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Abstract—Rowhammer bit flips in D RAM enable software at-
tackers to fully compromise a great variety of systems. Hardware
mitigations can be precise and efficient, but they suffer from long
deployment cycles and very limited or no update capabilities.
Consequently, refined a ttack m ethods h ave r epeatedly bypassed
deployed hardware protections, leaving commodity systems vul-
nerable to Rowhammer attacks.

In this paper, we present Memory Band-Aid, a principled
defense-in-depth against Rowhammer. Memory Band-Aid is no
replacement for long-term, efficient h ardware m itigations, but
instead a defense-in-depth that is activated when hardware
mitigations are insufficient for a s pecific sy stem ge neration. For
this purpose, Memory Band-Aid introduces per-thread and per-
bank rate limits for DRAM accesses in the memory controller,
ensuring that the minimum number of row activations for
Rowhammer bit flips cannot be reached. We implement a proof-
of-concept of Memory Band-Aid on Ubuntu Linux and test it on
2 Intel and 2 AMD systems, building on global bandwidth limits
due to the lack of per-bank limits in current hardware. Using
this PoC, we find t hat a f ull i mplementation i ncluding minor
hardware changes would have a low overhead of 0 % to 9.4 %
on a collection of realistic Phoronix macro-benchmarks. In
a micro-benchmark to cause DRAM pressure, we observe a
slowdown by a factor of 1 to 5.1. Both overheads only apply
to untrusted, throttled workloads, e.g., all userspace programs
or only selected sandboxes, such as those in browsers. Especially
as Memory Band-Aid can be enabled on demand, we conclude
that Memory Band-Aid is an important defense-in-depth that
should be deployed in practice as a second defense layer.

I. INTRODUCTION

Rowhammer is a software-based fault attack exploiting read
disturbance effects in DRAM, undermining system security.
Rowhammer was first d escribed as a p otential s ecurity issue
by Kim et al. [1] in 2014. Seaborn and Dullien demonstrated
that an attacker can exploit this effect in privilege escalation
and sandbox escape attacks [2]. An adversary can cause the
Rowhammer effect by rapidly reading the content of memory
rows (hammering), which can cause bit flips, i.e., bit errors, in
nearby memory rows. Over the years, the research community
has developed various hammering patterns to induce bit flips,
e.g., single-sided hammering [1], [2], and double-sided ham-
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mering [2]. At the same time, both the research community
and industry have investigated ways to mitigate these attacks.

The focus of industry research on Rowhammer mitigations
was mainly on mitigations in hardware. A central reason is
that hardware-level mitigations can be self-contained within
the DRAM module or involve only the DRAM module and the
memory controller. Hence, a DRAM vendor can, without co-
ordinating with software vendors or releasing software them-
selves, deploy a hardware-level mitigation in a new DRAM
chip generation, transparent to the remainder of the sys-
tem. Furthermore, hardware mitigation can be very efficient:
Rowhammer access pattern detection can be implemented
directly in hardware and when necessary, the hardware, in
particular the DRAM module and the memory controller, can
very quickly take action (e.g., refresh victim rows within a
few nanoseconds) [1], [3]. However, hardware-level mitigation
mechanisms suffer from two shortcomings. First, they do not
apply to already deployed systems and require a long time
to be implemented in commodity systems as they require
changes in the hardware. Second, hardware-level mitigations
can fundamentally become stale as (1) newer DRAM chips
get more vulnerable to Rowhammer [4], (2) new aspects of
the Rowhammer phenomenon are discovered [5], and (3) new
attacks are developed [6]-[10].

Researchers repeatedly refined their attacks to bypass the
hardware mitigations deployed to secure DRAM. An early
mitigation was to increase the refresh rate [1]. However,
this approach significantly reduces the performance, increases
power consumption, and does not prevent Rowhammer at-
tacks [1]. ECC RAM is also not suitable for defending against
Rowhammer attacks since it can only correct a single bit per
word. Cojocar et al. [11] demonstrated a reliable Rowham-
mer attack against ECC DIMMs. For DDR4, the industry
developed Target Row Refresh (TRR), which tracks DRAM
accesses and refreshes potential victim rows. Several stud-
ies [6], [7], [10], [12], [13] found ways to bypass TRR using
more advanced hammering patterns. Even on systems with
Per-Row Activation Counting (PRAC), a hardware mitigation
defined in the DDRS5 specification, Jattke et al. [14] observed
bit flips. Thus, some commodity systems remain vulnerable to
Rowhammer attacks, requiring mitigations beyond the existing
hardware solutions.

In this paper, we present Memory Band-Aid, a principled
software-level defense-in-depth against Rowhammer, requiring



only minimal hardware support to limit memory bandwidth.
Memory Band-Aid exploits that an attacker cannot cause
Rowhammer bit flips if they cannot reach the minimum
required number of row activations. Consequently, by limiting
the attacker’s maximum number of row activations, Memory
Band-Aid mitigates Rowhammer. Memory Band-Aid is a
defense-in-depth that can be applied, like a band-aid, when
hardware mitigations are discovered to be insufficient on a
specific system generation. It is no replacement for long-term
and efficient hardware mitigations against Rowhammer, but
acts as a second defense layer. Still, in contrast to existing
stop-gap solutions like error-correcting codes, doubled refresh
rates, and disabling specific instructions, Memory Band-Aid
is a principled defense.

Our design of Memory Band-Aid introduces per-thread and
per-bank rate limits for DRAM accesses and implements these
in the processor’s memory controller. Our analysis of current
Intel and AMD systems shows that memory bandwidth limits
are already available on AMD processors since Zen 2, under
the name “L3 Bandwidth External” (L3BE) limit [15], and
on Intel Xeon processors since Xeon 2nd Gen, under the
name ‘“Memory Bandwidth Allocation” (MBA) [16], [17].
However, we observe several practical limitations on both
Intel and AMD: First, Intel only supports limits per physical
core on the processor side, and only started with Intel Xeon
3rd Gen processors to support actual rate limiting in contrast
to artificial delays [16], [17]. Second, on both Intel and
AMD, the rate limits are applied to the entire DRAM and
are not implemented on a per-bank granularity. Hence, on
these commodity systems, we would have to impose a limit
that is 64-256 times lower than Memory Band-Aid requires
on a per-bank level. Still, we implement a proof-of-concept
of Memory Band-Aid on Ubuntu Linux (22.04 and 24.04),
leveraging the global memory bandwidth limit like a per-bank
limit. We evaluate Memory Band-Aid on 2 Intel and 2 AMD
systems, reporting the measured overheads for a simulated
full implementation of our design as well as an effective
implementation on current hardware.

In our evaluation, we use representative realistic workloads
and worst-case workloads. For the worst-case for Memory
Band-Aid, we run a small micro-benchmark that consists of
only a tight loop of AVX512 loads. In this worst-case micro-
benchmark, Memory Band-Aid slows down the loop by a
factor of 1 to 5.1 with per-bank limits. For realistic macro-
benchmarks, we used the Phoronix Productivity test suite,
constituting 17 benchmarks (9 GEGL operations, 4 GIMP
benchmarks, Inkscape, LibreOffice, GNU Octave, librsvg)
representative of Desktop users’ workloads, as well as Chrome
headless to cover an application with a sandbox and multi-
ple processes involving inter-process communication. In the
macro-benchmarks, we observe overheads of 0 % to 9.4 % for
a Memory Band-Aid with per-bank limits. These overheads are
only applied to untrusted workloads, e.g., userspace programs
or sandboxes, letting the remaining system run at full perfor-
mance. We also show that without a per-bank limit, i.e., an
implementation that is secure on current hardware, overheads

are prohibitively high, i.e., up to 349x in micro-benchmarks
and up to 4.3x in macro-benchmarks. From this, we conclude
that vendors need to extend their hardware support for memory
limits to a per-bank level and that Memory Band-Aid should
be deployed in practice as an effective defense-in-depth against
Rowhammer.

In summary, we make the following main contributions:

o We present a principled Rowhammer defense-in-depth in
software using hardware-based per-bank bandwidth limits
that are already available cross-bank on AMD and Intel.

e« Memory Band-Aid is adaptive and can be configured
to mitigate current and future Rowhammer attacks, with
strict security guarantees keeping row activations below
the required Rowhammer bit-flip threshold.

o We implement a proof-of-concept of Memory Band-Aid
on Ubuntu Linux, on 2 Intel and 2 AMD systems.

e We evaluate a full Memory Band-Aid implementation,
yielding practical overheads in micro-benchmarks (<
5.1x) and macro-benchmarks (0 % to 9.4 %).

Outline. Section II provides background on DRAM, Row-
hammer, and bandwidth control. Section III discusses required
bandwidth limits to mitigate Rowhammer attacks. Section IV
presents the design of Memory Band-Aid. Section V details
current hardware support. Section VI evaluates the perfor-
mance and security of a proof-of-concept implementation.
Section VII discusses impact and limitations. Section VIII
concludes.

II. BACKGROUND

In this section, we provide background on DRAM, Row-
hammer attacks, Rowhammer mitigations in hardware and
software, and discuss memory-bandwidth control mechanisms.

A. DRAM

A DRAM module contains one or multiple DRAM ranks
that time-share a memory channel connected to the processor’s
memory controller. A DRAM rank consists of multiple DRAM
chips, each split into multiple DRAM banks. DRAM cells are
organized in a two-dimensional array of rows and columns in
a DRAM bank and are internally accessed at a DRAM row
granularity. A DRAM cell stores 1 bit of data as an electrical
charge of a capacitor and is accessed via an access transistor.

To access a DRAM cell, the memory controller performs
an operation called activation, which opens the row with the
requested data and fetches the row’s content into a buffer
structure called row buffer. The memory controller can access
the data in the row buffer in a DRAM word granularity (e.g.,
64 bytes). An activated row is closed with an operation called
precharge. DRAM cells are inherently volatile, i.e., they lose
charge over time and need to be refreshed periodically.

B. Rowhammer

Accesses to DRAM cells cause increased charge leakage
in other physically nearby DRAM cells, which are not ac-
cessed. Rowhammer is a prime example of DRAM read
disturbance, where repeatedly activating a DRAM row (i.e.,



aggressor row) can induce bit flips in other physically nearby
DRAM rows (i.e., victim rows), by draining their charge.
Prior works experimentally demonstrate that the number of
row activations needed to induce the first bit flip in a victim
row, i.e., Rowhammer threshold, has reduced by more than an
order of magnitude over the last decade from around 139K
in 2014 [1] down to around 7K activations in 2025 [18].
Many prior works demonstrate various reliable procedures
to perform a Rowhammer attack on DDR3 [1], [9], [19]-
[28], DDR4 [6]-[9], [12]-[14], [22], [27]-[35], DDRS [14],
LPDDR?2 [31], [36], LPDDR3 [36], [37], LPDDR4 [6], [36],
and LPDDR4X [6], [7], [12] DRAM chips. Most of these
works use flush instructions to evict cache lines from memory,
effectively forming a very tight Flush+Reload [38] loop.

Following the first demonstration of Rowhammer as a wide-
spread vulnerability [1], Seaborn and Dullien [2] demonstrated
two Rowhammer exploits: A local privilege escalation based
on page table entries (PTE) and a sandbox escape. Later
on, many works demonstrated Rowhammer attack variations
including using JavaScript code within the web browser [13],
[22], GPU kernels [39], and network packets [24], [31]. Along
the way, new experimental findings led to various access
patterns and attack strategies, including single- and double-
sided hammering of one or two neighbors of a victim row [1],
[2], one-location hammering only a single row in a bank [9],
half-double hammering far aggressors with few accesses to
near aggressors [6], many-sided hammering many aggressor
rows simultaneously [12], and access patterns to extend row-
open time frames [5], [8]. Modern Rowhammer attacks employ
fuzzing strategies that explore the most effective many-sided
access patterns to induce bit flips in victim rows [7], [13], [34].
Today, Rowhammer attacks are practical on many systems
using Intel [1], ARM [36], and AMD [14] processors, and
even RISC-V-based platforms [35]. Some trusted execution
systems (e.g., SGX) can defend systems against Rowhammer
attacks at the cost of significantly reduced availability due to
exposure to denial-of-service attacks [9], [29].

