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Existing work aims to convert black-box DL models to
white-box through methodologies such as operator loop
analysis [14], learning-based approaches [15], symbolic
analysis [14], [15], or memory forensics [16]. Such
approaches successfully recover an operator’s mathematical
representation, such as tensors, weights, and biases, and
identify basic layer types based on this representation.
However, we find that these techniques directly ignore the DL
model’s code, making model-recovery, environment setup, and
model re-execution/instrumentation impossible for models
containing any customized code (as shown in Table V). Even
approaches [14] that attempt to export recovered artifacts in
the universal ONNX format [17] would fail to enable model
re-execution, as ONNX, while prebuilt with standard
operators, strictly requires a set of functions for customized
code or novel operator implementations to enable model
execution. Ultimately, this means that the application of
model-testing techniques that rely on instrumentation of the
model’s code are directly inapplicable. Prior research [5], [7]
and our preliminary study (§II-A) have shown that without
access to the instrumentable code of the deployed DL model,
prior approaches will fail to satisfy the assumptions necessary
to enable white-box analysis.

Applying white-box analysis tools [5], [7], [8], [18]–[20] to
proprietary DL models faces several challenges. First,
enabling model reuse for code instrumentation is essential but
hindered by the difficulty of recreating the correct execution
environment, as prior work directly ignores this. Second,
environment setup relies on an investigator’s knowledge of
what model is being deployed, what dependencies it requires,
and what framework it can be deployed in. To answer these
questions, an investigator can attempt to attribute the model
to identify the original base model, yet customization often
obscures a model’s lineage, making attribution difficult.
Relying solely on layer names, weights, and model graph
structure for comparison is insufficient, as significant
variations exist even within model families (shown in §IV-B1).
Third, robust attribution and reuse require recovering a
“fingerprint” of the model, which is the code that implements
the DL model. Without this fingerprint, the necessary context

Abstract—Prior work has developed techniques capable of 
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evaluated ZEN on 21 SOTA DL models, including models across 
the language and vision domains, such as Llama 3 and YoloV10. 
ZEN successfully attributed custom models to their base models 
with 100% accuracy, enabling model reuse.

I. INTRODUCTION

Proprietary deep learning (DL) models are often extended
from open-source state-of-the-art models [1]–[4]. At the same
time, the research community has proposed numerous model
analysis tools for backdoor detection [5]–[8], model
explainability [9], intellectual property protection [10], etc.
However, all of these techniques strongly assume white-box
model access [11]–[13]. This assumption often only holds for
the original developer of the proprietary model, as only they
have white-box access (i.e., knowledge of the model’s
architecture, weights, custom layer implementations, etc.).
This white-box assumption will rarely hold for forensic
investigators who aim to apply model analysis tools to
proprietary models post-deployment [11], [13]. Without
cooperation from the original developer, these models are
black-box (i.e., unknown architecture, dependencies, and
custom layer implementations). To apply any of those
white-box model analysis techniques, forensic investigators
need a method to bridge the black-box to white-box gap.
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for handling custom implementations and enabling reuse for
white-box analysis is lost. These issues highlight that a DL
model cannot be analyzed in isolation from its implementing
code, necessitating an approach that synthesizes both its
mathematical and programmatic representations.

We find that bridging the black-box to white-box gap for
proprietary DL model analysis hinges on three key insights
that address the challenges of code recovery and model
attribution/reuse. First, by recovering not only the model’s
layers/weights/graph structure but also its implementing code,
it is possible to create a unified representation (or fingerprint)
of the model. This fingerprint captures both the what and the
how of the model’s operation, supplying the code context
missing from prior approaches. Second, this model fingerprint,
enables robust model attribution. Leveraging the common
practice of building upon open-source base models [1]–[4],
the fingerprint of the unknown model can be compared
against a library of known base model fingerprints to identify
the proprietary model’s origin. Third, model reuse can be
achieved through differential analysis and patching. By
comparing fingerprints between the recovered model and the
attributed base model, specific customizations (code additions
or modifications) can be identified. These differences can then
be translated into code patches that are applied via runtime
techniques to an instance of the base model to recreate the
recovered model’s functionality in an environment suitable for
white-box analysis.

Drawing upon these insights, we propose ZEN, an
automated model-recovery framework that enables the
application of white-box analysis tools to black-box models
post-deployment. ZEN is the first work to synthesize a DL
model’s unified representation, mapping DL operators to
user-defined code that runs in the DL system (§IV-A). ZEN
then aims to attribute the deployed model to a single base
model from which code differences can be applied for model
reuse (§IV-B1). ZEN comes prebuilt with a base model
library, which contains fingerprints of vision/language models
from which model attribution can be performed. With a base
model identified, ZEN finds differences in code between the
two models, preparing patches for model redeployment.
Finally, given the base model environment, ZEN instruments
the live-runtime model environment with generated patches,
enabling model reuse without source code access to the
deployed DL system.

We evaluate ZEN on 21 different model types spanning the
language/vision model domains (e.g, Llama 3 [21],
YoloV10 [22]), to show that ZEN was able to accurately
recover the unified representations for all 21 models. ZEN
was then able to correctly attribute each to a base model even
when the model had been customized by up to 83.3%. Using
the attributed model, ZEN is able to identify all customized
changes, enabling patching, model reuse, and white-box
analysis. To facilitate future work and recovery techniques we
will directly open source our code as well as “model

fingerprint” hosting web service (§II-B).1.

II. A UNIFIED MODEL REPRESENTATION

Prior work [14]–[16], [23], [24] struggles to enable realistic
model reuse. First, they assume a working reuse environment
for recovered models. Proprietary models can rely on esoteric
third-party libraries, customized operators, and system-specific
pre-/post-processing logic, which prior work is unable to
recover. By attributing the DL system to a base model, ZEN
can recreate a model environment (§IV-B) where the
recovered model can be used. Second, prior work attempts to
export the model mathematical representation in ONNX for
reuse. As ONNX requires a set of defined custom operators
when dealing with unknown layer types, such approaches fail
to enable model reuse, as they do not recover the
ONNX-required customized operators. To address this, ZEN
recovers the programmatic representation of the recovered DL
model, providing necessary implementations for model reuse
(§IV-C). Finally, as a result of being able to recover only
common or inferable operators, those prior techniques are
unable to provide instrumentable models for models
employing customized operators, impeding the application of
vetting techniques. MXR and MXT [23] assume recovered DL
model instrumentability, although they ignore custom
implementation recovery. ZEN applies discovered customized
changes to an attributed base model (§IV-D) to provide an
instrumentable model.

A. Motivating Investigation

Consider a mission-critical DL system (e.g. a UAV [25]),
built upon state-of-the-art models [1]–[4], [26]. The UAV’s
DL model utilizes customized model layers and has uniquely
trained parameters for its deployment environment. Prior to
the widespread deployment of the DL system, an investigator
is called in to verify that the UAV is not vulnerable to
traditional backdoor/adversarial attacks [27], [28].
Unfortunately, the UAV’s model binary has been protected
such that it is difficult to reverse engineer (weights encrypted,
architecture varied, generic implementation altered). To
overcome this, the investigator elects to use model-recovery
tools [14]–[16], [23], to analyze the UAV’s model. To this
end, the investigator uses AIP [16], successfully recovering
230 tensors, 34 layers, and 9.3M weights corresponding to the
model’s mathematical representation.

a) Model Reuse: The investigator then attempts to lift
the recovered model data into a universal reusable format (i.e.,
ONNX representation). The investigator finds that this is a
straw-man solution, as to even generate this representation
ONNX requires a set of definitions for each layer in the model.
However, definitions for recovered layers (layer code) are not
output by the model-recovery tool, and thus fail to satisfy
this preliminary assumption. Unfortunately, without addressing
this error (supplementing the testing environment with missing
code), model testing would be impossible.

1Open sourced upon paper acceptance.
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TABLE I: ZEN’s Automated Unified Model Representation
Recovery, Base Model Identification, and Patch
Generation/Application for Reuse of the UAV Model.

ZEN Input DL System Memory Image

Mathematical Representation
Recovery

Tensors: 230
Layers: 34
Weights: 9.3M

Runtime Recovery
DL System Code:

Functions: 59,054
Classes: 1,109
Modules: 2,983

Model Code Recovery
DL Model Code:

Functions: 342
Classes: 22
Modules: 22

Model Attribution

Similarity Score (SS) Analysis:
Mathematical Representation SS: 0.82
Programmatic Representation SS: 0.98
Unified Representation SS: 0.94

Base Model Identified:
YoloV5 [29]

Patch Generation
Classes Added: 9
Changed Functions: 3
Added Functions: 8

Model Reuse
Mean Average Precision@0.5: 0.413
Attack Success Rate: 82.3%

b) Model Attribution: To determine what needs to be
supplemented to the testing environment for model reuse,
given AIP output, the investigator can attempt to make an
educated guess as to the attribution of the model (as
attribution is ignored by prior work). By attempting to
attribute the model, the investigator can then try to manually
identify the implementation changes that need to be added to
the testing environment to address runtime errors.
Unfortunately, many models share similar architectural
backbones and layer types. Even models of the same family
(i.e., YoloV5 [29]) can have different weight counts, layer
sizes, and additional layers added, depending on the
deployment scenario, making guessing a model’s attribution
difficult.

c) DL System Reverse Engineering: Assuming that the
investigator correctly attributed the model to a base model [26],
they can then attempt to reverse engineer the UAV to identify
the runtime-required code missing in the testing environment.
However, this introduces a new set of challenges. First, such
DL systems may utilize complex third-party library operators
for model inference (i.e., Fairscale [30], LoRA [31], etc.),
meaning that without also identifying used third-party library
code (from memory), model reuse will remain impossible.
Second, upon putting the memory image in a disassembler
(i.e., IDA, Ghidra [32], [33]) the investigator sees that there
are 59,054 functions and 1,109 classes that manually need to
be reverse engineered. Finally, model reuse for testing requires
a source-code level instrumentable model. The investigator
can attempt to use a Python decompiler [34] to generate that
source code but would realize that this approach would produce
error-riddled source code [35], [36]. Ultimately, the challenges
impeding model reuse are difficult to overcome.

