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to faithfully implement their Instruction Set Architectures
(ISAs) and enforce strict isolation between processes. How-
ever, this assumption has been increasingly challenged by the
discovery of critical architectural and microarchitectural-level
vulnerabilities [1]–[4]. These attacks demonstrate that flaws in
CPU microarchitectural can be exploited to leak data, bypass
protections, or undermine system integrity, even for secure and
well-written software [5]. Indeed, modern processors, partic-
ularly in the x86 family, are highly complex, with layers of
undocumented behavior implemented in proprietary µcode [6].
As designs become increasingly complex and opaque, the risk
of hardware-level security flaws continues to grow [7].

To detect hardware-level vulnerabilities, researchers have
traditionally relied on techniques such as formal verifica-
tion [8]–[12], runtime detection [13], [14], information flow
tracking [15]–[17], and hardware fuzzing [18], [19]. Among
them, hardware fuzzing has emerged as a promising ap-
proach due to its scalability and adaptability to various de-
signs [20]–[41]. Hardware fuzzing has evolved into two dis-
tinct approaches: pre-silicon fuzzing, which targets Register-
Transfer Level (RTL) models during hardware development,
and post-silicon fuzzing, which evaluates manufactured pro-
cessors under real execution conditions [20]–[41]. While pre-
silicon fuzzing is widely studied in literature thanks to the
deep observability and fine-grained instrumentation within
the RTL model [20], [21], [25]–[30], [33], [39]–[41], post-
silicon fuzzing is rarely touched. The reason is straightforward:
post-silicon fuzzers commonly target black-box or proprietary
CPUs (e.g., from Intel and AMD) with visibility limited to
architectural registers or crash symptoms [24]. Even worse,
the internal microarchitectural state and µcode-level behavior,
where many subtle bugs manifest [1], [2], [42], are largely
inaccessible and undocumented. Existing hardware feedback
mechanisms, such as performance counters or architectural
registers, offer only coarse-grained or indirect insight. The
lack of transparency and informative feedback prevents the
evaluator from finding unexpected behaviors and tracing cor-
responding root causes.
Our Contribution. In this work, we present Fuzzilicon, the
first post-silicon fuzzer for proprietary x86 CPUs with gray-

Abstract—Modern Central Processing Units (CPUs) are black 
boxes, proprietary, and increasingly characterized by sophisti-
cated microarchitectural flaws that evade traditional analysis. 
While some of these critical vulnerabilities have been uncovered 
through cumbersome manual effort, building an automated and 
systematic vulnerability detection framework for real-world post-
silicon processors remains a challenge.

In this paper, we present Fuzzilicon, the first post-silicon 
fuzzing framework for real-world x86 CPUs that brings deep 
introspection into the microcode and microarchitectural lay-
ers. Fuzzilicon automates the discovery of vulnerabilities that 
were previously only detectable through extensive manual re-
verse engineering, and bridges the visibility gap by introducing 
microcode-level instrumentation. At the core of Fuzzilicon is 
a novel technique for extracting feedback directly from the 
processor’s microarchitecture, enabled by reverse-engineering 
Intel’s proprietary microcode update interface. We develop a 
minimally intrusive instrumentation method and integrate it with 
a hypervisor-based fuzzing harness to enable precise, feedback-
guided input generation, without access to Register Transfer 
Level (RTL) or vendor support.

Applied to Intel’s Goldmont microarchitecture, Fuzzilicon in-
troduces 5 significant findings, including two previously unknown 
microcode-level speculative-execution vulnerabilities. Besides, the 
Fuzzilicon framework automatically rediscover the µSpectre class 
of vulnerabilities, which were detected manually in the previous 
work. Fuzzilicon reduces coverage collection overhead by up 
to 31× compared to baseline techniques and achieves 16.27%
unique microcode coverage of hookable locations, the first em-
pirical baseline of its kind. As a practical, coverage-guided, and 
scalable approach to post-silicon fuzzing, Fuzzilicon establishes 
a new foundation to automate the discovery of complex CPU 
vulnerabilities.

I. INTRODUCTION

Computation and information processing form the backbone
of modern society, and their security fundamentally depends
on the trustworthiness of the underlying hardware. At the
core of secure computing are CPUs, which are expected
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box visibility. Fuzzilicon introduces a novel internal microar-
chitectural feedback channel to guide test generation. By
running the CPU in a Red-unlocked mode [43] and leveraging
undocumented debugging and instrumentation capabilities in
Intel processors [44], we gain access to the µcode engine
interface. We re-purpose this interface, which is typically used
to deploy µcode patches, as a programmable introspection
layer, inserting lightweight instrumentation directly into the
processor. Through careful reverse engineering, we construct
µcode patches that instrument internal µcode execution paths.
This turns a proprietary CPU into a gray box, enabling obser-
vation of internal execution states (e.g., µcode path transitions)
at runtime, without RTL access or specialized hardware. To
ensure safe and deterministic execution of fuzzing workloads
on the target CPU, we build a bare-metal, hypervisor-based
fuzzing framework that isolates the device under test (DUT),
controls its environment, and continuously monitors execution.
We further introduce a serialization oracle that synthesizes
semantically equivalent variants of instruction sequences, im-
proving fuzzing reproducibility and enabling reliable detection
of vulnerabilities and divergences across microarchitectural
implementations. Together, these capabilities enable feedback-
driven fuzzing of real, post-silicon x86 processors with mi-
croarchitectural visibility, uncovering rare execution paths and
vulnerabilities.

Our contributions are listed as follows:

• We introduce Fuzzilicon, the first post-silicon x86 CPU
fuzzer that leverages internal microarchitectural feedback
by injecting runtime instrumentation using µcode patches,
enabling introspection on proprietary silicon.

• We introduce a new µcode coverage feedback for post-
silicon CPU fuzzing, enabling visibility into CPU’s inter-
nal execution at the granularity of µcode operations.

• We design an optimized µcode instrumentation strategy
that reduces patching overhead by 31 times compared to
the baseline instrumentation [45].

• We demonstrate a novel µcode-level speculative exe-
cution fuzzing use case, enabling Fuzzilicon to detect
µcode-level speculative vulnerabilities and reveal undoc-
umented leakage paths.

• On Intel N3350 (Goldmont) CPU, Fuzzilicon uncovered
5 significant findings, including two previously unknown
µcode-level speculative-execution vulnerabilities.

• The Fuzzilicon framework automatically rediscover the
µSpectre class of vulnerabilities [42], which previously
was detected manually.

• We extend prior reverse engineering of Intel Goldmont’s
µcode patching infrastructure to enable, for the first time,
custom instrumentation at arbitrary micro-op entry points.

• We design a low-overhead and bare metal-hypervisor for
CPU fuzzing that safely isolates arbitrary x86 programs
and preserves determinism and system stability even
under malformed instruction sequences.

• We introduce a serialization oracle that generates seman-
tically equivalent instruction sequences, enabling robust

cross-platform divergence detection without any ground-
truth architectural oracle.

The complete source code for the Fuzzilicon framework
is open-sourced at https://github.com/0xCCF4/ufuzz and per-
manently publicly available at https://doi.org/10.5281/zenodo.
17012971. For detailed instructions on setting up and using
the framework, please refer to Appendix D.

The rest of this paper is organized as follows. Section II pro-
vides background on key concepts necessary for understanding
Fuzzilicon, including x86 µcode execution, instruction decod-
ing, Red-Unlock mode, and microarchitectural introspection
techniques. Section III details the core technical challenges of
applying coverage-guided fuzzing to commercial x86 CPUs.
Section IV outlines the design of Fuzzilicon, while Section V
describes its framework implementation, including µcode in-
strumentation and control infrastructure. Section VI evaluates
Fuzzilicon’s effectiveness in terms of discovered vulnerabil-
ities, coverage, and performance. Section VII discusses the
Fuzzilicon with more insights. Section VIII discusses related
works. Section IX concludes this work.

II. BACKGROUND

A. Microcode and Instruction Decoding

Intel x86 instructions range from simple arithmetic opera-
tions to highly complex instructions involving system state,
memory ordering, or cryptographic operations. Implementing
each x86 instruction entirely in hardware would be infeasible
due to silicon cost, complexity, and the need for update
flexibility [6]. Instead, modern Intel CPUs use a µcode engine
to decode complex instructions into sequences of simpler
µoperations, which are then executed by the processor [46].
Each x86 instruction could be mapped to one or more
µoperations. Simple instructions often decode statically into
µoperations [6]; complex ones invoke the µcode engine [6].
The µcode engine expands each x86 instruction into a se-
quence of µoperations, scheduled and executed under the
structured control-flow primitive known as a triad [43], [45].
A triad contains three µoperations and a sequence word that
controls static branching, ordering, and instruction termination.

Figure 1 presents a high-level view of the µcode system.
The Read-Only Memory (ROM), 2 , stores factory-installed
instruction handlers, whereas the µcode Random Access Mem-
ory (RAM) stores runtime patches that manufacturers can
apply software patches to even after the CPU has shipped. The
CPU’s µcode engine first checks the RAM for patches before
executing the ROM default. A set of patch registers stores
(SRCi → DSTi) mappings, 3 when a µcode address SRCi

is fetched, execution is redirected to DSTi in RAM [45].

B. Red-Unlock Mode and Microarchitectural Access

Intel CPUs support multiple debug access levels [43], [45]:
1) Green-locked: default user/OS-visible mode on retail CPUs,
all debugging features are disabled; 2) Orange-unlocked: In-
tended for Original Equipment Manufacturers (OEMs), en-
ables a subset of debug features, and 3) Red-unlocked: En-
gineering mode used internally by Intel; enables unrestricted
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Fig. 1. Simplified view of the Intel µcode engine [46]. Red components indicate runtime reconfigurable structures.

access to microarchitectural components. Specifically, in Red-
unlocked mode, two undocumented new instructions become
available: udbgrd and udbgwr [43]. These enable reading
and writing internal CPU memory regions, including the µcode
RAM. By writing a sequence of µcode triads and triggering
execution at a target address, arbitrary µcode can be executed.
This capability allows bypassing the normal and protected
update procedure for µcode patches, i.e., first signature vali-
dation, then RAM writing, finally patch register configuration,
permits direct manipulation of the currently deployed µcode
update [45].

C. Fuzzing

Software fuzzing involves generating random and unex-
pected inputs to explore different execution path and uncover
bugs [19], [47], [48]. Since exhaustive input enumeration
is infeasible, fuzzers rely on heuristics, commonly guided
by code coverage, to mutate inputs in ways that maximize
program exploration [32]. Bugs are typically detected through
observable runtime violations, such as crashes, memory access
errors, or failed assertions.

Hardware fuzzing adapts these core ideas to the context of
processor testing. Instead of application-level inputs, hardware
fuzzers generate short programs, i.e., instruction sequences,
that are executed directly on the target CPU. As in software
fuzzing, heuristics are required to guide test generation. These
may include RTL signal toggling in simulation-based setups
or microarchitectural activity in post-silicon environments.
However, detecting bugs in hardware poses unique challenges:
CPUs are not considered “buggy” because they fault or access
invalid memory regions or trigger exceptions. This is often
correct behavior under certain conditions. As a result, post-
silicon hardware fuzzing typically depends on two main strate-
gies for bug detection: 1) Assertion checking, which is only
feasible when RTL is available; and 2) Differential testing,
which compares execution results across different CPUs or
hardware configurations to identify inconsistencies [19].

Further, post-silicon fuzzing is constrained by restricted
visibility into the CPU internal state of the processor, making
it difficult to detect complex errors. In this work, we address
this limitation by introducing custom instrumentation into the
µcode layer. This allows us to collect CPU internal execution
data at runtime, enabling a new class of post-silicon fuzzing
that observes microarchitectural behavior.

III. BREAKING THE POST-SILICON BARRIER

Despite dominating modern computing, commercial x86
CPUs have not been the target of coverage-guided fuzzing,
a proven method for exposing complex software bugs. This
gap is driven by four core challenges: microarchitectural
invisibility, absence of bug detection oracle, non-deterministic
execution, and fault containment. We detail each challenge in
the following and explain how Fuzzilicon overcomes them.

Challenge 1: Microarchitectural Invisibility

x86 processors are complex and opaque, with undocu-
mented µcode and speculative behaviors. This lack of
visibility severely limits the feedback needed for the fuzzer.

