWIPE that
enables repeatable page visits, and hence fair cross-condition

6

1 var vlst = [’vid_01’, ’vid_02’,’vid_03’, ’vid_04’, ...];
2 var vid = vlst[Math.floor(Math.random() * vlst.length)];
3 document.write(’<video poster=
4 "http://vulnerable/’ + vid + ’.jpg">’);

Fig. 7: Randomized page behavior observed in a real page

comparison, is website archiving. Though benefits of using
web archiving as a vehicle for repeatable analysis have been
demonstrated by prior work [9, 19], adapting web archiving
for DOM-XSS required addressing specific challenges.

DOM-XSS often involves complex client-side JavaScript
that dynamically fetches resources or modifies requests based
on user interactions or URL fragments, which are not always
captured adequately by standard archiving crawls. Ensuring
that the archive replay mechanism correctly handles these dy-
namic requests, including those involving symbolic parameters
generated by DSE, posed significant engineering challenges.
Our contribution lies in integrating the archive with dynamic
analysis techniques (Fuzzer and DSE) and implementing robust
replay mechanisms, including online archive expansion and
similarity matching, to handle the dynamic nature of modern
web applications susceptible to DOM-XSS. A novel aspect
of our approach is automatic expansion of a web archive to
reduce missed resources, while maintaining repeatability.

1) Archive construction: If a web archive does not exist for
some target page, one is created for it the first time the page
is analyzed. When the page is first visited, we continuously
store all the page’s HTML, JavaScript, and CSS from server
responses intercepted by our proxy. We additionally store all the
requests initiated by the page that resulted in those responses.
This information is stored in a compressed format called a web
archive; we use the WARC format [4]. Our system handles
HTTP redirections robustly: if a request for URL1 during
archiving results in a redirection to URL2, we store the response
for URL2 in the archive and maintain a redirect mapping from
URL1 to URL2.

2) Archive replay: If a web archive exists, rather than
visiting the page again, we instead load it from our web
archive. Requests made by a page are intercepted, and we
load the corresponding response entries from our web archive.
To handle redirects during replay, we reference the redirect
mapping created during archiving. New requests generated by
the page (e.g., through scripts) may not be present in the archive.
Often, the differences in the request come from differences in
dynamic elements such as timestamps in URL query parameters.
For these cases, we calculate the URL similarity based on the
methodology proposed by Goel et al. [9] to find the nearest
URL to the one requested. If no similar URL can be found,
we execute an online archive expansion phase where a request
to the target URL is issued to the live web server, and the
response is saved to the archive. We can then repeat visits
for each condition with the extended archive. These strategies
ensure that dynamically generated yet semantically similar
requests can often be served from the archive, maximizing
repeatability across different analysis conditions.

IV. EVALUATION

In this section, we evaluate the effectiveness of our approach
and answer the following research questions:
RQ1: Can Fuzzer generate user interactions in real-world pages
that lead to the discovery of new DOM-XSS vulnerabilities?
RQ2: Can DSE uncover PFs in real-world pages, and how do
they impact DOM-XSS detection?
RQ3: How does SWIPE compare to other end-to-end DOM-
XSS detection tools?
RQ4: How do SWIPE’s analysis results compare to what prior
work reported, and how does the continuous evolution of the
web affect the validity and consistency of such comparisons?

A. Experimental setup

The first time each page is analyzed by a SWIPE component,
a web archive for that page is created (Sec. III-D). We ensure
that each page is analyzed by one condition at a time to
prevent race conditions in the archive creation. All SWIPE
components analyzing the same page use the same archive, but
we disable the web archive during confirmation to ensure that
any discovered vulnerabilities stem from real page behavior.

Dataset collection. We pre-crawled the top 30,000 domains
from the Tranco list [30] and extracted a maximum of 5
subpages from each page. We only include a subpage if it
contains GET parameters and has the same domain as one
of the top 30,000 pages. This results in a dataset of 44,480
URLs after removing timed-out pages: 13,396 top-level Tranco
pages and 31,084 subpages with GET parameters. We call this
dataset our Core dataset. All SWIPE components, together
with our replication of TalkGen, found a total of 194 pages
with DOM-XSS vulnerabilities in our Core dataset. We call the
full URL of these pages our Vulnerable dataset. In some of our
experiments, we will strip the GET parameters and fragments
from the URLs in these datasets. We call these stripped datasets
Core-noPFs and Vulnerable-noPFs, respectively.

Dataset augmentation. We use SWIPE’s DSE component
to synthesize PFs for a set of URLs and call this process
dataset augmentation. The difference of results obtained from
a dataset and the results obtained from its augmentation reveal
the impact of DSE and answer RQ2.

We performed two runs of DSE with different time budgets
and starting datasets, always stripping the PFs from the initial
URLs before passing them to DSE. Even though DSE may
perform better if it was given the initial GET parameters,
we believe stripping the PFs from the target URLs prior to
DSE augmentation leads to cleaner evaluation results because
DSE is also evaluated for PFs’ rediscovery capabilities on
the same dataset. The time budget refers to how much time
DSE has to analyze a single URL and come up with as many
derivative URLs as possible. First, we run DSE with a 1-hour
timeout per page on a random subset of URLs from our Core-
noPFs dataset. We do this to understand whether DSE with a
reasonable timeout can help us find new confirmed flows on
pages in the wild. We allowed this process to run for 100h in
our infrastructure and managed to go through 13,555 URLs

7

of the Core-noPFs dataset, generating 56,152 new URLs (that
we call Core-DSE1 dataset). We also run DSE with a 24-
hour timeout on the Vulnerable-noPFs dataset. The objective
here is to figure out if DSE rediscovers the relevant PFs that
contributed to triggering vulnerabilities. Running this process
over the 194 URLs generated 5,417 new URLs (that we call
Vulnerable-DSE24 dataset). The original PFs in URLs of the
Core dataset were found in the dataset collection pre-crawl.

Conditions and their results summary. We evaluated the
following seven main conditions. We discuss the rationale
behind each condition and present detailed results in the
upcoming sections. (1) Passive: This is the baseline replicating
passive navigation from DOMsday [36] with an upgraded
browser (Chromium 126) on the Core dataset. It uncovered
72 confirmed flows on pages hosted in 64 unique domains.
(2) Fuzzer: Our fuzzer that simulates user interactions on the
Core dataset. It uncovered 83 confirmed flows in 73 domains.
(3) Fuzzer-noPFs: Our fuzzer on the Vulnerable-noPFs dataset.
It found 32 confirmed flows in 28 domains. (4) Fuzzer-DSE24:
We run Fuzzer on the DSE augmented version of the Vulnerable-
noPFs dataset (Vulnerable-DSE24 dataset). This found 42
confirmed flows in 29 domains. (5) Fuzzer-DSE1: We run
Fuzzer on the DSE augmented version of the Core-noPFs
dataset (Core-DSE1 dataset). This found 15 confirmed flows
in 9 domains. Note that both Fuzzer-DSE1 and Fuzzer-DSE24
crawls only apply fuzzing to URLs not already in the original
datasets (i.e., before augmentation). This avoids duplicate work,
as the Fuzzer condition already applies fuzzing to all URLs
in the Core dataset, and also explains why the number of
confirmed flows resulting from those DSE crawls are both
smaller than 83. (6) FoxHound-ENC: We run FoxHound [29]
(TalkGen’s taint-enabled browser) on the Core dataset, but we
run FoxHound v126.0, the latest release at the time of the
crawl, as an end-to-end tool, without using our web archive.
In this version of FoxHound, URL encoding was re-enabled
for fair comparison with our browser. This resulted in 68
confirmed flows in 58 domains. (7) FoxHound-2025: We
run FoxHound with no modifications. While it reported 347
confirmed flows in 250 unique domains, we manually analyzed
a sample of these and found no more exploitable flows (in
modern browsers) than those already found with FoxHound-
ENC. We also launched FoxHound-ENC, Passive-live (i.e.,
Passive without the web archive) and Fuzzer-live against the
Vulnerable dataset and measured how long each condition took
from opening the browser to rediscovering a previously found
confirmed flow. Results are summarized in Fig. 12, where
the X axis is time. For all conditions, the performance in
detecting DOM-XSS rises quickly at the start and plateaus
a few minutes later. Particularly, this happens earlier with
FoxHound-ENC, as expected considering the known coverage
tracking overhead [18] in our Chromium, a necessary feature
for our fuzzer component. A summary with all the performed
experiments can be found in our companion tech report [50].

Run time. The analysis of each page and condition is run on an
isolated Docker container restricted to 6GB RAM and 6 cores.

For all conditions but DSE, we enforce a 3-minute timeout per
page, plus 1 minute to gracefully exit before termination.

Flow Confirmation. SWIPE uses the same confirmation
methodology as DOMsday. To validate this methodology, we
reviewed 10 confirmed flows and successfully exploited all 10
by creating a payload that spawned an alert window.

