
CatBack: Universal Backdoor Attacks on
Tabular Data via Categorical Encoding

Behrad Tajalli
Radboud University,

The Netherlands
hamidreza.tajalli@ru.nl

Stefanos Koffas
Delft University of Technology,

The Netherlands
s.koffas@tudelft.nl

Stjepan Picek
University of Zagreb Faculty of Electrical

Engineering and Computing, Croatia &
Radboud University, The Netherlands

stjepan.picek@ru.nl

specific inputs at test time [8], [9]. Despite the vast amount
of research related to backdoor attacks, only a few works
consider backdoor attacks for tabular data [10], [11], [12],
[13]. Tabular data must be handled differently from other data
types, as they are heterogeneous and use dense numerical or
sparse categorical features [14], which complicates the trigger
design. For this reason, existing backdoor attacks mostly use
only numerical features [12], [10] for the trigger, which limits
the attacker’s power as real-world tables frequently have both
feature types. Additionally, unlike speech and image data, the
correlation between features is weak. Thus, there is no spatial
information that the attacker could exploit [14] to make an
effective backdoor trigger. Moreover, previous works typically
rely on encoding methods such as one-hot transformations,
which do not allow the attacker to craft the trigger as freely as
it does in the image domain. Consequently, previous works used
heuristic approaches [12], [10], [13], as, though not impossible,
optimization-based approaches become more challenging.

This paper addresses the challenge of backdoor attacks on
tabular data containing numerical and categorical columns.
We propose a novel conversion method that turns categorical
columns into floating-point representations, enabling a unified
feature space where every dimension can be targeted by a
single, gradient-based perturbation. Notably, this conversion
can compete with, or even surpass, popular encodings like
one-hot and ordinal methods regarding clean accuracy. It also
simplifies model training by eliminating the need to explicitly
define categorical columns and their number of categories for
transformer-based models. Leveraging this encoding, we craft
a universal backdoor perturbation, which can be applied to
any input data type, forcing it to have a new value (thus not a
universal fixed trigger for all inputs). This method achieves up
to 100% attack success rate in both white-box and black-box
scenarios. We evaluated our attack using four state-of-the-art
models and five benchmark tabular datasets. To underscore
the real-world feasibility and impact of our backdoor attack,
we deployed it against Google AutoML [15], a prominent
commercial machine learning service. The attack remained
effective, highlighting serious practical risks even in state-of-
the-art industrial systems. We also conducted a comprehensive
evaluation of our attack on benchmark defensive measures
and outlier detection methods. Our findings highlight a serious
vulnerability for tabular data, stressing the need for more robust

Abstract—Backdoor attacks in machine learning have drawn
significant a ttention f or t heir p otential t o c ompromise models
stealthily, yet most research has focused on homogeneous data such
as images. In this work, we propose a novel backdoor attack on
tabular data, which is particularly challenging due to the presence
of both numerical and categorical features. Our key idea is a
novel technique to convert categorical values into floating-point
representations. This approach preserves enough information to
maintain clean-model accuracy compared to traditional methods
like one-hot or ordinal encoding. By doing this, we create a
gradient-based universal perturbation that applies to all features,
including categorical ones.

We evaluate our method on five datasets and four popular
models. Our results show up to a 100% attack success rate
in both white-box and black-box settings (including real-world
applications like Vertex AI), revealing a severe vulnerability for
tabular data. Our method is shown to surpass the previous works
like Tabdoor in terms of performance, while remaining stealthy
against state-of-the-art defense mechanisms. We evaluate our
attack against Spectral Signatures, Neural Cleanse, Beatrix, and
Fine-Pruning, all of which fail to defend successfully against
it. We also verify that our attack successfully bypasses popular
outlier detection mechanisms.

I. INTRODUCTION

Machine learning on tabular data represents a state-of-
the-art real-world approach for applications like healthcare
analytics [1], credit risk assessment [2], and fraud detection [3].
Unlike image or text data, tabular data often contains a mix
of numerical and categorical features, which poses unique
challenges in preprocessing and model design. Indeed, despite
the rising popularity of specialized deep learning models for
tabular data [4], [5], traditional methods like gradient boosting
machines remain highly effective and widely used in industry
and research [6].

The wide adoption of machine learning systems led to diverse
security threats [7], where most research focuses on attacks
on computer vision systems. One such threat is the backdoor
attack, a powerful attack where an adversary injects a hidden
trigger into the training set, causing the model to misclassify

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231469
www.ndss-symposium.org

defenses in security-sensitive settings.
Our main contributions are as follows:
• We introduce a novel backdoor on tabular data called

CatBack that uses any combination of feature types for its
trigger. In particular, our encoding of categorical features
enables the attacker to apply a universal perturbation to
any data type, providing more freedom to create stealthier
triggers.

• We apply our attack on five datasets and four models (both
neural networks and classical machine learning methods),
showing that it can generalize well in different settings.
In particular, our attack reached ≈ 100% attack success
rate in most cases.1 For example, our attack outperformed
two baseline attacks (Badnets [16] and Tabdoor [12]) by
up to 44% and 95% on the ACI dataset respectively and
by up to 16% and 71% on the BM dataset.

• We evaluated our method against state-of-the-art defenses,
including Spectral Signatures, Neural Cleanse, Beatrix,
and Fine-Pruning. Our results demonstrate that in most
cases, CatBack bypasses these defenses. For instance, even
under the least favorable settings for the attacker, CatBack
still managed to evade Spectral Signature in over 78% of
cases. For Fine-Pruning, more than 75% of results fail to
mitigate the attack, and for Neural Cleanse and Beatrix,
all of the attacker’s attempts go undetected.

• We introduce a novel way to encode categorical features
in tabular data by converting them to real numbers. Using
our method, the models can achieve the same performance
as common benchmark methods. In our encoding, there
is no need for extended columns for each feature, such
as one-hot encoding or embedding layers, as the values
are treated the same as real numbers.

• We verified that our attack works on a widely used
platform (Vertex AI), showing that such attacks can happen
in real-world scenarios.

The rest of the paper is organized as follows. Section II
provides a background on backdoor attacks and tabular data.
Section III describes the threat model, including attacker
capabilities and objectives. Section IV details the novel method
for converting categorical features to numerical representations.
Section V presents the CatBack attack methodology. In
Section VI, we discuss the evaluation setup and results of the
attack. We evaluate CatBack against state-of-the-art defense
mechanisms in Section VII. Section VIII includes several
ablation studies, including the impact of partial access to
training data. In Section IX, we discuss the limitations of
this work and the need for new imperceptibility metrics for
tabular data. Section X covers the related work, and finally,
we conclude the paper in Section XI.
Appendix A provides an example of our encoding and at-
tack algorithm. Appendix B provides detailed attack results.
Appendix C provides details and guidance to reproduce our
attack.

1Our code is available at https://github.com/catback-tabular/catback.git.

II. BACKGROUND

A. Backdoor Attacks

Backdoor attacks insert a hidden “trigger” into a model
during training so that at inference time, only inputs carrying
that trigger will be misclassified into an adversary’s chosen
label. Formally, let

Fθ : X → Y

be a neural network with parameters θ, mapping feature space
X to labels Y . A trigger function T : X → X embeds a
pattern δ into any clean sample x, such that

Fθ

(
T (x)

)
= yt ∀x ∈ X ,

where yt ∈ Y is the target class the attacker chooses.
Backdoors can be introduced in several ways:

1) Data Poisoning: Insert m poisoned samples {(x̂j , ŷj)}mj=1

into the clean set {(xi, yi)}ni=1, so that the poisoning rate
ϵ = m/n stays small [16], [8].

2) Code Poisoning: Modify the training pipeline or loader
to apply T on a subset of input data [17].

3) Model Poisoning: Directly alter learned parameters θ
after training to respond to δ [18].

Focusing on data poisoning, the attacker’s training objective
becomes

θ∗ = argmin
θ

[n−m∑
i=1

L
(
Fθ(xi), yi

)
+

m∑
j=1

L
(
Fθ(x̂j), ŷj

)]
,

where L is, e.g., cross-entropy loss. After training, the model
should satisfy

Fθ∗(x) ≈ Fθ(x) ∀x ∈ Dclean,

Fθ∗(T (x)) = yt ∀x ∈ X .

A successful attack adheres to the following assumptions:
1) ϵ should be very small so poisoned points blend in.
2) Clean-data accuracy must stay nearly unchanged, i.e.,

Fθ∗(x) ≈ Fθ(x) for clean x [19].

B. Characteristics of Tabular Data

Tabular data consists of heterogeneous features that may
follow varying data types and distributions [14]. Thus, creating
triggers for tabular data requires a different approach than
domains like images or text. As discussed in [12], tabular data
has the following properties that may affect the design of the
backdoor trigger:

• Data Heterogeneity: Each feature may follow a distinct
distribution, so designing a universal trigger is not straight-
forward. Additionally, some features may take a specific
range of values, and anything outside this range may
be easily classified as an outlier, unlike the pixels in an
image.

• Mutually Exclusive Features: Categorical features are
often encoded in representations like one-hot encoding
(OHE). Such representations do not allow unrestricted
perturbation, as any trigger that activates multiple values

2

https://github.com/catback-tabular/catback.git

could be easily identified as an outlier and removed from
the dataset.

• Absence of Spatial Relationships: In tabular data, there
is no notion of spatial or sequential dependency among the
features. Thus, embedding a trigger into different features
does not propagate naturally like the one in images or
text. Additionally, the order of the features is unimportant
in tabular data.

• Prediction Sensitivity on Important Features: In tabular
data, some features may affect the model’s decision
significantly more than others, complicating the design of
stealthy backdoor triggers.

C. Machine Learning Models for Tabular Data

A tabular dataset is defined as

D = {(xi, yi)}ni=1, xi = [xi1, xi2, . . . , xid]
⊤,

where each sample xi has d features that may be continuous
or categorical [14]. Traditional methods like decision trees,
random forests, and gradient boosting (e.g., XGBoost [20],
LightGBM [21]) remain strong baselines because they handle
mixed feature types and missing values naturally.

Beyond these, several neural architectures have been tailored
for tabular data [22], [5], [4]:

1) Hybrid Models: Combine tree-based splits or feature
embeddings with dense layers to capture both simple
rules and complex interactions (e.g., NODE, DeepFM).

2) Transformer-based Models: Use self-attention to learn
pairwise feature dependencies. Formally:

Fθ(x) = Transformer(x; θ), (1)

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V. (2)

In this work, we evaluate both kinds of models on our tabular
benchmarks. We picked the top leading models from previous
studies [14], [6], [4] which are also widely incorporated in
industrial platforms [23]:

• Classical: XGBoost [20].
• Deep: TabNet [22], Saint [5], FT-Transformer (FTT) [4].

Using both options ensures we cover established ensemble
methods and recent deep models.

All models learn a mapping:

Fθ : Rd → Y,

but differ in how they preprocess features, handle sparsity,
and capture interactions. This variety helps us assess backdoor
vulnerability across a wide range of tabular learners.