B. Investigating With ZEN

ZEN can be used by the investigator to aid with their UAV
testing. Table I highlights the results of ZEN’s automated

recovery and reuse of the UAV’s DL model. ZEN first recovered
the model’s MR comprised of 9.3 million weights, 34 layers,
and 230 tensors, shown in row 2. Likewise, ZEN was able
to recover the correct model topology (ordering of layers and
layer connections), matching prior work [16].

a) ZEN’s DL System Reverse Engineering: Then, ZEN
automatically recovers the code of the entire DL system,
recovering 59,054 functions, 1,109 classes, and 2,983
modules, shown in row 3 of Table I. Then, by finding the
intersection of all code corresponding to the recovered
mathematical representation (i.e., the model’s layer types),
ZEN identifies the model-specific programmatic
representation. Shown in row 4 of Table I, ZEN recovers 342
functions, 22 classes, and 22 modules specific to the model.
ZEN then synthesizes the recovered mathematical and
programmatic representations into a unified representation that
acts as a fingerprint for attribution.

b) ZEN’s Model Attribution: With the model’s unified
representation in hand, ZEN employs a novel base model
attribution algorithm (§IV-B), calculating the similarity
between the unified representation of the recovered model to
those of state-of-the-art base models [26]. The investigator
finds that the model was identified as a derivative of YoloV5,
with a similarity score of 0.94 (row 5). Note that by
identifying a base model, ZEN can uncover differences
between the recovered model and the base model (YoloV5),
which are subsequently used to generate patches for model
reuse. To do this, ZEN utilizes its model differential analysis
algorithm (§IV-C), discovering nine unique classes added,
three modified functions, and eight added functions to the
recovered model (relative to the base model).

c) ZEN’s Model Reuse: ZEN then outputs the model’s
weights/graph structure and a patch file containing all code
linked to the layers of the model necessary for downstream
model reuse. Given the output of ZEN (base model and patch
file), the investigator can download an open-source
implementation of the identified model (YoloV5) from an AI
marketplace [1]–[3]. Upon setup of the base model’s
environment, ZEN is then utilized to automatically patch the
base model environment to match that of the recovered model,
enabling source-code level testing.

Testable model in hand, the investigator evaluates the
UAV’s model performance on non-perturbed data, ascribing a
mAP@0.5 score of 0.413 (row 7 of Table I). The investigator
observes that the recovered model outperforms prior YoloV5
models as a result of the model having SOTA layers.
Importantly, ZEN enables source-code level instrumentation of
the model, allowing for testing with white-box analysis
techniques [5], [7], [8], [19]. We applied FGSN [37] as a case
study, to highlight the application of white-box analysis
techniques. FGSN generated adversarial examples with an
82.3% attack success rate against the UAV’s DL model. This
shows that post-ZEN’s application, even source-code-level
instrumentation techniques can be applied to analyze
previously black-box DL systems.
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III. THREAT MODEL AND ASSUMPTIONS

ZEN was prototyped as a memory forensics tool, and our
assumptions regarding its implementation and evaluation mirror
the assumptions made in prior memory forensics work [16],
[38]–[47]. ZEN operates on a snapshot of physical memory
acquired from a running system (acquisition is further discussed
in §C) without corruption or tampering of the memory image.
In the case of the drone scenario in §II-A, an investigator
was able to recover the drone and use a memory-acquisition
tool [48]–[50] to acquire a memory image. As ZEN recovers
both the code and model weights/layers/graph-structure at
runtime, any encryption employed to evade static analysis is
bypassed. Once the model and model code are loaded, they
exist decrypted in memory. However, we do assume (as does
prior work) that no hardware-assisted runtime integrity checks
or other specialized defenses (e.g., hardware-assisted memory
encryption) interfere with the memory-acquisition process.

a) Threat Model: We design ZEN as a tool intended for
forensic investigators to analyze unknown, adversarial, or even
copyright-infringing DL systems (such as in §V-D). An
adversary may attempt to obfuscate their DL system prior to
deployment to thwart ZEN (discussed in §B). We assume the
adversary deploys Python-based DL systems and discuss
extension to C/C++ systems in §VI-A. We exclude other ML
models (e.g., regressions, random forests, etc.) from this work,
though ZEN’s unified model representation supports the
recovery/reuse of such models, as they consist of user-defined
code and implementation-specific weights/graph structure.

DL model obfuscations, such as layer renaming, dummy
code declaration, and control flow obfuscation, are possible
but are insufficient to thwart ZEN. This is because obfuscated
DL systems are still bound to invoke standard operators
required by underlying APIs (e.g., CUDA [51], cuBLAS [52],
etc.) corresponding to the layers in the DL model (e.g.,
convolutions, activations, etc.). ZEN targets the recovery of
the code corresponding to these layers in the model’s directed
graph [16], which contains the lower-level framework calls
necessary for the DL model’s operation.

We assume the target DL system utilizes common DL
frameworks (e.g., PyTorch [53], CUDA [51], etc.) rather than
an entirely new framework developed by an adversary. If an
adversary designs a new DL framework from scratch, the data
structures upon which ZEN relies would be absent and
impede recovery. We consider this scenario out of the scope
of this work but discuss possible solutions in §VI-C.

We also assume that the adversary’s DL framework executes
on a known OS with known GPU hardware. Similarly, we
consider building new OSes/GPU drivers to be out of the scope
of this work, as this would entail extending the underlying
tooling that ZEN relies on (e.g., AIP [16]).

IV. ZEN DESIGN

First, we formally define a DL system’s unified representation
such that generic model recovery and reuse are possible. Let
M represent a DL model. M is defined as:

M := (MR,PR, ϕ, E) (1)

where MR and PR are the model’s Mathematical
Representation and Programmatic Representation, respectively,
ϕ is a mapping function between elements in MR and PR,
and E is the execution context. MR is further defined as:

MR := (T,W,B,L,G) (2)

where T denotes the set of tensors, W the set of weights, B
the set of biases, L the set of layer types, and G the directed
acyclic graph (DAG) defining the connections between layers
in the model. Similarly, the PR is defined as:

PR := (C,F ,R) (3)

where C, F , R are the set of classes, functions, and data
structures, respectively, implementing the layers, connections,
and other operations used by the model. The mapping
function ϕ : MR → PR establishes the correspondence
between elements in MR and PR. For each tensor t ∈ T
belonging to a specific layer l ∈ L, ϕ(t) = y, where
y ∈ C ∪ F . The function ϕ satisfies the following constraints:

∀y1, y2 ∈ PR, y1 ̸= y2 =⇒ ϕ−1(y1) ∩ ϕ−1(y2) = ∅. (4)

This ensures that no two distinct elements in PR map to
the same element in MR, thereby adhering to the DAG G
representing the model. Each node in G (from MR) maps to
exactly one element in the PR. Additionally, ϕ allows multiple
tensors t1, t2, . . . ∈ T from the same layer in MR to map
to a single programmatic element y ∈ PR, capturing cases
such as complex layers requiring multiple tensors for their
implementation (e.g., Involution [54], RepConv [55]). Finally,
a unified representation can be formulated as:

Unified Representation := (MR,PR, ϕ). (5)

Note that the unified representation does not directly
incorporate the execution context E , the runtime environment
necessary for the operation of the model. Although E is
critical for executing the model, it is not inherently part of the
model’s definition but instead defines the model’s operational
environment. We define the execution context E as:

E := (H,D,S), (6)

where H, D, and S represent the hardware context (e.g., GPUs,
TPUs), dependencies (e.g., libraries/frameworks), and runtime
state (e.g., dynamically loaded modules), respectively.

Finally, we define Ψ, which allows for reuse of a model
based on its unified representation and E :

Ψ : ϕ(MR)× E → Executable Model, (7)

which is a deployment mapping that combines ϕ(MR) and E
to form a deployable artifact (necessary for instrumentation
of the model). Note that the executable model produced by
Ψ is distinctly different from model M, as M is the model
in its original deployment environment, whereas Ψ aims to
enable redeployment and execution of a model’s representation
in tandem with E (estimated by attribution in §IV-B).
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A. Unified Model Representation Synthesis

Satisfying both Equation 5 and Equation 4, ZEN’s unified
model representation synthesis is shown in Figure 1. Given a
main memory image, ZEN first recovers the mathematical and
programmatic representations of the DL system. ZEN adopts
existing techniques ( 1 in Figure 1) to recover the model’s
parameters, layer types, connections, etc. [14]–[16] ( 2 ),
corresponding to its mathematical representation (Equation 2).

