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Abstract—A number of attacks rely on infrared light sources
or heat-absorbing material to imperceptibly fool systems into
misinterpreting visual input in various image recognition appli-
cations. However, almost all existing approaches can only mount
untargeted attacks and require heavy optimizations due to the
use-case-specific constraints, such as location and shape.

In this paper, we propose a novel, stealthy, and cost-effective at-
tack to generate both fargeted and untargeted adversarial infrared
perturbations. By projecting perturbations from a transparent
film onto the target object with an off-the-shelf infrared flashlight,
our approach is the first to reliably mount laser-free targeted
attacks in the infrared domain. Extensive experiments on traffic
signs in the digital and physical domains show that our approach
is robust and yields higher attack success rates in various attack
scenarios across bright lighting conditions, distances, and angles
compared to prior work. Equally important, our attack is highly
cost-effective, requiring less than $50 and a few tens of seconds
for deployment. Finally, we propose a novel segmentation-based
detection that thwarts our attack with an F1-score of up to 99%.

I. INTRODUCTION

Deep neural networks are known to be susceptible to mali-
cious inputs, which is especially relevant in safety-critical use
cases, such as traffic light/sign recognition and facial recog-
nition systems for access control and surveillance. Different
attack strategies exist, some of which assume direct model
access and enable direct gradient computations, i.e., white-
box model [13]], while others are limited to oracle access to a
model (black-box model). In the digital domain, the generation
of these perturbations is often constrained with an L, norm,
which captures the difference between a benign and malicious
image on a pixel level and is an imperceptibility measure for
a (human) observer.

Recent real-world attacks exploit the specificities of camera
hardware or hide perturbations in inconspicuous phenom-
ena. Popular methods to conceal perturbations consist of the
reliance on so-called adversarial patches; these have been
shown to be particularly harmful in traffic sign detection [S]],
[10], [54], facial recognition systems [31[], [37], and person
detection [40]], [41]. Adversarial patches are typically static,
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leave a visible trace behind, and are constrained in their
degrees of freedom. Other methods, such as projector-based
attacks, exploit the full RGB color space due to their ability to
project arbitrary images with close to pixel-wise precision onto
a target. Projector-based attacks, however, suffer from a major
shortcoming, as the illumination required to be projected onto
an object is far from being stealthy.

Other, more recent, attacks exploit the fact that the sensitiv-
ity of CMOS sensors often stretches further into the infrared
part of the optical light spectrum compared to human vision,
opening the door for exploitation in image recognition appli-
cations [35]], [42]], [[55[]. This problem is further exacerbated by
the fact that spectral filters are often not installed in modern
vehicles due to their high cost and performance overhead [42].
In these settings, infrared projectors emerge as a robust and
precise means to introduce inconspicuous pixel-wise modifi-
cations. Such projectors are costly, requiring investments of
tens of thousands of USD. As an alternative, several recent
contributions have overcome the high cost associated with
infrared projectors using infrared lasers [35]], albeit at the
expense of precision. More specifically, even though these
approaches can cut down costs to just thousands of USD,
they cannot mount attacks targeting specific classes since their
optimization space is limited and can only reduce the model’s
confidence in correctly classifying input. As such, they often
result in disruptions of service (e.g., flipping the prediction to
any different class) but cannot be used to mount sophisticated
attacks, i.e., precise label-flipping. In comparison, the misclas-
sification of a stop sign as a speed limit 50 sign or vice-versa
by an autonomous vehicle poses a greater safety hazard than
a simple service disruption.

In this paper, we propose the first practical and robust in-
frared perturbation approach to mount inconspicuous fargeted
and untargeted attacks in the physical world. Our laser-free
approach bridges the gap between powerful projector-based
attacks and existing solutions by significantly reducing the
complexity of the underlying optimization problem. To ensure
real-world robustness, we opted to account for the spectral
shift into the infrared domain (since we cannot exploit the
full RGB color space). We incorporated the use of expectation
over transformation, i.e., EOT [3]], to adapt to various real-
world limitations, e.g., stemming from brightness changes,
perturbation misalignment, and spatial transformations. Un-
like previous work [35], [43], [45], [56], [[57]l, our approach



considerably reduces the real-world constraints on shape and
location by mimicking an infrared projector. This allows us to
exploit additional degrees of freedom as a means to generate
more robust, targeted, and successful perturbations compared
to existing approaches. Moreover, contrary to [53]], our model
is not restricted to a single (artificial) light source. This partic-
ularly allows us to capture realistic deployment environments
with varying lighting conditions and to realize high-accuracy
targeted attacks (in addition to the standard untargeted attacks)
with a negligible overhead. Namely, our attack is highly cost-
and time-effective—incurring an equipment cost of less than
US$50 and only tens of seconds to deploy. In summary, our
contributions are as follows:

Novel attack: We propose a novel approach to generate ad-
versarial infrared perturbations that alleviates many practical
constraints in current proposals and can accurately mount
both targeted and untargeted attacks (cf. Section [[V).

Thorough evaluation: We evaluate and verify our adversarial
infrared perturbations in both targeted and untargeted set-
tings in the use cases of traffic sign recognition, i.e., object
detection and image classification, in both digital and physi-
cal domains. Real-world experiments show that our approach
results in attack success rates of up to 100% in various
lighting conditions across varying distances and angles, and
in a moving vehicle (up to 30 km/h), underlining the impact
on real-world safety in both two-stage (cf. Section [V)) and
single-stage architectures (cf. Section [VI). For instance, our
proposal improves the attack success rate by up to 20.47%
compared to [43], [45], even though [45] is a white-box
method with direct access to model gradients. We achieve
this while requiring a considerably lower number of queries,
by up to 65% (cf. Section [V)).

Countermeasures: We show that our proposal exhibits sig-
nificant robustness against state-of-the-art defensive schemes
(cf. Section [VII). To remedy this, we propose a novel
segmentation-based detection scheme that is specifically
designed to address infrared perturbation attacks on traffic
signs. Our experiments show that our defense can thwart
infrared perturbation attacks with an F1-score of up to 99%.

Open science: To aid researchers in conducting real-world
evaluations in the near-infrared spectrum, our source code
and the first open-source infrared traffic sign dataset, which
we dub GTSRB-IR-100 (cf. Appendix [B), is publicly avail-
ableﬂ We also responsibly disclosed our findings to Mer-
cedes, Mobileye, Tesla, Sony, and OnSemi.

II. BACKGROUND AND RELATED WORK

Vision-based System Architectures: Image recognition ar-
chitectures generally fall into two categories: single-stage and
two-stage [9]]. Single-stage models perform object detection
and classification jointly, offering efficiency for tasks with a
limited number of classes, but suffer in performance as the
number of classes increases. In contrast, two-stage pipelines
first detect objects using a single-class detector and then

Uhttps://github.com/RUB-InfSec/infrared_perturbations
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Fig. 1. Overview of our system (icons from [I]]).

classify each detected region, making them more suitable for
handling a large number of classes.

Real-World Adversarial Attacks: Adversarial patch attacks
have been adapted to real-world settings by embedding visible
perturbations that mimic plausible scenarios—e.g., shadows,
snow, stickers, or weathered signs [8], [S3], [54]]. However,
these attacks are often easy to spot due to the unnatural
appearance of the patterns.

To increase stealth, newer attacks exploit human perceptual
limitations and the characteristics of camera sensors. These
include perturbations invisible to humans but detectable by
cameras, or those injected via the camera pipeline, such as
with modulated lighting [36], laser interference [50], ultrasonic
signals [[17], or EM interference [20]. Others exploit visual il-
lusions, projecting images too briefly for human detection [30].

A particularly stealthy class of attacks leverages the camera
sensor’s sensitivity to infrared (IR) light. These include hidden
IR patterns for evading facial recognition [55] and spoofing
traffic signals with IR LEDs [42]. More recent work targets
traffic sign detection using large, invisible IR laser spots [35]],
combining techniques from visible-light and laser-based at-
tacks [16], [22]. Unfortunately, due to the limited solution
space of possible perturbations, all existing works can only
be effective in the untargeted attack setting.

An attacker might also resort to jamming the camera to
attack the vision system with (in-)visible light. Jamming at-
tacks are less fine-grained and disable the entire vision system.
These attacks require precise, real-time targeting of the camera
of a moving vehicle, making it challenging to execute.

III. DESIGN GOALS & APPROACH
A. System & Threat Model

We consider an adversary that is interested in causing
vision-based recognition systems used in environments such
as autonomous vehicles to output an incorrect prediction by
placing an adversarial perturbation on a target object. The
adversary is interested in keeping any introduced perturbation
invisible to a human observer but clearly observable by
a CMOS camera, thereby impacting the image processing
pipeline.
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Unless otherwise specified, we focus on the main use case of
traffic sign recognition in this work. However, we emphasize
that our approach is equally applicable to other use cases, such
as facial recognition systems. More specifically, we target both
single- and the more challenging two-stage pipelines to ensure
that our approach broadly applies to many existing production
systems. The reason that we consider this use case is that
it presents an unexplored opportunity for the adversary; in
most modern vehicles (e.g., Tesla Model 3), spectral filters
are often not installed due to their additional cost, performance
overhead, and functional limitations [21]], [42]—preventing the
masking of infrared perturbations in modern cars. For instance,
spectral filters reduce the perception of a vision system when
dealing with low-light conditions, hamper the detection of lane
markings [21]], etc. Therefore, many vendors explicitly opt for
cameras that remain sensitive to NIR, e.g., sensing systems
by Mobileye or Mercedes, or are actively developing patents
that explicitly consider infrared-sensitive camera systems [0],
[28]]. Moreover, (i) recent camera modules, e.g., e-con Systems
STURDeCAMSS, are also not equipped with infrared filters,
and (ii) cutting-edge sensor designs for day-night imaging
promise improved color fidelity (mimicking the effect of
infrared filters), while maintaining sensitivity to infrared light
at night [26].

Throughout this paper, we assume the camera of the attack
target lacks infrared filtering and the system relies solely—
like recent Tesla models—on vision-based sensing. While
some systems may use additional map data, this data is often
missing/outdated for new roads, indoor sites, or construction
zones. Even when maps are accurate, if a vehicle detects
contradicting inputs, e.g., a 20 km/h sign but the map shows
80 km/h, it will likely brake.

Arguably, in this setting, the main goal of the adversary
is to manipulate the output of the vision-based recognition
system, e.g., by hiding signs or by classifying a stop sign as a
speed sign or vice versa (e.g., to target specific manufacturers’
processing pipelines [32], or to cause harm). To achieve these
goals, an adversary might resort to three types of attacks:
(1) a hiding attack, for which the object detector is fooled
to ignore a given object; (2) a weak untargeted attack, for
which an image classifier is fooled to output any class different
from the ground truth, or (3) sophisticated targeted attacks
that purposefully intend to fool the classifier into outputting
a specific target class that is different from the ground truth
(e.g., misclassify all speed signs as a stop sign).

Unlike previous work in this area [35[], [43], [45], [52], we
primarily focus on the challenging targeted attack setting; we,
nevertheless, also analyze and evaluate the effectiveness of
our approach in the untargeted setting. In contrast to camera
jamming, our infrared perturbation selectively misclassifies
specific signs without disrupting functionality.

To achieve these goals, we assume that the adversary
has black-box score-based oracle access to the target image
classifier—in which an adversary can only observe the output
probabilities after supplying a controlled input. That is, we
assume that the adversary neither knows the model weights,

architecture, nor has access to the exact training data. This
mimics a realistic setting where the adversary can only in-
teract, e.g., with the classifier of a vehicle through a debug
interface, but does not have access to the full classifier [16]],
[17]I, 1220, 1351, [43l, [53

B. Design Criteria

To make the physical adversarial perturbations practical, our
design seeks to achieve the following criteria.

Targeted, Untargeted & Hide Attacks. Adversarial perturba-
tions should effectively realize targeted, untargeted, and hide
attacks. In most practical deployments, hide and untargeted
attacks result in service disruptions (e.g., by hiding an object
or preventing correct classification). Targeted attacks, on the
other hand, are more powerful as they enable the adversary to
cause specific damage, such as causing autonomous vehicles
to increase their speed at stop signs.

System and Camera-Agnostic. Since it is not feasible for
an attacker to obtain the images captured from the camera
of an approaching vehicle in real-time, the crafted adversarial
perturbations should not be specific to a given (camera) system
and should be transferable across various target classifiers.

Scene-Agnostic. The adversary may have to conduct the attack
at dynamically changing scenes. This includes varying lighting
conditions, varying distances, e.g., between a sign and an
approaching vehicle, and sometimes in the presence of motion
blur induced by the vehicle’s movement.

Cost-effective deployment. The adversary is clearly interested
in minimizing the amount of time and the cost required
to mount such attacks. Namely, the generation of physical
adversarial perturbations and their deployment should require
minimal time and resources.

C. Approach

A strawman solution to create inconspicuous adversarial
examples would be to rely on infrared projectors (e.g., Barco
FS70-W6). Such projectors are widely used in military appli-
cations and are notorious for their ability to introduce precise
pixel-wise projections. Infrared projectors are, unfortunately,
costly (in the order of tens of thousands of USD).

In this work, we opt for a more efficient alternative to
infrared projectors. Namely, we explore using a transparent
film on which we print the perturbation combined with the
mask using an off-the-shelf printer. Our primary intuition is
to discreetly place the film in front of an infrared light source,
allowing it to project the perturbation onto our target object
(cf. Figure [T). Notice that this process precisely mimics the
projection of small squares onto the target image. Our setup
consists of a compact device that integrates both an infrared
lamp and transparent film (approx. 10cm X 10cm X 20cm)
which can be easily concealed behind bushes or junction
boxes. This is considerably more stealthy than setups used

2The adversary can be a user themselves to interact with the classifier to
directly observe how a manipulated sign is perceived on a car’s dashboard.



TABLE I
OVERVIEW OF MP PARAMETERS.

Parameter  Description

Width of the input image.

Height of the input image.

Maximum number of MP used in the perturbation.
Side length of an MP in pixel.

Set of MP positions in the reduced coordinate space.
Set of pixel positions in the pixel coordinate space.
Mask to locate the target object.

Projection mask consisting of the mask and MP .

YN T=>s

in prior works, which, for example, require bulky video
projectors [25] or infrared lasers [35]], that can also pose a
safety hazard due to the use of lasers.

In this setting, several challenges arise to ensure that our
design is scene- and system-agnostic. Namely, while the
reliance on the infrared domain presents opportunities to the
adversary, it effectively limits the available color space that
can be utilized when creating perturbations (and increases
the difficulty of successfully generating adversarial examples).
Moreover, one needs to ensure that adversarial examples are
efficiently created to be effective in real-world deployments
practically and to adjust to environmental changes quickly; for
instance, we need to cater to the fact that the CMOS camera is
constantly moving (and is not fixed when compared to other
use cases) and, thus, lighting and position would also vary as
the vehicle approaches the traffic sign.

IV. DESIGN

We now present our methodology for generating efficient
and workable adversarial perturbations in the infrared domain.

A. Modeling Infrared Perturbations

Unlike traditional perturbation attacks, our infrared pertur-
bations must be created while paying special attention to the
fact that there might be multiple light sources involved (i.e.,
an ambient and an infrared light source); this complicates
the modeling process significantly. We summarize the various
notations used in this paper in Table [I}

Shape. Due to the imperfect nature of the perturbation process,
we opted to move away from pixel-wise perturbations to so-
called manypixel (MP), a grouping of several neighboring
pixels. For simplicity and without loss of generality, we
assume that a MP can be approximated by a square whose side
length [ divides both the height and width of the input image,
i.e., I[|h A lJw. This effectively reduces the pixel coordinate
space from w x h pixels to a reduced coordinate space
of 7/t x w/i MP for our subsequent optimizations, as seen
in Figure This matches our real-world experiments in
Section where a square MP is output by projecting small
pixel perturbations from a transparent film onto the target.

Location. We define the location of our adversarial pertur-
bation by a set of MP positions Z. For instance, when the
MP corresponds to a square, Z C [0, w/i] x [0, #/i]. The amount
of MP is denoted by %, i.e., |Z| = k. A mask M is used to

(a) MP positions.  (b) Perturbation mask. (c) Infrared perturbation.

Fig. 2. Definition of pixel positions (32 X 32) and a concrete perturbation
for [ = 7 and an image of w = h = 224.

locate the target object, e.g., the shape of a traffic sign and
the region of the adversarial perturbation. It might happen
that an MP is drawn directly on the mask. To enable a partial
drawing of the MP along the contour of the mask, we define
a transformation from the reduced coordinate space used for
the MP back to the pixel coordinate space of the original input
image. In the particular case of a square, this is achieved by
adding the positions of all /2 pixels within a single MP to our
position set. We define the transformation ¢ as follows:

o(x,y) = [r,z+1] x [y,y +1] (1)

and construct the transformed coordinates Z as

= ey @

(z,y)€ET

Using the aforementioned transformation, the function
ModelPerturbation(Z) returns the projection mask P that
corresponds to the intersection of the MP locations in pixel
space and the mask, i.e., P = ModelPerturbation(Z) =
Z N M as shown in Figure

Perturbation color. We need to model the impact of the
infrared light source on an object that is already lit by ambient
light. Our perturbation masks the infrared light source, making
the covered area appear as ambient-lit. As a result, the area
outside the perturbation exhibits a color shift while the per-
turbed area remains unaffected. Unlike prior work that relies
on a single visible light source [53]], we cannot assume that
perturbations can be modeled simply as brightness reductions.

Note that, in ideal conditions, cameras adjust their exposure
and white balance to obtain similarly bright images, albeit
being taken under different lighting conditions. However,
many real-world traffic sign datasets contain overexposed or
underexposed images due to complex lighting scenarios, which
obscures the impact of an infrared light source. Before in-
troducing a brightness-dependent infrared transformation, we
normalize the data to ensure that we obtain similarly exposed
images. This can be modeled using the three-dimensional
CIELAB color space [4], which covers the entire gamut
of human color perception. More concretely, the lightness
channel L correlates with the perceptual lightness, and we
assume that an exposure adjustment only changes this channel.
The A and B channels model the four unique colors of human
perception, i.e., red, green, blue, and yellow, and remain
unchanged.



— red (approx.)
0.21 == green (approx.)
----- blue (approx.)

0 1000 2000 3000 4000 5000 6000
lux

Fig. 3. Estimated channel-specific scaling factors p. for various ambient
lighting intensities.

We define the transformation from RGB to CIELAB space as
follows:

LAB : [0,255]* — [0,100] x [—128,127]? 3)
LAB(z) = [L, A, B,] 4
The resulting normalization adjusts the average lightness value

L, of an image z to the average lightness value of the data
set Lgata as follows:

T
Normalize(z) = LAB—l([IixL”” A, Bz} )
data

Considering the fixed position and power of an infrared light
source, the largest impact is observed on the red channel, with
less pronounced effects on the green and blue channels. Due
to the fixed power of the infrared light source, its effect is
attenuated as the ambient lighting increases. To model the
color channel of an infrared image (IR.) based on these
effects, we take the visual color channel (VIS.) and apply
a channel and ambient lighting-specific scaling (p.) of the red
color channel (VIS,.). This relationship is captured in the IR
transformation as follows:

IR : [0,255]® — [0,255)° 5)
IR = [IR, IR, IRy (©6)
IR, = VIS, + VIS, x p, (7)

To estimate the scaling parameter p. for various ambient
lighting intensities, we rely on empirical measurements. Here,
we conducted experiments in a range of 100 — 6000 lux on the
surface of a traffic sign. Based on the resulting pairs of images
with only the ambient lighting and an additional infrared light
source, we estimated the scaling parameter as follows:

_ IR. - VIS,
~ VIS,

We used these data points to fit channel-specific functions, as
shown in Figure [3| to perform the transformation digitally. An
example of a successful transformation is shown in Figure ]
In practical scenarios, we find that the scaling parameter p.
depends on various factors, most prominently ambient light-
ning. To ensure the robust generation of physical adversarial

Pe ®)

Fig. 4. Comparison of a real-world infrared light source (right), a simulated
infrared light source (center) for a traffic sign (left) from the GTSRB dataset.

examples, we account for some variation of this parameter
with EOT [5] (cf. Section [[V-E).

We define a function ApplyIR that takes an input image x
and the projection mask P and applies the infrared transforma-
tion (cf. Equation (7)) only to the parts of the image that are
not covered by an MP as a means to prevent the infrared light
from reaching the surface of the traffic sign. This is achieved
using the Hadamard product as follows:

' = ApplyIR(z,P) =2 OP+IR(z)® (1 —-P) (9
and is shown for an example in Figure

B. Optimization for Two-Stage Architectures

We start by describing our optimization strategy for the
challenging two-stage architecture. In Section we also
outline the optimization strategy for the single-stage archi-
tecture. For image classification, let fg: R? — A" denote
a DNN model, parameterized by 6, assigning d-dimensional
inputs to n classes, where A" is the probability simplex of n
classes, and let C': R? — [n] refer to the associated classifier
defined as C(z) := argmax;cp, fi(z). The dimension is
equivalent to the number of pixels, i.e., d = h X w X ¢, with
width w, height h, and number of color channels c. Given a
genuine input 2 € R predicted as C(x) = s (source class),
desired target class ¢, and an adversarial perturbation § € R4,
' = x + ¢ is considered an adversarial example of x if the
following criterion is fulfilled:

N JC@)#s
Al@) = {C(:r/) —¢

(untargeted attack),

(10)
(targeted attack).

The objective of the adversary is then expressed with the
following margin loss function [7]]:

fs(x) — max f;(x) (untargeted attack),
7 (11)

ﬁadv($) = m;g( fz(fﬂ) _ ft(x) (targeted attack).

For an adversarial example x’ to be successful, we require that
there is a perturbation P that satisfies L,4, < 0 to achieve
an (un)targeted misclassification. The optimization problem is
defined as follows

min L4, (ApplyIR(Normalize(Zinput), P)) (12)
s.t. P = ModelPerturbation(Z) (13)

to find an optimal set of MP positions Z for a given input
image input. Based on Equation and the subset of a
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Fig. 5. Selected iterations from our approach. Crossed hatches indicate the
addition of a MP from a previous iteration, while diagonally crossed hatches
indicate a removal of a MP from a previous iteration.

given dataset S, we define the attack success rate (ASR) for
the digital and physical experiments as follows:

1 /
ASR := S > 1(A(x))

zeS

(14)

with output 2’ of ApplyIR(Zinput), adversarial criterion A,
and the indicator function defined as 1(z) = 1 if x is true and
1(x) = 0, otherwise.

In contrast to existing works that need to perform complex
modeling of adversarial shapes and locations [35], [43], [45],
[56], [57] to remain inconspicuous and/or easily manufac-
turable, due to our large perturbation space, we can resort
to the well-known random search algorithm [33|] for the
derivative-free optimization of our problem. Since, in our use
case, it may not be possible to simply extract a model from
the automotive system for more powerful attacks, we opt to
investigate a more realistic threat model, treating our system
as a black box, which is generally considered more applicable
to real-world deployments.

As mentioned earlier, we approximate a MP with a square
(see Section [[V-A] for the justification) and proceed to find a
(locally) optimal set of MP positions that cause an (un)targeted
misclassification. To this end, we randomly perturb a total of
k different MP , ie., T < U(0, /1) x U(0,w/1), throughout
a maximum of ) queries to the classifier, with ¢/ denoting
the uniform distribution. Naively perturbing the MP until we
converge to a successful adversarial example is intractable,
especially in the targeted attack setting. Instead, we only
update the current best set of MPs if the new set of MPs
results in a lower loss. To improve convergence, we expo-
nentially decrease the number of changed MP based on the
current iteration. Initially, we change the largest number of
MP to significantly reduce the loss (cf. Equation (1)), while
subsequent queries with fewer changed MP are intended to
refine the loss. The schedule for deriving the number of
perturbed MP for a given iteration ¢, query budget (), and
maximum number of perturbed MP & is defined as follows:

This schedule is used to randomly draw k(i) new MP from
the image. Before adding them to the set of indices Z, we
randomly remove k(i) MP from this set. Once we obtain a
negative loss, the goal of (un-)targeted misclassification is

Algorithm 1: Generating infrared perturbations

Data: input z, loss £, max query @, number of MP k, MP size [
Result: candidate for minimizing £

/% Initialize first candidate */
T+ U0, h/1) x U0, w/1); || =k

‘P = ModelPerturbation(Z),z’ = ApplyIR(z, P)

L* «+ L(z'),i+0

while ¢ < Q do

/* Update positions of perturbation x/
T U0, 1) x U0, w1 |T'| = k(i)

TI" <+ randomly select k() indices from Z

I+ (I\T")uT

‘P’ = ModelPerturbation(Z’),z’ = ApplyIR(z, P’)

/* Upon improvement, update solution */
9 if £(z') < L* then

10 | L%« L(2'), T+ T

11 end

/+ Negative loss:
12 if £* < 0 then

13 | break

14 end

15 4141

16 end

17 P = ModelPerturbation(Z),z’ = ApplyIR(z,P)
18 return P, z’

N N

® N »

success */

achieved. The overall algorithm for generating infrared pertur-
bations is shown in Algorithm 1. Given an initial image, this
algorithm outputs the perturbation mask P and the resulting
infrared adversarial image z’. The process of optimizing the
MPs is shown in Figure

Comparison of Optimization Strategies. To confirm the
superiority of our optimization, we now compare the ASR and
average queries achieved by various popular optimization
strategies, i.e., local random search (LRS), particle swarm
optimization (PSO), genetic algorithms (GA), and evolution
strategies (ES) for an ambient light setting of 10 lux and ablate
the number of MP k of size [ = 1 in an untargeted attack
setting. We compare our results against a baseline consisting
of a naive random strategy (RND) that randomly places up to
k MP . Our results are depicted in Figure [6] for GTSRB [39]
with 25 samples for each of the 43 classes.

We observe that local random search results in the highest
ASR over all perturbation counts k with an average of 90.6%
(i.e., twice as high compared to a random positioning of
perturbations) and with as few as 123.4 queries.

C. Optimization for Single-Stage Architectures

To detect objects, let fo: R? — {(bbox, A™)}™ denote
a DNN model, parameterized by 6, assigning d-dimensional
inputs to m bounding boxes bbox, each with a probability
simplex A" of n classes. Without loss of generality, we focus
on an image with one bounding box. We let D: RY —
{(bbox, [n])} refer to the associated detector which is defined
as D := {(bbox, arg max;c, fi(z))} for each bounding box
for which the maximum probability is above the detection
threshold 7, i.e., max;cp,) fi(z) > 7.

We consider a genuine input z € R? predicted as D(z) =
{(bbox, s)} (source class) and define the adversarial criterion
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Fig. 6. Optimization results for a two-stage architecture on the GTSRB
dataset. Each cell contains the ASR and query count. The last column includes
the averages.

and objective for a hide attack, i.e., not recognizing the
bounding box of the source class, as follows:

A(a') = {{(obox, )} ¢ D) (15)
Lodgw(x) = {?612[]’;1}]( filx) =71 (16)

For an adversarial example 2’ to be successful, we require that
there is a perturbation P that satisfies L,4, < 0 to achieve a
hide attack. The optimization problem is then identical to the
previous case of image classification (cf. Equation (12)). We
use Equation (T4) to compute the attack success rate.

To evaluate the impact of the optimizer selection, we
evaluated the ASR and average consumed queries achieved
with various popular optimization strategies on the YOLOvVS8
model [11] trained on the Mapillary [9] dataset. Our results
are depicted in Figure [/} Here, we use 25 samples for each
of the 9 classes, i.e., speed limits and stop, with a total of
225 images (cf. Section [VI). In line with our previous results,
the local random search optimization algorithm performs best,
with an average attack success rate of 98.3% and an average
of 56.4 consumed queries, outperforming the second-best
optimization procedure, particle swarm optimization, with an
average ASR of 91.8% and an average of 99.4 queries.

D. Validating our Infrared Model

To validate our model, we created an (open-source) infrared
traffic sign dataset. Our dataset comprises images of traffic
signs with varying levels of ambient lighting, both with and
without an additional infrared light source. We include addi-
tional details about our dataset in Appendix [B] We compare
the success of our approach on (1) the real infrared images
and (2) the emulated infrared light stemming from our digital
transformation in Section[[V-A] We conducted our experiments
with [ = 14, in line with Section

As shown in Table [[} our results on the real-world dataset
show an across-the-board ASR of 100% with an averaged
consumed queries as low as 21.7 for £ = 96. For our simulated
infrared light source, we observe the highest ASR at k£ > 128
with 94%, while the lowest observed rate ranks at 88%.

69.0 80.3
348.2 245.0

Optimizer

56.9 69.0 72.0
1.0 1.0 1.0

128 256 384 512
Perturbation Count

768 Avg.

Fig. 7. Optimization results for a single-stage architecture on the Mapillary
dataset. Each cell contains the ASR and query count. The last column includes
the averages.

Our results, however, confirm that our infrared transformation
provides a tight worst-case emulation of the real-world. This
also means that we expect our approach to yield, on average,
better success rates in the real world when compared to the
digital world.

E. Real-World Physical Perturbations

To ensure robustness of adversarial examples under real-
world conditions, we rely on expectation over transformation
(EOT) [5] that finds a perturbation over the expected value of
all transformed inputs over the set of transformations 2:

minE,, o [Lade (w(ApplyIR(Zinput, P)))]
s.t. P = ModelPerturbation(Z)

We model only reasonable effects with justified value ranges,
as overly complex transformations result in difficult conver-
gence towards a suitable adversarial example. More concretely,
Q includes transformations for the following effects [25]):

Perspective. Traffic signs are typically placed on the right side
of a street (in countries with right-hand traffic) at a typical
height of 2m in Europe and 5-7 ft in the US. We assume
that the camera is placed at an average height of a European
vehicle of 1.5m. As a result, we consider both an z-axis and
y-axis perspective transformation of £35 deg.

Distance. As a vehicle approaches a traffic sign, the initially
small sign gets larger over time in the captured images. This
results in an initial upsampling, followed by a subsequent
downsampling once the sign is too large for the network to
process. For the lower bound on distance, we determine the
minimum sign size for which the DNN can still correctly
classify a given sign. As a result, we determine the minimum
size to be 18 x 18 pixel.

Rotation. Traffic signs are typically mounted straight, i.e.,
the horizontal sign axis is perpendicular to the street. Due
to imperfect mounting, we tolerate rotations of +6°.
Brightness. To account for the slight over-/underexposure of
a camera, we also utilize the LAB color space to model a
brightness change (cf. Equation (3)). We consider a value
range of +20% in the lightness L channel of the image.



TABLE II
COMPARISON OF ASR AND AVERAGE CONSUMED QUERIES ) ON
REAL-WORLD AND SIMULATED INFRARED PERTURBATIONS BASED ON
OUR MODEL IN SECTION [[V-Al

k Real-World Simulated

(#MP ) | ASR Q ASR Q
16 100.0 36.94 | 88.0 164.38
32 100.0 41.28 | 88.0 144.84
64 100.0 21.70 | 90.0 117.44
96 100.0 11.20 | 90.0 125.38
128 100.0 41.98 | 94.0 77.32
192 100.0 17.66 | 94.0 97.38

Backgrounds. In single-stage pipelines, the background can
significantly influence the model’s output. To ensure robust-
ness across various settings, we place the sign against a variety
of backgrounds.

Alignment and Motion Blur. Due to the required alignment
of the perturbation onto the traffic sign, we consider a shift in
the z- and y-axis of £5 pixel. We also introduce motion blur
to mimic blur on frames of a moving camera.

To implement our setup in Figure the film must be
carefully aligned with the light source, which can be efficiently
done using an infrared camera as a viewfinder. We also added
a 3D-printed magnetic frame to prevent film bending and
projection distortions.

V. EXPERIMENTS ON TWO-STAGE ARCHITECTURES

In this section, we empirically evaluate our approach for
traffic sign recognition in the digital and physical domains.

Datasets and Models: We conducted our experiments on
established datasets for traffic sign recognition for two-stage
architectures: we rely on GTSRB [39]] for German traffic signs
and LISA [29] for American traffic signs. For the underlying
model architectures, we use a simple CNN [49] for GTSRB
and LISA-CNN (taken from the cleverhans library [[12]]), which
is in line with previous works in this field [10], [25]], [53]. In
our normalized test sets, we report a clean accuracy (CA) of
98.76% and 99.63% for GTSRB and LISA, respectively.

A. Targeted Attacks in the Digital Domain

Our evaluation in the digital domain emulates physical
attacks in the real world using the GTSRB and LISA datasets.
We start by evaluating our approach in the more challeng-
ing targeted attack scenario, where an adversary seeks to
ensure that the prediction only flips to a specific class. In
Section [V-B] we also discuss the effectiveness of our approach
in the untargeted setting. For a meaningful evaluation of a
(semi-)autonomous vehicle, we define the following three driv-
ing scenarios that result in prominent safety hazards, especially
when triggered in a targeted manner. Concretely, they result in
a reduction of speed, i.e., braking, acceleration, or the ignoring
of a stop sign, because a speed sign is recognized. We show
them in Figure
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Fig. 8. Overview of the targeted class flips in our scenarios with European
traffic signs on the left and North American traffic signs on the right.