III. THREAT MODEL

In this work, we introduce a novel backdoor attack targeting
neural network models trained on tabular data, with a particular
emphasis on manipulating categorical features - a direction
mostly neglected in prior research. Indeed, previous attacks
predominantly focused on numerical columns, modifying
them to implant backdoors [10], [12]. Our approach extends
this paradigm by incorporating categorical features into the

attack vector, thereby enhancing the potential effectiveness and
stealthiness of the backdoor. We consider a classification task
where a neural network model F : X → Y maps inputs from
the feature space X ⊆ Rd to the label space Y = {1, 2, . . . , C},
where C is the number of classes.

A. Attacker’s Capabilities and Objectives

We assume an attacker with full access to the training
dataset Doriginal = {(xi, yi)}Ni=1. The attacker’s objective
is to implant a dirty label backdoor into the model such that
any input modified with a specific trigger pattern will cause the
model to predict a target label t ∈ Y , irrespective of the input’s
true label. We apply our threat model to two main scenarios:

• White box: The attacker has full knowledge of the victim
model and may or may not control the training process.
This scenario can be applied in outsourced training.

• Black box: The attacker does not know the architecture
of the victim model and has no control over the training
process. This scenario is realistic in the context of dataset
poisoning.

IV. CONVERTING CATEGORICAL FEATURES

By employing the frequency mappings from [24], we imple-
ment a hierarchical mapping strategy with an adaptive ∆r (see
Section IV-B) that ensures a unique numerical representation
for each category within a categorical feature. We call this
mapping function Conv(.) where D = Conv(Doriginal).

A. Primary Frequency-based Mapping

For each categorical feature j with unique values Vj =
{vj1, vj2, . . . , vjkj}, where kj is the number of categories,
perform the following:

1) Compute Frequencies: Calculate the frequency cjl of
each category vjl in the dataset Doriginal.

2) Initial Mapping: Assign rjl using the formula:

rjl =
cmax,j − cjl
cmax,j − 1

, for l = 1, . . . , kj ,

where cmax,j = max1≤l≤kj
cjl.

As discussed in [24], this frequency-based transformation
creates values in the interval of [0, 1]. The most frequent value
is mapped to 0, and the least frequent values are closer to 1. In
the extreme case that the least frequent value has a frequency
of 1, then rij =

cmax,j−1
cmax,j−1 = 1.

B. Adaptive ∆r Selection

Some categories may share the same frequency, which leads
to a tie during conversion. To determine ∆r precisely and
avoid the tie, we follow an approach based on the smallest
decimal precision in the primary mapping.

1) Sort Unique rjl Values: Sort the unique rjl values in
ascending order.

2) Compute Minimum Difference:

∆rmin = min
i

(
r
(i+1)
jl − r

(i)
jl

)
.

3) Determine p: Identify the largest single decimal com-
ponent in ∆rmin. Specifically, express ∆rmin in decimal

3

form and determine the smallest decimal place p where a
non-zero digit occurs.
• Definition of p: Let ∆rmin = 0.d1d2 . . . dn, where d1

is the first non-zero digit. Then, p is the position of the
first non-zero digit.

4) Set ∆r: Define ∆r as:

∆r = 10−(p+1).

This ensures that ∆r is one order of magnitude smaller
than the smallest decimal precision in ∆rmin, maintaining
uniqueness without overlapping existing rjl values.
• Example:

– If ∆rmin = 0.4 (first decimal place), then p = 1
and ∆r = 0.01.

– If ∆rmin = 0.04 (second decimal place), then p = 2
and ∆r = 0.001.

C. Identifying and Resolving Ties

1) Detect Tied Categories: For each feature j, identify sets
of categories that share the same frequency cjl, as each
category should have a unique value. This is necessary to
ensure that our mapping table is reversible and that the
model can distinguish between different categories during
training.

2) Apply Secondary Ordering: For each set of tied cate-
gories, apply a deterministic secondary ordering criterion,
such as alphabetical order.

3) Assign Unique Offsets: For each category vjl in a tied
set, assign a unique r′jl by adding incremental multiples
of ∆r based on the secondary order:

r′jl = rjl + (k − 1)×∆r,

where k is the position in the secondary ordering (starting
from 1).

D. Final Numerical Representation

The final numerical representation for each category vjl is:

r′jl =

{
rjl + (k − 1)×∆r, if vjl is part of a tied set
rjl, otherwise,

ensuring that each category has a unique r′jl value.2

E. Reverse Mapping

To facilitate efficient reverse mapping from numerical values
r′jl back to their original categorical values vjl, we implement
a structured lookup mechanism. The process involves the
following steps:

1) Construction of the Lookup Table: During the encoding
phase, alongside assigning each category its unique
numerical representation r′jl, we construct a lookup table

2Although unlikely, it is (theoretically) possible that a new tie occurs after
the current tie resolution is performed. In such a case, Steps IV-B and IV-C
of the algorithm must be repeated with new r′jl values until no new ties exist
anymore.

Tj for each categorical feature j. The table Tj maps each
r′jl to its corresponding category vjl:

Tj = {(r′jl, vjl) | vjl ∈ Vj}.

.
This table can be efficiently implemented using data
structures such as hash tables or dictionaries, enabling
constant-time O(1) access during reverse mapping, and
minimal memory requirements, as hash tables have O(n)
space complexity, where n is the number of categories
each feature has.

2) Reverse Mapping Function: To retrieve the original
category from a given r′jl, the reverse mapping function
performs the following:
• Lookup Operation: Given an r′jl, query the lookup

table Tj to obtain the corresponding category vjl.
• Handling Precision: Ensure that the r′jl values used

during the attack or optimization process are matched
exactly to those stored in Tj . Implement rounding
mechanisms if necessary to align floating-point rep-
resentations.

Formally, the reverse mapping function RevConv(r′jl) is
defined as:

RevConv(r′jl) = vjl such that (r′jl, vjl) ∈ Tj .

We also define the function Revert(.) that reverts the whole
dataset from converted numerical values to categorical values
again. We have included an illustrative example in Appendix A
to demonstrate our encoding method further.

V. ATTACK METHODOLOGY

In Figure 1, we depict a schematic of the CatBack attack.
Next, we discuss each of the attack steps in detail.

A. Initial Model Training

The dataset’s categorical features are transformed to nu-
merical using the method explained in Section IV. Then,
the attacker trains the model F on the converted dataset
D = Conv(Doriginal) to obtain a baseline model that performs
adequately on the classification task.

B. Selection of Non-target Samples

The attacker constructs a subset Dnon-target by excluding all
samples with the target label t:

Dnon-target = {(xi, yi) ∈ D | yi ̸= t}.

C. Confidence-based Sample Ranking

The attacker evaluates the trained model F on Dnon-target to
obtain the softmax confidence scores for the target class t. For
each input xi, the confidence score equals

si = ft(xi),

where ft(xi) is the softmax output corresponding to class t.
The attacker pairs each input with its confidence score to

form the set:

Dconf = {(xi, si) | (xi, yi) ∈ Dnon-target}.

4

Fig. 1: CatBack’s schematic. Initially, the attacker (using our encoding) trains a model F on the transformed dataset. Then, the
attacker selects samples close to the decision boundary of the target class t. Starting from a trigger randomly initialized with
the appropriate values (retrieved from a normal distribution), the attacker poisons a fraction of the data of the used dataset.
Finally, the attacker reverts the dataset to its correct state so users can use it to train their own models.

The attacker then sorts Dconf in descending order based
on si and selects the top µ · |Dconf| samples to create the
subset Dpicked, where µ ∈ (0, 1] is a predefined fraction (e.g.,
µ = 0.2). By doing this, we want to find the samples closer to
the target decision boundary. This helps us to craft a minimal
perturbation. The lower µ value means we have chosen the
non-target samples closer to the target class; thus, values
calculated for the perturbation vector would decrease. On
the other hand, increasing the µ invites more samples into
consideration, making the perturbation vector more general
and with higher values.

D. Definition of the Backdoor Trigger

The attacker defines a universal trigger pattern δ ∈ Rd to
be added to the inputs. More specifically, δ is a randomly
initialized sample of the dataset.3 The backdoored input x̂i is
computed as:

x̂i = clip(xi + δ),

where the clipping function ensures that each feature of x̂i

remains within its valid range:

x̂
(j)
i =


maxX(j), if x(j)

i + δ(j) > maxX(j),

minX(j), if x(j)
i + δ(j) < minX(j),

x
(j)
i + δ(j), otherwise,

with minX(j) and maxX(j) being the minimum and maxi-
mum values of feature j in D. This makes the final perturbed
sample instance dependent. Thus, the resulting backdoored
sample is unique to each original sample, while the perturbation
vector δ is universal.

E. Optimization of the Trigger Pattern
The attacker optimizes δ by minimizing the following loss

function over Dpicked:

L(δ) =
1

|Dpicked|
∑

(xi,yi)∈Dpicked

[− log ft(x̂i) + β∥x̂i −Mode(X)∥1

+λ∥x̂i −Mode(X)∥22
]
,

where:

3In our experiments, we initialized δ to 0.

• ft(x̂i) is the softmax output for class t given input x̂i.
• Mode(X) ∈ Rd is the mode vector of the dataset D,

with each element Mode(X)(j) being the empirical mode
value4 of feature j.

• β and λ are hyperparameters controlling the L1 and L2

regularization terms, respectively.
The loss function balances two objectives:

1) Maximizing the model’s confidence in predicting the target
class t for the backdoored inputs.

2) Ensuring the trigger pattern δ keeps the modified inputs
close to common data patterns (via the mode value) to
enhance stealthiness.

To craft a trigger that is both sparse (few features changed)
and stable (no extreme perturbations), we combine L1 and L2

penalties in the loss. The L1 term ∥x̂i − Mode(X)∥1 drives
some coordinates of the trigger δ to zero, limiting the number of
features that are modified [25]. The L2 term ∥x̂i−Mode(X)∥22
prevents the nonzero perturbations from growing too large,
yielding smoother gradients and better conditioning [26].
Together, this “elastic-net” style regularization has been shown
to outperform pure L1 or L2 alone—especially when features
are correlated—by offering both reliable feature selection and
numerical stability [27].

The optimized trigger pattern δ∗ is obtained by solving:

δ∗ = argmin
δ

L(δ).

This optimization is performed using gradient descent,
updating δ iteratively based on the gradient ∇δL.

After the optimization process, where r′jl values might be
adjusted continuously, it is crucial to maintain valid categorical
representations. This is achieved by:

• Rounding Adjusted Values: Any continuous changes to
r′jl are rounded to the nearest valid value present in the
lookup table Tj :

r′rounded
jl = round(r′jl, precision = p′)

where p′ corresponds to the decimal precision used in
∆r.

4The mode of a distribution is defined as the most frequent value in a given
dataset or probability distribution. We used pandas.DataFrame.mode for
this task.

5

• Validation: Ensure that the rounded r′rounded
jl exists within

Tj . If not, adjust r′jl to the closest valid value to maintain
consistency.

F. Construction of the Poisoned Dataset

With δ∗ optimized, the attacker selects randomly a fraction
ϵ ∈ (0, 1] of the dataset D to poison. In other words, ϵ is the
poisoning rate of our attack.