C. Rowhammer Hardware Mitigations

Three early Rowhammer mitigations are increased refresh
rate [40], [41], error correcting codes (ECC), and probabilistic
adjacent row activation (PARA) [1]. An increased refresh rate
incurs prohibitively large performance and energy overheads,
and ECC’s fundamental assumption of uniformly distributed
bit errors is not correct for Rowhammer, i.e., it can still be
attacked [11]. PARA [1] successfully mitigates Rowhammer
by refreshing potential victim rows after an aggressor row
activation with a very low probability, albeit with a potentially
high overhead for lower Rowhammer thresholds [4].

Early solutions’ limitations and overheads led the DRAM
manufacturers to introduce TRR [42]-[44], which uses a
small set of counters to track DRAM accesses and refresh
potential victim rows. TRR implementations are proprietary
and not necessarily secure: Several recent works defeat TRRs
in real modern DRAM by exploiting that they do not track
all aggressor rows [7], [12]-[14], and do not account for

Rowhammer effects in rows in > 1 distance [6]. These findings
suggest that deployed hardware mitigations have not been
sufficient to mitigate Rowhammer attacks in practice. With
DDRS5, an optional new in-DRAM hardware mitigation called
PRAC [45] is introduced. PRAC enables the DRAM chip
to (1) internally track activation counts precisely per DRAM
row, and (2) demand refresh time windows from the memory
controller. Canpolat et al. [46] show that PRAC works even for
low Rowhammer thresholds but incurs significant slow downs
and even enables denial-of-service attacks. There is also no
guarantee that a DRAM chip implements PRAC, given that
major DRAM manufacturers have not widely implemented
similar mechanisms in the past, e.g., many DDR4 DRAM
chips report a maximum activation count of infinite [12].

A large body of prior works (e.g., [1], [3], [47]-[83])
propose hardware-level mitigations to prevent read disturbance
bit flips. These proposals provide a map to different design
points in the trade-off space between performance, area over-
head, and security. However, a common limitation of these
proposals is that they are not widely deployed in practice,
and many of them require significant changes to the memory
controller or DRAM chips. For example, some proposals
require additional hardware to track row activations or to
implement new refresh policies, which may not be feasible
for existing systems. There are two outstanding limitations of
these hardware-level mitigations: First, the security of these
mechanisms relies on the fundamental assumption that “the
system designer knows the minimum activation count at which
a Rowhammer bit flip might occur.” However, this assumption
is not correct because exploring all aspects of Rowhammer is
still an active research field, and recent works demonstrate that
new insights into Rowhammer can be exploited to achieve bit
flips at significantly lower activation counts [5], [8], [18], [76].
Second, DRAM protocols do not mandate implementing any
of these Rowhammer mitigation mechanisms to either DRAM
or processor manufacturers [12], [46]. Therefore, despite this
large body of research, modern and future systems might still
be vulnerable to Rowhammer.

D. Software-level and Software-controlled Mitigations

Different software-based approaches are used to mitigate
Rowhammer. Closest to the working principle of hardware
mitigations is ANVIL [84]. Instead of detecting Rowhammer
attacks in hardware, ANVIL uses existing performance coun-
ters and refreshes victim rows in software. However, similar
to early hardware-level defenses, this approach suffers from
not detecting and not mitigating all attack variations.

Several defenses prevent bit flips in victim memory by
altering memory allocation mechanisms. CATT [85] extends
the physical memory allocator to isolate kernel and user space.
An attacker can only map pages that are physically separated
from the pages the kernel allocates. GuardION [86] prevents
DMA-based Rowhammer attacks on ARM devices by isolating
DMA buffers with guard rows. An attacker can not map
memory from rows next to DMA buffers. RIP-RH [87] isolates
the memory of different processes using guard rows between
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Distribution of minimum hammer count per aggressor of 10 tested DDR4 modules [18]. Vertical blue dashed lines indicate required per-bank (blue)

and resulting overall (black) memory bandwidth to perform 9-sided Rowhammer on a system with 64 banks. Red solid lines indicate the hammer count limits
that can be enforced with Memory Band-Aid for 9- and 19-sided attacks with currently available hardware support on AMD.

each process’s memory. ZebRAM [88] implements a similar
approach by isolating every DRAM row containing data with
guard rows. These guard rows can be used as swap space.
Zhang et al. [89] showed that kernel interfaces can also act
as confused deputies in Rowhammer attacks. Mitigating their
attack would require a defense that can limit user and kernel
memory accesses equally.

Copy-on-Flip [90] is a software-based solution that im-
proves the resistance of ECC DRAM against Rowhammer
attacks, such as the one demonstrated by Cojocar et al. [11]
by relocating memory pages when ECC faults are observed.

CSI:Rowhammer [91] is another software level defense al-
though requiring minimal hardware changes. CSI:Rowhammer
also assumes ECC DRAM but replaces the ECC code with a
strong cryptographic MAC. While yielding strong guarantees
for mismatch detection, a cryptographic MAC cannot correct,
hence requiring error correction in software.

In summary, existing mitigations have drawbacks, such as
high overheads, the need for specific hardware features, or
the assumption of specific attack scenarios that can be by-
passed. A software-level defense-in-depth with strong security
guarantees would be a crucial building block for sustainably
mitigating Rowhammer attacks in practice.

E. Memory Bandwidth Limits

Both Intel and AMD implement configurable memory
bandwidth limits as a quality-of-service mechanism. Memory
Bandwidth Allocation (MBA) is a feature in Intel’s Resource
Director Technology (RDT) suite, which enables control over
memory bandwidth [16], [17]. AMD offers a comparable
feature within its Platform Quality of Service suite to specify
memory bandwidth limits, referred to as L3 External Band-
width Enforcement (L3BE) [15]. The Intel MBA and AMD
L3BE features can help manage applications with excessive
bandwidth use in environments where they are co-located with
other workloads, such as in data centers [92]. While Intel plans
for the next generation of MBA to operate on a per-SMT-
thread rather than per-core basis [93], currently, only AMD
L3BE supports different limits for SMT sibling threads.
Class of Service. System software designates a numeric
Class of Service (COS) to each logical core via a model-
specific register (MSR). Each COS can be configured with a
distinct memory bandwidth limit, thereby limiting the memory
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modules [18] on which n-sided Rowhammer attacks can be mitigated with
per-bank memory bandwidth limits. Many-sided attacks can still be mitigated
with higher per-bank bandwidth limits.

bandwidth for the cores that were assigned to that COS.
During a context switch, system software can adjust program
priorities by modifying the COS as needed.

Specifying Memory Bandwidth Limits. AMD allows
128 MiB/s increments for memory bandwidth limits, ranging
from 128 MiB/s to a theoretical maximum of 256 GiB/s [15].
Specifying the limit to 256 GiB/s is equivalent to unlimited
bandwidth. In contrast, Intel permits specifying memory band-
width limit as a percentage in increments of 10 %, where 0 %
indicates no throttling (i.e., unlimited) and 90 % represents
the maximum throttling level [16]. Intermediate values are
rounded, and attempts to write larger values fail.

Currently, neither Intel MBA nor AMD L3BE supports
applying the bandwidth limit per DRAM bank. That is, to limit
the number of accesses on one bank to a specific value, this
value has to be configured as a global limit. The limit is then
applied regardless of whether all accesses went to the same
DRAM bank or were evenly spread across DRAM banks.

III. MINIMUM ROWHAMMER COUNTS

Rowhammer attacks require high-frequency memory ac-
cesses. In this section, we determine how tight memory
bandwidth restrictions must be to prevent Rowhammer bit flips
in practice.

To quantify how often an adversary has to access memory
to flip bits, previous work [4], [6], [18], [58], [94]-[96]
measured the minimum hammer count (also referred to as
read disturbance threshold). Previous works on Rowhammer
attacks have reported a wide range of minimum hammer
counts. In fact, more recent DDR versions appear more
vulnerable to Rowhammer attacks with minimum hammer



counts as low as 7K [18] per aggressor. Multiple systematic
analyses of minimum hammer counts for DDR4 chips [4],
[18] have been performed on FPGAs without hardware mitiga-
tions. Research done on full systems, i.e., CPU-based attacks,
typically requires higher hammer counts [96]. This may be
due to reordering and merging to batch bank accesses in the
memory controller. Consequently, memory accesses from the
CPU do not directly translate to DRAM bank row activations.
Many Rowhammer attack works [8], [12], [13], [34] on CPU-
based systems do not experimentally determine the required
minimum hammer counts. Instead, they choose hammer counts
well above the FPGA-determined thresholds to produce bit
flips reliably. Hence, we rely on FPGA-based hammer counts
as a secure lower bound.

DDR3 chips require higher minimum hammer counts to
induce Rowhammer bit flip than DDR4 and DDRS chips
without mitigations [4]. Hence, Rowhammer bit flips on
DDR3 memory are easier to mitigate by restricting memory
bandwidth. As DDR3 chips are becoming outdated, and only
a few DDRS DIMMs have been shown to be vulnerable to
Rowhammer, we focus our analysis on recent DDR4 chips.
However, secure memory bandwidth restrictions apply equally
to DDR3 and DDRS, merely with a different configuration
for the minimum hammer count. As we assume a system with
TRR mitigations in place, preventing double-sided attacks, we
focus our analysis on many-sided attacks. We consider one-
location Rowhammer [9] and Rowpress [8] out of the scope
of the analysis, as these have not been reproduced on newer
DDR4 modules.

Native Attacks. Olgun et al. [18] demonstrated that the
hammer count varies over time and is therefore difficult to
determine precisely. Figure 1 shows the distributions of the
minimum hammer count required per aggressor to induce
Rowhammer bit flips on the 10 tested DDR4 modules. The
hammer count from Olgun et al. [18] ranges from 7K to
31K accesses for different DRAM modules. Hence, limiting
the maximum hammer count per aggressor to 7K prevents
Rowhammer bit flips on all 10 modules, while a maximum
hammer count of 15K still mitigates 7 out of 10 modules.
Without hardware mitigation (e.g., TRR), double-sided Row-
hammer attacks only require a cumulative hammer count of
14K-62K per refresh interval on the tested modules. How
low these numbers are becomes clear when realizing that
7K-14K accesses correspond to reading about 0.5MiB to
1 MiB of memory from DRAM. However, many-sided attacks
circumventing TRR mitigations need a cumulative hammer
count of 63K-279K when hammering 9 addresses and a
cumulative hammer count of 133K-589K for 19 addresses. In
this paper, we focus on mitigating many-sided Rowhammer
attacks on commodity systems with hardware mitigations in
place.

JavaScript-based Attacks. Gruss et al. [22] demonstrated
that Rowhammer attacks can be mounted from a website
via JavaScript. Instead of the c1flush instruction, which is
unavailable in JavaScript, they use cache eviction. To speed
up cache eviction to the level where Rowhammer bit flips
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Fig. 3. Limiting per-bank memory access frequency to prevent Rowhammer
bit flips.

can occur, they measured hundreds of eviction strategies and
found strategies that have, on average, as few as 2 extra cache
misses, while all other eviction accesses are served from the
cache. Ridder et al. [13] extended this idea to many-sided
hammering from JavaScript. More recently, Ridder et al. [10]
showed that this can be further optimized with special memory
patterns that lead to the postponement of refresh commands in
the memory controller. Consequently, they observe more bit
flips on more devices from JavaScript.

The memory bandwidth required for these attacks is not
higher than that in native attacks. Hence, the attacks only
differ in how long it takes to evict or flush the target mem-
ory addresses and reach DRAM. If refresh intervals can be
postponed on specific systems for a pre-configured number
of additional accesses [10], a suitable memory bandwidth
limit can similarly be adjusted to this maximum refresh
interval including any potential postponement. Thus, also these
advanced and Javascript-based Rowhammer attacks can also
be mitigated with the same memory bandwidth limits based
on the same minimum hammer counts.

IV. MEMORY BAND-AID

Hardware mitigations are not flexible and typically cannot
be adjusted once they are deployed in consumer devices.
Hence, when new Rowhammer attacks are discovered, by-
passing hardware mitigations, many commodity systems are
again unprotected from Rowhammer attacks. The main idea
behind Memory Band-Aid is to have a principled software-
level defense-in-depth against Rowhammer by limiting the
memory bandwidth of untrusted code per DRAM bank. This
keeps the number of row activations per refresh interval lower
than a Rowhammer attack requires to induce any bit flips, as
shown in Figure 3. Restricting memory bandwidth per-thread
comes at a performance cost for the untrusted threads but
leaves other workloads unaffected. While current processors
already have limited support for memory bandwidth limits, we
can implement a Memory Band-Aid proof-of-concept on these
processors that provides strong security guarantees, albeit with
a higher performance impact than necessary (see Section VI).

An effective Rowhammer defense based on memory band-
width limiting needs to fulfill the following criteria: First,
the mitigation must limit the memory bandwidth to values
that are low enough to prevent a critical number of memory
accesses per refresh interval. Second, the mitigation needs to
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restrict the number of memory accesses in each individual
refresh interval rather than just on average over a longer
period of time. Third, the memory bandwidth limit must not be
bypassed or modified by any attacker-controlled mechanisms.
To avoid any performance impact for benign processes, a
defense must provide per-thread memory bandwidth limits that
can be dynamically managed by the operating system. As a
consequence, this also allows to adjust memory bandwidth
limits via an update to the software configuration when new
insights on Rowhammer susceptibility arise.

Figure 4 provides an overview of the working principle
of Memory Band-Aid. For Memory Band-Aid, we focus on
a scenario in which commodity systems with full Rowham-
mer hardware mitigations (e.g., TRR) are still vulnerable
to many-sided Rowhammer attacks. Memory Band-Aid can
be implemented for different threat models, classifying all
userspace applications as untrusted or only restricting specific
sandboxes, e.g. in browsers. Memory Band-Aid introduces
a new operating system interface (e.g., in /sys on Linux),
allowing a root-privileged user to configure the maximum
number of per-bank row activations. The operating system
deduces the corresponding memory limit and configures the
hardware to not exceed this per-bank memory bandwidth limit.
The operating system applies these limits upon context switch,
i.e., it can enable and disable the limit for specific workloads,
such that only untrusted workloads are affected by the memory
limit. The memory controller enforces the limit, throttling
memory accesses of untrusted workloads appropriately while
providing full memory bandwidth to trusted workloads. In
fact, limiting the memory bandwidth of a memory-intensive
untrusted workload can even speed up the performance of
simultaneously running trusted workloads, as more bandwidth
is available to these trusted workloads.

Adaptive Attacks. Since our mitigation does not make any
assumptions about the access patterns, it is also resilient
against future Rowhammer variations, and it can be config-
ured dynamically to mitigate Rowhammer on any system.
We derive formal security guarantees in Appendix C. Since
Memory Band-Aid enforces a memory bandwidth limit in the
memory controller, its security is not affected by software-
initiated bursts of memory accesses: at the memory controller
it is plainly a stream of memory accesses that is throttled.
Multithreaded Rowhammer attacks on a single bank have not
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Fig. 5. Memory Band-Aid proof-of-concept implementation. Logical cores are
associated with Classes of Service. Classes of Service are assigned different
memory bandwidths.

been successfully demonstrated yet. Attacks targeting separate
banks are independent and are independently mitigated by our
per-bank limits. The bandwidth limits configured for Memory
Band-Aid are based on the maximum uncore frequency (see
Section VI-F). Therefore, an attacker cannot circumvent the
limit via uncore frequency scaling.

Proof-of-Concept Implementation. Even though both Intel
and AMD offer hardware support to limit memory bandwidth
from software, it was designed as a quality of service and
not a security feature. Therefore, they lack per-bank controls.
Hence, we can only implement partial Memory Band-Aid
proof-of-concepts based on the existing hardware features that
limit the overall memory bandwidth. The proof-of-concept
implementation can be configured in two ways, as we show in
Section VI. First, a security-wise, functional proof-of-concept
where the performance overhead is significantly higher than
that of a correct per-bank implementation of the limit. Second,
an insecure proof-of-concept where the performance overhead
is very to close to the performance overhead of an implemen-
tation on a system with per-bank limits. On current Intel and
AMD processors, restrictions can be imposed at the granularity
of a Class of Service (COS), which can be associated with one
or several logical processors. Figure 5 shows a mapping from
a logical core to a memory bandwidth via a Class of Service.

In general, we envision Memory Band-Aid to restrict user
processes or specific sandboxes (untrusted) but not the kernel
(trusted). However, to also mitigate confused-deputy attacks
[89], Memory Band-Aid can be also be enabled for kernel
workloads, e.g. syscalls of an untrusted process. All per-
formance overheads we report in Section VI are based on
this conservative approach: We temporarily restrict a specific
logical core to different limits via a Class of Service and
taskset the test program on this core. We thereby temporarily
restrict all workloads running on this logical core, including
syscalls performed by the test program.

We also implement a prototype for a Memory Band-Aid
implementation!, as a kernel patch for Ubuntu 24.04, kernel
version 6.11.0, focussing on the userspace-kernelspace secu-
rity boundary. With minimal code changes of 171 lines, our
Memory Band-Aid proof-of-concept configures the Classes
of Service such that they specifically restrict the userspace
workloads. One COS for kernel workloads is configured to

Thttps://github.com/isec-tugraz/MemoryBand Aid
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allow unlimited bandwidth, while a second COS for userspace
workloads is configured to limit memory bandwidth to a secure
limit. On each jump to kernelspace, the logical core is assigned
to the unrestricted COS. On each return to userspace, the
logical core is assigned to the restricted COS. The memory
controller ensures that all memory requests of the program
are throttled accordingly. The appropriate secure values for
restricted userspace workloads can be configured globally by
a privileged user and is automatically applied whenever a
userspace program is scheduled. To minimize misconfiguration
risk, we propose conservative default values to be set by
default, based on published attacks for different Rowhammer-
susceptible technology (e.g., DDR3, DDR4, DDRS), for rea-
sonable defaults across most systems that can be updated via
software when new attacks emerge.

Instead of implementing Memory Band-Aid at the
userspace-kernelspace boundary, it could also be employed
for sandboxed environments. In this case, rather than applying
limits to all userspace processes, the scheduler checks if the
to-be-scheduled program is trusted on each context switch.
If so, the logical core is assigned to the unrestricted COS.
Otherwise, the logical core is assigned to the restricted COS,
and the memory controller ensures appropriate rate limiting.

V. LIMITATIONS ON CURRENT HARDWARE

In this section, we discuss the impact of the limited
hardware granularity, in particular per-bank throttling, and
the generalizability of Memory Band-Aid. Vendors intro-
duced bandwidth limits as a quality-of-service feature, not
a security feature. Therefore, current hardware support lacks
tighter bandwidth-, per-bank and per-logical-core limits. With
“L3BE”, AMD supports bandwidth limits from Zen 2 onwards
in their product range, from Ryzen consumer CPUs to Epyc
server CPUs. In contrast to AMD, Intel only provides its
bandwidth-limiting feature (“MBA”) on Xeon processors.
Lack of Per-Bank Limits. Figure 2 shows how far the
per-bank memory bandwidth has to be limited to mitigate
Rowhammer. A seemingly low per-bank limit of 50 MiB/s
corresponds to an overall maximum bandwidth of 3.1 GiB/s to
12.5 GiB/s with typical DDR4 and DDRS setups (with 64 to
256 banks) for the untrusted workload. However, since current
hardware does not support per-bank limits, we can only limit
the bandwidth across all banks.

Granularity of Memory Bandwidth Limits. Intel supports
memory bandwidth limits relative to the system’s memory
bandwidth. Hence, the available absolute bandwidth restric-
tions vary between different Intel processors. While Intel states
that the range of available settings may differ, all tested Xeon
processors support multiples of 10 % up to 90 %. AMD sup-
ports more fine-grained 128 MiB/s increments. While we can
implement a proof of concept with these memory bandwidth
limits on Intel and AMD, the 10% limit on Intel is not
restrictive enough for a secure implementation of Memory
Band-Aid, which requires a granularity of the per-bank limit
of, e.g., 50 MiB/s to mitigate 9-sided attacks (see Figure 1).

We expect this limitation to disappear with future hardware
supporting finer granularities and per-bank limits.

Precision of Memory Bandwidth Limits. The configured
memory bandwidth is enforced as an upper limit. For the
lowest L3BE setting of 128 MiB/s on AMD, it should be
possible to access 134.4 thousand cache lines within a refresh
interval. Interestingly, for a continuous Flush+Reload loop
on a single address, we observe that we can only access
roughly 72.7 thousand cache lines within a refresh interval
on the Ryzen 7700X. This is surprisingly close to 50 %
of the configured maximum bandwidth and indicates that
AMD might track and limit memory accesses at the interface
between L3 cache and memory controller, where also prior
work noticed that Intel surprisingly counted flush operations
in some performance counters [97]. This limitation of the
current proof-of-concept implementation is not inherent to
Memory Band-Aid, potentially leading to an overly pessimistic
overhead measurement. However, this also enables us to limit
Flush+Reload loop iterations to a lower number of iterations
with higher memory bandwidth settings than detailed in Fig-
ure 1.

While AMD supports finer granularity settings, we observe
on the Ryzen 7700X that the intermediate steps in memory
bandwidth are not always honored: Linearly increasing the
bandwidth limit reveals a fine-grained step function in some
cases, where two configured values result in the same (lower)
actual bandwidth limit. The security of Memory Band-Aid is
unaffected by this. However, it may again influence the per-
formance of our proof-of-concept implementation negatively.
Furthermore, it showcases that while the idea of Memory
Band-Aid is generalizable to any hardware, the effective
security and performance depend on the specific hardware
implementation and its adherence to configured limits.
Per-Logical-Core Limits. Current Intel Xeon processors
support setting memory control values per logical core, i.e.,
sibling threads can be limited to different memory bandwidths.
However, an unrestricted SMT thread can only utilize the
higher bandwidth if the sibling core is not running simultane-
ously. When two sibling cores with different memory band-
width limitations run concurrently, the minimum bandwidth
is applied to both threads. This is interesting, as it indicates
that the limit is implemented in the core, which counts the
number of memory accesses to DRAM it caused, and not
in the memory controller where these memory accesses are
performed.

AMD does not restrict two SMT threads to the same
bandwidth. However, an unrestricted workload is still affected
by a concurrent restricted workload. We scheduled an unre-
stricted and a fully restricted Flush+Reload memory pressure
test on the same physical core on the Ryzen 7700X and
observed a slowdown of factor 6 for the unrestricted workload.
These SMT side effects only affect performance, but not the
security of Memory Band-Aid. Memory bandwidth limits of
one physical core do not affect other physical cores (aside
from the positive effect of potentially freeing up memory
bandwidth).