However, recovery of the model’s programmatic
representation is impeded by a number of technical challenges.
First, DL systems run on complex interpreted languages (e.g.,
Python). DL system source code is compiled at runtime to
Python byte-code, or statically to machine code, and is then
executed, making source-code level recovery from memory
impossible. Second, the recovery of raw byte-code for
functions in the DL system is not enough for programmatic
representation recovery, as the byte-codes reveal neither the
number or types of arguments/local variables nor the
classes/modules that functions belong to. Finally, DL systems
utilize heavyweight third-party and system-level libraries,
making user-defined system implementations hard to
distinguish from library function implementations.

We make the key observation that the programmatic
representation of the DL model can be created by identifying
and recovering code in memory within the closure of the code
implementing the DL model. As all DL model node
definitions and functions are in memory at runtime, by
investigating the current DL system’s code objects [56] loaded
into memory during model execution, ZEN can recover all
model-specific code.

a) Model-Specific Code Recovery: To address the first
and second challenges, we observe that while source-level
implementations are unavailable at runtime, the code objects
corresponding to these implementations are available in process
memory (as raw bytes). ZEN first identifies all code objects
in the DL system process memory ( 3 in Figure 1). ZEN
begins by enumerating all code objects within the DL process
memory. For each code object, ZEN collects the function
signature, class, and address, which are combined by ZEN into
an identifier, function ID ( 4 ) (stored and reused in §IV-D).
ZEN then identifies the closure of the associated code object
(from function prologue to return), also recursively recovering
other functions called by that code object ( 5 ). ZEN recursively
traverses the pointers of the arguments and local variables ( 6 )
that contain functions and data structures of various types
to verify that all functions and data structures used by the
code object are not smeared in memory [57], have a type
string or Vtable pointer, and have a valid return address in the
memory address space ( 7 ). With this data collected (classes C,
functions F , and data structures R), ZEN satisfies Equation 3.

Then, ZEN employs Code Object Filtering ( 8 ) utilizing
recovered model layer types and data structures (highlighted in
red), to reduce the set of code objects produced from Runtime
Recovery ( 3 ) to a set of code objects that solely implement
the DL model. ZEN first eliminates any code objects from its
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Fig. 1: Given a memory image containing a DL system,
ZEN creates a unified model representation, or fingerprint,
for downstream attribution and patching.

Runtime Recovery that do not reference objects (or functions)
of classes used in the layers of the recovered in 2 . ZEN then
adds code objects that reference functions or objects of classes
in recovered layers to a set constituting the programmatic
representation ( 9 ). However, code objects not in this set
may still be relevant to the execution context E , as third-party
libraries may be used in the deployment of the model (discussed
in §IV-B).

b) A Unified Representation: ZEN then synthesizes a
unified model representation, combining the mathematical and
programmatic representations of the DL model (establishing a
mapping function ϕ used in Equation 7). To do this, each
node recovered by ZEN for the DL model (e.g., the layers
constituting the model’s graph G) needs to be mapped to a
recovered DL model code object and must satisfy the
injectivity constraint in Equation 4. Referring back to the
§II-A, the unknown Involution node in the DL model has
its weights, layer shape, and operator type mapped to the
recovered Involution class and that class’s code objects
(i.e., init and forward functions).

For each node of the DL model’s graph gi ∈ G, ZEN maps
the node based on layer type (e.g., Involution) to the
associated classes and code objects in the model’s programmatic
representation. Then, any functions called within the closure
of those code objects are added to the mapping for that model
node. ZEN repeats this over all layers (nodes) in the DL model’s
graph. This set of mappings (ϕ) constitutes the unified model
representation ( 10 ), or fingerprint, used in model attribution.

B. Model Attribution

While the unified model representation provides a mapping
between the model layers and the code implementing model
layers, it is insufficient for model reuse without the execution
context E (e.g., YoloV10 [22] relies on the Ultralytics [58]
library for pre-processing, inference, and prediction
post-processing). Furthermore, E also encompasses hardware
dependencies and runtime states that are critical for model
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deployment. Without a practical mechanism to identify or
approximate E , model reuse is impossible.

Worse, recovering E from memory is inherently challenging
due to incomplete information, such as missing external
dependencies, transient runtime configurations, and proprietary
or obfuscated libraries. Additionally, dependency mismatches,
version conflicts, and hardware incompatibilities further
complicate rehosting the model’s execution context exactly.
These challenges make precise recovery of E impractical.

However, our key insight is that the development of
proprietary models is often predicated on the adaptation of
state-of-the-art, open-source models. By identifying the base
model that the proprietary model is built on, ZEN can
approximate the execution context E by the base model’s
execution context Ê . Referring back to §II-A, by identifying
the YoloV5 base model, ZEN can reuse that original YoloV5
execution environment for downstream patching (§IV-D).
Gathering an Ê effectively mitigates dependency issues and
provides a pseudo-execution context that supports deployment
and reuse of the recovered model.

Basing model attribution solely on the mathematical
representation is often infeasible. Due to use-case-specific
implementations, models within the same family can exhibit
significant mathematical representation divergence (i.e.,
YoloV8 [59] vs. YoloV8-SPD [60] have a mathematical
representation similarity of 0.46 shown in Table III). This is
because components of the model (layer sizes, scaling,
element counts, and even novel layers) are design-choice
specific, meaning that models (such as YoloV8-SPD vs.
YoloV8) may have wildly varied element/layer counts, layer
types, and layer sizes. Searching for a solution, we looked at
attributing a DL system via its unified model representation,
or model fingerprint. However, without building a database of
fingerprints, there would be no way for an investigator to even
attribute an unknown model.

a) Built-in Base Model Library: As foundational
models [26] are often modified, improved, fine-tuned, and
redeployed for specific use cases, we aim to build a library of
such foundational model signatures, which we refer to as the
Base Model Library (BML), to identify foundational model
derivatives. Given a set of foundational models, ZEN
synthesizes a unified model representation for each, serving as
the fingerprint for that model. To construct the base model
library, an investigator can deploy a foundational model, and
use a memory-acquisition tool to get a memory image of the
DL model system. Given the memory image and the ground
truth name of the foundational model as inputs, ZEN applies
its methodology (§IV-A) to generate the foundational model’s
unified representation, storing it as an accessible entry in the
base model library (via the ground truth name). By iteratively
applying this process to a set of memory images from various
DL systems, ZEN constructs a base model library (adding
new base models is further discussed in §VI-B).

1) Model Attribution: Even with a base model library,
model attribution via unified representation comparison
introduces problems that ZEN must solve. Strings, variable

names, and filenames (attributes of the DL system and code
objects) recovered from the DL system can vary from
implementation to implementation. Such attributes are
unreliable for comparison, as they are use-case specific and
obfuscatable.

Algorithm 1: ZEN’s Model Attribution.
Input: Recovered Model Unified Representation (UR) M , BML
Output: Matched Model, UR: MM , Set: Ω, Unmapped COs: ∆

1 URO ←− ∅ // Base UR Set Initialization
2 ∆ ←−M.co // Code Objects from M added to ∆
3 for UR ∈ BML.urs do
4 if COi.bc ∈ UR ≡ COj .bc ∈ ∆ then

// UR with Match Added to URO.
5 URO ←− URO ∪ UR;
6 end
7 end
8 MM ←− ∅ // Initialize UR scores set.
9 for URi ∈ URO do

10 MRSSi ←−MRSS(URi,M) // Calculate
mathematical representation SS.

11 Γ ←− URi.co // Γ Assigned all COs from
Candidate UR.

12 Γ.src ←− Decompile(Γ.co.bc)
13 Ω ←− ∅
14 do
15 δi ←− δ ∈ ∆ // Select Code Object from ∆
16 δi.src←− Decompile(δi.bc)

// Top COs in Γ with Highest Attr. SS to
δ.

17 TOPN ←− argmaxN (Attr(δi.attr,Γ))
// Byte-code similarity for code objects

in TOPN.
18 IBSSN ←− IBSS(δi.src, TOPN )

// γ, code object in Γ with top SS.
19 γ ←− argmax(SS(δi.src, IBSSN ))

// Programmatic representation SS is γ’s
Combined IBSS/Attr SS scores.

20 PRSS ←− max(SS(IBSSγ , Attrγ))
21 Ω ←− Ω ∪ (γ, δ) // Add δ, γ to Mapping Set.

// Remove δ, γ from ∆, Γ.
22 Γ←− Γ \ {γ}
23 ∆←− ∆ \ {δi}
24 while ∆ ̸= ∅ ∥ Γ ̸= ∅;
25 URSS = Combine(MRSS , AttrSS , PRSS)
26 if URSS > max(MM) then
27 Matched Model UR←− URi

// URSS added to MM scores.
28 MM ←− MM ∪ URSS

29 end
30 end

To address these issues, ZEN employs a novel model
attribution algorithm that combines similarity scores (SS)
calculated for the mathematical representation, attributes, and
byte-codes between the recovered model and models in the
base model library.

ZEN’s model attribution is shown in Algorithm 1. First, each
code object in the recovered DL system (M ) is added to set ∆.
ZEN begins attribution by comparing code objects in ∆ to ones
stored in the base model library (Line 3 - Line 7). ZEN first
filters based on code object byte-code, as a 100% match on a
byte-code comparison between a code object in ∆ to one in the
base model library indicates an identical function (Line 4). Any
unified representation from the base model library containing
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an identical function to a function in M is stored in an ordered
list URO (Line 5).