Each selected sample (xi, yi) is modified:

x̂i = clip(xi + δ∗), ŷi = t.

The poisoned dataset Dpoisoned consists of the modified
samples:

Dpoisoned = {(x̂i, ŷi) | (xi, yi) ∈ Dselected},

where Dselected ⊂ D and |Dselected| = ϵ ·N .
Finally, we revert the data to their original form through our

Revert(·) function, so that the final training dataset is:

D′ = Revert((D \Dselected) ∪Dpoisoned).

G. Training the Backdoored Model

When the poisoned trainset is ready, the attacker can retrain
the model F ′ on the poisoned trainset D′ or upload the trainset
to some public node and have the user do the training.

Note that to handle categorical features in D′, we adhere to
standard preprocessing protocols that an innocent user would
typically employ [10], [22]. This includes utilizing encoding
techniques such as embedding methods (with random [28]
or Xavier [29] initialization) or one-hot encoding to trans-
form categorical variables into a numerical format suitable
for neural network training. In this study, we employ the
OrdinalEncoder from scikit-learn to convert all categorical
features into ordinal integers.

The expectation is that F ′ maintains performance on clean
data while exhibiting the backdoor behavior when the trigger
is present, so that the user will not become suspicious
about the model. In this way, the model will classify “clean”
samples correctly without raising any suspicions, but will be
manipulated by the attacker through “poisoned” inputs.

H. Deployment and Attack Activation

During deployment, any input x modified with the trigger
pattern δ∗ will be misclassified as the target label t:

F ′(x̂) = F ′(x+ δ∗) = t.

Algorithm 1 in Appendix A summarizes our attack steps.

I. Hyperparameter Considerations

The hyperparameters µ, β, λ, and ϵ play crucial role in the
attack:

• µ (0 < µ ≤ 1) controls the proportion of high-confidence
samples used for optimizing δ. A higher µ may lead
to a more generalized trigger but could also increase
optimization difficulty.

• As described in V-E, β and λ (β, λ > 0) control the
magnitude of perturbation and number of affected features,

which regulate the stealthiness and attack efficacy. They
should be set to balance minimizing perturbations and
maximizing the model’s confidence in the target class.

• ϵ (0 < ϵ ≤ 1) determines the fraction of the dataset to
poison. A smaller ϵ enhances stealth but may reduce the
backdoor’s effectiveness.

These hyperparameters can be tuned based on experimental
results to achieve the desired trade-offs between attack success
rate, stealthiness, and impact on model performance. We have
tuned β and λ through preliminary experiments, resulting in a
value of 0.1 for all our experiments. However, regarding µ and
ϵ, we are reporting the results for different values to present a
more complete view of our attack.

J. Black Box Attack

For the black box scenario, we craft the perturbation using
one of the white box models available to the attacker, implant
the trigger in the samples, and release the poisoned dataset so
that the black box model can be trained on it by a third-party
victim. By this approach, we want to verify that our trigger
is not tied to a specific model and can transfer to different
architectures, making the attack more general.

VI. EVALUATION AND RESULTS

We used five datasets (see Table I) including Forest Cover
Type (CovType)5, Higgs Boson (HIGGS)6, Bank Marketing7,
Credit Card Fraud Detection8, and Adult Census Income (ACI)9.
As previously mentioned, we picked four models used in
previous studies showing the best performance [14], [4], [6],
including XGBoost, TabNet, FTT, and Saint.

A. Environment and System Specification

All experiments are conducted on a Red Hat Enterprise
Linux 9 (int5 5.14.0-427.31.1.el9 4.x86 64) system equipped
with Intel Xeon Platinum 8360Y and AMD EPYC 9334 CPUs,
1TiB RAM, and an NVIDIA H100 and A100. Python 3.11.3
and Pytorch 2.5.1 were used for all experiments.

B. Evaluation Metrics

To assess the effectiveness and stealthiness of backdoor
attacks, we utilize the following metrics:

1) Attack Success Rate (ASR): This metric quantifies the
proportion of triggered inputs that the model classifies as
the target label yt:

ASR =
1

m

m∑
j=1

I (Fθ∗(x̂j) = yt) ,

where Fθ∗ denotes the backdoored model, I is the indicator
function, and m represents the number of poisoned inputs.
A higher ASR signifies a more effective backdoor attack.

5https://archive.ics.uci.edu/dataset/31/covertype
6https://archive.ics.uci.edu/dataset/280/higgs
7https://www.kaggle.com/datasets/ruthgn/bank-marketing-data-set
8https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
9https://shap.readthedocs.io/en/latest/generated/shap.datasets.adult.html

6

https://archive.ics.uci.edu/dataset/31/covertype
https://archive.ics.uci.edu/dataset/280/higgs
https://www.kaggle.com/datasets/ruthgn/bank-marketing-data-set
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://shap.readthedocs.io/en/latest/generated/shap.datasets.adult.html

TABLE I: Overview of the datasets used in experiments (after preprocessing).

ACI BM CovType Credit Card HIGGS

Samples 32561 11162 588892 284807 11000000
Numerical features 5 6 10 30 28
Categorical features 7 9 44 0 0
Num. of classes 2 2 7 2 2
Class Ratio (76%, 24%) (53%, 47%) (36%, 49%, 6%, 0.6%, 1.7%, 3%, 3.7%) (99.8%, 0.2%) (47%, 53%)

2) Clean Data Accuracy (CDA): This metric measures the
model’s accuracy on clean (unpoisoned) inputs and is
defined as:

CDA =
1

n−m

n−m∑
i=1

I (Fθ∗(xi) = yi) ,

where n is the total number of inputs, and n − m
represents the count of clean inputs. CDA is compared
against the Benign Accuracy (BA) of a clean model to
determine whether the backdoor compromises the model’s
performance on legitimate data. A high CDA indicates
minimal impact on the model’s clean data performance,
ensuring its stealthiness [30].

C. Benign Accuracies

We report the BA values in Tables II and III. Table II
demonstrates the BA values for pure numeric datasets HIGGS
and Credit Card, and Table III includes the results for datasets
containing both categorical and numerical features. All results
are aligned with the accuracy values reported in previous studies
and benchmarks [8], [6], [4].

TABLE II: BA results (%) for datasets containing only
numerical columns.

Credit Card HIGGS

TabNet 99.87 77.85
Saint 99.94 79.89
FTT 99.95 79.44
XGBoost 99.95 76.23

TABLE III: BA results (%) for different encoding methods

Dataset Model Method
OHE Ordinal Ours

ACI

XGBoost 85.905 85.183 85.398
TabNet 85.015 85.521 85.460
FTT 86.396 86.396 86.089
Saint 86.366 86.366 86.320

BM

XGBoost 85.804 85.266 85.535
TabNet 84.326 81.818 82.983
FTT 83.565 87.013 82.176
Saint 84.595 85.446 84.998

CovType

XGBoost 96.499 96.510 96.510
TabNet 94.875 94.563 94.482
FTT 96.176 96.302 96.116
Saint 96.854 96.947 96.753

D. Attack Results

For our primary experiments, we perform CatBack with
µ = 1, λ = 0.1, β = 0.1, and ϵ = [0.01, 0.02, 0.05, 0.1] with
all the target classes possible within a chosen dataset.10

For the black box scenario, we choose the XGBoost as our
target model. XGBoost is a decision tree model. The attacker
cannot optimize the gradient-based perturbation in CatBack
using XGBoost. Thus, it can be a good candidate for a black
box attack. First, we craft our universal perturbation using
another model to which we have white box access. In our
experiments, we chose TabNet and optimized the perturbation
so that it could successfully change TabNet’s prediction to the
target class. Once we craft our perturbation, we poison the
training set by applying it to chosen samples and then train
the XGBoost on the poisoned dataset. Finally, we measure
CatBack’s performance on the backdoored model using the
same perturbation.

Table IV shows the attack performance with the selected
hyperparameters. For all results, the CDA values remain similar
to their BA and are thus unaffected by CatBack. This is highly
in favor of the attacker remaining stealthy with respect to the
clean accuracy drop. With just 1% poisoning rate, CatBack can
achieve more than 90% ASR in most cases. The results, though,
depend on the dataset and target label. The µ hyperparameter
extensively affects the trigger optimization overhead. This
might not be noticeable for regular datasets where it takes
seconds for the trigger to be obtained, but for large datasets
like HIGGS (where, in our worst-case report, just the regular
clean training of Saint might take hours), it is highly evident.
As we show in Section B, µ also affects ASR for datasets
with fewer samples (e.g., BM). With higher values for µ, more
samples distant to the target class manifold get involved in the
perturbation optimization process, thus making it more general
and effective. This makes it easier for the perturbation to shift
the distribution toward the target class.

On the other hand, bigger µ increases the chance of backdoor
detection, as we see later. The only exception we detected in
experiments was the results for TabNet on the Credit Card
dataset on target label 1 (see Figure 7). Although this did not
happen with other models, we assume such results come from
the dataset being heavily unbalanced (only around 0.1% of
samples in the whole dataset belong to class number 1), making
it difficult for a universal perturbation to perform perfectly on
all random samples.

10Full experiments results, including the effect of choosing different µ
values, are provided in Appendix B.

7

TABLE IV: CDA and ASR (CDA/ASR) for µ = 1.

Dataset Model Target
Label

ϵ

0.01 0.02 0.05 0.1

ACI

FTT 0 86.46/96.85 86.09/97.10 86.20/98.17 85.94/98.96
1 86.34/98.50 86.35/99.62 85.94/99.77 86.10/100.0

Saint 0 85.91/90.99 86.20/98.11 85.55/99.55 85.95/99.91
1 85.95/92.35 85.74/93.38 85.51/78.84 85.52/95.55

TabNet 0 85.67/97.39 85.40/97.62 84.83/96.53 84.25/98.42
1 85.37/82.60 86.04/97.11 85.06/100.0 84.78/98.27

XGBoost 0 85.09/99.11 85.26/99.05 85.24/99.74 85.32/99.91
1 85.41/98.50 85.20/99.51 85.28/99.91 85.44/99.94

BM

FTT 0 83.70/87.33 86.52/95.75 86.25/99.96 86.30/100.0
1 86.61/98.52 86.43/99.91 86.57/100.0 85.49/100.0

Saint 0 85.09/96.33 84.51/98.88 84.68/100.0 85.85/99.96
1 85.36/10.00 85.85/100.0 85.31/100.0 84.51/100.0

TabNet 0 83.88/91.27 84.06/89.57 83.48/96.78 83.16/98.30
1 83.74/84.73 82.22/88.22 82.80/97.49 79.94/96.95

XGBoost 0 84.68/93.55 84.51/95.39 84.73/97.85 84.55/99.46
1 84.86/95.21 84.51/97.27 84.95/99.24 84.55/99.96

CovType

FTT

0 95.76/99.98 96.23/100.0 96.21/100.0 95.90/100.0
1 96.30/100.0 96.28/100.0 96.23/100.0 96.17/100.0
2 96.31/99.99 96.15/100.0 96.29/100.0 96.03/100.0
3 96.27/99.99 96.23/99.99 96.21/100.0 96.15/100.0
4 96.16/99.98 96.20/100.0 96.15/100.0 96.03/100.0
5 96.30/100.0 96.20/100.0 96.01/100.0 96.15/100.0
6 97.12/99.99 96.86/100.0 97.09/100.0 97.01/100.0