In our proof-of-concept evaluation, we do not schedule
unthrottled trusted workloads on the same physical core as
untrusted workloads to maintain high performance for trusted
workloads. However, our proposed full design for Memory
Band-Aid does not have this restriction.

VI. EVALUATION

In this section, we evaluate Memory Band-Aid, primarily
based on our proof-of-concept implementation. We perform
measurements to verify the adherence to configured limits
and run both micro- and macro-benchmarks to understand the
performance impact of Memory Band-Aid and our proof-of-
concept implementation on current hardware. We perform all
measurements on two AMD machines, Ryzen 7700X (Al)
and Epyc 8024P (A2), and two Intel machines, Epyc 8024P
(I1) and Xeon 4410T (I2), as listed in Table I. We perform
all experiments on a single logical core, which we restrict for
the duration of the experiments. Hence, we overapproximate
the overhead, as all scheduled applications, including kernel
applications (e.g., syscalls), are limited.

We focus our evaluation on the following three aspects:
First, we show how memory bandwidth limits affect memory-
intensive micro-benchmarks, allowing us to infer secure con-
figuration parameters and worst-case numbers for the over-
head: The first micro-benchmark is a workload that constantly
flushes and reloads a set of memory locations, i.e., a tight
Flush+Reload loop (see Section VI-A), the other is a memory
sweep (see Section VI-C). Second, we show that with full
bank parallelism and per-bank limits, the performance impact
is negligible. In contrast, a global limit for all accesses, as
on current hardware, yields significantly lower performance
(see Section VI-B). Third, with macro-benchmarks we show
how untrusted workloads are affected by per-bank memory
bandwidth limits in a full Memory Band-Aid implemen-
tation and by global memory bandwidth limits as in our
proof-of-concept implementation on current hardware (see
Section VI-D). For this purpose, we selected a benchmark
collection from the Phoronix benchmark suite that represents
typical desktop use. Furthermore, we assess the impact of
varying memory bandwidth limits on the Chrome headless
browser (see Appendix B).

A. Flush+Reload Memory Bandwidth Limits

In this section, we evaluate the necessary slowdown Mem-
ory Band-Aid needs to enforce to mitigate Rowhammer at-
tacks. For this part of the evaluation, we focus on a tight
Flush+Reload loop, similar to those used in Rowhammer
attacks. However, as we do not attempt to induce Rowhammer
bit flips, we select any addresses across all banks. Typical
DDR4 and DDR5 memory has 16384to 131072 rows per
bank. Thus, implicitly, the chance of hitting the same bank
and the same row is practically zero. However, row conflicts
occur during a Flush+Reload loop over n random addresses
with an expected value of
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Fig. 6. Maximum iterations of Flush+Reload with n = 9 and n = 19
addresses for varying memory bandwidth limits on the 4 tested systems.

where b is the number of banks. For an expected value of 1,
we need nine addresses for a 32-bank system and 12 for a
64-bank system.> However, we emphasize that the number of
row conflicts is the same with and without the limit, i.e., these
are just naturally occurring with the random address selection.

To limit the bandwidth, we assign a logical core to a Class
of Service, iterating through the supported range of memory
bandwidth limits. For each limit, we run the Flush+Reload
loop with n addresses, just like an n-sided Rowhammer loop.
We measure the performance and mitigation potential, i.e.,
if the number of iterations the Flush+Reload loop achieves
is equal to or greater than the hammer count required for a
Rowhammer attack.> We run the loop for 10° iterations mea-
suring the execution time via rdt sc. We compute the average
iterations per refresh interval and repeat this measurement 10
times, averaging the results. We focus on Flush+Reload loops
with 9 and 19 addresses, corresponding to the upper and lower
bounds for recent Rowhammer attacks [7], [13], [14].

Figure 6 shows the results of our 4 test systems. For
low memory bandwidths, we observe an approximately linear
increase in the memory accesses with increasing memory
bandwidth. Once the memory bandwidth reaches the max-
imum capacity required by the attack loop, the number of
iterations remains constant for further increases in bandwidth.

On the consumer-level Al, an unlimited 9-address Flush+
Reload loop achieves 98.2K (n=10, 0=26.8) iterations per
64ms. The A2 server demonstrates a significantly higher
number of 129.8K (n=10, 0=815) unconstrained 9-address it-
erations. With memory bandwidth limits, both devices demon-
strate similar behavior: The tightest documented limit of
128 MiB/s achieves 9.1K (n=10, 0=0.9) iterations on the Al
and 8.3K (n=10, ¢=3.3) iterations on the A2 in the same time.

Note that this is the same reasoning used for single-sided hammering [2],
[9] which also just exercised completely random memory locations.

3With more row conflicts in more targeted Rowhammer attacks, the hammer
count decreases as row conflicts consume more time. Hence, in terms of
security, we can treat the achieved iterations as an upper bound of the achieved
hammer count on that system.



TABLE I
TEST SYSTEMS AND THEIR DRAM CONFIGURATION.

Abbreviation Processor oS DRAM Vendor DRAM Speed Configuration Channels Ranks Total Banks ECC MBA/L3BE
Al AMD Ryzen 7700X Ubuntu 22.04 DDR5 2 x 16GB 2 1 64 X v
A2 AMD Epyc 8024P  Ubuntu 22.04 Kinest 4800 MT/ 3 x 16GB 3 1 % v v
1l Intel Xeon 4514Y  Ubuntu 24.04 ingston G2.7Gig 8 X 16GB 8 1 256/ v
12 Intel Xeon 4410T  Ubuntu 22.04 -(IBIS 4 x 16GB 4 1 128 v
TABLE 11
MAXIMUM FLUSH+RELOAD ITERATIONS, WITHOUT LIMIT AND WITH LOWEST MEMORY BANDWIDTH LIMIT. N = 10.
Abbreviation Processor 9 addresses, no limit 9 addresses, limited 19 addresses, no limit 19 addresses, limited
Al AMD Ryzen 7700X 98.2K (0=26.8) 9.1K (o= 0.9) 51.8K (0=50.0) 43K (o= 0.3)
A2 AMD Epyc 8024P 129.8K (0=2815) 8.3K (o= 3.3) 81.9K (o= 9.7) 3.6K (o= 1.1)
11 Intel Xeon 4514Y 199.4K (0=287) 69.7K (0=11.6) 140.0K (0=40.7) 329K (0=16.3)
12 Intel Xeon 4410T 131.1K (o= 2.8) 61.8K (0=15.1) 773K (o= 3.3) 29.8K (o= 0.9)
This restriction to 9.2% (A1) and 6.4 % (A2) of the unlim- Memory Bandwidth Limit [GiB/s] (AMD)
ited Flush+Reload iterations is sufficient to mitigate 9-sided

Rowhammer attacks on 9 out of the 10 tested modules [18].

Similarly, for the 19-address unlimited Flush+Reload, we
observe significantly different numbers on the two machines:
51.8K (n=10, 0=50) (Al) and 81.9K (n=10, 0=9.7) (A2)
iterations per 64 ms. With the 128 MiB/s restriction, we can
restrict this down to 4.3K (n=10, 0=0.3) (Al) and 3.6K
(n=10, o=1.1) (A2) iterations, corresponding to 8.3 % (Al)
and 4.4 % (A2), respectively. This memory bandwidth limit is
low enough to mitigate 19-sided Rowhammer attacks on all
10 tested modules [18]. Consequently, security-wise, we con-
sider a Memory Band-Aid proof-of-concept implementation
on commodity AMD systems feasible.

Despite being undocumented, it is possible to set the mem-
ory bandwidth control MSR to 0 on AMD. However, we
only observe lower Flush+Reload iteration counts for the O-
setting with low processor frequencies, while the behavior is
comparable to the lowest documented restriction of 128 MiB/s
for higher processor frequencies. Hence, we use 128 MiB/s as
it is the lowest consistent memory bandwidth limit available.

Both tested Intel machines do not support limiting the
memory bandwidth below 10% of the system’s memory
bandwidth. For the unrestricted Flush+Reload loop with nine
addresses, we measure 199.4K (n=10, ¢=287.0) (I1) and
131.1K (n=10, 0=2.8) (I2) iterations per 64 ms. Despite these
different baselines for the system’s full memory bandwidth,
surprisingly, the tightest, supposedly relative limit of 10 %
reduces the number of iterations to similar levels: 69.7K
(n=10, 0=11.6) iterations corresponding to 35.0 % on I1 and
61.9K (n=10, 0=15) iterations corresponding to 47.2 %.

In the 19-address case, Flush+Reload loop iterations are
reduced from 140.0K (n=10, 0=40.7) to 32.9K (n=10, 0=16.3)
(23.5 %) on I1. Equally, 12 still demonstrates a high number of
iterations with 29.8K (n=10, 0=0.9) iterations with the tightest
setting corresponding to 38.6% of the unlimited number
of 77.3K (n=10, 0=3.3) iterations. Hence, even the tightest
restriction on Intel is not sufficient to mitigate many-sided
Rowhammer attacks on commodity Intel systems today.
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Fig. 7. Memory bandwidth of a sequential memory sweep over 1 GiB with
different memory bandwidth limits on the 4 tested systems. The dashed lines
show the expected values.

B. Performance with and without full bank parallelism.

DRAM functions are designed to enable software to utilize
the DRAM banks statistically equally. Consequently, we can
assume that the actual performance degradation caused by a
full Memory Band-Aid implementation with per-bank limits
is significantly lower than shown in Section VI-A, where
we successfully mitigated Rowhammer attacks with a global
bandwidth limit of 128 MiB/s. With secure per-bank limits,
we obtain a combined bandwidth of 128 MiB/s x 32 banks =
8 GiB/s on the Al and 128 MiB/sx96 banks = 12 GiB/s on the
A2. The higher number of 128 and 256 banks on the 12 and I1
result in global limits of 16 GiB/s and 32 GiB/s, respectively.

C. Overhead in a Memory Sweep Micro-Benchmark

In this section, we evaluate the performance overhead of
Memory Band-Aid in a single-core memory-sweep micro-
benchmark. Unlike a tight Flush+Reload loop, a memory-
sweep spreads accesses evenly across all banks and utilizes the
streaming and prefetching mechanisms of the CPU. To achieve
the maximum achievable per-core bandwidth, we perform
multiple AVX512 loads, allowing the core to load 1 Kibit per
clock cycle within a tight assembly loop on a 1 GiB huge page,
ensuring no TLB misses occur. We measure the bandwidth 10
times each for different memory bandwidth limitations and
present the averaged results in Figure 7.
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Fig. 8. Phoronix Productivity Testsuite Results for varying memory bandwidth limitations on 2 of the evaluated systems.

Interestingly, the AMD systems have a significantly
higher unrestricted per-core bandwidth of 41.1 GiB/s (n=10,
0=83 MiB/s) (A1) and 41.8 GiB/s (n=10, 0=427 MiB/s) (A2)
than the Intel systems with 19 GiB/s (n=10, 0=5MiB/s) (I1)
and 15.6 GiB/s (n=10, 0=0.7 MiB/s) (12). Both AMD systems
limit the memory bandwidth close to the expected value up
to 24 GiB/s, with higher limits not being enforced exactly. A
full Memory Band-Aid implementation requires hard limits,
however, only for significantly lower per-bank bandwidth
restrictions than this. The Intel systems exhibit different behav-
ior, even deviating significantly from the expected bandwidth
values. The I1 demonstrates a sharp drop at the 90 % setting,
limiting the bandwidth to 39 % of the unrestricted bandwidth,
corresponding to 7.4 GiB/s (n=10, 0=13 MiB/s). In contrast,
the 12 does not display a significant decrease in bandwidth
before reducing the limit below 60 %. Hence, I1 performs
below the expected value for the majority of the settings, while
12 does not properly adhere to the bandwidth limit.

The strictest setting of 128 MiB/s on AMD is not ad-
hered to by Al, which limits the bandwidth to 222 MiB/s
(n=10, 0=39 KiB/s). A2 correctly limits it to 120 MiB/s (n=10,
0=28 KiB/s). However, in Section VI-A we demonstrated that
even 222MiB/s (n=10, 0=39KiB/s) is suitable to mitigate
many-sided attacks. With a global memory bandwidth limit,
this slowdown by a factor of 190 (A1) and 349 (A2) is neces-
sarily large to limit the number of possible DRAM accesses in
a refresh interval. However, a secure 128 MiB/s limit per bank
would result in a global memory bandwidth of 8 GiB/s (A1)
and 12 GiB/s (A2) (see Section VI-B), corresponding to 19.5 %
(A1) and 28.7 % (A2) of the unrestricted per-core bandwidth.
Hence, a full Memory Band-Aid implementation experiences
a slowdown by a factor of 5.1 (Al) and 3.4 (A2).

The lowest setting on Intel limits the bandwidth to
924 MiB/s (n=10, 0=2.3MiB/s) (I1) and 756 MiB/s (n=10,
0=0.8 MiB/s) (I2), corresponding to 4.7% (I1) and 4.8%
(I2) of the per-core bandwidth. However, this setting is in-
sufficient to mitigate Rowhammer attacks. In contrast, with
the required per-bank limit of 128 MiB/s, Memory Band-Aid

10

would facilitate a global limit of 32 GiB/s (I1) and 16 GiB/s
(I2), exceeding the corresponding available per-core memory
bandwidth. Hence, restricted workloads on I1 and 12 do not
suffer any performance loss with a full implementation of
Memory Band-Aid.

D. Performance Overhead in Phoronix Macro-Benchmarks

We use the Phoronix Productivity Testsuite to evaluate the
impact of Memory Band-Aid on typical consumer workloads.
First, we evaluate the performance overhead of a secure global
limit with our proof-of-concept implementation. Second, we
discuss the significantly lower overheads of a full Memory
Band-Aid implementation based on the combined bandwidth
provided by per-bank limitations (see Section VI-B).

We run all benchmarks on a single core with varying mem-
ory bandwidth restrictions: On Intel, we test all 10 available
memory bandwidth limits. On AMD, we focus on lower
memory bandwidth limits, as these are suitable for mitigating
Rowhammer attacks, even with a global limit instead of a
per-bank limit, in our proof-of-concept implementation. We
sample higher values at a coarser granularity. Figure 8 and
Figure 11 show the benchmark results for all tested memory
bandwidth limits. Table III details the performance results for
the tested bandwidth settings on each machine. The perfor-
mance varies by up to 2 orders of magnitude, depending on
how memory-bound or compute-bound the benchmarks are.
Compute-bound benchmarks are (in the best case) not affected
at all, whereas memory-bound benchmarks (in the worst case)
are permanently throttled due to the limit.

Global Memory Bandwidth Limit. On the I1, the strictest
bandwidth limitation of 10 % induces an average overhead of
156.6 % with a geometric mean of 60.6s across all bench-
marks compared to 23.6s with unlimited bandwidth. On the
I2,only the tightest limit induces an overhead of 118.6 %,
with a geometric mean of 81.5s across all benchmarks,
compared to 37.3s with unlimited bandwidth. However, this
setting is insufficient to mitigate Rowhammer attacks. In
contrast, the strictest bandwidth limit on AMD mitigates 19-
sided Rowhammer on all DDR4 modules. On the Al, since



TABLE III
PHORONIX PRODUCTIVITY TESTSUITE PERFORMANCE RESULTS OF OUR PROOF-OF-CONCEPT IMPLEMENTATION.

Intel 11 AMD A1

Benchmark Unlim 10%  Insecure PoC Unlim 128 MiB/s  Secure PoC 128 MiB/s  Full Impl.

" Per-system Overhead * Per-system Overhead Per-bank  Overhead

GEGL - Crop 9.4 329 250.6 % 5.8 26.0 346.2 % 5.8 0.3 %
GEGL - Scale 8.8 32.0 261.6 % 5.5 26.1 377.1 % 5.5 0.1 %
GEGL - Cartoon 90.2 148.4 64.6 % 84.0 261.6 211.6 % 87.9 4.7 %
GEGL - Reflect 28.6 533 86.5 % 223 40.1 79.4 % 22.9 2.4%
GEGL - Antialias 46.9 80.1 70.9 % 29.9 81.4 172.3 % 30.8 2.8%
GEGL - Tile Glass 30.6 64.0 109.1 % 19.2 70.5 266.9 % 19.8 3.0 %
GEGL - Wavelet Blur 59.0 95.2 61.5% 40.4 168.8 317.9 % 41.3 2.4%
GEGL - Color Enhance 515 84.6 64.1% 35.1 85.3 143.0 % 35.7 1.5 %
GEGL - Rotate 90 Degrees 47.7 83.0 73.9% 33.0 91.4 177.0 % 33.7 2.2%
GIMP - resize 19.4 63.4 226.0 % 17.6 142.0 707.9 % 19.1 8.4 %
GIMP - rotate 14.5 70.7 387.4 % 13.0 1964  1415.8% 14.7 13.3 %
GIMP - auto-levels 19.7 84.3 328.6 % 16.9 2356  1292.6% 19.0 12.5 %
GIMP - unsharp-mask 232 113.4 389.4 % 20.4 346.5 1594.8% 23.0 12.5%
Inkscape - SVG Files To PNG 24.2 40.1 66.1 % 22.1 102.3 363.5 % 22.1 0.1 %
LibreOffice - 20 Docs To PDF 5.8 8.2 42.0 % 5.1 314 513.4 % 5.5 7.9 %
GNU Octave Benchmark - 9.1 139.9 1433.2% 5.6 2743 4787.9 % 11.6 106.8 %
librsvg - SVG Files To PNG 30.1 353 17.3% 48.1 76.9 59.8 % 52.3 8.7 %
Mean 23.6 60.6 156.6 % 18.6 98.9 431.4 % 20.4 9.4 %

We tested our proof-of-concept on the Intel Xeon 4514Y (I1) and AMD Ryzen 7700X (A1) without bandwidth limits, at the most restrictive bandwidth

limit, and the total memory system bandwidth of a full Memory Band-Aid implementation with per-bank restrictions. Lower is better.

enforcing a smaller bandwidth, this secure limit induces a
significantly higher overhead of 431.4 % on average, with a
geometric mean of 98.9s across all benchmarks, compared to
18.6 s with unlimited bandwidth. The A2 demonstrates worse
performance overall with an unlimited geometric mean of
30.7s, but slightly less relative overhead of 388.8 % with a
geometric mean of 150.2s under the 128 MiB/s limitation.
Our results show that typical consumer workloads are
already not as significantly affected by global bandwidth limits
as worst-case memory-intense micro-benchmarks, as they do
not exercise memory as intensely. Furthermore, our micro-
benchmarks deliberately bypassed the cache or exceeded its
capacity significantly. In macro-benchmarks, caching con-
tributes to maintaining a reasonable performance level.
Per-Bank Memory Bandwidth Limit. Due to bank paral-
lelism, a full Memory Band-Aid implementation with per-bank
limits can achieve 2 orders of magnitude smaller performance
overheads. A secure 128 MiB/s per-bank limit corresponds
to a general memory bandwidth of 8 GiB/s to 32 GiB/s on
the evaluated systems due to the different number of banks
(see Section VI-B). Since this combined memory bandwidth
exceeds the achievable per-core limit on both tested Intel ma-
chines (see Section VI-C), restricted workloads are not throt-
tled by Memory Band-Aid due to the high bank parallelism.
With the significantly smaller number of 64 banks on the Al,
an 8 GiB/s memory bandwidth limit induces an overhead of
9.4 % on average, with a geometric mean of 20.4 s across all
benchmarks, compared to 18.6s with unlimited bandwidth.
The increased number of 96 banks on the A2 results in a
reduced overhead of 6.7 % on average, with a geometric mean
of 32.8s compared to the unlimited mean of 30.7s. Hence,
the number of banks plays a crucial role in the performance
overhead of a full Memory Band-Aid implementation, with
high bank parallelism allowing for negligible performance

overheads for typical consumer workloads. The performance
overhead observed in these realistic benchmarks, even for the
global bandwidth limits implemented by current-generation
Intel and AMD processors, is acceptable. Furthermore, the
performance overheads with our Memory Band-Aid prototype
using current AMD L3BE or Intel MBA implementations
are significantly worse than with a full Memory Band-Aid
implementation and a per-bank implementation of the limit.
This shows the practicality of Memory Band-Aid with per-
bank limits as a defense in depth, with overheads of a full
implementation in the range of 0 % to 9.4 %.

E. Consistency of Memory Bandwidth Limits

Some quality of service features only provide approximate
guarantees. Hence, we evaluate how much the Flush+Reload
iterations vary across multiple 64ms intervals to determine
whether this approach is a viable Rowhammer mitigation. For
this purpose, we again run Flush+Reload loops with 9 and
19 addresses on our 4 test systems with unlimited memory
bandwidth as well as the tightest available limit. Figure 9
shows the histogram of the iterations we achieved in 10* 64 ms
long measurements for each setting and tested machine.

All distributions are concentrated in one large spike. For an
unlimited 9-address loop, we observe wider connected distri-
butions on 2 of the tested systems with a standard deviation
of 883 Flush+Reload iterations (I1) and 350 iterations (A2).
All other distributions demonstrate small standard deviations
below 160 Flush+Reload iterations. We observe a small peak
of outliers below when accessing 9 or 19 addresses on the
Al and 19 addresses on the I1. With a secure bandwidth
limit, the A1 demonstrates a considerable number of outliers
below the major peak. The distributions of the A2 for the same
settings fall in between the two peaks of the A1, demonstrating
different precision in targeting the limit.
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Fig. 9. Distribution of Flush+Reload iterations per 64 ms refresh interval on our 4 test systems. We access n = 9 or n = 19 addresses in the Flush+Reload

loop, like corresponding Rowhammer attacks.

Most importantly, we did not observe any outliers above the
limit on any machine. This shows that both Intel and AMD
indeed enforce bandwidth limitations as an upper bound for
the respective tightest bandwidth limits. However, we need
to consider a security margin to account for the width of
the distribution when choosing appropriate bandwidth limits.
Furthermore, the observed number of outliers below on some
machines highlights the need for vendors to improve their
CPUs, ensuring they do not significantly underperform below
configured limits when implementing Memory Band-Aid.

FE. Impact of Processor Frequency

Since the memory bandwidth limit is implemented in the
processor, we investigated whether the processor’s frequency
affects the accuracy of the bandwidth limit, particularly given
features such as frequency scaling and turbo boost. For this
purpose, we run the Flush+Reload loop either restricted to the
tightest supported memory bandwidth or with no bandwidth
limitation. Then, we vary the processor frequency of all
processor cores in equally sized steps between the available
hardware limits. We execute a Flush+Reload hammering loop
for 106 iterations for each processor frequency, and measure
the execution time via the rdtsc instruction. Finally, we
compute the average number of Flush+Reload iterations per
refresh interval. We repeat this measurement 10 times for each
bandwidth and frequency pair and average the results.

Figure 10 and Figure 12 show the results for 9- and 19-
address Flush+Reload loops on 2 test systems each. On the
Al, the behavior is consistent in all cases: With unrestricted
bandwidth, low processor frequencies are a bottleneck for
the Flush+Reload iterations. The iterations per refresh in-
terval grow with increasing processor frequency until the
system’s memory bandwidth capacity is reached. At that point,
the DRAM becomes a performance bottleneck, i.e., further
processor frequency increases do not significantly increase
the number of Flush+Reload iterations. With low memory
bandwidth limits, the available memory bandwidth is already a
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bottleneck at low processor frequencies. Therefore, increasing
the processor frequency does not systematically increase the
number of iterations per 64 ms. However, we observe fluctu-
ations in the number of loop iterations per refresh interval,
which vary by several thousand accesses. While A2 offers
only 3 frequency settings, we still observe the same trend as
on the Al: Without a memory bandwidth limit, increased CPU
frequency results in a significantly increased number of Flush+
Reload iterations. With a tight memory bandwidth limit, the
number of iterations only fluctuates slightly.

On the I1, we observe a different effect: With unlim-
ited memory bandwidth, we observe a shallow increase in
throughput throughout the frequency range, of about 3.3 % on
average (slightly higher at lower frequencies) per 260 MiHz.
We conclude that the increase in the observed throughput is
not primarily dependent on the core frequency. Instead, we
observe a jump at 2 GHz that roughly doubles the throughput.
We discovered that this effect is due to uncore frequency
scaling, i.e., the bottleneck on the Intel I1 is the memory
controller. The frequency at which the memory controller
runs, in turn, is influenced by the processor frequency of the
cores [98]. We verify uncore frequency scaling as the root
cause of the observations by setting the uncore frequency to the
lowest and highest available settings, 800 MHz and 2.4 GHz,
respectively, and repeating the measurement without a memory
bandwidth limit. With fixed uncore frequency, the number of
Flush+Reload iterations behaves similarly to AMD, with slight
increases with the processor core frequency. On the 12, we do
not observe significant changes with varying CPU frequency.
In particular, we do not observe a sudden jump due to uncore
frequency scaling. This can be attributed to the fact that the
system is already running at a high uncore frequency even
when the system load is low. Therefore, increasing the CPU
frequency and, therefore, uncore frequency further does not
lead to a significant increase in Flush+Reload iterations.

From our experiments, we conclude that despite variations
in the number of Flush+Reload iterations and, thus, maximum
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hammer counts possible, Memory Band-Aid can reliably limit
the number of row activations within a refresh interval re-
gardless of the processor frequencies. We configure the limits
of Memory Band-Aid based on the measurements with the
maximum uncore frequency; hence, uncore frequency scaling
cannot be exploited to circumvent the limit.

VII. DISCUSSION AND RELATED WORK

Memory Band-Aid is an effective defense in depth against
Rowhammer. With minimal hardware changes and even lim-
ited support on AMD commodity systems today, it is the next
line of defense necessary to tackle the Rowhammer problem.

Our evaluation showed that several limitations of current
hardware limit our proof-of-concept Memory Band-Aid im-
plementation. The flexible configuration of memory bandwidth
limits for specific workloads already allows for restricting any
performance penalty to untrusted workloads alone. However,
coarse bandwidth granularities make it impossible to achieve
the necessary slowdowns on the investigated Intel systems
when assuming the lowest ever reported minimum hammer
count to induce bit flips. The lack of per-bank limits induces
a need for stricter global limits, impacting the performance
overhead of Memory Band-Aid on commodity hardware. Still,
we see an acceptable overhead for most workloads and only
intense micro-benchmarks, e.g., a loop of Flush+Reload, see a
significant slowdown. We conclude that deployment on current
AMD hardware via a kernel patch is already a feasible (but
costly) Rowhammer mitigation today.

While previous work [3], [99] explored restricting accesses
to memory as a Rowhammer mitigation, we are the first
to investigate per-bank bandwidth limiting as a practical
Rowhammer mitigation with acceptable overheads. Closest to
our work is a Linux Kernel Mailing List proposal [99] to
use performance counters to trigger interrupts every 10000
cache misses and busy wait the thread when cache misses
exceed 97 600. This not only limits memory but also processor
throughput and was already deemed too restrictive and slow
for real-world workloads to be a plausible Rowhammer mitiga-
tion at the time. Furthermore, not all performance counters are
precise [100], and they can incur performance overheads [101].
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9 and n = 19 addresses. The plot shows the iterations achieved per refresh

Additionally, our numbers show that they would have to
increase the interrupt frequency and lower the miss threshold
to busy-wait the processor by one order of magnitude each.
We address several limitations in this work: Memory Band-Aid
directly utilizes per-thread bandwidth limits, thereby achieving
acceptable overheads with our current proof-of-concept, which
only throttles memory throughput and untrusted workloads.
Furthermore, our proposal of per-bank memory bandwidth
limits enables a 2-order-of-magnitude increase in performance.

Blockhammer [3] detects per-thread row activations that
are likely suspicious, temporarily blocking accesses to these
rows. It then determines a quota for in-flight memory requests
of this thread to shared caches or memory (see [3]-3.2.2),
effectively delaying every single memory operation. Similar
to MBA 1.0 on older Intel CPUs, which uses delays instead
of actual rate-limiting [17], this throttles workloads even if
they do not reach the memory bandwidth limit within a time
slice. In contrast, our mitigation only limits memory accesses
and only when the memory bandwidth limit is reached, not
earlier and not probabilistically by utilizing quality-of-service
features that are introduced into processors independent of
Rowhammer, e.g., MBA/L3BE, which are already sufficient
for first prototypes. A clear advantage of Memory Band-
Aid over hardware-centric mitigations is the possibility to
quickly roll out necessary updates, due to changes in the attack
surface, that update the configuration of Memory Band-Aid to
secure default parameters, accounting for new information on
minimum hammer counts. Furthermore, the environment, e.g.,
temperature, also affects Rowhammer thresholds [18], as may
aging of DRAM chips. Acting on the operating system level,
Memory Band-Aid can know these parameters and consider
this for slight adjustments in the memory bandwidth limits.

Vendors introduced bandwidth limits as a quality-of-service
feature, not for Rowhammer, continuously improving perfor-
mance and granularity [17]. We envision future systems where
Memory Band-Aid becomes a hardware-agnostic framework
relying merely on already present features. The need for tighter
bandwidth, per-bank, and per-logical-core limits, to achieve
complete security and performance benefits, contributes to
understanding what vendors should change to create a plat-
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form for a hardware-agnostic framework. With these changes,
Memory Band-Aid is a practical defense in depth.

VIII. CONCLUSION

Memory Band-Aid is a defense-in-depth against Rowham-
mer, using memory bandwidth limits to enforce that no DRAM
bank reaches the minimum hammer count necessary to induce
a bit flip. Hence, even when deployed hardware mitigations
fail, Memory Band-Aid can still reliably mitigate Rowhammer
attacks. We observe that overheads on current systems, with
global limits, may be prohibitively high, but future systems
with per-bank bandwidth limits will remain in the range of
0% to 9.4% overhead in realistic use cases. We conclude
that vendors still need to implement these minimal hardware
changes and that with these changes, Memory Band-Aid is a
practical defense-in-depth that should be deployed in practice
as a building block to mitigate Rowhammer sustainably.

ACKNOWLEDGMENT

We thank the SAFARI research group, and specifically
Ataberk Olgun and Onur Mutlu, for providing the minimum
hammer count data that we based our analysis on. This
research is supported in part by the European Research Coun-
cil (ERC project FSSec 101076409), the Austrian Science
Fund (FWF SFB project SPyCoDe 10.55776/F85 and FWF
project NeRAM 10.55776/16054), the Deutsche Forschungs-
gemeinschaft (grant no. 503876675), and the European Union
(grant no. ROF-SG20-3066-3-2-2). Additional funding was
provided by generous gifts from Red Hat, Google, and Intel.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

REFERENCES
[1]1 Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA,
2014.
M. Seaborn, “Exploiting the DRAM rowhammer bug to gain
kernel privileges,” 2015. [Online]. Available: http://googleprojectzero.
blogspot.com/2015/03/exploiting-dram-rowhammer-bug- to- gain.html
A. G. Yaglikci, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi, S. Ghose, and
O. Mutlu, “BlockHammer: Preventing RowHammer at Low Cost by
Blacklisting Rapidly-Accessed DRAM Rows,” in HPCA, 2021.
J. S. Kim, M. Patel, A. G. Yaglik¢i, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques,” in ISCA, 2020.
L. Orosa, A. G. Yaglikci, H. Luo, A. Olgun, J. Park, H. Hassan,
M. Patel, J. S. Kim, and O. Mutlu, “A Deeper Look into RowHam-
mer’s Sensitivities: Experimental Analysis of Real DRAM Chips and
Implications on Future Attacks and Defenses,” in MICRO, 2021.
A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu,
M. Nissler, and D. Gruss, “Half-Double: Hammering From the Next
Row Over,” in USENIX Security, 2022.
P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi,
“BLACKSMITH: Rowhammering in the Frequency Domain,” in S&P,
2021.
H. Luo, A. Olgun, A. G. Yaglik¢i, Y. C. Tugrul, S. Rhyner, M. B.
Cavlak, J. Lindegger, M. Sadrosadati, and O. Mutlu, “RowPress:
Amplifying Read Disturbance in Modern DRAM Chips,” in ISCA,
2023.

(2]

(3]

(4]

[5]

(6]

(7]

[8]

14

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[32]

[33]

[34]

[35]

D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another Flip in the Wall of Rowhammer
Defenses,” in S&P, 2018.

F. de Ridder, P. Jattke, and K. Razavi, “Posthammer: Pervasive
Browser-based Rowhammer Attacks with Postponed Refresh Com-
mands,” in USENIX Security, 2025.

L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting
Codes: On the Effectiveness of ECC Memory Against Rowhammer
Attacks,” in S&P, 2019.

P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides
of Target Row Refresh,” in S&P, 2020.

F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized Many-sided Rowhammer Attacks
From JavaScript,” in USENIX Security, 2021.

P. Jattke, M. Wipfli, F. Solt, M. Marazzi, M. Bolcskei, and K. Razavi,
“ZenHammer: Rowhammer Attacks on AMD Zen-based Platforms,” in
USENIX Security, 2024.

AMD, “AMD64 Architecture Programmer’s Manual,” 2024.

Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide,” 2024.

P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger, “A Closer
Look at Intel Resource Director Technology (RDT),” in Real-Time
Networks and Systems (RTNS), 2022.

A. Olgun, F. N. Bostanci, I. E. Yuksel, O. Canpolat, H. Luo, G. F.
Oliveira, A. G. Yaglikci, M. Patel, and O. Mutlu, “Variable Read
Disturbance: An Experimental Analysis of Temporal Variation in
DRAM Read Disturbance,” in HPCA, 2025.

E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector,” in S&P,
2016.

K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip Feng Shui: Hammering a Needle in the Software Stack,” in
USENIX Security, 2016.

Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips,
One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege
Escalation,” in USENIX Security, 2016.

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software
Mitigations Against Rowhammer: A Surgical Precision Hammer,” in
RAID, 2018.

A. Tatar, R. Krishnan, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer Attacks over the Network and
Defenses,” in USENIX ATC, 2018.

S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint Rowhammer: Suppressing
Unwanted Bit Flips on Rowhammer Attacks,” in AsiaCCS, 2019.

A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBIeed: Reading
Bits in Memory Without Accessing Them,” in S&P, 2020.

Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHam-
mer: Combining Spectre and Rowhammer for New Speculative At-
tacks,” in S&P, 2022.

I. Kang, W. Wang, J. Kim, S. van Schaik, Y. Tobah, D. Genkin,
A. Kwong, and Y. Yarom, “Sledgehammer: Amplifying rowhammer
via bank-level parallelism,” in USENIX Security, 2024.

Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the
Processor via Rowhammer Attack,” in SysTEX, 2017.

M. T. Aga, Z. B. Aweke, and T. Austin, “When good protections go
bad: Exploiting anti-DoS measures to accelerate Rowhammer attacks,”
in HOST, 2017.

M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab,
and L. Lamster, “Nethammer: Inducing Rowhammer Faults through
Network Requests,” in SILM Workshop, 2020.

L. Orosa, U. Riithrmair, A. G. Yaglikci, H. Luo, A. Olgun, P. Jattke,
M. Patel, J. Kim, K. Razavi, and O. Mutlu, “SpyHammer: Using
RowHammer to Remotely Spy on Temperature,” arXiv:2210.04084,
2022.

L. Gerlach, F. Thomas, R. Pietsch, and M. Schwarz, “A Rowhammer
Reproduction Study Using the Blacksmith Fuzzer,” in ESORICS, 2023.
J. Juffinger, S. R. Neela, M. Heckel, L. Schwarz, F. Adamsky, and
D. Gruss, “Presshammer: Rowhammer and Rowpress without Physical
Address Information,” in DIMVA, 2024.

M. Marazzi and K. Razavi, “RISC-H: Rowhammer Attacks on RISC-
V.” in DRAMSec Workshop, 2024.


http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

[36]

[37]

[38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Determin-
istic Rowhammer Attacks on Mobile Platforms,” in CCS, 2016.
Z.Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai,
“Triggering Rowhammer Hardware Faults on ARM: A Revisit,” in
ASHES Workshop, 2018.

Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security, 2014.
P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit:
Accelerating Microarchitectural Attacks with the GPU,” in S&P, 2018.
Apple Inc., “About the Security Content of Mac EFI Security Update
2015-001,” https://support.apple.com/en-us/HT204934, 2015.

Lenovo, “Row Hammer Privilege Escalation,” 2015. [Online]. Avail-
able: https://support.lenovo.com/us/en/product_security/row_hammer
JEDEC, “JESD235B: High Bandwidth Memory DRAM (HBMI,
HBM2) Standard,” 2020.

JEDEC Solid State Technology Association, “DDR4 SDRAM
Standard,” 2021. [Online]. Available: https://www.jedec.org/standards-
documents/docs/jesd79-4a

S. Hong, D. Kim, J. Lee, R. Oh, C. Yoo, S. Hwang, and J. Lee, “DSAC:
Low-Cost Rowhammer Mitigation Using In-DRAM Stochastic and
Approximate Counting Algorithm,” arXiv:2302.03591, 2023.

JEDEC Solid State Technology Association, “DDR5 SDRAM
Standard,” 2024. [Online]. Available: https://www.jedec.org/standards-
documents/docs/jesd79-5c01

O. Canpolat, A. G. Yaglik¢i, G. F. Oliveira, A. Olgun, O. Ergin, and
O. Mutlu, “Understanding the Security Benefits and Overheads of
Emerging Industry Solutions to DRAM Read Disturbance,” DRAMSec,
2024.

A. Saxena, G. Saileshwar, P. J. Nair, and M. Qureshi, “AQUA: Scalable
Rowhammer Mitigation by Quarantining Aggressor Rows at Runtime,”
in MICRO, 2022.

Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee,
“Graphene: Strong yet Lightweight Row Hammer Protection,” in
MICRO, 2020.

M. J. Kim, J. Park, Y. Park, W. Doh, N. Kim, T. J. Ham, J. W.
Lee, and J. H. Ahn, “Mithril: Cooperative Row Hammer Protection on
Commodity DRAM Leveraging Managed Refresh,” in HPCA, 2022.
J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-hammering based
on memory Locality,” in Design Automation Conference (DAC), 2019.
I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-Based Adaptive
Tree, Time Window Optimized for DRAM Row-Hammer Prevention,”
IEEE Access, 2020.

A. G. Yauglikcci, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa,
O. Ergin, and O. Mutlu, “HiRA: Hidden Row Activation for Reducing
Refresh Latency of Off-the-Shelf DRAM Chips,” in MICRO, 2022.
H. Hassan, A. Olgun, A. G. Yaglik¢t, H. Luo, and O. Mutlu, “Self-
Managing DRAM: A Low-Cost Framework for Enabling Autonomous
and Efficient DRAM Maintenance Operations,” in MICRO, 2024.

R. Zhou, S. Tabrizchi, A. Roohi, and S. Angizi, “LT-PIM: An
LUT-Based Processing-in-DRAM Architecture with RowHammer Self-
Tracking,” CAL, 2022.

M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger Against
Row Hammering,” in Design Automation Conference (DAC), 2017.
G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized
Row-Swap: Mitigating Row Hammer by Breaking Spatial Correlation
between Aggressor and Victim Rows,” in ASPLOS, 2022.

S.-W. Ryu, K. Min, J. Shin, H. Kwon, D. Nam, T. Oh, T.-S. Jang,
M. Yoo, Y. Kim, and S. Hong, “Overcoming the Reliability Limitation
in the Ultimately Scaled DRAM Using Silicon Migration Technique
by Hydrogen Annealing,” in International Electron Devices Meeting
(IEDM), 2017.

S. Saroiu, A. Wolman, and L. Cojocar, “The Price of Secrecy: How
Hiding Internal DRAM Topologies Hurts Rowhammer Defenses,” in
IEEE IRPS, 2022.

J. Han, J. Kim, D. Beery, K. D. Bozdag, P. Cuevas, A. Levi, I. Tain,
K. Tran, A. J. Walker, S. V. Palayam et al., “Surround Gate Transistor
With Epitaxially Grown Si Pillar and Simulation Study on Soft Error
and Rowhammer Tolerance for DRAM,” TED, 2021.

S. Saroiu and A. Wolman, “How to Configure Row-Sampling-Based
Rowhammer Defenses,” DRAMSec, 2022.

E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe: preventing
row-hammering by exploiting time window counters,” in ISCA, 2019.

15

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Z. Greenfield and T. Levy, “Throttling support for row-hammer coun-
ters,” 2014, US Patent 9251885.

F. Devaux and R. Ayrignac, “Method and Circuit for Protecting a
DRAM Memory Device from the Row Hammer Effect,” U.S. Patent
10,885,966, 2021.

G.-H. Lee, S. Na, I. Byun, D. Min, and J. Kim, “CryoGuard: A Near
Refresh-Free Robust DRAM Design for Cryogenic Computing,” in
ISCA, 2021.

B. K. Joardar, T. K. Bletsch, and K. Chakrabarty, “Learning to Mitigate
RowHammer Attacks,” in DATE, 2022.

——, “Machine Learning-Based Rowhammer Mitigation,” TCAD,
2022.

M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling
Low-Overhead Mitigation of Row-Hammer at Ultra-Low Thresholds
via Hybrid Tracking,” in ISCA, 2022.

S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating Wordline
Crosstalk using Adaptive Trees of Counters,” in ISCA, 2018.

A. Naseredini, M. Berger, M. Sammartino, and S. Xiong, “ALARM:
Active LeArning of Rowhammer Mitigations,” https://users.sussex.ac.
uk/~mfb21/rh-draft.pdf, 2022.

D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural Support for
Mitigating Row Hammering in DRAM Memories,” CAL, 2015.

J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and Secure Row-Swap:
Efficient and Safe Row Hammer Mitigation in Memory Systems,” in
HPCA, 2023.

C. Yang, C. K. Wei, Y. J. Chang, T. C. Wu, H. P. Chen, and C. S. Lai,
“Suppression of RowHammer Effect by Doping Profile Modification in
Saddle-Fin Array Devices for Sub-30-nm DRAM Technology,” TDMR,
2016.

H. Gomez, A. Amaya, and E. Roa, “DRAM Row-Hammer Attack
Reduction Using Dummy Cells,” in NORCAS, 2016.

F. N. Bostanci, I. E. Yiiksel, A. Olgun, K. Kanellopoulos, Y. C. Tugrul,
A. G. Yagli¢i, M. Sadrosadati, and O. Mutlu, “CoMeT: Count-Min-
Sketch-Based Row Tracking to Mitigate RowHammer at Low Cost,”
in HPCA, 2024.

A. Olgun, Y. C. Tugrul, N. Bostanci, I. E. Yuksel, H. Luo, S. Rhyner,
A. G. Yaglikci, G. F. Oliveira, and O. Mutlu, “ABACuS: All-Bank
Activation Counters for Scalable and Low Overhead RowHammer
Mitigation,” in USENIX Security, 2024.

A. G. Yaglikci, Y. C. Tugrul, G. F. De Oliviera, I. E. Yiiksel, A. Olgun,
H. Luo, and O. Mutlu, “Spatial Variation-Aware Read Disturbance De-
fenses: Experimental Analysis of Real DRAM Chips and Implications
on Future Solutions,” in HPCA, 2024.

M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “PROTRR: Principled
yet Optimal In-DRAM Target Row Refresh,” in S&P, 2022.

M. Marazzi, F. Solt, P. Jattke, K. Takashi, and K. Razavi, “REGA: Scal-
able Rowhammer Mitigation with Refresh-Generating Activations,” in
S&P, 2023.

T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A
Complete In-DRAM Rowhammer Mitigation,” DRAMSec, 2021.

H. Hassan, M. Patel, J. S. Kim, A. G. Yaglik¢i, N. Vijaykumar,
N. Mansouri Ghiasi, S. Ghose, and O. Mutlu, “CROW: A Low-Cost
Substrate for Improving DRAM Performance, Energy Efficiency, and
Reliability,” in ISCA, 2019.

O. Mutlu, A. Olgun, and A. G. Yaglikci, “Fundamentally Understand-
ing and Solving RowHammer,” in Asia and South Pacific Design
Automation Conference, 2023.

Y. Wang, Y. Liu, P. Wu, and Z. Zhang, “Discreet-PARA: Rowhammer
Defense with Low Cost and High Efficiency,” in ICCD, 2021.

O. Canpolat, A. G. Yaglik¢i, G. F. Oliveira, A. Olgun, N. Bostanct, 1. E.
Yuksel, H. Luo, O. Ergin, and O. Mutlu, “Chronus: Understanding
and Securing the Cutting-Edge Industry Solutions to DRAM Read
Disturbance,” in HPCA, 2025.

Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “ANVIL: Software-Based Protection Against Next-
Generation Rowhammer Attacks,” ASPLOS, 2016.

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “CAn’t
Touch This: Software-only Mitigation against Rowhammer Attacks
targeting Kernel Memory,” in USENIX Security, 2017.

V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna,
C. Kruegel, H. Bos, and K. Razavi, “GuardlON: Practical Mitigation
of DMA-Based Rowhammer Attacks on ARM,” in DIMVA, 2018.


https://support.apple.com/en-us/HT204934
https://support.lenovo.com/us/en/product_security/row_hammer
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-5c01
https://www.jedec.org/standards-documents/docs/jesd79-5c01
https://users.sussex.ac.uk/~mfb21/rh-draft.pdf
https://users.sussex.ac.uk/~mfb21/rh-draft.pdf

[87] C. Bock, F. Brasser, D. Gens, C. Liebchen, and A.-R. Sadeghi, “RIP-
RH: Preventing Rowhammer-based Inter-Process Attacks,” in Asia
CCS, 2019.

