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Abstract—With the growing adoption of virtualized GPUs in
cloud computing, the potential security implications associated
with GPU sharing among multiple tenants have largely been
overlooked. This paper takes a foundational step in revealing these
risks by investigating information leakage through GPU microar-
chitectural components. Specifically, we develop a Prime+Probe
attack primitive tailored to the translation lookaside buffers
(TLBs) in virtualized NVIDIA GPUs. We discuss several unique
challenges posed by the GPU virtualization environment and
demonstrate how our design effectively overcomes them. Leverag-
ing this primitive, we conduct two cross-VM side-channel attack
case studies in a cloud setting: a cheating exploit in the game
Counter-Strike 2 that reveals hidden opponents and a website
fingerprinting attack that identifies web pages browsed by users of
virtual desktops. To the best of our knowledge, these are the first
side-channel attacks demonstrated against virtualized GPUs in
cloud settings, highlighting previously unknown security risks that
warrant further investigation.

I. INTRODUCTION

Modern graphics processing units (GPUs) have evolved from
fixed-function rendering pipelines into fully programmable par-
allel processors capable of accelerating a diverse range of
workloads. In tandem with this evolution, there has been a rapid
shift towards the adoption of such devices in data centers. As of
now, a large number of cloud service providers (CSPs) around
the world have made GPU-powered virtual machines (VMs)
available to their customers.

Initially, GPU offerings in the cloud were limited to ded-
icated instances. Driven by the objectives of reducing opera-
tional costs and increasing price competitiveness, many CSPs
have recently started relying on state-of-the-art virtualization
technologies (e.g., NVIDIA vGPU [1]) to efficiently allocate
and share GPU resources among multiple users. Examples
of major CSPs that offer VMs powered by virtualized GPUs
include Microsoft Azure [2], Vultr [3], Alibaba Cloud [4], and
Tencent Cloud [5].

Certainly, given the economic advantages and reliable per-
formance, tenants who do not need access to a dedicated GPU
also find it appealing to share a virtualized GPU in the cloud.
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However, despite the considerable benefits and broad deploy-
ment of GPU virtualization, its security implications, especially
potential information leakage, have rarely been investigated.
Such an oversight may be problematic as various use cases of
virtualized GPUs actually involve sensitive information from
the tenants, and it can lead to unanticipated breaches of confi-
dentiality.

For instance, Desktop-as-a-Service (DaaS) solutions, which
have lately gained significant popularity in the cloud computing
market, often incorporate virtualized GPUs to enhance user
experience and cater to visually demanding applications [6].
Like personal computers, the virtual desktops of DaaS users
typically contain a wealth of private information, and precau-
tions should be taken if information leakage via virtualized
GPUs is possible. This and other similar scenarios highlight
the necessity to start studying any conceivably overlooked
implications.

In this paper, we present the first investigation into this mat-
ter through the lens of microarchitectural components in virtu-
alized NVIDIA GPUs, which are widely deployed in clouds.
Specifically, we focus on exploiting the translation lookaside
buffers (TLBs) in these GPUs to mount cross-VM side-channel
attacks. To this end, a Prime+Probe attack primitive tailored
to such a component is needed. Even though Prime+Probe
is a well-established technique, we find that formulating an
effective primitive for virtualized GPU environments is actually
very challenging.

One major technical hurdle lies in how to precisely manipu-
late GPU TLB states. This, in turn, requires two key capabili-
ties: (1) deriving the TLB set hash functions, and (2) obtaining
enough GPU memory pages to populate the targeted TLB sets.
While prior work has demonstrated how to reverse-engineer
the TLB set hash functions in NVIDIA GPUs [7], achieving
the second capability is in fact non-trivial under the memory
management constraints of the NVIDIA vGPU runtime. (vGPU
is the technology for NVIDIA GPU virtualization [1].) Specifi-
cally, vGPU restricts CUDA applications to allocating memory
only in 2 MB pages. With this page size and a modest portion
of GPU memory granted to each VM, it becomes extremely
difficult to fully evict any TLB sets at the lower levels of the
GPU TLB hierarchy in CUDA.

Beyond the challenge introduced by vGPU’s memory man-
agement constraints, the execution model of vGPU presents
additional complexities that are not encountered in traditional



Prime+Probe scenarios. Under vGPU, GPU contexts from
different VMs never run in parallel; instead, they are scheduled
in a time-sharing fashion with millisecond-scale quanta. Hence,
priming and probing operations should be carefully orches-
trated to straddle the vGPU time slice boundaries and remain
isolated from each other. Moreover, a vGPU time slice allows
a graphics-intensive workload to exercise many TLB sets, so a
simple “was this set accessed?”” metric may reveal little victim
information.

Further to the intricacies already discussed, simultaneously
monitoring many TLB sets also demands a list of GPU-specific
refinements. For instance, the assignment of threads for priming
and probing targeted TLB sets needs careful planning due to the
GPU’s single instruction multiple thread execution paradigm,
the hierarchical properties of the GPU TLB structure, and the
CUDA thread block distribution policy; otherwise, threads may
interfere with each other and thus distort timing measurements.
Even with a proper thread-to-TLB set arrangement, the probing
phase still needs more coordination, as we discover that launch-
ing too many probes at once creates spurious TLB misses.

In this work, we have addressed all these challenges and
developed an effective Prime+Probe attack primitive for
monitoring GPU TLB access patterns under vGPU settings
commonly employed in clouds. Although there has been prior
work applying Prime+Probe to GPU TLBs [7], we should
highlight that many of the aforementioned challenges do not
exist in the previously studied environments; hence our de-
sign actually differs substantially from earlier efforts (see Sec-
tion VIII for details). To demonstrate the practicality of the
primitive, we perform the first-ever cross-VM side-channel
attacks on virtualized GPUs. Our findings emphasize the need
for further investigation into the security implications of GPU
sharing, a topic that has so far received insufficient attention.

The main contributions of this work include:

1) We have developed a method for reliably constructing
TLB eviction sets despite the memory management con-
straints imposed by the vGPU runtime. In particular, we
discover that GPU memory allocated through graphics
rendering APIs like Vulkan uses 64KB pages and main-
tains this page size when imported into CUDA. This
allows us to overcome the technical barriers to precisely
manipulating TLB states in vGPU setups.

2) We have formulated a Prime+Probe attack primitive
tailored for TLBs in virtualized NVIDIA GPUs. The prim-
itive addresses several unique challenges in the vGPU
environment, including orchestrating parallel monitoring
of multiple TLB sets while accounting for time-sharing
execution of GPU contexts, achieving proper synchroniza-
tion between thread blocks to avoid interference during
priming and probing operations, and reliably measuring
fine-grained contention patterns in TLB sets.

3) We have demonstrated the practicality of our attack prim-
itive using two case studies. The first one is a cheating
exploit in the popular esports game Counter-Strike 2 that
allows detecting hidden opponents, showing that even
with modern occlusion culling techniques, sensitive infor-

mation can still leak through GPU TLB access patterns.
The second one is a website fingerprinting attack, capable
of identifying web pages browsed by users of virtual
desktops with an accuracy of up to 91%.
To our knowledge, this is the first work on microarchitectural
side-channel attacks targeting virtualized GPUs currently avail-
able in real public cloud environments.

Responsible disclosure: We have disclosed our findings to
NVIDIA and shared a proof-of-concept (PoC) with its de-
velopment team. NVIDIA initially placed an embargo on the
disclosure, yet lifted it on March 21, 2025, after determining
that the issue is not a bug. NVIDIA also mentioned that TLB
isolation will be enhanced in its newer GPU architectures.

Availability: The PoC implementation of our attack primitive
is available at https://github.com/0Ox5ec 1 ab/vgpu-tlb-exploit.

II. BACKGROUND

In this section, we briefly describe the architecture of modern
GPUs, their programming, and their virtualization. To maintain
clarity, we focus on elements essential to understanding our
work.

A. GPU Architecture

In NVIDIA GPUs, compute resources are organized hierar-
chically. At the top level of the structure are several Graphics
Processing Clusters (GPCs). Each GPC comprises multiple
Texture Processing Clusters (TPCs), and each TPC houses two
Streaming Multiprocessors (SMs). SMs are the fundamental
compute units in GPUs. Each SM is highly multi-threaded
and executes threads in groups called warps, following the
Single Instruction, Multiple Threads (SIMT) model (i.e., the
threads in a warp execute in lockstep). On NVIDIA GPUs, each
warp consists of 32 threads. A hardware scheduler within each
SM switches the execution of multiple warps in a fine-grained
manner.

GPUs are equipped with dedicated on-board memory, inde-
pendent of the CPU’s main memory. Prior to the execution of
a GPU program, its code and data are first copied to the GPU’s
on-board memory. GPU memory is virtualized using paging.
SMs generate virtual addresses, which are translated to physical
addresses by the GPU’s memory management unit (MMU)
using page tables set up by the GPU driver. Each running GPU
program, termed as a GPU context, has its own page table.
When translating virtual addresses, the MMU walks through
the page tables.