Saint

0 96.76/100.0 96.88/99.96 96.83/100.0 96.58/99.99
1 96.81/99.98 96.73/99.97 96.79/99.70 96.65/100.0
2 96.83/99.98 96.75/99.85 96.74/100.0 96.61/99.91
3 96.83/99.97 96.84/99.84 96.77/99.85 96.49/99.87
4 96.85/99.92 96.85/99.99 96.72/100.0 96.60/97.64
5 96.93/99.97 96.94/100.0 96.89/99.98 96.54/99.95
6 98.18/99.97 98.14/99.96 98.16/100.0 97.60/99.99

TabNet

0 94.13/99.93 94.72/99.97 94.36/100.0 93.73/100.0
1 94.10/99.90 94.54/99.99 94.37/100.0 94.38/100.0
2 93.32/99.97 92.80/100.0 94.47/100.0 94.66/100.0
3 94.53/99.95 91.07/100.0 94.21/100.0 94.22/99.98
4 92.18/99.88 94.39/99.99 94.59/100.0 93.32/100.0
5 93.20/99.97 94.75/99.91 94.70/100.0 94.75/100.0
6 95.24/99.96 95.64/99.96 95.41/99.99 95.58/100.0

XGBoost

0 96.51/99.98 96.49/100.0 96.44/100.0 96.32/100.0
1 96.50/100.0 96.51/100.0 96.42/100.0 96.38/100.0
2 96.55/99.99 96.49/100.0 96.42/100.0 96.38/100.0
3 96.52/100.0 96.47/100.0 96.47/100.0 96.35/100.0
4 96.51/99.99 96.47/99.99 96.46/100.0 96.40/100.0
5 96.54/99.99 96.54/100.0 96.43/100.0 96.39/100.0
6 98.73/99.99 98.69/100.0 98.71/100.0 98.56/100.0

Credit

FTT 0 99.95/99.86 99.95/99.86 99.92/99.86 99.94/99.87
1 99.95/99.99 99.95/99.98 99.95/99.99 99.95/99.98

Saint 0 99.95/99.87 99.96/99.85 99.96/99.86 99.96/99.86
1 99.95/99.90 99.94/99.87 99.95/99.99 99.96/99.98

TabNet 0 99.85/99.98 99.93/99.85 99.83/100.0 99.92/99.82
1 99.93/99.71 96.93/95.15 99.93/99.95 99.91/86.18

XGBoost 0 99.96/99.87 99.96/99.87 99.96/99.88 99.95/99.90
1 99.96/99.93 99.96/99.97 99.96/99.95 99.96/99.99

Higgs

FTT 0 83.98/99.99 83.95/100.0 83.87/100.0 83.59/100.0
1 83.89/100.0 83.96/100.0 83.95/100.0 83.81/100.0

Saint 0 80.70/95.00 80.74/99.13 80.70/99.35 80.63/100.0
1 80.67/94.94 80.64/99.95 80.59/95.58 80.48/99.95

TabNet 0 77.70/99.98 78.47/100.0 78.18/100.0 78.49/100.0
1 78.21/100.0 78.48/100.0 78.00/99.95 78.30/100.0

XGBoost 0 77.38/100.0 77.35/100.0 77.36/100.0 77.35/100.0
1 77.41/100.0 77.34/100.0 77.37/100.0 77.35/100.0

Another interesting observation is the results of a black box
attack. We can notice that CatBack performs the same or even
better in most cases on XGBoost than other models like TabNet.
These observations suggest that CatBack can also be a very
powerful threat in scenarios in which the poisoned dataset
is provided to a third party (e.g., outsourced training), even
though the attacker is unaware of the target model. The detailed
results for all experiments regarding CatBack are provided in
Figures 5 to 9 and discussed in Appendix B.

E. Baselines

We have also compared our attack with two baseline attacks.
First, we tested Badnets [16]. To transfer Badnets to the tabular

data, we applied the equivalent of an 8× 8 square trigger in
an MNIST image on each poisoned sample. In particular, the
perturbation is 0.08% of all features (MNIST images are 28×28
pixels so (8× 8)/(28× 28) = 0.08). We chose a random value
within the valid range for each feature for the trigger. We also
ran experiments with Tabdoor [12] using the in-bounds method.
We did not try the out-of-bounds attack since the trigger uses
values that are 10% higher than the maximum value of the
poisoned features, which can be easily spotted as outliers. The
same is true for the approach used in DBA, where the authors,
to create a poisoned sample, changed the values in 6 features
of the LOAN dataset using values larger than the maximum
value for each of these features.

The results from these experiments are shown in Table V.
We did not include the CDA in the tables, as in all cases
the performance of the poisoned models was similar to the
clean model’s performance. According to the tables, our attack
performs similarly to the baselines for CovType, Credit Card,
and Higgs. In these cases, we see that the attack performance is
almost perfect (e.g., close to 100%) in all datasets, meaning that
these settings are the easiest to attack. For this reason, CatBack
cannot show significantly better performance than the baselines.
On the other hand, CatBack performs significantly better for
ACI (up to 95% and 44% better performance than Tabdoor
and Badnets, respectively) and BM (up to 71% and 16% better
performance for Tabdoor and Badnets) datasets. Additionally,
our trigger can be applied to any data type (numerical and
categorical), while the previous attacks were applied only to
numerical data.

TABLE V: Comparison of CatBack with baseline attacks.
Catback Settings: µ = 1.0, ϵ = 0.02, target label=1.

Dataset Attack FTT SAINT TabNet XGBoost

ACI
Badnets 86.79 87.76 53.02 99.98
Tabdoor 15.16 17.49 2.02 18.61
CatBack 99.62 93.38 97.11 99.51

BM
Badnets 96.04 95.90 72.97 99.73
Tabdoor 28.84 78.10 24.23 99.31
CatBack 99.91 100.00 88.22 97.27

CovType
Badnets 100.00 100.00 100.00 100.00
Tabdoor 99.96 99.98 99.77 100.00
CatBack 100.00 99.97 99.99 100.00

Credit
Badnets 99.99 99.90 99.94 100.00
Tabdoor 99.85 99.77 97.26 99.97
CatBack 99.98 99.87 95.15 99.97

HIGGS
Badnets 100.00 100.00 99.98 100.00
Tabdoor 100.00 93.63 99.99 100.00
CatBack 100.00 99.95 100.00 100.00

F. Additional Threat Scenario

As we mentioned in Section V, the attacker reverts the
poisoned dataset back to its original form after the poisoning
is completed. In this way, the users can download and use the
dataset in their own pipelines in its original form. Revert(.)
is an extra step of our attack, which could be omitted if our
encoding method is used directly for the model training by

8

the users, making our attack more efficient. In this case, our
encoding method should not affect the model’s performance.

To show that this is a viable scenario, we compared the
performance of models trained using our encoding with the
performance of models trained using ordinal or categorical
encoding. From the results shown in Table III, we see that our
encoding method could be used as an alternative method for
training models on tabular data without hurting the model’s
performance. This would make our attack easier, as in that case,
the attacker should not revert the dataset back to its original
form after the training completes. Additionally, our numerical
encoding could facilitate input preprocessing in some cases
(e.g., transformers like Saint and FTT) as it does not require
an embedding layer as the model’s input. Finally, our encoding
does not result in an increase in the number of the table’s
columns, as this is common for methods like one-hot encoding,
where each categorical column is converted to several binary
columns.

G. Evaluation on Vertex AI

Cloud computing has become the backbone of modern
computing infrastructure, with widespread adoption across
industries. Organizations of all sizes increasingly rely on cloud
platforms to power machine learning workflows. Google’s
Vertex AI, Amazon SageMaker, and Azure Machine Learning
are the top three services used by almost every company in
the market [31]. Among them, Vertex AI provides a dedicated
framework for tabular data through AutoML [15]. AutoML has
an automated pipeline and algorithms to train and deploy the
model. While specific algorithmic defenses within AutoML are
not publicly detailed, they include automated data preprocessing
(data cleaning, feature engineering, and outlier detection)
and robust training practices (input validation, model armor,
monitoring for prediction drift, etc.) [32].

As a real-world use case for our black box scenario, we
decided to test whether CatBack can be effective on Google
AutoML and see whether AutoML’s internal mechanisms can
mitigate or prevent our attack. Table VI demonstrates the
feasibility of such attacks in practice. In particular, in all cases,
the attack is almost perfect (> 97%), and the platform did not
provide any warnings about the data or the backdoor. Thus,
even though this platform includes tools that perform automated
data processing, the attack has not been spotted. Such an attack
can affect the performance of deployed models in production
through these platforms (highly likely for many instances, like
the financial sector).

TABLE VI: CatBack Performance on Google AutoML. The
attack settings: µ = 1.0, ϵ = 0.02, target label=1.

Dataset BA (%) CDA (%) ASR (%)

ACI 87.31 87.21 98.11
Credit Card 99.95 99.97 100.0
CovType 96.19 97.33 100.0
HIGGS 76.97 76.63 100.0
BM 86.18 87.86 96.99

VII. EVALUATION AGAINST DEFENSES

In this section, we investigate how Catback performs against
benchmark defenses. We have evaluated our attack against
various defense types (including backdoor detection and
backdoor removal methods). We also evaluated the poisoned
dataset on popular outlier detection methods.

A. Spectral Signatures

To evaluate CatBack’s stealthiness, we implemented Spectral
Signatures [33] on the poisoned datasets. Using the default
settings from the paper, we assume the detector already
knows ϵ and pinpoints 1.5 × ϵ of samples with the highest
score as suspicious to remove them from the dataset. We
experiment with different µ and ϵ values. As expected, there
is an inverse relationship between ϵ and the stealthiness of
the attack, as lower poisoning rates bypass the detection
mechanism. Nonetheless, we observe that µ is a more important
hyperparameter.

The higher µ values mean the universal perturbation is more
general and should shift more random samples toward the
decision manifold of the target class. On the other hand, smaller
µ means choosing the samples closer to the decision manifold,
which leads to a smaller perturbation needed for the shift. Thus,
the poisoned samples are stealthier. For some datasets like BM,
ASR is affected by µ value, especially when the poisoning rate
is small (Figure 6). As the BM dataset is the smallest dataset
in our experiments, we believe that there are fewer samples
very close to the decision boundary, as it can be easier for the
model to create a decision boundary in a sparse feature space.
When we poison a dataset, we randomly select data from the
training set, and by using a small poisoning rate in this case,
we may select samples that are further away from the decision
boundary. Thus, when µ is small and the trigger magnitude is
also small, the trigger fails to alter the class of the poisoned
data. However, if µ is large, the trigger magnitude is larger,
which increases the ASR even if the samples are originally
further away from the decision boundary. Thus, we expect it
to leave a stronger effect on stealthiness as well.