Scenario 1 (Brake). We use all speed sign classes (except
the lowest one) as source images and generate an adversarial
example for each that classifies it as the lowest speed.

Scenario 2 (Acceleration). We use all speed sign classes (ex-
cept the highest) as source images and generate an adversarial
example for each that classifies it as the highest speed.

Scenario 3 (Ignore stop). We use the stop sign class as source
images and generate adversarial examples for the eight speed
signs that we consider in this work (cf. Figure [Sa).

To avoid bias toward specific geographic regions, we in-
cluded traffic signs from both Europe (via GTSRB) and North
America (via LISA). This approach ensured our analysis
captured a diverse range of signs—with varying shapes, colors,
and sizes—across both digital and physical experiments. More
precisely, for GTSRB, we relied on the stop sign and speed
limits of 20, 30, 50, 60, 70, 80, 100, and 120 km/h, with 150
samples for each class. Analogously for LISA, we opted to
take all samples for the selected classes due to the generally
smaller dataset—here, we used speed limits 30, 35, and 45 to
map to limit 25, speed limits 25, 30, and 35 to map to the
highest limit of 45, and mapped the stop sign to speed limits
25, 30, 35, and 45, for the three scenarios, respectively.

Our results (cf. Table indicate that our proposal con-
sistently obtains a high ASR across all three targeted attack
scenarios, datasets, number of MP k, and strength of the
ambient lighting, with up to 96.1% and 100% in Scenario 1,
99.9% and 100% in Scenario 2, and up to 76.42% and 98.49%
in Scenario 3, for GTSRB and LISA, respectively. For LISA,
we observe a slower decline in ASR , which we attribute to
its fewer classes and their size in contrast to GTSRB.

Our results also suggest that the targeted class flip from
a stop sign to any speed sign, i.e., Scenario 3, is the most
challenging to achieve, likely due to the dissimilarity between
the two sign types. In contrast, the scenarios involving similar
signs, i.e., Scenarios 1 and 2, appear to be easier to realize in
terms of higher ASR and fewer required queries. For GTSRB
and Scenario 2, we obtain a high ASR > 99% and a low
query count of 28.3 queries on average. For Scenario 1, we
also observe a high ASR of up to 96.1% at 127.9 queries.



TABLE III
RESULTS FOR THE FIVE ATTACK SCENARIOS. ATTACK SUCCESS RATE AND THE AVERAGE QUERIES () UNDER VARYING BRIGHTNESS CONDITIONS FOR
FIXED k = 192 MPS AND FOR VARYING NUMBER k OF MPS FOR A FIXED BRIGHTNESS OF 2000 LUX. HERE, [ = 2.

Two-Stage Architecture

|| Single-Stage Architecture

\ Targeted \ Untargeted [l Hide
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Any speed — Lowest speed | Any speed — Highest speed Stop — Any speed Any sign — Any sign Sign — No sign
GTSRB-CNN LISA-CNN | GTSRB-CNN LISA-CNN |GTSRB-CNN LISA-CNN | GTSRB-CNN LISA-CNN YOLOv8  Faster-RCNN
ASR Q@ ASR Q| ASR Q@ ASR Q| ASR Q@ ASR Q| ASR Q@ ASR Q|| ASR Q@ ASR Q
10 |96.10 127.90 100.0 16.33]99.90 28.31 100.0 31.11|76.42 376.13 98.49 91.05|95.07 68.31 97.95 71.56|/100.0 3.23 100.0  4.97
1000|95.62 135.36 100.0 15.02|99.79 28.92 100.0 31.33|73.42 400.05 98.42 103.76|94.88 70.62 97.81 77.68|/100.0 3.21 100.0 4.38
¥ 2000 |92.48 177.03 100.0 22.80|99.58 32.10 100.0 45.41|69.17 459.4 97.32 152.76|93.58 86.32 96.42 103.58||100.0 8.79 100.0 11.18
= 3000|81.43 300.15 100.0 39.13]95.94 89.87 99.51 70.58|57.17 589.18 90.66 297.81|89.02 146.33 93.86 167.98/99.16 19.33 98.53 39.07
4000 | 41.05 671.71 100.0 127.47|62.71 456.30 97.57 177.30|15.08 907.48 59.34 576.84|67.91 367.57 81.71 355.62|/95.40 79.34 91.91 167.60
5000| 4.67 964.87 62.80 585.45|10.42 922.86 56.80 644.25| 1.25 995.47 25.76 876.95|28.56 747.15 40.75 725.77||84.52 301.02 56.25 596.34
16 |57.14 559.79 99.39 70.66|87.19 260.26 99.03 109.45|59.08 490.19 87.71 287.74|86.88 172.60 87.93 234.34|/98.33 55.33 96.69 79.44
2 32 |76.76 363.14 100.0 35.70|95.10 135.89 100.0 58.03|63.50 441.24 95.67 175.91|90.60 121.12 94.59 150.15(/99.16 22.15 100.0 23.36
g 64 |88.67 218.16 100.0 24.06|98.44 71.78 100.0 39.42|67.00 418.08 97.53 127.67|92.84 96.76 96.56 105.23(/99.16 13.83 100.0  6.37
< 96 [90.95 192.13 100.0 20.01|98.65 55.78 100.0 32.84|68.25 427.06 97.87 120.78|93.67 87.65 96.63 97.19|/100.0 9.81 100.0  5.83
é 128 |92.57 172.00 100.0 17.71]98.85 47.11 100.0 37.61|68.33 438.48 97.87 128.01|93.67 86.66 97.15 91.65||100.0 9.15 100.0 5.21
192 |92.48 177.03 100.0 22.80]99.58 32.10 100.0 45.41|69.17 459.40 97.32 152.76|93.58 86.32 96.42 103.58||100.0  8.79 100.0 11.18
TABLE IV

1 63.4 793
494.6 339.4

2 69.7  82.1
440.4 296.7

4 525 67.1 78.1 82.7 852
577.2 438.8 334.1 289.3 268.3

Perturbation Width [I]

64 128 256 384 512 768
Total Perturbation Area [Pixels]

Avg.

Fig. 9. Perturbation width [ vs. amount of perturbed pixels on GTSRB for
Scenario 1 with the average in the last column. Each cell contains the ASR and
query count.

Impact of ambient light intensity: We now evaluate
the performance of our proposal on the GTSRB and LISA
datasets in the presence of a light source of varying in-
tensity, ranging from 10 to 5000 lux, simulating a range
from a dark to a brightly lit outdoor environment. Our re-
sults for this ablation are included in the upper half of Ta-
ble Here, we measure the ASR and the average consumed
queries required in our approach for a combination of lux
€ {10, 1000, 2000, 3000, 4000, 5000} and k& = 192 (for the
reasoning why, see next paragraph).

In the case of GTSRB, we mostly observe ASR of more
than 90% for lux values below 2000, except for the most
challenging Scenario 3, where we reach an ASR around
70%. In contrast, LISA exhibits high success rates of more
than ~ 90% for values lower than 3000 lux. For all three
scenarios, we find the best lux setting for both datasets at
10 lux for an ASR of 96.1%/99.9%/76.42% at an aver-
age of 127.9/28.31/376.13 consumed queries for GTSRB.
In the case of LISA, we observe 100%/100%/98.49% at
16.33/31.11/91.05 average consumed queries for LISA. The
higher complexity for optimizing on GTSRB is also evidenced
by the generally lower ASR and higher number of consumed
queries compared to LISA, which confirms our previous

DETAILED RESULTS FOR SCENARIO 1 FOR GTSRB WITH 2000 LUX AND
k = 192 USED TO COMPUTE THE AVERAGE ASR IN TABLE(LLI

Sign mapping ‘ ASR

30 — 20 99.30
50 — 20 91.33
60 — 20 81.33
70 — 20 99.33
80 — 20 92.00
100 — 20 88.67
120 — 20 95.33

observations. A core strength of our proposal lies in the
modest number of required queries for convergence toward
a successful fargeted adversarial example, e.g., 127.9 queries
for 10 lux in Scenario 1 in GTSRB.