Page table walks are expensive, and like its counterpart in
CPUs, the MMU in GPUs employs TLBs to cache recently
used translations to avoid many such walks. In [7], Zhang et
al. revealed that NVIDIA GPUs feature three levels of TLBs:
Each TPC has an L1 iTLB and an L1 dTLB for instruction
and data translations, respectively. Each GPC has a unified L2
TLB, and all GPCs share a unified L3 TLB. Both L1 TLBs are
fully-associative with 16 entries each, whereas the L2 and L3
TLBs are 8-way set-associative. Interestingly, each entry in the
L2 and L3 TLBs further contains 16 sub-entries, effectively in-
creasing their reach. The least recently used (LRU) replacement
policy is used at all TLB levels (L1, L2, and L3).
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B. GPU Programming

GPUs can be programmed in two primary ways: through
traditional graphics rendering APIs and via general-purpose
computing frameworks. Graphics rendering APIs, such as
OpenGL [8], DirectX [9], and Vulkan [10], enable developers
to write shader programs. Shader programs are specialized
pieces of code that run on a GPU and handle tasks ranging from
transforming 3D vertex coordinates to applying textures and
producing visual effects. In essence, they define how graphics
are processed and rendered on the screen.

Alternatively, GPUs can be leveraged for general-
purpose computing using frameworks like CUDA [11]
and OpenCL [12]. These frameworks allow developers to write
parallel programs for a wide range of computational tasks
beyond graphics rendering. In this approach, computations are
defined in functions called kernels. When a kernel is launched,
it executes as a configured grid of thread blocks, with each
block containing a specified number of threads that operate
concurrently. The framework’s runtime system automatically
distributes the thread blocks across the GPU’s SMs for parallel
execution. Currently, the maximum number of threads per
thread block is 1024 (i.e., 32 warps). Note that compute
shaders in graphics rendering APIs can also perform arbitrary
computations; however, they are more cumbersome to use than
these frameworks.

C. GPU Virtualization

A number of CSPs have adopted NVIDIA’s virtual GPU
(vGPU) technology in their clouds to enable GPU sharing
among tenants. As illustrated in Figure 1, the vGPU architec-
ture centers upon a manager program running in the hypervi-
sor. This manager creates VGPU instances and partitions GPU
memory for them. Each vGPU instance can be assigned to a
VM, and from the viewpoint of the VM, the instance appears
like a directly attached physical GPU.
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Fig. 1: NVIDIA vGPU architecture.

Although vGPU enables multiple tenants to share a GPU,
it is important to note that the execution of GPU programs in
VMs is not carried out in parallel but rather in a time-sharing
manner. Fundamentally, there is a scheduler that allocates time
slices to each VM’s vGPU instance, and during the allocated
periods, the GPU contexts in the corresponding VM gain exclu-
sive access to the underlying GPU compute resources. Overall,
three scheduling policies are supported [1]:

o Best effort, which enables vGPU instances to compete for
available GPU processing cycles.

e Equal share, which equally assigns GPU processing cycles
to each turned-on vGPU instance.

o Fixed share, which allocates a constant proportion of GPU
processing cycles to a vGPU instance as per the maximum
number of such instances that can be created.

Unless explicitly configured in the hypervisor to adopt equal or

fixed share, the best effort policy is used by default. Appendix B

provides some examples to elucidate these policies.

Note that NVIDIA also offers another virtualization tech-
nology called multi-instance GPU (MIG) for some of their
high-end GPUs like A100 and H100. However, MIG-created
GPU instances currently do not support graphics rendering
APIs [13], and thus they are primarily used for DNN training
and high-performance computing workloads, but not suitable
for use cases like virtual desktops. In this paper, we focus
on vGPU technology since it supports virtualization across all
server-grade GPUs (including A100 and H100) and has been
widely adopted in public cloud environments.

III. THREAT MODEL

Our focus is on cloud environments where users can rent
vGPU-powered VMs. This service model has become prevalent
in practice, with notable examples including Microsoft Azure’s
NVadsA10-v5 series [2], Alibaba Cloud’s sgn/vgn instance
families [4], Tencent Cloud’s GNV4v rendering instances [5],
and Vultr’s shared GPU offerings [3].

A legitimate user, whom we refer to as the victim, leverages
such a VM to run GPU-accelerated applications like virtual
desktops or cloud gaming. An attacker in our model is a ma-
licious user who operates within the same cloud environment.
We assume that the attacker achieves GPU co-residency with
the victim (i.e., the vGPUs assigned to them are instances of
the same physical GPU). The attacker has no special privileges
beyond standard control over their own VM. We do not assume
the existence of any software vulnerabilities or access to shared
resources other than the GPU. The attacker’s objective is to
steal sensitive information from the victim through the victim’s
use of the virtualized GPU.

IV. ATTACK OVERVIEW

Under the outlined threat model, we aim to exploit GPU
TLBs to mount cross-VM side-channel attacks. Specifically, we
develop a Prime+Probe-based technique that enables us to
effectively manipulate and monitor GPU TLB states to infer
sensitive information across VM boundaries. In the following,
we first justify our choice of the GPU TLB as the attack
vector, and then we discuss several unique challenges that
need to be addressed when implementing the corresponding
Prime+Probe attack primitive.

A. Why GPU TLBs?

The rationale behind leveraging the GPU TLB side channel
stems from vGPU’s operational characteristics: (1) Since vGPU
employs time-sharing execution, where GPU contexts from
different VMs cannot run in parallel, stateless side channels that
rely on simultaneous resource contention (e.g., the NoC [14] or
PClIe [15]) are ruled out, making stateful channels necessary;
(2) While both GPU caches [16] and TLBs [7] can serve as



stateful side channels due to their persistent nature, GPU TLBs
can offer more stable and less noisy information leakage in our
scenario for multiple reasons.

First, GPU contexts typically operate on large datasets that
can easily overwhelm GPU data caches, particularly given
that a VM’s allocated time slice often spans milliseconds,
long enough for GPU contexts to access substantial amounts
of data. In contrast, GPU TLBs are designed with extensive
reach [7], making them far more resilient to capacity pressure.
Second, GPU caches are physically addressed and their set hash
functions are highly non-linear and remain unknown despite
reverse-engineering attempts, whereas GPU TLBs are virtually
addressed with fully-revealed hash functions, giving attackers
greater convenience and control.

Furthermore, we discover that GPU contexts in the vGPU
setting retain fixed virtual addresses, regardless of whether
address space layout randomization (ASLR) is enabled. While
ASLR can randomize addresses in native GPU environments,
our experiments show that on vGPUs, each GPU program
consistently uses the same virtual addresses. This benefits at-
tackers as the victim’s GPU TLB access pattern becomes more
deterministic. Thus, GPU TLBs are preferred over GPU caches
for side-channel attacks in vGPU environments.

B. Challenges

To enable cross-VM side-channel attacks that exploit TLBs
in virtualized GPUs, we devise a Prime+Probe primitive.
While the basic concept follows the traditional Prime+Probe
methodology [17], [18], implementing such a primitive under
the vGPU setting poses several unique challenges:

e As with other Prime+Probe attack primitives, ours re-
quires the ability to construct proper eviction sets. While
a GPU’s TLB set hash functions can be fully reverse-
engineered, the real difficulty lies in the runtime constraints
imposed by vGPU and intrinsic safeguards, which make it
infeasible to reliably fill arbitrary target sets within a single
programming paradigm (see Section V-A).

e Our Prime+Probe primitive aims to simultaneously mon-
itor all sets of the last-level TLB. While the GPU’s massive
threads allow parallel manipulation of multiple sets, the spe-
cial properties of GPU TLBs and the vGPU’s time-sharing
execution model demand careful consideration during prim-
ing and probing operations, including their preparation, or-
chestration, and synchronization (see Section V-B).

o A single vGPU time slice is typically long enough for
graphics-intensive workloads to access many TLB sets,
making it difficult to derive meaningful information solely
by determining whether a set is accessed or not through
Prime+Probe. Moreover, cache activities during each
vGPU time slice significantly complicate the reliable deter-
mination of TLB access patterns (see Section V-C).

V. ATTACK PRIMITIVE CONSTRUCTION

In this section, we present the construction of our attack
primitive that enables Prime+Probe on GPU TLBs in the

vGPU-supported cloud environment. To facilitate our discus-
sion, we use the NVIDIA A10 GPU as our running example,
as it has become the de facto choice for vGPU offerings in
practice [2], [4], [5]. Utilizing the toolset from [7], we reverse-
engineered the TLB structure of the A10 GPU, which is illus-
trated in Figure 2.
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Fig. 2: TLB structure of NVIDIA A10 GPU.

The A10 GPU consists of 6 GPCs, which share an L3 TLB
with 256 sets. Each GPC contains 6 TPCs that share an L2 TLB
with 128 sets. As usual, each TPC includes two SMs, which
share an L1 iTLB and an L1 dTLB. Regarding TLB properties,
only the number of sets in the L2 and L3 TLBs varies by GPU
model, but other ones (e.g., associativity, replacement policy,
and sub-entries) remain consistent across all NVIDIA GPUs,
as described in Section II-A.
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Fig. 3: A10’s L2 and L3 TLB set hash functions for 64KB pages, where ‘x’
denotes ‘0’. Each bit in set index is computed by XORing the results of each
matrix row’s bitwise multiplication with 27 virtual address bits [46 : 20].
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Both L2 and L3 TLBs use hash functions to map GPU
virtual addresses to specific sets. According to [7], these hash
functions vary depending on the page size. Using the reverse-
engineering method described in [7], we obtained the A10’s
L2 and L3 TLB set hash functions for 64KB pages, which are
presented in Figure 3.