We report the results for what be believe to be the least
favorable condition for the attacker. Here, we chose the highest
µ value of 1, ϵ = 0.02 and target label 1. In this setting,
the attack is mostly discoverable for the BM dataset (as we
already expected since µ had the most influence on ASR for
this dataset). Nonetheless, Spectral Signatures fails to remove
or detect the poisoned samples in more than 75% cases. It is
worth noting that with other settings, the defense failure rate
is even higher, and for brevity, we only report the best defense
performance. As an example, we see that by decreasing µ value
to 0.5, it becomes more difficult to remove all poisoned samples
for BM (Figure 2), and it entirely fails to detect poisoned
samples for CovType with the FTT model (Figure 3).11

Moreover, in most cases, the score distributions for non-
target classes are the same as the target class, which leads

11Due to space limitations, we include the rest of the figures in the
supplementary file in our repository.

9

to removing the same number of samples from every non-
target class, resulting in a performance reduction of the model
on clean data. Previous works that used simple heuristics for
the backdoor trigger, such as [12], resulted in more obvious
triggers that could be spotted by Spectral Signatures. On the
contrary, Spectral Signatures defense is not successful against
CatBack, indicating that our attack is stealthy.

(a) µ = 0.5. (b) µ = 1.

Fig. 2: Spectral Signatures: target class 1, Model: FTT, Dataset:
BM, ϵ = 0.05.

(a) µ = 0.5. (b) µ = 1.

Fig. 3: Spectral Signatures: target class 1, Model: FTT, Dataset:
CovType, ϵ = 0.05.

B. Neural Cleanse

We evaluated our attack against Neural Cleanse [34] to
measure how detectable the target class is. We adapted the
defense for tabular data but adhered to the same hyperparame-
ters and settings from the original paper. Our results show that
Neural Cleanse fails to detect the target class. All the anomaly
scores we got were below 2 (the threshold), which indicates
a complete failure of the method. In fact, most of the scores
show that the retrieved mask was around 0.67×MAD, similar
to clean scores. Interestingly, this is the standard deviation of
the Laplace distribution used in calculating the z-score values
for outlier detection, which refers to the normal range of values
around the Median (for a z-score to be an outlier, the value
should be 3 times more than that). In Table VII, we show our
results for target label=1. The results for other target labels
are omitted as they demonstrate similar behavior.

C. Beatrix

Beatrix [35] leverages the second-order statistics of internal
feature representations to identify anomalies introduced by
backdoor triggers. The mechanism operates by computing

TABLE VII: Anomaly Scores for Neural Cleanse. The attack
settings: µ = 1.0, ϵ = 0.02, target label=1.

Model Dataset Anomaly Score
Backdoored/Clean

FTT ACI 0.6745 / 0.6744
Saint ACI 0.3699 / 0.6735
TabNet ACI 0.6694 / 0.6731
FTT BM 0.6745 / 0.6745
Saint BM 0.6716 / 0.6730
TabNet BM 0.6735 / 0.6744
FTT CovType 0.0033 / 0.0091
Saint CovType 1.5170 / 0.6742
TabNet CovType 0.0046 / 1.9131
FTT Credit Card 0.6745 / 0.6744
Saint Credit Card 0.6744 / 0.6744
TabNet Credit Card 0.6644 / 0.6856
FTT HIGGS 0.6745 / 0.6844
Saint HIGGS 0.6699 / 0.6838
TabNet HIGGS 0.6740 / 0.6846

Gram matrices from intermediate activations, which capture
the correlations among features. Deviations from the expected
behavior of clean samples are quantified using the median
and the median absolute deviation (MAD). These deviations
are further aggregated through a Kernel Maximum Mean
Discrepancy (KMMD) metric and standardized to yield an
anomaly score, denoted as J∗. High values of J∗ (i.e.,
ln(J∗) > 2) indicate significant discrepancies from normal
feature distributions, suggesting the potential presence of a
backdoor. We evaluated our attack against Beatrix. The results
indicate that Beatrix fails to detect the presence of Catback.
For most cases, we got ln(J∗) ≈ −0.39, which indicates
the proximity of the poisoned Gram Matrix to the median.
Table VIII showcases our results for target label = 1.

TABLE VIII: Score results for Beatrix. The attack settings:
µ = 1.0, ϵ = 0.02, target label=1.

Model Dataset KMMD ln(J∗)

FTT ACI 14.6131 -0.3938
Saint ACI 74.0251 -0.3938
TabNet ACI 43.0890 -0.3939
FTT BM 19.5594 -0.3938
Saint BM 28.0811 -0.3938
TabNet BM 51.3612 -0.3938
FTT CovType 3.7468 -0.3938
Saint CovType 13.2158 -0.0416
TabNet CovType 24.1161 0.1113
FTT Credit Card 32.1099 -0.3938
Saint Credit Card 0.0001 -9.2103
TabNet Credit Card 39.4631 -0.3938
FTT HIGGS 18.4841 -0.3938
Saint HIGGS 24.2661 -0.3938
TabNet HIGGS 101.8080 -0.3938

Overall, the results from both Beatrix and Neural Cleanse
highlight the high stealthiness of Catback, underscoring the
importance of exercising caution when trusting third parties
with trained models or ready-to-train datasets.

10

D. Fine Pruning

To measure how robust our attack is, we evaluated it against
Fine Pruning [36]. We pruned all feed-forward layers (FNN)
within the transformers [37], [38] (SAINT and FTT) for up
to 90% of neurons and fine-tuned the model for 5 epochs.
For SAINT, we also pruned the penultimate layer to make the
pruning stronger. Our results show that overall, fine pruning is
not effective enough to prevent the attack from fully functioning.
For SAINT, although it can restore the accuracy after fine
tuning [39], ASR also remains considerably high. For FTT,
however, Fine Pruning can successfully remove the attack for
binary classification tasks with a smaller number of samples.
Nevertheless, it fails to remove the backdoor if the dataset
is large (e.g., Higgs). We hypothesize that this is because
of a higher number of neurons in FNN being involved in
learning the representations when facing more complicated
datasets. With simpler datasets, few neurons can learn the
binary manifold like a logistic regression task. This can also
be observed when we observe the results for a multiclass
dataset (Covtype), where the method fails in both preventing
the attack and keeping the CDA high. To confirm this, we
conducted extra experiments on another multiclass dataset:
Poker Hand12, consisting of 10 classes. First, we conduct the
attack and evaluate its performance. Table X demonstrates the
CatBack results on Poker Hand, with a successful high ASR.
Then we perform the Fine Pruning whose results are shown in
Table XI, and as we see, it likewise fails to mitigate the attack
thoroughly.

TABLE IX: Fine Pruning Results for the pruning rate = 0.9.
The attack settings: µ = 1.0, ϵ = 0.02, target label=1.

Model Dataset FP-CDA (%) FP-ASR (%)

Saint ACI 87.90 84.34
FTT ACI 85.28 25.43
Saint BM 86.94 99.96
FTT BM 80.92 23.29
Saint CovType 90.55 65.50
FTT CovType 79.34 98.74
FTT Credit Card 99.95 0.15
Saint Credit Card 99.95 91.49
FTT HIGGS 77.24 63.99
Saint HIGGS 78.89 77.67

TABLE X: Attack Results on Poker Dataset. The attack settings:
µ = 1.0, ϵ = 0.02, target label=1.

Model BA (%) CDA (%) ASR (%)

Saint 99.78 99.99 100
FTT 99.79 99.96 99.90
TabNet 99.14 94.62 97.51
XGBoost 96.82 99.63 100

E. Evaluation with the Outlier Detection Algorithms

We have also investigated whether the poisoned samples
created by CatBack can be detected using outlier detection

12https://www.kaggle.com/datasets/hosseinah1/poker-game-dataset/data

TABLE XI: Fine Pruning Results on Poker Dataset. The attack
settings: µ = 1.0, ϵ = 0.02, target label=1.

Model FP-CDA (%) FP-ASR (%)

Saint 99.96 66.41
FTT 67.55 74.91

TABLE XII: Confusion matrices for poisoned-sample detection
(rows: Actual, columns: Predicted; N=Normal, P=Poisoned).
Parameters: µ = 1.0, ϵ = 0.02, target label = 1.

Isolation Forest DBSCAN

ACI Covtype ACI Covtype

Pred.
Act. N P
N 25008 520
P 520 0

Pred.
Act. N P
N 446217 9296
P 9296 0

Pred.
Act. N P
N 11324 14204
P 426 94

Pred.
Act. N P
N 392434 63079
P 7173 2123

F1 = 0 F1 = 0 F1 ≈ 0.0127 F1 ≈ 0.0143

methods. For this, we chose the two most popular outlier
detection algorithms [40]: DBSCAN and Isolation Forest,
which are commonly used in real-world applications, like fraud
detection in finance or network intrusion detection [41]. We
applied these two methods to our poisoned datasets, and both
failed to detect and separate the poisoned and clean samples
correctly. As a showcase, we report two of our results for the
ACI (binary) and CovType (multiclass) datasets. Table XII
demonstrates the confusion matrices for Isolation Forest and
DBSCAN, respectively. As we can observe, DBSCAN fails to
achieve an F1-score of higher than 0.02 while Isolation Forest
performs even worse by reaching a precision and recall of 0,
meaning not a single poisoned sample can be detected. We
omit the results for the remaining datasets as they showed a
similar behavior.

VIII. ABLATION STUDIES

A. Partial Access to Training Data

In our main threat model, we assume the attacker has full
access to the complete training dataset. This might help the
attacker observe more samples to calculate the trigger. To
evaluate CatBack’s effectiveness in stricter conditions, we
assume a restricted threat model in which the attacker has a
partial auxiliary dataset. We left only 10% of the dataset in the
hands of the attacker and repeated the experiments. The results
in Table XIII show that for datasets with a sufficient number
of samples, the ASR remains almost the same, indicating that
the trigger is still being calculated successfully. For smaller
datasets like ACI and BM, with fewer samples, there is a
noticeable drop in ASR; yet, in most cases, the attack remains
effective.

B. Frequency Mappings

Our Conv(·) mapping is strictly frequency-based. Each
category is assigned a real value in [0, 1] according to how
often it occurs in the dataset (plus a small ∆r to break ties).
Thus, there is always a one-to-one mapping between frequency-
mapped categories and their corresponding values in one-hot

11

https://www.kaggle.com/datasets/hosseinah1/poker-game-dataset/data

TABLE XIII: ASR when the attacker controls only 10% of the
data. The attack settings: µ = 1.0, ϵ = 0.02, target label=1.

Dataset
Model ACI BM CovType Credit Card HIGGS

FTT 90.63 60.55 100 99.42 100
Saint 93.35 81.33 100 99.65 100

TabNet 88.15 52.44 99.99 99.39 100
XGBoost 95.35 82.69 99.99 99.87 99.51

encoding or any other type of representation. This assures that
our method preserves the same semantics needed by neural
networks to learn and distinguish between categories of each
feature. However, our method might induce an extra semantic
to the domain knowledge for neural networks by representing
the occurrence of each category when the network learns its
relations with other co-occurred values in other features.