B. RQ1: Importance of user interactions
We evaluate whether user interactions generated by our

fuzzer can discover new vulnerabilities by comparing the results
of Passive and Fuzzer on the Core dataset. Fig. 8a shows
the number of unique potential flows found by Passive and
Fuzzer. Fuzzer increased the number of unique potential flows
compared to Passive from 2023 to 2449, a 21% increase. Fig. 8b
shows the number of confirmed flows found by the same
conditions, where we can see a 15% improvement from 72
confirmed flows found by Passive to 83 found by Fuzzer.

Given the randomness associated with Fuzzer, and to a lesser
extent with Passive, we run Fuzzer and Passive up to 5 times
on the pages that contained the 21 flows uniquely identified by
one of the conditions. From the 16 flows uniquely identified
by Fuzzer, 15 were found when we simulated user actions but
never when we passively stayed on the page. In the remaining
case, Fuzzer and Passive actually found the same vulnerability,
but the script that contained the sink call had slightly different
content; thus, the script location differed across conditions. This
can happen, for example, when random or time-based requests
are made to the page, which are not handled by our web archive
because that component is disabled during confirmation. The
other 4 of the 5 confirmed flows that Passive uniquely found
were also found by Fuzzer in a second retry.

We also evaluate the benefit of triggering actions and
combining actions into composite actions, in terms of executed
code and confirmed flows detected. For that, we analyzed all
194 vulnerable pages with a version of Fuzzer that simply
keeps in the pool the units of HLA that achieved the most
coverage every round, without combining them into composite
actions. We call it simpleFuzzer. This version misses 7 of
the 83 confirmed flows that are found by the original Fuzzer.
Fig. 8c shows that more bytes of JavaScript are executed:
from 1,298,737 bytes on average by Passive, to 1,364,087
by simpleFuzzer, to 1,468,703 bytes by the original version
of the Fuzzer, a 13% increase from Passive, and an 8%
increase from simpleFuzzer. The increase is due to the executed
event handler code and the additional resources the fuzzer
loaded by executing that code. Fuzzer is critical to executing
a significant number of unique event handlers: on the 194
vulnerable pages, Passive executes a total of 291 supported
event handlers and simpleFuzzer executes 1,762, while Fuzzer
executes 2,920 (detailed breakdown in Fig. 15, App. A-A).
Passive also executes some event handlers because they are
triggered programmatically by the page code, without user
interactions.

Finally, we compare the performance of Fuzzer with Crawl-
Jax [38]. CrawlJax systematically explores JavaScript-driven
web applications through automated interaction but lacks

8

built-in DOM-XSS vulnerability detection. To surpass that
limitation, we integrated CrawlJax with our modified browser
and compared its results in our Vulnerable dataset with those
reported by Fuzzer under the same run-time conditions. Results
are summarized in Table II. CrawlJax found 47 confirmed flows
in 40 domains; 19 of these flows and 1 domain not identified by
SWIPE-Fuzzer. SWIPE-Fuzzer found 55 confirmed flows in
34 domains that CrawlJax did not. In one CrawlJax-discovered
flow, SWIPE-Fuzzer resized the browser window (to trigger
an onresize handler), which hid a DOM element required
for vulnerability activation. In the remaining 18 cases, SWIPE-
Fuzzer identified the same vulnerabilities but with different
hashes due to minor variations in script names or content,
which shifted sink locations. We only encountered one such
case during the Fuzzer vs. Passive analysis. We suspect the
slight changes in page content originated from the different
way CrawlJax interacts with the browser, compared to any
SWIPE condition. We launched a version of the Fuzzer that
passes identical browser flags and browser window size as
CrawlJax. In 5 out of 18 cases, we found a flow with the same
hash as CrawlJax did, and when we reverted to the original
browser flags and window size, we found the same flow hash
as SWIPE-Fuzzer did in our original crawl.

Component/Tool Conf Flows Domains

SWIPE-Fuzzer 83 (55) 73 (34)
CrawlJax+Taint-tracking Chromium 47 (19) 40 (1)

TABLE II: Number of confirmed flows and vulnerable domains
detected by SWIPE-Fuzzer and CrawlJax on the Vulnerable
dataset. Numbers in () indicate how many flows and domains
are unique to each tool. CrawlJax+Taint-tracking Chromium
refers to CrawlJax using our browser to detect flows.

Result 1: SWIPE’s fuzzer was responsible for a 21%
increase in potential flows and a 15% increase in confirmed
flows over Passive. CrawlJax found 19 of confirmed flows not
identified by SWIPE-Fuzzer, while SWIPE-Fuzzer found 55
confirmed flows that CrawlJax did not. These results and the
number of event handlers that are not yet executed indicate
that simulating user interactions is a promising avenue for
increasing DOM-XSS detection.

C. RQ2: Synthesis and impact of PFs

DSE aims to synthesize URL PFs (Sec. III-C). To assess its
effectiveness, we refine RQ2 in the following sub-questions:
RQ2a: How effective is DSE at synthesizing PFs that can
discover DOM-XSS vulnerabilities?
RQ2b: Does analyzing DSE-generated URLs increase DOM-
XSS flows found?
RQ2c: How does DSE compare in effectiveness to off-the-shelf
GET parameter discovery tools?

1) RQ2a: Effectiveness of DSE at synthesizing vulnerability-
triggering PFs: The trigger of a vulnerability may depend on
the presence of specific keys/values in the parameters/fragments.
The Core dataset that RQ1 uses already contains PFs found

1236 8101213
Fuzzer Passive

(a) Unique potential flows
found by Passive and Fuzzer.

16 567
Fuzzer Passive

(b) Unique confirmed flows
found by Passive and Fuzzer.

Passive SimpleFuzzer Fuzzer
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

JS
 c

od
e

ex
ec

ut
ed

 in
 b

yt
es

1e6

(c) JavaScript bytes of code executed for Passive, Fuzzer and
Fuzzer without action combinations in the Vulnerable dataset.

Fig. 8: Comparison of flows and coverage across different
conditions (RQ1).

2 4214

11
4

15
12Fuzzer-noPFs Fuzzer

Fuzzer-DSE24

Fig. 9: Comparison of confirmed flows found across Fuzzer,
Fuzzer-noPFs and Fuzzer-DSE24 (RQ2a & RQ2b).

in the wild. One question we address is whether DSE can
synthesize the necessary PFs if these are not known and are
absent in the target URL. With this RQ, we evaluate DSE’s
ability to both rediscover known vulnerabilities and to uncover
new ones through parameter synthesis.

First, we use the Vulnerable-noPFs dataset, whose URLs
have no PFs, to assess whether DSE can automatically syn-
thesize the necessary PFs to rediscover known vulnerabilities.
Fig. 9 shows the number of confirmed flows obtained with
Fuzzer-noPFs on the Vulnerable-noPFs dataset, Fuzzer-DSE24
on the Vulnerable-DSE24 dataset (Vulnerable-noPFs dataset
augmented with synthesized PFs), and of Fuzzer on the
Vulnerable dataset (the original 194 URLs of the Core dataset).
There is a set of 57 (42 + 15) confirmed flows that Fuzzer
finds only when the PFs are included on the target URLs. The
other 26 (14+12) are identified by the Fuzzer-noPFs, which
imply that the PFs are not needed. When we strip these PFs
and apply DSE to synthesize new ones, Fuzzer-DSE24 is able
to rediscover 15 out of these 57 flows (26%). Notably, Fuzzer-
DSE24 also discovered 11 unique confirmed flows on these
pages. To verify that they require PFs synthesis, we launched

9

Fuzzer and Passive three times against these flows, and 10 out
of the 11 were not discovered without DSE.

Next, we examine whether DSE can discover vulnerabilities
in pages collected from the wild after we strip the PFs. For
that, we used the Core-DSE1 dataset of 56,152 URLs with
synthesized PFs (see Section IV-A). After running Fuzzer on
these URLs, we find 15 confirmed flows. A manual analysis
of these 15 flows reveals that 10 of them are previously
undiscovered vulnerabilities (in 7 pages hosted on 5 unique
domains, 4 of these being new vulnerable domains). The
remaining 5 confirmed flows were previously discovered by
the Fuzzer when it ran against the Core dataset. To synthesize
each URL in the Core-DSE1 dataset that led to vulnerabilities,
DSE required a time ranging from 7 to 3410 seconds, with
an average of 1048 seconds (~17 minutes). Details regarding
DSE scalability can be found in Section A-B, which focus on
our portfolio solving strategy performance evaluation.

Result 2a: DSE is effective at synthesizing vulnerability-
triggering PFs, both for rediscovering known vulnerabilities
and for uncovering new ones. It successfully synthesizes
PFs to rediscover 26% of confirmed flows that require
specific parameters, while also generating entirely new
parameter combinations that reveal 10 new vulnerabilities
on known vulnerable pages and 10 previously-undiscovered
vulnerabilities in other pages of the Core dataset.