Impact of number of MP k: In the lower half of Table
we vary the number k& of MPs between 16 — 192 (out of the
maximum of 256 MPs) on the three proposed scenarios in
a bright environment of 2000 lux. Recall that k£ impacts the
area covered by the perturbation. Generally, we observe that
a varying k can significantly boost the ASR by ~ 35% and
reduce the consumed queries by ~ 70%. In contrast, the attack
success in the second and third scenarios is boosted by up to
12%. In the case of GTSRB, we observe that a minimum of
k = 96 is required to obtain an ASR of > 90% for the first two
scenarios, reaching its maximum at k£ = 192 at approximately
93%/100% for Scenarios 1 and 2, while reaching 70% in
Scenario 3. Generally, we observe that k = 192 strikes a strong
tradeoff between ASR and the query budget in all scenarios.

Impact of size of MP [: Recall that the size [ of a MP is
directly proportional to the maximum number of £ MP we can
perturb. Since the number of MPs is bounded by the constant
size of our samples w = h = 32, changing the size of an
MP results in an upper bound on the total number of MP. For
instance, consider the following configurations that all have the



same number of underlying pixels while exhibiting a different
number of MPs:

o l=1,k=256— 32 x 22 = 1024 MP positions.
12 x k =12 x 256 = 256 perturbed pixels.
o 1=2k=064— 32 x 32 =256 MP positions.
12 x k = 22 x 64 = 256 perturbed pixels.
o l=4,k=16 — 3 x 32 = 64 MP positions.
12 x k = 42 x 16 = 256 perturbed pixels.
Therefore, we opted not to evaluate against & but instead to
benchmark against the number of perturbed pixels (see the
above example). Our results are shown in Figure [9] for a
targeted attack on GTSRB for Scenario 1. We observe an
average ASR of 83.3% at | = 1, which increases to 88.4%
for | =2 and 75.5% at | = 4. For the standard case of [ = 1,
i.e., in the case of pixel-wise perturbations, we observe the
highest performance at k = 512 with an ASR of 91.7%, which
again decreases for a larger number of perturbed pixels, i.e.,
768, down to 87.0%. In contrast, we observe that a larger
size [ is favorable due to the better performance of the attack.
Particularly, we see that [ = 2 strikes the best tradeoff between
the size of a MP and the resulting available number of MP k&,
where we observe the highest average ASR of 88.4% and the
highest overall ASR of 96.1% for a total of 768 perturbed
pixels. Analogously to the ASR , we also observe a minimum
of 217.8 consumed queries on average for this configuration.
This number of perturbed pixels results in a value of £ = 192
for [ = 2 (see previous paragraph).

32 _

Impact of sign choice: Our approach is inherently general and
does not exploit specific traffic sign shapes, colors, or textures.
Notably, the choice of sign pairs has only a minor effect on
ASR, as detailed in Table

To confirm this intuition, we further extended our experi-
ments beyond Scenarios 1-3—which already feature a diverse
range of signs—to include several more dissimilar pairs.
Specifically, we performed a targeted attack on the GTSRB
priority road sign, aiming to misclassify it as a yield sign, a
road construction sign, and a speed limit sign (30/120 km/h).
As shown in Table [V| our method achieved a strong ASR of
up to 98% and an average of around 300 consumed queries.
In addition, we consider a yield sign as a source and aim to
classify it as a priority road, a road construction, and a speed
limit sign (30/120 km/h) and obtain an ASR of up to 85%
with an average of 500 consumed queries.

B. Untargeted Attacks in the Digital Domain
We now move our focus towards an untargeted scenario.

Scenario 4 (Service disruption). We use “any” sign as the
source class and “any” sign as the target class. A class flip here
can lead to a sudden stop, acceleration, or any other behavior
triggered by a specific sign.

Our results for Scenario 4 are shown in the fourth column
of Table for various brightness levels and a varying
number of MP . When compared to its targeted counterpart
(cf. Section [V-A), we observe a less steep decline in ASR for
the untargeted setting, combined with a slower increase in
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the number of queries for GTSRB, while both the ASR and
number of queries for LISA are relatively similar. This trend
highlights the increased difficulty in mounting targeted attacks
compared to their untargeted counterparts.

In the case of GTSRB, we observe that a minimum of
k = 32 is required to obtain an ASR of ~ 90%. Subsequent
increases to k = 64 result in a further boost of ASR by 3%,
which only marginally increases beyond that for larger values
of k. We consistently observe ASRs of more than ~ 90%
for lux values below 3000, reaching 95.07% at the lowest
ambient lighting of 10 lux at just 68.31 consumed queries
for GTSRB. In contrast, we observe an ASR of 97.95% and
71.56 consumed queries for LISA. With a comparable ASR ,
we note that the number of queries required in LISA is slightly
higher than that required in GTSRB. We contrast this to the
previous trend, for which LISA performed better in terms of
ASR and consumed queries, and attribute this to the fact that
our sample size for this untargeted scenario is larger than the
targeted scenarios before.

Blackbox transferability: To confirm that our approach is
also effective on other architectures and to model an adver-
sary without oracle access to the model, we now assess the
transferability of our scheme to different architectures on the
GTSRB dataset. Here, we use models of increasing complexity
as surrogate models and generate the adversarial perturbations,
which we subsequently evaluate on the target architecture
for Scenario 4. We consider the following architectures (with
the respective number of weights): GTSRB-CNN (~ 16.5M),
ResNet-50 [15]] (~ 25.5M), SwinTransformer [23]] (~ 87.7TM),
and ConvNeXt [24]] (88.5M). Our experiments are conducted
for 10 lux, k = 192, = 2, and a query budget of Q) = 1000.
Unlike our previous experiments, where we stopped the attack
once an adversarial example was found, we utilized the entire
query budget here to more accurately assess the robustness of
the perturbation. Our results, summarized in Table show
that the success of our attack is independent of the underlying
model architecture. Specifically, for the same surrogate and
target models, we consistently achieve success rates of over
95%. We observe higher transferability rates from the more
complex architectures towards the simpler ones, i.e., the first
column shows an average transferability of ~ 72% towards
the simplest architecture GTSRB-CNN. On the other hand,
when using GTSRB-CNN as the surrogate model, we observe
a transferability of ~ 63% to the more complex architectures.

Comparison with Related Work: We now compare our
approach against the state-of-the-art methods of [25], [43],
[45] using the GTSRB dataset. The former two attacks are
black-box methods based on transferability and gradient-free
particle swarm optimization [18]], respectively, while the latter
is a white-box method with direct model access and, as such,
requires the availability of model gradients.

We adapt [43], [45] to a two-stage pipeline and optimize
our loss functions to evaluate the effectiveness of their shape-
generation strategies in Scenario 4. We instrument our ap-
proach with & 192 and [ = 2, as determined in the



TABLE V
RESULTS FOR A TARGETED ATTACK ON A YIELD AND PRIORITY ROAD TRAFFIC SIGN. ASR AND AVERAGE QUERIES () UNDER VARYING BRIGHTNESS
CONDITIONS FOR FIXED k = 192 MPS AND FOR VARYING NUMBER k& OF MPS FOR A FIXED BRIGHTNESS OF 2000 LUX. RESULTS FOR REAL-WORLD
EXPERIMENTS ARE SHOWN IN SECTION[V-C|

O-VAQ®

| V-0 A0®

Patches (k)

10 1000 2000 3000 4000 5000‘ 16 32 64 96 128

192

Lux Patches (k)
10 1000 2000 3000 4000 5000 | 16 32 64 96 128 192

ASR

‘ Lux
2

96.0 98.0 95.0 79.0 38.0 20.0
137.2 155.9 193.9 358.4 693.5 822.2

66.0 89.0 94.0 95.0 94.0 95.0
476.8 231.4 161.3 141.3 155.6 193.9

83.0 85.0 81.0 70.0 46.0 12.0|39.0 58.0 81.0 76.0 77.0 81.0
330.8 313.1 365.1 493.6 690.6 918.2|740.1 588.0 380.7 404.7 388.0 365.1

TABLE VI
ASR FOR VARIOUS SURROGATE AND TARGET ARCHITECTURES OF
VARYING COMPLEXITY. THE BOLD DIAGONAL ELEMENTS INDICATE THE
ASR WHEN SURROGATE AND TARGET ARCHITECTURES ARE IDENTICAL.

| Two-Stage | Single-Stage
Target — CNN I\ii;_() .%:;gls_ CN(:;X Target — YOLOVS Ee&t\%r\}
2|CNN 95.16 74.88 57.77 57.58
S|ResNets0  71.07 97.58 55.81 56.37|  O-OV8 100.00 93.72
& [SwinTrans. 72.56 75.63 97.12 66.98 |Faster-
2 |ConvNeXt 72.84 77.40 68.84 97.21|RCNN 9338 100.00
TABLE VII

COMPARISON AGAINST STATE-OF-THE-ART W.R.T. ASR, AVERAGE
QUERIES Q ON GTSRB, AND TIME IT TAKES FOR DEPLOYMENT.

| Shapes & Location HotNCold | Ours

ASR 74.6 82.6 95.07
Q 200.0 200.0 68.31
Time ~ 5 min 30 min ~ 50s

aforementioned ablation study, and apply our infrared trans-
formation with a brightness of 10 lux.