Another important aspect to notice is that when applying the
trigger, the frequency of the categories might change from the
original encoding. However, in our attack, the attacker reverts
back the dataset to its original values, so the defender would not
get suspicious of inconsistency between the frequency mapping
values and the frequency of categories in the contaminated
dataset, except by accessing the lookup table. Here, the lookup
table serves as a secret key, owned and used only by the
attacker. One more interesting question is what happens if the
user wants to use the raw frequency mappings as the default
encoding. Then, the user would still not be able to observe this
inconsistency, as the attacker conversion is only for poisoning
purposes. After poisoning is done, the poisoned dataset can be
converted again to another frequency mapping representation,
and the new lookup table is given to the user, but the user never
knows there was another lookup table owned by the attacker
for poisoning conversion. Even in the worst-case scenario, if
the user can obtain the lookup table, the frequency mappings
of the clean and poisoned datasets are close, barely raising
suspicion in the user. As an example, we demonstrate the Race
and Relationship frequency mappings in the ACI dataset in
Figure 4.

0
0.88772

0.96268
0.98885

0.99029

Race Category Values

0

5000

10000

15000

20000

Co
un

t

Race
Clean (Unpoisoned)
Poisoned

0
0.37053

0.6159
0.73886

0.88122
0.92571

Relationship Category Values

0

2000

4000

6000

8000

10000

Co
un

t

Relationship
Clean (Unpoisoned)
Poisoned

Fig. 4: Race and Relationship values before and after poisoning
in the ACI dataset.

C. Performance Under Distribution Shifts

To conduct further analysis, we designed two experiments
for observing attack performance under distribution shifts:

1) In our first experiment, we decided to randomly change the
distribution of the entire test set. For doing this, we iterate
through all samples, and for each sample, we randomly
pick 25% of all features, whether categorical or numerical
(thus, for each sample, the chosen features are different).
Then, for each chosen feature, we draw a new value
using a Gaussian distribution (within the valid range) and
substitute the new value with the old one. Then, we test
the model on this newly sampled dataset (containing a
new distribution). Table XIV shows that the attack is
successful under the presumed condition.

TABLE XIV: Distribution Shift Results on the ACI and Covtype
datasets. Attack settings: µ = 1.0, ϵ = 0.02, target label=1.

Dataset Model CDA (%) ASR (%)

ACI Saint 69.80 96.26
Tabnet 68.75 90.78

Covtype Saint 49.70 91.61
Tabnet 63.07 98.68

2) In our second experiment, we implemented concept drift
with retraining. Since there should be a pattern in concept
drift for the model to learn, we first choose 25% of the
columns randomly from the whole dataset (unlike the
previous experiment, this time the chosen columns are
fixed for all samples). Then, for each of these columns,
if they are categorical, we simply replace them with the
least common value for that category in the entire dataset.
If the column is numerical, we perform a covariate shift
on the values of that column.
To simulate covariate shift, we apply a sudden distribu-
tional change to a subset of samples in selected feature
columns. Let Dtrain and Dtest denote the training and test
datasets respectively, and let X ∈ Rn×d represent the
feature matrix with n samples and d features.
Let j ∈ {1, . . . , d} denote the index of a selected
numerical feature. We denote the values of this feature in
the training set as:

X
(j)
train =

{
x
(j)
i

}ntrain

i=1
.

We compute the empirical mean and standard deviation
of the feature in the training set:

µ
(j)
train =

1

ntrain

ntrain∑
i=1

x
(j)
i , σ

(j)
train =

√√√√ 1

ntrain

ntrain∑
i=1

(
x
(j)
i − µ

(j)
train

)2

.

We then define transformation parameters for drift:
* A random mean shift factor α ∼ U(0.1, 0.3)
* A random scale factor β ∼ U(0.1, 0.3)
Using these, we compute:

∆µ = α · σ(j)
train, γ = 1 + β.

The transformation applied to each selected test sample
x(j) is:

12

x
(j)
drifted =

(
x(j) +∆µ

)
· γ.

This results in a shifted and scaled version of the
original feature, effectively altering both the first and
second moments of the feature distribution. The operation
introduces a sudden covariate shift.
We apply the concept drift on the entire test set and
25% of the train samples randomly. Then we perform a
complete retraining of the model on the drifted training
set and evaluate the attack on the test set. The results are
demonstrated in Table XV. Results suggest that concept
drift and retraining together can impact the ASR; however,
this highly depends on the model.
As a takeaway, we can regard this as a possible solution
to mitigate the attack efficacy. Thus, by monitoring and
responding to distribution shifts (scheduled retaining),
practitioners can remove implanted triggers over time.

TABLE XV: Concept Drift (with retraining) Results on the
ACI and Covtype datasets. Attack settings: µ = 1.0, ϵ = 0.02,
target label=1.

Dataset Model CDA (%) ASR (%)

ACI Saint 84.08 99.43
Tabnet 85.23 19.38

Covtype Saint 92.32 91.5
Tabnet 92.24 24.29

IX. LIMITATIONS AND DISCUSSION

Imperceptibility refers to how unnoticeable the trigger is to
a human observer or simple statistical checks. Its focus is on
the input space (features), and the goal is to make the trigger
visually or statistically subtle so it does not raise suspicion [42].
Stealthiness, however, usually refers to how difficult the attack
is to detect by automated defenses or manual inspections, not
just in the input, but also in model behavior, the training
process, or data patterns. Its focus is on the training process,
model internals, and activation patterns [43]. Its goal is to
make the attack difficult for defenders to detect using anomaly
detection, activation clustering, or mitigating techniques. Thus,
the attack could be perceptible, yet highly stealthy, hiding from
all detection methods [43].

A variety of domain-specific metrics have been proposed to
quantify imperceptibility in non-tabular settings:

• Image Domain: Metrics based on Lp norms (e.g., L2,
L∞) measure the magnitude of pixel perturbations, while
perceptual similarity measures such as Structural Simi-
larity Index (SSIM) and Learned Perceptual Image Patch
Similarity (LPIPS) model human visual perception to
assess perturbation visibility [44], [45], [46]. Frequency-
domain metrics (e.g., DCT distortion) further ensure
that the trigger does not introduce atypical spectral
components.

• Text Domain: Metrics such as word-embedding distance
and perplexity change quantify the semantic drift intro-
duced by triggers. Approaches like BLEU and ROUGE

scores, alongside language model-based fluency measures,
evaluate whether inserted or substituted tokens remain
coherent in the sentence context.

• Voice Domain: Imperceptibility is measured by signal-
to-noise ratio (SNR), Mel-cepstral distortion (MCD), and
perceptual evaluation of speech quality (PESQ) to ensure
that the backdoor trigger (e.g., audio watermark) remains
inaudible or indistinguishable from natural background
noise.

One of the limitations we face during the current study is
the lack of an imperceptibility metric in the tabular domain.
Although we design our backdoor to be stealthy, there is no
accepted measure in the community so that we can calculate
how imperceptible the backdoor trigger is in tabular entry.
Though designing and proposing a new metric specific to
tabular data is out of the scope of this work, we try to illustrate
some aspects of a good imperceptibility metric tailored for
tabular data, and hope this can provide a good insight for
future studies. Similar to BlEU or SSIM, we assume that there
is a reference sample for the given synthetic sample (here,
we consider the original clean sample as the reference and
its corresponding backdoored sample as the synthetic). Let us
denote the synthetic row as

x = (x1, x2, . . . , xF)

against a real reference row:

y = (y1, y2, . . . , yF)

We assume that there is a tabular imperceptibility score denoted
as TIS. We believe that TIS should be a function that is
dependent on two important factors:

TIS = f(FLS, IF).

• Feature-Level Similarity (FLS): A per-feature score that
measures how similar each candidate feature is to its
reference counterpart.

• Interaction Fidelity (IF): A penalty/bonus component
that captures the similarity of pairwise (or higher-order)
interactions among features.

We conjecture that a good TIS should have these values
calculated in its process, either explicitly or implicitly. FLS
calculation might be just a distance measure (e.g., L2 distance).
However, calculating IF might be more complicated and vary
from dataset to dataset. For example, we assume there is a
tabular dataset consisting of different columns of patient data.
Age and BP (bacterial peritonitis) columns might be highly
correlated with each other. However, this is something that
could be known only by specialists or researchers who obtained
the correlation function between these features (e.g., through
linear regression). Thus, formulating these correlation functions
varies significantly between each dataset and may require the
assistance of a specialist in that field. We leave this as an open
question that might be an interesting topic for future studies.

13

X. RELATED WORK

The first backdoor attacks were introduced in [16], [47]. In
these works, the authors demonstrated that an attacker can
insert a backdoor into a trained model just by altering a few
training samples. A large number of different attacks have
been introduced since then, most of them targeting computer
vision [8], but also targeting different domains like graph neural
networks [48], language models [49], or speech processing [50].

Only a few works studied backdoors on tabular data. [10]
performed distributed backdoor attacks on federated learning.
For a backdoor on tabular data, the authors performed a
feature importance ranking and chose the 6 least important
features. For each of those chosen features, they set their
value to an outbound number larger than the maximum value
in the dataset. [12] conducted a more comprehensive study
on backdoors in tabular data, resulting in the Tabdoor attack.
Contrary to [10], the authors observed less of a relation between
feature importance and attack success rate. Since the authors
investigated more datasets, they suggested that using the most
important features results in a slightly higher attack success
rate. To improve over [10], they proposed two different attacks:
Out-of-bounds and In-bounds attacks. For Out-of-bounds, they
followed the same idea as in [10], but with fewer features.
The authors tried 1, 2, and 3 features and set their values
to 10% higher than the maximum values of each feature in
the whole dataset. Since the Out-of-bounds attacks can be
easily discovered as outliers, [12] performed the In-bounds
attack as their main contribution. For In-bounds, they chose
the top 3 most important features within the dataset and set
their values to the most common value for that feature. As
presented in previous sections, CatBack works significantly
better than Tabdoor, especially for more complex datasets.

[51] performs a data-free backdoor attack. They used an
approach similar to teacher-student type of training to induce
the trigger pattern in the victim model without accessing
the dataset. For this, they collect a substitute dataset (which
may be irrelevant to the main dataset) and try to implant the
trigger value inside the substitute dataset. For tabular data,
they chose ACI as their main task dataset and CovType as the
substitute. They selected two features of ACI (fnlwgt, sex) with
a fixed value and implanted them in the Covtype (with 20%
poisoning rate), while changing the label to target, and then fine-
tuned the victim model. Unfortunately, due to a significantly
different setup from ours (different models, types of attacks, and
different poisoning rates), direct comparison with our work is
not possible. [13] performs a backdoor on Binary click-through
rate (CTR) datasets using a Factorization model (Deep-FM).
To do so, they conducted a feature importance ranking based
on the Deep-FM embedding layer (they consider features with
higher average weight values to be more important). Then, they
select the top 4 most important features and set them to the
least frequent value. However, the authors did not provide the
code, and we could not reproduce the results. For this reason,
we did not consider this attack in our evaluation.

XI. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced a targeted backdoor attack
on tabular data by crafting a universal trigger pattern that
can be added to any input within the domain. By leveraging
frequency-based floating-point mapping for categorical values,
we unify all feature types into a continuous space and enable a
single, elastic-net-regularized perturbation to reliably shift any
sample toward an adversarial target. By enabling the trigger to
involve any column of a table, including categorical features,
we broaden the attack surface.