2) RQ2b: Impact of DSE-synthesized PFs on uncovering
DOM-XSS flows: We examine the combined impact of Fuzzer
augmented with DSE to understand how synthesized parameters
enhance vulnerability detection.

HTM
L(A

)

HTM
L(B

)

Jav
aS

cri
pt(

A)

Jav
aS

cri
pt(

B)

Sink Type; Fuzzer (A), Fuzzer-DSE1 (B)

URL

URL Hash

URL Hostname

URL Pathname

URL Search

So
ur

ce

120339 43 164

8 17

5 9

16 31 5 20

79 149 42 85 50

100

150

200

250

300

Co
un

t o
f P

ot
en

tia
l F

lo
ws

Fig. 10: Heat map of potential flows for both Fuzzer (A) and
Fuzzer-DSE1 (B) by flow source and sink (RQ2b).

We compare the results of Fuzzer (condition A) with Fuzzer-
DSE1 (condition B) on 5631 pages from the Core dataset
analyzed by both conditions. Note that Fuzzer-DSE1 might
be using different PFs from those in the Core dataset. Within
this set, Fuzzer finds 325 potential flows, while Fuzzer-DSE1
finds 823 potential flows. In Fig. 10, we report the counts of
potential flows found, striated by DOM-XSS sources and sinks.

The heat map reveals a consistent pattern: the use of DSE
leads to additional flows in all source-sink pairs. The difference
is particularly large for flows from URL (location.href) to
JavaScript sinks (43 vs 164; 281% increase), URL to HTML

sinks (120 vs 339; 183% increase), URL search (parameters)
source to JavaScript sinks (42 vs 85; 102% increase), and URL
search to HTML sinks (79 vs 149; 89% increase). Each of
these source-sink flows are critical vectors for DOM-XSS.

Finally, reviewing the confirmed flows with a 24-hour DSE
timeout (Fig. 9), Fuzzer-noPFs finds 32 confirmed flows, while
Fuzzer-DSE24 finds an additional 26 confirmed flows requiring
PFs that were synthesized by DSE.

Result 2b: DSE-uncovered PFs significantly increases
detected potential flows compared with Fuzzer, particularly
from URL sources to JavaScript and HTML sinks, with
increases of 281% and 183% respectively. Using the fuzzer
with DSE leads to 26 additional confirmed flows. This
indicates that synthesizing PFs is crucial for enhancing DOM-
XSS detection capabilities.

3) RQ2c: Comparison with off-the-shelf GET parameter
discovery tools: We compare DSE against two off-the-shelf
fuzzers aimed at uncovering GET parameters: ffuf [20] and
wfuzz [3]; see Sec. VI for an overview of their methodology.
We focus on the Core-DSE1 dataset, which includes 6,549
unique, DSE-generated GET parameters keys. We download
the default wordlists used by ffuf and wfuzz, containing 50,275
unique entries total, which captures all unique GET parameters
that these tools would try. Then, we compute the intersection
between the wordlists and DSE-found GET parameters, and
find that they overlap in just 287 entries, indicating that 95.6%
of the unique GET parameter keys synthesized by DSE could
not be found by ffuf nor wfuzz.

We also compared our DSE with Wapiti [59]. Wapiti is
a web scanner that can discover GET parameters mostly by
parsing forms or links present on the page. We evaluate its
ability to generate relevant GET parameters by fuzzing URLs
generated by Wapiti and comparing the results with our DSE
condition on the Vulnerable-noPFs dataset.

We gave Wapiti a time budget of 24 hours per page, to
fairly compare it with our DSE condition. In both cases, we
launched SWIPE-Fuzzer on the generated URLs to try to find
vulnerabilities. The results are summarized in Table III. Wapiti
was able to discover at least 1 GET parameter in 9 of the
194 pages, while DSE discovered at least 1 GET parameter
in 101 of the 194 pages. Wapiti found GET parameters
that DSE did not, so even though DSE is not a complete
replacement for Wapiti, none of the vulnerabilities found by
Wapiti + SWIPE-Fuzzer were new, having been previously
discovered by SWIPE-Fuzzer alone. We also note that every
GET parameter discovered by symbolic execution should
cause different behavior in JavaScript (execution of a different
program path) and consequently increase code coverage.

Result 2c: DSE can uncover GET parameters that off-
the-shelf web fuzzers do not find. ffuf and wfuzz fail to
find 95.6% of the unique GET parameters found by DSE
on 13,555 pages. GET parameters found by DSE enable
more confirmed flows to be discovered than those found
by Wapiti. However, they find different parameters and are
complimentary to each other.

10

Component/Tool Conf Flows Domains

SWIPE-Fuzzer (baseline) 83 73

SWIPE-DSE-24 + SWIPE-Fuzzer 98 (15) 78 (5)
Wapiti + SWIPE-Fuzzer 87 (4) 73 (0)

TABLE III: Number of confirmed flows and vulnerable
domains detected by SWIPE-DSE-24 and Wapiti. Numbers in
parentheses indicate the number of flows unique to each tool.

D. RQ3: Comparison with other DOM-XSS detection tools

In this section, we compare SWIPE with other DOM-XSS
detection tools ZAP [45] and FoxHound. While ZAP is a web
application security scanner that performs automated crawling
and active scanning for vulnerabilities such as DOM-XSS,
FoxHound is more similar to Passive, leveraging dynamic taint
analysis in a modified browser with passive navigation.

SWIPE versus ZAP. ZAP was given a 3-minute timeout,
similarly to our Fuzzer condition. When running ZAP, we
included the spider AJAX and DOM-XSS active scan com-
ponents and measured XSS alerts reported by the tool. As
reported in Tab. IV, ZAP was only able to find vulnerabilities
in 2 of these 194 vulnerable pages. Note that ZAP only reports
XSS vulnerabilities it can successfully exploit by causing an
alert window to open. ZAP often injects payloads in the hash
to avoid being blocked by WAFs, but not all vulnerabilities
are exploitable via the hash. Still, the results we have obtained
are in line with what DOMsday previously reported regarding
Burp, another web application scanner. We believe that the
biggest factor in the increased performance when using our
tool compared to ZAP stems from the power and flexibility of
dynamic taint analysis, finding flows even when attacker input
is transformed throughout JavaScript execution.

Component/Tool #Vuln. pages (%)

SWIPE + FoxHound-ENC 194 100%
SWIPE-DSE + SWIPE-Fuzzer 146 75.26%
SWIPE-Passive 127 65.46%
FoxHound-ENC 120 61.86%
ZAP 2 1.03%

TABLE IV: Number of pages from the Vulnerable dataset were
deemed vulnerable by ZAP, SWIPE and FoxHound-ENC.

Passive versus FoxHound. To identify subtle differences be-
tween Chromium-based SWIPE and FireFox-based FoxHound,
we run a taint-enabled FireFox browser from prior work [5]
(FoxHound-ENC) and compare it with Passive against our
Core dataset. The results are shown in the first two columns of
Tab. V. We note that although the original work TalkGen [5]
used FoxHound with URL encoding disabled, we ran FoxHound
with URL encoding re-enabled to ensure a fair comparison
with SWIPE which also has URL encoding enabled (and it is
the current standard for modern browsers). Although Passive
found fewer potential flows (2,023 compared with 3,408 found
by FoxHound-ENC), Passive found a slightly higher number

of confirmed flows (72 vs 68) hosted in a higher number of
unique vulnerable domains (64 vs 58).

We manually investigated two potential flows that only
FoxHound-ENC attempts to exploit, and we found that both
are false positives. FoxHound-ENC conservatively treats the
entire URL as a single source, even though the protocol and
host portions of the URL cannot be reasonably controlled
by an attacker. SWIPE instead treats each part of the URL
(protocol, host, path parameters, GET parameters and fragment)
as separate sources. As a result, SWIPE can easily discard
harmless sources and consequently not try to exploit flows from
the protocol or host portions of the URL to sinks. In one of
those examples, the script takes the value of location.href,
extracts the host part of that URL, and includes it in a value
being assigned to the innerHTML attribute of an element of
the DOM. Changing the host part of the URL would make the
browser navigate to an entirely different website, and therefore,
this flow is not exploitable. The other example is a potential
flow from the protocol part of the URL (i.e., just the https part
of location.href) that was reported as a potential flow by
both tools, but only FoxHound-ENC tried to exploit it.

We directly used the potential flow reporting mechanism
provided by FoxHound. FoxHound additionally provides an
operation tree for each flow representing the operations that
were performed on the source until it reached the sink, which
can be used to infer which specific parts of the URL flow to
the sink. If we were to write a post-processing script to remove
the above-mentioned flows, we suspect we would obtain a
number of potential flows similar to that reported by Passive.

Passive and FoxHound-ENC found 57 confirmed flows in
common. Passive found 15 confirmed flows that FoxHound-
ENC did not. FoxHound-ENC found 11 confirmed flows
that Passive did not find. To analyze this difference, we
manually sampled 5 confirmed flows that only Passive finds.
Undertainting issues in FoxHound were the cause of 4 of these
cases. The remaining case was due to overtainting: some bytes
in the final sink argument were being wrongly reported by
FoxHound-ENC as originating from the URL. This caused the
injection algorithm to fail to locate an appropriate position for
the payload to be injected in the iframe URL. We also manually
sampled 5 confirmed flows that only FoxHound-ENC finds.
Undertainting issues in the underlying Chromium of Passive
caused all 5 missing cases. This demonstrates that catching
all potential flows is difficult in reality, as modifying browser
implementations is a huge undertaking.

Earlier discussion on the difference between SWIPE and
FoxHound in treating URL sources also explains the difference
between the total flows reported by Passive versus FoxHound-
ENC (15.6M vs 3.8M). When all bytes of the URL flow to
a sink, Passive reports multiple flows, one for each part of
the URL (protocol, host, path parameters, GET parameters
and fragment), whereas FoxHound-ENC reports a single flow.
Though FoxHound supports more than DOM-XSS-related
sources and sinks, the numbers reported in Tab. V for Passive
and FoxHound-ENC do not include such flows.

11

Metric Passive
FoxHound

ENC
(2025)

FoxHound
No ENC

(2021) [5]

DOMsday
[36]

25m Flows
[31]

Date 04/2025 04/2025 09/2020 08/2017 11/2013
Domains 30,000 30,000 100,000 10,000 5,000
Sub-pages 5 5 10 5 all depth 1
Web pages 44,480 44,480 390,092 44,722 504,275
Flows 15,647,717 3,826,017 20,912,107 4,140,873 24,474,873
Flows/1k pages 351,792 86,017 53,608 92,591 48,534
Potential 2,023 3,408 15,710 5,217 ?
Pot./1k pages 45.48 76.62 40.27 116.65 ?
Confirmed 72 68 7,199 3,219 8,163
Conf./1k pages 1.62 1.53 18.45 71.98 16.19
Vuln. domains 64 58 711 364 480

TABLE V: Crawling comparison between Passive and results
reported by TalkGen [5] (FoxHound-2021, encoding disabled),
DOMsday [36], 25mFlows [31] and FoxHound-ENC (encoding
enabled), including number of flows, which include all source
sink pairs considered by DOMsday, potential flows (Pot.),
which only include URL sources to JavaScript or HTML sinks,
and confirmed flows (Conf.).

E. RQ4: DOM-XSS detection over the years

In this section, we compare results from major efforts in
identifying DOM-XSS in the past decade: SWIPE (2025),
TalkGen [5] (2021), DOMsday [36] (2017), and 25mFlows [31]
(2013). We discuss how the evolution of the web impacts
the results and the challenges in replicating prior results and
directly comparing the numbers. Tab. V shows a summary
of the results. The first column includes results from running
Passive (our DOMsday replication using Chromium 126); the
second column is from running FoxHound-ENC (our TalkGen
replication with URL encoding re-enabled); the next three
columns are results taken directly from the published papers
of TalkGen, DOMsday, and 25mFlows, respectively.

Recent results vs. previously reported results. We now
compare our recent results with those of prior work, which
are shown in the last three columns in Tab. V. The most
important metric is the number of confirmed flows per 1,000
pages (Conf./1k pages), as the number of analyzed pages is
different for each work. On a first look, Tab. V shows an
apparent decline of DOM-XSS vulnerabilities. However, a
deeper investigation reveals that several factors, such as dataset
and methodology, may contribute to the dwindling number of
confirmed unique DOM-XSS vulnerabilities.

First, modern browsers encode any special characters in
URLs. The first two columns in Tab. V are results with URL
encoding enabled. When we re-run the confirmation stage of
FoxHound but with URL encoding disabled, we quintuple the
number of confirmed flows, from 68 to 347 (7.8 confirmed
flows/1k pages); however, these extra confirmed flows would
not be exploitable in any modern browser. In fact, the three
prior works did not consider URL encoding in their crawls:
FoxHound-2021 did not consider any form of URL encoding,
DOMsday did not consider URL encoding of the hash (and
their payloads were always injected in the hash), and 25m flows
used Internet Explorer to specifically confirm flows that had the
search source, which did not perform URL encoding. Given

that all modern browsers consider URL encoding, the lower
numbers in the first two columns reflect real users’ experiences.

Second, the definition of “unique" flows and vulnerabilities
may differ across these studies. All prior works report that they
use the same deduplication method as in the 25mflows work;
however, the deduplication method was not rigorously defined
in the paper [31]. The paper stated that the location of the sink
call is one of the properties that should be used to deduplicate
confirmed flows. One interpretation of the sink location is the
full URL of the vulnerable script and the line and the column
within the script where the sink call is. However, including
the GET parameter in the URL of the vulnerable script for
deduplication inflates the number of confirmed flows from 347
to 612 (13.76/1k URLs). Different GET parameters can and
often do result in the loading of the same page; thus, we argue
that these 612 flows are unlikely to be unique. Interestingly,
62% of all confirmed flows found by DOMsday were on a
single domain, and the top 10 most vulnerable domains were
responsible for 84% of the 3,219 confirmed flows [36], raising
the question of whether using a deduplication method that does
not include GET parameters would reduce these numbers.

DOMsday reported that the vast majority of vulnerabilities
(82%) were found in web advertisement or analytics pages. In-
browser mechanisms for content filtering (e.g., advertisement
blocking) have evolved since prior work was published. Both
Chromium [11, 12, 14, 15, 16, 17] and Firefox [39, 40, 41,
42, 43] block more advertisements and malware now than
they used to when DOMsday and FoxHound ran their crawls.
For DOMsday, 44.3% of all frames loaded are flagged as
advertisements, while in Passive’s case, which uses a very
recent version of Chromium, only 26.26% of frames were
flagged as advertisements. Fig. 11 shows a categorization of
vulnerable top-level websites, frames and scripts that were
found in our crawl. We used the IAB taxonomy [21] for
categorization. The service Blue Coat K9 that DOMsday used
is discontinued. While the distribution of vulnerable categories
of top-level navigations is similar to what DOMsday reported,
advertisement scripts are no longer the most vulnerable script
category, ranked second after the "Technology & Computing"
category. We hypothesize that this difference stems from
browsers’ improved ability to block malicious advertisements.
For instance, DOMsday’s Chromium did not filter intrusive
ads, whereas our Chromium version does [12, 14, 16]. We kept
ad filtering for the same reason as URL encoding: experiments
should reflect modern browser behavior.

Finally, analysis of different datasets may also contribute
to the difference in confirmed flows across different studies.
We crawled the Tranco top 30,000 domains. In order to get
a web page from a Tranco domain, protocol:// needs to be
prepended to the domain. We used HTTPs as the default
protocol; DOMsday used HTTP; TalkGen did not report which
protocol was used. Chromium 68, in 2018, started to mark
plain HTTP sites as not secure [13]. If advertisement frames
containing vulnerabilities are not upgraded to HTTPS, then the
mixed content policy in the browser blocks them from loading
in HTTPS pages. We observed that our recent Chromium

12

0 10 20 30 40 50 60 70 80
Vulnerable count

Tech & Computing

News

Shopping

Advertising

Job Search

Education

Personal Finance

Hobbies & Interests

Automotive

Business

Politics

Arts & Entertainment

Science

Travel

Religion & Spirituality

Adult Content

Food & Drink

Style & Fashion

Social Networking

Sports

Real Estate

Home & Garden

Health & Fitness

Uncategorized

23

27

10

14

14

14

14

11

4

9

11

6

6

5

8

5

3

3

2

3

1

1

29

6

8

6

10

6

4

3

5

6

4

4

3

2

3

1

2

2

2

2

2

1

2

1

32

3

11

19

1

3

4

3

4

9

3

2

3

2

1

1

2

2

2

1

1

Top-level Navigation Topic
Frame Topic
Script Topic

Fig. 11: Vulnerable top URLs, frames and scripts / category.

blocked the loading of 8,967 resources due to Mixed Content
policy on our Passive crawl, on 931 different pages (2% of the
Core dataset). To further pinpoint the differences between our
study and DOMsday, we contacted the authors of DOMsday and
obtained a dataset of 849 confirmed flows found by DOMsday
in 2018. Passive could confirm only 25 of those. Of the
remaining 824, 104 are no longer reachable, and 448 no longer
load the vulnerable script. We manually sampled 10 of the
remaining 272 cases: In 7 cases, the vulnerable script no longer
contained the sink call that it did in 2018, as verified using
the Wayback machine [2]. In the other 3 cases, the vulnerable
script was considerably different from the 2018 version, and we
could not manually find vulnerabilities in the current version.

To conclude, while it is difficult to identify with certainty
all the reasons for the disparity between the number of flows
across all the studies over the past decade, our investigation
strongly suggests that the difference reflects a shift in how
browsers handle webpages and web content. URL encoding,
now implemented by default on modern browsers, is effective
in preventing exploitation of DOM-XSS vulnerabilities. For
instance, DOMsday injected their payload on the fragment part
of the URL, which at the time was not URL encoded by default
in Chromium, but is encoded by recent versions. Along with
Ad blocking and increased adoption of HTTPS, the number of
DOM-XSS that are exploitable decreased significantly.

Fig. 12: Accumulated number of pages deemed vulnerable
as analysis time increases. Web archiving helps to rediscover
more vulnerabilities and reproduce past results.

V. DISCUSSIONS

Limitations of the web archive component. To examine the
reproducibility of our experiment results using web archiving,
we re-analyzed the 194 vulnerable pages 3 months after our
original crawl. We ran Passive and Fuzzer using the previously
created web archive. We also ran FoxHound-ENC, Passive
(Passive-live), and Fuzzer (Fuzzer-live) to analyze live pages
without the web archive, using the same timeout as before.
Figure 12 summarizes the results. The Y axis is the cumulative
number of confirmed vulnerable pages detected, and the X axis
is the time taken from opening the browser to eventually find an
exploitable flow on each page. Figure 12 shows that using the
web archive helps reproduce past vulnerabilities more reliably,
as both Passive and Fuzzer rediscovered significantly more
vulnerabilities than their counterparts that interacted purely
with the live page.

However, our web archiving component fails to reproduce
some of the vulnerabilities. There are 6 pages for Passive and 9
for Fuzzer that we no longer find vulnerable even when using
the web archive. Some sources of non-determinism (e.g., the
use of the Math.random API and different server load causing
differences in page loading times) are challenging to handle,
even with our web archive’s request-matching algorithm and
defaulting to request from the live server when no matches
are found. To further investigate the effectiveness of our web
archive in replaying past resources, we show in Fig. 13 the
percentage of responses that were replayed from the web
archive compared with the total responses that were served
to our browser during fuzzing of pages in the Vulnerable
dataset. We only show the results for the 133 pages that Fuzzer
previously found vulnerable, and we also include with vertical
lines the pages for which our Fuzzer could not rediscover the
vulnerabilities. For 7 of the 9 pages that our Fuzzer no longer
finds vulnerable, at least one resource was served from the live
page. Those new responses from the live server may not be
vulnerable anymore, may not exist (returning 404) or may have
significantly changed since we first crawled the page. In 2 of

13

the 9 cases, even though our web archive contained everything
that was requested from the browser, that was not enough to
rediscover the vulnerability. This suggests that the rediscovery
of some vulnerabilities depends not only on the availability
of previously archived resources but also on specific run-time
conditions or interactions that are still not properly replicated
with our web archiving solution.

1 23 45 67 89 111 133
Visit (ranked by replay proportion)

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f r
es

po
ns

es
 re

pl
ay

ed
 fr

om
 a

rc
hi

ve

Fig. 13: Percentage of responses that were replayed from the
web archive for each vulnerable page found by the Fuzzer.
Vertical red lines indicate pages for which Fuzzer could not
rediscover the vulnerability 3 months after the original crawl.

Trusted Types. Trusted Types (TT) is a browser security feature
that intends to protect clients from DOM-XSS by preventing
the injection of untrusted data into vulnerable sinks. TT allows
a developer to define a policy, specifying transformations of
input that will flow to a sink to make it safe. TT then ensures
that either the transformation is applied to the input before
being passed to the sink, or the execution is blocked. TT is
not a complete solution to DOM-XSS, as it depends on the
policy defined by the developers. Though we do not have
precise data on how many pages in our dataset implemented
TT, data provided by Chrome Platform Status suggest that
around 13.3% of the pages enforce TT [1], up from 5.8% since
TalkGen launched their crawl.

VI. RELATED WORK

We discuss additional related work in DOM-XSS detection
and exploring execution paths in JavaScript programs.

DOM-XSS detection infrastructures. Another way to identify
DOM-XSS vulnerabilities is to instrument the JavaScript
resources to implement dynamic taint analysis. In comparison,
using an instrumented browser for taint tracking has several
advantages, including lower time and memory overhead and
avoiding the need to bypass page integrity checks [25, 58].
Unfortunately, instrumenting browsers also has a few disadvan-
tages. For example, the instrumentation may not be resilient to
browser updates [24]. Consequently, it is extremely difficult for
academic researchers to keep up with the Chromium updates.
More importantly, direct comparison with DOMsday’s taint-
enabled browser is unfeasible since DOMsday uses Chromium

54, released in 2016, which does not support recent ECMA
versions used by web pages. TalkGen’s taint-enabled browser
is open-source and actively maintained, but it is based on
Firefox, which does not have internal mechanisms to keep
track of JavaScript coverage, unlike Chromium. All SWIPE
components use Chromium 126 as the base browser, upgraded
from DOMsday’s original browser with substantial engineering
effort.

Detecting other client-side JavaScript vulnerabilities. As
client-side code has increased in complexity, vulnerabilities
such as client-side prototype pollution [22, 23] and client-side
CSRF [27] have increasingly become an issue. While client-side
CSRF can be detected using similar techniques as DOM-XSS
vulnerabilities, and our instrumented browser can be easily
extended to include more sinks, prototype pollution has a more
complex pattern and requires more effort to detect and confirm
compared to DOM-XSS vulnerabilities. Existing work [22,
23] has leveraged code-property-graph-based approaches for
detection. Automatic confirmation of these vulnerabilities is
far more complex than confirming DOM-XSS vulnerabilities.
As a result, prior work resorted to manual confirmation.

Path exploration in JavaScript. Symbolic execution and
fuzzing are widely used for program exploration [10, 32, 53].
Several works implement symbolic execution for JavaScript [33,
52, 62]. Closest to our work is ExpoSE [33], which uses dy-
namic symbolic execution (DSE) to explore website JavaScript
code. ExpoSE focuses on modeling JavaScript regular ex-
pression semantics in order to increase code coverage. Our
work, like ExpoSE, involves the creation of symbolic models
for JavaScript operations. However, we focus on modeling
string operations that are commonly used in URL component
processing in order to synthesize GET parameters and fragment
values, both key vectors for DOM-XSS [36]. We additionally
focus on the efficiency of DSE through SMT rewriting
and portfolio solving (Sec. III-C). While DSE still faces
scalability issues, its performance could be enhanced not
only by improving symbolic models of common JavaScript
functions but possibly by prioritizing constraint solving based
on vulnerability classification of the functions involved in the
relevant program paths. Melicher et al. [37] previously showed
that such classification is feasible via static analysis using deep
neural network-based approaches.

More scalable but less effective approaches, such as fuzzing
tools [3, 20, 60], share our DSE component’s goal of
finding GET parameters but typically rely on enumerating
values from a wordlist or simple heuristics. ffuf [20] is a
web fuzzer that can automatically uncover GET parameters
via fuzzing. A user defines a URL template of the form
https://..path?{fuzz}=val and ffuf attempts to enumer-
ate values of fuzz that lead to a valid response. Similarly,
wfuzz [3] enumerates candidate values for a specified fuzz

placeholder placed in an HTTP request component, such as
a query parameter. Unlike ffuf and wfuzz, our DSE relies
on SMT formulae whose solutions are assignments to GET
parameters that satisfy constraints from the page. This reduces

14

DSE’s search space to find page-specific GET parameters that
often cannot be found in ffuf’s or wfuzz’s default wordlists.
Finally, Wapiti is a web scanner that can statically discover
GET parameters from a target webpage, usually by inspecting
links or forms on the page. Parameters found with this method
may not always produce different client-side behavior when
included in the URL. In contrast, GET parameters and fragment
values found by DSE originate from concrete conditionals in
the client code.

Simulating user interactions. Existing web page fuzzers for
generating user interactions often limit themselves to filling
forms and simulating clicks [7, 34, 35, 56, 57]. CrawlJax [38]
and JÅk [48] have similar limitations, although they can fire
other event handlers via JavaScript. Programmatically firing
event handlers may result in false positives, as there might be
no way for a real user to execute an event handler, e.g., the
associated DOM element might be invisible. To the best of our
knowledge, ours is the first fuzzing work to support a wide
range of realistic interactions with extensive support for 55
event handlers (complete list in our tech report [50]). Recently,
LOAD-AND-ACT [61] studied realistic simulation of user
inputs, though limited to mouse and keyboard events. Their
approach emphasizes sophisticated search strategies to simulate
user actions, but these strategies, although capable of deep
frontend analysis, are computationally expensive. In contrast,
SWIPE’s Fuzzer scales effectively, enabling evaluations on
thousands of webpages. Additionally, SWIPE supports a much
broader range of user actions. One example is the onresize

event handler, which Appendix A-A identifies as significant for
DOM-XSS detection due to frequent inclusion of sink calls.