Coverage-guided fuzzing depends on informative feedback to
guide test generation. However, unlike open architectures such
as RISC-V, where pre-silicon emulation allows fine-grained
instrumentation, x86 processors are closed-source and propri-
etary; thus, valuable sources of feedback are limited. While
prior work [22], [24] has used coarse-grained feedback, such
as general-purpose register values or performance counters,
these signals reveal only surface-level execution behavior.
They offer limited guidance for exploring the deep microarchi-
tectural behaviors that carry critical hardware vulnerabilities.
Consequently, rich and informative feedback is lacking to drive
effective fuzzing campaigns for x86 processors.
Our Solution. Fuzzilicon introduces the first microarchitec-
tural feedback mechanism for post-silicon fuzzing: µcode-
level coverage. By instrumenting µoperations, Fuzzilicon col-
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lects fine-grained microarchitectural traces during execution.
This coverage metric enables deep exploration of all CPU’s
microarchitectural behavior (µoperations) space without re-
quiring RTL models. We detail the µcode-level coverage in
Section V-B.

However, enabling µcode instrumentation is not straight-
forward. First, the µcode architecture is proprietary and un-
documented. As a result, all public knowledge about Intel’s
µcode originates from reverse engineering, and is neither
complete nor guaranteed to be correct. This makes deploying
custom µcode updates inherently risky, as unsound patches
may corrupt the internal state of the CPU. To overcome
this, Fuzzilicon minimizes the state changes originating from
µcode instrumentation, described in Section V-B. Second,
prior work [45] records only whether a given µcode address
executed, ignoring execution multiplicity. Consequently, two
x86 instructions that invoke the same µoperations but with
different iteration counts (e.g., once vs. four times) appear
indistinguishable, and one may be discarded for not increasing
coverage, despite exploring different microarchitectural behav-
iors. This coarse signal misses substantial exploration space
and prunes valuable inputs. Fuzzilicon addresses this by count-
ing executions per µcode handler, revealing loops, and deeply
nested paths within a single test. On our target, Intel Apollo
Lake (Celeron, Goldmont) N3350 (CPUID[1].EAX=0x506ca),
we repurpose 16 internal registers to track 32 µcode addresses
concurrently. Given a 32k µcode address space, this requires
1k instrumentation points. However, we developed coverage-
scheduling optimizations to keep the overhead practical (Sec-
tion V-C).

Challenge 2: Absence of Bug Detection Oracle

Detecting x86 CPU bugs is difficult without formal mi-
croarchitectural specifications. ISA-level models miss un-
documented/speculative behaviors, limiting bug detection.

Detecting incorrect behaviors in commercial x86 CPUs is
inherently difficult due to the absence of formal microar-
chitectural specifications. While ISA-level simulators offer
partial reference behavior, they fail to capture microarchi-
tectural effects such as speculative execution, undocumented
instructions, or µcode operations. As a result, it’s often unclear
whether observed differences reflect genuine vulnerabilities
or benign implementation variations. In the absence of a
reliable oracle, fuzzers rely on differential detection: input-
driven, which requires known outputs (rare in fuzzing), and
output-driven, which compares results across different CPU
implementations. While general, output-driven methods suffer
from 1) False Positives (FP), due to architectural differences,
and 2) False Negatives (FN), when different CPUs exhibit the
same flawed behavior. A few solutions have been proposed
to address this challenge; for instance, Reversi [49] proposes
generating a reverse instruction for each instruction. However,
for complex x86 instruction, automatic generation of such
reverse instructions is challenging [1].
Our Solution. Inspired by Zenbleed [1], Fuzzilicon introduces

Serialization Oracles (Section V-F). For each test case P ,
Fuzzilicon synthesizes a semantically equivalent variant Q
by inserting serialization fences to suppress speculation and
reordering. Divergences between P and Q potentially flag
microarchitectural bugs; no reference model is required [1].

Challenge 3: Fault Containment

Applying custom µcode patches in the CPU is inherently
risky: malformed sequences can corrupt architectural state
or block forward progress, stalling or terminating the
fuzzing campaign.

Since µcode documentation is proprietary and our knowledge
originates from reverse engineering, deploying custom µcode
sequences carries nontrivial risk. Exercising undocumented
behaviors or injecting malformed µcode can induce hangs,
crashes, or persistent/transient lockups requiring a hardware
reset. Without proper fault containment, such failures crash the
entire fuzzing infrastructure, resulting in lost execution state
and requiring manual recovery.
Our Solution. Fuzzilicon decouples test execution from con-
trol logic using a two-part architecture. The Fuzzer Agent,
running on the target CPU, is responsible for setting up
the hypervisor, executing fuzzing test cases, applying µcode
instrumentation, and collecting internal coverage feedback.
The Fuzzer Controller, on a separate host, handles test case
generation and mutation, coverage analysis, feedback-driven
scheduling, and vulnerability triage. If the agent crashes or
stalls, the controller resets the system and resumes testing.
This architecture ensures that crashes in the system under test
do not affect the fuzzer’s control logic or analytics pipeline.
Furthermore, this architecture enables scalable deployment
across multiple agents. We detail our solution in Section IV.

Challenge 4: Non-deterministic Execution

Fuzzing depends on reproducible execution to analyze
crashes, however stateful instructions, Operating System
(OS) noise, and microarchitectural states introduce Non-
determinism during CPU fuzzing.

For sound evaluation and triage, fuzzing results must be
reproducible [50]. Achieving reproducibility on post-silicon
x86 CPUs is challenging due to: stateful instructions (e.g.,
RDRAND, RDTSC, RDPMC), OS/system noise, and microarchi-
tectural state all introduce nondeterminism. Moreover, fuzzing
inputs can corrupt global state or leave persistent side effects
that contaminate subsequent tests: unconstrained programs
may modify control registers, I/O ports, or memory mappings.
Our Solution. Fuzzilicon executes each test case in a bare-
metal hypervisor environment that provides strong isolation
from the host system, described in Section IV-D. It re-
sets memory and CPU state between tests, suppresses asyn-
chronous events, and prevents residual side effects. This
ensures repeatable execution even for fuzzing inputs, while
preserving access to advanced CPU features like speculation,
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virtual memory, and µcode engine.

IV. DESIGN

In this section, we begin with a high-level overview of
Fuzzilicon’s design. We then introduce the µcode coverage
metric and explain how it exposes microarchitectural execution
for effective exploration. Next, we describe our low-overhead
bare-metal hypervisor that isolates execution while supporting
efficient µcode coverage collection. Finally, we present our
Serialization Oracle for vulnerability detection and discuss
how we address its practical challenges.

A. High-level Overview

The high-level overview of Fuzzilicon is shown in Figure 2,
structured into three high-level components: Fuzzer Con-
troller, Fuzzer Agent, and Watchdog. The Fuzzer Controller
runs off-target CPU and orchestrates the fuzzing campaign:
it maintains the test corpus, mutates test cases, generates
serialized variants for each mutated input, and dispatches both
the original and serialized tests to the Fuzzer Agent.

The Fuzzer Agent runs on the target CPU. It pulls test
cases from the Fuzzer controller, applies µcode instrumen-
tation that records µcode coverage into RAM, provisions
isolated execution using Fuzzilicon’s bare-metal hypervisor,
and executes each test both as-is and as its serialized variant
in separate Virtual Machines (VMs). After each run, the
Fuzzer Agent collects the final architectural state (general-
purpose and control registers) via the hypervisor interface
and forwards it to the Early Bug Evaluation stage. If the
final architectural state of two executions diverges, a tracer
replays the testcase instruction-by-instruction, snapshotting
post-instruction architectural state to localize the root cause.
The suspicious trace is then sent to the Fuzzer Controller for
triage and archival. In parallel with Early Bug Detection, the
Fuzzer Agent exports post-execution µcode coverage to the
controller to guide mutations and records it for final reporting.

Fuzzilicon decouples the fuzzer from the DUT. This sep-
aration ensures that unexpected target behavior (e.g., hangs,
crashes) does not stall the campaign: all fuzzing state, col-
lected coverage, and detected issues are durably stored. Upon
detecting such failures, the Fuzzer Controller triggers the
Watchdog that hard-resets the target CPU, power-cycles the
Fuzzer Agent, and restores the target CPU to a known good
state.

B. Microcode-Level Coverage Metric

Fuzzilicon introduces a novel feedback signal, µcode cover-
age, which enables internal visibility into instruction execution
at the µoperations level. This feedback tracks which µcode
addresses are executed during test case execution, enabling
the fuzzer to probe complex microarchitectural behaviors that
are invisible to traditional architectural feedback.

As outlined in Section II, modern x86 processors execute
complex instructions by translating them into sequences of
µoperations, stored in µcode ROM. To support post-silicon
reconfiguration, CPUs also includes a writable patch RAM

and a redirection mechanism known as the hook table. Upon
instruction decode, the hook table determines whether to use
the default µcode ROM or redirect execution to a patch
stored in RAM. Fuzzilicon repurposes this reconfiguration
mechanism to inject lightweight probes into the CPU’s µcode
execution path. When an instruction executes, each associ-
ated µoperation triggers a lightweight logging operation that
increments a counter located in physical memory (RAM).
These counters are indexed by hook index, which can be later
mapped to µcode addresses, producing a precise execution
profile that records which µoperation is executed and the
corresponding frequency. The µcode coverage serves as a fine-
grained feedback signal, enabling Fuzzilicon to prioritize in-
puts that explore new microarchitectural behaviors. To ensure
that µcode instrumentation does not affect CPU functionality
(Challenge 2 in Section III) Fuzzilicon preserves architectural
state and control flow, and leverages unused or non-critical
µcode registers to avoid interfering with the instruction’s
intended behavior.

At runtime, the Fuzzer Agent installs instrumentation by
writing patched triads into µcode RAM and configuring the
hook table before execution; upon completion, it retrieves
coverage from a memory-mapped region and reports it to the
Fuzzer Controller. By integrating with the processor’s native
µcode patch infrastructure, Fuzzilicon provides microarchitec-
tural introspection without emulation, turning the CPU into a
gray-box fuzzing target with microarchitectural visibility.

C. Why Microcode Coverage?

Architectural feedback, e.g., register differences and in-
struction coverage, observes only committed instruction out-
comes and overlooks semantically distinct microarchitectural
behaviors. A single x86 opcode, which is implemented by
a µcode routine and contains guarded control-flow (condi-
tion on VMX/SMM state, availability/health of internal units,
retry/loop paths, fallbacks), can traverse different paths de-
pending on microarchitectural state. For example, as illustrated
by the µcode pseudo code for RDRAND in Algorithm 1.
Lines 1, 2, and 5 gate behavior on these conditions: the
same instruction may return a hardware random value, trap
to SMM, raise #UD, or exit to a hypervisor while executing
an identical instruction, yet architectural coverage reports
“covered” after the first observation and provides no signal
about which internal condition remains unexplored. In fuzzing
terms, relying on ISA-level outcomes is akin to function-
coverage in software fuzzing [51]: it saturates early and fails
to separate interesting edges inside the implementation.

We introduce the µcode coverage to address this visibility
gap (Challenge 1 in Section III) by exposing path-sensitive
signals from the µcode engine. By logging which µoperation
execute and with what multiplicity, it distinguishes inputs
that exercise different internal paths for the same instruction.
This yields a metric that guides the fuzzer to prioritize seeds
that unlock new µcode edges or change execution counts. In
practice, µcode coverage plays the role that edge coverage
plays in software fuzzing [51]: it provides the fine-grained,
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Fig. 2. High-level overview of Fuzzilicon architecture

state-sensitive feedback necessary to explore the CPU’s mi-
croarchitectural functionality.

Algorithm 1 Pseudocode summary of the RDRAND µcode
behavior.

1: if not in SMM then
2: if LOCK prefix used then
3: RAISE(#UD)
4: end if
5: if VMX then
6: EXIT TO SMM OR VMX MONITOR
7: end if
8: end if
9: number ← HARDWARERNGGEN()

10: dst← ZEROEXTEND(number)
11: EFLAGS.CF ← SET IF number ̸= 0

D. Hypervisor-Based Execution Isolation

To ensure deterministic execution and full isolation of
fuzzing inputs (Challenge 4 in Section III) Fuzzilicon in-
troduces a lightweight, custom type-1 hypervisor [52] that
encapsulates each test case within a dedicated virtual CPU
instance. Unlike traditional virtualization systems designed for
long-lived guest operating systems, Fuzzilicon’s hypervisor is
optimized for single-purpose, short-lived fuzzing executions
with strict guarantees on state control and containment. For
every test case, the fuzzer initializes a new virtual CPU
configured with a fixed architectural state. This includes the
general-purpose registers, control and system registers, the
instruction pointer, and segment selectors. The goal is to
ensure that all inputs begin execution from an identical and
defined CPU state, eliminating residual effects from prior tests.