We evaluated CatBack across five widely used benchmark
datasets and four distinct models, achieving near-perfect attack
success rates (up to 100%) with negligible impact on clean-data
accuracy, under constraints such as 1% poisoning rate or only
10% auxiliary data access. Moreover, our evaluation against
state-of-the-art defenses shows that CatBack remains largely
undefeated, and it readily transfers to real-world cloud services,
such as Google Vertex AI.

These findings underscore the need for future studies to
rethink trust assumptions around tabular pipelines, including
the development of custom defenses for tabular data, such
as preprocessing-agnostic detection strategies, and incorporat-
ing robust certification for mixed-type inputs. Future work
could extend CatBack to dynamic, sample-specific triggers,
investigate defenses based on causal feature attribution, and
evaluate these threats in federated or privacy-preserving settings.
Ultimately, securing mission-critical domains such as finance
and healthcare will require holistic frameworks that treat tabular
ML with the same adversarial scrutiny long applied to vision
and language.

XII. ETHICAL CONSIDERATIONS

Our work investigates backdoor attacks for tabular data,
highlighting how efficient transformation of input data can lead
to high-performing and stealthy backdoors. While our goal is
to increase awareness about this attack vector, considering
the prevalence of tabular data in real-world applications,
we acknowledge that disclosing such vulnerabilities could
potentially be exploited for malicious purposes. All experiments
conducted in this research were designed to avoid exposing
sensitive data or causing real-world harm. Evaluations were
performed in controlled environments, using publicly available
datasets. Despite these precautions, we acknowledge that
revealing any new attack carries some risk. Still, we believe
that transparent disclosure of such vulnerabilities, combined
with responsible communication, benefits the community.

REFERENCES

[1] D. Ulmer, L. Meijerink, and G. Cinà, “Trust issues: Uncertainty estimation
does not enable reliable ood detection on medical tabular data,” in
Machine Learning for Health. PMLR, 2020, pp. 341–354.

[2] J. M. Clements, D. Xu, N. Yousefi, and D. Efimov, “Sequential deep
learning for credit risk monitoring with tabular financial data,” arXiv
preprint arXiv:2012.15330, 2020.

[3] F. Cartella, O. Anunciacao, Y. Funabiki, D. Yamaguchi, T. Akishita, and
O. Elshocht, “Adversarial attacks for tabular data: Application to fraud
detection and imbalanced data,” arXiv preprint arXiv:2101.08030, 2021.

14

[4] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting
deep learning models for tabular data,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 932–18 943, 2021.

[5] G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and
T. Goldstein, “Saint: Improved neural networks for tabular data via row
attention and contrastive pre-training,” arXiv preprint arXiv:2106.01342,
2021.

[6] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based models
still outperform deep learning on typical tabular data?” Advances in neural
information processing systems, vol. 35, pp. 507–520, 2022.

[7] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin, “When
machine learning meets privacy: A survey and outlook,” ACM Computing
Surveys (CSUR), vol. 54, no. 2, pp. 1–36, 2021.

[8] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A survey,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 35,
no. 1, pp. 5–22, 2022.

[9] B. Tajalli, S. Koffas, G. Abad, and S. Picek, “Elms under siege: A study
on backdoor attacks on extreme learning machines,” in Proceedings of
the 2024 Workshop on Artificial Intelligence and Security, 2024, pp.
125–136.

[10] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in International conference on
learning representations, 2019.

[11] B. Joe, Y. Park, J. Hamm, I. Shin, J. Lee et al., “Exploiting missing
value patterns for a backdoor attack on machine learning models of
electronic health records: Development and validation study,” JMIR
Medical Informatics, vol. 10, no. 8, p. e38440, 2022.

[12] B. Pleiter, B. Tajalli, S. Koffas, G. Abad, J. Xu, M. Larson, and S. Picek,
“Tabdoor: Backdoor vulnerabilities in transformer-based neural networks
for tabular data,” arXiv preprint arXiv:2311.07550, 2023.

[13] L. Meng, X. Gong, and Y. Chen, “Bad-fm: Backdoor attacks against
factorization-machine based neural network for tabular data prediction,”
Chinese Journal of Electronics, vol. 33, no. 4, pp. 1077–1092, 2024.

[14] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and
G. Kasneci, “Deep neural networks and tabular data: A survey,” IEEE
transactions on neural networks and learning systems, 2022.

[15] Google Cloud, “Train models with vertex ai (tabular data),” https://cloud.
google.com/vertex-ai/docs/training-overview#tabular, 2025, accessed:
2025-04-23.

[16] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7, pp.
47 230–47 244, 2019.

[17] E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning
models,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 1505–1521.

[18] S. Hong, N. Carlini, and A. Kurakin, “Handcrafted backdoors in deep
neural networks,” Advances in Neural Information Processing Systems,
vol. 35, pp. 8068–8080, 2022.

[19] G. Abad, J. Xu, S. Koffas, B. Tajalli, and S. Picek, “A systematic
evaluation of backdoor trigger characteristics in image classification,”
arXiv preprint arXiv:2302.01740, 2023.

[20] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[21] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[22] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learning,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 35,
2021, pp. 6679–6687.

[23] Amazon Web Services, “Built-in sagemaker ai algorithms for tabular data,”
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-tabular.
html, amazon SageMaker Developer Guide, accessed April 22, 2025.

[24] A. Dhurandhar, T. Pedapati, A. Balakrishnan, P.-Y. Chen, K. Shanmugam,
and R. Puri, “Model agnostic contrastive explanations for classification
models,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 2024.

[25] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[26] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[27] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[28] Ł. Delong and A. Kozak, “The use of autoencoders for training neural
networks with mixed categorical and numerical features,” ASTIN Bulletin:
The Journal of the IAA, vol. 53, no. 2, pp. 213–232, 2023.

[29] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[30] S. Koffas, B. Tajalli, J. Xu, M. Conti, and S. Picek, “A systematic
evaluation of backdoor attacks in various domains,” in Embedded Machine
Learning for Cyber-Physical, IoT, and Edge Computing: Use Cases and
Emerging Challenges. Springer, 2023, pp. 519–552.

[31] F. Richter. (2024) Amazon and microsoft stay
ahead in global cloud market. Accessed: 2025-04-
24. [Online]. Available: https://www.statista.com/chart/18819/
worldwide-market-share-of-leading-cloud-infrastructure-service-providers/

[32] Google Cloud, “Google cloud ai and security doc-
umentation,” https://cloud.google.com/vertex-ai/docs/
model-monitoring/monitor-explainable-ai, https://cloud.google.com/
security-command-center/docs/model-armor-overview, https://cloud.
google.com/security-command-center/docs/security-posture-overview,
2025, accessed: 2025-04-18.

[33] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
Advances in neural information processing systems, vol. 31, 2018.

[34] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE symposium on security and privacy (SP).
IEEE, 2019, pp. 707–723.

[35] W. Ma, D. Wang, R. Sun, M. Xue, S. Wen, and Y. Xiang,
“The ”beatrix” resurrections: Robust backdoor detection via
gram matrices,” in 30th Annual Network and Distributed
System Security Symposium, NDSS 2023, San Diego, California,
USA, February 27 - March 3, 2023. The Internet Society,
2023. [Online]. Available: https://www.ndss-symposium.org/ndss-paper/
the-beatrix-resurrections-robust-backdoor-detection-via-gram-matrices/

[36] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in International
symposium on research in attacks, intrusions, and defenses. Springer,
2018, pp. 273–294.

[37] M. A. Gordon, K. Duh, and N. Andrews, “Compressing bert: Studying
the effects of weight pruning on transfer learning,” arXiv preprint
arXiv:2002.08307, 2020.

[38] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What does bert
look at? an analysis of bert’s attention,” arXiv preprint arXiv:1906.04341,
2019.

[39] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush, “Block pruning for
faster transformers,” arXiv preprint arXiv:2109.04838, 2021.

[40] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial intelligence review, vol. 22, pp. 85–126, 2004.

[41] M. T. R. Laskar, J. X. Huang, V. Smetana, C. Stewart, K. Pouw, A. An,
S. Chan, and L. Liu, “Extending isolation forest for anomaly detection
in big data via k-means,” ACM Transactions on Cyber-Physical Systems
(TCPS), vol. 5, no. 4, pp. 1–26, 2021.

[42] Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow, and C. Raffel, “Imper-
ceptible, robust, and targeted adversarial examples for automatic speech
recognition,” in International conference on machine learning. PMLR,
2019, pp. 5231–5240.

[43] Z. Liu, F. Li, J. Lin, Z. Li, and B. Luo, “Hide and seek: on the stealthiness
of attacks against deep learning systems,” in European Symposium on
Research in Computer Security. Springer, 2022, pp. 343–363.

[44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[45] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 586–595.

[46] H. Wang, Z. Xiang, D. J. Miller, and G. Kesidis, “Mm-bd: Post-training
detection of backdoor attacks with arbitrary backdoor pattern types using
a maximum margin statistic,” in 2024 IEEE Symposium on Security and
Privacy (SP). IEEE, 2024, pp. 1994–2012.

15

https://cloud.google.com/vertex-ai/docs/training-overview#tabular
https://cloud.google.com/vertex-ai/docs/training-overview#tabular
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-tabular.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-tabular.html
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://cloud.google.com/vertex-ai/docs/model-monitoring/monitor-explainable-ai
https://cloud.google.com/vertex-ai/docs/model-monitoring/monitor-explainable-ai
https://cloud.google.com/security-command-center/docs/model-armor-overview
https://cloud.google.com/security-command-center/docs/model-armor-overview
https://cloud.google.com/security-command-center/docs/security-posture-overview
https://cloud.google.com/security-command-center/docs/security-posture-overview
https://www.ndss-symposium.org/ndss-paper/the-beatrix-resurrections-robust-backdoor-detection-via-gram-matrices/
https://www.ndss-symposium.org/ndss-paper/the-beatrix-resurrections-robust-backdoor-detection-via-gram-matrices/

[47] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[48] Z. Xi, R. Pang, S. Ji, and T. Wang, “Graph backdoor,” in 30th USENIX
security symposium (USENIX Security 21), 2021, pp. 1523–1540.

[49] X. Chen, A. Salem, D. Chen, M. Backes, S. Ma, Q. Shen, Z. Wu, and
Y. Zhang, “Badnl: Backdoor attacks against nlp models with semantic-
preserving improvements,” in Proceedings of the 37th Annual Computer
Security Applications Conference, 2021, pp. 554–569.

[50] T. Zhai, Y. Li, Z. Zhang, B. Wu, Y. Jiang, and S.-T. Xia, “Backdoor attack
against speaker verification,” in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2021, pp. 2560–2564.

[51] P. Lv, C. Yue, R. Liang, Y. Yang, S. Zhang, H. Ma, and K. Chen, “A data-
free backdoor injection approach in neural networks,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023, pp. 2671–2688.