A. Establishment of Priming Capability

As the foundational step, we need to establish our ability
to reliably prime any GPU TLB sets of interest. Although the
already-derived TLB set hash functions allow us to determine
which specific L2/L.3 TLB set a GPU virtual address is mapped
to, we find that priming a set in a vGPU-powered VM is
actually a non-trivial problem.

First, programming directly in CUDA cannot achieve the
priming goal. By default, CUDA uses 2MB GPU memory
pages, and for this page size, each L2/L.3 TLB entry covers a
32MB-aligned GPU virtual address range. Given the linearity
of GPU TLB set hash functions, it indicates that to prime an
arbitrary L2 TLB set on an A10 GPU, we need the availability
of at least a 32GB GPU virtual address range (32MB per entry
x 8 entries per set x 128 sets). Similarly, as the L3 TLB
has 256 sets, priming one of its sets requires the availability
of at least a 64GB GPU virtual address range. In CUDA,
unless a special feature named unified virtual memory (UVM)
is enabled and used, there is no support for demand paging (i.e.,
each page must have its page frame allocated). Consequently,



having a 32GB/64GB virtual address range requires allocating
the same amount of GPU physical memory.

However, the common size of an A10 vGPU instance’s phys-
ical memory ranges from 4GB to 12GB, far too small to ac-
commodate our priming needs. Actually, even a non-virtualized
A10 GPU, with its total 24GB physical memory, cannot meet
such requirements. The reverse-engineering approach in [7]
primes GPU TLBs with the help of UVM, which supports not
only demand paging but also the use of 64KB pages. While the
UVM-based solution works in non-virtualized native settings,
it is unfortunately not applicable in our case, because UVM is
disabled in vGPU environments (refer to Appendix C for more
details).

We observe that, in contrast to CUDA, graphics rendering
APIs like Vulkan use 64KB memory pages by default. With
this smaller page size, each L2/L3 TLB entry covers only a
IMB-aligned GPU virtual address range. Accordingly, priming
an arbitrary L2 TLB set on an A10 needs only a 1GB virtual
address range, and priming an arbitrary L3 TLB set requires
just 2GB. These reduced requirements fall well within the
physical GPU memory limits of typical vGPU instances. This
observation suggests relying on graphics rendering APIs to
construct the primitive. However, unlike in CUDA, retrieval of
GPU virtual addresses is not well supported in these APIs',
and more problematically, graphics rendering runtimes employ
a Timeout Detection and Recovery (TDR) mechanism that
forcibly terminates any shader executing beyond a very short
time limit (e.g., 1-2 seconds), making it impractical to contin-
uously perform Prime+Probe operations.

The complementary strengths of CUDA and graphics ren-
dering APIs motivate us to try integrating their features. In
particular, we notice that Vulkan provides functionality to
export its allocated memory objects, while CUDA supports
importing external memory objects. Hence, we consider having
Vulkan allocate GPU memory structured in 64KB pages and
then importing it into CUDA for better programmatic control.
Nevertheless, CUDA has been shown to merge multiple 64KB
pages into 2MB pages in UVM contexts [7], raising a critical
question: When importing Vulkan-allocated GPU memory into
CUDA, will the original 64KB pages be preserved or merged
into CUDA’s default 2MB pages?

To examine whether the 64KB page size is maintained or
not, we conduct experiments in both native and virtualized
environments. In the native case, we dump GPU memory to
extract page tables and confirm that all the imported 64KB
pages are not merged. However, this does not guarantee the
same outcome for the vGPU setting, where runtime features
can differ (e.g., vGPU does not have UVM). Since directly
dumping GPU memory is more challenging in vGPU environ-
ments, we rely on timing measurements for verification.

To this end, in a vGPU-powered VM, we measure the access
times for imported Vulkan-allocated GPU memory of varying

lAlthough Vulkan provides an extension VK_KHR_buffer_device_-
address to query a buffer’s device address, we find that it actually returns
incorrect GPU virtual addresses.
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Fig. 4: Access time comparison between imported Vulkan-allocated memory
and native CUDA-allocated memory for varying chunk sizes.

sizes. Given an imported memory chunk, we sequentially tra-
verse it with a IMB stride and then perform 1,000 iterations of
this traversal to compute the average access time. The chunk
size starts at 256MB and is incremented by 256MB in each ex-
periment until reaching 3GB. For comparison, we also measure
the access times for native CUDA-allocated GPU memory. The
results are depicted in Figure 4. For the imported memory, we
observe that access time jumps noticeably when the chunk size
exceeds 1GB, indicating frequent L2 TLB misses, followed
by even larger jumps beyond 2GB due to L3 TLB misses. In
contrast, access times for CUDA-allocated memory increase
almost linearly with chunk size. This behavior confirms that
Vulkan-allocated memory maintains its 64KB page size when
imported into CUDA in the vGPU setting.

We also empirically verified that such Vulkan-CUDA inter-
operability is available in public cloud vGPU offerings (see Ap-
pendix C). Thus, our approach effectively removes the hurdle.

B. Formulation of Prime+Probe

With the needed priming capability in place, we now turn
to designing an effective Prime+Probe attack primitive on
GPU TLBs. Our focus is on exploiting the shared last-level L3
TLB as a channel for information leakage. Taking advantage of
the GPU’s massively parallel thread execution, we can simulta-
neously monitor the access patterns across all its sets. Figure 5
depicts our design in a nutshell.
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victim op 13TIBsets [ |&]
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Fig. 5: Design of the attack primitive in a nutshell.

The CUDA kernel responsible for Prime+Probe is
launched with the configuration <<<X, Y>>>, where X spec-
ifies the number of thread blocks and Y specifies the num-
ber of threads per block. On NVIDIA GPUs, thread blocks
are distributed across SMs in a round-robin fashion, first cy-
cling through even-numbered SMs (0, 2, 4, ...) and then odd-
numbered SMs (1, 3, 5, ...), with each thread block assigned
sequentially to the next SM. In our design, we require X to be at
least half of the total SMs, which ensures complete coverage of
all TPCs since each TPC houses two consecutively numbered
SMs (one even and one odd). This full TPC coverage inherently
means that all the GPCs, as the higher-level structure, are also
covered.

We also aim to evenly divide the workload of priming and
probing L3 TLB sets among the participating SMs, with each



SM in charge of an equal number of sets. As described later, the
launch parameter Y is set to 32 times the number of L3 TLB sets
assigned to each SM, reflecting the 32 threads in a warp. For
instance, on the A10 GPU, which has 72 SMs and 256 L3 TLB
sets, we utilize 64 SMs, with each SM handling the priming and
probing of exactly four L3 TLB sets; accordingly, the kernel
is launched with <<<64, 128>>> (i.e., each SM running 4
warps). In the following, we will discuss our primitive’s design
in detail.

1) Evicting L1 and L2 TLBs: Although the L3 TLB is the
target of our Prime+Probe, its non-inclusive nature neces-
sitates consideration of both the L1 and L2 TLBs. In each
Prime+Probe cycle, entries in these upper-level TLBs must
be evicted to ensure access to the L3 TLB. Hence, in our
primitive, we first fully evict the L1 and L2 TLBs before
priming L3.

The L1 dTLB of a TPC and the unified L2 TLB of a
GPC can be easily evicted by accessing a sufficient number
of data pages. Since the L1 dTLB is always 16-way fully-
associative [7], we evict its entries by having each thread in
an SM access one of 16 64KB pages, with the specific page
indexed by (thread-id % 16). The L2 TLB, on the other hand,
has significantly more entries, but the abundance of threads in
each SM suggests that each thread only needs to access a few
pages to achieve eviction. For example, each L2 TLB in A10
has 1024 entries, and thus each of the 128 threads in an SM
just needs to access 8 data pages to fully evict the L2 TLB of
the SM’s associated GPC, with the pages selected according to
the reverse-engineered hash function Hy, shown in Figure 3.

To evict the L1 iTLB of each TPC, which is also fully-
associative and always has 16 entries [7], an SM shall access
at least 16 code pages. CUDA does not provide direct support
for creating arbitrary code pages, but we work around this by
defining 16 distinct dummy functions, each of which occupies
a single page. Since CUDA also uses the 2MB page size
for code, each dummy function must be large enough to fill
an entire page. As shown in Figure 6, we have the body of
each dummy function leverage CUDA’s #pragma unroll
directive for loop unrolling to achieve the 2MB size. Nested
loops are used because CUDA’s compiler nvcc imposes a
maximum limit on unrolling a single loop. For the A10 GPU
(Ampere architecture), we find that setting OUTER_NUM to 2
and INNER_NUM to 6000 suffices.

I if (!jump_over) {
2 #pragma unroll OUTER NUM

3 for (i = 0; i < OUTER_NUM; ++i) {
4 #pragma unroll INNER NUM

5 for (j = 0; j < INNER_NUM; ++3j)
6 sum += clock64();

8 )
Fig. 6: 2MB page-sized dummy function for L1 iTLB eviction.

Every dummy function takes a jump_over parameter that
allows us to skip the huge loop body while still accessing the
code page. In an SM, each thread only needs to call the dummy
function indexed by (thread-id % 16), with jump_over set to
true, to completely evict the L1 iTLB of the SM’s associated

TPC.

2) Priming and Probing L3 TLB Sets: After evicting entries
from the L1 and L2 TLBs, we proceed to prime individual L3
TLB sets. Note that, unlike the eviction of L1 and L2 TLBs
where threads in a warp are allowed to access different pages at
the same time, we use warps as the operational unit for priming
and probing L3 TLB sets, with all 32 threads in a warp working
together in lockstep. This warp-based design is essential for
the probing phase due to the execution semantics of the GPU’s
SIMT model, where all threads in a warp take the same amount
of time to execute even if some may require less. To maintain
a uniform access pattern, warps are adopted as the operational
unit for priming as well.

For each L3 TLB set, the reverse-engineered hash function
(e.g., Hy3 for the A10 GPU shown in Figure 3) is applied to
construct an eviction set — a sequence of data pages linked via
pointer chasing whose translations populate the L3 TLB set.
With its eviction set, each L3 TLB set is primed by a dedicated
warp in an SM. Specifically, when priming an L3 TLB set,
all 32 threads in the assigned warp collectively traverse the
corresponding eviction set by following the pointer chain.

After priming the L3 TLB sets, we must wait for our GPU
context to be switched out so another VM’s GPU context can
be scheduled to execute. Only when our context regains control
can we perform the probing operation. In [16], two methods
for detecting GPU context switches in native environments
are introduced, and we find both applicable in vGPU envi-
ronments as well. For the A10 GPU, the simpler loop-based
waiting method is effective. This method leverages the GPU’s
timestamp counter to monitor the time taken by iterations in a
tight loop; when a loop iteration takes significantly longer than
previous ones, it indicates that our GPU context was switched
away and has now regained control. Note that the large counter
difference observed in such cases approximates the duration of
the time slice allocated to the other VM.

The probing operation begins once our GPU context is
resumed. As mentioned earlier, each warp is responsible for
probing one L3 TLB set, that is, all 32 threads in a warp traverse
the corresponding eviction set in lockstep to measure access
time. However, note that, when an L3 TLB set is primed by a
warp in an SM, the translations for the pages in the eviction set
are also cached in the L1 dTLB of the SM’s TPC and the L.2
TLB of its GPC. As a result, warps in the same SM or any other
SMs within the same GPC should not be used to probe that L3
TLB set to avoid accessing these upper-level TLBs.

To address this issue, we carefully orchestrate the priming
and probing operations. Specifically, for a group of L3 TLB
sets, if warps in thread block n are assigned to prime them,
we dedicate their probing to the counterpart warps in thread
block (n + 1) % X. This strategy effectively ensures that the
priming and probing of a given L3 TLB set are assigned to
SMs in different GPCs. As previously mentioned, the thread
block-to-SM assignment scheme follows an all-even-then-all-
odd pattern (i.e., 0, 2, 4, ..., 1, 3, 5, ...), where the alternating
SM numbers are distributed across distinct GPCs. For example,
Figure 7 illustrates this arrangement in our A10 case, showing



the relationship between priming and probing of L3 TLB sets,
warps, SMs, and GPCs.
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Fig. 7: Orchestration of priming and probing operations on the A10 GPU.

While the current design of probing appears plausible, an
interesting problem arises: We observe that when some warps
probe victim-accessed L3 TLB sets (resulting in longer access
times), other warps probing unaccessed sets also experience
similarly long access times, despite no L3 TLB misses in those
sets. This unexpected behavior contradicts our expectation that
warps operate independently and do not interfere with each
other. After conducting experiments, we conjecture that each
TLB employs a structure to track outstanding misses, similar
to the miss-status handling registers found in caches. When this
structure becomes full, new misses in that TLB must stall until
space is freed. During probing, every access misses in both the
L1 dTLB and the L2 TLB, and if their tracking structures are
full, even accesses that will hit in the L3 TLB (such as when
probing unaccessed sets) are unable to proceed past the L1/L.2
level, leading to prolonged access times.

As a solution to this problem, we serialize warps in each SM
for probing. Specifically, we enforce staged execution where
only one warp is allowed to probe in each stage. The stages
are coordinated using CUDA’s __syncthreads () function,
which acts as a block-level barrier such that no warps can
proceed to the next stage until the currently probing warp has
completed its measurements.

3) Synchronization: ~ Proper synchronization between
threads is critical for the accuracy of our primitive; without
it, threads can inadvertently interfere with each other. For
example, if warps in one SM complete their probing and
start evicting L1 TLBs for the next round while others are
still probing, the eviction accesses may disrupt ongoing
measurements. In particular, this may introduce translations
into L3 TLB sets not accessed by the victim but actively
probed by others, leading to false positives. Therefore, we
explicitly synchronize potentially interfering operations as
shown in Figure 5. Our primitive requires coordination
across all thread blocks, and for this, we implement a global
synchronization approach where threads perform atomic
increment operations on a shared volatile counter and wait
until the counter matches the total number of threads before
proceeding. (The __ syncthreads () function does not
work, as it only synchronizes threads in the same thread
block.)?

2Since CUDA 9.0, a feature named cooperative groups has been available
that can be used to achieve grid-wide synchronization.

C. Enhancement of the Primitive

Our Prime+Probe attack primitive in its present form
actually faces challenges in practice. First, graphics-intensive
workloads in victim VMs tend to access most of the L3 TLB
sets during typical vGPU usage, making it hard to derive
meaningful information. Second, even with consistent L3 TLB
access patterns, we find that significant fluctuations in timing
measurements can occur and thus undermine reliability. To
enhance the practical utility of the primitive, we need to address
these limitations through refinements to our approach.

1) Improving Measurement Resolution: Using the current
primitive to extract sensitive information from workloads with
heavy graphics rendering is challenging due to possible sat-
uration in measurements. For instance, in cloud gaming sce-
narios, the victim’s GPU context manages several gigabytes
of memory in 64KB pages, and within a single vGPU time
slice, its graphics rendering operations can generate memory
access patterns that engage nearly all L3 TLB sets. Thus,
merely determining whether an L3 TLB set was accessed may
provide little insight into the victim’s behavior. To address this
problem, we aim to increase the resolution by going beyond
binary accessed/unaccessed states.

Essentially, we revise the probing operation to have each
warp traverse the corresponding eviction set in the reverse
order. Since GPU TLBs employ a strict LRU replacement
policy, traversing the eviction set backwards allows us to di-
rectly project measured access times to the number of entries
evicted by victim activity. To build the mapping between access
times and the number of evicted entries, we run a dummy
GPU program alongside our primitive. The dummy program
deliberately accesses 0, 1, ..., 8 entries in each L3 TLB set to
establish baseline measurements.
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Fig. 8: Timing measurements for eight L3 TLB sets on A10 with different
numbers of evicted entries.

Figure 8 illustrates the timing measurements for 8 different
L3 TLB sets on the A10 GPU, where we collected 1001
samples per set and used their median values. The results
reveal an approximate linear relationship between access time
and the number of evicted entries, though some variation is
observed across different sets. This linear correlation enables
us to quantify L3 TLB contention at a finer granularity than
simply detecting whether a set was accessed.

2) Improving Measurement Reliability: The reliability of
timing measurements is inevitably affected by GPU cache
behavior. First, it is apparent that when accessing memory
locations during probing, cache hits take less time than cache
misses, introducing timing variations unrelated to TLB behav-
ior. Second, the caching state of page table entries (PTEs)
can be another source of timing fluctuation. During page table



walks, PTEs are also stored in the GPU’s L2 cache, similar
to regular data accesses. When a miss occurs in the L3 TLB,
it triggers a page table walk. The walk, however, completes
much faster when the required PTEs are already cached in L2,
compared to when they need to be fetched from GPU memory.

Such timing variations can lead to incorrect inferences about
L3 TLB access patterns. Hence, we should make timing mea-
surements independent of the data in the GPU cache. For this
purpose, we evict all data from the L2 cache after completing
the priming operation, as shown in Figure 9a, to guarantee
a consistently clean cache state regardless of how the victim
utilizes the GPU cache.

—f—

Max: 20598 Max: 20758
Min: 10596 Min: 19366
Std Dev:| 2845.42 Std Dev: 156.81

Waiting for
victim op

...| Priming = Evicting
L3 TLB sets [ '|&| '|.GPU Cache

W/O cache eviction W/ cache eviction

(a) Revised attack primitive. (b) Probing time variation comparison.

Fig. 9: Synchronized cache eviction for improving probing reliability.

It is important to highlight that when evicting the GPU cache,
we must avoid disturbing the primed L3 TLB sets. To this end,
each participating SM should use the last pages from its TLB
priming eviction sets for cache eviction. As GPU cache sizes
are relatively modest (e.g., the A10 has a 6MB L2 cache),
effective eviction can be achieved by having all threads in each
warp access several different memory blocks of the last pages.
For example, in our A10 scenario, with the 128B GPU cache
line size and a 6MB cache, each of the 128 threads in an SM
theoretically only needs to access 6 distinct memory blocks in
the corresponding page. However, due to the GPU cache’s non-
linear addressing function, we should conservatively access
more memory to ensure complete cache eviction, and thus in
the A10 case we let each thread access 48 rather than just
6 memory blocks. Moreover, as shown in Figure 9a, we add
synchronization after TLB priming to make sure that no threads
begin cache eviction while others are still priming.

Figure 9b illustrates the effect of our revised primitive design
in A10. Given an L3 TLB set under varying GPU cache pres-
sure but the same TLB access condition (8 entries evicted), we
observe that with the original primitive (left side), timing mea-
surements for probing display significant variability, which can
lead to incorrect inferences about L3 TLB set access patterns.
In contrast, incorporating full cache eviction (right side) yields
very stable measurements, enabling reliable determination of
L3 TLB contention and emphasizing the necessity of this re-
vision. Note that the times presented in Figure 8 were actually
measured with this revision in place.

Nevertheless, when probing all L3 TLB sets concurrently, a
potential concern arises: Even with the GPU cache fully evicted
beforehand, could earlier accesses during probing preload data
required by subsequent accesses into the GPU cache? If this is
the case, large timing variations caused by GPU cache behavior
will persist, compromising the initial purpose of our cache
eviction. For normal data items, this issue does not occur, as
any two accessed items are separated by at least a 64KB page

frame and therefore do not reside in the same cache line. The
question, however, pertains to PTEs, because each 128B cache
line contains 16 PTEs. Fortunately, our use of 1MB-aligned
pages ensures that although one page table walk loads 16 PTEs
into the cache at once, only the PTE required by the access
triggering the walk will be used, while the other 15 will remain
unused. Thus, once evicted, the GPU cache will no longer affect
our timing measurements during probing.

D. Measurement of Execution Time

The attack primitive performs a number of GPU memory
accesses. Considering the limited execution time in each vGPU
time slice, we need to verify that the primitive can complete all
its necessary steps within this time constraint. For the primitive
to function correctly, it suffices to confirm that, after regaining
control following a context switch, we can successfully finish
the probing operation as well as prepare for the next round (i.e.,
evicting L1/L2 TLBs and priming all L3 TLB sets) before the
allocated time slice expires.
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Fig. 10: Execution time of the attack primitive vs. vVGPU time slices on A10.

Using vGPU instances created from A10, we conducted
empirical measurements. We first measured the execution time
of our attack primitive over 1,000 iterations, specifically the du-
ration from the probing operation to the completion of priming
for the next round. As illustrated in the left side of Figure 10,
the primitive’s execution time is quite stable, ranging from
173,483 to 184,044 clock cycles with an average of 177,984
cycles (about 105us). We then measured 1,000 samples of the
time slice allocated under the default best effort vGPU schedul-
ing policy. While the measurements exhibit considerable vari-
ation, as shown in the right side of Figure 10, they mostly
cluster around 3,670,000 cycles, with the minimum one even
exceeding 1,700,000 cycles (approximately 1ms). Therefore,
we can confirm that each vGPU time slice is long enough for
the attack primitive to complete its operations.

VI. CASE STUDIES

In this section, we present two case studies to demonstrate
how our designed Prime+Probe primitive can be employed
to mount cross-VM side-channel attacks through the TLB of
a virtualized GPU. These studies focus on typical vGPU use
cases encountered in real-world clouds. Before delving into the
specifics, we first describe the cloud platform setup used in our
investigations.

A. Platform Setup

As mentioned earlier, NVIDIA A10 GPUs are predomi-
nantly used for virtualization in public clouds [2], [4], [5], and
we align our setup to use the same GPU model. We have an
A10 GPU installed in a Dell PowerEdge R740 server running



Red Hat Enterprise Linux 9.2, with QEMU/KVM deployed as
the hypervisor. The server is equipped with two Intel Xeon
Silver 4114 CPUs and 192GB memory. On this server, we have
installed the NVIDIA vGPU 16.8 package that was released in
October 2024, and we use the vWS license. We employ the
default best effort vGPU scheduling policy, which is also the
case in public clouds (see Appendix B).

The case studies involve VMs on this platform. In line with
the profile of Microsoft Azure’s NV12ads_A10-v5 series, each
VM is attached to an A10-8Q vGPU instance, which provides
an 8GB GPU memory partition. Since an A10 has a total of
24GB on-board memory, each vGPU instance is granted a 1/3
portion. In each case study, the attacker utilizes a VM running
Ubuntu 20.04, while the victim is assumed to operate a VM
with Windows 11, as it is the most common OS used in daily
life.

B. Cheating in Multiplayer Games

One of the most popular use cases for vGPU technology is
cloud gaming [4], [19]. In the first case study, we focus on this
vGPU application area and demonstrate how the GPU TLB side
channel can be exploited to assist an attacker in cheating during
competitive multiplayer games hosted on cloud platforms.

In many multiplayer games, especially first-person shooter
ones, players can gain significant tactical advantages by iden-
tifying their opponents’ hidden locations and viewpoints. A
notable example is Counter-Strike (CS) that has been very com-
mercially successful. As a major esports title, CS is featured in
numerous tournaments with prize pools reaching millions of
dollars [20].

We specifically use CS as the target game in this case study.
The victim is a CS player who uses a vGPU-powered VM cloud
gaming service to play. The attacker, while playing CS with the
victim, has also rented a VM in the same cloud, sharing the
same physical GPU as the victim’s VM. Note that this VM is
used exclusively to execute the side-channel attack and not for
playing the game.

In [21], Genkin et al. showed how electromagnetic (EM) ra-
diation from the CPU’s voltage regulator, captured by a laptop’s
internal microphone, can enable a CS player to detect an oppo-
nent hidden behind an obstacle. Similarly, we demonstrate that
exploiting GPU TLB contention in virtualized cloud gaming
environments can also provide such capabilities. Notably, our
attack aims at newer versions of CS, whose game engines may
neutralize the one described in [21].

1) Game World Rendering in CS: As a first-person shooter
game, CS places multiple players in a 3D virtual environment
called a map, where each player controls an avatar that can
navigate complex terrains, take cover behind obstacles, and
engage in tactical combat with the goal of eliminating op-
posing players. The immersive 3D settings are fundamental
to CS’s gameplay, powered by a backbone engine responsible
for rendering all visual elements. Outdated CS versions utilize
the GoldSrc engine, while modern versions, CS:GO and CS-2,
have adopted the more advanced Source and Source 2 engines,
respectively.

A CS game begins with players connected to a server (self-
hosted or officially provided) that maintains the authoritative
game state, including each avatar’s continuously updated loca-
tion and viewing angle. Players retrieve data about objects in
their view from the server to render their individual perspec-
tives of the 3D game world. Note that each player’s avatar
operates within a cone-shaped field of vision, known as the
frustum, and the server supplies data about all objects within
this frustum, whether they are visible or occluded.

The GoldSrc engine used in early CS versions renders all
objects received from the server’s data, including those hidden
behind walls or other obstacles. This behavior created a vul-
nerability exploited by many cheating plugins as well as the
attack demonstrated in [21]. In contrast, new engines in CS like
Source and Source 2 implement occlusion culling techniques to
ensure that objects invisible to the player are excluded from the
rendering pipeline.

2) Camping Detection: A classic tactic in CS, known as
camping, involves a player hiding behind an obstacle and wait-
ing to ambush unsuspecting opponents. For camping, players
often exploit a map’s environmental features, such as walls,
vehicles, or crates, to take cover. When an opponent falls
into the ambush, the hiding player can strike first, gaining a
significant tactical advantage.

We first investigate whether the attacker can determine if
the victim’s avatar is lying in wait. When an avatar remains
stationary, the game engine receives similar scene data from the
server across multiple frames. For performance optimization,
the engine will skip rendering many elements. However, when
the avatar is moving, the scene changes dynamically, which
requires the engine to render new content and thus heavily
utilize the GPU. Based on this difference in rendering behavior,
we hypothesize that an attacker can detect whether the victim’s
avatar is camping by simply monitoring the GPU’s L3 TLB
access patterns.
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(a) Avatar stays still. (b) Avatar moves around.

Fig. 11: L3 TLB access patterns when a player is camping vs. moving (under
the latest CS-2).
Results. We have experimentally verified that GPU L3 TLB
access patterns can reliably indicate whether the victim’s avatar
is camping or moving. Figure 11 shows the access patterns
observed over 500 Prime+Probe rounds (approximately 1.5
seconds) in both scenarios. Comparing Figures 11a and 11b re-
veals that when the avatar is in motion, L3 TLB sets experience
higher levels of contention across multiple Prime+Probe
iterations (with darker colors representing a higher number of
accesses).

Note that the visualization underscores the importance of our
enhanced measurement resolution, which quantifies the degree



of contention in each L3 TLB set rather than merely detecting
whether a set was accessed (see Section V-C). Without this en-
hancement, the observed patterns would appear uniform across
multiple rounds, as most L3 TLB sets are accessed consistently.

3) Camper Revelation: On a specific CS map, the camping
tactic is effective in certain locations that offer both good
concealment and strategic positioning. Note that these spots
are typically well-known, which makes a player’s view frustum
predictable when they are suspected of camping there. Given
that the attacker can straightforwardly utilize GPU L3 TLB
access patterns to detect if the victim is camping, we now
examine whether the attacker can determine if the victim is
hiding at a specific spot.

In [21], Genkin et al. illustrate that an attacker can move
their avatar in and out of a suspected camper’s presumed view
frustum while staying unseen by the camper (e.g., by maneu-
vering near the obstacle between them). This movement causes
variations in graphics rendering on the camper’s side, as the
game engine processes objects irrespective of their visibility
from the player’s perspective. The rendering variations also
create distinct EM signals, which are captured by the camper’s
laptop microphone and transmitted to the attacker via VoIP.
The attacker can then analyze these audio signals to determine
whether someone is hiding behind the obstacle.

In our case, we can also have the attacker move in and out
of the suspected view frustum to induce distinct GPU TLB
access patterns through rendering variations on the victim’s
side. However, we discover that the work by Genkin et al.
likely targeted earlier CS versions that used the GoldSrc engine,
even though this detail was not explicitly stated in [21]. Since
2012, CS has transitioned to more advanced game engines.
As aforementioned, these newer engines incorporate occlusion
culling techniques, which exclude objects not visible to the
player from the rendering pipeline. Accordingly, their original
attack strategy may not be directly applicable to modern CS
versions.
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Fig. 12: L3 TLB access patterns when a player’s view frustum has an empty
space vs. an avatar running behind the wall (under the latest CS-2).

To verify this, we conducted an experiment using the latest
CS-2, where one player uses a wall as cover for ambushing. We
measured the GPU’s L3 TLB access patterns in two scenarios:
(1) when no other player is present and (2) when another player
moves behind the wall and within the ambushing player’s view
frustum. The results are depicted in Figure 12a for the first
scenario and in Figure 12b for the second scenario. We can
observe that the patterns appear remarkably similar in both
cases, and in fact, they closely align with the stationary access
patterns shown in Figure 11a. This similarity can be attributed
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to the occlusion culling techniques implemented in the Source
2 engine, and it suggests that determining if a camper is be-
hind an obstacle based directly on the TLB access patterns is
not feasible. (It also indicates that the attack in [21] may be
infeasible in up-to-date CS versions.)

Although we cannot detect a camper hiding at a spot directly
from the GPU TLB access patterns, we discover that analyz-
ing the statistical distribution of L3 TLB set contention can
achieve this goal. Specifically, we construct histograms from
Prime+Probe measurements collected over a short time
window (e.g., 4-5 seconds). For each L3 TLB set, we create
a histogram with 9 bins (0-8), where each bin represents a
different level of contention observed in that set. Over multiple
Prime+Probe rounds, we update each set’s histogram by
incrementing the bin corresponding to the measured contention
level. For each L3 TLB set, we calculate the frequency of each
contention level by dividing the bin’s count by the total number
of Prime+Probe rounds.
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(c) Running person behind the wall and within the view frustum.

Fig. 13: Frequency of level-5 contention across three L3 TLB sets in two game
rounds of CS-2, showing three scenarios: (a) completely empty behind the wall,
(b) an avatar running behind the wall but outside the view frustum, and (c) an
avatar running behind the wall and within the view frustum.

Our experiments reveal that for certain TLB sets, the fre-
quency of specific contention levels can indicate whether an-
other avatar is moving within the view frustum, even though it
is occluded by an obstacle. Figure 13 presents the results for
three scenarios across two game rounds of CS-2 on the Mirage
map, with a camper hidden behind a wall: (a) no other player
is near the camper; (b) another player moves around the wall
but remains outside the camper’s view frustum; (c) the player
moves into the camper’s view frustum while staying hidden
behind the other side of the wall. The figure highlights four
representative L3 TLB sets at contention level-5 (that are sets
70, 73, 191, and 198), showing the frequency distribution of
measurements taken over a 5-second span. By comparison, we
observe that when a player moves within the camper’s view
frustum while remaining occluded, these sets show distinctive
patterns of level-5 contention (higher frequency in the sets
shown in the figure, though potentially lower in others).

Our conjecture for this phenomenon is that, although occlu-
sion culling prevents the hidden avatar from being fully ren-
dered, the game engine still performs minimal GPU operations



for occlusion testing. For example, to determine if the avatar
should be culled, its simplified bounding box (or occluder
geometry) will be rendered in an invisible pass. While these
computations are very lightweight, they still introduce small
variations in GPU TLB access patterns. Given the minimal
impact of these computations, we need to accumulate multiple
such events over time to perform statistical analysis and iden-
tify meaningful differences.

Evaluation. To evaluate whether the frequency variation pat-
terns can reliably detect hidden campers, we conduct a system-
atic evaluation across various maps and obstacles. We choose
four classic CS maps, that are Ancient, Dust 2, Inferno, and Mi-
rage, as our testing grounds. Figure 14 outlines these maps. On
each map, we have identified six potential camping spots that
provide tactical advantages, and the victim player randomly
selects one spot to camp.

(a) Ancient (c) Inferno

(d) Mirage

Fig. 14: CS-2 maps showing six potential camping spots in each, with the actual
victim’s camping spot indicated.

Given a spot on a map, the attacker player takes two mea-

surements. The first measurement is taken as the attacker ap-
proaches the general area of the spot, and the second mea-
surement is taken when the attacker moves into the presumed
view frustum while remaining hidden behind the spot’s obsta-
cle. Each measurement lasts 5 seconds. The frequency vectors
corresponding to a certain contention level for a set of L3
TLB sets are derived from the measurements. The Euclidean
distance between these frequency vectors is then computed to
determine whether the victim player is camping behind the
spot’s obstacle.
Results. First, we find that different CS maps may require
different sets of L3 TLB sets for effective detection. However,
once identified for a particular map, the applicability of the L3
TLB sets remains consistent across game rounds and power
cycles. Furthermore, we have validated that these selected TLB
sets remain effective when testing on another Windows 11
VM, demonstrating that the sets are map-specific rather than
system-dependent. Table I lists several reliable L3 TLB sets
for each map (10 for each, except for Mirage), along with their
corresponding contention levels to focus on.

TABLE I: Identified L3 TLB sets and contention level for each CS map.

L3 TLB Sets (Contention Level)
Ancient | 43 (@), 78 (3), 96 (5), 125 (&), 129 (), 130 (@), 131 (&), 145 (4), 150 (4), 162 (4)
Dust2 | 43 (4),70 (4), 130 (4), 154 (4), 160 (4), 172 (4), 176 (4), 230 (4), 202 (5), 123 (6)
Inferno | 36 (4), 76 (4), 131 (4), 149 (4), 172 (4), 186 (4), 126 (5), 149 (5), 203 (5), 221 (5)
Mirage 220 (4), 49 (5), 70 (5), 73 (5), 191 (5), 198 (5)

We observe that the contention level for most reliable L3
TLB sets centers around 4 and 5. In the case of a CS map, the
determined set of L3 TLB sets is consistently used, and their
frequency vectors are derived based on the measurements. Ta-
ble II gives the evaluation results, showing how the Euclidean
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distance between the frequency vectors of two measurements
can be used to detect whether a camper is ambushing at a
particular location.

TABLE II: Evaluation results for identifying the camping spot of the victim.

Spot 1 Spot 2 Spot 3 Spot4 [ Spot5 [ Spot6 [ Threshold
Ancient 0.00857 | 0.00986 | 0.01286 | 0.01044 [ 0.01574 > 0.10
Dust2 | 0.01191 [ 0.02396 [ 0.02231 [ 0.02005 0.01738 > 0.10
Inferno | 0.01454 [ 0.02104 | 0.01671 0.02433 | 0.00887 > 0.10
Mirage | 0.00513 _ 0.00798 | 0.00582 | 0.00843 | 0.00674 >0.03

For each map, a threshold is determined through profiling.
As shown in the results, the distance at the correct spot always
exceeds the threshold when the attacker performs the detection.
In contrast, at incorrect spots, the distance remains significantly
smaller, clearly distinguishing the correct location. Hence, the
attacker can exploit the presented GPU TLB side channel in
the new version of CS-2 to gain a significant advantage by
identifying whether the victim is camping and pinpointing their
exact location.

C. Website Fingerprinting

Another very common adoption of vGPU technology in
clouds is DaaS [6], [22], [23]. As the second case study, we
demonstrate a website fingerprinting attack that leverages GPU
TLB access patterns to identify which web pages a user is
visiting in their browser on a vVGPU-powered virtual desktop.

It is known that a user’s browsing activity can reveal highly
sensitive information, such as political views, financial statuses,
and medical conditions, making it a critical privacy concern.
While prior works have explored website fingerprinting via
GPUs [15], [16], [24]-[26], these approaches generally neces-
sitate the deployment of malware on the victim’s machine. By
contrast, our work represents a new contribution by showing
how such attacks can be mounted in cloud environments with-
out requiring direct system access.

1) Web Page Rendering in Browsers: Web page rendering
is the process by which a browser interprets HTML, along
with associated CSS and JavaScript, and displays the resulting
content on the screen. This process involves multiple steps,
including DOM tree construction, style calculation, layout, ras-
terization, and composition. Among these steps, rasterization,
which converts web page elements into pixels, and compo-
sition, which combines rendered textures into a final screen
image, are particularly computationally intensive due to the
large amounts of data they need to process.

As GPUs excel at processing massive amounts of data in
parallel, modern browsers like Chrome, Firefox, and Edge
leverage them by default to handle computation-heavy steps in
web page rendering. Many rendering steps, particularly raster-
ization and composition, are offloaded to the GPU, freeing the
CPU for other operations and improving overall performance.

2) Web Page Inference: Given the GPU’s involvement in
web page rendering, different websites naturally generate vary-
ing GPU workloads due to their distinct designs, contents,
layout complexities, and visual effects. We expect that these
workload variations create distinct patterns in GPU memory
accesses, enabling website fingerprinting through monitoring
address translation activities in GPU TLBs. To validate our
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Fig. 15: Traces of the A10’s L3 TLB access patterns when visiting three websites in Edge browser.

hypothesis, we use the Edge browser within a Windows 11 VM
to visit three popular websites and collect traces of the A10’s
L3 TLB access patterns in another VM. (One trace consists of
1,000 Prime+Probe measurements.) For each website, we
capture two sets of traces, as illustrated in Figure 15.

From these traces, we can observe distinctive patterns asso-
ciated with each website, despite some functional or aesthetic
similarities they may share (e.g., Google and Bing being search
engines, and Google and Wikipedia having minimalist layouts).
While traces from the same website exhibit general consistency
in their patterns, they still show some variations, particularly in
the timing and duration of intensive GPU computations.
Evaluation. In our evaluation, we, as the attacker, capture
traces of L3 TLB access patterns for 100 websites in a profiling
VM to create a dataset. All traces were collected using the
Edge browser, as it is the default browser on Windows systems
and commonly used among typical virtual desktop users. The
websites are selected from the Tranco list [27], and their details
are provided in Appendix D.

For each website, we collect 100 traces on the profiling VM,

resulting in a dataset of 5,000 traces in total. For the task of
classifying traces into their respective websites, we utilize the
standard ResNet-50 model. To evaluate the performance of our
website fingerprinting attack, we use traces captured from the
victim’s VM, with 20 traces per website.
Results. First of all, we perform a straightforward 5-fold cross-
validation on the profiling traces to verify that our method is
practical. The procedure yields an average accuracy of 92.3%,
with the five folds scoring 92.1%, 92.7%, 92.3%, 92.2%, and
92.1%, respectively. Our main objective, however, is to assess
how well a model trained on the profiling VM traces performs
when tested on traces collected from the victim’s VM.
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Fig. 16: Distribution of per-website classification accuracy.

The aggregate results are presented in Figure 16, while the
full confusion matrix appears in Figure 19 of Appendix D. The

results demonstrate good classification performance, with most
websites being correctly identified with very high accuracy.
Specifically, 44 out of 100 websites achieve 100% accuracy
(i.e., 20 out of 20 test samples correctly classified), and another
31 websites achieve at least 90% accuracy (i.e., > 18 out of 20
test samples correctly classified). The lowest accuracy for any
individual website is 45% for two websites. Overall, the model
achieves an average accuracy of 91% across all 100 websites.
The few misclassifications that do occur tend to happen
between websites with similar content delivery patterns. For
example, some confusion exists between different sites from
the same company (like outlook.com and live.com) and be-
tween social media platforms. This suggests that websites with
similar types of content and rendering workflows can produce
comparable GPU TLB access patterns. Nevertheless, the high
accuracy across diverse website categories, including search
engines, social media, news sites, and e-commerce platforms,
demonstrates the robustness of our fingerprinting attack.

D. Discussion

While TLB-based side channels have inherent limitations
compared to cache-based approaches, particularly since TLB-
based attacks operate at a page-level granularity, this limita-
tion is less significant in virtualized GPU environments. The
fundamental constraint in vGPU settings stems from the time-
sharing execution model, where GPU contexts are scheduled
in millisecond-range time slices. This coarse temporal granu-
larity already restricts the achievable spatial resolution of any
microarchitectural side channel, whether cache- or TLB-based.
Our work demonstrates that despite these architectural and
scheduling constraints, carefully engineered TLB-based attacks
can still effectively extract meaningful sensitive information
across VM boundaries.

Like all the microarchitectural side channels, our attacks can
suffer from noise introduced by other irrelevant co-resident
VMs. In practice, however, the economics of cloud GPU leas-
ing greatly reduce this interference. vGPU-powered VM in-
stances are more expensive than CPU-only VMs, so providers
colocate far fewer tenants on each physical GPU than on a
CPU socket, naturally lowering background activity. In addi-
tion, tenants often release their GPU instances as soon as their
workloads finish to avoid the high hourly charges, creating long
intervals during which an attacker’s VM shares the device only
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with the victim. As a result, we argue that the GPU TLB side
channel we have presented is likely to be much quieter (and
therefore easier to exploit) in real clouds than the CPU-based
side channels studied in prior work. In Appendix E, we include
several trace samples captured on real-world cloud platforms to
back up our argument.

VII. COUNTERMEASURES

The root cause of the cross-VM side-channel attacks dis-
cussed in this paper is the shared GPU TLB in cloud environ-
ments. To address this vulnerability, NVIDIA should enhance
the security of the TLB hierarchy in its GPUs. For this purpose,
NVIDIA could implement either a static-partition (SP) TLB
or a random-fill (RF) TLB design, as proposed in [28]. The
SP TLB can effectively prevent cross-VM interference, while
the RF TLB aims to break the correlation between memory
accesses and TLB state changes, making attack patterns unpre-
dictable. Both TLB designs offer strong security guarantees,
but they require hardware modifications and thus cannot be
applied to existing GPUs.

Without any GPU hardware modification, the most direct
method for completely eliminating these attacks would be for
the vGPU runtime to initiate a TLB shootdown at the end of
each time slice. (Since the vGPU software package is not open-
sourced, NVIDIA needs to add this functionality.) However,
such a TLB invalidation method can incur significant perfor-
mance overhead, as every GPU context would need to rebuild
its TLB states through expensive page table walks in each
vGPU time slice. As a result, this approach may not be practical
for deployment in real-world production environments.

At the VM level, tenants can attempt to mitigate the attacks
by introducing obfuscation through noise injection in GPU
TLB access patterns. Specifically, when performing sensitive
GPU workloads, a thread may randomly access certain GPU
virtual addresses whose translations are mapped to different
L3 TLB sets to obfuscate the original patterns. To provide
sufficient coverage of the L3 TLB sets, the GPU memory
used here should be allocated in 64KB pages (e.g., using the
technique described in Section V-A if in CUDA).

Another potential countermeasure is based on detection. Un-
der normal conditions, frequent L3 TLB misses for a set of
sufficiently separated GPU virtual addresses (e.g., IMB apart in
Vulkan) are extremely rare. A tenant can periodically monitor
the access times of these addresses, and if unusually frequent
L3 TLB misses are observed, it may indicate an ongoing attack
like the one described in this paper. Upon detecting such sus-
picious activity, the tenant may consider pausing operations or
migrating their VM to mitigate the threat.

VIII. RELATED WORK

Over the last decade, TLBs have been commonly exploited
for side-channel attacks on the CPU side. A key prerequisite
for these attacks is the reverse-engineering of this microarchi-
tectural component [29]-[31]. While most reverse-engineering
methods rely on timing measurements, Tatar et al. introduced
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a highly accurate approach that leverages TLB incoherence to
gain detailed insights [30].

Multiple works have demonstrated how CPU TLBs can
be exploited to bypass KASLR [31]-[34]. Moreover, Gras
et al. showed that CPU TLBs can even be abused to leak
fine-grained information such as cryptographic keys [29]. In
addition to TLBs in the MMU, CPUs also feature IOTLBs
in the IOMMU. The structures of these IOTLBs have also
been reverse-engineered and leveraged in various side-channel
attacks [35], [36].

During page table walks, PTEs are brought into the data
cache and can be exploited for mounting side-channel attacks
directly [37] or facilitating circumvention of software-based
cache partitions [38]. In our Prime+Probe attack primitive,
cached PTEs can interfere with timing measurements, and
therefore we evict the GPU cache to mitigate this effect.

In recent years, GPU security has drawn growing research
attention. GPU TLBs have been reverse-engineered, but their
exploitation has primarily focused on constructing covert chan-
nels for data exfiltration [7], [39]. Similar to the work in [30],
Zhang et al. leveraged TLB incoherence to fully reverse-
engineer NVIDIA GPU TLBs [7]. Building on their findings,
our work advances this line of research by exploring potential
side-channel attacks in cloud settings.

Note that while Prime+Probe appears in [7], their method
is quite straightforward and not applicable in vGPU scenarios:
First, they directly leverage UVM to acquire 64KB pages in
CUDA, but UVM is disabled under vGPU. We overcome this
limitation in an innovative way by importing Vulkan-allocated
memory into CUDA. Second, their environment allows GPU
contexts from different VMs to execute in parallel, whereas
vGPU enforces temporal partitioning that serializes those con-
texts. We therefore develop sophisticated techniques for context
switch detection, synchronization, and priming/probing orches-
tration under vGPU’s time-sharing model. Third, their imple-
mentation only detects whether a TLB set is accessed or not,
while ours offers finer-grained TLB contention quantification,
essential for our case studies. Furthermore, we examine how
to significantly improve the reliability of Prime+Probe on
GPU TLBs through systematic cache eviction, which is a topic
not studied in [7]. Finally, they only demonstrate inference of
six ML frameworks, while our work explores cross-VM side-
channel attacks in cloud gaming and virtual desktop scenarios,
providing a more extensive study.

Aside from TLBs, other GPU components have also been
exploited to leak sensitive information. These components in-
clude data caches [16], [40], [41], codec engines [15], NoC
interconnects [14], [42], and the PCle bus [15], [26]. However,
most of these works focus on covert channel communication
in non-virtualized environments, rather than cross-VM side-
channel attacks in cloud settings.