For each unified representation URi in URO, ZEN first
calculates a mathematical representation similarity score of
URi to M (Line 10). ZEN does this by calculating the
normalized differences among the parameters, layer shapes,
and count of layer types. ZEN then employs a graph-based
matching approach (our approach utilizes spectral graph
matching [61], but other graph-matching algorithms are also
viable) to get a graph similarity score. ZEN computes the
mathematical representation similarity score (MRSS) by
taking a weighted average of the graph and layer attribute
similarity scores. This average is weighted toward the model’s
graph similarity, as the overall architecture is a more stable
identifier than layer-specific attributes (e.g., parameter counts,
shapes), which can change dramatically with minor model
variations like increasing a layer’s width.

Then, each code object in URi is added to the matching
set: Γ (Line 11). For each member in Γ, a decompilation of its
code object’s byte-code is made and attached to that member.
ZEN then selects a single member δ from ∆ as a current
match candidate. A comparison is made by ZEN between the
attributes (strings, variable names, variable type strings) of
δ and the attributes of all code objects in Γ, producing an
attribute similarity score (Attr. SS) (% of matching attributes).

ZEN identifies a set of code objects (Line 17) in Γ with
the highest attribute similarity scores (TOPN ) relative to δ
based on an element-wise distance calculation. This distance
is calculated among the number of function arguments, local
variables, and function calls in the code object’s byte-code. In
our evaluation, we use an N of 3 since we found that most
DL systems did not share more than three functions with exact
matching attribute similarity score. As multiple functions can
have the same attribute counts, ZEN constructs TOPN as a
set where each code object in the set has the highest, but also
equivalent, attribute similarity score to δ. To find a matching
code object to δ, ZEN compares the byte-codes of δ to the
byte-codes of the code objects in TOPn.

Unfortunately, different framework versions (i.e., Python 3.7
vs. 3.8) may have changes in opcodes, resulting in byte-code
variance [34]. This means that given some source code, the
byte-code for that source code may vary from deployment to
deployment depending on the framework version. However, we
observed that though byte-codes may be different between a
function and a modified version of that function, each function’s
corresponding source code can still be very similar.

Consequently, ZEN compares decompiled byte-codes for
each code object in TOPN to δ’s decompiled byte-code with
fuzzy string comparison, generating an implied byte-code
similarity score (IBSS) for each code object of TOPN

(Line 18). For each code object in TOPN the attribute
similarity score and IB similarity score are averaged into a
programmatic representation similarity score (PRSS in
Line 20). For the code object of TOPN , γ (Line 19), that has
the highest programmatic representation similarity score, a
mapping between code object δ and code object γ is stored in

a bipartite graph: Ω (Line 21), indicating a matched function.
Once added to Ω, γ and δ are removed from Γ and ∆,
respectively (Line 22-Line 23) and this process continues until
either ∆ or Γ is empty.

Finally, a unified representation similarity score (URSS) is
generated based on the combined mathematical and
programmatic representation similarity scores of matched
code objects (Line 25). If the current unified representation
similarity score exceeds the current maximum unified
representation similarity score (Line 27) in MM (set of
current unified representation similarity score scores), the
current attributed model is set to URi (Line 27) and added to
the set of unified representation scores MM .

Algorithm 2: ZEN’s Model Differential Analysis.
Input: UR: MM , Map Set: Ω, Unmapped CO Set: ∆
Output: CO Differences: D, Unique CO Set: Υ, Changed CO Set: ϵ

1 Υ ←− ∅
// Corruption Check On Unique Code Objects

2 for δ ∈ ∆ do
// Ignore δ if Corrupt Attribute is Found

3 for Attri ∈ δ do
4 if Corrupt(Attri) then
5 δ.inv = True
6 break
7 end
8 end
9 if δ.inv == False then

10 Υ ←− Υ ∪ δ // Add Valid, Unique COs to Υ
11 end
12 end
13 ϵ ←− ∅

// Process Differences of Changed Code Objects
14 for Pi ∈ Ω do

// Initialize Changes Set for Current
Mapping

15 ci = ∅
16 for Attrj ∈ Pi do

// Ignore Pi if Corrupt Attribute is
Found

17 if Corrupt(Attrj .rec) then
18 Pi.inv = True
19 break
20 end

// Include Nested COs in Mapping
21 if CONest ∈ Attrj .rec then
22 Pi ←− Update(Pi, CONest)
23 end

// Compute Change in Attribute
24 ci ←− ci ∪ Difference(Attrj .base, Attrj .rec)
25 end
26 if Pi.inv == False then

// Change for each Pi Recorded in ϵ.
27 ϵ ←− ϵ ∪ ci
28 end
29 end

C. Recovered Model Differential Analysis

With an identified base model, ZEN aims to find the
differences between the base and recovered models to
generate patches (in §IV-D) such that the recovered model
can be reused in the base model’s execution context Ê .
However, conducting such differential analysis introduces
technical challenges.
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Fig. 2: (Left) ZEN’s patch generation. (Right) ZEN’s patch application to the base DL system.

First, the base and recovered models may have large
discrepancies in counts of functions, classes, etc. This means
that functions in the recovered system may have been added,
changed, or even deleted relative to the base model. Even
worse, recovered system functionality may be obfuscated
(naming changes, code obfuscation, etc.), further muddying
differential analysis. Second, even with all mappings in Ω
between the base and recovered model’s code objects
produced in §IV-B1, the recovered DL system may introduce
changes that do not correspond to anything in the base model
(e.g., the addition or removal of classes/functions). These
changes can be required to execute the recovered model (i.e.,
Involution class addition in §II-A). While model
attribution produces a base model and estimates the execution
context of the recovered model as Ê , differential analysis
should output the changes that were made in the recovered
DL system relative to the base model.

To address these challenges, ZEN applies a differential
analysis algorithm, Algorithm 2, which can produce forensic
evidence, as shown in §D. Note that Γ, post-attribution,
contains the remaining code objects from the base model’s
unified representation that do not have a match to any code
object in ∆. This implies that those functions are not used in
the recovered model and can be ignored. However, ∆,
post-attribution, contains the remaining code objects from the
recovered model’s unified representation that do not have a
direct match to any code object in the base model’s unified
representation (this is the case when Γ is emptied first in
Algorithm 1). This implies that connections in mapping set Ω
are missing for the remaining code objects in ∆, meaning that
instead of a unique change being applied to an existing code
object in the base model’s unified representation, an additional
code object is implemented in the recovered model required
for model reuse. Each member of ∆ therefore corresponds to
an additional code object (not in the base model) that needs
to be added via patching into the base model. ZEN ensures
that all attributes of each member of ∆ have pointers to
objects of known type and point to a valid region of memory
(in the process heap) (Line 4). Members containing valid

attributes are assigned to Υ (Line 10).
Next, for each mapped code object pair Pi in Ω, ZEN checks

the attributes of Pi for corruptness (i.e., does a pointer point
to an object within the memory mapping of the process and
does the object have a valid Vtable pointer or type string).
ZEN ignores all corrupt pairings for patching. For attributes
with pointers to other code objects (i.e., helper functions), all
nested code objects are recovered and included in modified pair
mapping Pi (Line 21). ZEN records all changes in the attributes
of the code object, such as argument counts, local variable
counts, etc. (Line 24). Likewise, the differing byte-code is
included in the modified pair. To conclude differential analysis,
ZEN combines these changed elements into a single member,
stored in ϵ (Line 27).

D. Model Patching

Referring back to the investigation in §II-A, Figure 2
shows the unavailable source code that was used in the
recovered DL system. ZEN first takes the code objects from
its differential analysis and generates a patch file
corresponding to each set (changed code set ϵ and added code
set Υ). For set ϵ (i.e., modified code in Figure 2 1 ),
corresponding to existing code objects in the base model that
are changed in the recovered model, patches instead overwrite
existing code objects at runtime (for interpreter-based DL
systems). This means that for each pair in ϵ, the differences
( 5 ) are output directly to the file for patching the code
object at runtime ( 6 ).For Υ, (i.e., code such as the added
Involution code shown in 3 ), which contains novel
implementations in the recovered model, a patch file is
generated from ZEN-recovered code objects consistent with
the system version of the recovered model’s DL system ( 4 ).
To do this, ZEN marshals each code object’s byte-code along
with its collected attributes, return address, local variables, etc.
ZEN outputs this marshalled code object, along with its
function ID (§IV-A), to the patch file ( 7 ).

Shown in Figure 2, given the patches generated and the
base process, ZEN begins by enumerating the recovered DL
system’s code objects at runtime 8 . For code objects found
with an entry in ϵ, ZEN identifies the associated patch ( 10 )
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from the corresponding patch file and patches the attributes and
byte-code of the base system code object such that it matches
the recovered code object 9 . To ensure that pointers in the
modified code object dereference to the appropriate DL system
function, ZEN first finds any function IDs (generated in §IV-A)
referenced in that object’s code (via call addresses). For each
function ID found in the modified code object, ZEN replaces
pointers to incorrect addresses within the code object to the
correct addresses found in the function IDs list of the base
implementation (or in ϵ or Υ, which contains the mappings
for code objects between base and recovered system 13 ).
For interpreter-based systems this occurs at runtime, with ZEN
patching existing code objects in memory. This is accomplished
by iterating through all objects currently tracked in the Garbage
Collector (GC) and filtering for code objects. ZEN then matches
the function’s __name__ and __module__ attributes against
the function ID of the function to be patched. Once the target
code object is located, the patch is applied by modifying
its __code__ attribute. The new code object is created by
deserializing the marshalled byte-code from the patch file using
Python’s built-in marshal module. This effectively replaces the
function’s logic at runtime.