APPENDIX A
EXAMPLE OF OUR ENCODING AND ATTACK ALGORITHM

Here, we demonstrate our encoding method through an
example. To this end, we consider a categorical feature j with
the following category counts:

Category vjl Count cjl
A 50
B 50
C 30
D 20

TABLE XVI: Category Counts for Feature j

Primary Mapping:

rjA = 50−50
50−1 = 0.0000, rjB = 50−50

50−1 = 0.0000

rjC = 50−30
50−1 ≈ 0.4082, rjD = 50−20

50−1 ≈ 0.6122

Determine ∆r:
• ∆rmin = 0.204
• Identify the largest single decimal component in ∆rmin:

– ∆rmin = 0.204 has the first non-zero decimal at the
first decimal place (p = 1).

• Set ∆r = 10−(p+1) = 10−2 = 0.01.
Apply Hierarchical Mapping:

r′jA = 0.0000 + (1− 1)× 0.01 = 0.0000

r′jB = 0.0000 + (2− 1)× 0.01 = 0.0100

r′jC = 0.4082

r′jD = 0.6122

Result:
Category vjl Original rjl Updated r′jl

A 0.0000 0.0000
B 0.0000 0.0100
C 0.4082 0.4082
D 0.6122 0.6122

TABLE XVII: Updated Numerical Representation After Hier-
archical Mapping

Lookup Table:
Referring to Table XVII, the lookup table Tj for feature j

is constructed as:
When an r′jl value of 0.0100 is encountered during reverse

mapping, the corresponding category retrieved from Tj is B.

Numerical Value r′jl Category vjl
0.0000 A
0.0100 B
0.4082 C
0.6122 D

TABLE XVIII: Lookup Table Tj for Feature j

Algorithm 1 CatBack: Universal Backdoor for Tabular Data
Require: Dorig, t,F , µ, β, λ, ϵ
Ensure: Backdoored model F ′

1: D ← Conv(Dorig) ▷ frequency-based encoding & tie-resolution
2: Train F on D
3: Dnt ← { (x, y) ∈ D | y ̸= t}}
4: for all (xi, yi) ∈ Dnt do
5: si ← ft(xi) ▷ softmax score for class t
6: end for
7: Sort Dnt by si descending
8: Dpicked ← top µ |Dnt| samples
9: Initialize δ ← 0 ∈ Rd

10: repeat
11: for all (xi, yi) ∈ Dpicked do
12: x̂i ← clip(xi + δ)
13: ℓi ← − log ft(x̂i) + β∥x̂i − Mode(D)∥1 + λ∥x̂i −

Mode(D)∥22
14: end for
15: δ ← δ − η∇δ

(
1

|Dpicked|
∑

i ℓi
)

16: Round categorical dimensions of δ to nearest valid r′jl
17: until convergence
18: Randomly select Dsel ⊂ D, |Dsel| = ϵN
19: for all xi ∈ Dsel do
20: x̂i ← clip(xi + δ), ŷi ← t
21: end for
22: D′ ← Revert

(
(D \Dsel) ∪ {(x̂i, ŷi)}

)
23: Preprocess D′ (OHE/embeddings/ordinal), train F ′ on D′ return F ′

APPENDIX B
DETAILED ATTACK RESULTS

In this section, we have included the results from our
experiments for all the hyperparameters we evaluated. In
particular, in Figures 5 to 9, we show ASR (solid lines) and
CDA (dotted lines) for our experiments for all datasets, models,
target labels, and µ values. In Figure 5, we see that our attack
achieves a performance of more than 80% in most cases.
Additionally, the performance slightly increases as we increase
the poisoning rate. In this case, both the µ and the target
label do not significantly influence CatBack’s performance.
In Figure 6, however, the target label can affect the attack
performance significantly in some cases. As BM is a relatively
small dataset, we believe that the small imbalance of the two
classes could lead to such differences. Class 0 corresponds to
53% of the dataset, and for this reason, the attack is slightly
more effective when the target class is 0. Additionally, in
Figure 6, when the FTT is used, we see that µ also affects
CatBack’s performance for both target labels, with µ = 1
leading to the best performance due to bigger perturbation
values. Similar results were seen for the rest of the datasets as
shown in Figures 7, 8, and 9.

16

Fig. 5: CatBack’s ASR and CDA vs. the poisoning rate for different µ using the ACI dataset.

Fig. 6: CatBack’s ASR and CDA vs. the poisoning rate for different µ using the BM dataset.

Fig. 7: CatBack’s ASR and CDA vs. the poisoning rate for different µ using the Credit Card dataset.

17

Fig. 8: CatBack’s ASR and CDA vs. the poisoning rate for different µ using the Forest Cover Type dataset.

Fig. 9: CatBack’s ASR and CDA vs. the poisoning rate for different µ using the HIGGS dataset.

APPENDIX C
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The evaluator can clone our code from
our publicly available repo https://github.com/catback-tabular/
catback.13

2) Hardware dependencies:

• CPU: Modern multi-core processor (Intel/AMD x86 64).
We have tested our code on Intel Xeon Platinum 8360Y
@ 2.40GHz.

• RAM: Minimum 8GB, recommended 16GB+ for larger
datasets. Our system has 32GB available.

• Storage: At least 16GB free space for datasets and model
storage.

• GPU: Needed for faster training (CUDA-compatible GPU
with 4GB+ VRAM). We have tested NVIDIA A100-
SXM4-40GB.

13We also provide our implementation through the following link (although
it is not updateable anymore and may become deprecated): https://doi.org/10.
5281/zenodo.17035715.

3) Software dependencies:

• Operating System: Linux (we run our experiments on
RHEL 9.4 and Ubuntu 24.04)

• Python: Version 3.8 or higher. We have run our experi-
ments with Python 3.11.3.

• CUDA: version 11.0+ for using GPU acceleration. We
have used CUDA 12.4.

• PyTorch: Compatible with CUDA version. We have tested
PyTorch 2.5.1+cu124.

Our code can be run on commodity hardware (standard desk-
top/laptop). GPU acceleration is optional, but it significantly
speeds up training.

4) Benchmarks: As we discuss in our repo’s README file,
we have run experiments on 5 datasets. The evaluator can test
these datasets through the following steps:

• Adult Census Income (ACI): Automatically downloaded
via shap.datasets.adult() when running the
code.

• Forest Cover Type (CovType): Automatically downloaded
via sklearn.datasets.fetch_covtype() when
running the code.

18

https://github.com/catback-tabular/catback
https://github.com/catback-tabular/catback
https://doi.org/10.5281/zenodo.17035715
https://doi.org/10.5281/zenodo.17035715

• Bank Marketing (BM): Download from Kaggle: Bank
Marketing Dataset and place bank.csv into ./data/.

• Credit Card Fraud (CreditCard): Download from
Kaggle: Credit Card Fraud Detection and place
creditcard.csv in ./data/.

• Download HIGGS.csv.gz from UCI Machine
Learning Repository: HIGGS and extract
HIGGS.csv. Then run the preprocessing script
data/HIGGS-preprocess.py to generate
processed.pkl. The preprocessing file is also
available at GitHub: tabular-backdoors. Finally, place
processed.pkl in ./data/.

• Download from Kaggle: Poker Game Dataset
and place poker-hand-training.csv and
poker-hand-testing.csv in ./data/.

B. Artifact Installation & Configuration

Our repo’s README file contains installation instructions.
The instructions are the following:

1) Clone the repository:

g i t c l o n e <r e p o s i t o r y − u r l>
cd c a t b a c k

2) Create a virtual environment, upgrade pip, and install
the required dependencies:

py thon −m venv env
. env / b i n / a c t i v a t e
py thon −m p i p i n s t a l l −− upgrade p i p
p i p i n s t a l l − r r e q u i r e m e n t s . t x t

We have pinned the versions in requirements.txt to match the
development environment for reproducibility.14 To resolve any
issues with these specific versions (e.g., due to OS or Python
version incompatibilities), the evaluator can install the latest
stable versions by removing the ==version part from the
file or using pip install <package> without versions.

C. Major Claims

Our major claim that can be reproduced by our public code
is the following:

• We applied our attack on five datasets and four models
(both neural networks and classical machine learning
methods), showing that it can generalize well in different
settings. In particular, our attack reached ≈ 100% attack
success rate in most cases. This claim is supported by
Table 1 in our paper.

14By using the term reproducibility, we do not mean that the experiments
will give identical results. We have not fixed any seed in our implementation
for this matter. Moreover, it is worth noticing that even by fixing the seeds,
the results will not be identical. This is due to the non-deterministic nature
of operations in machine learning and also the hardware differences when
running the experiments. Instead, by reproducible, we mean that the numbers
will be in close range.

D. Evaluation

To evaluate our experiments and reproduce Table IV the
evaluator can run our main script in the following way:

py thon s t e p b y s t e p . py −− d a t a s e t n a m e <d a t a s e t> \
−−model name <model> \
−− t a r g e t l a b e l <t a r g e t l a b e l > \
−− e p s i l o n <e p s i l o n>

The possible values for the dataset argument are: “aci”, “bm”,
“higgs”, “credit card”, “covtype”, “poker”. The values for the
models are: “ftt”, “tabnet”, “saint”, and “xgboost”. Finally
the values for epsilon are: 0.01, 0.02, 0.05, 0.1. Using all the
possible combinations for these values will reproduce Table IV.

The duration of running experiments highly depends on the
combination of the chosen dataset, model, and hyperparameters.
Also the environment and selected software and hardware (e.g.,
OS, GPU type) highly affects the duration. For example, with
our settings, the experiments could finish in as little as 5
minutes when using the Bank Marketing dataset, whereas the
HIGGS dataset had the longest running time and could take
several hours to finish (e.g., with our settings, it took around
26 hours to finish one Tabnet experiment on HIGGS).

19

https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset
https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud/data
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://github.com/bartpleiter/tabular-backdoors
https://www.kaggle.com/datasets/hosseinah1/poker-game-dataset/data

	Introduction
	Background
	Backdoor Attacks
	Characteristics of Tabular Data
	Machine Learning Models for Tabular Data

	Threat Model
	Attacker's Capabilities and Objectives

	Converting Categorical Features
	Primary Frequency-based Mapping
	Adaptive r Selection
	Identifying and Resolving Ties
	Final Numerical Representation
	Reverse Mapping

	Attack Methodology
	Initial Model Training
	Selection of Non-target Samples
	Confidence-based Sample Ranking
	Definition of the Backdoor Trigger
	Optimization of the Trigger Pattern
	Construction of the Poisoned Dataset
	Training the Backdoored Model
	Deployment and Attack Activation
	Hyperparameter Considerations
	Black Box Attack

	Evaluation and Results
	Environment and System Specification
	Evaluation Metrics
	Benign Accuracies
	Attack Results
	Baselines
	Additional Threat Scenario
	Evaluation on Vertex AI

	Evaluation Against Defenses
	Spectral Signatures
	Neural Cleanse
	Beatrix
	Fine Pruning
	Evaluation with the Outlier Detection Algorithms

	Ablation Studies
	Partial Access to Training Data
	Frequency Mappings
	Performance Under Distribution Shifts

	Limitations and Discussion
	Related Work
	Conclusions and Future Work
	Ethical Considerations
	References
	Appendix A: Example of Our Encoding and Attack Algorithm
	Appendix B: Detailed Attack Results
	Appendix C: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation

