
VDORAM: Towards a Random Access
Machine with Both Public Verifiability

and Distributed Obliviousness
Huayi Qi∗†, Minghui Xu∗✉, Xiaohua Jia‡, and Xiuzhen Cheng∗

∗School of Computer Science and Technology, Shandong University, Qingdao, Shandong, China
†Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China

‡Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
Email: qi@huayi.email, mhxu@sdu.edu.cn, csjia@cityu.edu.hk, xzcheng@sdu.edu.cn

Abstract—Verifiable random access machines (vRAMs) serve
as a foundational model for expressing complex computations
with provable security guarantees, serving applications in areas
such as secure electronic voting, financial auditing, and privacy-
preserving smart contracts. However, no existing vRAM provides
distributed obliviousness, a critical need in scenarios where
multiple provers seek to prevent disclosure against both other
provers and the verifiers, because existing solutions struggle
with a paradigm mismatch between MPC and ZKP that limits
the development of practical multi-prover ZKP front-ends. This
gap arises because MPC protocols are optimized for minimal
computation, whereas ZKPs require a complete trace for proving.
Furthermore, adapting RAM designs is also challenging, as
vRAMs are not built for the high costs of oblivious execution
and existing DORAMs lack public verifiability.

To address these challenges, we introduce CompatCircuit,
the first multi-prover ZKP front-end implementation to our
knowledge, designed to bridge this gap. CompatCircuit integrates
collaborative zkSNARKs with novel MPC protocols, unifying
computation and verification into a single compatible circuit
paradigm. Building upon CompatCircuit, we present VDORAM,
the first publicly verifiable distributed oblivious RAM. VDORAM
reconciles the high communication latency of online MPC with
the complexity of offline proof generation, resulting in a RAM
design that balances these competing demands. We have imple-
mented CompatCircuit and VDORAM in approximately 15,000
lines of code, demonstrating their practical feasibility through
extensive experiments, including micro-benchmarks, comparative
analysis, and program examples.

I. INTRODUCTION

Random access machines (RAMs) serve as a crucial model
for expressing complex computational logic, especially in the
field of secure computation. A RAM executes a program on
its processor (register-based [11], [3], [78], [13], [51], [31],
[56] or stack-based [58], [57], [25]) with a random access

✉ Minghui Xu is the corresponding author (Email: mhxu@sdu.edu.cn).

TABLE I
COMPARISON OF RANDOM ACCESS MACHINE SCHEMES.

Verifiable to participants
or designated verifiers Publicly verifiable

Non-
oblivious vRAM [46]

vRAMs
[57], [58], [25]
[78], [21], [61]

Oblivious
with non-
distributed

secrets

vRAMs
[26], [38], [37], [39], [76]

vRAMs
[11], [13], [77], [3]

[19], [31], [29]

Oblivious
with

distributed
secrets

DORAMs
[48], [74], [51], [44], [23]

This work:
VDORAM

memory1. Table I summarizes our classification of RAMs
based on obliviousness and verifiability:

Verifiable random access machine (vRAM). A vRAM en-
ables a prover to execute a RAM program on an input and gen-
erate a proof of correct execution. Verifiability: vRAMs relying
on private-coin interactive zero-knowledge proofs (ZKPs) offer
verifiability exclusively to designated verifiers [46], [26], [38],
[37], [39], [76]. In contrast, vRAMs based on non-interactive
zero-knowledge (NIZK) proofs achieve public verifiability,
producing proofs that can be verified by any entity, either
with a privacy consideration [11], [13], [77], [3], [19], [31],
[29] or without it [57], [58], [25], [78], [21], [61]. Some
publicly verifiable vRAM schemes with succinctness are also
known as zero-knowledge virtual machines (zkVMs) [3], [61]
or zero-knowledge Ethereum virtual machines (zkEVMs) [58],
[57], [25]. Succinctness means the proof size and verification
complexity sub-linear in the size of the statement, i.e., the
verification time is much less than the proof generation time.
Consequently, succinct vRAMs often act as layer-2 scaling
solutions for blockchain smart contracts. Obliviousness: Non-
oblivious vRAMs, although most of them are based on ZKPs,
prioritize performance [21], [61], [78] or compatibility [57],

1In this paper, the abbreviation “RAM” consistently refers to random access
machines. Because the major challenge in a RAM involves implementing and
checking random access memory, a proportion of related literatures may refer
to “RAM” as random access memory.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230016
www.ndss-symposium.org

[58], [25] by compromising on privacy. Conversely, other
vRAMs inherently exhibit obliviousness due to the zero-
knowledge property, either with public verifiability [11], [13],
[77], [3], [19], [31], [29] or without it [26], [38], [37], [39],
[76], ensuring that no information about the prover’s secret
inputs is leaked to verifiers beyond what can be inferred
from the output. However, a significant constraint of oblivious
vRAMs lies in the fact that the prover, being a single entity,
is required to possess knowledge of all the secrets. This
requirement restricts their use in scenarios where secrets are
distributed among multiple provers.

Distributed oblivious random access machine (DORAM): In
DORAMs, a group of parties collaboratively execute a RAM
program, each exclusively holding partial inputs, without rely-
ing on a central trusted entity knowing all secrets. Distributed
obliviousness ensures that no information is leaked to any
party during program execution, except for the revealed output.
DORAMs are generally built upon multi-party computation
(MPC) techniques. Semi-honest DORAMs [63], [56] lack
verifiability, while maliciously secure DORAMs [48], [51],
[23] inherently achieves verifiability within the parties, which
is different from public verifiability.

To the best of our knowledge, no existing RAM schemes
simultaneously offer both public verifiability and distributed
obliviousness. Such a RAM would be valuable in scenarios
where verifiers cannot trust any of the provers [66], [2],
while each prover seeks to prevent the disclosure of their
secrets against other parties or verifiers. We therefore pose
the following question:

Can we construct a publicly verifiable distributed oblivious
RAM (VDORAM)?

At first glance, this appears to be an engineering challenge
of integrating two known technologies, an MPC system and
a multi-prover ZKP system like collaborative zkSNARKs
[66]. However, a deeper investigation reveals a fundamental
conflict between the design philosophies of MPC protocols
and multi-prover ZKP. We detail these challenges along with
our contributions in response.

There is a fundamental paradigm mismatch between
MPC and ZKP, which has hindered the emergence of
a practical multi-prover ZKP front-end. The goal of an
MPC protocol is minimalist secure computation; its design is
optimized to reduce communication and processing overhead
by computing a final result from minimal information. In
contrast, the goal of a ZKP system is verifiability. It demands
a complete and static trace of the entire computation, where
every single intermediate value must serve as a witness within
a constraint system. While this integration is straightforward
for basic arithmetic like addition and multiplication [47], the
paradigm mismatch is particularly evident for more sophisti-
cated functionalities such as comparisons, equality checks, and
bit-wise operations. The MPC protocols for these tasks often
rely on procedures that do not generate the complete set of
auxiliary witnesses required to construct a valid and non-trivial
ZKP constraint. This mismatch makes a simple integration of
existing tools unworkable. For instance, a state-of-the-art MPC

comparison protocol [64] determines a result by extracting
only the most significant bit (MSB) of a difference, which
is highly efficient for computation. However, this shortcut is
incompatible with ZKP systems, as MSB-based approach does
not hold on a finite field Fp where a ZKP system works on,
and the single output bit is insufficient evidence to prove the
comparison was performed correctly. Therefore, the mismatch
has been a primary obstacle preventing the emergence of
practical, programmable front-ends for multi-prover ZKPs.
Consequently, prior works have had to either assume such a
tool exists [66] or resort to proving randomly generated, non-
programmable relationships [62], [40].

Contribution. Our work provides CompatCircuit, a multi-
prover ZKP front-end that establishes a new MPC-for-ZKP
paradigm. Instead of treating MPC and ZKP as incompatible
systems, CompatCircuit unifies secure computation and proof
generation into a single, compatible circuit paradigm. We iden-
tified core functionalities from single-prover front-ends [41],
[52] and re-engineered them for the multi-prover context. This
resulted in two new fundamental primitives beyond standard
arithmetic: a modified inversion-or-zero protocol that safely
handles zero inputs, and a full bit-decomposition protocol
extracting all bits of a field element, fulfilling a strict ZKP
requirement that existing MPC tools like MPyC and MP-
SPDZ do not meet. Because the underlying primitives are
designed to be both secure and provable, any gadget built
from them automatically inherits these guarantees. Therefore
we build a rich library of higher-level gadgets, such as com-
parisons, conditional selections, and equality checks, which
are created through direct composition. By building on these
primitives and gadgets, CompatCircuit allows developers to
construct complex multi-prover ZKP applications with a fa-
miliar circuit-design experience, effectively brings an MPC-
for-ZKP paradigm.

How to make the random access machine execution
simultaneously oblivious and publicly verifiable. The entire
state transition of the machine, including memory access, must
be performed blindly among the provers, yet this blind execu-
tion must produce a trace that can be proven correct in a ZKP.
Conventional vRAMs are unsuitable because their witness
generation is a plaintext execution, which is fundamentally
non-oblivious. They optimize under the assumption that this
plaintext execution is computationally free. Conversely, exist-
ing DORAMs are designed for obliviousness but not for public
verifiability. DORAMs seek to minimize communication and
computation overheads in oblivious operations, with a focus
on optimizing oblivious data structures [50], such as oblivious
arrays [48], [51] and oblivious caches [23] to facilitate effi-
cient access across distributed secrets, without considering the
requirements of publicly verifiable proof generation.

Contribution. In response, we build VDORAM on top
of our CompatCircuit system, the main architecture demon-
strated in Figure 1. VDORAM is a register-based random
access machine that allows an arbitrary number of provers
to blindly execute a program on their distributed secret inputs.
The machine state, including the program counter and register

2

Registers

Code Segment

PrivateInput, R0

PrivateInput, R1

LessThan, R2, R0, R1

PublicOutput, R2

Input Shares

Private
Input 0

Provers

Private
Input 1

Prover
A

Prover
B

Instruction
Fetch

Memory
Fetch

Instruction Execution

Trace Sort and Verification

Memory
Trace Table

IO Buffer

Circuits as CompatCircuit States

Fig. 1. VDORAM architecture.

values, remains secret-shared throughout the execution. To
prevent side-channel leakage, the execution time is constant re-
gardless of the instruction type being processed, ensuring that
the operational pattern reveals no information. In the end of the
execution, a publicly verifiable proof can be generated to prove
the validity of execution to external verifiers who does not
trust any of the provers. A central component of VDORAM
is its memory management scheme, which is architecturally
designed to balance the inverted performance costs of this new
paradigm. It reconciles the high communication latency of the
online MPC computation with the complexity of offline proof
generation. This leads to a design that strategically makes
trade-off between these competing demands, resulting in a
functional system despite the inherent overheads of its stronger
security model. We also make VDORAM open-source at https:
//github.com/BDS-SDU/vdoram-artifacts/ and demonstrate the
capabilities of VDORAM with 7 program examples, micro-
benchmarks, and comparasion with prior works.

Our contributions are summarized as follows:
1) We introduce CompatCircuit, the first front-end frame-

work, to our knowledge, for multi-prover ZKP appli-
cations that introduces the MPC-for-ZKP paradigm by
unifying secure computation and proof generation into a
single, compatible circuit.

2) We design and construct VDORAM, the first random
access machine that achieves both public verifiability and
distributed obliviousness.

3) We provide a full, open-source implementation of our
CompatCircuit and VDORAM system and conduct a
comprehensive evaluation, demonstrating the practical
feasibility of the VDORAM model.

Roadmaps. Section II introduces related works. Section III
details the model and preliminaries. In Section IV, we present
our VDORAM design, including the CompatCircuit frame-
work, memory management, the full protocol, and analysis.
The implementation and evaluation are presented in Section V.
Section VI concludes our work and discusses possible future
directions.

II. RELATED WORK

This section presents a review of related work, including
both succinct and non-succinct verifiable RAMs. Furthermore,
it encompasses distributed oblivious RAMs.

Succinct vRAMs. Ben-Sasson et al. proposed the first
SNARK-based verifiable RAM, TinyRAM [11], in which the

execution proof can be formulated as a zkSNARK arithmetic
circuit. Subsequently, vnTinyRAM [13] was introduced, which
provides universality, making it independent of the specific
program being executed. These efforts enable subsequent
research in the field.

Several vRAMs prioritize compatibility with the Ethereum
Virtual Machine (EVM), aiming to support smart contract
rollups for blockchain layer-2 solutions. These vRAMs include
Polygon zkEVM [58], zkSync [57], and Scroll [25]. Since
the EVM inherently lacks support for private variables, these
projects generally favor succinctness over the zero-knowledge
property. In contrast, Polygon Miden [59] strives to be an
EVM-incompatible vRAM that caters to privacy concerns
within the blockchain space, at the expense of EVM com-
patibility.

Other notable succinct vRAMs include Cairo [33], which
presents a verifiable RAM rendered in zkSTARK, utilizing
an algebraic intermediate representation (AIR) rather than an
arithmetic circuit/R1CS, coupled with a write-once memory
model. Risc0 [77] is another STARK-based vRAM support-
ing the RV32IM ISA. Additionally, there are vRAMs with
WebAssembly (WASM) support [30]. Recently, Arun et al. de-
signed a RISCV-based vRAM called Jolt [3], which increases
efficiency by implementing lookup singularity: all circuits
solely perform lookups into pre-computed tables.

Non-succinct vRAMs. Some vRAMs sacrifice succinctness
to achieve significantly better proof generation times. In con-
trast to employing zk-SNARKs, these vRAMs construct their
proofs utilizing non-succinct zero-knowledge proof techniques
such as MPC-in-the-Head [42], ZK from vector oblivious
linear evaluation (VOLE) [20], [6], [75], and ZK from garbled
circuits [43]. In this context, proof schemes operating under
the private coin setting are inherently interactive, necessitating
verifier participation in the proof generation process. Con-
versely, schemes reliant on public coins can be made non-
interactive by employing the Fiat-Shamir transformation [24],
thereby preserving public verifiability.

Heath et al. developed a ZK oblivious RAM, termed Bub-
bleRAM [37], where the zero-knowledge proof is constructed
using garbled schemes [43]. Subsequently, BubbleCache [39]
was introduced, which enhanced efficiency through the im-
plementation of multi-level caching. Franzese et al. built a
constant-overhead interactive verifiable RAM [26], improv-
ing memory checking efficiency using a polynomial equality
check. Goel et al. [31] developed their implementation, named

3

https://github.com/BDS-SDU/vdoram-artifacts/
https://github.com/BDS-SDU/vdoram-artifacts/

Dora, based on the proposed concept of ZKBag. By introduc-
ing disjunctive zero-knowledge [6], [32], [53], [54], [55], their
approach further enhances efficiency by allowing introducing
additional instructions to the processor circuit at no extra cost.
Saint Guilhem et al. proposed the construction of verifiable
RAM based on public-coin ZKPs [19].

Distributed Oblivious RAMs. Differing from vRAMs that
focus on public verifiability, distributed oblivious random ac-
cess machines (DORAMs) [73] represent a significant area in a
multi-party setting, which is also known as RAM-MPC. Here,
each party holds a portion of the secret and they work together
to execute the RAM without relying on a trusted entity to
hold all the secrets. Marcel Keller introduced a practical
implementation of an oblivious machine within the arithmetic
black-box model [48], leveraging SPDZ [18], an MPC protocol
that offers active security. Subsequently, Keller et al. devised
a garbled-circuit-based RAM with active security [51], which
minimizes the number of broadcast rounds between memory
accesses. Ji et al. [44] concentrated on constructing a RAM ca-
pable of private function evaluation. Falk et al. have introduced
a 3-party distributed RAM-MPC framework [23] that boasts
logarithmic overhead and is resilient to malicious adversaries.
In addition, Hamlin et al. proposed their first construction of
FHE-based ORAM [36], [35].

Numerous efforts have been directed toward implementing
RAM with a focus on either public verifiability or distributed
obliviousness. However, research remains sparse in scenarios
where both properties are of significance. The existence of
a VDORAM, verifiable distributed oblivious random access
machine, is a question that has not been comprehensively
addressed.

III. MODEL AND PRELIMINARIES

This section begins with an introduction to our model,
including system roles, threat model, and the essential prop-
erties of our VDORAM. Subsequently, we will introduce
several underlying building blocks, including collaborative
zkSNARKs, multi-party computation, arithmetic circuits, and
RAM runtimes.

A. System and Threat Model

Our VDORAM is designed to create a distributed oblivious
vRAM that enables a group of provers to collaboratively
execute a given program using their individual inputs. Upon
completion, the provers collectively convince non-interactive
verifiers, attesting to the integrity of the outputs.

The following are the system roles along with the associated
threat model.

• Provers. Provers are responsible for operating the VDO-
RAM runtime, supplying input data, and generating zero-
knowledge proofs for verifiers. Correctness: The group of
provers is considered malicious to verifiers: it is assumed
that 0 provers will act honestly, i.e., all provers are
eager to collude to compromise the correctness of results
for their personal gains. Privacy: Provers do not seek
privacy if they are able to compromise correctness. If it’s

nearly impossible to compromise correctness, the provers
attempt to protect their secrets from being exposed: each
prover is considered as a polynomial time adversary,
curious to obtain confidential information from other
provers, where at least t (e.g., t = 1) provers will act
honestly to protect their secrets from being exposed.

• Non-interactive verifiers. Similar to participants in tradi-
tional NIZK contexts, verifiers in our system can be any
entity that assesses the validity of the proofs provided by
the provers. These verifiers are not entrusted with any
confidential or sensitive data, except for that which can
be inferred from the public outputs.

• Trusted initializer. They generate the public parameters
for collaborative zkSNARKs, as well as precomputed data
such as beaver triples for MPC.

• Program vendors. They publicly provide programs to be
executed within the VDORAM runtime. These programs
are audited and are trusted not to embed additional
information in their outputs.

Our VDORAM necessitates the following properties.
• Completeness. Honest provers can complete the compu-

tation process and generate a valid proof.
• Knowledge soundness. Even in the event of collusion

among all provers to produce a false proof, the probability
of successfully passing the verification process remains
negligible.

• Succinctness. The verification time should be significantly
less than the computation and proof generation time.

• Zero-knowledge. Verifiers should not acquire any con-
fidential information from any prover, except for those
derived from public output.

• Distributed obliviousness. Each prover should not acquire
any confidential information from any other prover, ex-
cept for those derived from public output and private
output meant to be revealed among provers.

The provers firstly utilize an MPC protocol for computing
all necessary intermediate values as secret shares. Subse-
quently, they apply collaborative zkSNARKs [66] to gen-
erate a publicly verifiable proof using these secret shares
as witnesses. We adopt a dishonest-majority MPC protocol
supporting mixed boolean logic and arithmetic computations
over a finite field Fp and the ring Z2n . Below explains the
considerations:

• Integrating zkSNARKs. Our threat model assumes that the
entire set of provers may be malicious. While a mali-
ciously secure dishonest-majority MPC protocol guaran-
tees the privacy of computations as long as at least t
provers behave honestly, we additionally require public
verifiability. This is achieved by enabling independent
verification of the computations’ correctness through col-
laborative zkSNARKs. This approach ensures that even
if all provers collude, a public verifier can still verify the
integrity of the computation.

• Mixed computations. Collaborative zkSNARKs typically
operate on statements expressed as arithmetic operations
over a finite field Fp. However, unlike a standalone MPC

4

application, when MPC is used to support zkSNARKs, it
must compute auxiliary data in addition to the primary
computational result. This necessitates supporting compu-
tations in both the boolean domain and the ring Z2n . This
mixed-domain computation is essential for generating the
necessary inputs for the zkSNARK proof system.

B. Preliminaries

1) Collaborative zkSNARKs: A zero-knowledge Succinct
Non-interactive ARgument of Knowledge (zkSNARK) is a
cryptographic protocol in which a prover P convinces a
verifier V that a pair (x,w) ∈ R without revealing w. Here, x
is referred to as the instance or public input, and w serves
as the private input, also known as the witness. Initially,
zkSNARKs [34], [65], [28], [15] were designed for a single
prover P . Then, Ozdemir et al. expanded this scheme to a
multi-prover scenario, introducing the concept of collabora-
tive zkSNARKs [66]. This concept were further improved
in [62], [2], [40]. In a collaborative zkSNARK, m provers
P0,P1, . . . ,Pm−1 each hold a witness wi and they collectively
aim to convince the verifier V that (x,w0, w1, . . . , wm−1) ∈
R. This protocol contains the following algorithms:

• Setup(1λ, R)→ pp: Produces the public parameters pp.
• Prove(pp, x, w0, w1, ..., wm−1) → π: Generates a proof
π if (x,w0, w1, ..., wm−1) ∈ R in MPC; aborts otherwise.

• Verify(pp, x, π)→ {0, 1}: Validates the proof π.
An (m, t) collaborative zkSNARK has properties as follows:

• Completeness: Honest provers generate a valid proof
when they have valid witnesses such that (x,w0, w1, ...,
wm−1) ∈ R.

• Knowledge soundness: Provers without knowledge of
valid witnesses cannot produce a valid proof.

• t-zero-knowledge: If less than t provers collude, provers
and verifiers cannot gain any information about witnesses
w0, w1, ..., wm−1 (excluding wi for prover Pi).

• Succinctness: Both the proof size and the verification time
are o(|R|), where |R| denotes the size of relation R.

2) Multi-Party Computation: A multi-party computation
(MPC) protocol [18], [10], [49] involves m parties, each
performing computations to determine the outcome y ←
f(x0, x1, . . . , xm−1), where f is a function defined as f :
Xm → Y . In this protocol, each party i possesses an input
xi ∈ X . An MPC protocol is considered secure if it reveals
no additional information beyond that which is implicit in
the output y. As long as no more than t parties collude, the
protocol maintains its security.

In particular, our research focuses exclusively on dishonest-
majority MPC protocols. In dishonest-majority MPC proto-
cols, where typically t = m − 1, additive secret sharing is
utilized. In this scheme, a secret value a is distributed among
the parties as a0, a1, . . . , am−1, each party holding a share
such that the sum of all shares equals a. We use the notation
[a] to denote the secret shares of the value a held by each
party. To compute addition r ← a + b, each party computes
their share as [r]← [a]+ [b] within ring or fields. To compute
multiplication r ← a · b, parties consume a pre-shared Beaver

triple ([α], [β], [γ]) such that α · β = γ. They broadcast and
reveal δ and ϵ where [δ] = [a] − [α] and [ϵ] = [b] − [β]. The
final share is computed as [r]← [γ] + δ · [β] + ϵ · [α] + δ · ϵ.

To facilitate complex operations beyond simple arithmetic,
particularly those requiring bit-level manipulation within a
prime field setting, we additionally utilize two techniques
in mixed MPC: doubly-authenticated bit (daBit) [70] and
extended doubly-authenticated bits (edaBit) [22]. A daBit
consists of a random bit r ∈ [0, 1] that is secret-shared among
parties in both an arithmetic domain [r]p ∈ Fp and a Boolean
domain [r]2 ∈ [0, 1], useful to convert a Boolean secret
share into an arithmetic share by utlizing B2Ap protocol [1].
Similarly, an edaBit provide shares of a random value r ∈ Fp

in an arithmetic domain [r]p ∈ Fp, along with shares of its
individual bits [r]i ∈ [0, 1] (i ∈ [0, l), where l denotes the bit
length of p) in a Boolean domain.