To enforce memory isolation, the hypervisor exposes a re-
stricted, virtualized memory layout to the VM using hardware-
assisted paging. Control over memory permissions ensures

that critical configuration structures remain immutable and
that fuzzing inputs cannot overwrite or reuse memory in
unintended ways. The hypervisor is responsible for intercept-
ing instructions that may affect host system configuration,
access IO ports, result in non-deterministic execution, and
intercept non-maskable interrupts. To prevent non-termination,
the hypervisor enforces a maximum execution time. Tests that
exceed their budget are preempted with a forced VM exit,
ensuring that infinite loops cannot degrade the throughput or
availability of the fuzzing campaign. After the VM terminates,
the hypervisor extracts the architectural state of the virtual
CPU for bug detection. The hypervisor is tightly integrated
into Fuzzilicon with low overhead, detailed in Section V-D.

E. Differential Testing with Serialization Oracle

To detect bugs and vulnerabilities without a formal reference
model, Fuzzilicon employs a differential strategy, inspired
by the Zenbleed [1], that compares each input program P
with a serialized variant Q, constructed to be semantically
equivalent. The central idea is that if a processor is functionally
correct, P and Q should produce the same architectural
outcome. Any deviation implies a hidden inconsistency in
microarchitectural behavior. The transformation that produces
Q enforces instruction-level serialization by inserting fence
instructions between every instruction to suppress speculation
and reordering.

However, this transformation alters code layout, breaks
relative addressing, and disrupts control and data flow. To
overcome these challenges, Fuzzilicon incorporates system-
atic transformation strategies that preserve instruction seman-
tics despite structural modification. For example, instruction
pointer relative immediate memory accesses are adjusted by
changing the opcode’s operand to access the same memory
location, like in the original program.

Additionally, Fuzzilicon detects misaligned or non-standard
control transfers, such as jumps into instruction bodies. In
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these cases, the program is unrolled into isolated fragments
that can be serialized independently and safely joined (see
Appendix B). This Serialization Oracle lets Fuzzilicon expose
bugs rooted in microarchitectural features, such as speculation,
transient state retention, hidden instruction, without a reference
model (Challenge 2, Section III). The implementation of this
Serialization Oracle is explained in Section V-F.

V. IMPLEMENTATION

In this section, we detail the implementation of the Fuzzil-
icon framework. We first present the system architecture and
deployment approach, followed by our µcode instrumentation
technique. We then describe our patching and coverage collec-
tion strategy, the hypervisor-based execution environment, our
fuzzing input generation and mutation methods, and finally
our differential testing approach with serialization oracle.

A. System Architecture and Deployment

As outlined in Section IV, Fuzzilicon is comprised of
three components: the Fuzzer Controller, Fuzzer Agent, and
Watchdog, implemented in Rust and x86-64 assembly. For
target CPU, we utilized a Gigabyte GB-BPCE-3350C [53]
Mini-PC containing an Intel N3350 (Goldmont microarchitec-
tural, CPUID 0x506ca). The target CPU does not natively
expose interfaces for custom µcode patches. We first red-
unlock the processor following established procedures for this
processor family [43], [45], [54]–[56]. Upon successful red-
unlocking, undocumented instructions become available that
enable Control Register Bus (CRBUS) access (udbgrd and
udbgwr), which are essential for µcode manipulation during
fuzzing. This is a one-time manual procedure per target device.

Both the Fuzzer Controller and Watchdog are hosted
Rust applications running on Raspberry Pi 4 platforms with
NixOS [57]. The Fuzzer Controller serves as the stateful core
of the Fuzzilicon framework, generating test cases, performing
mutations, communicating with the Fuzzer Agent to deploy
tests and collect µcode coverage, and coordinating with the
Watchdog to manage the target CPU. The Watchdog functions
as a remote keyboard and storage device for the Fuzzer Agent,
responsible for hard-resetting the target, booting it to Unified
Extensible Firmware Interface (UEFI), and starting the Fuzzer
Agent executable. It exposes a Representational State Transfer
(REST) Application Programming Interface (API) that allows
the Fuzzer Controller to issue control commands, for instance,
upon detecting communication timeouts or unresponsive be-
havior, the Fuzzer Controller triggers a reset command that
causes the Watchdog to physically cycle power via probes
soldered to the target motherboard. The Fuzzer Agent de-
ploys as a standalone UEFI application on the target CPU
to eliminate OS interference. It injects µcode instrumentation
and custom patches, executing fuzzing test inputs, collecting
coverage, and communicating with the Fuzzer Controller over
User Datagram Protocol (UDP) for task coordination, test
input delivery, and µcode coverage collection.

This modular hardware layout ensures that the Fuzzer
Controller and Watchdog remain unaffected by crashes or

lockups in the target CPU, enabling long-term autonomous
operation over days or weeks.

B. µcode Instrumentation and Patching

Fuzzilicon enables runtime instrumentation of µoperation
by deploying patched µcode sequences and configuring µcode
hook table. As outlined in Section IV, the goal is to guide
the fuzzer toward exploring all possible paths within µcode
implementations-effectively covering all reachable µcode ad-
dresses. To achieve this, we instrument the target µcode
addresses by adding entries to the µcode hook table that
redirect execution to coverage collection logic, then resume
from the original address upon completion.

To preserve target CPU functionality, coverage collec-
tion minimizes state changes. Our instrumentation first
saves a required subset of the general-purpose registers
in the CPU’s staging buffer [45], records the coverage
event and updates the in-memory coverage map, restores
the saved state, executes the overwritten µoperation, and
finally jumps to the originally intended next µcode address
to continue normal execution. To the best of our knowl-
edge, the write-to-staging-buffer is the only known
µoperation capable of storing register values into memory
without needing an additional register operand. Since the
staging buffer is shared among all µcode routines, Fuzzilicon
selects an address location normally used by the udbgwr
instruction, ensuring a minimal state impact [43], [45]. This
approach ensures that the target’s architectural and microar-
chitectural behavior remains unaffected.

Since the instrumentation only uses a subset of the available
general-purpose registers, we only save and restore the state
of these registers, keeping the instrumentation overhead profile
low while maintaining correctness.

Our reverse engineering analysis uncovered that the µcode
engine implements address hook redirection through a paired
addressing mechanism. Specifically, when a redirection hook
is configured for an even address S to destination D, the
µcode engine automatically redirects the corresponding odd
address S+1 to destination D+1 without requiring an explicit
hook entry. Consequently, determining whether the hook was
triggered by an even or odd µcode address becomes critical
for proper execution flow control and coverage calculation.
To handle this differentiation, Fuzzilicon places an immediate
jump at the hook redirect destination D, to ensure that µcode
execution originating from address S will execute this instruc-
tion, while execution triggered from S + 1 will skip it and
continue to subsequent instructions. This mechanism enables
Fuzzilicon to accurately differentiate and log the specific entry
address (S or S + 1) that triggered the hook.

Since applying a µcode hook redirection overwrites the
processor’s native µcode at addresses S, S + 1, Fuzzilicon
manually inlines the corresponding original µcode instructions
at the conclusion of the injected sequence. Following this
restoration, an immediate jump instruction is inserted to re-
sume execution at the appropriate continuation address (S+1,
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S+2, or jump target if the original µoperation was a jumping
instruction).

For instrumenting a new µcode address to enable coverage
collection, both the inlined original µcode instructions and the
jump instruction must be updated accordingly. Given that each
of the 16 µcode hook registers maps to a pair of addresses
(even and odd), complete reconfiguration necessitates writing
144 distinct values1 through the udbgwr instruction. To
minimize the computational overhead associated with this
setup process, Fuzzilicon implements a custom µcode utility
function that accepts a memory address parameter and per-
forms the setup of all active hook table entries within a single
instruction decode cycle. Consequently, reconfiguring all hook
targets requires only a single udbgwr invocation per test case
iteration, substantially reducing the instrumentation overhead
and improving overall fuzzing efficiency.

C. Coverage Collection Strategy

Our target platform is constrained to only 16 µcode hooks,
which limits the instrumentation coverage to 32 addresses per
instrumentation round. Given the approximately 32k (exact
number 0x7C00) µcode address space, collecting compre-
hensive coverage for all µcode addresses within a single
fuzzing test case requires Fuzzilicon to execute the test case
0x7C00

32 = 992 times. This baseline approach introduces
significant performance overhead.

To address this fundamental limitation, Fuzzilicon imple-
ments the following optimized coverage collection scheduling
mechanism that significantly reduces execution overhead while
maintaining comprehensive coverage collection capabilities.
During the initial fuzzing phase, Fuzzilicon instruments all x86
instruction entry points residing below the 0x1000 address
range [43]. However, these instruction entry addresses are
aligned to 8 addresses, resulting in a total of 0x1000

8 = 512
entry locations. Using 16 hook registers, each fuzzing input is
executed 512

16 = 32 times to achieve initial coverage.
Subsequently, static analysis and µcode disassembly tech-

niques can be used to extract basic blocks from µcode. A
basic block is defined as a set of µoperations that once the
first µoperation of the block executes, unconditionally execute
till the last µoperation. Further, the only entry point is the
first µoperation, while the last µoperation is always the last
executed instruction of the basic block [58].

When instrumenting one µcode address of any basic block,
the coverage can be propagated to all addresses that are part of
the block. Furthermore, the set Φ(y) captures all conditionally
reachable successors of a basic block y. Only these successors
within Φ(y) are selected for subsequent instrumentation and
test re-execution when the coverage of y is non-empty. This
selective approach eliminates unnecessary iterations while
ensuring complete and fine-grained coverage collection.

Overall, this optimization strategy significantly reduces the
computational overhead from 992 times re-executions required

116× (2× 4+1) Two triads and the hook table entry for each hook table
entry.

in the baseline approach to at best 32 iterations, plus the
number of conditional branches encountered during µcode
execution, which benefits us with at best 31× less overhead.

D. Hypervisor-Based Program Execution

We implemented a type-1 hypervisor, running on top of
UEFI, providing fuzzing input isolation using the Intel VMX
virtualization technology. We provide a reproducible fuzzing
execution harness by initializing a new virtual CPU instance,
memory isolation, and executing controls. First, we instanti-
ate a fresh virtual CPU by initializing the Virtual Machine
Control Structure (VMCS), which is the main configuration
structure for Intel VMX. We set the initial values of stack
and program counter registers, set up VM-execution control
setting [59], and set the memory translation-related registers.
Using Extended Page Tables [60], we provide the same vir-
tualized view of main memory to each fuzzing input, split
into three parts: execute-only, read-write, read-only, initialized
once. Before invoking the fuzzing input (in an execute-only
region), the read-write region is zeroed to purge transient state
from prior executions. The read-only region is only initialized
once at fuzzing start, containing required memory structures
for x86 instruction execution, like a Global Descriptor Table
(GDT), and a Task State Segment (TSS) data structure. Using
the VM-execution control settings, we configure the fuzzing
guest VM to exit on problematic actions like executing an
instruction that introduces nondeterminism, interaction with
hardware components, arrival of an external interrupt, and
the VM’s timeout budget. The hypervisor may handle each
event and decide to stop or continue fuzzing input execution.
Using the timeout, we prevent loops in the fuzzing input
from stalling the fuzzing process. When finishing executing
a fuzzing sample, the architectural state of the virtual CPU
instance is captured and sent to the fuzzing controller into the
bug-detection pipeline.

E. Fuzzing Input Generation and Mutation

Each fuzzing campaign starts with an initial corpus, com-
prising randomly generated byte sequences or valid instruction
gadgets extracted from software libraries, such as libcxx. Valid
instructions are extracted from software libraries and randomly
concatenated until a configurable size threshold is achieved.

Input mutation is performed using either a custom genetic
algorithm guided by coverage and execution-depth heuris-
tics, or established mutators (e.g., Havoc) from the libafl
library [48]. Our custom mutation engine implements random
1-to-8 byte mutations and cross-over operations on the fittest
fuzzing samples. The fitness evaluation of a given sample is
computed using the µcode coverage metric, combined with
the ratio of executed bytes to total generated bytes. We
preserve the top-k samples per generation and utilize them
to seed subsequent generations. Consequently, the generated
fuzzing inputs may comprise valid ISA instruction sequences
or arbitrary invalid byte sequences, all evolved through µcode
coverage feedback mechanisms
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F. Differential Testing with Serialization Oracle

To implement the serialization oracle discussed in Sec-
tion IV-E, we encounter a non-trivial challenge: program lay-
out changes cause relative addressing instructions to reference
incorrect locations. We address this by analyzing each instruc-
tion’s behavior according to the modified program layout. Our
oracle maintains a list of all relative addressing instructions,
extracts these from the original test case, and recomputes their
offsets for the transformed program, following established
binary rewriting methodologies [61]. However, fuzzing inputs
are comprised of randomly generated byte sequences rather
than compiler-generated code, enabling jump or control flow
instructions to target mid-instruction locations (Appendix B).
Introducing serialization in such cases creates non-equivalent
execution between serialized and non-serialized variants, gen-
erating numerous false positives during vulnerability detection.
We solve this problem by adapting Superset Disassembly [62]
techniques, unrolling the original program to discover ad-
ditional instruction gadgets. However, we utilize a different
relocation approach: rather than relocating entire blocks, we
relocate individual instructions to new locations, inserting
fence instructions between each relocated instruction to ensure
deterministic execution ordering.

A corner case involves self-modifying code and fuzzing
test cases that attempt to alter their own instructions during
execution. Since self-modifying code dynamically changes
program execution flow at runtime, it can introduce new
relative addressing instructions that static binary rewriting
cannot anticipate or handle, as rewriting occurs before pro-
gram execution. We address this limitation by restricting self-
modifying behavior in fuzzing test cases through execute-only
page permissions. The hypervisor detects and interrupts any
fuzzing input that attempts to write instructions to execute-
only memory pages, preventing dynamic code modification
that would compromise our serialization oracle’s correctness.

VI. EVALUATION

In this section, we first discuss Fuzzilicon’s automatic de-
tection of µSpectre [42] class vulnerabilities. We then present
a specialized use case where Fuzzilicon targets speculative
execution leakage at the µcode level, leading to two newly dis-
covered vulnerabilities and three new and interesting findings
related to speculative behavior in µcode. Next, we evaluate
µcode coverage effectiveness by comparing total achieved cov-
erage, coverage acquisition speed, and the impact of random
versus carefully crafted seeds and mutation engines. Since
existing works [24] lack clear coverage definitions, direct
comparison is not feasible; instead, we compare against a
baseline x86 fuzzer without coverage guidance to demonstrate
Fuzzilicon’s advantages over the class of existing approaches.
Each coverage experiment runs for 48 hours with at least three
repetitions to minimize noise. Finally, we analyze Fuzzilicon’s
performance characteristics and µcode coverage overhead.

A. F1. µSpectre Vulnerabilities Detection

The µSpectre vulnerability class, discovered by Mosier
et al. [42], exploits µcode-level speculative execution where
branches are statically predicted (taken, not-taken, or stalled).
This design choice enables data leakage through mispre-
dicted branches that continue speculative execution across
x86 instruction boundaries, allowing subsequent instructions
to leak information. During our fuzzing campaign, Fuzzilicon
automatically detected this vulnerability class during µcode
instrumentation (F1). The µcode instrumentation itself does
not modify the test case’s instruction sequence. However, the
act of instrumenting µcode can trigger speculative execution
behaviors at µcode-level that wouldn’t occur naturally, for
instance, by having µcode-level branches that are statically
predicted. When the same test case is re-executed with seri-
alization fences (such as LFENCE instructions), these fences
prevent speculation from reaching the following instruction.
The divergence in architectural state between the speculative
and non-speculative executions reveals the speculative behav-
ior, allowing Fuzzilicon to automatically identify instances of
the µSpectre vulnerability class without prior knowledge.

B. Use Case: Fuzzing x86 Microcode for Speculative Leakage

Speculative execution enables processors to transiently exe-
cute instructions (µoperation) before preceding control flow
is resolved. While effective for performance, this behav-
ior creates the potential for sensitive information to leak
through microarchitectural side effects [1], [3], [4], [63].
Prior work has largely focused on instruction-level spec-
ulation behaviors [1], [64], [65]. Fuzzilicon opens a new
frontier: fuzzing the µcode sequences that execute transiently
within speculative windows to discover information leakage
or side channels originating at the µcode level. Rather than
modifying the branch predictor behavior directly, we built a
reusable µcode template (Listing 1) that creates a specula-
tive execution context. We leverage an existing µoperation,
UJMPCC_DIRECT_NOTTAKEN_CONDNZ (Opcode: 0x151)
which is designed to always predict ”not taken” and initiate
speculative execution at the µcode level [42]. We use this
created speculative path as a stable speculative entry point
for µcode fuzzing.
Speculative Template Construction: We reserve a region
of the µcode patch RAM as the speculative body (see
Listing 1). During each fuzzing iteration, Fuzzilicon injects
a randomized or guided sequence of µoperations into this
region. These µoperations execute speculatively because, as
discussed, UJMPCC_DIRECT_NOTTAKEN_CONDNZ always
will be mispredicted and create a speculative window. These
µoperations cause microarchitectural effects that should be
rolled back by design upon the end of the speculative window.
Leakage Observation: Although the speculative path does
not commit architecturally, its execution may leave detectable
architectural and microarchitectural traces. Fuzzilicon detects
such leakage by comparing the architectural state before and
after execution of the template (see Listing 1). This enables
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the detection of persistent side effects introduced solely by
speculative µoperations execution.

This use case demonstrates how the Fuzzilicon framework
enables targeted fuzzing of speculative behavior at the µcode
level, uncovering security-relevant leakages that are invisible
to architectural-level fuzzers. Below, we summarize key find-
ings made possible through this capability.

<entry>
tmp2 := ZEROEXT_DSZ64(0xabab)
tmp0 := ZEROEXT_DSZ64(0x1000)
tmp1 := LDPPHYS_DSZ32_ASZ16_SC1(tmp0)
tmp0 := SUB_DSZ64(tmp0, tmp1)

; Speculative branch | misprediction forced
UJMPCC_DIRECT_NOTTAKEN_CONDNZ(tmp0, <taken>)
; Speculative Window Start
; --- INSERT MICRO-OPERATION HERE ---
rax := ZEROEXT_DSZ64(0xdead)
NOPB
NOP SEQW SYNCFULL
NOPB
; Speculative Window Ends

<taken>
unk_256() !m1 SEQW LFNCEWAIT, UEND0

Listing 1. Speculative µcode window using forced misprediction template

F2. Speculative writes to the CRBUS persist after the
speculative window is discarded.

We discovered that certain µoperations writing to
the CRBUS within speculative execution windows per-
sist their side effects even when the CPU subsequently
discards the speculated execution. This leads to incor-
rect or unintended state changes that violate speculative
execution’s rollback guarantees. For example, executing
micro-op 0x4292180220 MOVETOCREG_DSZ64(rax,
0x692) writes to CRBUS address 0x692, which controls
the µcode hook table activation. When rax contains 0x1
(deactivate), all µcode patched, including security patches, are
disabled, effectively bypassing current µcode security updates,
even when executed speculatively and subsequently rolled
back. We provide a comprehensive list (See Appendix C) of
µcode operations whose effects persist during speculative win-
dows despite execution rollback by triggering unrecoverable
CPU lockups that constitute denial-of-service conditions. We
categorize their behaviors as either reliable (StableTimeout),
always causing a lock-up or unreliable (Unstable), sometimes
causing a denial-of-service.
F3. Speculative updates to the segment selector caches per-
sist after the speculative window is discarded. Our analysis
reveals a critical vulnerability in segment selector cache man-
agement during µcode-level speculative execution. When a
µoperation targeting segment selector caches (opcode 0xc6b
- WRSEGFLD) executes within a speculative window, their
state modifications persist even when the triggering branch
is subsequently mispredicted and the speculative execution
should be discarded. This vulnerability can be exploited when
default µcode implementations or security updates contain

segment selector cache writes that execute speculatively but
fail to undergo proper rollback following branch mispredic-
tions. Critically, these persistent writes can bypass permission
checks that would normally guard µoperation execution. An
adversary capable of executing code on the target processor
can exploit this behavior across all privilege levels, poten-
tially achieving denial-of-service conditions, privilege escala-
tion to ring-0, or unauthorized memory access. We demon-
strate this vulnerability using µoperation 0xc6b26000037
WRSEGFLD(tmp7, GDT, BASE) within our speculative
execution template (Listing 1). This operation writes the tmp7
register value into the segment selector cache as the GDT
base address. The unauthorized modification can be detected
through two mechanisms: indirectly via CPU crashes when
the target memory contains invalid GDT structures, or directly
through the Intel VMX hypervisor API that permits segment
cache inspection and manipulation in virtualized environments.
F4. Microcode-implemented instructions terminate specu-
lation. Our analysis shows that speculative execution at the
instruction level terminates when encountering instructions
requiring µcode implementation and the instruction cache is
empty. Specifically, when a speculative window initiates, for
example, following a mispredicted call-return sequence, the
first instruction dispatched to a µcode sequencer halts further
speculative execution. This behavior indicates that µcode
dispatch boundaries function as implicit speculation barriers
within Intel’s processor implementation. This architectural
characteristic creates a timing-based observable that adver-
saries can exploit for information disclosure. An attacker can
leverage these timing variations to infer sensitive information
about program execution paths.
F5. Speculative µops leave traces on performance counters.
Our analysis shows that certain µoperations executed spec-
ulatively produce measurable side effects on architecturally
visible performance counters. For instance, speculative exe-
cution of the undocumented UNK_256 µoperation increments
the µcode sequencer counter (MS_DECODE.MS_ENTRY) even
when executed within speculative windows that are subse-
quently discarded. This behavior indicates that non-retired
µcode execution paths can leak internal processor state through
architecturally observable side-channel artifacts. Intel’s ISA
documentation reveals that this behavior aligns with docu-
mented processor specifications, although it can leak infor-
mation.

Overall, these findings demonstrate the effectiveness of
Fuzzilicon for exploring speculative behavior at the µcode-
level, and its capability to uncover information leakage chan-
nels and safety violations not observable through conventional
fuzzing techniques.

C. Coverage Analysis

In this section, we present the results on the effectiveness of
µcode coverage feedback for exploring the CPU architecture.
During this analysis, we fixed the mutation engine on the
AFL Havoc engine due to its superior performance in all
experiments compared to our custom mutation. Also, we
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Fig. 3. Effectiveness of µcode-coverage feedback on exploration with Havoc
mutators and random corpus over time. #U.A. stands for number of unique
µcode addresses.

evaluated the impact of fuzzing corpus selection by conducting
experiments using two distinct corpus types: (1) Random Cor-
pus, consisting of concatenated random bytes up to a fixed size
limit, and (2) Valid Corpus, constructed by extracting unique
x86 instructions from three widely-used software libraries:
libc++, libz, and libzip.

Figure 3 shows the µcode coverage metric over time when
using random corpus in both fuzzing setups, with µcode
coverage feedback enabled in one configuration and disabled
in the other. The fuzzing setup without feedback (Random
Corpus, w/o feedback) represents the baseline x86
fuzzers that lack coverage metrics , while the setup with
feedback (Random Corpus, w/ Feedback) represents
Fuzzilicon. As illustrated in the graph, Fuzzilicon outperforms
baseline x86 fuzzing methodologies not only in final coverage
achievement (across all runs) but also achieves the same
coverage metric approximately 8× faster on average. This
demonstrates the effectiveness of µcode coverage feedback
in guiding the fuzzer toward exploring the CPU design. To
further evaluate the impact of corpus quality, we conducted
experiments using both random corpus and valid corpus while
maintaining feedback activation in both scenarios. As shown
in Figure 4, average coverage achieved by Random Corpus
consistently outperforms Valid Corpus, which our analysis
attributes to the inherent diversity of random corpora generated
from random bytes, whereas the valid corpora contain struc-
tured instructions that may exhibit redundancy across different
corpus samples.

However, Figures 3 and 4 only present the average number
of unique µcode addresses achieved in each fuzzing setup,
lacking information about the total overlap between these ad-
dresses and the comparative effectiveness when combining all
runs. To evaluate this metric comprehensively, we calculated
the µcode-coverage overlap matrix (Figure 5), µcode-coverage
uniqueness matrix (Figure 6), and exclusive µcode-coverage
analysis (Figure 7) across all runs for different setups.

Figure 5 presents the µcode-coverage overlap matrix, where
diagonal cells indicate the total number of unique µcode

Fig. 4. Effectiveness of corpus on exploration with Havoc mutator and µcode-
coverage feedback over time. (#U.A. stands for number of unique addresses.)

addresses achieved across all runs for each fuzzing setup,
while off-diagonal cells represent the overlap between row and
column configurations. As evident in Figure 5, Valid Corpus
with Feedback achieved 2, 528 unique addresses in total,
surpassing all other configurations. Furthermore, configura-
tions with µcode-coverage feedback (Valid Corpus, w/
Feedback and Random Corpus, w/ Feedback) con-
sistently outperform their respective counterparts without feed-
back (Valid Corpus, w/o Feedback and Random
Corpus, w/o Feedback), demonstrating the effective-
ness of our introduced µcode-coverage feedback in explor-
ing more unique µcode addresses. Additionally, this analysis
reveals that Valid Corpus configurations achieve higher total
unique address coverage across multiple fuzzing rounds (ac-
counting for fuzzing reset effects [66]) compared to Random
Corpus configurations. This finding reconciles the apparent
contradiction in Figure 4, where Random Corpus shows better
average performance per run, but Valid Corpus configurations
achieve higher total coverage for all fuzzing runs.

Figure 6 shows the µcode-coverage uniqueness matrix,
where each matrix cell represents the number of unique µcode
addresses covered by the row fuzzing setup but not by the col-
umn setup. This visualization supports the same conclusions
as the overlap matrix: fuzzing setups with µcode-coverage
feedback consistently achieve more unique µcode addresses
compared to their counterparts without feedback. Moreover,
fuzzing setups with Valid Corpus consistently achieve more
unique µcode addresses than Random Corpus configurations,
supporting our previous conclusions.

Finally, figure 7 illustrates the number of exclusive coverage
points achieved by each fuzzing configuration compared to all
other setups, specifically, how many unique µcode addresses a
fuzzing setup discovered that other setups failed to achieve. As
demonstrated, configurations with µcode-coverage feedback
enabled consistently achieve at least 2× higher exclusive
µcode-coverage points compared to any setup without µcode-
coverage feedback. This provides strong evidence for the
effectiveness of µcode-coverage feedback and Fuzzilicon in
exploring the CPU microarchitectural compared to existing
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Fig. 5. µcode coverage overlap matrix. Addresses in row config overlapping
with column config. #U.A. stands for number of unique addresses. R. stands
for random, and V. stands for valid.

Fig. 6. µcode coverage uniqueness matrix. Addresses in row config NOT in
column config. #U.A. stands for number of unique addresses. R. stands for
random, and V. stands for valid.

baseline methodologies.
In total, across all our fuzzing campaigns, Fuzzilicon

achieved coverage of 2, 867 unique µcode addresses, repre-
senting 16.27% of all hookable µcode addresses (17, 624) in
the target CPU architecture.

D. Performance Analysis

Fuzzilicon introduces two primary sources of overhead: 1)
Hypervisor-based execution environment (reset architectural
state, memory, start end stop VM execution), and 2) µcode-
coverage collection and fuzzing framework overhead like
capturing the architectural state. To quantify these, we instru-

Fig. 7. Exclusive µcode Coverage for Different Fuzzing Configurations.
(#U.A. Stands for Number of Unique Addresses. R. Stands for Random,
and V. stands for Valid)

Fuzzing Step Average Time std dev
Hypervisor Setup arch-state 164.173us 3.317us
Hypervisor Setup memory 149.833us 3.943us
State Capturing 18.404us 1.600us
Coverage Setup 183.054us 86.030us
Coverage Collection 55.594us 2.808us
Total Overhead (Single Execution Round) 571.058us -
Baseline total overhead 566.490ms -
Fuzzilicon total overhead 18.274ms -

Fig. 8. Timing Breakdown of Overheads in Fuzzilicon. std dev Stands for
Standard Deviation.

mented Fuzzilicon to collect timing measurements from each
source of overhead (see Table 8). In comparison to the baseline
approach [45], Fuzzilicon optimization significantly reduces
instrumentation overhead. The baseline approach, when fully
parallelized across 16 hooks, incurs an overhead of 566.490
milliseconds to complete one fuzzing round, whereas Fuzzil-
icon completes the same task in only 18.274 milliseconds,
achieving an approximately 31× overhead reduction in the
best-case scenario.

VII. DISCUSSION

Portability to other CPU families. While the Fuzzilicon
framework was evaluated on an Intel N3350 processor (Gold-
mont microarchitectural, CPUID: 0x506ca), its applicabil-
ity extends beyond this specific CPU. The framework can be
adapted to other Red-unlocked Intel processors with minimal
modifications, primarily adjusting microarchitectural-specific
parameters. No modification is required for processors sharing
the same microarchitecture or CPU family. Extending Fuzzili-
con to other CPU vendors or non-Red-unlocked CPUs is feasi-
ble if µcode update interfaces remain accessible. When µcode
update capabilities are available, only the instrumentation logic
requires adjustment to accommodate the target CPU’s specific
update procedures. Recently, Google researchers disclosed
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AMD’s EntryBleed vulnerability [67], which enables loading
malicious µcode patches on AMD processors. The instru-
mentation logic of Fuzzilicon could potentially be extended
to exploit this vulnerability for patching µcode updates in
AMD systems. However, unlike Intel’s extensively reverse-
engineered µcode architecture, AMD’s µcode is still poorly
understood and undocumented. Consequently, we defer AMD
CPU fuzzing to future research efforts.

VIII. RELATED WORK

We have structured the result of our literature research
in Table VII. We have identified 19 hardware fuzzers [20]–
[38] published in the last years that we categorized using the
categories: Type (pre-silicon/post-silicon; does it require RTL
source code), Target (on which target architecture was the
fuzzer tested), Input generation (how is the input generated),
Platform (how is the target CPU run; emulated CPU, CPU
on Field Programmable Gate Array (FPGA), bare-metal, or
requiring OS), ISA-Simulation (does the fuzzer require an
additional ISA simulator), Vulnerability detection (which
method is used to detect bugs), Microarchitectural feedback
(does it use microarchitectural feedback), and Fuzzing input
restriction (is the fuzzing input generation restricted before
running it on the target).

In the following, we highlight the differences between
Fuzzilicon and the three previous post-silicon fuzzers.
Osiris [22] is a post-silicon x86 fuzzer that detects timing-
based side-channel vulnerabilities. It does so by measuring
the duration instruction triplets take to execute. Fuzzilicon, in
contrast, has to goal to find architectural and microarchitectural
CPU bugs by analyzing the CPU state. SiliFuzz [24] initially
fuzzes CPU ISA simulators using software coverage feedback
to generate a test corpus and collect expected behavioral traces
for each test case. Subsequently, the framework executes the
generated corpus on the target CPU and validates architectural
register states against the simulator-derived expected values.
Fuzzilicon does not require an ISA simulator and runs on
the bare-metal CPU, hence it does not restrict the input gen-
eration to ”non-destructive” x86 instruction sequences. Like
Fuzzilicon, RISCVuzz [37] does not use an ISA Simulator,
but it restricts the instruction generation to not include, e.g.,
WRMSR equivalent instructions. Further, it targets the RISC-V
architecture and runs on top of an OS.

Fuzzilicon is the first post-silicon CPU fuzzer that leverages
hypervisor environments to not restrict fuzzing input gener-
ation to ”non-destructive” instructions. It runs on the bare-
metal CPU without an OS. Further, it is the first CPU fuzzer
using microarchitectural state to enhance the fuzzing feedback,
leaning towards the concept of pre-silicon fuzzers that modify
the behavior of the target CPU.

IX. CONCLUSION

In this paper, we presented Fuzzilicon, the first post-silicon
fuzzer for x86 CPUs that leverages µcode-level feedback
to systematically explore internal microarchitectural behavior.

By introducing µcode coverage as a novel guidance sig-
nal, Fuzzilicon opens a new direction for hardware fuzzing
beyond architectural observability. Our system integrates a
lightweight, hypervisor-based execution environment to ensure
isolated, deterministic test runs on real silicon and introduces
a serialization oracle to detect vulnerabilities without relying
on formal specifications.

We address and formalize the core challenges of post-
silicon x86 fuzzing microarchitectural invisibility, absence of
bug detection oracle, non-deterministic execution, and fault
containment. We demonstrate how Fuzzilicon overcomes these
challenges through a principled design. Our evaluation shows
that Fuzzilicon can uncover 5 significant findings, including
two previously unknown µcode-level speculative-execution
vulnerabilities (F2 and F3) and automatically rediscover
µSpectre vulnerabilities (F1). Fuzzilicon achieved 16.27%
coverage of all hookable µcode paths, setting a new baseline
for introspective fuzzing on proprietary CPUs. Along the way,
we introduce optimized instrumentation strategies that reduce
instrumentation overhead by 31× compared to the baseline.
Together, these contributions establish Fuzzilicon as a practi-
cal, efficient, and powerful framework for uncovering security-
critical vulnerabilities in modern, closed-source processors.
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Year Method Type Target
Input
generation ISA-Simulator Vulnerability detection Platform

µ-arch
feedback

Fuzz-input
restriction

2018 RFUZZ [20] pre-silicon RISC-V+ Stochastic not-applicable Assertion checking (i.d.) FPGA — —
2021 DIFUZZRTL [21] pre-silicon RISC-V Stochastic yes Golden reference model (o.d.) FPGA — —
2021 EPEX [23] pre-silicon RISC-V Stochastic yes Equivalent program (i.d.) FPGA — —
2022 TheHuzz [25] pre-silicon RISC-V+ Stochastic yes Golden reference model (o.d.) Emulation — —
2022 Cross-Level [...] [26] pre-silicon RISC-V Stochastic yes Golden reference model (o.d.) Emulation — —
2023 HyPFuzz [27] pre-silicon RISC-V Formal-assisted yes Golden reference model (o.d.) Emulation — —
2023 PSOFuzz [28] pre-silicon RISC-V Stochastic yes Golden reference model (o.d.) Emulation — —
2023 MABFuzz [29] pre-silicon RISC-V Stochastic yes Golden reference model (o.d.) Emulation — —
2023 MorFuzz [30] pre-silicon RISC-V Template yes Golden reference model (o.d.) Emulation — —
2023 SoCFuzzer [31] pre-silicon RISC-V Stochastic no Assertion checking (i.d.) FPGA+OS — —
2023 ProcessorFuzz [32] pre-silicon RISC-V Stochastic yes Golden reference model (o.d.) Emulation — —
2023 SurgeFuzz [33] pre-silicon RISC-V Stochastic no Assertion checking (i.d.) Emulation — —
2023 StressTest [34] pre-silicon unknown Template yes Golden reference model (o.d.) Emulation — —
2024 ChatFuzz [35] pre-silicon RISC-V LLM-assisted yes Golden reference model (o.d.) Emulation — —
2024 Cascade [36] pre-silicon RISC-V BasicBlock yes Halting problem (i.d.) Emulation — —
2024 FuzzWiz [38] pre-silicon not-applicable Stochastic not-applicable Assertion checking (i.d.) Emulation — —
2021 Osiris [22] post-silicon x86 Stochastic no Time measurement (o.d.) OS no yes
2021 SiliFuzz [24] post-silicon x86 Stochastic yes Inter-device (o.d.) OS no yes
2024 RISCVuzz [37] post-silicon RISC-V Stochastic no Inter-device (o.d.) OS no yes
2025 Fuzzilicon post-silicon x86 Stochastic no Serialized oracle (i.d.) Bare-metal yes no

Fig. 9. Comparison of CPU fuzzers. Fuzzilicon is the first post-silicon x86 fuzzer that does not require an operating system (hence has no limitations regarding
input generation) and uses a Serialized-oracle model for bug detection. Further, it is the first general x86 fuzzer that does not require an ISA-Simulation. The
o.d. stands for output-driven. The i.d. stands for input-driven.

vulnerabilities, resulting in their decision not to assign CVE
designations to these discoveries.

No human subjects or personal data were involved; there-
fore, no institutional ethics review was required. However, we
followed the principles outlined in the Menlo Report [68],
emphasizing respect for persons, beneficence, and responsible
stewardship of research outcomes. We aim to advance under-
standing of CPU security while minimizing harm and support-
ing industry efforts to improve processor trustworthiness.
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and the state explosion problem,” in LASER Summer School on Software
Engineering. Springer, 2011, pp. 1–30.

[13] I. Wagner and V. Bertacco, “Engineering trust with semantic guardians,”
in 2007 Design, Automation & Test in Europe Conference & Exhibition.
IEEE, 2007, pp. 1–6.

[14] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “Specs: A lightweight
runtime mechanism for protecting software from security-critical pro-
cessor bugs,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2015, pp. 517–529.

[15] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” ACM Sigplan Notices, vol. 46, no. 6, pp. 109–120,
2011.

[16] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kast-
ner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: A language
for hardware-level security policy enforcement,” in Proceedings of the
19th international conference on Architectural support for programming
languages and operating systems, 2014, pp. 97–112.

[17] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” Acm Sigplan
Notices, vol. 50, no. 4, pp. 503–516, 2015.

[18] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi,
and J. Rajendran, “{TheHuzz}: Instruction fuzzing of processors using
{Golden-Reference} models for finding {Software-Exploitable} vulner-
abilities,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 3219–3236.

[19] M. Rostami, C. Chen, R. Kande, H. Li, J. Rajendran, and A.-R. Sadeghi,

14

https://lock.cmpxchg8b.com/zenbleed.html
https://lock.cmpxchg8b.com/zenbleed.html
https://lock.cmpxchg8b.com/reptar.html
https://lock.cmpxchg8b.com/reptar.html
https://doi.org/10.48550/arXiv.1801.01207
https://doi.org/10.48550/arXiv.1801.01207
https://doi.org/10.1145/3399742
Paper=https://download.vusec.net/papers/inspectre_sec24.pdf Web=https://vusec.net/projects/native-bhi Code=https://github.com/vusec/inspectre-gadget Video=https://www.youtube.com/watch?v=bd7l-xhEtCE
Paper=https://download.vusec.net/papers/inspectre_sec24.pdf Web=https://vusec.net/projects/native-bhi Code=https://github.com/vusec/inspectre-gadget Video=https://www.youtube.com/watch?v=bd7l-xhEtCE
Paper=https://download.vusec.net/papers/inspectre_sec24.pdf Web=https://vusec.net/projects/native-bhi Code=https://github.com/vusec/inspectre-gadget Video=https://www.youtube.com/watch?v=bd7l-xhEtCE
Paper=https://download.vusec.net/papers/inspectre_sec24.pdf Web=https://vusec.net/projects/native-bhi Code=https://github.com/vusec/inspectre-gadget Video=https://www.youtube.com/watch?v=bd7l-xhEtCE
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://doi.org/10.6028/NIST.IR.8517


“Fuzzerfly effect: Hardware fuzzing for memory safety,” IEEE Security
and Privacy, vol. 22, no. 4, pp. 76–86, 2024.

[20] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
coverage-directed fuzz testing of rtl on fpgas,” in Proceedings of the
International Conference on Computer-Aided Design, ser. ICCAD ’18.
ACM, Nov. 2018. [Online]. Available: https://doi.org/10.1145/3240765.
3240842

[21] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl:
Differential fuzz testing to find cpu bugs,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, May 2021, pp. 1286–1303.
[Online]. Available: https://doi.org/10.1109/sp40001.2021.00103

[22] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz,
and C. Rossow, “Osiris: Automated discovery of mi-
croarchitectural side channels,” ArXiv, vol. abs/2106.03470,
2021. [Online]. Available: https://www.semanticscholar.org/paper/
c6ab953b41d2ea810657c3ee4989409177f51af2

[23] L. Klemmer and D. Große, “Epex: Processor verification by equivalent
program execution,” Proceedings of the 2021 Great Lakes Symposium
on VLSI, 2021. [Online]. Available: https://doi.org/10.1145/3453688.
3461497

[24] K. Serebryany, M. Lifantsev, K. Shtoyk, D. Kwan, and P. Hochschild,
“Silifuzz: Fuzzing cpus by proxy,” vol. abs/2110.11519, 2021. [Online].
Available: https://doi.org/10.48550/arXiv.2110.11519

[25] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi,
A. Tyagi, and J. Rajendran, “TheHuzz: Instruction fuzzing of
processors using Golden-Reference models for finding Software-
Exploitable vulnerabilities,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 3219–3236. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/kande

[26] N. Bruns, V. Herdt, D. Große, and R. Drechsler, “Efficient cross-level
processor verification using coverage-guided fuzzing,” Proceedings of
the Great Lakes Symposium on VLSI 2022, 2022. [Online]. Available:
https://doi.org/10.1145/3526241.3530340

[27] C. Chen, R. Kande, N. Nguyen, F. Andersen, A. Tyagi,
A. Sadeghi, and J. Rajendran, “Hypfuzz: Formal-
assisted processor fuzzing,” ArXiv, vol. abs/2304.02485,
2023. [Online]. Available: https://www.semanticscholar.org/paper/
c16aa03dab11e9d05cda8b9c2e8d884be3ba6fdf

[28] C. Chen, V. Gohil, R. Kande, A. Sadeghi, and J. Rajendran, “Psofuzz:
Fuzzing processors with particle swarm optimization,” 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pp.
1–9, 2023. [Online]. Available: https://doi.org/10.1109/ICCAD57390.
2023.10323913

[29] V. Gohil, R. Kande, C. Chen, A. Sadeghi, and J. Rajendran, “Mabfuzz:
Multi-armed bandit algorithms for fuzzing processors,” 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.14594

[30] J. Xu, Y. Liu, S. He, H. Lin, Y. Zhou, and
C. Wang, “Morfuzz: Fuzzing processor via runtime instruction
morphing enhanced synchronizable co-simulation,” pp. 1307–
1324, 2023. [Online]. Available: https://www.semanticscholar.org/
paper/fbc2eea9ea1a103902477456a16566252835d29b

[31] M. M. Hossain, A. Vafaei, K. Z. Azar, F. Rahman, F. Farahmandi,
and M. Tehranipoor, “Socfuzzer: Soc vulnerability detection using cost
function enabled fuzz testing,” in 2023 Design, Automation &amp; Test
in Europe Conference &amp; Exhibition (DATE). IEEE, Apr. 2023,
pp. 1–6. [Online]. Available: https://doi.org/10.23919/date56975.2023.
10137024

[32] S. Canakci, C. Rajapaksha, L. Delshadtehrani, A. Nataraja, M. B. Taylor,
M. Egele, and A. Joshi, “Processorfuzz: Processor fuzzing with control
and status registers guidance,” 2023 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 1–12, 2023.
[Online]. Available: https://doi.org/10.1109/HOST55118.2023.10133714

[33] Y. Sugiyama, R. Matsuo, and R. Shioya, “Surgefuzz: Surge-aware
directed fuzzing for cpu designs,” 2023 IEEE/ACM International Con-
ference on Computer Aided Design (ICCAD), pp. 1–9, 2023. [Online].
Available: https://doi.org/10.1109/ICCAD57390.2023.10323819

[34] I. Wagner, V. Bertacco, and T. Austin, “Stresstest: an automatic
approach to test generation via activity monitors,” Proceedings. 42nd
Design Automation Conference, 2005., pp. 783–788, 2005. [Online].
Available: https://doi.org/10.1145/1065579.1065788

[35] M. Rostami, M. Chilese, S. Zeitouni, R. Kande, J. Rajendran,
and A. Sadeghi, “Beyond random inputs: A novel ml-based

hardware fuzzing,” 2024 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1–6, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2404.06856

[36] F. Solt, K. Ceesay-Seitz, and K. Razavi, “Cascade: CPU fuzzing via
intricate program generation,” in 33rd USENIX Security Symposium
(USENIX Security 24). Philadelphia, PA: USENIX Association, Aug.
2024, pp. 5341–5358. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity24/presentation/solt

[37] F. Thomas, L. Hetterich, R. Zhang, D. Weber,
L. Gerlach, and M. Schwarz, “Riscvuzz: Discovering
architectural cpu vulnerabilities via differential hardware
fuzzing.” [Online]. Available: https://www.semanticscholar.org/paper/
31654caccc4fe7f9af528704ad2971eb6c3931b2

[38] D. N. Gadde, A. Kumar, D. Lettnin, and S. Simon, “Fuzzwiz -
fuzzing framework for efficient hardware coverage,” 2024 International
Symposium on Electronics and Telecommunications (ISETC), pp. 1–5,
2024. [Online]. Available: https://doi.org/10.1109/ISETC63109.2024.
10797245

[39] L. Wu, M. Rostami, H. Li, J. Rajendran, and A.-R. Sadeghi,
“{GenHuzz}: An efficient generative hardware fuzzer,” in 34th USENIX
Security Symposium (USENIX Security 25), 2025, pp. 1787–1805.

[40] L. Wu, M. Rostami, H. Li, and A.-R. Sadeghi, “Hfl: Hardware fuzzing
loop with reinforcement learning,” in 2025 Design, Automation & Test
in Europe Conference (DATE). IEEE, 2025, pp. 1–7.

[41] P. Borkar, C. Chen, M. Rostami, N. Singh, R. Kande, A.-R. Sadeghi,
C. Rebeiro, and J. Rajendran, “{WhisperFuzz}:{White-Box} fuzzing
for detecting and locating timing vulnerabilities in processors,” in 33rd
USENIX Security Symposium (USENIX Security 24), 2024, pp. 5377–
5394.

[42] N. Mosier, H. Nemati, J. Mitchell, and C. Trippel, “Analyzing and
exploiting branch mispredictions in microcode,” 01 2025. [Online].
Available: https://doi.org/10.48550/arXiv.2501.12890

[43] M. Ermolov, D. Sklyarov, and M. Goryachy, “Undocumented
x86 instructions to control the cpu at the microarchitecture level
in modern intel processors,” Journal of Computer Virology and
Hacking Techniques, vol. 19, pp. 351–365, 2022. [Online]. Available:
https://doi.org/10.1007/s11416-022-00438-x

[44] D. S. Maxim Goryachy and M. Ermolov, “Chip red pill:
How we achieved the arbitrary [micro]code execution inside
intel atom cpus,” Offensive Con, 2022, https://github.com/chip-
red-pill/uCodeDisasm/. [Online]. Available: https://www.offensivecon.
org/speakers/2022/maxim-goryachy.html

[45] P. Borrello, C. Easdon, M. Schwarzl, R. Czerny, and M. Schwarz,
“Customprocessingunit: Reverse engineering and customization of
intel microcode,” in 2023 IEEE Security and Privacy Workshops
(SPW), vol. 22. IEEE, May 2023, pp. 285–297. [Online]. Available:
https://doi.org/10.1109/spw59333.2023.00031

[46] P. K. Benjamin Kollenda, “Everything you want to know
about x86 microcode, but might have been afraid to
ask. an introduction into reverse-engineering x86 microcode
and writing it yourself,” CCC, 2017. [Online]. Avail-
able: https://media.ccc.de/v/34c3-9058-everything you want to know
about x86 microcode but might have been afraid to ask

[47] Google, “Americal fuzzy loop,” https://github.com/google/AFL, 2019.
[48] A. Fioraldi, D. Maier, D. Zhang, and D. Balzarotti, “LibAFL: A

Framework to Build Modular and Reusable Fuzzers,” in Proceedings
of the 29th ACM conference on Computer and communications security
(CCS), ser. CCS ’22. ACM, Nov. 2022.

[49] I. Wagner and V. Bertacco, “Reversi: Post-silicon validation system for
modern microprocessors,” in 2008 IEEE International Conference on
Computer Design. IEEE, 2008, pp. 307–314.

[50] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security, 2018, pp. 2123–2138.

[51] S. Dechand, “The magic behind feedback-based fuzzing,” https://www.
code-intelligence.com/blog/the-magic-behind-feedback-based-fuzzing.

[52] A. AWS, “What’s the difference between type 1 and
type 2 hypervisors?” https://aws.amazon.com/compare/
the-difference-between-type-1-and-type-2-hypervisors/.

[53] GIGABYTE, “Gb-bpce-3350c (rev. 1.0),” https://www.gigabyte.com/de/
Mini-PcBarebone/GB-BPCE-3350C-rev-10.

[54] P. Research, “Intel management engine jtag proof of concept,” https:
//github.com/ptresearch/IntelTXE-PoC, 2022.