VII. CONCLUSION

This paper introduced SWIPE, a novel DOM-XSS detection
infrastructure. SWIPE has a fuzzing component that simulates
user interaction and triggers event handlers. This capability
improves the number of confirmed flows over prior work by
15%. Second, SWIPE leverages symbolic execution to find
pages’ GET parameters. Together, these capabilities improve the
number of confirmed flows over previous work by 43%. Finally,
we discussed how the parallel evolution of web content (e.g.,
JavaScript versions, page composition) and browsers (e.g., URL-
encoding variants) incurs difficult challenges—many of which
we overcome—for replicating prior DOM-XSS measurements.

VIII. ETHICS CONSIDERATIONS

In this section, we discuss ethical considerations pertinent
to our research, focusing specifically on mitigating potential
harm during analysis of web pages and ensuring responsible
practices throughout our experiments.

Avoiding risks during vulnerability confirmation and other
evaluations. Similarly to TalkGen, we inject payloads both in
the GET parameters and hash fragment values, but our payloads
are instead designed as markers containing special characters
and are explicitly constructed not to execute JavaScript code or
alter the behavior of the websites. With respect to our evaluation

and comparative analysis against existing off-the-shelf tools for
GET parameter fuzzing, we deliberately refrained from actively
executing these tools, as doing so could result in thousands of
automated requests potentially burdening web servers. Instead,
our evaluation approach involved examining the wordlists
utilized by these tools, thereby completely eliminating the
risk of unintended server impact.

Responsible disclosure. Across all novel components evaluated
we found DOM-XSS confirmed flows in 194 pages of the
Core dataset. We followed Khodayari et al. [26] methodology
to discover security contacts of vulnerable domains and
responsibly disclosed all vulnerabilities. So far, we got one
reply; it acknowledged and committed to patch the vulnerability.

ACKNOWLEDGMENT

This work was partially supported by Carnegie Mellon
CyLab and by FCT/MECI through national funds and when
applicable co-funded EU funds (UIDB/50008/2020, Instituto
de Telecomunicações, and UIDB/50021/2020, INESC-ID multi-
annual funding, and PhD grant SFRH/BD/150692/2020).

REFERENCES

[1] Chrome platform status. https://chromestatus.com/metrics/
feature/timeline/popularity/3160. accessed 2025-07-21.

[2] Wayback machine, 1996–. https://web.archive.org.
[3] Wfuzz – the web fuzzer. https://github.com/xmendez/

wfuzz, 2014.
[4] WARC, web ARChive file format, 2022–. https://www.loc.

gov/preservation/digital/formats/fdd/fdd000236.shtml.
[5] Souphiane Bensalim, David Klein, Thomas Barber, and

Martin Johns. Talking about my generation: Targeted
DOM-based XSS exploit generation using dynamic data
flow analysis. In EuroSec, 2021.

[6] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson,
and Christoph M. Wintersteiger. Programming Z3.
Lecture Notes in Computer Science. 2019.

[7] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis.
Rescan: A middleware framework for realistic and robust
black-box web application scanning. In Proc. of NDSS,
2023.

[8] ECMA International. ECMA-262 – ECMAScript lan-
guage specification. https://tc39.es/ecma262/, 2024.

[9] Ayush Goel, Jingyuan Zhu, Ravi Netravali, and Harsha V.
Madhyastha. Jawa: Web archival in the era of JavaScript.
In Proc. of ODSI, 2022.

[10] Brandon Wen Heng Goh. American fuzzy lop (AFL).
2019.

[11] Google. Expanding user protections on
the web. https://blog.chromium.org/2017/11/
expanding-user-protections-on-web.html, 2017.

[12] Google. Further protections from harmful ad experi-
ences on the web. https://blog.chromium.org/2018/11/
further-protections-from-harmful-ad.html, 2018.

[13] Google. A secure web is here to stay. https://security.
googleblog.com/2018/02/a-secure-web-is-here-to-stay.
html, 2018.

15

[14] Google. Under the hood: How Chrome’s ad
filtering works. https://blog.chromium.org/2018/02/
how-chromes-ad-filtering-works.html, 2018.

[15] Google. Building a more private web: A
path towards making third party cookies
obsolete. https://blog.chromium.org/2020/01/
building-more-private-web-path-towards.html, 2020.

[16] Google. Protecting against resource-heavy ads
in Chrome. https://blog.chromium.org/2020/05/
resource-heavy-ads-in-chrome.html, 2020.

[17] Google. Samesite cookie changes in february 2020: What
you need to know. https://blog.chromium.org/2020/02/
samesite-cookie-changes-in-february.html, 2020.

[18] J. Gruber and the V8 Project. Block code coverage.
Google Docs, 2018. Design document for V8 code-
coverage support including block-level instrumentation.

[19] Florian Hantke, Stefano Calzavara, Moritz Wilhelm,
Alvise Rabitti, and Ben Stock. You call this archaeology?
evaluating web archives for reproducible web security
measurements. In Proc. of CCS, 2023.

[20] Joona Hoikkala. ffuf – fuzz faster u fool. https://github.
com/ffuf/ffuf, 2018.

[21] IAB Technology Laboratory, Inc. Content
taxonomy 3.0 and descriptive vectors. https:
//github.com/InteractiveAdvertisingBureau/Taxonomies/
blob/develop/Taxonomy%20Mappings/Content%201.0%
20to%20Ad%20Product%202.0.tsv, June 2022.

[22] Zifeng Kang, Song Li, and Yinzhi Cao. Probe the proto:
Measuring client-side prototype pollution vulnerabilities
of one million real-world websites. In Proc. of NDSS,
2022.

[23] Zifeng Kang, Muxi Lyu, Zhengyu Liu, Jianjia Yu, Runqi
Fan, Song Li, and Yinzhi Cao. Follow my flow: Unveiling
client-side prototype pollution gadgets from one million
real-world websites. In Proc. of IEEE SP, 2025.

[24] Rahul Kanyal and Smruti R Sarangi. PanoptiChrome: A
modern in-browser taint analysis framework. In Proc. of
WebConf, 2024.

[25] Rezwana Karim, Frank Tip, Alena Sochuurkov’a, and
Koushik Sen. Platform-independent dynamic taint analysis
for JavaScript. Proc. of TSE, 2018.

[26] Soheil Khodayari, Thomas Barber, and Giancarlo Pelle-
grino. The great request robbery: An empirical study of
client-side request hijacking vulnerabilities on the web.
In Proc. of IEEE SP, 2024.

[27] Soheil Khodayari and Giancarlo Pellegrino. JAW: Study-
ing client-side CSRF with hybrid property graphs and
declarative traversals. In Proc of USENIX, 2021.

[28] Amit Klein. DOM based cross site scripting or XSS of
the third kind. http://www.webappsec.org/projects/articles/
071105.shtml, 2005.

[29] David Klein, Thomas Barber, Souphiane Bensalim, Ben
Stock, and Martin Johns. Hand sanitizers in the wild: A
large-scale study of custom JavaScript sanitizer functions.
In Proc. of IEEE SP, 2022.

[30] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-

izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In Proc. of NDSS, 2019.

[31] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million
flows later: large-scale detection of DOM-based XSS. In
Proc. of CCS, 2013.

[32] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey.
Cybersecurity, 1:1–13, 2018.

[33] Blake Loring, Duncan Mitchell, and Johannes Kinder.
ExpoSE: Practical symbolic execution of standalone
JavaScript. In Proc. of SPIN, 2017.

[34] marmelab. Gremlins.js. https://github.com/marmelab/
gremlins.js, 2020.

[35] S McAllister, E Kirda, and C Kruegel. Expanding human
interactions for in-depth testing of web applications. In
Proc. of RAID, 2008.

[36] William Melicher, Anupam Das, Mahmood Sharif, Lujo
Bauer, and Limin Jia. Riding out domsday: Towards
detecting and preventing DOM cross-site scripting. In
Proc. of NDSS, 2018.

[37] William Melicher, Clement Fung, Lujo Bauer, and Limin
Jia. Towards a lightweight, hybrid approach for detecting
DOM XSS vulnerabilities with machine learning. In Proc.
of WebConf, 2021.

[38] Ali Mesbah, Arie Van Deursen, and Stefan Lenselink.
Crawling Ajax-based web applications through dynamic
analysis of user interface state changes. ACM Transactions
on the Web, 2012.

[39] Mozilla. Firefox 86 introduces total cookie pro-
tection. https://blog.mozilla.org/security/2021/02/23/
total-cookie-protection/, 2021.

[40] Mozilla. Firefox 87 introduces smartblock for private
browsing. https://blog.mozilla.org/security/2021/03/23/
introducing-smartblock/, 2021.

[41] Mozilla. Firefox 90 introduces smartblock 2.0 for private
browsing. https://blog.mozilla.org/security/2021/07/13/
smartblock-v2/, 2021.

[42] Mozilla. Firefox 93 features an improved
smartblock and new referrer tracking protections.
https://blog.mozilla.org/security/2021/10/05/
firefox-93-features-an-improved-smartblock-and-.
new-referrer-tracking-protections/, 2021.

[43] Mozilla. Firefox rolls out total cookie protection by
default to more users worldwide. https://blog.mozilla.
org/en/mozilla/firefox-rolls-out-total-cookie-protection-.
by-default-to-all-users-worldwide/, 2022.

[44] National Institute of Standards and Technology (NIST).
NVD vulnerability statistics for XSS - last 3 months.
https://nvd.nist.gov/vuln/search/statistics, 2025.

[45] OWASP Foundation. OWASP zed attack proxy (ZAP).
https://www.zaproxy.org/. Accessed: 2025-07-21.

[46] OWASP Foundation. Cross site scripting (XSS). https:
//owasp.org/www-community/attacks/xss/, 2024.

[47] Inian Parameshwaran, Enrico Budianto, Shweta Shinde,
Hung Dang, Atul Sadhu, and Prateek Saxena. DexterJS:
Robust testing platform for DOM-based XSS vulnerabili-

16

ties. In Proc. of FSE, 2015.
[48] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden,

and Christian Rossow. jÄk: Using dynamic analysis to
crawl and test modern web applications. In Proc. of RAID,
2015.

[49] Andrew Reynolds, Andres Nötzli, Clark Barrett, and
Cesare Tinelli. High-level abstractions for simplifying
extended string constraints in SMT. In Proc. of CAV,
Lecture Notes in Computer Science, 2019.

[50] Nuno Sabino, Darion Cassel, Rui Abreu, Pedro Adão,
Lujo Bauer, and Limin Jia. DOM-XSS detection via
webpage interaction fuzzing and URL component syn-
thesis (technical report). Carnegie Mellon Kilthub, 2025.
DOI:10.1184/R1/30010783.

[51] Nuno Sabino, Darion Cassel, Rui Abreu, Pedro Adão,
Lujo Bauer, and Limin Jia. SWIPE: DOM-XSS analysis
infrastructure. https://doi.org/10.5281/zenodo.15883603,
July 2025.

[52] José Fragoso Santos, Petar Maksimović, Théotime Gro-
hens, Julian Dolby, and Philippa Gardner. Symbolic
Execution for JavaScript. In Proc. of PPDP, 2018.

[53] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In Proc. of IEEE SP, 2010.

[54] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and
Simon Gibbs. Jalangi: A selective record-replay and
dynamic analysis framework for JavaScript. In Proc. of
FSE, 2013.

[55] Koushik Sen and Manu Sridharan. Jalangi2, 2014–. https:
//github.com/Samsung/jalangi2.

[56] Orpheas van Rooij, Marcos Antonios Charalambous,
Demetris Kaizer, Michalis Papaevripides, and Elias
Athanasopoulos. webfuzz: Grey-box fuzzing for web
applications. In Proc. of ESORICS, 2021.

[57] Wenhua Wang, Sreedevi Sampath, Yu Lei, and Raghu
Kacker. An interaction-based test sequence generation
approach for testing web applications. In Proc. of IEEE
HASE, 2008.

[58] Zilun Wang, Wei Meng, and Michael R Lyu. Fine-grained
data-centric content protection policy for web applications.
In Proc. of CCS, 2023.

[59] Wapiti Scanner Project. Wapiti: Web-application vulner-
ability scanner. https://wapiti-scanner.github.io/, 2024.
Version 3.2.0, accessed 2025-07-21.

[60] Sunny Wear. Burp Suite Cookbook: Practical recipes to
help you master web penetration testing with Burp Suite.
Packt Publishing Ltd, 2018.

[61] Nico Weidmann, Thomas Barber, and Christian Wress-
negger. Load-and-act: Increasing page coverage of web
applications. In Proc. of ISC, 2023.

[62] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang
Yang, Hong Hu, Guofei Gu, and Wenke Lee. Abusing
hidden properties to attack the Node.js ecosystem. In
Proc of USENIX, 2021.

[63] Xinshi Zhou and Bin Wu. Web application vulnerability

fuzzing based on improved genetic algorithm. In Proc.
of ITNEC, 2020.

APPENDIX A
APPENDIX

A. Executed event handlers

We show in Fig. 14 how the number of executed event
handlers compares between Passive and Fuzzer for the Core
dataset. We only show the top 10 supported event handlers
when sorted by the frequency of presence of sink calls in the
code of the handler. The mouseenter event handler is the
event handler type that has the most sink calls among all event
handlers. Our fuzzer may not be able to trigger an event handler
due to a variety of reasons, including: needing complex input
(e.g., on a textbox) where symbolic execution could be more
appropriate; needing a complex sequence of interactions to
execute; frame with the event handler may have been removed
from the DOM during navigation.

0 10 20 30 40 50 60 70
Executed event handlers over total event handlers (%)

mousewheel
390 (9.43%)

mouseup
10995 (9.75%)

contextmenu
6598 (10.19%)

popstate
2293 (10.56%)

mouseleave
9516 (10.95%)

keypress
7864 (13.43%)

scroll
12954 (14.65%)

submit
10616 (16.82%)

resize
9112 (19.19%)

mouseenter
19698 (23.84%)

Fuzzer
Passive

Fig. 14: Percentage of event handlers executed by Passive and
Fuzzer, over the total event handlers present on the pages from
the Core dataset, for the 10 supported event handlers that have
higher sink calls frequency. Beneath each event handler name
we also show how many have calls to sinks and the percentage
(number of event handlers with sink calls divided by total
number of event handlers of that type)

Additionally, we show in Fig. 15 the same data but only
within the Vulnerable dataset, where we also run our simple-
Fuzzer that does not combine actions. That figure shows a
clear improvement in executed event handlers when we let
the Fuzzer combine actions, highlighting the importance of
creating groups of HLAs and exchanging HLAs between those
groups (cross-over). Another interesting property illustrated in
Fig. 15 is that focusout and focusin are the event handlers
that have the most number of calls to sinks in pages from the
Vulnerable dataset. Those events were not even in the top 10

17

0 20 40 60 80 100
Executed event handlers over total event handlers (%)

mouseover
151 (4.01%)

mousedown
115 (6.76%)

hashchange
17 (16.04%)

submit
47 (16.49%)

popstate
19 (18.1%)

fullscreenchange
6 (22.22%)

mouseenter
106 (22.51%)

resize
51 (31.29%)

focusin
651 (69.26%)

focusout
653 (71.52%)

Fuzzer
SimpleFuzzer
Passive

Fig. 15: Percentage of event handlers in the Vulnerable dataset
that were executed by Passive, Fuzzer and the simpleFuzzer that
does not combine actions, for the 10 supported event handlers
with higher sink calls frequency. This figure is analogous to
Fig. 14, but limited to the Vulnerable dataset.

Fig. 16: Results of the portfolio solving evaluation.

of event handlers with most sink calls for the Core dataset,
showing an interesting bias for vulnerable pages (or at least,
for pages that SWIPE +FoxHound find vulnerable).

Furthermore, we report that event handlers constitute 1.56%
of all JavaScript code found in pages in our crawl. With
respect to supported event handlers, they constitute 1.11% of
all JavaScript code we saw. This means that our fuzzer can
theoretically simulate user interactions for 71% of all event
handler code that we found in the wild. Also note that this
is not inconsistent with the 13% additional JavaScript code
executed with the Fuzzer compared with Passive, as an event
handler may contain calls to other functions or can even load
extra JavaScript resources.

B. Efficacy of SMT rewriting in portfolio

We evaluate the performance of the portfolio solver on a set
of SMT queries generated by DSE on real webpages in the

Input Chromium 54 Chromium 126

window.location.href Partial Yes
window.location.hash No Yes

document.referrer Partial Yes
window.location.search Yes Yes

TABLE VI: URL encoding differences between our browser
version (Chromium 126) and the one used by DOMsday. We
found no differences between ours and the latest version.

Tranco top 1000 [30]. From a set of 104,000 SMT formulae
selected from prior runs of our DSE analysis, we selected 1,000
SMT formulae uniformly at random. The formulae were not
necessarily satisfiable, and some cannot be solved within the
time of any evaluated solvers. We ran the experiment with three
conditions: the Baseline solver, which utilizes Z3 in its default
configuration with no preprocessing of the SMT formulae; the
Rewrite solver, which utilizes the SMT rewriting algorithm; and
the Portfolio solver, which utilizes both Baseline and Rewrite
solving in parallel. All solvers were run with a timeout of 25
seconds, and were evaluated on the basis of the number of
SMT formulae that Z3 returned either sat or unsat, within the
timeout. To account for the fact that the portfolio solver runs
two solvers in parallel, thus using twice the CPU resources
of the baseline and rewrite solvers, we also include a fourth
condition, Portfolio-CPU, which is the same as the portfolio
solver, but counts the elapsed time as the sum of the elapsed
time of the two parallel solvers.

The results of the experiment are shown in Fig. 16. The
y-axis is a count of the number of SMT formulae that were
solved. The x-axis is the time in minutes; it extends until 47
minutes, which was the time taken by the fastest solver to run
on its set of SMT formulae. The Baseline solver solved 491
SMT formulae within the experiment duration. The Rewrite
solver solved 467, representing a 5% regression compared to
the baseline solver. However, the Baseline and Rewrite solvers
are very close; for much of the experiment duration, the Rewrite
solver was performing better than the Baseline. The portfolio
solver performed significantly better (90% improvement over
Baseline), solving 932 SMT formulae within the experiment
duration. Even after accounting for total CPU time used, we
find that the portfolio solver still performs 8% better than the
baseline solver, solving 529 SMT formulae.

C. URL encoding by browsers

We show in Tab. VI the differences we found in URL
encoding between our browser version (Chromium 126) and
the one used by DOMsday (Chromium 54). The main dif-
ference shown in the table appears in the encoding of the
window.location.hash property. In Chromium 126, the
fragment in the URL is URL encoded, whereas in Chromium
54 it is not. This has an impact on the flows that can be
confirmed in each specific browser version, since one of the
steps in the confirmation methodology is checking whether the
tainted parts of the final sink argument are not URL encoded.

18

APPENDIX B
ARTIFACT APPENDIX

In this section we describe how to download, install and run
SWIPE, so that other researchers can use our components for
DOM-XSS detection.

A. Description & Requirements

1) How to access: SWIPE is available in the following link:
https://doi.org/10.5281/zenodo.15883603.

2) Hardware dependencies: 4GB RAM, 4 cores and at least
30GB of storage.

3) Software dependencies: Tested operating system: Linux
x86. Required software: Docker (≥ version 27), Tiger VNC
or other VNC viewer.

4) Benchmarks: The experiments in this paper involved the
collection of the top 30,000 Tranco domains2 generated on 04
March 2025. We crawled each of those 30,000 domains and
extracted a maximum of 5 subpages from each. We call this
our core dataset.

B. Artifact Installation & Configuration

In this section we describe the necessary steps to install
SWIPE. All these steps are also included in the README.md
file present in the provided link.

Installation with Docker
Open a terminal in the root of this project (where the

Dockerfile is located). Build the SWIPE image using the
following command:

$ docker build -t swipe:latest .

This takes around 10 minutes on a machine with 8 cores
and 32GB RAM. Once it is done, you can confirm the image
was built with the following command:

$ docker image ls
REPOSITORY ...
swipe ...

C. Experiment Workflow

The high-level workflow when using SWIPE is as follows:
1) A target webpage is selected. A public URL must be

known.
2) SWIPE is configured in a Docker container to run Passive

(default), Fuzzer or DSE components, while archiving
(default) or replaying a previously created archive.

3) SWIPE is invoked on the target webpage. The enabled
component navigates to the page and analyses it. Flow
results are parsed.

4) Optionally, SWIPE is invoked on a set of URLs that
are crafted in such a way that allows for confirming
vulnerabilities.

In our crawl, to run an experiment over a set of URLs, we
used one container instance for each page, and then aggregated

2Available at https://tranco-list.eu/list/3NPQL.

the results across pages. In this artifact evaluation we will use
the same container for all experiments.

D. Major Claims

The results provided in this paper can only be reproduced
by performing a large scale evaluation over 30,000 Tranco
domains. This artifact instead provides a way to evaluate the
functionality of SWIPE components, based on the following
underlying claims made in the paper:

• (C1): SWIPE uses symbolic execution to automatically
discover and synthesize URL parameters that lead to
new execution paths and potential vulnerabilities. This is
supported by experiments (E1) and (E2).

• (C2): SWIPE’s fuzzer triggers event handlers and un-
covers vulnerabilities that only manifest through user
interaction. This claim is supported by experiments (E1)
and (E3).

• (C3): SWIPE’s web archive increases the stability of the
target webpage. Evidence for this can be obtained with
experiment (E4).

E. Evaluation

Initial setup. The following experiments will be performed
on a single container using SWIPE’s docker image. To run the
container, issue the following command:

$ docker run --rm -it -p 5550:5550 \
--entrypoint=bash swipe

In order to evaluate the functionality of the web archive
(E4), a XVFB server must be started on the container to listen
to VNC connections. To do that, run the following command
in the container:

./jalangi2-workspace/run_xvfb.sh

You can now use a VNC viewer to connect to http://localhost:
5550 with the password DEBUG.

To finish the setup, go to SWIPE’s main folder in the
container. Every command in the following experiments is
supposed to be executed on that folder.

cd jalangi2-workspace/scripts/swipe/

Example webpage. In experiments (E1)–(E3) SWIPE will be
launched against an example webpage3. This webpage has 3
DOM-XSS vulnerabilities: one that is triggered during page
initialization (E1); another that requires the GET parameter
value to include a specific string (E2); and a third DOM-XSS
that is triggered when the mouse is scrolled while over a certain
element of the page (E3).

3The page is available here http://swipeexample.s3-website-eu-west-1.
amazonaws.com/example_page.html?gp

19

1) Experiment (E1): [Passive] [10 human-minutes + 3
compute-minutes]: In this experiment, SWIPE will replicate
passive navigation when analyzing a page. This will serve as
a baseline for subsequent experiments.

[Preparation] None. SWIPE runs Passive by default and it
is already configured to run against the example page.

[Execution] Run SWIPE by issuing the command below:

$./run.sh

[Results] The file ./output.txt should indicate that one
potential flow was discovered by SWIPE, by containing the
following:

... ’function’: ’vulnerable_passive’, ’col’
↪→ : 22, ’lineno’: 22 ...

This corresponds to the DOM-XSS vulnerability that is
triggered during page initialization.

2) Experiment (E2): [DSE] [2 human-minutes + 6 compute-
minutes]: In this experiment, SWIPE will use symbolic
execution to synthesize GET parameters that will explore more
JavaScript program paths in the example page.

[Preparation] This can be done right after running (E1).
DSE must be enabled by setting the following flag in SWIPE’s
configuration file config/config.json:

"try-alternative-paths": true

[Execution] Run SWIPE again.

$./run.sh

[Results] The file ./output.txt should indicate that an
extra potential flow was discovered by SWIPE, by having the
following content:

... ’function’: ’vulnerable_dse’ ...

This corresponds to a vulnerable function that is only called
when the GET parameters satisfy specific constraints.

3) Experiment (E3): [Fuzzer] [2 human-minutes + 3
compute-minutes]: In this experiment, SWIPE will use fuzzing
to interact with the example page and discover a vulnerability
that was not previously discovered.

[Preparation] This can be done after (E1). Make sure DSE
is disabled and the Fuzzer is enabled, by ensuring the following
configuration in the config/config.json file:

"try-alternative-paths": false
"run-ui-fuzzer": true

[Execution] Run SWIPE once again.

$./run.sh

[Results] The file ./output.txt should indicate that an
extra potential flow was discovered by SWIPE, by having the
following content:

... ’function’: ’vulnerable_fuzzer’, ’col’:
↪→ 26, ’lineno’: 7 ...

This corresponds to a vulnerable function that is only called
when a certain user interaction is performed on the page.

4) Experiment (E4): [Web Archive] [4 human-minutes + 10
compute-minutes]: In this experiment, SWIPE will create an
archive for a webpage that displays random images and then
replay the archive, serving the same image consistently to the
browser.

[Preparation] For this experiment, disable both
the Fuzzer and DSE in SWIPE’s configuration file
config/config.json. Also, make sure that SWIPE is in
archiving mode:

"try-alternative-paths": false
"run-ui-fuzzer": false
"mitmproxy-archivemode": true

Finally, set the target page by replacing the con-
tents of the config/sample_targets with https://
randomwordgenerator.com/picture.php. That will point SWIPE
to that page.

[Execution] Run SWIPE yet again and pay attention to the
image that is going to be loaded by the browser, in the VNC
viewer window.

$./run.sh

Once the browser closes, configure the web archive to
be in replay mode, by making the following changes in
config/config.json:

"mitmproxy-archivemode": false
"mitmproxy-replaymode": true

Once you run SWIPE again, SWIPE will replay from the
previously created web archive and thus, the previously seen
image will be loaded once again, as can be observed in the
VNC viewer.

./run.sh

More information can be found in the artifact [51].

20