Our results are depicted in Table [VIIF| We find that our
proposal results in a remarkably higher ASR by at least 12.5%
and a lower amount of queries, by up to 65%, compared
to [43]l, [45], even though is a white-box method with
direct access to model gradients.

To compare against [25]—a projector-based attack in the
visible light spectrum, we generate perturbations at 120 lux for
100 stop signsﬂ sampled from GTSRB and obtain an ASR of
100% at an average of just 2.42 queries. Our results are on
par with the results in ; however, our scheme does not
require the generation of individual projection models and
saves considerable effort in generating adversarial examples.

C. Perturbation Attacks in the Physical World

We now proceed to evaluate our approach in the real world.
In our experiments, we directly perturb the w = h = 224
large images using a square MP with [ = 14 and apply the
aforementioned EOT transformations (cf. Section [[V-E)) while

3We could unfortunately not compare with , || due to the unavail-
ability of their source code.

“Note that a comparison with the full GTSRB was not feasible as the
projection model of is sign-specific and is only available for a stop sign.
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(a) Indoor setting. (b) Outdoor setting.

Fig. 10. Experimental environments with 1000 lux (avg.) on the sign surface.

enforcing a query budget of () = 2500 to make the perturba-
tions more robust. In practice, generating a single perturbation
takes approximately four minutes and needs to be performed
only once before deployment. Because these attacks transfer
effectively across classifiers (cf. Section [V-B), the adversary
does not need to interact directly with the target classifier in
the vehicle. Due to the larger image size, we opted to rely on
this (large) MP size to facilitate the recognition by a camera.
Here, we select one representative class mapping for each
introduced scenario and devise ten dedicated perturbations,
i.e., we average the success of each scenario over ten different
perturbations. An example of Scenario 1 is the targeted class
flip from speed limit 100 to speed limit 30.

Setup & Hardware: We performed our experiments us-
ing two different cameras with CMOS sensors, which are
commonly found in product families used in autonomous
driving or commercial traffic sign recognition systems, such
as Baidu Apollo. For most experiments, we use (1) Raspberry
Pi Camera Module 3 without infrared filters based on a Sony
IMX708 sensor with a focal length of 4.74mm (similar to
Leopard Imaging LI-USB30-IMX728-GMSL3-070H). In
another dedicated test, we also relied on (2) Leopard Imaging
LI-USB30-AR023ZWDR (using an OnSemi AR023ZWDR
sensor) with a focal length of 6mm, which has also been used
in other works [35]]. Both cameras have been connected to a
Raspberry Pi Model 4. To broaden the range of ambient light
intensity conditions, we used a powerful 12W 808nm infrared
light source in all our experimentsﬂ This allows us to produce
clearly visible perturbations even under high ambient light
levels of up to 1100 lux. Ambient light intensity is measured
directly on the surface of the sign using a lux meter.

SIn our initial tests, we used a 5W 850nm infrared lamp to successfully
mount attacks up to an ambient light intensity of 300 lux.
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Fig. 11. Attack success rate for various scenarios at different camera positions
in an indoor setting at a brightness of 1000 lux. We omitted the datapoint at
(4m, 2.5m) because the sign was not fully within the camera’s field of view.

We printed the previously generated perturbations on trans-
parent off-the-shelf overhead projector film made from PET,
costing around US$0.1 per perturbation. This process is suf-
ficiently precise for our purpose, as initial experiments on
different versions of the same perturbation did not show any
impact on the attack success rate.

Placement: For placing the camera and infrared light source
in our experiments, we assume a real-world setting mimicking
a traffic setting (cf. Figure [T), in which we place our sign on
the right side of the road. We place the infrared light source
at a fixed position opposite the sign at a distance of 2 meters,
considering one-shot attackers. This choice is reasonable, as
traffic signs are typically located on the side of the street,
which is also the only practical place to position a light
source (e.g., on bridges, alternative side placements may not
be feasible). The projection was manually aligned once using
the live camera feed prior to any experiment and remained
unchanged throughout experiments. The default position of
our camera is located in the middle of the right driving lane
at a distance of 4 meters (longitudinal) and 2 meters (lateral)
to the left of the sign, at a default viewing angle of ~ 25°.

We first evaluate the success of our approach in a controlled
and artificially lit indoor environment, i.e., a basement with
bright natural video lighting (Figure[I0a), and then move into a
more diverse outdoor scenario, i.e., a parking lot (Figure [T0b).
In both settings, we measure an average ambient lighting of
1000 lux. At all times, we verified the correct classification
even in the presence of an infrared light spot (without a
perturbation).

General Success: We evaluate the performance of our ap-
proach in the previously introduced scenarios in both indoor
and outdoor environments (cf. Table [VIII). To this end, we
place the camera at the previously described distance and
determine the ASR over ten different perturbations. In the
indoor setting, we obtain an ASR of 100% for Scenarios 1,
2, 3, and 4. In the outdoor environment, we observe success
rates of 90% and 80% for the first two scenarios, respectively,
while the last two scenarios maintain a success rate of 100%.
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(a) Raspberry Pi Camera 3

(b) Leopard Imaging ARO23ZWDR

Fig. 12. Infrared perturbation captured with two different camera sensors.

Fig. 13. Impact of headlights (cf. ECE-R112 [3]) at a distance of 9m on a
traffic sign mounted at a height of 2m. The maximum permitted brightness on
the surface of the sign is ~ 22 lux. Figure is to scale (icon acquired from [T]]).

In a separate experiment (conducted outdoors) on a yield sign
flipping to a priority road sign, we observe an ASR of 70%.

Different Angles, Distances, Cameras: To assess the impact
of real-world environments, such as spatial transformations
introduced by angle and distance on the robustness of the
perturbed signs and the success of our EOT transformations
(cf. Section [[V-E), we conduct the following experiments:
we place the camera at the default distance of 4 meters
of longitudinal and 2 meters of lateral distance away from
the sign and verify the success for various camera positions.
Namely, we simulate different lane positions of the vehicle on
the road by moving the camera laterally to the left and right
by 0.5 meters. We combine this with longitudinal distances
between 4 and 9 meters in one-meter increments to verify the
robustness of our approach, which results in diverse viewing
angles between 27° and 10°. These positions faithfully capture
various real-world positions across different driving lanes and
are also limited by the visibility of the sign on the camera.
As shown in Figure we observe consistently high ASR ,
averaging over 90% in almost all configurations. However, we
observe a reduction in ASR for (5m, 2.5m) due to the slightly
steeper viewing angle and increased distance (resulting in a
less visible reflection). Another decrease in ASR is measured
when increasing the longitudinal distance across a lateral
distance of 1.5m due to the reflections of the infrared light
source becoming more prominent on the sign (especially for
the targeted Scenario 2).

To evaluate the transferability of our approach across differ-
ent camera sensors, we also instrumented an additional cam-
era, namely Leopard Imaging AR0O23ZWDR (cf. Figure [12),
in the indoor setting. In this setting, we tested ten different
perturbations for Scenario 1 and observed a high transferability
rate of 90%. As the spectral sensitivity curves of CMOS
camera sensors in the near-infrared part of the spectrum (800-
1000nm) are highly similar, we expect our approach to also
be effective against other sensors.



TABLE VIII
ASR IN THE PHYSICAL WORLD IN THE INDOOR AND OUTDOOR
ENVIRONMENT FOR A GIVEN SCENARIO.

| Scenario
Environment | #1 #2 #3 #4 | #5
Indoor 100.0 100.0 100.0 100.0 | 100.0
Outdoor 90.0 80.0 100.0 100.0 | 100.0
Moving (10 km/h) | 99.4 93.7 96.3 84.8 79.8
Moving (30 km/h) 98.0 90.0 84.5 84.4 85.7

Driving vehicle: We now conduct moving vehicle exper-
iments by driving past the perturbed sign in an outdoor
environment. In our setup, the camera is mounted on the
rear-view mirror, which corresponds to the typical height
for front-facing camera systems in modern vehicles. Starting
from a distance of 30 meters, we approach the sign at two
different speeds: 10 km/h and 30 km/h. For safety reasons,
we were unable to experiment at higher speeds. For each
perturbation and across all five scenarios, we record a video
and compute the ASR over all cropped frames (cf. Table [VIII).
Our results demonstrate the practical effectiveness of our
approach, achieving an ASR of up to 98% and as low as
79.8% at speeds of up to 30 km/h. Some fluctuations are
observed, which we attribute to slight variations in the driving
path and the fact that the experiments were conducted over
several hours.