15

https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1109/sp40001.2021.00103
https://www.semanticscholar.org/paper/c6ab953b41d2ea810657c3ee4989409177f51af2
https://www.semanticscholar.org/paper/c6ab953b41d2ea810657c3ee4989409177f51af2
https://doi.org/10.1145/3453688.3461497
https://doi.org/10.1145/3453688.3461497
https://doi.org/10.48550/arXiv.2110.11519
https://www.usenix.org/conference/usenixsecurity22/presentation/kande
https://www.usenix.org/conference/usenixsecurity22/presentation/kande
https://doi.org/10.1145/3526241.3530340
https://www.semanticscholar.org/paper/c16aa03dab11e9d05cda8b9c2e8d884be3ba6fdf
https://www.semanticscholar.org/paper/c16aa03dab11e9d05cda8b9c2e8d884be3ba6fdf
https://doi.org/10.1109/ICCAD57390.2023.10323913
https://doi.org/10.1109/ICCAD57390.2023.10323913
https://doi.org/10.48550/arXiv.2311.14594
https://www.semanticscholar.org/paper/fbc2eea9ea1a103902477456a16566252835d29b
https://www.semanticscholar.org/paper/fbc2eea9ea1a103902477456a16566252835d29b
https://doi.org/10.23919/date56975.2023.10137024
https://doi.org/10.23919/date56975.2023.10137024
https://doi.org/10.1109/HOST55118.2023.10133714
https://doi.org/10.1109/ICCAD57390.2023.10323819
https://doi.org/10.1145/1065579.1065788
https://doi.org/10.48550/arXiv.2404.06856
https://www.usenix.org/conference/usenixsecurity24/presentation/solt
https://www.usenix.org/conference/usenixsecurity24/presentation/solt
https://www.semanticscholar.org/paper/31654caccc4fe7f9af528704ad2971eb6c3931b2
https://www.semanticscholar.org/paper/31654caccc4fe7f9af528704ad2971eb6c3931b2
https://doi.org/10.1109/ISETC63109.2024.10797245
https://doi.org/10.1109/ISETC63109.2024.10797245
https://doi.org/10.48550/arXiv.2501.12890
https://doi.org/10.1007/s11416-022-00438-x
https://www.offensivecon.org/speakers/2022/maxim-goryachy.html
https://www.offensivecon.org/speakers/2022/maxim-goryachy.html
https://doi.org/10.1109/spw59333.2023.00031
https://media.ccc.de/v/34c3-9058-everything_you_want_to_know_about_x86_microcode_but_might_have_been_afraid_to_ask
https://media.ccc.de/v/34c3-9058-everything_you_want_to_know_about_x86_microcode_but_might_have_been_afraid_to_ask
https://github.com/google/AFL
https://www.code-intelligence.com/blog/the-magic-behind-feedback-based-fuzzing
https://www.code-intelligence.com/blog/the-magic-behind-feedback-based-fuzzing
https://aws.amazon.com/compare/the-difference-between-type-1-and-type-2-hypervisors/
https://aws.amazon.com/compare/the-difference-between-type-1-and-type-2-hypervisors/
https://www.gigabyte.com/de/Mini-PcBarebone/GB-BPCE-3350C-rev-10
https://www.gigabyte.com/de/Mini-PcBarebone/GB-BPCE-3350C-rev-10
https://github.com/ptresearch/IntelTXE-PoC
https://github.com/ptresearch/IntelTXE-PoC


[55] Y. Alaoui, “Exploiting intel’s management engine – part 1: Under-
standing pt’s txe poc (intel-sa-00086),” https://kakaroto.ca/2019/11/
exploiting-intels-management-engine-part-1-understanding-pts-txe-poc/,
2019.

[56] M. Goryachy and M. Ermolov, “How to hack a turned-off computer
or running unsigned code in intel management engine,” https://www.
blackhat.com/eu-17/briefings.html, 2017.

[57] “Nixos,” https://nixos.org/.
[58] GNU, “Basic blocks,” https://gcc.gnu.org/onlinedocs/gccint/

Basic-Blocks.html.
[59] Intel, “Intel® 64 and ia-32 architectures software developer’s manual

volume 3 (3a, 3b, 3c, & 3d): System programming guide,” December
2024. [Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-sdm.html

[60] S. Karvandi, “Hypervisor from scratch – part 4: Address transla-
tion using extended page table (ept),” https://rayanfam.com/topics/
hypervisor-from-scratch-part-4/.

[61] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting without
control flow recovery,” in Proceedings of the 41st ACM SIGPLAN
conference on programming language design and implementation, 2020,
pp. 151–163.

[62] A. Caliskan, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck, R. Green-
stadt, and A. Narayanan, “When coding style survives compilation: De-
anonymizing programmers from executable binaries,” in Proceedings
2018 Network and Distributed System Security Symposium, ser. NDSS
2018. Internet Society, 2018.

[63] D. Moghimi, “Downfall: Exploiting speculative data gathering,”
2023. [Online]. Available: https://www.semanticscholar.org/paper/
51abdda691022e97b079f676634ea8ec222056f0

[64] M. Rostami, S. Zeitouni, R. Kande, C. Chen, P. Mahmoody, J. Rajen-
dran, and A.-R. Sadeghi, “Lost and found in speculation: Hybrid spec-
ulative vulnerability detection,” in Proceedings of the 61st ACM/IEEE
Design Automation Conference, 2024, pp. 1–6.

[65] J. Hur, S. Song, S. Kim, and B. Lee, “Specdoctor: Differential fuzz
testing to find transient execution vulnerabilities,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 1473–1487.

[66] N. Schiller, X. Xu, L. Bernhard, N. Bars, M. Schloegel, and T. Holz,
“Novelty not found: Adaptive fuzzer restarts to improve input space
coverage (registered report),” in Proceedings of the 2nd International
fuzzing workshop, 2023, pp. 12–20.

[67] AMD, “Amd cpu microcode signature verification vulnerability,”
https://www.amd.com/en/resources/product-security/bulletin/
amd-sb-7033.html, 2025.

[68] H. Security, “The menlo report: Ethical principles guiding information
and communication technology research,” https://www.dhs.gov/sites/
default/files/publications/CSD-MenloPrinciplesCORE-20120803 1.pdf.

16

https://kakaroto.ca/2019/11/exploiting-intels-management-engine-part-1-understanding-pts-txe-poc/
https://kakaroto.ca/2019/11/exploiting-intels-management-engine-part-1-understanding-pts-txe-poc/
https://www.blackhat.com/eu-17/briefings.html
https://www.blackhat.com/eu-17/briefings.html
https://nixos.org/
https://gcc.gnu.org/onlinedocs/gccint/Basic-Blocks.html
https://gcc.gnu.org/onlinedocs/gccint/Basic-Blocks.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://rayanfam.com/topics/hypervisor-from-scratch-part-4/
https://rayanfam.com/topics/hypervisor-from-scratch-part-4/
https://www.semanticscholar.org/paper/51abdda691022e97b079f676634ea8ec222056f0
https://www.semanticscholar.org/paper/51abdda691022e97b079f676634ea8ec222056f0
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7033.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7033.html
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf


APPENDIX A
MICROCODE PATCHING AND FEEDBACK

Algorithm 2 Instrumentation Logic for Microcode Hooking
and Coverage Collection pseudo-code

1: entry i:
2: JmpImm(hook_handler_i_even)
3: JmpImm(hook_handler_i_odd)

4: hook handler i even:
5: STAGINGBUF[0xba00, 0xbb00] ← R10, R14
6: R10 ← 2 · i+ 0
7: R14 ← exit_i_even
8: JmpImm(handler)

9: hook handler i odd:
10: STAGINGBUF[0xba00, 0xbb00] ← R10, R14
11: R10 ← 2 · i+ 1
12: R14 ← exit_i_odd
13: JmpImm(handler)

14: handler:
15: Save additional registers to STAGINGBUF
16: COV IDX ← R10 · 2 + 0x1000
17: RAM[COV IDX] ← RAM[COV IDX] +1
18: RAM[R10 · 8 + 0x1400] ← RIP
19: Collect any other state as needed
20: Restore registers from STAGINGBUF
21: JmpReg(R14)

22: exit i even:
23: R10, R14 ← STAGINGBUF[0xba00, 0xbb00]
24: Instruction ieven

0

25: JmpImm(aeven
0 )

26: exit i odd:
27: R10, R14 ← STAGINGBUF[0xba00, 0xbb00]
28: Instruction iodd

0

29: JmpImm(aodd
0 )

APPENDIX B
SERIALIZED ORACLE AND UNROLLING MISALIGNED JUMPS

During fuzzing, we encounter jump/call/ret target
instructions that do not point to instruction-aligned boundaries.
An example is visualized in Figure 10: the JMP instruction
on the left side jumps to the payload of the MOV instruction,
continuing execution there.

When executing instructions misaligned, inserting fence
instructions between regular instructions will change the ex-
ecution of the program. In misaligned execution, instructions
might be decoded that reach over several regular x86 instruc-
tions. By inserting fence instructions, the decoded instruction
will, therefore, change, resulting in a different program output.

When encountering such a jump during serialization, a
new serialization originating at the jump’s target address (see
Figure 10) mus be started. We essentially suggest unwrapping
the misaligned execution until the first illegal opcode and insert

B8
31
C0
CC
00
EB
FA

mov eax, 0xCCC031

jmp rel to 1

xor eax, eax

int3
add bl, ch

cli

B8
31
C0
CC
00

EB

mov eax, 0xCCC031

jmp rel to 18

31
C0

CC

00
EB

FA

xor eax, eax

int3

add bl, ch

cli

F4hlt hlt

F4hlt
F4 hltF4

0F AE E8

0F AE F0

0F AE F8

0F AE E8

0F AE F0

0F AE F8

0F AE E8

unwrapped

0F AE F80F AE F8

0BOriginal program

Serialized program

0F AE F8

0F AE E8

0F AE F0

lfence

mfence

sfence F4 hlt
program barrier

changed due to
offset changes

Fig. 10. An exemplary serialization of a program with an instruction-
misaligned jump. The original program on the left contains a jump that
jumps inside the payload of the MOV instruction. To serialize the program,
first, the instruction-misaligned instructions are unwrapped, then, both separate
programs are serialized and joined using a HLT instruction.

fence instructions between those instructions, like we would do
for a regular instruction. This technique is detailed in Superset
Assembly [62]. We propose joining the unwrapped and regular
programs using, e.g., a HLT instruction, which will prevent the
execution from continuing to the other program parts. Since all
execution-flow changes are controlled, it can be ensured that
the control flow will not cross the sub-program boundaries in
an unintended fashion. This approach is only applicable for
jumps with a target address known at serialization time.

During runtime address mapping, generally, the execution
flow may be redirected to potentially any address of the
original program, hence, the program must be unwrapped for
each potential instruction offset. As a runtime optimization,
the execution of a fuzzing input may be traced before serial-
ization using our hypervisor. Then, serialization can be applied
conditionally to relevant program parts only.

APPENDIX C
SPECULATIVE FUZZING CPU LOCK-UPS

The complete dataset is available as a per-
manently archived artifact at https://doi.org/10.
5281/zenodo.17012971, accessible through the file
speculative_fuzzing_CPU_lockups.csv.
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TABLE I
COMPREHENSIVE CATALOG OF MICROCODE OPERATIONS WITH PERSISTENT SPECULATIVE EFFECTS

Instruction Type Disassembly
0x0e7500037033 StableTimeout tmp7:= LDSTGBUF_DSZ64_ASZ16_SC1(tmp3)
0x2e750003103a Unstable tmp1:= LDSTGBUF_DSZ64_ASZ16_SC1(tmp10) !m2
0x0822c6df2232 StableTimeout tmp2:= MOVETOCREG_AND_DSZ64(tmp2, 0x00000003, 0x7c6) !m0
0x0a62019c02f0 Unstable MOVETOCREG_BTR_DSZ64(tmp0, 0x0000000e, 0x701) !m0
0x0a62019c02fb StableTimeout MOVETOCREG_BTR_DSZ64(tmp11, 0x0000000e, 0x701) !m0
0x0a62019c02fd StableTimeout MOVETOCREG_BTR_DSZ64(tmp13, 0x0000000e, 0x701) !m0
0x0a621c8002f0 StableTimeout MOVETOCREG_BTR_DSZ64(tmp0, 0x0000000e, 0x01c) !m0
0x0a628c5002b0 Unstable MOVETOCREG_BTR_DSZ64(tmp0, 0x00000009, 0x48c)
0x0a62c3180271 Unstable MOVETOCREG_BTR_DSZ64(tmp1, 0x00000004, 0x6c3)
0x0a62c31802d4 StableTimeout MOVETOCREG_BTR_DSZ64(tmpv0, 0x0000000c, 0x6c3)
0x0a62fe1c033a StableTimeout MOVETOCREG_BTR_DSZ64(tmp10, 0x00000010, 0x7fe)
0x0a62fe5c033a StableTimeout MOVETOCREG_BTR_DSZ64(tmp10, 0x00000011, 0x7fe)
0x0a62fe9c02b5 StableTimeout MOVETOCREG_BTR_DSZ64(tmp5, 0x0000000a, 0x7fe) !m0
0x1a62cd880330 StableTimeout MOVETOCREG_BTR_DSZ64(tmp0, 0x00000012, 0x2cd) !m0,m1
0x1a62cd880332 StableTimeout MOVETOCREG_BTR_DSZ64(tmp2, 0x00000012, 0x2cd) !m0,m1
0x0962015c03b2 StableTimeout MOVETOCREG_BTS_DSZ64(tmp2, 0x00000019, 0x701)
0x0962019c02ff StableTimeout MOVETOCREG_BTS_DSZ64(tmp15, 0x0000000e, 0x701) !m0
0x096204440370 Unstable MOVETOCREG_BTS_DSZ64(tmp0, 0x00000015, 0x104)
0x096205040230 Unstable MOVETOCREG_BTS_DSZ64(tmp0, 0x105)
0x09621cd747f4 StableTimeout tmp4:= MOVETOCREG_BTS_DSZ64(tmp4, 0x0000003f, 0x51c) !m0
0x09623b1b13f1 Unstable tmp1:= MOVETOCREG_BTS_DSZ64(tmp1, 0x0000001c, 0x63b)
0x096269000233 StableTimeout MOVETOCREG_BTS_DSZ64(tmp3, 0x069)
0x096275d402b0 Unstable MOVETOCREG_BTS_DSZ64(tmp0, 0x0000000b, 0x575) !m0
0x0962c3180273 StableTimeout MOVETOCREG_BTS_DSZ64(tmp3, 0x00000004, 0x6c3)
0x0962e11c0200 StableTimeout MOVETOCREG_BTS_DSZ64( , 0x7e1)
0x0962fe1c033d StableTimeout MOVETOCREG_BTS_DSZ64(tmp13, 0x00000010, 0x7fe)
0x19628f0c02b7 StableTimeout MOVETOCREG_BTS_DSZ64(tmp7, 0x00000008, 0x38f) !m1
0x1962c10c0300 StableTimeout MOVETOCREG_BTS_DSZ64( , 0x00000010, 0x3c1) !m1
0x1962c2480271 Unstable MOVETOCREG_BTS_DSZ64(tmp1, 0x00000005, 0x2c2) !m1
0x1962cdc80330 Unstable MOVETOCREG_BTS_DSZ64(tmp0, 0x00000013, 0x2cd) !m0,m1
0x0042011c0232 StableTimeout MOVETOCREG_DSZ64(tmp2, 0x701)
0x0042011f0230 Unstable tmp0:= MOVETOCREG_DSZ64(tmp0, 0x701)
0x00420400023f StableTimeout MOVETOCREG_DSZ64(tmp15, 0x004)
0x00421a000200 StableTimeout MOVETOCREG_DSZ64( , 0x00000000, 0x01a)
0x00421c000214 Unstable MOVETOCREG_DSZ64(tmpv0, 0x01c)
0x00421d000238 StableTimeout MOVETOCREG_DSZ64(tmp8, 0x01d)
0x004229140200 StableTimeout MOVETOCREG_DSZ64( , 0x00000000, 0x529)
0x004229140235 Unstable MOVETOCREG_DSZ64(tmp5, 0x529)
0x004229140237 StableTimeout MOVETOCREG_DSZ64(tmp7, 0x529)
0x004229140238 Unstable MOVETOCREG_DSZ64(tmp8, 0x529)
0x00422914023b StableTimeout MOVETOCREG_DSZ64(tmp11, 0x529)
0x004267000230 StableTimeout MOVETOCREG_DSZ64(tmp0, 0x067)
0x004267000231 StableTimeout MOVETOCREG_DSZ64(tmp1, 0x067)
0x004267000234 StableTimeout MOVETOCREG_DSZ64(tmp4, 0x067)
0x004267000235 StableTimeout MOVETOCREG_DSZ64(tmp5, 0x067)
0x004267000236 StableTimeout MOVETOCREG_DSZ64(tmp6, 0x067)
0x004267000238 StableTimeout MOVETOCREG_DSZ64(tmp8, 0x067)
0x004267000239 StableTimeout MOVETOCREG_DSZ64(tmp9, 0x067)
0x00426700023a StableTimeout MOVETOCREG_DSZ64(tmp10, 0x067)
0x00426700023b StableTimeout MOVETOCREG_DSZ64(tmp11, 0x067)
0x00426700023e StableTimeout MOVETOCREG_DSZ64(tmp14, 0x067)
0x004270000230 StableTimeout MOVETOCREG_DSZ64(tmp0, 0x070)
0x004270000232 StableTimeout MOVETOCREG_DSZ64(tmp2, 0x070)
0x004277140230 StableTimeout MOVETOCREG_DSZ64(tmp0, 0x577)
0x00428e1c0230 StableTimeout MOVETOCREG_DSZ64(tmp0, 0x78e)
0x00428e1c0231 StableTimeout MOVETOCREG_DSZ64(tmp1, 0x78e)
0x00428e1c0232 StableTimeout MOVETOCREG_DSZ64(tmp2, 0x78e)
0x00428e1c0234 StableTimeout MOVETOCREG_DSZ64(tmp4, 0x78e)
0x00428e1c0239 StableTimeout MOVETOCREG_DSZ64(tmp9, 0x78e)
0x00428e1c023a StableTimeout MOVETOCREG_DSZ64(tmp10, 0x78e)
0x00428e1c023b StableTimeout MOVETOCREG_DSZ64(tmp11, 0x78e)
0x00429e1c0233 StableTimeout MOVETOCREG_DSZ64(tmp3, 0x79e)
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APPENDIX D
ARTIFACT APPENDIX

This appendix assists users and future researchers in utiliz-
ing the Fuzzilicon artifact to reproduce the results presented in
our paper, including fuzzing campaigns, coverage analysis, and
proof-of-concept demonstrations for reported findings. Due
to the specialized hardware requirements for setting up the
Fuzzilicon framework and the complexity of configuration
(particularly red-unlock Intel CPU microcode), we are apply-
ing only for the availability badge, following NDSS guidelines.

Fuzzilicon is an x86 CPU fuzzer that leverages microcode
coverage as feedback to guide fuzzing campaigns. The Fuzzil-
icon framework provides: (1) lightweight microcode instru-
mentation, (2) a minimal hypervisor for executing fuzzing
inputs in isolated environments, (3) a serialization oracle for
vulnerability detection, (4) core x86 CPU fuzzing components
including input generation, mutation engine, feedback collec-
tion, and vulnerability detection, (5) specialized capabilities
for microcode-level fuzzing to detect speculative execution
vulnerabilities, (6) coverage evaluation comparing microcode-
guided fuzzing against baseline approaches, and (7) detection
of seven findings.

The artifact includes source code for all Fuzzilicon compo-
nents and experiments, along with comprehensive documenta-
tion for future research applications.

This appendix is organized as follows: Section D-A de-
scribes artifact access, hardware/software requirements, con-
figurations, and benchmarks. Section D-B provides high-level
installation and configuration steps for environment prepara-
tion. Finally, Section D-C details the experimental workflow
and instructions for reproducing each experiment described in
the paper.

A. Description & Requirements

The Fuzzilicon artifact has specific hardware, software, and
configuration requirements. Each category is detailed below:

1) How to access: The complete source code for the
Fuzzilicon framework is open-sourced at https://github.com/
0xCCF4/ufuzz and hosted at the Zenodo permanent archival
repository at https://doi.org/10.5281/zenodo.17012971. These
repositories contains source code and detailed documentation
to reproduce all experimental results.

2) Hardware dependencies: The minimal hardware setup
for running Fuzzilicon requires two Raspberry Pi 4 devices:
(1) one serves as the fuzzer controller for generating test cases,
collecting reports, and monitoring the target system, and (2)
the second functions as a mass storage and virtual keyboard
of the fuzzing agent.

Since Fuzzilicon targets x86 CPUs with microcode
patch interface access capabilities, we selected the In-
tel Apollo Lake (Celeron, Goldmont) N3350 processor
(CPUID[1].EAX=0x506ca). This CPU is integrated into
the Gigabyte GB-BPCE-3350C board, which serves as our
target platform. Given that the target CPU may become
unresponsive during fuzzing and require automatic restarts,
we employ a breadboard with power switching capabilities.

This setup enables remote power cycling of the Gigabyte GB-
BPCE-3350C board by connecting to the board’s power con-
trol pins through a relay circuit, controlled by the Raspberry
Pi.

To facilitate data communication between the Raspberry Pi
devices and the target CPU board, we utilize a 5-port network
switch for reliable network connectivity.

3) Software dependencies: The Fuzzilicon codebase is de-
veloped in the Rust programming language with the Cargo
package manager for dependency management. We use NixOS
as the OS of both Pis with the full system configuration
available in our artifact.

Additionally, the artifact requires the uasm.py file from
the CustomProcessingUnit project [45]. Fuzzilicon utilizes this
script for compiling microcode updates during the fuzzing
process.

4) Configuration: The Intel Apollo Lake (Celeron, Gold-
mont) N3350 target CPU does not natively provide access
for applying customized microcode patches. To enable cus-
tom microcode patching capabilities, the CPU must first be
”red-unlocked”. The red-unlocking process follows established
procedures documented in prior research [54]–[56]. Upon
successful red-unlocking, users gain access to undocumented
instructions that enable CRBUS access (udbgrd and udbgwr
instructions), which are essential for microcode manipulation
during fuzzing operations.

5) Benchmarks: None

B. Artifact Installation & Configuration

This section provides the high-level installation and config-
uration steps required to prepare the environment for artifact
evaluation. For detailed instructions, troubleshooting guid-
ance, and comprehensive documentation, please refer to the
README.md file included in the artifact.
Dependency Installation: The Fuzzilicon project requires
specific dependencies on both the Raspberry Pi controllers and
the development environment:

# Dependencies
sudo apt install python3 python3-click \

gcc-aarch64-linux-gnu build-essential git

# Rust Toolchain
curl --proto ’=https’ --tlsv1.2 -sSf

https://sh.rustup.rs | sh -s --
--default-toolchain none -y

rustup install nightly-2025-05-30
rustup target add x86_64-unknown-uefi
rustup target add aarch64-unknown-linux-gnu
rustup target add x86_64-unknown-linux-gnu
rustup default nightly-2025-05-30

CustomProcessingUnit [45] Setup: Download the Custom-
ProcessingUnit project and place it in the parent directory of
Fuzzilicon, or set the UASM environment variable to point to
the uasm.py file location. Then apply the provided patch:

git apply uasm.py.patch
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Raspberry Pi Image Creation: Install Nix package manager
following the official documentation, then build the SD card
images for the Raspberry Pi devices:
cd nix
# Configure SSH keys and IP addresses in

configuration files
nix build .#images.master
nix build .#images.node

For subsequent deployments, use: nix run
Target Device Setup: Deploy the UEFI fuzzing application
to the target CPU board:
HOST_NODE="<instrumentor_ip>" cargo xtask

put-remote \
--remote-ip <controller_address> \
--source-ip <agent_address> \
--netmask <network_mask> \
--port <udp_port> \
--startup <app_name>

Depending on the target fuzzing scenario, use spec_fuzz
(speculative microcode fuzzing) or fuzzer_device (x86
instruction fuzzing) instead of <app_name>.

C. Experiment Workflow

Start the fuzzer master and execute experiments using the
provided command-line interface:
fuzzer_master --help # Available options/commands

Each of the following experiments includes built-in help docu-
mentation that allows you to specify parameters. For example:
fuzz_master afl --help

# Executes the main fuzzing loop with AFL
# mutations == Requires the ‘fuzzer_device‘ app
# running on the agent ==

# Usage: fuzz_master afl [OPTIONS]

# Options:
# -s, --solutions <SOLUTIONS>
# -c, --corpus <CORPUS>
# -a, --afl-corpus <AFL_CORPUS>
# -t, --timeout-hours <TIMEOUT_HOURS>
# -d, --disable-feedback
# -p, --printable-input-generation
# -h, --help

Genetic Algorithm Fuzzing: This mode performs coverage-
guided fuzzing using a genetic mutation algorithm to evolve
test cases based on microcode coverage feedback.
fuzzer_master --database genetic_results.json \
--instrumentor http://10.83.3.198:8000 \
--agent 10.83.3.6:4444 \
genetic

AFL-based Fuzzing Campaign: This mode executes the
main fuzzing loop using AFL (American Fuzzy Lop) mutation
strategies with microcode coverage guidance for comprehen-
sive x86 instruction fuzzing.
fuzzer_master --database afl_campaign.json \
--instrumentor http://10.83.3.198:8000 \
--agent 10.83.3.6:4444 \
afl

Speculative Microcode Fuzzing: This mode performs spe-
cialized fuzzing targeting speculative execution vulnerabilities
by manipulating microcode patches and monitoring specula-
tive execution behavior.

fuzzer_master --database spec_fuzzing.json \
--instrumentor http://10.83.3.198:8000 \
--agent 10.83.3.6:4444 \
spec

Note: If you setup your agent and instrumentor on differ-
ent IP addresses other than the default configuration, please
modify the --instrumentor and --agent parameters
accordingly in the above commands.

The fuzzing results will be stored to a database file (specifi-
able via the –database argument) (on fuzzer master) and can
be viewed by running (on fuzzer master):

fuzz_viewer database.json

Reproducing Reported Findings The proof-of-concept im-
plementations for the reported findings are located in the
following directories within the artifact:

• Microcode Speculation (CRBUS-based):
– Location: speculation_ucode/src/main.rs
– Description: Microcode speculation harness for

CRBUS interface
• Microcode Speculation (WRSGFLD-based):

– Location: fuzzer_device/examples/test_
ucode_speculation.rs

– Description: Hypervisor speculation harness for
WRSGFLD instruction

• Speculative Window Termination:
– Location: speculation_x86/src/main.rs
– Description: Terminating speculative execution win-

dow
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