Now, for each added code object in Υ ( 11 ), ZEN patches a
new code object into the base model’s DL system ( 12 ). ZEN
first unmarshalls all code object entries, in Υ, within the patch
file. Similar to ZEN’s processing of entries of ϵ, ZEN employs
address verification ( 13 ) to ensure that all pointers in the code
object’s byte-code dereference to existing functions within
the DL system programmatic representation. For incorrect
addresses found in the code object’s byte code, ZEN aims to
identify whether the address corresponds to an existing entry
in Υ or instead exists as a modified function in ϵ. If in neither,
ZEN identifies the function via its function ID (from the base
model’s unified representation), and patches the address to
the correct call address of the existing base model function.
Then, for each unmarshalled code object, ZEN applies Python’s
types.FunctionType constructor to create a new function
object from this code object and the global namespace of the
target module. The newly created function is then injected
into the target module’s namespace using the setattr()
built-in Python function. This makes the new function available
to be called by other parts of the model’s code. Finally, by
enumerating objects in the GC, ZEN fixes incorrect addresses
within newly added functions to correct entries in the GC based
on either existing entries in Υ or ϵ. If in neither Υ nor ϵ, ZEN
once again identifies the function via its function ID from the
base system unified representation, and patches the address
to the correct call address. Once this process is complete, the
model will properly execute the uniquely implemented code
recovered from the recovered DL system ( 14 ).

V. EVALUATION

ZEN’s algorithm is generic, but our prototype
implementation consists of ∼5000 lines of Python code
targeting the recovery and reuse of Python-based SOTA DL
systems, a choice based on Python’s popularity for DL system

deployment. We built the base model library for ZEN by
deploying foundational models, collecting a memory image
for each at inference time (entire system physical memory via
LiME [48]), and inputting each memory image to ZEN. The
outputted unified model representation was inserted into the
base model library.

A. Experimental Setup

ZEN was evaluated across 21 DL systems. For each of the
21 models tested, ZEN was provided only with the
corresponding memory image and access to its base model
library. Crucially, ZEN had no a priori knowledge of the true
base model for any test case; each system was treated as
entirely unknown, mirroring a real-world forensic scenario.
We deployed seven base models alongside 14 customized
models. These models are based on state-of-the-art research
and are hosted on open-source AI Marketplaces (i.e.,
HuggingFace [2], Github [3]). For each base model, we found
two customized models targeting the vision and language
application domains. We denote the grouping of the
base/customized models as a model family. Models were
deployed on an Ubuntu 20.04 system with 64 GB of memory
and an NVIDIA A6000 GPU. Similarly, ZEN was deployed
on the same setup for model recovery, unified model
representation synthesis, model attribution, and model reuse.

a) Model Selection and Diversity: Prior work [4] has
suggested that proprietary systems often utilize open-source
code when building their own proprietary DL systems (upward
of 89% of participants relied heavily on open-source code).
Based on this, we selected customized models that build upon
existing open-source code/models. Our evaluation spans seven
distinct model families enumerated in §V-A1.

Columns 1-3 in Table II highlight the architectural drift
between base and customized models via the tensor and
parameter counts of each model. We observed structural
changes resulting in a difference of up to 200 tensors
between a customized model and its base (YoloV8-Gold [68]).
On average, our selected customized models feature
approximately 50 more tensors than their associated base
models. Selected models also show high variance of model
parameters. For example, some customized models
significantly expand on their base, such as Llama 3, which
increases the parameter count to 8.0B weights from its
6.7B-weight Llama 2 base. Conversely, other models are
heavily pruned, like YoloV8-SPD, which contains just 3.5M
weights, a fraction of the 25.8M in the original YoloV8.

Columns 7-11 of Table II show that practitioners frequently
added new classes (an average of four per model) and, in
some cases, performed substantial code refactoring by
removing over 170 code objects from the original
implementation (YoloV8-SPD [60]). Our dataset even includes
the case of a complete rewrite of a model’s codebase into a
different programming style (Llama2-PT [76]), ensuring that
ZEN is tested against a comprehensive suite of realistic
modification scenarios. As shown in column 11 of Table II,
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TABLE II: ZEN’s Model Attribution, Patch Generation, and Model Reuse on Deployed Customized Models.

Deployed Model Tensors Weights Base Model Dataset
Attributed Identified Changes From Base Model1 Model Performance2

Model Code Objects
Classes Funcs Changes Deployed ONNX3 Post-ZENBy ZEN

Edits Added
YoloV5 [29] 177 7.2M - COCO [62] YoloV5 0 0 13 334 0.0% 0.568 0.568 0.568

YoloV5-KD [63] 177 7.2M YoloV5 COCO YoloV5 6 9 13 341 4.4% 0.561 0.561 0.561
YoloV5-HIC [54] 230 9.3M YoloV5 VisDrone [64] YoloV5 3 8 22 342 3.2% 0.413 ∅ 0.413

YoloV7 [65] 288 37.2M - COCO YoloV7 0 0 15 365 0.0% 0.69 0.69 0.69
YoloV7-C3 [66] 263 33.8M YoloV7 VisDrone YoloV7 13 27 21 388 10.9% 0.365 ∅ 0.365

YoloV7-GAM [67] 321 31.2M YoloV7 VisDrone YoloV7 13 27 22 388 9.0% 0.327 ∅ 0.327

YoloV8 [59] 167 25.8M - COCO YoloV8 0 0 13 886 0.0% 0.631 0.631 0.631
YoloV8-Gold [68] 367 24.2M YoloV8 VisDrone YoloV8 156 125 28 750 37.5% 0.339 ∅ 0.339
YoloV8-SPD [60] 184 3.5M YoloV8 VisDrone YoloV8 150 256 15 715 56.8% 0.341 ∅ 0.341

Resnet [69] 62 11.2M - CIFAR10 [70] Resnet 0 0 6 6 0.0% 92.34% 92.34% 92.34%
Resnet-Ghost [71] 127 56.2M Resnet CIFAR10 Resnet 0 5 11 10 42.9% 93.12% ∅ 93.12%

Resnet-SE [72] 189 5.7M Resnet CIFAR10 Resnet 1 4 8 8 62.5% 92.88% ∅ 92.88%

MobileNetV2 [73] 158 2.2M - CIFAR10 MobileNetV2 0 0 7 30 0.0% 79.4% 79.4% 79.4%
MobileNetV2-Ghost [71] 281 4.7M MobileNetV2 CIFAR10 MobileNetV2 0 11 10 39 28.2% 83.6% ∅ 83.6%

MobileNetV3 [74] 174 5.5M MobileNetV2 CIFAR10 MobileNetV2 3 12 13 18 83.3% 82.2% ∅ 82.2%

Llama 2 [75] 291 6.7B - Undisclosed4 Llama 2 0 0 8 23 0.0% 100.0% 100.0% 100.0%
Llama-PT [76] 291 6.7B Llama 2 Undisclosed Llama 2 5 7 7 20 25.0% 100.0% ∅ 100.0%
Llama 3 [21] 291 8.0B Llama 2 Undisclosed Llama 2 10 10 8 27 74.0% 100.0% ∅ 100.0%

nanoGPT [77] 40 10.7M - OpenWebText [78] nanoGPT 0 0 10 20 0.0 3.16 3.16 3.14
nanoGPT-LORA [31] 101 134.7M nanoGPT OpenWebText nanoGPT 2 14 10 29 55.1% 3.22 ∅ 3.21
nanoGPT-RWKV [79] 76 10.8M nanoGPT OpenWebText nanoGPT 0 6 11 20 30.0% 3.14 ∅ 3.15
1: Classes, functions, code objects, modules patched. Changes: percentage of the number of programmatic representation functions changed in patching.
2: Accuracies are presented as mAP for Yolo models, percentage correct on a test dataset for Resnets and Mobilenets, and validation loss for Llamas and nanoGPTs.
3: Utilizing an ONNX representation based on recovered model architecture, weights, tensors, etc is a strawman solution for model redeployment (§II-A).
4: Undisclosed dataset by model creator. Pre-trained weights are used for the experiment.

our evaluated models varied from their base model from 3.2%
(YoloV5-HIC [54]) to upward of 83.3% (MobileNetV3 [74]).

1) Model Setup: The models and datasets used in our
experiments are shown in Columns 1 and 5 of Table II. The
training of each model directly followed the protocols in each
associated paper/documentation, which can be found in the
cited work.

a) Vision Models: To evaluate vision models we used
five model types in our base model library. Models were
trained on the VisDrone [64] (drone based detection/tracking),
COCO [62] and CIFAR10 [70] (10 class, 32x32 images)
datasets. Constituting the YoloV5 [29] model family, we
deployed YoloV5, YoloV5-KD [63], and YoloV5-HIC [54],
which were trained on COCO, COCO, and VisDrone,
respectively. The YoloV8 [59] model family (YoloV8,
YoloV8-SPD [60], and YoloV8-Gold [68]), was trained on
COCO, VisDrone, and VisDrone respectively, and was
deployed. Finally, the YoloV7 [65] model family (YoloV7,
YoloV7-C3 [66], and YoloV7-GAM [67]) was trained on
COCO, VisDrone, and VisDrone, respectively.

