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Abstract—A number of attacks rely on infrared light sources
or heat-absorbing material to imperceptibly fool systems into
misinterpreting visual input in various image recognition appli-
cations. However, almost all existing approaches can only mount
untargeted attacks and require heavy optimizations due to the
use-case-specific constraints, such as location and shape.

In this paper, we propose a novel, stealthy, and cost-effective at-
tack to generate both targeted and untargeted adversarial infrared
perturbations. By projecting perturbations from a transparent
film onto the target object with an off-the-shelf infrared flashlight,
our approach is the first to reliably mount laser-free targeted
attacks in the infrared domain. Extensive experiments on traffic
signs in the digital and physical domains show that our approach
is robust and yields higher attack success rates in various attack
scenarios across bright lighting conditions, distances, and angles
compared to prior work. Equally important, our attack is highly
cost-effective, requiring less than $50 and a few tens of seconds
for deployment. Finally, we propose a novel segmentation-based
detection that thwarts our attack with an F1-score of up to 99%.

I. INTRODUCTION

Deep neural networks are known to be susceptible to mali-

cious inputs, which is especially relevant in safety-critical use

cases, such as traffic light/sign recognition and facial recog-

nition systems for access control and surveillance. Different

attack strategies exist, some of which assume direct model

access and enable direct gradient computations, i.e., white-

box model [13], while others are limited to oracle access to a

model (black-box model). In the digital domain, the generation

of these perturbations is often constrained with an Lp norm,

which captures the difference between a benign and malicious

image on a pixel level and is an imperceptibility measure for

a (human) observer.

Recent real-world attacks exploit the specificities of camera

hardware or hide perturbations in inconspicuous phenom-

ena. Popular methods to conceal perturbations consist of the

reliance on so-called adversarial patches; these have been

shown to be particularly harmful in traffic sign detection [8],

[10], [54], facial recognition systems [31], [37], and person

detection [40], [41]. Adversarial patches are typically static,

leave a visible trace behind, and are constrained in their

degrees of freedom. Other methods, such as projector-based

attacks, exploit the full RGB color space due to their ability to

project arbitrary images with close to pixel-wise precision onto

a target. Projector-based attacks, however, suffer from a major

shortcoming, as the illumination required to be projected onto

an object is far from being stealthy.

Other, more recent, attacks exploit the fact that the sensitiv-

ity of CMOS sensors often stretches further into the infrared

part of the optical light spectrum compared to human vision,

opening the door for exploitation in image recognition appli-

cations [35], [42], [55]. This problem is further exacerbated by

the fact that spectral filters are often not installed in modern

vehicles due to their high cost and performance overhead [42].

In these settings, infrared projectors emerge as a robust and

precise means to introduce inconspicuous pixel-wise modifi-

cations. Such projectors are costly, requiring investments of

tens of thousands of USD. As an alternative, several recent

contributions have overcome the high cost associated with

infrared projectors using infrared lasers [35], albeit at the

expense of precision. More specifically, even though these

approaches can cut down costs to just thousands of USD,

they cannot mount attacks targeting specific classes since their

optimization space is limited and can only reduce the model’s

confidence in correctly classifying input. As such, they often

result in disruptions of service (e.g., flipping the prediction to

any different class) but cannot be used to mount sophisticated

attacks, i.e., precise label-flipping. In comparison, the misclas-

sification of a stop sign as a speed limit 50 sign or vice-versa

by an autonomous vehicle poses a greater safety hazard than

a simple service disruption.

In this paper, we propose the first practical and robust in-

frared perturbation approach to mount inconspicuous targeted

and untargeted attacks in the physical world. Our laser-free

approach bridges the gap between powerful projector-based

attacks and existing solutions by significantly reducing the

complexity of the underlying optimization problem. To ensure

real-world robustness, we opted to account for the spectral

shift into the infrared domain (since we cannot exploit the

full RGB color space). We incorporated the use of expectation

over transformation, i.e., EOT [5], to adapt to various real-

world limitations, e.g., stemming from brightness changes,

perturbation misalignment, and spatial transformations. Un-

like previous work [35], [43], [45], [56], [57], our approach
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considerably reduces the real-world constraints on shape and

location by mimicking an infrared projector. This allows us to

exploit additional degrees of freedom as a means to generate

more robust, targeted, and successful perturbations compared

to existing approaches. Moreover, contrary to [53], our model

is not restricted to a single (artificial) light source. This partic-

ularly allows us to capture realistic deployment environments

with varying lighting conditions and to realize high-accuracy

targeted attacks (in addition to the standard untargeted attacks)

with a negligible overhead. Namely, our attack is highly cost-

and time-effective—incurring an equipment cost of less than

US$50 and only tens of seconds to deploy. In summary, our

contributions are as follows:

Novel attack: We propose a novel approach to generate ad-

versarial infrared perturbations that alleviates many practical

constraints in current proposals and can accurately mount

both targeted and untargeted attacks (cf. Section IV).

Thorough evaluation: We evaluate and verify our adversarial

infrared perturbations in both targeted and untargeted set-

tings in the use cases of traffic sign recognition, i.e., object

detection and image classification, in both digital and physi-

cal domains. Real-world experiments show that our approach

results in attack success rates of up to 100% in various

lighting conditions across varying distances and angles, and

in a moving vehicle (up to 30 km/h), underlining the impact

on real-world safety in both two-stage (cf. Section V) and

single-stage architectures (cf. Section VI). For instance, our

proposal improves the attack success rate by up to 20.47%
compared to [43], [45], even though [45] is a white-box

method with direct access to model gradients. We achieve

this while requiring a considerably lower number of queries,

by up to 65% (cf. Section V).

Countermeasures: We show that our proposal exhibits sig-

nificant robustness against state-of-the-art defensive schemes

(cf. Section VII). To remedy this, we propose a novel

segmentation-based detection scheme that is specifically

designed to address infrared perturbation attacks on traffic

signs. Our experiments show that our defense can thwart

infrared perturbation attacks with an F1-score of up to 99%.

Open science: To aid researchers in conducting real-world

evaluations in the near-infrared spectrum, our source code

and the first open-source infrared traffic sign dataset, which

we dub GTSRB-IR-100 (cf. Appendix B), is publicly avail-

able1. We also responsibly disclosed our findings to Mer-

cedes, Mobileye, Tesla, Sony, and OnSemi.

II. BACKGROUND AND RELATED WORK

Vision-based System Architectures: Image recognition ar-

chitectures generally fall into two categories: single-stage and

two-stage [9]. Single-stage models perform object detection

and classification jointly, offering efficiency for tasks with a

limited number of classes, but suffer in performance as the

number of classes increases. In contrast, two-stage pipelines

first detect objects using a single-class detector and then

1https://github.com/RUB-InfSec/infrared perturbations
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Fig. 1. Overview of our system (icons from [1]).

classify each detected region, making them more suitable for

handling a large number of classes.

Real-World Adversarial Attacks: Adversarial patch attacks

have been adapted to real-world settings by embedding visible

perturbations that mimic plausible scenarios—e.g., shadows,

snow, stickers, or weathered signs [8], [53], [54]. However,

these attacks are often easy to spot due to the unnatural

appearance of the patterns.

To increase stealth, newer attacks exploit human perceptual

limitations and the characteristics of camera sensors. These

include perturbations invisible to humans but detectable by

cameras, or those injected via the camera pipeline, such as

with modulated lighting [36], laser interference [50], ultrasonic

signals [17], or EM interference [20]. Others exploit visual il-

lusions, projecting images too briefly for human detection [30].

A particularly stealthy class of attacks leverages the camera

sensor’s sensitivity to infrared (IR) light. These include hidden

IR patterns for evading facial recognition [55] and spoofing

traffic signals with IR LEDs [42]. More recent work targets

traffic sign detection using large, invisible IR laser spots [35],

combining techniques from visible-light and laser-based at-

tacks [16], [22]. Unfortunately, due to the limited solution

space of possible perturbations, all existing works can only

be effective in the untargeted attack setting.

An attacker might also resort to jamming the camera to

attack the vision system with (in-)visible light. Jamming at-

tacks are less fine-grained and disable the entire vision system.

These attacks require precise, real-time targeting of the camera

of a moving vehicle, making it challenging to execute.

III. DESIGN GOALS & APPROACH

A. System & Threat Model

We consider an adversary that is interested in causing

vision-based recognition systems used in environments such

as autonomous vehicles to output an incorrect prediction by

placing an adversarial perturbation on a target object. The

adversary is interested in keeping any introduced perturbation

invisible to a human observer but clearly observable by

a CMOS camera, thereby impacting the image processing

pipeline.
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Unless otherwise specified, we focus on the main use case of

traffic sign recognition in this work. However, we emphasize

that our approach is equally applicable to other use cases, such

as facial recognition systems. More specifically, we target both

single- and the more challenging two-stage pipelines to ensure

that our approach broadly applies to many existing production

systems. The reason that we consider this use case is that

it presents an unexplored opportunity for the adversary; in

most modern vehicles (e.g., Tesla Model 3), spectral filters

are often not installed due to their additional cost, performance

overhead, and functional limitations [21], [42]—preventing the

masking of infrared perturbations in modern cars. For instance,

spectral filters reduce the perception of a vision system when

dealing with low-light conditions, hamper the detection of lane

markings [21], etc. Therefore, many vendors explicitly opt for

cameras that remain sensitive to NIR, e.g., sensing systems

by Mobileye or Mercedes, or are actively developing patents

that explicitly consider infrared-sensitive camera systems [6],

[28]. Moreover, (i) recent camera modules, e.g., e-con Systems

STURDeCAM88, are also not equipped with infrared filters,

and (ii) cutting-edge sensor designs for day-night imaging

promise improved color fidelity (mimicking the effect of

infrared filters), while maintaining sensitivity to infrared light

at night [26].

Throughout this paper, we assume the camera of the attack

target lacks infrared filtering and the system relies solely—

like recent Tesla models—on vision-based sensing. While

some systems may use additional map data, this data is often

missing/outdated for new roads, indoor sites, or construction

zones. Even when maps are accurate, if a vehicle detects

contradicting inputs, e.g., a 20 km/h sign but the map shows

80 km/h, it will likely brake.

Arguably, in this setting, the main goal of the adversary

is to manipulate the output of the vision-based recognition

system, e.g., by hiding signs or by classifying a stop sign as a

speed sign or vice versa (e.g., to target specific manufacturers’

processing pipelines [32], or to cause harm). To achieve these

goals, an adversary might resort to three types of attacks:

(1) a hiding attack, for which the object detector is fooled

to ignore a given object; (2) a weak untargeted attack, for

which an image classifier is fooled to output any class different

from the ground truth, or (3) sophisticated targeted attacks

that purposefully intend to fool the classifier into outputting

a specific target class that is different from the ground truth

(e.g., misclassify all speed signs as a stop sign).

Unlike previous work in this area [35], [43], [45], [52], we

primarily focus on the challenging targeted attack setting; we,

nevertheless, also analyze and evaluate the effectiveness of

our approach in the untargeted setting. In contrast to camera

jamming, our infrared perturbation selectively misclassifies

specific signs without disrupting functionality.

To achieve these goals, we assume that the adversary

has black-box score-based oracle access to the target image

classifier—in which an adversary can only observe the output

probabilities after supplying a controlled input. That is, we

assume that the adversary neither knows the model weights,

architecture, nor has access to the exact training data. This

mimics a realistic setting where the adversary can only in-

teract, e.g., with the classifier of a vehicle through a debug

interface, but does not have access to the full classifier [16],

[17], [22], [35], [43], [53]2.

B. Design Criteria

To make the physical adversarial perturbations practical, our

design seeks to achieve the following criteria.

Targeted, Untargeted & Hide Attacks. Adversarial perturba-

tions should effectively realize targeted, untargeted, and hide

attacks. In most practical deployments, hide and untargeted

attacks result in service disruptions (e.g., by hiding an object

or preventing correct classification). Targeted attacks, on the

other hand, are more powerful as they enable the adversary to

cause specific damage, such as causing autonomous vehicles

to increase their speed at stop signs.

System and Camera-Agnostic. Since it is not feasible for

an attacker to obtain the images captured from the camera

of an approaching vehicle in real-time, the crafted adversarial

perturbations should not be specific to a given (camera) system

and should be transferable across various target classifiers.

Scene-Agnostic. The adversary may have to conduct the attack

at dynamically changing scenes. This includes varying lighting

conditions, varying distances, e.g., between a sign and an

approaching vehicle, and sometimes in the presence of motion

blur induced by the vehicle’s movement.

Cost-effective deployment. The adversary is clearly interested

in minimizing the amount of time and the cost required

to mount such attacks. Namely, the generation of physical

adversarial perturbations and their deployment should require

minimal time and resources.

C. Approach

A strawman solution to create inconspicuous adversarial

examples would be to rely on infrared projectors (e.g., Barco

FS70-W6). Such projectors are widely used in military appli-

cations and are notorious for their ability to introduce precise

pixel-wise projections. Infrared projectors are, unfortunately,

costly (in the order of tens of thousands of USD).

In this work, we opt for a more efficient alternative to

infrared projectors. Namely, we explore using a transparent

film on which we print the perturbation combined with the

mask using an off-the-shelf printer. Our primary intuition is

to discreetly place the film in front of an infrared light source,

allowing it to project the perturbation onto our target object

(cf. Figure 1). Notice that this process precisely mimics the

projection of small squares onto the target image. Our setup

consists of a compact device that integrates both an infrared

lamp and transparent film (approx. 10cm × 10cm × 20cm)

which can be easily concealed behind bushes or junction

boxes. This is considerably more stealthy than setups used

2The adversary can be a user themselves to interact with the classifier to
directly observe how a manipulated sign is perceived on a car’s dashboard.
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TABLE I
OVERVIEW OF MP PARAMETERS.

Parameter Description

w Width of the input image.
h Height of the input image.
k Maximum number of MP used in the perturbation.
l Side length of an MP in pixel.
I Set of MP positions in the reduced coordinate space.

Ĩ Set of pixel positions in the pixel coordinate space.
M Mask to locate the target object.
P Projection mask consisting of the mask and MP .

in prior works, which, for example, require bulky video

projectors [25] or infrared lasers [35], that can also pose a

safety hazard due to the use of lasers.

In this setting, several challenges arise to ensure that our

design is scene- and system-agnostic. Namely, while the

reliance on the infrared domain presents opportunities to the

adversary, it effectively limits the available color space that

can be utilized when creating perturbations (and increases

the difficulty of successfully generating adversarial examples).

Moreover, one needs to ensure that adversarial examples are

efficiently created to be effective in real-world deployments

practically and to adjust to environmental changes quickly; for

instance, we need to cater to the fact that the CMOS camera is

constantly moving (and is not fixed when compared to other

use cases) and, thus, lighting and position would also vary as

the vehicle approaches the traffic sign.

IV. DESIGN

We now present our methodology for generating efficient

and workable adversarial perturbations in the infrared domain.

A. Modeling Infrared Perturbations

Unlike traditional perturbation attacks, our infrared pertur-

bations must be created while paying special attention to the

fact that there might be multiple light sources involved (i.e.,

an ambient and an infrared light source); this complicates

the modeling process significantly. We summarize the various

notations used in this paper in Table I.

Shape. Due to the imperfect nature of the perturbation process,

we opted to move away from pixel-wise perturbations to so-

called manypixel (MP), a grouping of several neighboring

pixels. For simplicity and without loss of generality, we

assume that a MP can be approximated by a square whose side

length l divides both the height and width of the input image,

i.e., l|h ∧ l|w. This effectively reduces the pixel coordinate

space from w × h pixels to a reduced coordinate space

of h/l × w/l MP for our subsequent optimizations, as seen

in Figure 2a. This matches our real-world experiments in

Section V-C, where a square MP is output by projecting small

pixel perturbations from a transparent film onto the target.

Location. We define the location of our adversarial pertur-

bation by a set of MP positions I. For instance, when the

MP corresponds to a square, I ⊆ [0,w/l]×[0, h/l]. The amount

of MP is denoted by k, i.e., |I| = k. A mask M is used to

(a) MP positions. (b) Perturbation mask. (c) Infrared perturbation.

Fig. 2. Definition of pixel positions (32 × 32) and a concrete perturbation
for l = 7 and an image of w = h = 224.

locate the target object, e.g., the shape of a traffic sign and

the region of the adversarial perturbation. It might happen

that an MP is drawn directly on the mask. To enable a partial

drawing of the MP along the contour of the mask, we define

a transformation from the reduced coordinate space used for

the MP back to the pixel coordinate space of the original input

image. In the particular case of a square, this is achieved by

adding the positions of all l2 pixels within a single MP to our

position set. We define the transformation φ as follows:

φ(x, y) := [x, x+ l]× [y, y + l] (1)

and construct the transformed coordinates Ĩ as

Ĩ :=
⋃

(x,y)∈I

φ(x, y) (2)

Using the aforementioned transformation, the function

ModelPerturbation(I) returns the projection mask P that

corresponds to the intersection of the MP locations in pixel

space and the mask, i.e., P = ModelPerturbation(I) =
Ĩ ∩M as shown in Figure 2b.

Perturbation color. We need to model the impact of the

infrared light source on an object that is already lit by ambient

light. Our perturbation masks the infrared light source, making

the covered area appear as ambient-lit. As a result, the area

outside the perturbation exhibits a color shift while the per-

turbed area remains unaffected. Unlike prior work that relies

on a single visible light source [53], we cannot assume that

perturbations can be modeled simply as brightness reductions.

Note that, in ideal conditions, cameras adjust their exposure

and white balance to obtain similarly bright images, albeit

being taken under different lighting conditions. However,

many real-world traffic sign datasets contain overexposed or

underexposed images due to complex lighting scenarios, which

obscures the impact of an infrared light source. Before in-

troducing a brightness-dependent infrared transformation, we

normalize the data to ensure that we obtain similarly exposed

images. This can be modeled using the three-dimensional

CIELAB color space [4], which covers the entire gamut

of human color perception. More concretely, the lightness

channel L correlates with the perceptual lightness, and we

assume that an exposure adjustment only changes this channel.

The A and B channels model the four unique colors of human

perception, i.e., red, green, blue, and yellow, and remain

unchanged.
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Fig. 3. Estimated channel-specific scaling factors ρc for various ambient
lighting intensities.

We define the transformation from RGB to CIELAB space as

follows:

LAB : [0, 255]3 → [0, 100]× [−128, 127]2 (3)

LAB(x) = [Lx Ax Bx] (4)

The resulting normalization adjusts the average lightness value

L̄x of an image x to the average lightness value of the data

set L̄data as follows:

Normalize(x) = LAB
−1

([

LxL̄x

L̄data
Ax Bx

]T)

Considering the fixed position and power of an infrared light

source, the largest impact is observed on the red channel, with

less pronounced effects on the green and blue channels. Due

to the fixed power of the infrared light source, its effect is

attenuated as the ambient lighting increases. To model the

color channel of an infrared image (IRc) based on these

effects, we take the visual color channel (VISc) and apply

a channel and ambient lighting-specific scaling (ρc) of the red

color channel (VISr). This relationship is captured in the IR

transformation as follows:

IR : [0, 255]3 → [0, 255]3 (5)

IR = [IRr IRg IRb] (6)

IRc = VISc +VISr ∗ ρc (7)

To estimate the scaling parameter ρc for various ambient

lighting intensities, we rely on empirical measurements. Here,

we conducted experiments in a range of 100−6000 lux on the

surface of a traffic sign. Based on the resulting pairs of images

with only the ambient lighting and an additional infrared light

source, we estimated the scaling parameter as follows:

ρc =
IRc −VISc

VISr

(8)

We used these data points to fit channel-specific functions, as

shown in Figure 3 to perform the transformation digitally. An

example of a successful transformation is shown in Figure 4.

In practical scenarios, we find that the scaling parameter ρc
depends on various factors, most prominently ambient light-

ning. To ensure the robust generation of physical adversarial

Fig. 4. Comparison of a real-world infrared light source (right), a simulated
infrared light source (center) for a traffic sign (left) from the GTSRB dataset.

examples, we account for some variation of this parameter

with EOT [5] (cf. Section IV-E).

We define a function ApplyIR that takes an input image x
and the projection mask P and applies the infrared transforma-

tion (cf. Equation (7)) only to the parts of the image that are

not covered by an MP as a means to prevent the infrared light

from reaching the surface of the traffic sign. This is achieved

using the Hadamard product as follows:

x′ = ApplyIR(x,P) = x⊙ P + IR(x)⊙ (1− P) (9)

and is shown for an example in Figure 2c.

B. Optimization for Two-Stage Architectures

We start by describing our optimization strategy for the

challenging two-stage architecture. In Section IV-C, we also

outline the optimization strategy for the single-stage archi-

tecture. For image classification, let fθ : R
d → ∆n denote

a DNN model, parameterized by θ, assigning d-dimensional

inputs to n classes, where ∆n is the probability simplex of n
classes, and let C : Rd → [n] refer to the associated classifier

defined as C(x) := argmaxi∈[n] fi(x). The dimension is

equivalent to the number of pixels, i.e., d = h × w × c, with

width w, height h, and number of color channels c. Given a

genuine input x ∈ R
d predicted as C(x) = s (source class),

desired target class t, and an adversarial perturbation δ ∈ R
d,

x′ = x + δ is considered an adversarial example of x if the

following criterion is fulfilled:

A(x′) :=

{

C(x′) ̸= s (untargeted attack),

C(x′) = t (targeted attack).
(10)

The objective of the adversary is then expressed with the

following margin loss function [7]:

Ladv(x) :=







fs(x)−max
i ̸=s

fi(x) (untargeted attack),

max
i ̸=t

fi(x)− ft(x) (targeted attack).
(11)

For an adversarial example x′ to be successful, we require that

there is a perturbation P that satisfies Ladv < 0 to achieve

an (un)targeted misclassification. The optimization problem is

defined as follows

minLadv(ApplyIR(Normalize(xinput),P)) (12)

s.t. P = ModelPerturbation(I) (13)

to find an optimal set of MP positions I for a given input

image xinput. Based on Equation (10) and the subset of a
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(a) It. 0, k = 64 (b) It. 20, k = 52 (c) It. 160, k = 13

Fig. 5. Selected iterations from our approach. Crossed hatches indicate the
addition of a MP from a previous iteration, while diagonally crossed hatches
indicate a removal of a MP from a previous iteration.

given dataset S , we define the attack success rate (ASR) for

the digital and physical experiments as follows:

ASR :=
1

|S|

∑

x∈S

1(A(x′)) (14)

with output x′ of ApplyIR(xinput), adversarial criterion A,

and the indicator function defined as 1(x) = 1 if x is true and

1(x) = 0, otherwise.

In contrast to existing works that need to perform complex

modeling of adversarial shapes and locations [35], [43], [45],

[56], [57] to remain inconspicuous and/or easily manufac-

turable, due to our large perturbation space, we can resort

to the well-known random search algorithm [33] for the

derivative-free optimization of our problem. Since, in our use

case, it may not be possible to simply extract a model from

the automotive system for more powerful attacks, we opt to

investigate a more realistic threat model, treating our system

as a black box, which is generally considered more applicable

to real-world deployments.

As mentioned earlier, we approximate a MP with a square

(see Section IV-A for the justification) and proceed to find a

(locally) optimal set of MP positions that cause an (un)targeted

misclassification. To this end, we randomly perturb a total of

k different MP , i.e., I ← U(0, h/l) × U(0,w/l), throughout

a maximum of Q queries to the classifier, with U denoting

the uniform distribution. Naively perturbing the MP until we

converge to a successful adversarial example is intractable,

especially in the targeted attack setting. Instead, we only

update the current best set of MPs if the new set of MPs

results in a lower loss. To improve convergence, we expo-

nentially decrease the number of changed MP based on the

current iteration. Initially, we change the largest number of

MP to significantly reduce the loss (cf. Equation (11)), while

subsequent queries with fewer changed MP are intended to

refine the loss. The schedule for deriving the number of

perturbed MP for a given iteration i, query budget Q, and

maximum number of perturbed MP k is defined as follows:

k(i) =
⌈k

2
e

ln
2

k
Q

·i
⌉

This schedule is used to randomly draw k(i) new MP from

the image. Before adding them to the set of indices I, we

randomly remove k(i) MP from this set. Once we obtain a

negative loss, the goal of (un-)targeted misclassification is

Algorithm 1: Generating infrared perturbations

Data: input x, loss L, max query Q, number of MP k, MP size l
Result: candidate for minimizing L
/* Initialize first candidate */

1 I ← U(0, h/l)× U(0,w/l); |I| = k
2 P = ModelPerturbation(I), x′ = ApplyIR(x,P)
3 L∗ ← L(x′), i← 0
4 while i < Q do

/* Update positions of perturbation */

5 I′ ← U(0, h/l)× U(0,w/l); |I′| = k(i)
6 I′′ ← randomly select k(i) indices from I
7 I′ ← (I \ I′′) ∪ I′

8 P ′ = ModelPerturbation(I′), x′ = ApplyIR(x,P ′)
/* Upon improvement, update solution */

9 if L(x′) < L∗ then
10 L∗ ← L(x′), I ← I′

11 end
/* Negative loss: success */

12 if L∗ < 0 then
13 break
14 end
15 i← i+ 1
16 end
17 P = ModelPerturbation(I), x′ = ApplyIR(x,P)
18 return P, x′

achieved. The overall algorithm for generating infrared pertur-

bations is shown in Algorithm 1. Given an initial image, this

algorithm outputs the perturbation mask P and the resulting

infrared adversarial image x′. The process of optimizing the

MPs is shown in Figure 5.

Comparison of Optimization Strategies. To confirm the

superiority of our optimization, we now compare the ASR and

average queries achieved by various popular optimization

strategies, i.e., local random search (LRS), particle swarm

optimization (PSO), genetic algorithms (GA), and evolution

strategies (ES) for an ambient light setting of 10 lux and ablate

the number of MP k of size l = 1 in an untargeted attack

setting. We compare our results against a baseline consisting

of a naive random strategy (RND) that randomly places up to

k MP . Our results are depicted in Figure 6 for GTSRB [39]

with 25 samples for each of the 43 classes.

We observe that local random search results in the highest

ASR over all perturbation counts k with an average of 90.6%
(i.e., twice as high compared to a random positioning of

perturbations) and with as few as 123.4 queries.

C. Optimization for Single-Stage Architectures

To detect objects, let fθ : R
d → {(bbox,∆n)}m denote

a DNN model, parameterized by θ, assigning d-dimensional

inputs to m bounding boxes bbox, each with a probability

simplex ∆n of n classes. Without loss of generality, we focus

on an image with one bounding box. We let D : Rd →
{(bbox, [n])} refer to the associated detector which is defined

as D := {(bbox, argmaxi∈[n] fi(x))} for each bounding box

for which the maximum probability is above the detection

threshold τ , i.e., maxi∈[n] fi(x) > τ .

We consider a genuine input x ∈ R
d predicted as D(x) =

{(bbox, s)} (source class) and define the adversarial criterion
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Fig. 6. Optimization results for a two-stage architecture on the GTSRB
dataset. Each cell contains the ASR and query count. The last column includes
the averages.

and objective for a hide attack, i.e., not recognizing the

bounding box of the source class, as follows:

A(x′) :=
{

{(bbox, s)} /∈ D(x′) (15)

Ladv(x) :=
{

max
i∈[n]

fi(x)− τ (16)

For an adversarial example x′ to be successful, we require that

there is a perturbation P that satisfies Ladv < 0 to achieve a

hide attack. The optimization problem is then identical to the

previous case of image classification (cf. Equation (12)). We

use Equation (14) to compute the attack success rate.

To evaluate the impact of the optimizer selection, we

evaluated the ASR and average consumed queries achieved

with various popular optimization strategies on the YOLOv8

model [11] trained on the Mapillary [9] dataset. Our results

are depicted in Figure 7. Here, we use 25 samples for each

of the 9 classes, i.e., speed limits and stop, with a total of

225 images (cf. Section VI). In line with our previous results,

the local random search optimization algorithm performs best,

with an average attack success rate of 98.3% and an average

of 56.4 consumed queries, outperforming the second-best

optimization procedure, particle swarm optimization, with an

average ASR of 91.8% and an average of 99.4 queries.

D. Validating our Infrared Model

To validate our model, we created an (open-source) infrared

traffic sign dataset. Our dataset comprises images of traffic

signs with varying levels of ambient lighting, both with and

without an additional infrared light source. We include addi-

tional details about our dataset in Appendix B. We compare

the success of our approach on (1) the real infrared images

and (2) the emulated infrared light stemming from our digital

transformation in Section IV-A. We conducted our experiments

with l = 14, in line with Section V-C.

As shown in Table II, our results on the real-world dataset

show an across-the-board ASR of 100% with an averaged

consumed queries as low as 21.7 for k = 96. For our simulated

infrared light source, we observe the highest ASR at k > 128
with 94%, while the lowest observed rate ranks at 88%.
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Fig. 7. Optimization results for a single-stage architecture on the Mapillary
dataset. Each cell contains the ASR and query count. The last column includes
the averages.

Our results, however, confirm that our infrared transformation

provides a tight worst-case emulation of the real-world. This

also means that we expect our approach to yield, on average,

better success rates in the real world when compared to the

digital world.

E. Real-World Physical Perturbations

To ensure robustness of adversarial examples under real-

world conditions, we rely on expectation over transformation

(EOT) [5] that finds a perturbation over the expected value of

all transformed inputs over the set of transformations Ω:

minEω∼Ω[Ladv(ω(ApplyIR(xinput,P)))]

s.t. P = ModelPerturbation(I)

We model only reasonable effects with justified value ranges,

as overly complex transformations result in difficult conver-

gence towards a suitable adversarial example. More concretely,

Ω includes transformations for the following effects [25]:

Perspective. Traffic signs are typically placed on the right side

of a street (in countries with right-hand traffic) at a typical

height of 2m in Europe and 5-7 ft in the US. We assume

that the camera is placed at an average height of a European

vehicle of 1.5m. As a result, we consider both an x-axis and

y-axis perspective transformation of ±35 deg.

Distance. As a vehicle approaches a traffic sign, the initially

small sign gets larger over time in the captured images. This

results in an initial upsampling, followed by a subsequent

downsampling once the sign is too large for the network to

process. For the lower bound on distance, we determine the

minimum sign size for which the DNN can still correctly

classify a given sign. As a result, we determine the minimum

size to be 18× 18 pixel.

Rotation. Traffic signs are typically mounted straight, i.e.,

the horizontal sign axis is perpendicular to the street. Due

to imperfect mounting, we tolerate rotations of ±6◦.

Brightness. To account for the slight over-/underexposure of

a camera, we also utilize the LAB color space to model a

brightness change (cf. Equation (3)). We consider a value

range of ±20% in the lightness L channel of the image.
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TABLE II
COMPARISON OF ASR AND AVERAGE CONSUMED QUERIES Q ON

REAL-WORLD AND SIMULATED INFRARED PERTURBATIONS BASED ON

OUR MODEL IN SECTION IV-A.

k Real-World Simulated
(#MP ) ASR Q ASR Q

16 100.0 36.94 88.0 164.38
32 100.0 41.28 88.0 144.84
64 100.0 21.70 90.0 117.44
96 100.0 11.20 90.0 125.38
128 100.0 41.98 94.0 77.32
192 100.0 17.66 94.0 97.38

Backgrounds. In single-stage pipelines, the background can

significantly influence the model’s output. To ensure robust-

ness across various settings, we place the sign against a variety

of backgrounds.

Alignment and Motion Blur. Due to the required alignment

of the perturbation onto the traffic sign, we consider a shift in

the x- and y-axis of ±5 pixel. We also introduce motion blur

to mimic blur on frames of a moving camera.

To implement our setup in Figure 1, the film must be

carefully aligned with the light source, which can be efficiently

done using an infrared camera as a viewfinder. We also added

a 3D-printed magnetic frame to prevent film bending and

projection distortions.

V. EXPERIMENTS ON TWO-STAGE ARCHITECTURES

In this section, we empirically evaluate our approach for

traffic sign recognition in the digital and physical domains.

Datasets and Models: We conducted our experiments on

established datasets for traffic sign recognition for two-stage

architectures: we rely on GTSRB [39] for German traffic signs

and LISA [29] for American traffic signs. For the underlying

model architectures, we use a simple CNN [49] for GTSRB

and LISA-CNN (taken from the cleverhans library [12]), which

is in line with previous works in this field [10], [25], [53]. In

our normalized test sets, we report a clean accuracy (CA) of

98.76% and 99.63% for GTSRB and LISA, respectively.

A. Targeted Attacks in the Digital Domain

Our evaluation in the digital domain emulates physical

attacks in the real world using the GTSRB and LISA datasets.

We start by evaluating our approach in the more challeng-

ing targeted attack scenario, where an adversary seeks to

ensure that the prediction only flips to a specific class. In

Section V-B, we also discuss the effectiveness of our approach

in the untargeted setting. For a meaningful evaluation of a

(semi-)autonomous vehicle, we define the following three driv-

ing scenarios that result in prominent safety hazards, especially

when triggered in a targeted manner. Concretely, they result in

a reduction of speed, i.e., braking, acceleration, or the ignoring

of a stop sign, because a speed sign is recognized. We show

them in Figure 8.

(a) Scenario 1 (brake).

(b) Scenario 2 (acceleration).

(c) Scenario 3 (ignore stop).

Fig. 8. Overview of the targeted class flips in our scenarios with European
traffic signs on the left and North American traffic signs on the right.

Scenario 1 (Brake). We use all speed sign classes (except

the lowest one) as source images and generate an adversarial

example for each that classifies it as the lowest speed.

Scenario 2 (Acceleration). We use all speed sign classes (ex-

cept the highest) as source images and generate an adversarial

example for each that classifies it as the highest speed.

Scenario 3 (Ignore stop). We use the stop sign class as source

images and generate adversarial examples for the eight speed

signs that we consider in this work (cf. Figure 8a).

To avoid bias toward specific geographic regions, we in-

cluded traffic signs from both Europe (via GTSRB) and North

America (via LISA). This approach ensured our analysis

captured a diverse range of signs—with varying shapes, colors,

and sizes—across both digital and physical experiments. More

precisely, for GTSRB, we relied on the stop sign and speed

limits of 20, 30, 50, 60, 70, 80, 100, and 120 km/h, with 150

samples for each class. Analogously for LISA, we opted to

take all samples for the selected classes due to the generally

smaller dataset—here, we used speed limits 30, 35, and 45 to

map to limit 25, speed limits 25, 30, and 35 to map to the

highest limit of 45, and mapped the stop sign to speed limits

25, 30, 35, and 45, for the three scenarios, respectively.

Our results (cf. Table III) indicate that our proposal con-

sistently obtains a high ASR across all three targeted attack

scenarios, datasets, number of MP k, and strength of the

ambient lighting, with up to 96.1% and 100% in Scenario 1,

99.9% and 100% in Scenario 2, and up to 76.42% and 98.49%
in Scenario 3, for GTSRB and LISA, respectively. For LISA,

we observe a slower decline in ASR , which we attribute to

its fewer classes and their size in contrast to GTSRB.

Our results also suggest that the targeted class flip from

a stop sign to any speed sign, i.e., Scenario 3, is the most

challenging to achieve, likely due to the dissimilarity between

the two sign types. In contrast, the scenarios involving similar

signs, i.e., Scenarios 1 and 2, appear to be easier to realize in

terms of higher ASR and fewer required queries. For GTSRB

and Scenario 2, we obtain a high ASR > 99% and a low

query count of 28.3 queries on average. For Scenario 1, we

also observe a high ASR of up to 96.1% at 127.9 queries.
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TABLE III
RESULTS FOR THE FIVE ATTACK SCENARIOS. ATTACK SUCCESS RATE AND THE AVERAGE QUERIES Q UNDER VARYING BRIGHTNESS CONDITIONS FOR

FIXED k = 192 MPS AND FOR VARYING NUMBER k OF MPS FOR A FIXED BRIGHTNESS OF 2000 LUX. HERE, l = 2.

Two-Stage Architecture Single-Stage Architecture

Targeted Untargeted Hide

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Any speed → Lowest speed Any speed → Highest speed Stop → Any speed Any sign → Any sign Sign → No sign

GTSRB-CNN LISA-CNN GTSRB-CNN LISA-CNN GTSRB-CNN LISA-CNN GTSRB-CNN LISA-CNN YOLOv8 Faster-RCNN
ASR Q ASR Q ASR Q ASR Q ASR Q ASR Q ASR Q ASR Q ASR Q ASR Q

L
u

x

10 96.10 127.90 100.0 16.33 99.90 28.31 100.0 31.11 76.42 376.13 98.49 91.05 95.07 68.31 97.95 71.56 100.0 3.23 100.0 4.97
1000 95.62 135.36 100.0 15.02 99.79 28.92 100.0 31.33 73.42 400.05 98.42 103.76 94.88 70.62 97.81 77.68 100.0 3.21 100.0 4.38
2000 92.48 177.03 100.0 22.80 99.58 32.10 100.0 45.41 69.17 459.4 97.32 152.76 93.58 86.32 96.42 103.58 100.0 8.79 100.0 11.18
3000 81.43 300.15 100.0 39.13 95.94 89.87 99.51 70.58 57.17 589.18 90.66 297.81 89.02 146.33 93.86 167.98 99.16 19.33 98.53 39.07
4000 41.05 671.71 100.0 127.47 62.71 456.30 97.57 177.30 15.08 907.48 59.34 576.84 67.91 367.57 81.71 355.62 95.40 79.34 91.91 167.60
5000 4.67 964.87 62.80 585.45 10.42 922.86 56.80 644.25 1.25 995.47 25.76 876.95 28.56 747.15 40.75 725.77 84.52 301.02 56.25 596.34

P
a
tc

h
es

(k
) 16 57.14 559.79 99.39 70.66 87.19 260.26 99.03 109.45 59.08 490.19 87.71 287.74 86.88 172.60 87.93 234.34 98.33 55.33 96.69 79.44

32 76.76 363.14 100.0 35.70 95.10 135.89 100.0 58.03 63.50 441.24 95.67 175.91 90.60 121.12 94.59 150.15 99.16 22.15 100.0 23.36
64 88.67 218.16 100.0 24.06 98.44 71.78 100.0 39.42 67.00 418.08 97.53 127.67 92.84 96.76 96.56 105.23 99.16 13.83 100.0 6.37
96 90.95 192.13 100.0 20.01 98.65 55.78 100.0 32.84 68.25 427.06 97.87 120.78 93.67 87.65 96.63 97.19 100.0 9.81 100.0 5.83
128 92.57 172.00 100.0 17.71 98.85 47.11 100.0 37.61 68.33 438.48 97.87 128.01 93.67 86.66 97.15 91.65 100.0 9.15 100.0 5.21
192 92.48 177.03 100.0 22.80 99.58 32.10 100.0 45.41 69.17 459.40 97.32 152.76 93.58 86.32 96.42 103.58 100.0 8.79 100.0 11.18
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Fig. 9. Perturbation width l vs. amount of perturbed pixels on GTSRB for
Scenario 1 with the average in the last column. Each cell contains the ASR and
query count.

Impact of ambient light intensity: We now evaluate

the performance of our proposal on the GTSRB and LISA

datasets in the presence of a light source of varying in-

tensity, ranging from 10 to 5000 lux, simulating a range

from a dark to a brightly lit outdoor environment. Our re-

sults for this ablation are included in the upper half of Ta-

ble III. Here, we measure the ASR and the average consumed

queries required in our approach for a combination of lux

∈ {10, 1000, 2000, 3000, 4000, 5000} and k = 192 (for the

reasoning why, see next paragraph).

In the case of GTSRB, we mostly observe ASR of more

than 90% for lux values below 2000, except for the most

challenging Scenario 3, where we reach an ASR around

70%. In contrast, LISA exhibits high success rates of more

than ∼ 90% for values lower than 3000 lux. For all three

scenarios, we find the best lux setting for both datasets at

10 lux for an ASR of 96.1%/99.9%/76.42% at an aver-

age of 127.9/28.31/376.13 consumed queries for GTSRB.

In the case of LISA, we observe 100%/100%/98.49% at

16.33/31.11/91.05 average consumed queries for LISA. The

higher complexity for optimizing on GTSRB is also evidenced

by the generally lower ASR and higher number of consumed

queries compared to LISA, which confirms our previous

TABLE IV
DETAILED RESULTS FOR SCENARIO 1 FOR GTSRB WITH 2000 LUX AND

k = 192 USED TO COMPUTE THE AVERAGE ASR IN TABLE III.

Sign mapping ASR

30→ 20 99.30
50→ 20 91.33
60→ 20 81.33
70→ 20 99.33
80→ 20 92.00
100→ 20 88.67
120→ 20 95.33

observations. A core strength of our proposal lies in the

modest number of required queries for convergence toward

a successful targeted adversarial example, e.g., 127.9 queries

for 10 lux in Scenario 1 in GTSRB.

Impact of number of MP k: In the lower half of Table III,

we vary the number k of MPs between 16− 192 (out of the

maximum of 256 MPs) on the three proposed scenarios in

a bright environment of 2000 lux. Recall that k impacts the

area covered by the perturbation. Generally, we observe that

a varying k can significantly boost the ASR by ∼ 35% and

reduce the consumed queries by ∼ 70%. In contrast, the attack

success in the second and third scenarios is boosted by up to

12%. In the case of GTSRB, we observe that a minimum of

k = 96 is required to obtain an ASR of > 90% for the first two

scenarios, reaching its maximum at k = 192 at approximately

93%/100% for Scenarios 1 and 2, while reaching 70% in

Scenario 3. Generally, we observe that k = 192 strikes a strong

tradeoff between ASR and the query budget in all scenarios.

Impact of size of MP l: Recall that the size l of a MP is

directly proportional to the maximum number of k MP we can

perturb. Since the number of MPs is bounded by the constant

size of our samples w = h = 32, changing the size of an

MP results in an upper bound on the total number of MP. For

instance, consider the following configurations that all have the
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same number of underlying pixels while exhibiting a different

number of MPs:

• l = 1, k = 256→ 32
1 ×

32
1 = 1024 MP positions.

l2 × k = 12 × 256 = 256 perturbed pixels.

• l = 2, k = 64→ 32
2 ×

32
2 = 256 MP positions.

l2 × k = 22 × 64 = 256 perturbed pixels.

• l = 4, k = 16→ 32
4 ×

32
4 = 64 MP positions.

l2 × k = 42 × 16 = 256 perturbed pixels.

Therefore, we opted not to evaluate against k but instead to

benchmark against the number of perturbed pixels (see the

above example). Our results are shown in Figure 9 for a

targeted attack on GTSRB for Scenario 1. We observe an

average ASR of 83.3% at l = 1, which increases to 88.4%
for l = 2 and 75.5% at l = 4. For the standard case of l = 1,

i.e., in the case of pixel-wise perturbations, we observe the

highest performance at k = 512 with an ASR of 91.7%, which

again decreases for a larger number of perturbed pixels, i.e.,

768, down to 87.0%. In contrast, we observe that a larger

size l is favorable due to the better performance of the attack.

Particularly, we see that l = 2 strikes the best tradeoff between

the size of a MP and the resulting available number of MP k,

where we observe the highest average ASR of 88.4% and the

highest overall ASR of 96.1% for a total of 768 perturbed

pixels. Analogously to the ASR , we also observe a minimum

of 217.8 consumed queries on average for this configuration.

This number of perturbed pixels results in a value of k = 192
for l = 2 (see previous paragraph).

Impact of sign choice: Our approach is inherently general and

does not exploit specific traffic sign shapes, colors, or textures.

Notably, the choice of sign pairs has only a minor effect on

ASR , as detailed in Table IV.

To confirm this intuition, we further extended our experi-

ments beyond Scenarios 1–3—which already feature a diverse

range of signs—to include several more dissimilar pairs.

Specifically, we performed a targeted attack on the GTSRB

priority road sign, aiming to misclassify it as a yield sign, a

road construction sign, and a speed limit sign (30/120 km/h).

As shown in Table V, our method achieved a strong ASR of

up to 98% and an average of around 300 consumed queries.

In addition, we consider a yield sign as a source and aim to

classify it as a priority road, a road construction, and a speed

limit sign (30/120 km/h) and obtain an ASR of up to 85%

with an average of 500 consumed queries.

B. Untargeted Attacks in the Digital Domain

We now move our focus towards an untargeted scenario.

Scenario 4 (Service disruption). We use “any” sign as the

source class and “any” sign as the target class. A class flip here

can lead to a sudden stop, acceleration, or any other behavior

triggered by a specific sign.

Our results for Scenario 4 are shown in the fourth column

of Table III for various brightness levels and a varying

number of MP . When compared to its targeted counterpart

(cf. Section V-A), we observe a less steep decline in ASR for

the untargeted setting, combined with a slower increase in

the number of queries for GTSRB, while both the ASR and

number of queries for LISA are relatively similar. This trend

highlights the increased difficulty in mounting targeted attacks

compared to their untargeted counterparts.

In the case of GTSRB, we observe that a minimum of

k = 32 is required to obtain an ASR of ∼ 90%. Subsequent

increases to k = 64 result in a further boost of ASR by 3%,

which only marginally increases beyond that for larger values

of k. We consistently observe ASRs of more than ∼ 90%
for lux values below 3000, reaching 95.07% at the lowest

ambient lighting of 10 lux at just 68.31 consumed queries

for GTSRB. In contrast, we observe an ASR of 97.95% and

71.56 consumed queries for LISA. With a comparable ASR ,

we note that the number of queries required in LISA is slightly

higher than that required in GTSRB. We contrast this to the

previous trend, for which LISA performed better in terms of

ASR and consumed queries, and attribute this to the fact that

our sample size for this untargeted scenario is larger than the

targeted scenarios before.

Blackbox transferability: To confirm that our approach is

also effective on other architectures and to model an adver-

sary without oracle access to the model, we now assess the

transferability of our scheme to different architectures on the

GTSRB dataset. Here, we use models of increasing complexity

as surrogate models and generate the adversarial perturbations,

which we subsequently evaluate on the target architecture

for Scenario 4. We consider the following architectures (with

the respective number of weights): GTSRB-CNN (∼ 16.5M),

ResNet-50 [15] (∼ 25.5M), SwinTransformer [23] (∼ 87.7M),

and ConvNeXt [24] (88.5M). Our experiments are conducted

for 10 lux, k = 192, l = 2, and a query budget of Q = 1000.

Unlike our previous experiments, where we stopped the attack

once an adversarial example was found, we utilized the entire

query budget here to more accurately assess the robustness of

the perturbation. Our results, summarized in Table VI, show

that the success of our attack is independent of the underlying

model architecture. Specifically, for the same surrogate and

target models, we consistently achieve success rates of over

95%. We observe higher transferability rates from the more

complex architectures towards the simpler ones, i.e., the first

column shows an average transferability of ∼ 72% towards

the simplest architecture GTSRB-CNN. On the other hand,

when using GTSRB-CNN as the surrogate model, we observe

a transferability of ∼ 63% to the more complex architectures.

Comparison with Related Work: We now compare our

approach against the state-of-the-art methods of [25], [43],

[45] using the GTSRB dataset. The former two attacks are

black-box methods based on transferability and gradient-free

particle swarm optimization [18], respectively, while the latter

is a white-box method with direct model access and, as such,

requires the availability of model gradients.

We adapt [43], [45] to a two-stage pipeline and optimize

our loss functions to evaluate the effectiveness of their shape-

generation strategies in Scenario 4. We instrument our ap-

proach with k = 192 and l = 2, as determined in the
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TABLE V
RESULTS FOR A TARGETED ATTACK ON A YIELD AND PRIORITY ROAD TRAFFIC SIGN. ASR AND AVERAGE QUERIES Q UNDER VARYING BRIGHTNESS

CONDITIONS FOR FIXED k = 192 MPS AND FOR VARYING NUMBER k OF MPS FOR A FIXED BRIGHTNESS OF 2000 LUX. RESULTS FOR REAL-WORLD

EXPERIMENTS ARE SHOWN IN SECTION V-C.

Lux Patches (k) Lux Patches (k)
10 1000 2000 3000 4000 5000 16 32 64 96 128 192 10 1000 2000 3000 4000 5000 16 32 64 96 128 192

ASR 96.0 98.0 95.0 79.0 38.0 20.0 66.0 89.0 94.0 95.0 94.0 95.0 83.0 85.0 81.0 70.0 46.0 12.0 39.0 58.0 81.0 76.0 77.0 81.0
Q 137.2 155.9 193.9 358.4 693.5 822.2 476.8 231.4 161.3 141.3 155.6 193.9 330.8 313.1 365.1 493.6 690.6 918.2 740.1 588.0 380.7 404.7 388.0 365.1

TABLE VI
ASR FOR VARIOUS SURROGATE AND TARGET ARCHITECTURES OF

VARYING COMPLEXITY. THE BOLD DIAGONAL ELEMENTS INDICATE THE

ASR WHEN SURROGATE AND TARGET ARCHITECTURES ARE IDENTICAL.

Two-Stage Single-Stage

Target → CNN
Res-

Net50
Swin-
Trans.

Conv-
NeXt

Target → YOLOv8
Faster-
RCNN

S
u

rr
o

g
a

te CNN 95.16 74.88 57.77 57.58
YOLOv8 100.00 93.72

ResNet50 71.07 97.58 55.81 56.37
SwinTrans. 72.56 75.63 97.12 66.98 Faster-

RCNN
93.38 100.00

ConvNeXt 72.84 77.40 68.84 97.21

TABLE VII
COMPARISON AGAINST STATE-OF-THE-ART W.R.T. ASR, AVERAGE

QUERIES Q ON GTSRB, AND TIME IT TAKES FOR DEPLOYMENT.

Shapes & Location [45] HotNCold [43] Ours

ASR 74.6 82.6 95.07
Q 200.0 200.0 68.31

Time ∼ 5 min 30 min ∼ 50s

aforementioned ablation study, and apply our infrared trans-

formation with a brightness of 10 lux.

Our results are depicted in Table VII3. We find that our

proposal results in a remarkably higher ASR by at least 12.5%

and a lower amount of queries, by up to 65%, compared

to [43], [45], even though [45] is a white-box method with

direct access to model gradients.

To compare against [25]—a projector-based attack in the

visible light spectrum, we generate perturbations at 120 lux for

100 stop signs4 sampled from GTSRB and obtain an ASR of

100% at an average of just 2.42 queries. Our results are on

par with the results in [25]; however, our scheme does not

require the generation of individual projection models and

saves considerable effort in generating adversarial examples.

C. Perturbation Attacks in the Physical World

We now proceed to evaluate our approach in the real world.

In our experiments, we directly perturb the w = h = 224
large images using a square MP with l = 14 and apply the

aforementioned EOT transformations (cf. Section IV-E) while

3We could unfortunately not compare with [35], [44] due to the unavail-
ability of their source code.

4Note that a comparison with the full GTSRB was not feasible as the
projection model of [25] is sign-specific and is only available for a stop sign.

(a) Indoor setting. (b) Outdoor setting.

Fig. 10. Experimental environments with 1000 lux (avg.) on the sign surface.

enforcing a query budget of Q = 2500 to make the perturba-

tions more robust. In practice, generating a single perturbation

takes approximately four minutes and needs to be performed

only once before deployment. Because these attacks transfer

effectively across classifiers (cf. Section V-B), the adversary

does not need to interact directly with the target classifier in

the vehicle. Due to the larger image size, we opted to rely on

this (large) MP size to facilitate the recognition by a camera.

Here, we select one representative class mapping for each

introduced scenario and devise ten dedicated perturbations,

i.e., we average the success of each scenario over ten different

perturbations. An example of Scenario 1 is the targeted class

flip from speed limit 100 to speed limit 30.

Setup & Hardware: We performed our experiments us-

ing two different cameras with CMOS sensors, which are

commonly found in product families used in autonomous

driving or commercial traffic sign recognition systems, such

as Baidu Apollo. For most experiments, we use (1) Raspberry

Pi Camera Module 3 without infrared filters based on a Sony

IMX708 sensor with a focal length of 4.74mm (similar to

Leopard Imaging LI-USB30-IMX728-GMSL3-070H). In

another dedicated test, we also relied on (2) Leopard Imaging

LI-USB30-AR023ZWDR (using an OnSemi AR023ZWDR

sensor) with a focal length of 6mm, which has also been used

in other works [35]. Both cameras have been connected to a

Raspberry Pi Model 4. To broaden the range of ambient light

intensity conditions, we used a powerful 12W 808nm infrared

light source in all our experiments5. This allows us to produce

clearly visible perturbations even under high ambient light

levels of up to 1100 lux. Ambient light intensity is measured

directly on the surface of the sign using a lux meter.

5In our initial tests, we used a 5W 850nm infrared lamp to successfully
mount attacks up to an ambient light intensity of 300 lux.
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Fig. 11. Attack success rate for various scenarios at different camera positions
in an indoor setting at a brightness of 1000 lux. We omitted the datapoint at
(4m, 2.5m) because the sign was not fully within the camera’s field of view.

We printed the previously generated perturbations on trans-

parent off-the-shelf overhead projector film made from PET,

costing around US$0.1 per perturbation. This process is suf-

ficiently precise for our purpose, as initial experiments on

different versions of the same perturbation did not show any

impact on the attack success rate.

Placement: For placing the camera and infrared light source

in our experiments, we assume a real-world setting mimicking

a traffic setting (cf. Figure 1), in which we place our sign on

the right side of the road. We place the infrared light source

at a fixed position opposite the sign at a distance of 2 meters,

considering one-shot attackers. This choice is reasonable, as

traffic signs are typically located on the side of the street,

which is also the only practical place to position a light

source (e.g., on bridges, alternative side placements may not

be feasible). The projection was manually aligned once using

the live camera feed prior to any experiment and remained

unchanged throughout experiments. The default position of

our camera is located in the middle of the right driving lane

at a distance of 4 meters (longitudinal) and 2 meters (lateral)

to the left of the sign, at a default viewing angle of ∼ 25◦.

We first evaluate the success of our approach in a controlled

and artificially lit indoor environment, i.e., a basement with

bright natural video lighting (Figure 10a), and then move into a

more diverse outdoor scenario, i.e., a parking lot (Figure 10b).

In both settings, we measure an average ambient lighting of

1000 lux. At all times, we verified the correct classification

even in the presence of an infrared light spot (without a

perturbation).

General Success: We evaluate the performance of our ap-

proach in the previously introduced scenarios in both indoor

and outdoor environments (cf. Table VIII). To this end, we

place the camera at the previously described distance and

determine the ASR over ten different perturbations. In the

indoor setting, we obtain an ASR of 100% for Scenarios 1,

2, 3, and 4. In the outdoor environment, we observe success

rates of 90% and 80% for the first two scenarios, respectively,

while the last two scenarios maintain a success rate of 100%.

(a) Raspberry Pi Camera 3 (b) Leopard Imaging AR023ZWDR

Fig. 12. Infrared perturbation captured with two different camera sensors.

+4° 2
m

9m

1
.3
m

Fig. 13. Impact of headlights (cf. ECE-R112 [3]) at a distance of 9m on a
traffic sign mounted at a height of 2m. The maximum permitted brightness on
the surface of the sign is ∼ 22 lux. Figure is to scale (icon acquired from [1]).

In a separate experiment (conducted outdoors) on a yield sign

flipping to a priority road sign, we observe an ASR of 70%.

Different Angles, Distances, Cameras: To assess the impact

of real-world environments, such as spatial transformations

introduced by angle and distance on the robustness of the

perturbed signs and the success of our EOT transformations

(cf. Section IV-E), we conduct the following experiments:

we place the camera at the default distance of 4 meters

of longitudinal and 2 meters of lateral distance away from

the sign and verify the success for various camera positions.

Namely, we simulate different lane positions of the vehicle on

the road by moving the camera laterally to the left and right

by 0.5 meters. We combine this with longitudinal distances

between 4 and 9 meters in one-meter increments to verify the

robustness of our approach, which results in diverse viewing

angles between 27◦ and 10◦. These positions faithfully capture

various real-world positions across different driving lanes and

are also limited by the visibility of the sign on the camera.

As shown in Figure 11, we observe consistently high ASR ,

averaging over 90% in almost all configurations. However, we

observe a reduction in ASR for (5m, 2.5m) due to the slightly

steeper viewing angle and increased distance (resulting in a

less visible reflection). Another decrease in ASR is measured

when increasing the longitudinal distance across a lateral

distance of 1.5m due to the reflections of the infrared light

source becoming more prominent on the sign (especially for

the targeted Scenario 2).

To evaluate the transferability of our approach across differ-

ent camera sensors, we also instrumented an additional cam-

era, namely Leopard Imaging AR023ZWDR (cf. Figure 12),

in the indoor setting. In this setting, we tested ten different

perturbations for Scenario 1 and observed a high transferability

rate of 90%. As the spectral sensitivity curves of CMOS

camera sensors in the near-infrared part of the spectrum (800-

1000nm) are highly similar, we expect our approach to also

be effective against other sensors.
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TABLE VIII
ASR IN THE PHYSICAL WORLD IN THE INDOOR AND OUTDOOR

ENVIRONMENT FOR A GIVEN SCENARIO.

Scenario

Environment #1 #2 #3 #4 #5

Indoor 100.0 100.0 100.0 100.0 100.0
Outdoor 90.0 80.0 100.0 100.0 100.0

Moving (10 km/h) 99.4 93.7 96.3 84.8 79.8
Moving (30 km/h) 98.0 90.0 84.5 84.4 85.7

Driving vehicle: We now conduct moving vehicle exper-

iments by driving past the perturbed sign in an outdoor

environment. In our setup, the camera is mounted on the

rear-view mirror, which corresponds to the typical height

for front-facing camera systems in modern vehicles. Starting

from a distance of 30 meters, we approach the sign at two

different speeds: 10 km/h and 30 km/h. For safety reasons,

we were unable to experiment at higher speeds. For each

perturbation and across all five scenarios, we record a video

and compute the ASR over all cropped frames (cf. Table VIII).

Our results demonstrate the practical effectiveness of our

approach, achieving an ASR of up to 98% and as low as

79.8% at speeds of up to 30 km/h. Some fluctuations are

observed, which we attribute to slight variations in the driving

path and the fact that the experiments were conducted over

several hours.

Impact of headlights: Headlights, particularly at dusk or

night, create high-brightness conditions. To evaluate the impact

of headlights on the robustness of our approach, we conducted

outdoor tests under headlight illumination. We found no sig-

nificant impact on our results within the tested range of 4–9m.

As shown in Figure 13, this resilience is mainly due to

regulatory constraints designed to minimize glare for other

drivers. Specifically, ECE-R112 [3] [Figure B and Section

6.2.4] stipulates that headlight illumination at a height of 2

meters—where traffic signs are typically placed—must not

exceed ∼ 22 lux at a distance of 9 meters.

VI. EXPERIMENTS ON SINGLE-STAGE ARCHITECTURES

We now shift our focus to single-stage architectures, which

are typically used in object detection. Here, we conducted

our experiments on the established Mapillary [9] and GTSDB

[39] datasets. Mapillary consists of 401 classes with traffic

signs from all continents, while GTSDB contains 43 different

German road sign classes, similar to the previously used

GTSRB. We train a YOLOv8 model [11] on the Mapillary

dataset with a reduced number of classes, i.e., European speed

limit signs and stop signs, to achieve better performance (cf.

Section II), and obtain an mAP-50 of 64.9%. Additionally,

we train a Faster-RCNN [34] model on GTSDB and obtain an

mAP-50 of 90.76%.

Hiding Attacks (Scenario 5) in the Digital Domain: In the

setting of a single-stage architecture, the goal of the adversary

is to ensure that the sign is no longer detected by the system.

TABLE IX
IMPACT OF CURRENT DEFENSES ON THE CA AND ASR ON GTSRB
(DIGITAL DOMAIN) AND ON OUR EXPERIMENTAL DATA (PHYSICAL

DOMAIN). ↑ (RESP. ↓) INDICATES THAT VALUES CLOSE TO 100 (RESP. 0)
PROVIDE BETTER RESULTS.

Digital Physical

No
defense

Spatial

Smooth.
(non-local) [47]

Spatial

Smooth.
(local) [47]

Adv.
Training

[13]

Ours
Segment.

-based

CA ↑ 98.76 95.35 96.56 98.67 96.63
ASR ↓ 95.16 67.72 61.77 62.89 25.3

In other words, speed limits and other important signs, e.g.,

stop signs, are ignored by the traffic sign recognition system.

We use 25 images per class for Mapillary, i.e., a total

of 225 images, and the entire test set for the previously

selected classes of GTSDB, while ensuring that we only

select bounding boxes with more than 32 × 32 pixels. As

shown in Table III, we obtain high ASRs at k = 192 of

100% for an average of 3.23/4.97 queries for Mapillary and

GTSDB, respectively. Even for the single-stage architectures,

we measure high success rates and a lower amount of used

queries at a higher value of k and a lower ambient light level.

To assess whether a perturbation generated for one archi-

tecture is also successful on another, we use the generated

images for Mapillary on YOLOv8 and evaluate the success of

a hiding attack on the Faster-RCNN model trained on GTSDB

(and vice versa). As shown in Table VI, we measure a higher

transferability of ∼ 93% compared to two-stage architectures.

Perturbation Attacks in the Physical World: Analogously

to the two-stage experiments, we place the camera at a distance

of 7 meters and generate ten perturbations in Scenario 5. As

shown in Table VIII, we measure a success rate of 100%. Note

that a larger initial distance is necessary for initial detection,

as the dataset consists of more images with smaller signs at a

distance rather than close-up signs.

In Figure 11, we further vary the distance and angle between

the camera and the traffic sign (starting from the initial

distance of 7 meters). Our results consistently show an average

success of ∼ 95%.

VII. DEFENSES AGAINST INFRARED PERTURBATIONS

Since infrared spectral filters impair camera performance

in low-light conditions (cf. Appendix A), we now explore

the solution space to defend against infrared perturbations

and then present our defense, dubbed segmentation-based

detection.

A. Limitations of Current Defenses

Spatial Smoothing & Adversarial Training: First, we

evaluate the impact of two popular defenses on our approach:

the test-time spatial smoothing defense [47] and the popular

(but costly) adversarial training [13].

Local smoothing applies a median blur by replacing each pixel

with the median of its neighbors, while non-local smoothing
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uses a larger region. Both aim to undo adversarial perturba-

tions, following prior work [44], [45]. Adversarial training

strengthens test-time robustness by incorporating adversarial

examples into the training process.

Our results for the strongest attacker, i.e., an infrared trans-

formation for 10 lux, are included in Table IX. We observe

that all three defenses fail to fully mitigate our attack: test-time

defenses [47] reduce ASR to 67.72% (non-local) and 61.77%
(local), while adversarial training lowers it to only 62.89%.

Certified patch detection: PatchCleanser [46] is a certified

defense that selectively masks portions of an image—if the

mask covers an adversarial patch, the prediction of the classi-

fier changes. In contrast, benign natural images are generally

invariant to this mask. This does not apply to our use case of

traffic-sign recognition as masking, e.g., a speed sign, creates

an ambiguity of the underlying speed limit [35]. An additional

requirement of PatchCleanser is that the mask must be larger

than the used adversarial patch—we, however, perturb the

entire sign with our perturbation.

Infrared speckle detection: [35] uses the characteristic

speckle pattern of laser reflections for detection. While we

also utilize infrared light, our approach uses an incoherent

light source, i.e., not a laser, and hence our perturbations do

not exhibit a strong speckle pattern as required by [35]6.

Spatio-temporal consistency: When conducting evasion at-

tacks in the real world, it has been shown that evading

individual camera frames is not sufficient to successfully attack

a system [38]. Indeed, by monitoring the spatio-temporal

properties of objects, one can detect changes in bounding

box size and classification over time [14], [27], [48]6. These

approaches typically rely on inconsistencies resulting from

adversarial perturbations and can only be defeated when the

model predictions are consistent “enough” over time, while

also considering a model’s natural error rate. In our moving

vehicle experiments (cf. Table VIII), we obtain ASRs of up

to 99.4%. Specifically, our targeted attacks are successful over

most captured frames and therefore cannot be detected using

such approaches. These results show a consistent targeted

misclassification over the 163 frames of the video, with only

one flickering frame scattered in between (i.e., with an error

rate of 0.6%), which we attribute to the model’s natural

error rate due to motion blur. Importantly, as the majority of

frames while approaching a sign are consistent, we believe

that defenses based on spatio-temporal consistency will have

a limited effect here.

Some approaches like [51] utilize object texture, behavior,

and interactions with one another and focus specifically on

detecting pedestrians and cars. This approach is not effective

for traffic sign recognition as traffic signs have a similar

texture, remain on fixed trajectories, and generally do not

interact with other objects (like cars and pedestrians).

6Notice that a comparison to [14], [35], [48] is not possible since the source
code has not been made available to us or cannot be extended to new attacks.

(a) Perturbed sign. (b) Perturbed sign
(segmented).

(c) Segmented sign.

Fig. 14. Output of our segmentation patched defense for a stop traffic sign.

TABLE X
EVALUATION OF OUR SEGMENTATION-BASED DETECTION SCHEME IN THE

PHYSICAL DOMAIN. ↑ (RESP. ↓) INDICATES THAT VALUES CLOSE TO 100
(RESP. 0) PROVIDE BETTER RESULTS.

Static Moving

Indoor Outdoor
Distance

(Longitudinal)
Distance
(Lateral)

Σ Σ

CA ↑ 100 100 100 100 100 96.63
ASR ↓ 2.49 2.56 1.63 1.65 2.05 25.3

B. Our Proposal—Segmentation-based Detection

We now propose a novel detection scheme specifically

designed to thwart our attack. Our defense builds on the ob-

servation that our perturbations introduce a significant amount

of additional shapes and edges into the image—considerably

beyond the number of edges/shapes that are typically present

in common traffic signs (cf. Figure 14). More specifically,

our defense measures the number of detected shapes in a

given input image and compares it to an empirically derived

threshold ν, above which the image is considered adversarial.

To ensure robust and brightness-agnostic detection of shapes

within the image, we utilize the Segment Anything [19]

segmentation model with the ViT-L architecture to compute

segmentation masks of an input image. This model F outputs

a mask m with t pixels, i.e., m = {(x0, y0), . . . , (xt, yt)}, for

each of the u detected shapes within an image, constituting

the set R = {m0, . . . ,mu}, i.e., F(x) = R.

Dataset. To evaluate our defense, we relied on a dataset con-

sisting of 54 benign/unperturbed and 400 adversarial/perturbed

images of traffic signs taken in static scenarios, as well as 476

and 1158 images taken from a moving vehicle, respectively

(both obtained from our real-world experiments in Sec-

tion V-C).

Determining ν: We interpolated the threshold ν on the

number of detected shapes, i.e., |R|, experimentally based on

the benign and perturbed traffic signs captured in our static

experiments (diverse lighting conditions, distances), and from

a moving vehicle. The distribution of segmentation masks is

presented in Figure 15, supporting our initial hypothesis that

benign images contain fewer detected shapes than adversarial

ones, with only limited overlap between the two distributions.

To evaluate detection performance across all possible threshold

values ν, we employ a receiver operating characteristic (ROC)
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Fig. 15. Distribution of the segmentation masks for the benign (blue) and
adversarial (orange) data for images taken in a static and a moving setting.
The red line indicates the EER-optimal ν.
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Fig. 16. ROC curves for images taken in static and moving settings.

curve, as shown in Figure 16. Performance across different

data partitions is summarized in Table X.

Performance in static scenarios: For the optimal threshold

ν = 22, we obtain a CA = 100% and an ASR as low as

2.05% at an equal-error rate (EER) of ∼ 2% and an F1-score

of 99%. Within the static scenarios, we observe no differences

in performance between indoor and outdoor settings, nor any

variations related to specific distances in latitude or longitude.

Performance under a moving vehicle: To evaluate real-

world performance in a dynamic setting, we utilize the afore-

mentioned dataset—collected from a moving vehicle. While

performance shows a slight decline relative to the static

case, the impact on CA remains minimal, and our approach

continues to outperform all other defenses by a substantial

margin (see Table IX). Specifically, for a threshold of ν = 9,

we achieve an ASR of 25.3% at an F1-score of 85%. This

slight performance degradation is likely due to the inclusion

of images captured from the moving vehicle at distances of

up to 30 meters, resulting in smaller object sizes that make

segmentation more challenging.

VIII. CONCLUSION

In this paper, we present a novel and cost-effective attack

to generate robust perturbations in the near-infrared domain,

which we dub adversarial infrared perturbations. Our approach

ensures real-world robustness by accounting for the spectral

shift into the infrared domain and is the first practical attack

that works in both targeted and untargeted attack scenarios.

Extensive experiments in the digital and physical domains

show that our approach yields consistently high attack success

rates in various situations while requiring up to 65% fewer

queries when compared to existing approaches. We showed

that existing defenses against perturbations cannot successfully

defend against our approach. As a remedy, we proposed a

novel segmentation-based detection scheme that is specifically

designed to thwart our attack with an F1-score of up to 99%.
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Fig. 17. Examples of different infrared absorbing films on a speed limit 20
sign with various light sources.
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Fig. 18. Experimental setup used for capturing the GTSRB-IR-100 dataset.

APPENDIX A

INFRARED FILTERS AND FILMS

Another possible defense is to embed an infrared spectral

filter before the CMOS sensor to protect against attacks that

utilize infrared light. While this completely masks the visibil-

ity of our infrared perturbations on inputs to the classifier, such

an approach is not feasible for several reasons. First, adding

spectral filters would significantly impair the ability of cameras

to operate in adverse environmental conditions, such as at

night or in low-light conditions. In fact, infrared camera vision

is instrumental in detecting lane markings and in providing

rich contextual information [21]. Second, with over 600,000

electric vehicles sold by Tesla alone in the US [2] in 2023,

each containing numerous camera sensors, fitting them all with

infrared filters would incur non-negligible extra costs [42].

Another approach would be to integrate infrared films within

traffic signs. In a separate experiment (cf. Figure 17), we

observed that this solution hampers the recognition of the

traffic sign in the presence of natural ambient light.

APPENDIX B

IR DATASET: GTSRB-IR-100

We publish the dataset GTSRB-IR-100, which comprises

100 images of traffic signs under varying lighting conditions,

with half of the images additionally illuminated by an infrared

light source. Each image in our dataset is annotated with a

lux value measured on the surface of the street sign. To our

knowledge, this is the first and only publicly available dataset

featuring infrared light sources.

More concretely, our dataset has been captured according

to Figure 18 at distances of {0, 1, 3, 5, 7} meters. For this,

we took an image with ambient light and with an additional

infrared light source in the following environments:

• Controlled outdoor environment (traffic signs are placed

on a stand): Yield, Stop, Speed 20, Speed 50, Speed 100

• Realistic-outdoor environment (taking existing traffic

signs): Yield, Stop, Turn right, No entry, Speed 30
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APPENDIX C

ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact’s main components can be

accessed in the following repository7.

2) Hardware dependencies: CUDA/MPS acceleration is

recommended for speed, but not required. 100GB of disk space

is required.

3) Software dependencies: Linux/macOS as operating sys-

tem, Python, and Conda8 for creating a virtual environment

for the execution of the artifact.

4) Benchmarks: This artifact uses the GTSRB/GTSDB,

LISA, and Mapillary datasets. Model architectures are simple

CNNs for GTSRB9 and LISA10 (classification), and Faster-

RCNN and YOLOv8 (detection).

B. Artifact Installation & Configuration

Please create a fresh conda environment with: conda

create --name artifact python=3.9.19. Then

activate it with conda activate artifact, navigate

to the root of the project (in which the README.md is

located), and install all dependencies with pip install

-r requirements.txt.

Ensure that the environment is activated for all experiments

and that each file is executed from the project’s root directory.

Prepend PYTHONPATH=$(pwd) before the provided com-

mand lines in case module import errors are encountered.

Most models and datasets come bundled with the

project. An exception is the large Mapillary dataset

(Mapillary.zip), which is approximately 45GB in size

and can also be found in the repository (cf. Section C-A1).

Its unzipped folders images and labels need to be placed

in dataset/detection/Mapillary. For the evaluation

of our segmentation-based defense the Segment-Anything

model in the ViT-L architecture needs to be downloaded 11 and

placed in model/segmentation.

Device configuration (CUDA/MPS/CPU) is handled

automatically by the get_device() function in

utils/utils.py.

C. Experiment Workflow

All experiments are in experiments and are numbered in

line with Section C-E. They consist of a wrapper that sched-

ules invocations of the underlying framework with different

parametrizations, which are the basis for most of the reported

results in the paper. Any log output of these runs is logged into

the logs folder once a process terminates. The results and

plots for each experiment are written into its respective folder

to keep everything organized. More details on the parameters

of the underlying framework can be found in README.md.

7https://github.com/RUB-InfSec/infrared perturbations
8https://www.anaconda.com/docs/getting-started/miniconda/install#

quickstart-install-instructions
9https://github.com/vxy10/p2-TrafficSigns
10https://github.com/cleverhans-lab/cleverhans
11https://dl.fbaipublicfiles.com/segment anything/sam vit l 0b3195.pth

Each of the experiments consists of one (eX.py) or two

files (eX_{classification, detection}.py) to test

classification/two-stage and detection/single-stage pipelines

separately. The X resembles the number of the experiment

defined in Section C-D and Section C-E. The execution for

each experiment is structured in the same way. An experiment

can be run with python experiments/eX/eX.py

--mode run, evaluated/plotted with python

experiments/eX/eX.py --mode evaluate. As

the experiments can consume quite some time, the argument

--subset can be used in combination with --mode run

to only execute a representative subset of experiments, i.e.,

one parameter or a reduced number of image samples for

each dimension, which does not change program behavior

to facilitate functionality checks. Especially for a reduced

number of samples, the results do not align with those in

the paper, as they are based on averages across all samples.

The evaluation/plotting always considers only the data that

is found (subset/full data/data of a running experiment).

Experiments can also be terminated manually at any time to

evaluate the data generated by then.

D. Major Claims

• (C1): To simulate how a traffic sign illuminated by

infrared light is captured by a camera at different levels of

ambient brightness, we derive transformation coefficients

with a series of real-world images. This is proven by

experiment (E1) and shown in Figure 3 of the paper.

• (C2): The optimal black-box optimization strategy given

our perturbation constraints is local random search (LRS).

This is proven by experiment (E2) with results shown in

Fig. 6 of the paper for a classification pipeline and in Fig.

7 for a detection pipeline.

• (C3): Based on grid-searches, we can identify the optimal

parameters of our proposal in the digital domain as

k = 192 and l = 2. This is proven in experiments

(E3) (for a classification and detection pipeline) and (E4),

whose results are illustrated in Table III and Figure 9 of

the paper, respectively. We also illustrate its efficacy for

various types of signs in experiment (E5) in Table V.

• (C4): Perturbations generated on one machine learning

model transfer to another. This is proven in experiment

(E6) for a classification and detection pipeline and illus-

trated in Table VI of the paper.

• (C5): Our proposed segmentation-based defense outper-

forms existing defense schemes against our attack. This

is proven in experiments (E7) and (E8) and illustrated in

Table IX/X, Figure 15, and Figure 16.

• (C6): We also provide the GTSRB-IR-100 dataset of

traffic signs with(out) infrared illumination, which is

located in dataset/gtsrb-ir-100. Details can be

found in Appendix B.

E. Evaluation

No additional preparation/configuration is needed be-

yond Section C-B and hence the [How to]/[Preparation] are
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omitted. [Execution] is in line with Section C-C. The runtime

estimates are based on CPU (and subject to further refine-

ment) and benefit from acceleration with MPS/CUDA. For

classification/detection experiments, the subset consists of a

few samples from the dataset (besides a reduced parameter

space).

1) Experiment (E1): [Infrared transformation] [1 compute-

minute]: based on a set of included images taken at different

levels of ambient brightness with and without an infrared light

source, color-channel (RGB) specific parameters are computed

to fit the brightness-dependent curves.

[Results] The saved plot is Figure 3 and shows the values

of the images (points) and our fit curves (lines).

2) Experiment (E2): [Optimizer grid-search] [8 hours (sub-

set) / 96 hours (full)]: To determine the black-box optimization

strategy that optimizes our proposal the best, we conduct a

grid search over various optimizers and perturbation sizes. As

a representative subset, we propose computing the quickest

parameter, i.e., k = 768, across all optimizers.

[Results] The individual images are saved into results,

out of which Figures 6 and 7 are generated for classification

and detection, respectively. These results illustrate that LRS

is the optimization strategy that offers the best performance

both in terms of the highest attack success rate and the lowest

number of consumed queries.

3) Experiment (E3): [Parameter grid-search] [6 hours (sub-

set) / 72 hours (full)]: To understand the performance of

our proposal across different scenarios, i.e., combinations of

source and target signs, and datasets, we perform a grid search

over the two most important parameters that steer the strength

of our attack. These parameters are brightness in lux and the

number of patches k. As a result, we fix lux=10 and ablate

k, taking the best value of k = 192 and then ablate across

all levels of lux. As a representative subset, we propose to

compute the quickest parameter, i.e., just k = 192, lux = 10
across all scenarios.

[Results] The results are saved as heatmaps and have been

manually transferred to Table III. The scenarios "brake",

"accelerate", "stop", "untargeted" of

e3_classification map to Scenario 1-4, while

the result of e3_detection maps to Scenario 5. For each

scenario, we obtain results for two datasets (columns within

a given Scenario). The values for the rows lux and patches

(k) can be read from the heatmaps. The results show that our

proposal has ideal parameter combinations and performs well

across an extensive range of lux and patch counts.

4) Experiment (E4): [Ablation of patch-width] [3 hours

(subset) / 36 hours (full)]: To understand the performance of

the parameter l, i.e., patch width, on our proposal and to iden-

tify the optimal parameter, we perform a grid search for both

the strongest attacker (lux=10) across the targeted Scenario

1 on the GTSRB dataset, varying the number of perturbed

pixels. As a representative subset, we propose computing the

quickest parameter, i.e., k = 768, across all scenarios.

[Results] The results are saved as heatmaps, which can be

found in Figure 9. These results demonstrate that our proposal

achieves the best performance for l = 2, in terms of both the

highest attack success rate and the lowest number of consumed

queries.

5) Experiment (E5): [Ablation of specific sign pair] [1

hour (subset) / 8 hours (full)]: To understand the impact of

dissimilar source and target signs, we test the performance of

our proposal for the considered range of lux and number of

patches k on various source/target signs.

[Results] The results are saved as heatmaps, and the values

of the last row and third column are found in Table V. They

demonstrate that we can still achieve a high attack success rate

even with other source/target signs.

6) Experiment (E6): [Ablation of transferability][4 hour

(subset) / 48 hours (full)]: To understand how perturbations

generated against one model are still effective against other

model architectures, we evaluate cross-model transferabil-

ity. Specifically, we create perturbations against GtsrbCNN,

ResNet-50, ConvNeXt, and SwinTransformer for classifica-

tion, and Faster-RCNN and YOLOv8 for detection, using these

models as source models, and evaluate them against the same

set as target models.

[Results] The results printed on the console contain the

individual high transferability values (cf. Table VI).

7) Experiment (E7): [Ablation of other defenses] [3 hours]:

To understand how our generated digital perturbations can

be mitigated by existing defense schemes, we evaluate them

against an adversarially trained model and against input

smoothing, i.e., feature squeezing.

[Preparation] (E3) has to be run beforehand.

[Results] The results are printed on the console and contain

the clean accuracy (CA) of the (defended) classifier on benign

data and the attack success rate (ASR), which is the perfor-

mance on the adversarial data from the previous experiment.

This resembles the first four columns of Table IX.

8) Experiment (E8): [Ablation of our defense] [4 hour

(subset) / 48 hours (full)]: To understand how our generated

perturbations can be mitigated by our segmentation-based

approach, we take a self-captured dataset (included) of real-

world images and evaluate the performance of our detection

scheme against it. The subset considers a few images to which

the defense is applied.

[Results] The results are a histogram found in Figure 15 and

a ROC curve found in Figure 16. All results are presented in

Table X, where the values for the moving experiment are listed

in the rightmost column, as shown in Table IX. This illustrates

that our defense outperforms the other defenses.

F. Customization

At the top of the experiment files that run grid searches,

the parameters and ranges are defined (dictionary params).

In the __init__ function, the number of processes is

adjusted by tasks_per_worker. If you encounter out-of-

memory errors, consider reducing this number. The function

get_tasks defines the subset of experiments. Typically,

this involves a subset of parameters or a reduced number of

samples to speed up the execution of the environment.
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