Impact of headlights: Headlights, particularly at dusk or
night, create high-brightness conditions. To evaluate the impact
of headlights on the robustness of our approach, we conducted
outdoor tests under headlight illumination. We found no sig-
nificant impact on our results within the tested range of 4-9m.
As shown in Figure [T3] this resilience is mainly due to
regulatory constraints designed to minimize glare for other
drivers. Specifically, ECE-R112 [3|] [Figure B and Section
6.2.4] stipulates that headlight illumination at a height of 2
meters—where traffic signs are typically placed—must not
exceed ~ 22 lux at a distance of 9 meters.

VI. EXPERIMENTS ON SINGLE-STAGE ARCHITECTURES

We now shift our focus to single-stage architectures, which
are typically used in object detection. Here, we conducted
our experiments on the established Mapillary [9] and GTSDB
[39] datasets. Mapillary consists of 401 classes with traffic
signs from all continents, while GTSDB contains 43 different
German road sign classes, similar to the previously used
GTSRB. We train a YOLOvV8 model [11] on the Mapillary
dataset with a reduced number of classes, i.e., European speed
limit signs and stop signs, to achieve better performance (cf.
Section , and obtain an mAP-50 of 64.9%. Additionally,
we train a Faster-RCNN [34] model on GTSDB and obtain an
mAP-50 of 90.76%.

Hiding Attacks (Scenario 5) in the Digital Domain: In the
setting of a single-stage architecture, the goal of the adversary
is to ensure that the sign is no longer detected by the system.
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TABLE IX
IMPACT OF CURRENT DEFENSES ON THE CA AND ASR oN GTSRB
(DIGITAL DOMAIN) AND ON OUR EXPERIMENTAL DATA (PHYSICAL
DOMAIN). T (RESP. ) INDICATES THAT VALUES CLOSE TO 100 (RESP. 0)
PROVIDE BETTER RESULTS.

| Digital | Physical
No Spatial Spatial Adv. Ours

defense Smooth. Smooth.  Training | Segment.
(non-local) [47] (local) [47] [13] -based
CA1 | 98.76 95.35 96.56 98.67 96.63
ASR | | 95.16 67.72 61.77 62.89 25.3

In other words, speed limits and other important signs, e.g.,
stop signs, are ignored by the traffic sign recognition system.

We use 25 images per class for Mapillary, i.e., a total
of 225 images, and the entire test set for the previously
selected classes of GTSDB, while ensuring that we only
select bounding boxes with more than 32 x 32 pixels. As
shown in Table we obtain high ASRs at £k = 192 of
100% for an average of 3.23/4.97 queries for Mapillary and
GTSDB, respectively. Even for the single-stage architectures,
we measure high success rates and a lower amount of used
queries at a higher value of k£ and a lower ambient light level.

To assess whether a perturbation generated for one archi-
tecture is also successful on another, we use the generated
images for Mapillary on YOLOvVS and evaluate the success of
a hiding attack on the Faster-RCNN model trained on GTSDB
(and vice versa). As shown in Table we measure a higher
transferability of ~ 93% compared to two-stage architectures.

Perturbation Attacks in the Physical World: Analogously
to the two-stage experiments, we place the camera at a distance
of 7 meters and generate ten perturbations in Scenario 5. As
shown in Table we measure a success rate of 100%. Note
that a larger initial distance is necessary for initial detection,
as the dataset consists of more images with smaller signs at a
distance rather than close-up signs.

In Figure[TT] we further vary the distance and angle between
the camera and the traffic sign (starting from the initial
distance of 7 meters). Our results consistently show an average
success of ~ 95%.

VII. DEFENSES AGAINST INFRARED PERTURBATIONS

Since infrared spectral filters impair camera performance
in low-light conditions (cf. Appendix [A), we now explore
the solution space to defend against infrared perturbations
and then present our defense, dubbed segmentation-based
detection.

A. Limitations of Current Defenses

Spatial Smoothing & Adversarial Training: First, we
evaluate the impact of two popular defenses on our approach:
the test-time spatial smoothing defense [47]] and the popular
(but costly) adversarial training [[13].

Local smoothing applies a median blur by replacing each pixel
with the median of its neighbors, while non-local smoothing



uses a larger region. Both aim to undo adversarial perturba-
tions, following prior work [44], [45]. Adversarial training
strengthens test-time robustness by incorporating adversarial
examples into the training process.

Our results for the strongest attacker, i.e., an infrared trans-
formation for 10 lux, are included in Table @ ‘We observe
that all three defenses fail to fully mitigate our attack: test-time
defenses reduce ASR to 67.72% (non-local) and 61.77%
(local), while adversarial training lowers it to only 62.89%.

Certified patch detection: PatchCleanser is a certified
defense that selectively masks portions of an image—if the
mask covers an adversarial patch, the prediction of the classi-
fier changes. In contrast, benign natural images are generally
invariant to this mask. This does not apply to our use case of
traffic-sign recognition as masking, e.g., a speed sign, creates
an ambiguity of the underlying speed limit [35]]. An additional
requirement of PatchCleanser is that the mask must be larger
than the used adversarial patch—we, however, perturb the
entire sign with our perturbation.

Infrared speckle detection: [35] uses the characteristic
speckle pattern of laser reflections for detection. While we
also utilize infrared light, our approach uses an incoherent
light source, i.e., not a laser, and hence our perturbations do
not exhibit a strong speckle pattern as required by .

Spatio-temporal consistency: When conducting evasion at-
tacks in the real world, it has been shown that evading
individual camera frames is not sufficient to successfully attack
a system [38]. Indeed, by monitoring the spatio-temporal
properties of objects, one can detect changes in bounding
box size and classification over time , , These
approaches typically rely on inconsistencies resulting from
adversarial perturbations and can only be defeated when the
model predictions are consistent “enough” over time, while
also considering a model’s natural error rate. In our moving
vehicle experiments (cf. Table [VIII), we obtain ASRs of up
to 99.4%. Specifically, our targeted attacks are successful over
most captured frames and therefore cannot be detected using
such approaches. These results show a consistent targeted
misclassification over the 163 frames of the video, with only
one flickering frame scattered in between (i.e., with an error
rate of 0.6%), which we attribute to the model’s natural
error rate due to motion blur. Importantly, as the majority of
frames while approaching a sign are consistent, we believe
that defenses based on spatio-temporal consistency will have
a limited effect here.

Some approaches like utilize object texture, behavior,
and interactions with one another and focus specifically on
detecting pedestrians and cars. This approach is not effective
for traffic sign recognition as traffic signs have a similar
texture, remain on fixed trajectories, and generally do not
interact with other objects (like cars and pedestrians).

ONotice that a comparison to || || is not possible since the source
code has not been made available to us or cannot be extended to new attacks.
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(a) Perturbed sign.

(b) Perturbed
(segmented).

sign  (c) Segmented sign.

Fig. 14. Output of our segmentation patched defense for a stop traffic sign.

TABLE X
EVALUATION OF OUR SEGMENTATION-BASED DETECTION SCHEME IN THE
PHYSICAL DOMAIN. T (RESP. |) INDICATES THAT VALUES CLOSE TO 100
(RESP. 0) PROVIDE BETTER RESULTS.

| Static | Moving
Distance Distance
Indoor Outdoor y onoitudinal) (Lateral) > ‘ 2
CA 1t 100 100 100 100 100 | 96.63
ASR || 2.49 2.56 1.63 1.65 2.05| 25.3

B. Our Proposal—Segmentation-based Detection

We now propose a novel detection scheme specifically
designed to thwart our attack. Our defense builds on the ob-
servation that our perturbations introduce a significant amount
of additional shapes and edges into the image—considerably
beyond the number of edges/shapes that are typically present
in common traffic signs (cf. Figure [14). More specifically,
our defense measures the number of detected shapes in a
given input image and compares it to an empirically derived
threshold v, above which the image is considered adversarial.

To ensure robust and brightness-agnostic detection of shapes
within the image, we utilize the Segment Anything
segmentation model with the ViT-L architecture to compute