R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida,

and K. Razavi, “ZebRAM: Comprehensive and Compatible Software

Protection Against Rowhammer Attacks,” in USENIX OSDI, 2018.

[89] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“PThammer: Cross-User-Kernel-Boundary Rowhammer through Im-
plicit Accesses,” in MICRO, 2020.

[90] A. Di Dio, K. Koning, H. Bos, and C. Giuffrida, “Copy-on-Flip:
Hardening ECC Memory Against Rowhammer Attacks,” in NDSS,
2023.

[91] J. Juffinger, L. Lamster, A. Kogler, M. Eichlseder, M. Lipp, and
D. Gruss, “CSI: Rowhammer - Cryptographic Security and Integrity
against Rowhammer,” in S&P, 2023.

[92] Intel, ““Noisy Neighbors” Problem in Kubernetes,” 2022. [On-

line]. Available: https://www.intel.com/content/www/us/en/developer/

articles/technical/noisy-neighbors-problem-in-kubernetes.html

Intel, “Intel Resource Director Technology (Intel RDT) Architecture

Specification,” 2025.

[94] M. Wi, J. Park, S. Ko, M. J. Kim, N. Sung Kim, E. Lee, and J. H. Ahn,
“SHADOW: Preventing Row Hammer in DRAM with Intra-Subarray
Row Shuffling,” in IEEE HPCA, 2023.

[95] W. He, Z. Zhang, Y. Cheng, W. Wang, W. Song, Y. Gao, Q. Zhang,

K. Li, D. Liu, and S. Nepal, “WhistleBlower: A System-Level Empir-

ical Study on RowHammer,” IEEE Transactions on Computers, 2023.

S. Baek, M. Wi, S. Park, H. Nam, M. J. Kim, N. S. Kim, and J. H. Ahn,

“Marionette: A RowHammer Attack via Row Coupling,” in ASPLOS,

2025.

C. Maurice, N. Scouarnec, C. Neumann, O. Heen, and A. Francillon,

“Reverse Engineering Intel Last-Level Cache Complex Addressing

Using Performance Counters,” in RAID, 2015.

Y. Guo, D. Cao, X. Xin, Y. Zhang, and J. Yang, “Uncore Encore:

Covert Channels Exploiting Uncore Frequency Scaling,” in MICRO,

2023.

[99] J. Corbet, “Defending against Rowhammer in the kernel,” 10 2016.

[Online]. Available: https://lwn.net/Articles/704920/

S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,

“SoK: The challenges, pitfalls, and perils of using hardware perfor-

mance counters for security,” in S&P, 2019.

[101] M. Schwarzl, P. Borrello, A. Kogler, K. Varda, T. Schuster, D. Gruss,
and M. Schwarz, “Robust and Scalable Process Isolation against
Spectre in the Cloud (Extended Version),” 2022. [Online]. Available:
https://martinschwarzl.at/media/files/robust_extended.pdf

[88]

[93]

[96]
[97]

[98]

[100]

APPENDIX
A. Additional Systems Data

In this section, we provide additional experimental data for
AMD Epyc 8024P (A2) and Intel Xeon 4410T (12).

a) Performance  Overhead in  Phoronix Macro-
Benchmarks: Figure 11 shows the results of the Phoronix
benchmarks for different memory bandwidth configurations
on the 2 additional systems A2 and 12.

b) Impact of Processor Frequency: Figure 12 shows the
variation of Flush+Reload iterations per refresh interval with
varying CPU frequencies on the A2 and the 12.

B. Browser Evaluation

To evaluate the overhead of Memory Band-Aid on
browser applications, we restricted a logical core to vary-
ing memory bandwidth limits and measured the dura-
tion of launching Google Chrome headless and accessing
https://google.com. On our system, this simple test
already involves more than 10 processes and many threads
and thus, a significant amount of inter-process communication.
Figure 13 shows the averaged results of 20 measurements on
the four test systems. The strictest, yet insecure global setting

on Intel demonstrates a slowdown by a factor of 1.5 (I1) and
1.75 (I2). On AMD, we measure a slowdown by a factor of
7.4 (A1) and 8.9 (A2) for the secure global limit of 128 MiB/s.
On all 4 machines, a secure per-bank limit of 128 MiB/s as
employed in a full Memory Band-Aid implementation does
not induce any statistically significant overhead. If not applied
generally to all user processes, i.e., if not all user processes
are untrusted, a potential application of Memory Band-Aid to
browsers can limit specifically the sandboxed processes, while
leaving other browser processes unaffected. While this may
yield a more favorable security-performance trade-off, it also
opens attack surface to sandbox escapes.

C. Security Formalization

We can also model Rowhammer behavior and our mitigation
formally using Linear Temporal Logic (LTL). We define a
Rowhammer bit flip as a violation of a temporal safety prop-
erty within a refresh interval due to excessive row activations
to aggressor rows, with ACT(r) being true when the row
r is activated; F1ip(v) being true when a Rowhammer bit
flip occurred in victim row v; Aggr(v), the set of aggressor
rows adjacent to a victim row v; Bank(v), the DRAM bank
containing victim row v; Tiefresh, the DRAM refresh interval
(e.g., 64ms); 6, the empirical Rowhammer threshold (i.e.,
maximum safe number of activations within 7 .fesn the kernel
or user will configure); and L, the per-bank row activation limit
enforced by Memory Band-Aid. Additionally we define ¢ as
the natural charge leakage per cycle, v as the additional charge
drain per activation, ¢, (¢) as the remaining charge in v at time
t, and Cy;p as the remaining charge threshold where a bit flip
can occur if the remaining charges drops below this threshold.
The initial charge is after the refresh is ¢,(0). The charge
decays due to natural leakage at rate ¢ and is additionally
reduced by v per activation of any aggressor row. Thus, the
remaining charge in the victim row v at a point in time ¢ in a
refresh interval ¢ € [0, Trefresh] is:

() =c,(0) —t-e—~-

> acT(n).

renggr(v)

Flip(v) can only be true if ¢,(t) < Cpp at any point in
time. However, the charge within a refresh interval can only
decrease, i.e., Cy(Trefresh) < y(t) for all ¢ € [0, Trefresn]. This
implies that F1ip(v) can only be true in a refresh interval if
Co(Trefresh) < Chip in this refresh interval. That is, a system is
secure if

DﬁFlip(’U)
@Dﬂ(cv (t) < Cﬂip)

S

> ACT(r) < Chyp

reAggr(v)

C’U(O) - ﬂefresh CE— 7Y

With Memory Band-Aid, the total number of activations to
any rows in Bank(v) within a refresh window is limited to
L - Tiefresh- Consequently, we can now use L as an upper bound
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Fig. 11. Phoronix Productivity Testsuite Results for varying memory bandwidth limitations on 2 of the evaluated systems.
TABLE IV
PHORONIX PRODUCTIVITY TESTSUITE PERFORMANCE RESULTS OF OUR PROOF-OF-CONCEPT IMPLEMENTATION.
Intel 12 AMD A2
Benchmark Unlim 10%  Insecure PoC Unlim 128 MiB/s  Secure PoC 128 MiB/s  Full Impl.
" Per-system Overhead * Per-system Overhead Per-bank  Overhead
GEGL - Crop 10.6 42.6 303.4 % 9.7 35.1 263.2 % 10.1 4.2 %
GEGL - Scale 10.6 42.1 298.2 % 9.0 36.3 301.9 % 9.5 5.2 %
GEGL - Cartoon 132.1 192.9 46.1 % 120.6 398.2 230.1 % 1224 1.5 %
GEGL - Reflect 40.7 70.2 72.6 % 38.2 80.0 109.3 % 39.3 2.7 %
GEGL - Antialias 67.4 103.0 52.8 % 56.5 122.5 116.8 % 574 1.6 %
GEGL - Tile Glass 432 82.0 89.7 % 37.0 104.7 182.5 % 38.1 2.9 %
GEGL - Wavelet Blur 83.0 149.9 80.5 % 74.2 230.5 210.9 % 71.1 3.9 %
GEGL - Color Enhance 74.7 88.5 18.4 % 63.3 122.8 94.0 % 63.3 0.0 %
GEGL - Rotate 90 Degrees 63.2 80.2 26.9 % 59.2 138.0 133.2% 59.5 0.5 %
GIMP - resize 30.0 82.5 175.2 % 26.8 220.2 721.0 % 28.8 7.4 %
GIMP - rotate 28.8 92.7 222.5% 19.2 299.9 1464.8 % 21.1 10.2 %
GIMP - auto-levels 36.9 1152 212.3% 253 361.4 1327.7 % 28.0 10.8 %
GIMP - unsharp-mask 49.1 159.4 224.6 % 31.2 495.9 1488.6 % 33.7 8.0 %
Inkscape - SVG Files To PNG 39.9 53.8 34.6 % 34.0 1354 298.1 % 349 2.5 %
LibreOffice - 20 Docs To PDF 9.2 17.7 92.4 % 8.7 46.7 438.0 % 8.9 2.8 %
GNU Octave Benchmark - 15.1 119.7 691.2 % 8.1 436.0 5312.0% 13.1 62.8 %
librsvg - SVG Files To PNG 88.5 89.6 1.2% 85.4 1514 77.2% 85.5 0.1 %
Mean 37.3 81.5 118.6 % 30.7 150.2 388.8 % 32.8 6.7 %

We tested our proof-of-concept on the Intel Xeon 4410T (I2) and AMD Epyc 8024P (A2) without bandwidth limits, with the most restrictive bandwidth
limit, and the total memory system bandwidth of a full Memory Band-Aid implementation with per-bank limits. Lower is better.

for the sum of activations to aggressor rows to simplify the
condition to

- (Cv(o) — Tefresh - € — v L< C'ﬂip) .

We further assume that the memory without any hammering
remains stable, i.e.,

O— (CU(O) —t-e< Cﬂip) .

We define Cliip+Trefresh € as the minimal initial charge Ciyinimal
required to remain stable without hammering by the end of
the refresh interval. With this assumption, we can rewrite the
condition as

0- (Cv (0) - T}efresh cE— L < Cminimal - Tl'efresh : 5)
and simplify to

DCU (0) - L > C(minimal
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Hence, we can conclude that if the per-bank row activation
limit L is chosen such that
I < Cy (O) — Crinimal
v

then it is guaranteed that the Rowhammer condition can
never be reached, i.e., a threshold L exists such that a system
is provably secure against Rowhammer bit flips. Note that
this holds at all times and with all possible Rowhammer
attack patterns, including bursts and novel ones that may
be discovered in the future, as it does not depend on the
specific aggressor rows or activation patterns. Since the limit
L is independent of the processor frequency, this guarantee
holds for all refresh intervals, even if the processor frequency
changes. Effects other than Rowhammer that do not leak due
to row activations, such as physical defects, are outside the
scope of this formalization. Finally, should new attacks arise
that hammer from multiple cores, applying the limit L on a
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Fig. 12. Impact of the processor frequency on Flush+Reload loops with n = 9 and n = 19 addresses. The plot shows the iterations achieved per refresh
interval on the AMD Epyc 8024P (A2) and Intel Xeon 4410T (12).
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Fig. 13. Average time to launch Chrome headless and access https://google.com. N = 20. The area shows the standard deviation.

per security-domain basis, e.g., per user, per virtual machine,
or per container, the formal security guarantees still hold.

While our security analysis shows that a correctly chosen
limit L is sufficient to prevent Rowhammer bit flips, a mis-
configured limit L may still lead to bit flips if the limit is too
high or to unnecessary performance overhead if the limit is too
low. However, since accesses are delayed rather than blocked
when the limit is hit, Memory Band-Aid does not introduce a
denial-of-service risk.
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