For image classification, we deployed Resnet [69] and
MobileNetV2 [73] base models trained on the CIFAR10
dataset. The customized implementations of Resnet
(Resnet-Ghost [71] and Resnet-SE [72]) and MobileNetV2
(MobileNetV2-Ghost [71] and MobileNetV3 [74]) were also
trained on the CIFAR10.

b) Language Models: For language models, we
deployed the Llama2 [75] and nanoGPT [77] models, which
were respectively trained on the proprietary WebText dataset
(unreleased by Meta) and the OpenWebText [78] (open-source
estimation of WebText) dataset. Llama2-PT [76]
(PyTorch-only implementation of Llama2) and Llama3 [21]
(SOTA Llama2 successor) were used as the custom DL

systems based on Llama2. Since the dataset and training
protocol are undisclosed for Llama models, we deployed each
model with a set of pre-trained model weights. Lacking the
original dataset, we evaluated the performance of Llama
models using 100 randomly selected OpenWebText [78]
samples. We performed manual verification of the model
output, looking for reasonable text generation and contextual
awareness as evidence that model reuse was successful. We
also used base model nanoGPT [77], an implementation of
GPT2 [80], which was trained on the OpenWebText [78]
dataset. Custom implementations LoRA [31] and RWKV [79]
were also trained on the OpenWebText dataset.

B. Customized Model Reuse

ZEN was able to recover, attribute, and reuse 21/21 of the
deployed models (100%). Table II describes ZEN’s end-to-end
operation. Given a memory image containing a DL system,
ZEN first recovers the tensors and weights of each model
(Columns 2-3). Then, ZEN attributes the unknown model to a
model within its base model library (Column 4). We observe
that in all model deployments (21/21) ZEN correctly attributed
the unknown customized model to the ground truth base model
(Column 6). Regardless of dataset used for training (i.e., COCO
vs. VisDrone in all Yolo models), model attribution is not
affected. This is because, while essential to use-case-specific
model reuse, model weight values are not a part of the MR.

a) Customization From Base Model: Upon model
attribution, ZEN identifies customizations for the base model
to enable customized model reuse. Columns 7-8 show the
number of differences identified by ZEN for code objects
modified and added (ϵ and Υ in §IV-D) to the base model to
enable reuse of the customized model. Shown in Column 9-10
are the classes and functions defining the programmatic
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representation of the deployed model. While having upwards
of 886 functions (YoloV8) and 28 classes (YoloV8-Gold), the
relative difference in the custom models and base models
(highlighted by changes (%) shown in Column 11) depends
on the size of the base DL system. The minimum number of
changes identified by ZEN was five changes (Resnet family).
As the Resnet base model was implemented using standard
DL framework built-in layers (i.e. PyTorch Conv layers), its
customized models thereby contain little user-defined code
modifying existing functionality (only one modified code
object). Instead, the changes for small model families (Resnet,
MobileNetV2, and nanoGPT) often introduce code objects, as
shown in Column 8. Similarly, even though the number of
changes identified for such smaller DL systems is less than
the number identified for larger DL systems (Yolo families,
Llama), the relative difference (Column 11) between the base
and custom systems can still remain large (i.e., 62.5%
difference for Resnet-SE).

The maximum number of changes identified by ZEN was 406
for YoloV8-SPD (150 and 256 modified/added code objects).
As the base model (and other Yolo family models) were built
on the Ultralytics [58] code base, the size of the programmatic
representation (886 functions in Column 8) was larger than
for model families with smaller code bases (e.g., max of 39 in
MobileNetV2-Ghost). For models such as YoloV7, we notice
that though the number of changes found for such systems is
larger (40 found for YoloV7-GAM) than the number generated
for smaller DL systems (five found for Resnet), the relative
difference (Column 11) is small (i.e., 62.5% difference for
Resnet-SE vs. 9.0% for YoloV7-GAM). This is because the
base model’s programmatic representation size is much larger
than the change count implemented by the DL practitioner in
the customized model.

We found that in 19/21 (90.5%) models (excluding
YoloV8-Gold and Llama 3) changes were overwhelmingly
introduced as added code objects. This highlights our insight
that DL-practitioners often rely on base models to build new
functionality. We also observe that for smaller model families,
changes were almost exclusively introduced as added code
objects (87.5%, or 32/36, for the Resnet and MobileNetV2
families). As the base DL system code bases were small, or
using very primitive DL architectures (Resnet), functionality
changes were primarily made through added code.

b) Model Reuse: Upon successful difference
identification, patch generation, and application to ZEN
attributed base models, we measure the performance of the
models on their respective datasets. We show that upon reuse,
the recovered model will have the same performance as
during deployment (ground truth performance in Column 12).

Prior work has considered an ONNX representation as an
end goal of model recovery and reuse. Column 13 shows
where this approach fails. As discussed in §II, an ONNX
representation relies on knowledge of the model’s architecture,
connections, weights, and implementation. This knowledge is
readily available for base model implementations derived from
AI marketplaces. However, for customized models
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Fig. 3: A heatmap depicting high association of customized
models to their respective base model.

implementing changes upon the base model, we found that in
13/14 models (excluding YoloV5-KD), changes were
introduced primarily as added code objects affecting the
model’s programmatic representation. Without reverse
engineering and manually determining this set of added (and
modified) code objects within the programmatic representation
of the customized model (an average of ∼226 functions),
even getting the ONNX representation remains an impossible
task, impeding practical reuse (indicated in Column 13 by ∅).

Shown in Column 14 is ZEN’s post-patching model
performance. We observe that in all instances the reused
model performance mirrors its pre-recovery deployment
performance (on the same test data), indicating successful
model reuse in 21/21 models (100%). Note that for the
nanoGPT family, validation loss was used as the performance
metric. As a result, upon model reuse and training resumption,
nanoGPT loss was different than during deployment (a small
difference of up to 0.02). Interestingly, for YoloV5-KD, a
customized YoloV5 model utilizing knowledge
distillation [63], reuse in an ONNX representation is possible.
As YoloV5-KD does not make changes directly to the model
implementation, but instead introduces novel implementations
surrounding the model, the mathematical/ programmatic
representations almost match those of the base model (§V-C).

C. Model Attribution

Figure 3 is a heat map depicting the unified representation
similarity scores between customized and base models,
highlighting ZEN’s model attribution. A higher similarity
score is indicated by a darker color in the heat map, whereas
a lower one is indicated by a lighter color. An indication that
ZEN successfully attributed each customized model to its
associated base model, we observe that the highest similarity
for each model lies along the diagonal of the heat map. The
average similarity score across this diagonal (ZEN attributed
models) was 0.72, whereas adjacent diagonals had average
scores of 0.16.

The maximum similarity (0.97) was seen for the
YoloV5-KD model customization, which can be explained by
its implementation not changing the model operation code but
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TABLE III: ZEN’s Output of Similarity Scores (MR and PR)
Customized Models With Respect to Each Model in the BML.

CM1 YV5 YV7 YV8 RN MN-V2 nGPT L2

MR PR MR PR MR PR MR PR MR PR MR PR MR PR
YV5-KD 1.0 0.96 0.04 0.25 0.46 0.19 0.26 0.0 0.32 0.0 0.33 0.0 0.25 0.01
YV5-HIC 0.82 0.98 0.21 0.26 0.45 0.19 0.37 0.0 0.39 0.0 0.42 0.0 0.32 0.01

YV7-C3 0.6 0.27 0.73 0.94 0.45 0.09 0.27 0.0 0.27 0.01 0.31 0.01 0.26 0.01
YV7-GAM 0.47 0.27 0.68 0.94 0.43 0.09 0.23 0.0 0.28 0.01 0.3 0.01 0.25 0.01

YV8-GD 0.47 0.1 0.11 0.05 0.54 0.86 0.32 0.1 0.35 0.1 0.36 0.1 0.3 0.0
YV8-SPD 0.58 0.15 0.02 0.06 0.46 0.63 0.18 0.1 0.36 0.1 0.25 0.1 0.25 0.0

RN-GH 0.46 0.0 0.3 0.0 0.3 0.1 0.63 0.5 0.5 0.1 0.38 0.1 0.3 0.0
RN-SE 0.33 0.0 0.25 0.0 0.21 0.1 0.47 0.5 0.47 0.1 0.29 0.1 0.21 0.0

MNV2-GH 0.23 0.03 0.06 0.03 0.06 0.14 0.22 0.1 0.32 0.76 0.06 0.11 0.06 0.01
MNV3 0.46 0.05 0.25 0.05 0.25 0.14 0.36 0.1 0.51 0.51 0.29 0.15 0.25 0.05

nGPT-RK 0.45 0.05 0.45 0.05 0.45 0.1 0.61 0.1 0.45 0.15 0.71 0.76 0.45 0.05
nGPT-LR 0.46 0.05 0.44 0.05 0.5 0.1 0.58 0.1 0.5 0.15 0.55 0.61 0.44 0.05

L3 0.54 0.03 0.43 0.03 0.54 0.0 0.48 0.0 0.53 0.02 0.46 0.02 0.99 0.62
L2-PT 0.53 0.01 0.42 0.0 0.52 0.0 0.46 0.0 0.52 0.0 0.44 0.0 1.0 0.62

1: The customized model that is recovered by ZEN.
YV7 → YoloV7, YV5 → YoloV5, YV8 → YoloV8, RN → Resnet,

MNV2 → MobileNetV2 nGPT → nanoGPT, L3 → Llama 3, L2 → Llama 2

rather the code surrounding the model’s implementation. The
minimum similarity is seen for Resnet-SE (0.49) because the
size of its base model programmatic representation is small,
meaning that even small changes (five patches) are enough to
significantly affect model similarity. Inversely, models with
larger base model programmatic representation sizes (i.e.,
Yolo model families and Llama2) had higher similarity to
their base models. We also observe that models extending the
same underlying framework and similar operation types tend
to be more similar (clumping of darker colors for models in
the same family). For example, for YoloV7-C3, the base Yolo
models that were not YoloV7 had up to 28% (for YoloV5)
more similarity than other model families (i.e., Resnet).

Table III presents the similarities between each customized
model and base model broken down into mathematical and
programmatic representation similarities. Shown across the
diagonal of the table, are the similarities for each customized
model relative to their base model. For models in the same
family, the similarities are highest (e.g., YoloV5-KD and
YoloV5-HIC have 1.0 & 0.82 mathematical representation and
0.96 & 0.98 programmatic representation similarities). We
observe that whereas the heatmap showed overall similarity
between customized and base models, Table III shows the
contributions of the mathematical and programmatic
representations, explaining why models were similar/different.

Looking at the Llama model family, we see that while the
code was significantly changed in customized versions
(Llama2-PT and Llama3 both having a programmatic
representation similarity of 0.62), the mathematical
representation for each was almost exactly the same (0.99 for
Llama3 and 1.0 for Llama2-PT) as the base model. This
means that even if the model architecture is mostly
unchanged, the customized DL system implementation can be
significantly different from the base system, resulting in
different model performances. Universally, we notice that
regardless of mathematical representation changes, the
programmatic representation was affected by new code added
to the customized model. For models with large changes in

mathematical representation (i.e., MobileNetV2 and
MobileNetV2-Ghost with a similarity of 0.32), the
programmatic representation similarity can still remain high
(0.76 for MobileNetV2-Ghost). For attribution, this indicates
that code differences have the highest impact on model
attribution, which matches the intuition argued in §II.
Discussed in §A, mathematical and programmatic
representation similarities can be further broken down into
more granular similarity measurements.

a) Interpretation by a Forensic Investigator: The
similarity scores produced by ZEN provide quantitative
evidence for ZEN’s attribution. For example, when comparing
YV5-HIC (Table III Row 2) to incorrect base models, ZEN
outputs an average similarity score of only 0.15. However,
when compared to YV5 (the correct base model), YV5-HIC
shows high mathematical and programmatic similarity scores
of 0.82 and 0.98, respectively. The similarity scores are
fine-grained enough to distinguish between models from the
same family. For example, the most similar model to YV5
(other than its base model) is YV7-C3, with a similarity score
of only 0.35 shown in Figure 3.

D. Case Study: License Enforcement

Models used in production heavily rely on open-source
foundational models for high accuracy, use-case-specific,
deployments [1]. Such foundational models are offered to
individuals and organizations by large AI research
companies [2], [58], [81] under a variety of licenses. Notably,
such platforms provide serverless frameworks and SOTA
models for direct non-commercial use without a proprietary
license (e.g., copyleft licenses such as AGPL [82]). This
directly enables the use of SOTA models offline for a range
of deployment scenarios. This enables further research and
provides users unfettered access to SOTA models for personal
projects. Inversely, the same platforms offer a variety of
proprietary licenses that enable the commercial use of their
framework/models for other companies.

Unfortunately, this introduces problems related to the
enforcement of such licenses [83]. First, infringements upon
such licenses are often unknown to license distributors (as
companies may rename models and framework data structures
and even run models serverless, with no API access
necessary). Second, even if a company suspects license
infringement, proving that its model/framework was indeed
infringed upon is challenging (DL system can be modified,
obfuscated, encrypted etc.).

a) Investigation with ZEN: YoloV8 is a SOTA vision
model developed by Ultralytics. Imagine a forensic scenario
where Ultralytics suspects that a new serverless DL system
infringes upon its YoloV8 license. To evaluate such a case, we
used YoloV10 [22] (released May 2024, developed by Tsinghua
University) as the “suspect model.” Note that YoloV10 is a
legitimate extension to YoloV8 but implements significant
variation upon YoloV8’s code base and model architecture.

Table IV highlights such an investigation of a suspect DL
system (utilizing a SOTA YoloV10 [22] implementation).
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TABLE IV: Investigating a Suspect Model.
ZEN Input Suspect Memory Image

Unified Representation :

Tensors: 213
Layers: 24
Weights: 2.7M
Functions: 869
Modules: 74

Incriminating Artifacts :
Functions: [’load_model’, ... ]
Modules: [’ultralytics.utils’, ...]
Classes: [’Concat’,’C2fCIB’,...]

Model Attribution1 :

Similarity Score Analysis:
Mathematical Representation: 0.34
Programmatic Representation: 0.92
Unified Representation: 0.77

Base Model ID:
YoloV8 [59]

Given a memory image of the suspect DL system, ZEN first
synthesizes a unified representation comprising 213 tensors,
24 layers, 2.7M weights, 869 functions, and 74 modules. ZEN
then outputs recovered artifacts (i.e., code objects, classes,
etc.) found in the DL system. From this, it can be seen that
Ultralytics modules are present in the DL system and that the
suspect system contains classes/functions matching those in
Yolo family DL systems. This is further confirmed by ZEN’s
model attribution, where it can be seen that the model was
directly attributed to the YoloV8 base model with
mathematical, programmatic, and unified representation
similarity scores of 0.34, 0.92, and 0.77, respectively. These
findings can be presented by the investigator in court to
demonstrate that the suspect DL system reuses Ultralytics
(YoloV8 model owner) framework code and to what degree
(e.g., what code objects were reused).

VI. DISCUSSION

A. Extending ZEN to C/C++

While our prototype of ZEN is implemented for
Python-based DL frameworks, its core methodology is
conceptually extensible to compiled C/C++ systems with
dedicated engineering effort. First, ZEN’s methodology for
unified representation synthesis (§IV-A) still holds, as all DL
models inherently possess a computation graph, layer
implementations with associated weights, and executable code.
Engineering effort would focus on adapting ZEN’s analysis to
identify and parse the specific in-memory data structures of
compiled C++ frameworks, rather than Python-based DL
frameworks. Similarly, the core logic for attribution and
differential analysis, which compares these unified
representations, would remain conceptually the same.

Unlike the runtime patching used for Python, reconstructing
a C/C++ model could also be done pre-deployment. ZEN
would instead need to patch the compiled binary before
execution of the binary. Although this requires a different set
of tools and techniques, the feasibility of such an approach is
well-supported by a robust body of existing research in binary
analysis [84]–[86], code similarity detection [87]–[90], and
binary patching [91]–[94].

B. Extending ZEN’s Base Model Library

Extending the base model library with new models is an
automated process designed to require minimal effort from an

investigator. To add a new model, an investigator needs to
provide ZEN with a memory dump of the known model
during deployment along with a ground truth model name.
From these inputs, ZEN applies the methodology from §IV-A.
It extracts the model’s computation graph and layer attributes
to create the mathematical representation and recovers the
underlying bytecode and function metadata to create the
programmatic representation. ZEN combines these into a
unified model representation following §IV-A and stores it in
the base model library under its ground truth model name
(investigator input). This makes the new model immediately
available as a candidate for all future attribution and
comparison tasks by ZEN.

C. Extending ZEN to New DL Frameworks
ZEN was prototyped to handle DL models deployed in the

most common Python-based DL frameworks [95]. However,
in the case that the target DL system utilizes a new DL
framework, applying ZEN would require preliminary reverse
engineering. Specifically, they would need to extend ZEN’s
unified representation recovery (§IV-A) to support the new
framework. An investigator would first need to reverse
engineer the data structures that represent models in memory.
Then, the investigator would need to update the mathematical
and programmatic representations used by ZEN to recognize
and interpret the new framework’s in-memory layouts for
tensors, computation graphs, and code objects. Once these
changes are made, the subsequent stages of ZEN (i.e., model
attribution and differential analysis) would work as is.

VII. RELATED WORK

Existing model recovery tools [14]–[16], [23], [24], while
recovering the DL model’s mathematical representation, fail
to consider customized layers and operators.

Shown in Table V in §A, methodologies prior to ZEN are
unable to recover (or can only partially recover) SOTA DL
models. First, techniques such as LibSteal [24], DnD [14],
BTD [15], and MXR [23] are unable to recover DL models
from encrypted binaries, as they employ static analysis-based
methodologies. MXT [23], AIP [16], and our work, ZEN,
employ dynamic analysis- and memory forensics-based
approaches, respectively, enabling recovery of DL models
from encrypted binaries. Second, while all prior work can
recover the DL Model’s mathematical representation (besides
LibSteal), none are able to recover the exact operators
required for DL model inference. Prior work instead opts to
infer common operator definitions via data structure [16] and
loop analysis [14], learning-based approaches [15], or they
ignore operator recovery entirely [23], [24]. The failure to
recover operator definitions makes it infeasible to recover
custom layers used in SOTA or proprietary DL models. ZEN
instead recovers a unified representation of the model,
enabling the recovery of customized layers and operator types.
Ultimately, related work assumes that re-execution and reuse
of the model are possible, though we find that the factors
discussed in this paper severely impede reuse without unified
model representation recovery and attribution.
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VIII. CONCLUSION

ZEN is the first system aiming to fill an existing gap in
model recovery SOTA work. ZEN synthesizes a unified model
representation of a deployed DL system, attributes it to a base
implementation, and applies generated patches to enable model
reuse. We evaluated ZEN on 21 deployed DL models, and
successfully recovered, attributed, and reused 21/21 models.
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APPENDIX

A. Similarity Score Granularity

Table VI shows the constitutive components making up the
mathematical and programmatic similarities for each
customized/base model pairs (Columns 1 and 2). Columns 3-5
show the similarity scores between customized models and
their attributed models. This directly matches the similarities
shown in Figure 3 and Table III.