Regarding the case studies performed in our work, Genkin
et al. showed how physical side-channel information can be
exploited by a CS player to detect a hidden camper at a
spot [21]. However, as discussed in the paper, their method may
not be effective in newer versions of CS, such as CS-2, which



we evaluated. Several studies have investigated website finger-
printing attacks on GPUs [16], [24]-[26], [43]-[45]. Unlike
these approaches, which generally require deploying malware
on the victim’s machine, our work is the first to be conducted on
VMs used in practice, with no need for access beyond sharing
the virtualized GPU (see Table III in Appendix D for a side-
by-side comparison).

IX. CONCLUSION

In this work, we have developed a Prime+Probe at-
tack primitive, enabling cross-VM side-channel attacks through
TLBs in virtualized GPUs. The effectiveness of this attack
primitive is demonstrated through two case studies that exploit
common VGPU use cases, revealing previously overlooked im-
plications. Our findings highlight the security risks introduced
by GPU sharing in virtualized environments, urging the need
for stronger isolation mechanisms and proactive countermea-
sures to safeguard against such threats.
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APPENDIX A
VGPU MARKET GROWTH

The adoption of vGPU technology has progressed from ex-
perimental deployments to widespread commercial availability.
Because CSPs typically do not publish detailed usage metrics
for specific VM instance types, the pace and breadth of regional
expansion for a given instance type provide a reliable proxy for
market demand.

Microsoft Azure’s NVadsA10-v5 series, which offers A10
vGPU instances, exemplifies this trajectory. The series debuted
in 2022 in only five regions (three in the US and two in Europe).
As of 2025, Azure lists the NVadsA10-v5 series as available in
48 regions worldwide. Because a CSP expands capacity only
when sustained customer demand justifies the investment, this
roughly ten-fold geographic expansion in under three years
indicates that vGPU-powered VM instances have gained broad
adoption. This rapid growth, together with published customer
success stories (e.g., Siemens NX [46] and TBI Construc-
tion [47]), shows that vGPU use becomes common in practice.

APPENDIX B
VGPU SCHEDULING

We can use the timing information from our Prime+Probe
primitive’s context switch detection mechanism to check which
scheduling policy is configured in the hypervisor. As previously
discussed, when a context switch occurs, the difference in suc-
cessive timestamp counter readings approximates the duration
of the time slice allocated to the other VM’s GPU context.

We measure a sequence of vGPU time-slice durations and
compute the difference between successive slices to quantify
their variability. Figure 17 presents the results obtained on our
platform under the three scheduling policies. As the figures
indicate, both the equal share and fixed share policies deliver
highly stable slices with negligible variation, whereas the best
effort policy produces time slices that fluctuate noticeably.
Therefore, we can determine the vGPU scheduling policy by
analyzing the degree of time slice variability.

ik
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Fig. 17: Comparison of time slice variability across different vGPU scheduling
policies.

We have applied this method to vGPU-powered VMs from
two public clouds, Microsoft Azure and Vultr. As illustrated in
Figure 18, we observe substantial fluctuations in both traces.
While the magnitude of variation in time slice durations de-
pends on the computational load of co-located VMs, the pres-
ence of significant fluctuation strongly indicates the use of the
best effort scheduling policy. Based on these measurements, we
can confidently determine that both cloud providers employ the
default best effort scheduling approach rather than equal share
or fixed share alternatives.

APPENDIX C
EXTENDED DISCUSSION OF UVM AND VULKAN-CUDA
INTEROPERABILITY IN VGPU ENVIRONMENTS

UVM requires special system-level support beyond the base
CUDA functionality (e.g., additional integration for page fault
handling and memory page migration). As mentioned in Sec-
tion V-A, UVM is disabled under vGPU. NVIDIA’s documen-
tation notes that hypervisors can, in principle, enable UVM via
a configuration flag, although the flag is off by default [1].
However, in practice, the option proved ineffective on our
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Fig. 18: Time slice variability on two public clouds.

testbed: setting the parameter had no observable effect at all
and UVM remained unavailable.

To rule out vendor-specific builds in public clouds, we also
attempted to use UVM in vGPU-powered VMs on Microsoft
Azure, Vultr, and Alibaba Cloud. On both cloud platforms, the
NVIDIA driver aborted during UVM initialization and reported
identical fault codes. The repeated failure across on-premise
and cloud setups shows that UVM is not supported in real-
world vGPU deployments.

On the other hand, Vulkan-CUDA interoperability is a native
capability of the NVIDIA software stack. This interoperability
is universally available in public cloud vGPU environments,
which we have empirically verified on major providers includ-
ing Microsoft Azure, Vultr, and Alibaba Cloud. Such universal
availability exists because Vulkan runtime support is built into
the NVIDIA driver, and CUDA’s external-memory import API
is a standard CUDA feature rather than something that requires
additional system-level support. Hence, our technique works
consistently across different vGPU cloud offerings.

While we demonstrate our attack using Vulkan-CUDA inter-
operability, the core requirement is simply a graphics rendering
API that allocates 64KB device pages importable into CUDA.
Other APIs such as OpenGL can serve as potential alternatives.
Note that OpenGL-CUDA interoperability is also universally
available in vGPU environments and can be similarly exploited
for priming and probing GPU TLBs.

APPENDIX D
SUPPLEMENTARY MATERIAL FOR WEBSITE
FINGERPRINTING

Table IV lists the websites that are used in our evaluations on
website fingerprinting. Table III compares our work with rep-
resentative website fingerprinting attacks on GPUs. Figure 19
presents the confusion matrix of our website fingerprinting
evaluation.

TABLE III: Comparison of website fingerprinting attacks on GPUs

Virtualized GPU | Cross-VM | #Websites
200
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50
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40
[ 100 ]
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GPU memory residue
Rendering contention
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GPU L2 cache
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TABLE IV: List of fingerprinted websites

1. adobe.com 51. medium.com
2. amazon.com 52. microsoft.com
3. android.com 53. mozilla.org

4. apache.org 54. msn.com

5. apple.com 55. nature.com

6. archive.org 56. nginx.com

7. baidu.com 57. nih.gov

8. bankofamerica.com 58. nytimes.com
9. bbc.com 59. office.com

10. bestbuy.com 60. openai.com
11. bing.com 61. opera.com

12. bit.ly 62. oracle.com
13. booking.com 63. outlook.com
14. canva.com 64. paypal.com
15. cde.gov 65. pinterest.com
16. chase.com 66. reddit.com

17. cloudflare.com 67. reuters.com
18. cnn.com 68. roku.com

19. criteo.com 69. salesforce.com
20. dailymail.co.uk 70. samsung.com
21. digicert.com 71. sciencedirect.com

. discord.com 72. sharepoint.com

23. doi.org 73. shopify.com
24. dropbox.com 74. skype.com

25. duckduckgo.com 75. slack.com

26. ebay.com 76. slideshare.net
27. epicgames.com 77. snapchat.com
28. espn.com 78. sourceforge.net
29. europa.eu 79. t.me

30. facebook.com 80. theguardian.com
31. fastly.net 81. tumblr.com

32. forbes.com 82. twitch.tv

33. foxnews.com 83. twitter.com

34. github.com 84. ubuntu.com
35. github.io 85. ui.com

36. gmail.com 86. unity3d.com
37. godaddy.com 87. vimeo.com

38. google.com 88. vk.com

39. googledomains.com  89. weather.com
40. gravatar.com 90. whatsapp.com
41. harvard.edu 91. who.int

42. health.mil 92. wikipedia.org
43. hubspot.com 93. windows.com
44. ibm.com 94. wordpress.com
45. icloud.com 95. wordpress.org
46. imdb.com 96. x.com

47. instagram.com 97. yahoo.com

48. intuit.com 98. youtube.com
49. linkedin.com 99. zillow.com

50. live.com 100. zoom.us

APPENDIX E
TRACES IN REAL-WORLD CLOUDS

As discussed in Section VI-D, we anticipate that our cross-
VM side channel is likely to be quieter than typical CPU-based
channels in practice. To validate this claim, we captured traces
on both Microsoft Azure and Alibaba Cloud to demonstrate the
low noise characteristics of the GPU TLB side channel in real-
world cloud environments.

Figure 20 shows traces captured in an NV12ads_A10-v5 VM
on Microsoft Azure in the UAE North region across two avail-
ability zones. As shown in Figure 20 (a) and (b), the L3 TLB
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Fig. 19: Confusion matrix corresponding to testing traces collected from the
victim’s VM.

access patterns exhibit minimal background noise. The vast
majority of TLB sets show zero or near-zero contention levels,
indicated by the uniform light coloring across the figures. This
clean baseline demonstrates that during typical cloud operation,
the GPU TLB side channel remains largely undisturbed by
other tenants’ activities.
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(a) UAE north region - zone 2.
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(b) UAE north region - zone 3.

Fig. 20: Traces captured on Microsoft Azure.

Figure 21 presents similar measurements from Alibaba
Cloud’s ecs.sgn7i-vws-m8.4xlarge VM instances. We collected
traces in both the Beijing region and Hangzhou region. The
captured traces also show comparably low noise levels. The
sparse TLB activity observed in these traces further supports
our argument that GPU TLB side channels benefit from quieter
environments compared to CPU-based attacks in real-world
clouds.
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Fig. 21: Traces captured on Alibaba Cloud.
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