Publicly verifiable MPC, also known as publicly auditable
MPC, is usually constructed by committing values to a public
bulletin-board and constructing an NIZK proof checking the
transcript [5], [7], [8], [69], [47]. Alternatively, Ozdemir et al.
[66] proposed a novel publicly verifiable MPC construction
from their proposed multi-prover ZKP, verifying statements
in R1CS. We favor this latter approach due to its capability
to enable the construction of efficient proofs focused on only
checking the integrity of RAM states, as opposed to validating
the entire sequence of computations leading to those states.

3) Arithmetic Circuit: An arithmetic circuit [13], [67], [14],
[9] is a directed acyclic graph (DAG) consisting of gates
and wires, commonly used in both MPC and zkSNARKs
programming. Each wire carries a value within a finite field
Fp; additionally, they may also operate within a ring Z2n

for MPC, which we will utilize later. Gates in the circuit
take in wires as inputs and generate output wires based on
the operation they perform, either addition or multiplication.
Moreover, arithmetic circuits can be easily converted to rank-1
constraint system (R1CS).

4) Rank-1 Constraint System: An R1CS is a set of con-
straints, where each constraint is a triplet of vectors a,b, c
satisfying (a ·s) ·(b ·s)−c ·s = 0 in Fp. Here, s is the solution
vector, which contains instances (all constant or public inputs)
and witnesses (all private inputs and all intermediate values).
This structure forces any complex computation to be flattened
into a series of additions and multiplications checks, which is
typically done by a ZKP front-end.

5) Verifiable Random Access Machine: We adopt the defi-
nition from [3] and [30]. A random access machine runtime is
defined as a program receiving an input tuple (I, E, in), where
I denotes a code image vector of instructions, E represents the
entry point, and in denotes input data.

A register-based RAM maintains a state s, represented by
the tuple (pc,R,M, halt), where pc denotes the program
counter, referring the location of an instruction in the code
image vector I, R represents a set of registers that hold
values, M denotes the memory state, and halt is a public bit
indicating whether the machine has reached its termination.
The RAM runtime simulates the semantics of each instruction

5

and produces execution states. Each execution state si is
generated from the previous state si−1 by executing the related
instruction. The execution of the RAM runtime is considered
valid when each new state follows the expected result from the
prior state, with all states except the last one remaining non-
halted. A verifiable RAM consists of the following procedures:

• Setup(1λ, I, E)→ pp: Generates public parameters.
• Compute(I, E, in) → out, s : Computes output out with

each machine state si by simulating the RAM runtime.
• Prove(pp, I, E, in, out, s) → π : Generates an execution

proof π; aborts if state transitions are invalid.
• Verify(pp, I, E, in, out, π)→ {0, 1}: Verifies the proof π

on whether state transitions are valid.

IV. VDORAM: PUBLICLY VERIFIABLE DISTRIBUTED
OBLIVIOUS RAM

We favor advocate for the development of VDORAM from
a publicly verifiable MPC through leveraging multi-prover
ZKPs, due to its capability to enable the construction of
succinct proofs focused on only checking the integrity of RAM
states, as opposed to validating the entire sequence of com-
putations leading to those states. We present the overview of
the VDORAM in Section IV-A, achieving publicly verifiable
MPC with multi-prover ZKPs. Subsequently, in Section IV-B,
we discuss our CompatCircuit framework. This framework
provides an MPC-for-zkSNARK construction, facilitating the
integration of commonly utilized MPC functionalities for a
multi-prover vRAM. Following that, in Section IV-C, we
explore a memory management scheme tailored for a multi-
prover environment, making a trade-off between communica-
tion overhead in computation stage and the circuit size that
determines the proof generation overhead. Finally, we outline
our VDORAM protocol in Section IV-D and provide analysis
in Section IV-E.

A. Overview

The overall workflow of VDORAM is shown in Figure 2.
A publicly provided program is represented as a code segment
containing multiple instructions. Provers, who exclusively hold
secret inputs, collaboratively execute the machine and pro-
duces a proof by executing instruction fetch, memory fetch,
instruction execution, trace sort and verification circuits.

At a high level, we can implement VDORAM from adapt-
ing traditional single-prover vRAMs [13], [58], where only
necessary verifications are involved to check the integrity of
RAM states. This adaptation involves several modifications:
migrating the plaintext front-end computation to an MPC-
based oblivious computation, committing to hash digests of
public values, and associating the results of oblivious com-
putation with R1CS witnesses. The workflow is shown in
Figure 2. During each iteration, the provers commence by
covertly retrieving the instruction to be executed, based on
a blind program counter. Concurrently, they discretely fetch
the possible memory value that may be required during the
instruction execution. If the instruction does not entail a mem-
ory operation, a dummy memory value is still fetched from

Code Segment

Program Counter
Instruction

Fetch Current Instruction

Is Halt/IO Operation

Memory Trace Table
Memory

Fetch

Memory Address
Register Memory Value

Instruction
Execution

General-Purpose
Registers

Timestamp

Current Instruction

Public Input *

Private Input *

General-Purpose
Registers

Program Counter

Memory Trace

Public Output *

Private Output *

* Only if operation type matches.
Halt?

Memory Trace Sort
and Verification

Generate
R1CS Inputs

Start

Generate
zkSNARK Proofs End

NoYes

Private VariablePublic VariableProcedure
Procedure with inputs/outputs

Fig. 2. Workflow of VDORAM.

the memory trace table. Following this, the provers execute
the instruction by updating registers, interacting with I/O, and
generating memory access operations, without knowing the
specific nature of the instruction being executed. Even if there
is no match, a dummy memory access is created and inserted
into the memory trace table. These steps are repeated until
the machine halts. Subsequently, the provers demonstrate the
integrity of the memory accesses through a consistency check.

However, at a detailed level, we still face challenges, includ-
ing the limited availability of sophisticated publicly verifiable
MPC protocols, the lack of front-end implementations for
multi-prover ZKPs, and the unsuitability or inefficiency of
existing random access memory designs for computations
requiring both distributed obliviousness and public verifiabil-
ity. We will address these challenges in Section IV-B and
Section IV-C.

B. CompatCircuit: A Unified Front-End for Multi-Prover
Computation and Multi-Prover Proofs

We introduce CompatCircuit, a front-end for multi-prover
ZKPs that systematically adapts MPC protocols for generat-
ing R1CS witnesses. Our approach eliminates dependencies
on plaintext values common in single-prover front-ends by
replacing conditional branching with oblivious computations,
such as using an inversion-based zero test for equality checks
instead of relying on knowing the condition’s validity [19]. We
also redesign MPC protocols unsuitable for ZKPs; for instance,
where an efficient MPC comparison [64] is insufficient for
ZKP statement construction, we substitute it with a sequence
of boolean operations on decomposed bits. To this end, we
improved the bit-decomposition protocol from [17], that sup-
ports extract all bits from a finite field Fp, overcoming the

6

limitations of existing MPC libraries [71], [49] which do not
extract all bits required for ZKP. Furthermore, CompatCircuit
acts as a compatibility layer to unify the MPC and ZKP
codebases, providing a familiar development environment akin
to single-prover ZKP tools and thereby minimizing implemen-
tation complexity and human error.

We propose our CompatCircuit as four primitives and
gadgets. Primitives include field addition, multiplication,
inversion-or-zero, and fully bit-decomposition. The protocols
for inversion-or-zero, and fully bit-decomposition are shown in
Figure 3. We then extend other commonly used functionalities
provided in existing single-prover zkSNARK toolchains, par-
ticularly circomlib [41] and jsnark_interface [52],
as the composition of the four primitives, namely gadgets.

Protocol ΠInvOrZero

Input: A secret-shared field value [a].
Protocol:

1) Compute [r]← [a]p−2 with ⌈log2 p⌉ multiplications.
2) Compute witnesses for R1CS constraints a · (a · r−

1) = 0 and r · (a · r − 1) = 0.

Protocol ΠFBits

Input: A secret-shared field value [a], l daBits, an edaBit
([b] ∈ Fp, [b0], [b1], . . . , [bl−1] ∈ {0, 1}) providing secret
shares of a random field value with its bits [22].
Protocol:

1) Compute [c] ← [a] − [b] ∈ Fp, and reveal c ∈ Fp.
Then, compute plaintext value d ← c + 2l − p ∈
Z2l+1 , and perform plaintext bit-decomposition on
d, getting bits (d0, d1, . . . , dl−1, dl).

2) Use a bit adder with carry up to add bit se-
quence ([b0], [b1], . . . , [bl−1]) with (d0, d1, . . . , dl−1,
dl). Denote the result bit sequence as ([e0], [e1], . . . ,
[el]).

3) Denote the most-significant bit [el] as [q] ∈ {0, 1}.
Denote (p0, p1, . . . , pl−1) as the bit sequence of field
prime p ∈ Z2l . Multiply each public bit with [1−q],
getting ([f0], [f1], . . . , [fl−1]).

4) Use a bit adder with carry up to add bit se-
quence ([e0], [e1], . . . , [el−1]) with ([f0], [f1], . . . ,
[fl−1]). Denote the results ([a′0, a

′
1, . . . , a

′
l−1]).

5) For each boolean share [a′i] ∈ {0, 1}(i ∈ [0, l −
1]), convert it back to arithmetic share [ri] ∈ Fp by
consuming a daBit, using B2Ap protocol proposed
in Prio+ [1].

6) Compute witnesses for R1CS constraints a =∑l−1
i=0 ri · 2i and (r0, r1, . . . , rl−1) < (p0, p1, . . . ,

pl−1).

Fig. 3. The protocols for inversion-or-zero and full bit-decomposition in
CompatCircuit. The inversion-or-zero protocol generalizes the input domain
to include zero while preserving privacy over whether the input is zero. The
full bit-decomposition protocol ensures all bits of the input are extracted in
their arithmetic shares, enabling the satisfaction of R1CS constraints.

Inversion-or-zero: Inspired by [41], we introduce this prim-
itive to facilitate an efficient construction of equality checks.
In this protocol, each participant holds an arithmetic additive
secret share [a] of a field element a ∈ Fp. The inversion-or-
zero operation will produce r ← 0 if and only if a = 0.
Otherwise, it outputs the inverse r ← a−1, ensuring that
a ·a−1 = 1. Importantly, information regarding whether a = 0
remains confidential. The typical efficient constant-round MPC
construction, which depends on a ̸= 0 and is facilitated
by disclosing the product of a with a random multiplier, is
unsuitable due to this confidentiality requirement. Instead,
the MPC implementation harnesses Fermat’s little theorem
to compute the inverse, necessitating ⌈log2 p⌉ multiplications.
Additionally, adjustments are made to the R1CS statements.
Ordinarily, one R1CS statement a · r = 1 suffices, as it
presupposes a ̸= 0 in typical field inversions. However, to
maintain correctness under our modified conditions, we em-
ploy four multiplications, ensuring the simultaneous validity
of two statements: a · (a · r − 1) = 0 and r · (a · r − 1) = 0.

Fully bit-decomposition: We construct a fully bit-
decomposition protocol that extracts all bits from a field
element, building upon and enhancing the efficiency of a prior
MPC implementation [17] since other constructions [49], [71]
do not apply. Initially, each participant holds an arithmetic
additive secret share [a] of a field element a ∈ Fp. This bit-
decomposition operation results in l = ⌈log2 p⌉ bits, denoted
as ri (i ∈ [0, l−1]), such that the equation a =

∑l−1
i=0 ri ·2i is

satisfied. Subsequently, each participant receives an arithmetic
additive secret share, denoted as [ri], for each bit bi (i ∈
[0, l−1]). In the original implementation by [17], an additional
bit [q], indicating whether an overflow occurs, is computed
from a separate comparison of two bit sequences, and p is
subtracted only if [q] is true. Our construction circumvents
this comparison by consistently subtracting p during the first
bit addition. Consequently, [q] naturally emerges as the most
significant bit of the result. The original conditional subtraction
has been replaced by a conditional addition executed only
when [1− q] is true. This adjustment enhances the efficiency
of the protocol. We refer to the full version of our paper [68]
for the correctness.

We now construct other commonly used functionalities [41],
[52] as the composition of the four primitives. Boolean logic
and if-else selection can be directly represented using field ad-
dition and multiplication, zero test and equality check requires
an inversion-or-zero operation, while less-than comparison
require bit-decompositions.

• Boolean logic. Although operations should primarily han-
dle field elements in Fp as inputs and outputs, it is also
feasible to simulate boolean AND/OR/XOR/NOT opera-
tions with field additions and multiplications, assuming
the input field element is in range {0, 1}.

• If-else selection. This operation selects a value a if
condition bit c is true, or b otherwise. This is usually
implemented as r ← a · c+ b · (1− c).

• Zero test. This maps a field element to a boolean value
indicative of whether it is zero. Given an element a,

7

return b = 1 if a = 0, otherwise return 0. This can be
implemented using the inversion-or-zero primitive: let inv
represent the inversion-or-zero result of a, and then return
b← 1− a · inv.

• Equality check. To avoid conditionally branching intro-
duced in [19], we migrate the implementation by [41],
which begins by subtracting the two elements and subse-
quently zero-testing the difference.

• Less-than comparison. Given two elements a and b, return
a bit c indicating whether a < b. It is constructed
from initially performing fully bit-decomposition of the
two elements and subsequently comparing them utilizing
boolean operations. The bit sequences and intermediate
results act as auxiliary witnesses to prove the correctness.
Despite its higher complexity compared to a pure MPC
implementation [64], the increased overhead is justified
by the proof requirements.

With CompatCircuit, it becomes straightforward to con-
struct the execution circuit for VDORAM. We refer to the full
version of our paper [68] for the protocols of all VDORAM
circuits. However, it remains to be determined whether the
memory fetch, trace sort, and trace verification circuits can
achieve efficient construction in obliviousness. This will be
the focus of our investigation in the following subsection.

C. Memory Management: Balancing Oblivious Computation
Overheads with Proof Generation Complexity

Oblivious ArrayInstruction
Execution

Push

Oblivious Array

Order by

Oblivious Sort Permutation Proof

Adjacent Check
(addr , t , op , val)

SELECT val WHERE
addr = addrquery

ORDER BY t DESC
LIMIT 1

(addr , t)

M M '

Fig. 4. Memory management scheme of VDORAM.

As shown in Figure 4, we construct a multi-prover memory
management scheme based on [26]. The main procedures are
as below: 1) During each instruction execution, a memory
access tuple m = (addr, t, op, val) is generated and saved
to the oblivious array M , where t refers to a monotonically
increasing timestamp and op indicates if the memory access is
a load or a store instruction. Note that in our VDORAM, we
also want to hide whether the instruction relates to memory
access or not, and therefore, if not, we specify the memory
address addr with the maximum value, p−1 in Fp. 2) During
each memory fetch, the stored memory value might be obliv-
iously fetched with an address filter, and if there are multiple
values, select the one with the largest t, which means the
most recent value that corresponds to the address. 3) After
the machine halts, the prover needs to prove the correctness
of T memory accesses. First, sort the vector M ′ from M so
that M ′ is ordered firstly by memory address addr, then by
time t. Then, a permutation check enforces that no values are
altered during the sorting process. Following this, a memory
consistency check scans the sorted vector, and for each pair of
adjacent lines i and i + 1, the following condition from [26]

holds, ensuring that for each load operation, the value retrieved
matches the most recently stored value at that address:

((addri < addri+1) ∨ ((addri = addri+1) ∧ (ti < ti+1)))

∧((addri ̸= addri+1) ∨ (vali = vali+1) ∨ (opi+1 = store))

∧((addri = addri+1) ∨ (opi+1 = store))
(1)

Now, we will discuss detailed construction in a multi-prover
setting. By incorporating CompatCircuit, we can program
this verification statement within CompatCircuit, facilitating
the automatic construction of MPC protocol to compute and
provide the necessary secret-shared auxiliary inputs for collab-
orative zkSNARKs. However, there are more considerations
beyond a naive combination.

Oblivious array. Single-prover vRAMs employ a plaintext
array to manage memory data. Transitioning to a multi-prover
context, we can replace the plaintext array with an oblivious
storage element similar to those utilized in MPC-based DO-
RAM schemes. For instance, a 2-party Circuit ORAM [73]
used by [48], or a 3-party random access memory [23].

In VDORAM, the oblivious storage is required to facilitate
the confidential insertion or overwriting of new memory
values at a specified address, retrieving the latest memory
value corresponding to that address, and supporting memory
consistency checks. We demonstrate the ideal functionality
needed by our VDORAM in Figure 5, where the auxiliary
data aux = (t, op). Note that, our VDORAM requires a unique
FHistoricalKV.Export() functionality, which is not needed for a
regular DORAM.

Functionality FHistoricalKV

Parameters. Memory size n that restricts the address
addr ∈ [0, n− 1].
Functionality. FHistoricalKV.Add(addr, val, aux): add or
update memory value val associated with address addr.
FHistoricalKV.Query(addr): return the latest memory value
val associated with address addr.
FHistoricalKV.Export(): return an oblivious array containing
all (addr, val, aux) tuples, including those being overwrit-
ten.

Fig. 5. Ideal functionality for the memory storage in VDORAM.

The implementation of FHistoricalKV should maintain oblivi-
ousness, meaning provers must not acquire any supplementary
information about any given addr. For instance, provers should
even remain unaware of the number of times an unknown
memory address has been accessed, as disclosing such infor-
mation could compromise security. A conventional DORAM
scheme commences by initializing the storage and then simu-
lating memory accesses online, overwriting the storage if the
address already contains a value. This approach of discarding
outdated data is appropriate for traditional DORAM imple-
mentations, which do not require public verifiability since
integrity can be evaluated based on the security guaranteed
by maliciously secure MPC. To enable public verifiability, it

8

is critical to retain all historical memory accesses from which
the proof is derived.

One initial approach involves implementing FHistoricalKV by
adapting the oblivious storage employed in DORAM, along
with an append-only oblivious array to store (addr, val, aux)
for each FHistoricalKV.Add() access. Nevertheless, despite the
requirement for provers to allocate approximately double the
space for two oblivious structures, existing efficient DORAM
schemes support an insubstantial number of parties. This
does not align with our VDORAM aims, which seek to
accommodate an arbitrary number of provers beyond just two
or three. Consequently, we have implemented this functionality
in MPC using only one linearly-scanned oblivious array, with
an additional requirement that the timestamp t contained in
aux must exhibit a monotonically increasing pattern every time
FHistoricalKV.Add() is invoked. Protocol ΠHistoricalKV:

• Upon receiving ΠHistoricalKV.Add(addr, val, aux), insert
the tuple to the end of array M .

• Upon receiving ΠHistoricalKV.Query(addr), for
each memory tuple mi in array M , compute
bi ← EqualityCheck(addr, addri) ∈ {0, 1}. Then,
set bi ← 0 if there exists a larger bj = 1 where j > i.
Finally, return

∑|M |
i=1 bi · vali.

• Upon receiving ΠHistoricalKV.Export(), return the array M .
Oblivious sort. Migrating vRAM into multi-prover setting,

the vector M is no longer in plaintext. We must sort the
vector in a manner that conceals its values, This is a problem
well-studied in the literature [4] [45]. We opted for Bitonic
mergesort; however, adapting this algorithm for VDORAM
necessitates modifications. Initially, the scheme from [26]
requires an ordered vector M ′ primarily by memory address
addr, and secondly by time t. Typically, this is achieved by
performing a stable sorting by time, followed by a second
sorting by address. However, since Bitonic mergesort is in-
herently unstable, we introduce a complex comparer, slightly
increasing overhead by adding an additional equality check:
m1 < m2 ⇐⇒ (addr1 < addr2)∨ ((addr1 = addr2)∧ (t1 <
t2)). Moreover, Bitonic mergesort requires the size of vector
|M | to be a power of 2. Hence, we must pad the vector before
sorting and subsequently remove the padded elements post-
sorting without plaintext access. We append the vector with
padding item mpad = (p − 1, p − 1, p − 1, p − 1), where
p − 1 ∈ Fp. These padding items, being greater than any
real memory access tuples, allow provers to safely remove
them from the end of the vector without exposing the actual
contents.

Different consideration in memory check performance.
In single-prover vRAM, memory check schemes such as in
[19] are generally considered more efficient than [26], featur-
ing reduced proof generation time. However, the efficiency and
associated overhead of a scheme differ significantly within our
VDORAM context as opposed to a single-prover vRAM. In
a conventional single-prover scenario, the computation stage
where plaintext computations occur is essentially negligible
and considered almost free in comparison to the complexity of
the circuit verifying the statements. In [26], the memory access

vector M of size T is sorted, accompanied by a permutation
proof and T−1 less-than checks on adjacent timestamp values.
Conversely, [19] expands the vector to size 2T , implementing
a permutation proof and T − 1 difference checks on adjacent
timestamp values. In the single-prover scenario, [19] offers
enhanced efficiency over [26], as sorting the values in plaintext
is inexpensive, irrespective of whether the vector size is T or
2T . However, operations such as the heavyweight less-than
or lightweight difference checks must be represented within
an arithmetic circuit, and the size of this circuit constitutes
the primary overhead in proof generation. In contrast, multi-
prover scenarios replace all plaintext values with secret shares
in MPC, making latency a crucial factor. Computation stage
is no longer free in terms of cost: an MPC sorting network
incurs substantial overhead due to the extensive communica-
tion required. We will further demonstrate this overhead in
our evaluation, Section V. Given these considerations, for our
multi-prover implementation, we support the adoption of the
memory checking protocol proposed in [26] in contrast to [19],
due to its relative simplicity and reduced computational and
communicational demands in multi-prover contexts.

D. Protocol Specification

Putting it all together, we construct our VDORAM, provid-
ing the full protocol below.

Protocol ΠVDORAM
Input: An instruction vector I with entrypoint E is

publicly provided. m provers exclusively and privately
holds N inputs ini which corresponds to the i-th input
the machine asks for.

Protocol:
1) Trusted setup: the trusted initializer generates public

parameters for collaborative zkSNARKs. Provers
generate sufficient beaver triples, edaBit, and daBit
for multi-party computation.

2) Each prover construct and broadcast secret shares of
his/her input [ini] to one other provers.

3) Set public timestamp t ← 0. Initialize all registers
[Rj]← 0. Set the program counter to the entrypoint
[pc] ← E. Initialize memory access vector [M] ←
().

4) Provers run instruction fetch protocol. Given I and
[pc] as input, provers fetches the next instruction [I]
as well as the instruction type indicator opmasked ∈
{input, output, secret}. This protocol does not
reveal information about an non-IO instruction.

5) If opmasked = input, provers assign the input value
[in]← [ini] where i denotes the count of previously
provided inputs. Otherwise, provers publicly set it
to 0.

6) If t ≥ 1, provers run memory fetch protocol. Given
[I], [Raddr], and [M], provers fetches the latest
memory value [val]. Private output [val] would be a
secret-shared 0 if the instruction is not related with

9

memory access or the address has never been stored
with a value. In particular, if t = 0, provers publicly
sets [val]← 0.

7) Provers run instruction execution protocol. Given
[I], [val], t, [pc], [in], and all registers [Rj], the
protocol returns updated register values as [pc]′ and
[Rj]

′. A memory access trace [m] = ([addr], t, [op],
[val]) is also produced. The protocol also returns
the output value [out] if the operation type matches;
otherwise, it’s 0. Provers accordingly updates values
and insert [m] to vector [M].

8) If opmasked ̸= halt, increase t ← t + 1 and go to
the instruction fetch protocol.

9) Provers run trace sort protocol to pad and sort the
memory access vector [M]. Get sorted vector [M]′.

10) Provers run trace verification protocol with input
[M] and [M]′. The verification result is publicly
revealed.

11) For all instruction fetch, instruction execution, and
the final trace verification protocol, provers in-
voke collaborative zkSNARKs, providing all in-
puts, outputs, intermediate results, and auxiliary data
with necessary hash digests, and getting an non-
interactive succinct proof π.

During each round, provers begin by retrieving the next
instruction to be executed through an instruction fetch circuit.
Except for the case of a halt or IO operation, provers get no ex-
tra information about which instruction will be executed next.
Subsequently, regardless of whether the instruction involves a
memory read/write operation, they fetch the memory value for
a specified address from a blind memory trace table using a
memory fetch circuit. Following this, the instruction execution
circuit is utilized to interpret the execution by computing,
updating registers, inserting a new row to the memory trace
table, and interacting with public/private I/O if the instruction
type matches. These three types of circuits are repeatedly
executed upon fetching an instruction, continuing until the
machine reaches a halt state. Upon completion, the trace sort
circuit is run to blindly pad and sort the memory trace table.
This is succeeded by the execution of a trace verification
circuit, which checks the correctness of the entire memory
management process.

E. Performance and Security Analysis

1) Communication overhead of CompatCircuit primitives:
Let l = ⌈log2 p⌉ denote the number of bits in the finite field
Fp. An addition operation does not require communication,
while a multiplication operation requires broadcasting one
revealed element, thus incurring 1 round of communication.
The inversion-or-zero operation necessitates l + 4 rounds of
multiplications: l multiplications to secretly obtain the inverse,
and an additional 4 multiplications for constructing the verifi-
cation statements. A fully bit-decomposition operation incurs
19l + 2 rounds of communications:

• 1 round for exposing c.

• 3l multiplications for an l-bit MPC adder with a plaintext
operand, where each adder requires at most 3l multipli-
cations.

• 6l multiplications: l for multiplying each bit pi with [1−
q], 5l multiplications for an l-bit MPC adder with a secret
operand.

• 1 round: exposing l boolean values for B2Ap protocol
[1].

• 10l multiplications for computing R1CS witnesses: l for
input range check, l for constructing the field element
from input bits, 8l for ensuring the bits are smaller than
the bit decomposition of field modulus p.

2) Communication overhead in the VDORAM protocol:
In this analysis, we consider l, the number of bits in the
finite field to be a small constant. We additionally denote
T as the total number of iterations, N as the number of
inputs, and I as the length of the instruction vector. It’s
worth noting that our VDORAM protocol employs a read-
write memory model with a full address space, implying that
the memory capacity is virtually unlimited (with a capacity
of p). Therefore, the overhead is not affected by the size of
the memory. The VDORAM protocol incurs the following
communication overheads:

• m ·N broadcasts are required for distributing the secret
shares of the inputs.

• O(T · I) rounds of communication occur during T in-
vocations of the instruction fetch protocol. During each
fetch, a linear scan is conducted to determine the next
instruction to be executed, taking O(I) time.

• O(T 2) rounds of communication are required for T
instances of the memory fetch protocol. During each
fetch, a linear scan is carried out to identify the most
recent memory value to be read, taking O(T) time.

• O(T) rounds of communication take place for T in-
stances of the instruction execution protocol. The over-
head from the instruction execution circuit can be con-
sidered a constant number of CompatCircuit primitives,
as the number of registers and instruction types are small
constants..

• O(T log2 T) rounds are needed for the memory
trace sorting protocol. The sorting algorithm requires
O(T log2 T) comparisons, each necessitating a small
constant number of bit-decomposition primitives.

• O(T) rounds are required for the memory trace verifica-
tion protocol. This protocol checks each pair of adjacent
lines, which also involves comparisons based on bit-
decomposition.

3) Privacy Disclosure: Our protocol ΠVDORAM is designed
to maintain the confidentiality of sensitive information against
both provers and verifiers. This includes:

• Register values: The contents of the registers are kept
private, including the program counter pc.

• Memory accesses: Information about memory value, ad-
dress, and access type is concealed. The number of
memory accesses equals to the total number of instruction
cycles.

10

Definition IV.1. An (m, t) VDORAM with m provers P = P0,P1, . . . ,Pm−1 holding public input inpub and secret shares
of private input inpriv is a RAM (I, E, inpub, inpriv) with the following procedures:

• Setup(1λ, I, E)→ pp: Generates zkSNARK parameters.
• Compute(I, E, inpub, inpriv)→ outpub, outpriv, s : Computes outpub, outpriv with each machine state si by simulating the

RAM runtime.
• Prove(pp, I, E, inpub, outpub, inpriv, outpriv, s) → π : Generates an execution proof π; aborts if state transitions are

invalid.
• Verify(pp, I, E, inpub, outpub, π)→ {0, 1}: Verifies the proof π on whether state transitions are valid.

and with the following properties:
• Completeness: For all (I, E, inpub, inpriv), the following statement holds:

Pr

VerifyH(pp, I, E, inpub, outpub, π) = 0

∣∣∣∣∣∣∣∣∣
H ← U(λ)
pp← SetupH(1λ, I, E)

outpub, outpriv, s← ComputeH(I, E, inpub, inpriv)

π ← ProveH(pp, I, E, inpub, outpub, inpriv, outpriv, s)

 ≤ negl(λ)

• Knowledge soundness: For all (I, E, inpub, inpriv) and for all sets of efficient algorithms P = P∗
0 ,P∗

1 , . . . ,P∗
m−1, there

exists an efficient extractor ExtH,PH

such that:

Pr

(I, E, inpub,

outpub, inpriv,

outpriv, s) ∈ R

∣∣∣∣∣∣∣
H ← U(λ)
pp← SetupH(1λ, I, E)

inpriv, outpub, outpriv, s←

ExtH,PH
(pp, I, E, inpub)

 ≥ Pr

VerifyH(pp, I, E,

inpub, outpub, π) = 1

∣∣∣∣∣∣∣
H ← U(λ)
pp← SetupH(1λ, I, E)

outpub, π ← PH(I, E, inpub)

− negl(λ)

R denotes the collection of valid RAM executions. ExtH,PH

denotes Ext has oracle access to H and may re-run the
provers P for multiple times with H re-programmed.

• Succinctness: Proof size and verification time are O(|s|).
• Zero-knowledge: For all efficient A controlling k ≤ t provers P0,P1, . . . ,Pk−1, there exists an efficient simulator Sim

such that for all (I, E, inpub, inpriv) and for all efficient distinguishers D, |D0 −D1| ≤ negl(λ) holds, where:

D0 = Pr

DH[µ](tr) = 1

∣∣∣∣∣∣∣∣∣
H ← U(λ)
pp← SetupH(1λ, I, E)

b ∈ {0, 1} = 1 ⇐⇒ (I, E, inpub, outpub, inpriv, outpriv, s) ∈ R

(tr, µ)← SimH(pp, I, E, inpub, outpub, (inpriv, outpriv, s)0,1,...,k−1, b)



D1 = Pr

DH(tr) = 1

∣∣∣∣∣∣∣∣∣
H ← U(λ)
pp← SetupH(1λ, I, E)

tr← ViewH
A (I, E, inpub, inpriv, outpub, outpriv, s)


tr is a transcript, ViewH

A denotes view of A when provers P interact with I, E, inpub, inpriv, outpub, outpriv, s in Compute
and Prove procedures, µ is a partial function from H such that given an input x, function H[µ] equals µ(x) if x is in
the domain of µ, otherwise equals H(x).

• t-distributed-obliviousness: Conditions are same as Zero-knowledge, except that outpriv is visible among provers. So
the definition is slightly different: update outpub ← outpub ∪ outpriv and outpriv ← ∅.

• Instructions: The specific instruction being executed at
any given time remains hidden, with some I/O exceptions.

However, ΠVDORAM also requires some information to be
publicly available. 1) I/O instruction type. Only input,
output, and halt instructions are revealed to provers.
Provers maintain the protocol, and thereby need to know when
to provide input, when to expect output, and when the machine
has completed its execution. Mitigation: For non-interactive
programs, we can structure the program into three distinct

phases: input, computation, and output. During the input and
output phases, data are simply transferred to and from regis-
ters/memory without any actual processing. This minimizes
the risk of sensitive information being leaked through the
public disclosure of I/O-related instruction types. 2) Total
number of iterations (T). Like most oblivious RAMs, the
total number of instructions executed by the machine is made
public. This is necessary to halt the machine and facilitate
the proof generation process. Mitigation: Programmers should

11

design their code to minimize the impact of revealing the total
iteration count. If the iteration count is directly related to a
confidential value, introduce a dummy loop with a randomly
determined number of iterations. If certain computational steps
are optional based on the value of a confidential variable,
include dummy loops to ensure a consistent iteration count
regardless of the condition.

We now formally define VDORAM in Definition IV.1,
adapting the frameworks from [66], [12].

Theorem IV.1. If (Setup,Prove,Verify) is an (m, t) collab-
orative zkSNARK, and ComputeMPC is an MPC protocol for
Compute that is secure-with-abort against up to t corrup-
tions, then a RAM (I, E, inpub, inpriv) with procedures (Setup,
ComputeMPC,Prove,Verify) is an (m, t) VDORAM.

Theorem IV.1 formally establishes the security properties of
our VDORAM construction. The proof is provided in the full
version of our paper [68].

V. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of our pro-
posed VDORAM along with the underlying CompatCircuit.
We also design experiments to evaluate the various factors that
influence performance.

Implementation. Our implementation consists of approx-
imately 15,000 lines of C# code and additional components.
Specifically, it includes the CompatCircuit library for unifying
multi-party computation and R1CS verification with an MPC
implementation (≈ 8,500 lines), the VDORAM program (≈
3,500 lines), unit tests (≈ 2,500 lines), evaluation programs
and scripts (≈ 3,500 lines), and modifications to the Rust
program collaborative-zksnark [66] (≈ 300 lines).
Our source code is available at https://github.com/BDS-SDU/
vdoram-artifacts. Figure 6 shows an example of designing a
circuit in CompatCircuit. We refer to the full version of our
paper [68] for VDORAM implementation details.

Evaluation Setup. Our experiments were conducted on
a server instance on ESXi 8.0 virtualization platform with
various hardware allocation. Denote the prover count as m,
the server instance simulating multiple provers was allocated
with up to 4m vCPU cores from Intel Xeon 4214R @ 2.4
GHz, 16m GB of RAM, and 20m GB of disk space, running
Debian Linux 12 as the operating system. Note that our
implementation is not parallelized, but more than one CPU
core is needed to handle the communication among other
provers. The elliptic curve used in our experiment is BLS12-
377, and the collaborative zkSNARKs variant employed is
Plonk [28].

The variables altered in our experiments included: the num-
ber of MPC provers (2, 4, 8, and optionally 16), RAM program
instruction types (multiplication, comparison, hashing, mem-
ory store, and memory load), and the number of instruction
cycles (4, 16, 20, 32, 50, and 64). We recorded time costs
throughout the entire process, including the phases of MPC
preprocessing, computation, ZKP setup, proof generation, and
verification associated with executing VDORAM.

public class DemoCircuit : ICircuitBoardGenerator {
public CircuitBoard GetCircuitBoard() {

CircuitBoard cb = new();

// Private inputs
Wire a = Wire.NewPrivateInputWire("a");
Wire b = Wire.NewPrivateInputWire("b");
cb.AddWires(a, b);

// Comparison gadget
GadgetInstance g = new FieldLessThanGadget()

.ApplyGadget([a, b], "a_lt_b");
g.Save(cb);

// Public output
g.OutputWires[0].Name = "out_lt";
g.OutputWires[0].IsPublicOutput = true;

return cb;
}

}

Fig. 6. An example of designing a circuit in CompatCircuit, our unified
multi-prover ZKP front-end that unifies representation for secure computation
and R1CS constraints.

Single 2 4 8 16
Prover count

100

102
Ti

m
e

co
st

(µ
s)

0.2
0.4

0.6 0.8
1.9

211.8 229.4 255.3 276.5 355.1
(a) Addition

Single 2 4 8 16
Prover count

100

102

Ti
m

e
co

st
(µ

s)

0.2

2.1
3.2

6.2

22.7

241.3 250.0 300.7 283.8
447.2

(b) Multiplication

Single 2 4 8 16
Prover count

100

101

102

Ti
m

e
co

st
(m

s)

0.3

6.1
9.7

22.5

68.3

19.3 22.1 20.1
20.3

28.5

(c) Inversion

Single 2 4 8 16
Prover count

101

103
Ti

m
e

co
st

(m
s)

0.2

6.1
12.1

37.2

149.2

951.5 1105.0 1190.9 1167.5 1686.1
(d) Bit-Decomposition

Compute
ZKP Prove

Fig. 7. Micro-benchmarks of CompatCircuit primitives.

Micro-benchmarks of CompatCircuit. We first evaluated
the performance overhead in CompatCircuit, as shown in
Figure 7. When compared with the single-prover baseline,
the computation time costs for a 2-prover configuration in-
creased by up to 20 times. This rise can be attributed to
the transition from single-party to multi-party computation,
which brings additional complexities such as sharing revealing
in Beaver multiplications and the implementation of the bit-
decomposition protocol. The overhead is indispensable as
prover parties in a multi-prover setting cannot compute in the
same manner as a single-prover scenario. Subsequently, the
increase in computation time becomes less steep as the number

12

https://github.com/BDS-SDU/vdoram-artifacts
https://github.com/BDS-SDU/vdoram-artifacts

of provers grows. For instance, with an 8-prover setup, our
system is capable of processing 1,250,000 additions, 150,000
multiplications, 45 inversions, or 25 bit-decompositions per
second, which we consider to be a reasonable and acceptable
performance outcome.

Comparison of CompatCircuit. To contextualize Compat-
Circuit’s capabilities, we compare it with prior multi-prover
ZKP works, specifically Collaborative zkSNARKs [66], Liu
et al. [62], and Hu et al. [40]. Table II summarizes the key
differences among these systems.

TABLE II
COMPARISON OF COMPATCIRCUIT WITH PRIOR WORKS

Multi-Prover System Primary Focus Computation Support

Collaborative
zkSNARKs [66] ZKP back-end Limited (hardcoded

multiplications)

Liu et al. [62] Proof delegation No (proving random
relationship)

Hu et al. [40] Proof delegation No (proving random
relationship)

CompatCircuit (ours) ZKP front-end Yes

We experimentally compared CompatCircuit with Col-
laborative zkSNARK using a benchmark of n-th sequential
squaring (v ← v2), as this is the only hardcoded computation
that Collaborative zkSNARK supports natively without a front-
end. Figure 8 illustrates the time costs for different procedures
with varying numbers of provers and input sizes. The results
demonstrate that both systems exhibit comparable perfor-
mance, indicating that CompatCircuit achieves its additional
features without significant performance penalties.

(2, 101) (2, 102) (2, 103) (2, 104) (4, 101) (4, 102) (4, 103) (4, 104)

Prover count × Input size

101

102

103

104

Ti
m

e
co

st
(m

s)

CompatCircuit Collaborate zkSNARK

Compute
ZKP Setup

ZKP Prove
ZKP Verify

Fig. 8. Performance comparison between CompatCircuit and Collaborative
zkSNARK. In this figure, the compute procedure also contains preprocessing
time costs.

Micro-benchmarks of VDORAM. We subsequently as-
sessed the performance of the VDORAM within an 8-prover
configuration, as shown in Figure 9. We varied both the types
and counts of instructions. In Figure 9(a), we set the instruction
cycle count to 5, with varying instruction types. We observed
that the execution time remains constant, regardless of the
instruction type. This observation can be explained by the
privacy demand, where everything might happen must happen,
to prevent any chance of information leakage through the
operation types used.

Mul. Comp. Hash Store Load
Instruction type

0

50

100

Ti
m

e
co

st
(s

)

92.19
97.58 95.31 93.28 93.07

(a)

4 16 32 50 64
Instruction cycles

0

1000

2000

47.84

332.26

850.01
919.92

2355.42
2616.94

(b)

Total
Instruction Fetch
Memory Fetch

Instruction Execution
Trace Sort
Trace Verification

Fig. 9. Computation time costs of VDORAM (8 provers) with (a) varying
instruction types and (b) varying instruction cycles. Time costs remain
constant with different types but increase with instruction cycles.

In Figure 9(b), the instruction cycle count varied from
4 to 64. We observed that the time costs associated with
instruction fetch, memory fetch, instruction execution, and
trace verification circuits are roughly constant per instruction
(i.e., linear to the instruction cycle count). However, the time
cost for the trace sort circuit increases significantly when the
instruction cycle count reaches a power of two. This increase
is expected because, in MPC, we used the Bionic mergesort
algorithm which has an O(T log2 T) time complexity in
sequential computation and requires padding the items to a
power of two. The trace sort circuit consumes a considerable
amount of time in the computation stage. Fortunately, this
circuit acts as an MPC-only CompatCircuit which does not
require verification and can be further optimized by paralleling
the computation.

101 102 103 104

Time cost (s)

Single

2

4

8

Pr
ov

er
co

un
t

43.72

93.67

204.97

110.44

475.12

1001.34

2616.94

2347.21

2332.52

2342.44

2436.92

13598.12

14189.52

14329.33

14983.58

11.93

11.85

11.88

11.87

Preprocess
Compute

ZKP Setup
ZKP Prove

ZKP Verify

Fig. 10. Time costs of VDORAM procedures (instruction cycles: 64).

Lastly, we present the overall performance results across
varying prover counts, using a single-prover setup as the
baseline. The time costs are shown in Figure 10. We also
estimated the bandwidth requirements during the computa-
tion and collaborative ZKP process: for communicating with

13

each of the other m − 1 prover parties, the highest aver-
age bandwidth for an individual prover was 48.63 Mbps.
Although the computation time increases more rapidly than
the zero-knowledge proof generation time when the prover
count increases, computation stage demands more frequent
communication, our implementation still maintains a relatively
reasonable overheads in total, compared with the single-prover
baseline.

Program Examples of VDORAM. To evaluate VDO-
RAM’s applicability, we implemented seven example pro-
grams as shown in Figure 11: bubble sort, sliding window,
set intersection, range query, longest continuous increasing
subsequence (LCIS), Fibonacci, and binary search, highlight-
ing VDORAM’s versatility in handling various computational
patterns.

Bubble
Sort

Sliding
Window

Set
Intersection

Range
Query

LCIS Fibonacci Binary
Search

VDORAM programs

101

102

103

104

Ti
m

e
co

st
(s

)

Preprocess
Compute

ZKP Setup
ZKP Prove

ZKP Verify

Fig. 11. Time costs of VDORAM procedures for programs (2 provers).

Comparison of VDORAM. We compared VDORAM with
prior RAM systems: Jolt [3], SP1 [60], and Wang et al. [74].
Table III highlights the feature differences, emphasizing VDO-
RAM’s unique ability to support both public verifiability and
distributed obliviousness for an arbitrary number of provers.

TABLE III
COMPARISON OF VDORAM WITH PRIOR WORKS

RAM System Number of
Parties

Public
Verifiability

Distributed
Obliviousness

Jolt [3] 1 prover Yes No
SP1 [60] 1 prover Yes No
Wang et al. [74] 2 parties No Yes
VDORAM (ours) ≥ 1 provers Yes Yes

We also conducted an experimental comparison on set
intersection and binary search programs. Figure 12 shows the
time costs for each system’s main procedures. The results
indicate that VDORAM’s additional overhead is justified by
its multi-prover and proof generation capabilities.

VI. CONCLUSION AND FUTURE WORK

In this research, we have introduced CompatCircuit, a
novel multi-prover ZKP front-end system. CompatCircuit
combines collaborative zkSNARKs with a dishonest-majority
MPC framework, facilitating the creation of multi-prover
ZKP applications. Building upon CompatCircuit, we have

Jolt
(1 Prover)

SP1
(1 Prover)

Wang et al.
(2 Parties)

VDORAM
(2 Provers)

VDORAM
(4 Provers)

Different RAM schemes

10−3

10−1

101

103

Ti
m

e
co

st
(s

)

Compute
ZKP Setup

ZKP Prove
ZKP Verify

Binary Search Set Intersection

Fig. 12. Performance comparison of VDORAM with prior works on set
intersection and binary search programs. In this figure, the compute procedure
of Wang et al. and VDORAM also contains preprocessing time costs. Jolt does
not require ZKP setup procedure.

presented VDORAM, the first publicly verifiable distributed
oblivious RAM. By integrating distributed oblivious archi-
tectures with verifiable RAM, VDORAM achieves a RAM
design that optimizes communication overhead and proof
generation time. We have developed implementations of both
CompatCircuit and VDORAM. Our evaluation with micro-
benchmarks, comparisons, and program examples validates the
feasibility of our approach. Establishing this stronger security
model also brings some limitations that highlight opportunities
for further optimization, shown below.

• Computation and Proof Overhead. Our work establishes a
functional memory model for arbitrary number of provers
by deliberately trading higher computational communica-
tion overhead for a simpler memory consistency proof.
Future work could advance this trade-off by developing
more efficient n-party oblivious data structures to reduce
communication costs. Concurrently, adapting modern ver-
ification techniques like lookup arguments [27], [3] to
the multi-prover setting would further lower the proof
generation overhead.

• Potential Leakage Through I/O Instruction. A minor
information leakage channel exists as provers can observe
the timing of public I/O and halt instructions, for which
we have proposed mitigations in Section IV-E3. Future
work could explore executing a VM with a blind I/O
operation.

• Trusted Setup Requirement. The protocol relies on
a trusted setup for the underlying collaborative zk-
SNARKs, which is a common requirement for many
zk-SNARK-based systems. Our implementation utilizes
Plonk [28], requiring a universal trusted Setup. Future
research could investigate transparent zk-SNARKs [72],
[16] to eliminate the assumption of the trusted initializer.

14

ACKNOWLEDGMENT

This study was supported by the Key R&D Program of
Shandong Province (No. 2025CXPT033), the National Natu-
ral Science Foundation of China (No. 62302266, 62232010,
U23A20302), the Shandong Science Fund for Excellent Young
Scholars (No. 2023HWYQ-008), and Shandong Provincial
Natural Science Foundation (ZR2022ZD02).

REFERENCES

[1] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni
Polychroniadou. Prio+: Privacy preserving aggregate statistics via
boolean shares. In International Conference on Security and Cryptogra-
phy for Networks, pages 516–539. Springer, 2022. https://link.springer.
com/chapter/10.1007/978-3-031-14791-3 23.

[2] Mohammed Alghazwi, Tariq Bontekoe, Leon Visscher, and Fatih Turk-
men. Collaborative cp-nizks: Modular, composable proofs for distributed
secrets. arXiv preprint arXiv:2407.19212, 2024.

[3] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual
machines via lookups. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 3–33. Springer,
2024.

[4] Kenneth E Batcher. Sorting networks and their applications. In Pro-
ceedings of the April 30–May 2, 1968, spring joint computer conference,
pages 307–314, 1968.

[5] Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly auditable
secure multi-party computation. In Security and Cryptography for Net-
works: 9th International Conference, SCN 2014, Amalfi, Italy, September
3-5, 2014. Proceedings 9, pages 175–196. Springer, 2014.

[6] Carsten Baum, Alex J Malozemoff, Marc B Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic cir-
cuits with nested disjunctions. In Advances in Cryptology–CRYPTO
2021: 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part IV 41, pages 92–
122. Springer, 2021.

[7] Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure
multiparty computation with identifiable abort. In Theory of Cryp-
tography: 14th International Conference, TCC 2016-B, Beijing, China,
October 31-November 3, 2016, Proceedings, Part I 14, pages 461–490.
Springer, 2016.

[8] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. Efficient constant-round mpc with identifiable abort and public
verifiability. In Annual International Cryptology Conference, pages 562–
592. Springer, 2020.

[9] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Albert
Rubio, and Jordi Baylina. Circom: A circuit description language for
building zero-knowledge applications. IEEE Transactions on Depend-
able and Secure Computing, 20(6):4733–4751, 2022. https://ieeexplore.
ieee.org/abstract/document/10002421.

[10] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation,
page 351–371. Association for Computing Machinery, New York, NY,
USA, 2019. https://dl.acm.org/doi/abs/10.1145/3335741.3335756.

[11] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. Snarks for c: Verifying program executions succinctly
and in zero knowledge. In Annual cryptology conference, pages 90–
108. Springer, 2013.

[12] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interac-
tive oracle proofs. In Theory of Cryptography: 14th International
Conference, TCC 2016-B, Beijing, China, October 31-November 3,
2016, Proceedings, Part II 14, pages 31–60. Springer, 2016. https:
//link.springer.com/chapter/10.1007/978-3-662-53644-5 2.

[13] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Succinct non-interactive zero knowledge for a von neumann architecture.
In 23rd USENIX Security Symposium (USENIX Security 14), pages
781–796, 2014. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/ben-sasson.

[14] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting. In Advances in Cryptology–
EUROCRYPT 2016: 35th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Vienna, Austria, May

8-12, 2016, Proceedings, Part II 35, pages 327–357. Springer, 2016.
https://link.springer.com/chapter/10.1007/978-3-662-49896-5 12.

[15] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zksnarks with
universal and updatable srs. In Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zagreb, Croatia, May 10–
14, 2020, Proceedings, Part I 39, pages 738–768. Springer, 2020.
https://link.springer.com/chapter/10.1007/978-3-030-45721-1 26.

[16] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-
quantum and transparent recursive proofs from holography. In Annual
international conference on the theory and applications of cryptographic
techniques, pages 769–793. Springer, 2020.

[17] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and
Tomas Toft. Unconditionally secure constant-rounds multi-party com-
putation for equality, comparison, bits and exponentiation. In Theory of
Cryptography Conference, pages 285–304. Springer, 2006.

[18] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Annual
Cryptology Conference, pages 643–662. Springer, 2012. https://link.
springer.com/chapter/10.1007/978-3-642-32009-5 38.

[19] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy,
and Michiel Verbauwhede. Efficient proof of ram programs from any
public-coin zero-knowledge system. In International Conference on
Security and Cryptography for Networks, pages 615–638. Springer,
2022.

[20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero
knowledge and its applications. Cryptology ePrint Archive, 2020.

[21] Moumita Dutta, Chaya Ganesh, Sikhar Patranabis, Shubh Prakash, and
Nitin Singh. Batching-efficient ram using updatable lookup arguments.
In Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, pages 4077–4091, 2024.

[22] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and
Peter Scholl. Improved primitives for mpc over mixed arithmetic-
binary circuits. In Advances in Cryptology–CRYPTO 2020: 40th
Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II 40,
pages 823–852. Springer, 2020. https://link.springer.com/chapter/10.
1007/978-3-030-56880-1 29.

[23] Brett Falk, Daniel Noble, Rafail Ostrovsky, Matan Shtepel, and Jacob
Zhang. Doram revisited: maliciously secure ram-mpc with logarithmic
overhead. In Theory of Cryptography Conference, pages 441–470.
Springer, 2023.

[24] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Conference on the theory
and application of cryptographic techniques, pages 186–194. Springer,
1986.

[25] Scroll Foundation. Scroll – native zkevm layer 2 for ethereum. https:
//scroll.io/ Accessed: Jul 15, 2024.

[26] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao
Wang, and Chenkai Weng. Constant-overhead zero-knowledge for ram
programs. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 178–191, 2021.

[27] Ariel Gabizon and Zachary J Williamson. plookup: A simplified
polynomial protocol for lookup tables. Cryptology ePrint Archive, 2020.
https://eprint.iacr.org/2020/315.

[28] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive ar-
guments of knowledge. Cryptology ePrint Archive, 2019. https:
//eprint.iacr.org/2019/953.

[29] Joshua Gancher, Adam Groce, and Alex Ledger. Externally verifiable
oblivious ram. Proceedings on Privacy Enhancing Technologies, 2017.

[30] Sinka Gao, Guoqiang Li, and Hongfei Fu. Zkwasm: A zksnark wasm
emulator. IEEE Transactions on Services Computing, 2024. https://
ieeexplore.ieee.org/abstract/document/10587123.

[31] Aarushi Goel, Mathias Hall-Andersen, and Gabriel Kaptchuk. Dora:
A simple approach to zero-knowledge for ram programs. Cryptology
ePrint Archive, 2023.

[32] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas
Spooner. Speed-stacking: fast sublinear zero-knowledge proofs for
disjunctions. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 347–378. Springer,
2023.

15

https://link.springer.com/chapter/10.1007/978-3-031-14791-3_23
https://link.springer.com/chapter/10.1007/978-3-031-14791-3_23
https://ieeexplore.ieee.org/abstract/document/10002421
https://ieeexplore.ieee.org/abstract/document/10002421
https://dl.acm.org/doi/abs/10.1145/3335741.3335756
https://link.springer.com/chapter/10.1007/978-3-662-53644-5_2
https://link.springer.com/chapter/10.1007/978-3-662-53644-5_2
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://link.springer.com/chapter/10.1007/978-3-662-49896-5_12
https://link.springer.com/chapter/10.1007/978-3-030-45721-1_26
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_38
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_38
https://link.springer.com/chapter/10.1007/978-3-030-56880-1_29
https://link.springer.com/chapter/10.1007/978-3-030-56880-1_29
https://scroll.io/
https://scroll.io/
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://ieeexplore.ieee.org/abstract/document/10587123
https://ieeexplore.ieee.org/abstract/document/10587123

[33] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo–a turing-
complete stark-friendly cpu architecture. Cryptology ePrint Archive,
2021.

[34] Jens Groth. On the size of pairing-based non-interactive arguments.
In Advances in Cryptology–EUROCRYPT 2016: 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35,
pages 305–326. Springer, 2016. https://link.springer.com/chapter/10.
1007/978-3-662-49896-5 11.

[35] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. Fully
homomorphic encryption for rams. Cryptology ePrint Archive, 2019.

[36] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. On
the plausibility of fully homomorphic encryption for rams. In Annual
International Cryptology Conference, pages 589–619. Springer, 2019.

[37] David Heath and Vladimir Kolesnikov. A 2.1 khz zero-knowledge
processor with bubbleram. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 2055–
2074, 2020.

[38] David Heath and Vladimir Kolesnikov. Proram: Fast o (log n) authen-
ticated shares zk oram. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 495–525.
Springer, 2021.

[39] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov.
Zero knowledge for everything and everyone: Fast zk processor with
cached oram for ansi c programs. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1538–1556. IEEE, 2021.

[40] Yuncong Hu, Pratyush Mishra, Xiao Wang, Jie Xie, Kang Yang, Yu Yu,
and Yuwen Zhang. Dfs: Delegation-friendly zksnark and private dele-
gation of provers. Cryptology ePrint Archive, 2025.

[41] iden3. circomlib: Library of basic circuits for circom. https://github.
com/iden3/circomlib Accessed: Aug 6, 2024.

[42] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing, pages 21–
30, 2007.

[43] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic statements
efficiently. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 955–966, 2013.

[44] Keyu Ji, Bingsheng Zhang, Tianpei Lu, and Kui Ren. Multi-party private
function evaluation for ram. IEEE Transactions on Information Forensics
and Security, 18:1252–1267, 2023.

[45] Kristjän Valur Jönsson, Gunnar Kreitz, and Misbah Uddin. Secure multi-
party sorting and applications. Cryptology ePrint Archive, 2011.

[46] Yael Kalai and Omer Paneth. Delegating ram computations. In Theory
of Cryptography: 14th International Conference, TCC 2016-B, Beijing,
China, October 31-November 3, 2016, Proceedings, Part II 14, pages
91–118. Springer, 2016.

[47] Sanket Kanjalkar, Ye Zhang, Shreyas Gandlur, and Andrew Miller. Pub-
licly auditable mpc-as-a-service with succinct verification and universal
setup. In 2021 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 386–411. IEEE, 2021.

[48] Marcel Keller. The oblivious machine-or: how to put the c into mpc.
Cryptology ePrint Archive, 2015.

[49] Marcel Keller. Mp-spdz: A versatile framework for multi-party com-
putation. In Proceedings of the 2020 ACM SIGSAC conference on
computer and communications security, pages 1575–1590, 2020. https:
//dl.acm.org/doi/abs/10.1145/3372297.3417872.

[50] Marcel Keller and Peter Scholl. Efficient, oblivious data structures
for mpc. In Advances in Cryptology–ASIACRYPT 2014: 20th Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, ROC, December 7-11, 2014,
Proceedings, Part II 20, pages 506–525. Springer, 2014.

[51] Marcel Keller and Avishay Yanai. Efficient maliciously secure multi-
party computation for ram. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 91–124.
Springer, 2018.

[52] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark:
A framework for efficient verifiable computation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 944–961. IEEE, 2018.
https://ieeexplore.ieee.org/abstract/document/8418647.

[53] Abhiram Kothapalli and Srinath Setty. Supernova: Proving universal ma-
chine executions without universal circuits. Cryptology ePrint Archive,
2022.

[54] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments
for customizable constraint systems. In Annual International Cryptology
Conference, pages 345–379. Springer, 2024.

[55] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive
zero-knowledge arguments from folding schemes. In Annual Interna-
tional Cryptology Conference, pages 359–388. Springer, 2022.

[56] Eyal Kushilevitz and Tamer Mour. Sub-logarithmic distributed oblivious
ram with small block size. In IACR International Workshop on Public
Key Cryptography, pages 3–33. Springer, 2019.

[57] Matter Labs. Zksync, 2020. https://zksync.io/ Accessed: Jul 15, 2024.
[58] Polygon Labs. Polygon zkevm — scaling for the ethereum virtual

machine, 2022. https://polygon.technology/polygon-zkevm Accessed:
Jul 15, 2024.

[59] Polygon Labs. Polygon miden — a rollup for high-throughput,
private applications, 2024. https://polygon.technology/polygon-miden
Accessed: Jul 15, 2024.

[60] Succinct Labs. Sp1. https://github.com/succinctlabs/sp1 Accessed: July
1, 2025.

[61] Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang.
Ceno: Non-uniform, segment and parallel zero-knowledge virtual ma-
chine. Cryptology ePrint Archive, 2024. https://eprint.iacr.org/2024/387.

[62] Xuanming Liu, Zhelei Zhou, Yinghao Wang, Jinye He, Bingsheng
Zhang, Xiaohu Yang, and Jiaheng Zhang. Scalable collaborative zk-
snark and its application to efficient proof outsourcing. Cryptology
ePrint Archive, 2024. https://eprint.iacr.org/2024/940.

[63] Steve Lu and Rafail Ostrovsky. Distributed oblivious ram for secure
two-party computation. In Theory of Cryptography Conference, pages
377–396. Springer, 2013.

[64] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer
Wagh. Rabbit: Efficient comparison for secure multi-party computation.
In International Conference on Financial Cryptography and Data Secu-
rity, pages 249–270. Springer, 2021. https://link.springer.com/chapter/
10.1007/978-3-662-64322-8 12.

[65] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge snarks from linear-size universal and updatable
structured reference strings. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2111–
2128, 2019. https://dl.acm.org/doi/abs/10.1145/3319535.3339817.

[66] Alex Ozdemir and Dan Boneh. Experimenting with collaborative
zk-snarks: Zero-knowledge proofs for distributed secrets. In 31st
USENIX Security Symposium (USENIX Security 22), pages 4291–4308,
2022. https://www.usenix.org/conference/usenixsecurity22/presentation/
ozdemir.

[67] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In Proceedings of the
2013 IEEE Symposium on Security and Privacy, pages 238–252, 2013.

[68] Huayi Qi, Minghui Xu, Xiaohua Jia, and Xiuzhen Cheng. Vdoram:
Towards a random access machine with both public verifiability and
distributed obliviousness. Cryptology ePrint Archive, 2025. https:
//eprint.iacr.org/2025/039.

[69] Marc Rivinius, Pascal Reisert, Daniel Rausch, and Ralf Küsters. Publicly
accountable robust multi-party computation. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 2430–2449. IEEE, 2022.

[70] Dragos Rotaru and Tim Wood. Marbled circuits: Mixing arithmetic
and boolean circuits with active security. In International Conference
on Cryptology in India, pages 227–249. Springer, 2019. https://link.
springer.com/chapter/10.1007/978-3-030-35423-7 12.

[71] Berry Schoenmakers. Mpyc—python package for secure multiparty
computation. In Workshop on the Theory and Practice of MPC.
https://github. com/lschoe/mpyc, 2018.

[72] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. In Annual International Cryptology Conference, pages
704–737. Springer, 2020.

[73] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram: On tightness of
the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages
850–861, 2015.

[74] Xiao Wang, S Dov Gordon, Allen McIntosh, and Jonathan Katz. Secure
computation of mips machine code. In European Symposium on
Research in Computer Security, pages 99–117. Springer, 2016.

[75] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quick-
silver: Efficient and affordable zero-knowledge proofs for circuits and
polynomials over any field. In Proceedings of the 2021 ACM SIGSAC

16

https://link.springer.com/chapter/10.1007/978-3-662-49896-5_11
https://link.springer.com/chapter/10.1007/978-3-662-49896-5_11
https://github.com/iden3/circomlib
https://github.com/iden3/circomlib
https://dl.acm.org/doi/abs/10.1145/3372297.3417872
https://dl.acm.org/doi/abs/10.1145/3372297.3417872
https://ieeexplore.ieee.org/abstract/document/8418647
https://zksync.io/
https://polygon.technology/polygon-zkevm
https://polygon.technology/polygon-miden
https://github.com/succinctlabs/sp1
https://eprint.iacr.org/2024/387
https://eprint.iacr.org/2024/940
https://link.springer.com/chapter/10.1007/978-3-662-64322-8_12
https://link.springer.com/chapter/10.1007/978-3-662-64322-8_12
https://dl.acm.org/doi/abs/10.1145/3319535.3339817
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://eprint.iacr.org/2025/039
https://eprint.iacr.org/2025/039
https://link.springer.com/chapter/10.1007/978-3-030-35423-7_12
https://link.springer.com/chapter/10.1007/978-3-030-35423-7_12

Conference on Computer and Communications Security, pages 2986–
3001, 2021.

[76] Yibin Yang and David Heath. Two shuffles make a ram: Improved
constant overhead zero knowledge ram. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 1435–1452, 2024.

[77] RISC Zero. Risc zero — universal zero knowledge. https://www.
risczero.com/ Accessed: Aug 29, 2024.

[78] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. vram: Faster verifiable ram with
program-independent preprocessing. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 908–925. IEEE, 2018.

APPENDIX A
ARTIFACT APPENDIX

The artifact provides the source code for VDORAM, the
first publicly verifiable distributed oblivious RAM, and its
underlying framework, the first multi-prover ZKP frontend
CompatCircuit designed for Collaborative zkSNARKs. The
implementation includes the C# code for the multi-prover ZKP
front-end and the VDORAM runtime, along with a modified
Rust-based collaborative zk-SNARK back-end. The artifact
contains all necessary codes and scripts to reproduce the
performance evaluation presented in the paper.

A. Description & Requirements

This section lists the information necessary to recreate the
experimental setup used for the artifact evaluation.

1) How to access: The artifact is available in a public Git
repository at https://github.com/BDS-SDU/vdoram-artifacts. It
is also available on Zenodo: https://doi.org/10.5281/zenodo.
15855167.

2) Hardware dependencies: The experiments can be run on
a single machine that simulates all parties. The recommended
hardware specifications are:

• CPU: 8 or more cores
• Memory: 16 GB or more
• Disk: 40 GB of free space
3) Software dependencies: The artifact can be tested on

Ubuntu Server 24.04 LTS. The following software is required:
• .NET SDK 8.0 (e.g., 8.0.117)
• Rust nightly toolchain (e.g., 1.90.0-nightly)
• Standard build tools: build-essential, git, curl,
openssh-client, dos2unix

All dependencies can be installed using the system’s package
manager (apt) and rustup, as detailed in the README.md.

B. Artifact Installation & Configuration

The installation process involves setting up the required
software dependencies, cloning the repository, and compiling
the projects.

1) Install the software dependencies listed above using apt
and curl as detailed in the README.md file.

2) Clone the artifact repository from the provided URL.
3) Compile the C# projects by running dotnet

restore and dotnet build -c Release in
the CompatCircuit directory.

4) Compile the Rust-based ZKP client by running
cargo build --release --bin client in the

collaborative-zksnark-mod/mpc-snarks di-
rectory.

Detailed commands are provided in the README.md file.

C. Experiment Workflow

The experimental workflow is managed by a series of shell
scripts. The high-level process is as follows:

1) Configuration: Select an experiment configuration (e.g.,
number of parties) by editing the config.sh file.

2) Distribution: Run scripts to build the executables and
distribute them to the designated locations for the ex-
periment. For the single-machine evaluation, this is all
handled locally.

3) Execution: Run the main experiment script. This will
execute the three main stages of the evaluation: the
preprocessing stage, the computation stage and the proof
generation & verification stage.

4) Monitoring & Collection: Monitor the experiment’s
progress by tailing the log files. Once complete, collect
the resulting logs and R1CS files for analysis.

D. Major Claims

Our paper makes the following major claims, which can be
validated by the provided artifact.

• (C1): CompatCircuit Performance. Our CompatCir-
cuit framework is a front-end for multi-prover ZKPs.
Its core primitives exhibit reasonable computation and
proof generation overheads that scale predictably with
the number of parties. This is proven by experiment (E1),
with results corresponding to Figure 7 in the paper.

• (C2): VDORAM Performance. Our VDORAM imple-
mentation’s performance is consistent across different in-
struction types (demonstrating obliviousness), and its cost
scales linearly with the number of instruction cycles. This
is proven by experiment (E1), with results corresponding
to Figure 8 in the paper.

• (C3): VDORAM Scalability. The overall overhead of
VDORAM’s distributed computation and proof gener-
ation remains moderate when scaling the number of
parties, as compared to a single-prover baseline. This is
proven by experiment (E1), with results corresponding to
Figure 9 in the paper.

E. Evaluation

This section describes the single, comprehensive experiment
(E1) to run, which validates all major claims.

1) Experiment (E1): [End-to-End Performance Evaluation]
[2 human-hours + 20 compute-hours]: This experiment
validates claims C1, C2, and C3 by running the full evalua-
tion pipeline. It measures the performance of CompatCircuit
primitives and the complete VDORAM system for different
party counts and workloads.

[How to] The experiment is divided into three main stages:
the preprocessing stage, the computation stage and the proof
generation & verification stage. The following steps should be
repeated for each party count configuration.

17

https://www.risczero.com/
https://www.risczero.com/
https://github.com/BDS-SDU/vdoram-artifacts
https://doi.org/10.5281/zenodo.15855167
https://doi.org/10.5281/zenodo.15855167

[Preparation] Follow the installation and configuration
steps in the README.md to prepare the environment. This
includes installing dependencies, compiling all projects, and
ensuring the machine can SSH to itself for the scripts to work
correctly.

[Execution]
1) Preprocessing Stage: Run the preprocessing script

(run-preprocess.sh) to measure the time cost of
MPC preprocessing.

2) Computation Stage: For a given party count N,
copy config-e1-nN.sh to config.sh. Run
the scripts to build, distribute, and prepare the
experiment files as described in the README.md.
Execute the computation benchmarks using
7a-exp-123-single.sh (for N = 1) or
7b-exp-123-mpc-thread.sh (for N > 1).
After each run, use the download-remote-log.sh
and download-remote-r1cs.sh scripts to collect
the results. Remember to clear the generated logs and
R1CS files using the provided clear-remote-*.sh
scripts before switching to a different party count
configuration.

3) Proof Generation & Verification Stage: After the
computation stage for a given party count N is
complete, navigate to the prove-scripts direc-
tory. Set the PARTY_COUNT in config.sh to N.
Run prove-r1cs-single.sh (for N = 1) or
prove-r1cs-multiparty.sh (for N > 1). This
stage will use the R1CS files generated in the previous
step to measure ZKP setup, proving, and verification
times.

[Results] The timing information in the log files contains
the raw data for the figures in the paper.

• The logs from the Preprocessing Stage: provide the data
for the Preprocess portion of Figure 9.

• The logs from the Computation Stage provide the data
for the Compute portion of Figures 7 and 9, and all of
Figure 8.

• The logs from the Proof Generation & Verification
Stage provide the data for the ZKP Prove portion of
Figure 7 and ZKP Setup/Prove/Verify portion of Figure
9.

By plotting the collected data, one can verify that the per-
formance trends match those presented in the paper, thereby
validating claims C1, C2, and C3.

F. Notes

A few final notes are included to assist with the evaluation
process.

• Check the Artifact Evaluation Step-By-Step Guide
(CompatCircuit/Experiments/README.md) for
all detailed instructions.

• In the source code, VDORAM has a code name
CollaborativeZkVm. The CompatCircuit folder
contains source codes for both CompatCircuit and VDO-
RAM.

• To accelerate the artifact evaluation process, we have
trimmed down the experiment scale. The approach to
perform a complete evaluation is also mentioned in the
README.md file above.

18

	Introduction
	Related Work
	Model and Preliminaries
	System and Threat Model
	Preliminaries
	Collaborative zkSNARKs
	Multi-Party Computation
	Arithmetic Circuit
	Rank-1 Constraint System
	Verifiable Random Access Machine

	VDORAM: Publicly Verifiable Distributed Oblivious RAM
	Overview
	CompatCircuit: A Unified Front-End for Multi-Prover Computation and Multi-Prover Proofs
	Memory Management: Balancing Oblivious Computation Overheads with Proof Generation Complexity
	Protocol Specification
	Performance and Security Analysis
	Communication overhead of CompatCircuit primitives
	Communication overhead in the VDORAM protocol
	Privacy Disclosure

	Implementation and Evaluation
	Conclusion and Future Work
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)

	Notes