Columns 6-8 show the architecture (Arch), tensor (TS), and
operator (OP) similarities that comprise the overall
mathematical representation similarity score. First, we see that
the highest similarity is for YoloV5-KD (1.0, 1.0, 1.0 for
Arch, TS, OP, respectively). We observe that for each
recovered base model relative to its own unified representation
in the base model library (i.e., YV5 compared with YV5), the
similarity scores for Arch, TS, and OP are exactly 1.0,
indicating no difference between the recovered and base
model unified representations. We also observe that even if a
customized model architecture remains relatively the same
(YoloV8-SPD having an Arch similarity of 0.92), the size of
tensors/number of weights representing that model can be
significantly different as a result of user-defined scaling
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TABLE VI: ZEN’s Model Attribution Breakdown Showing
Mathematical, Programmatic, and Unified Similarity Scores
and Their Individual Score Breakdowns.

Base MD1 Rec MD1
Sim Scores (SS)2 Model Attribution3

MR PR UR MR (SSs) PR (SSs)

Arch TS OP COs CLS

YV5 [29]
YV5-KD [63] 1.0 1.0 1.0 1.0 1.0 1.0 0.97 1.0
YV5-HIC [54] 1.0 0.96 0.97 0.84 0.76 0.86 0.98 0.59

YV5 0.82 0.98 0.94 1.0 1.0 1.0 1.0 1.0

YV7 [65]
YV7-C3 [66] 0.73 0.94 0.89 0.81 0.73 0.59 0.93 0.71

YV7-GAM [67] 0.68 0.94 0.88 0.77 0.7 0.47 0.93 0.68
YV7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

YV8 [59]
YV8-GD [68] 0.54 0.86 0.78 0.72 0.73 0.35 0.83 0.39
YV8-SPD [60] 0.46 0.63 0.59 0.92 0.12 0.42 0.64 0.86

YV8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

RN [69]
RN-GH [71] 0.63 0.5 0.53 0.81 0.5 0.29 0.5 0.55
RN-SE [72] 0.47 0.5 0.49 0.71 0.46 0.54 0.5 0.75

RN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MNV2 [73]
MNV2-GH [71] 0.32 0.76 0.65 0.33 0.62 0.39 0.72 0.50

MNV3 [74] 0.51 0.42 0.44 0.66 0.74 0.29 0.33 0.53
MNV2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00

nGPT [77]
nGPT-LR [31] 0.55 0.61 0.6 0.94 0.33 0.43 0.52 90.0
nGPT-RK [79] 0.71 0.76 0.75 0.89 0.84 0.2 0.7 63.6

nGPT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 100.0

L2 [75]
L2-PT [76] 1.0 0.62 0.72 1.0 1.0 1.0 0.65 62.5

L3 [21] 0.99 0.62 0.72 1.0 0.95 1.0 0.63 87.5
L2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 100.0

1: The base model from which the recovered models may be derived from.
2: Overall similarity scores (MR, PR, UR) between base and recovered models.
3: Model attribution similarity scores (%) for the MR (arc, tensors, operators)

and PR (code objects, modules) for the recovered model to the base model.

changes (YoloV8-SPD has a TS similarity of 0.12). For model
operators we observe that the mean similarity is 0.55 with a
standard deviation of 0.28, indicating that operator similarity,
even for models within the same family, may vary
significantly (up to 28%). This indicates that the mathematical
representation similarity should not be taken in isolation for
model attribution.

Columns 9-10 show the code object similarity (COs) and
class similarity (CLS) scores for ZEN’s model attribution. We
observe that across all customized models, the average code
object and class similarities were 0.58 and 0.7, respectively.
This indicates that practitioner-refined DL systems only
modify/add around 42% of the functions and 30% of the
classes relative to the base implementation. This further
highlights that while mathematical representation similarity
can vary significantly, programmatic representation similarity
directly complements the mathematical representation
similarity, ultimately enabling accurate attribution.

B. ZEN Evasion

ZEN relies on unified model representation recovery for
model attribution. An adversary can attempt to obfuscate a
DL system such that unified model representation recovery
(and consequently attribution) is impeded. Fortunately, even if
an adversary deployed a DL system containing obfuscated
data structures, ZEN was built to target DL systems at the
interpreter level, meaning that obfuscation of the
framework/DL model code would not affect ZEN’s recovery.
ZEN recovers byte-code level implementations and handles
recovery of all object/function definitions at a lower level than
can be controlled by all but the most capable adversary. In
other words, framework obfuscation does not affect ZEN’s
recovery, as commodity frameworks do not make changes to

the interpreter for any aspect of model implementation.Any
attempt to thwart ZEN in this way would entail an adversary
making widespread changes to data structures at the
interpreter/compiler level. We consider this to be out of the
scope of this work, as making such an attempt would put a
large burden on the adversary. An adversary can attempt to
thwart ZEN by introducing bloat into the DL system (e.g.,
other models, unused code, etc.) to try to cause ZEN to
misattribute the model.

1) Evasion Via Malicious DL System Bloating: Here, we
aim to highlight why adversaries attempting to evade ZEN via
intentional DL system bloating will fail. First, ZEN analyzes
DL systems from memory, meaning that for interpreter-based
DL systems, unless the code is actively used by the adversary
at runtime, it will not be tracked by the GC and therefore will
be avoided during mathematical and programmatic
representation recovery. For adversaries attempting this on
non-interpreter-based DL systems, a variety of software
debloating methodologies and tools [96]–[99] can be used in
tandem with ZEN to eliminate the bloat introduced by the
adversary.

Even if the adversary successfully introduced bloat into the
system and loaded it into memory, ZEN uses a mathematical
representation-guided recovery approach for programmatic
representation recovery. ZEN first finds the model object and
subsequently finds the model layers, layer types, weights, etc.
Then, by identifying code referencing mathematical
representation-related data structures, ZEN constructs the
programmatic representation of the DL system. This implies
that in order for the adversary to evade ZEN’s programmatic
representation recovery (or misguide it) they would also have
to load an entire model object into the DL system at runtime.
This is not only cost ineffective (increasing latency of the DL
system on serverless deployments) but also unrealistic, as
large models already monopolize a DL system’s
RAM/VRAM. An adversary would not only have to load
multiple model objects into memory but would also need to
fall back on interpreter-level obfuscation techniques to hide
the model, as ZEN would recover the programmatic
representations for all model objects in memory.

C. Memory Acquisition

As described in prior work [16], forensic investigators
employ a variety of tools and techniques to acquire memory
images from diverse systems. For Linux environments,
popular tools include Microsoft’s AVML [50] and LiME [48].
Memory acquisition from Android devices can also be
performed using LiME, enabling analysis of deployed mobile
models with ZEN. Specialized forensic techniques exist for
automotive systems [100]–[104], while embedded platforms
like Arduino and Raspberry Pi often possess built-in
capabilities for dumping volatile memory. Furthermore, tools
have been developed to acquire and analyze memory from
Programmable Logic Controllers (PLCs) within Industrial
Control Systems (ICS) for security purposes [105]–[107]. In
the experiments conducted for this paper, CPU memory was
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collected from the running DL system at inference time for
input into ZEN. A complete CPU volatile memory image was
acquired using LiME [48], reflecting the model’s state when
the system is running.

D. Forensic Evidence

After all differences between the recovered model and base
models are identified at the lowest level (changes in byte-code,
attributes, etc.), the investigator must be made aware of the
patches made to the base model. This provides essential forensic
evidence (e.g., for legal proceedings), as exemplified in §V-D.
ZEN can therefore be used to present to the investigator, in
a human-readable format, the source code changes for all
differences between the base and deployed DL systems. ZEN
can also directly output source code similarities, highlighting
how much code was reused in the unknown DL model (such as
for the purposes of copyright infringement). Referring back to
Algorithm 2, for each pair in Ω, ZEN outputs to the investigator
the difference recorded in each member of ϵ. The decompiled
byte-code difference and changed attributes are presented in a
high-level format (i.e., changed vars: foo, bar, localvars: foo1,
bar1. . . ). Likewise, each member in Υ is presented to the
investigator alongside its byte-code and attributes.

E. Ethics Consideration

We directly recovered and attributed models from large
open-source AI marketplaces (e.g., Hugging Face [2],
Github [3], etc.) and did not target proprietary models for
which we do not have access. We do not claim that we
engineered the models ourselves. Models were retrieved from
SOTA open-source work and were issued primarily with MIT
licenses. In our work we explicitly cite all models investigated
by ZEN and give credit to the authors. We do not use private
or unauthorized models for ZEN’s base model library building
or evaluation.

18


	Introduction
	A Unified Model Representation
	Motivating Investigation
	Investigating With ZEN

	Threat Model and Assumptions
	 ZEN Design
	Unified Model Representation Synthesis
	Model Attribution
	Model Attribution

	Recovered Model Differential Analysis
	Model Patching

	Evaluation
	Experimental Setup
	Model Setup

	Customized Model Reuse
	Model Attribution
	Case Study: License Enforcement

	Discussion
	Extending ZEN to C/C++
	Extending ZEN's Base Model Library
	Extending ZEN to New DL Frameworks

	Related Work
	Conclusion
	Appendix
	Similarity Score Granularity
	ZEN Evasion
	Evasion Via Malicious DL System Bloating

	Memory Acquisition
	Forensic Evidence
	Ethics Consideration


