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Abstract—Modern hardware systems, driven by demands for
high performance and application-specific functionality, have
grown increasingly complex, introducing large surfaces for bugs
and security-critical vulnerabilities. Fuzzing has emerged as a
scalable solution for discovering such flaws. Yet, existing hard-
ware fuzzers suffer from limited semantic awareness, inefficient
test refinement, and high computational overhead due to reliance
on slow device simulation.

In this paper, we present GoldenFuzz, a novel two-stage hard-
ware fuzzing framework that partially decouples test case refine-
ment from coverage and vulnerability exploration. GoldenFuzz
leverages a fast, ISA-compliant Golden Reference Model (GRM)
as a “digital twin” of the Device Under Test (DUT). It fuzzes the
GRM first, enabling rapid, low-cost test case refinement, acceler-
ating deep architectural exploration and vulnerability discovery
on DUT. During the fuzzing pipeline, GoldenFuzz iteratively
constructs test cases by concatenating carefully chosen instruction
blocks that balance the subtle inter- and intra-instructions qual-
ity. A feedback-driven mechanism leveraging insights from both
high- and low-coverage samples further enhances GoldenFuzz’s
capability in hardware state exploration. Our evaluation of three
RISC-V processors, RocketChip, BOOM, and CVA6, demon-
strates that GoldenFuzz significantly outperforms existing fuzzers
in achieving the highest coverage with minimal test case length
and computational overhead. GoldenFuzz uncovers all known
vulnerabilities and discovers five new ones, four of which are
classified as highly severe with CVSS v3 severity scores exceeding
seven out of ten. It also identifies two previously unknown
vulnerabilities in the commercial BAS1-H core extension.

1. INTRODUCTION

Modern processors contain billions of transistors, multi-
ple cores, and sophisticated performance optimization mech-
anisms that offer unprecedented computational capabilities.
This complexity simultaneously enlarges the surface of the
hardware attack, exposing systems to a broader range of
functional bugs and security-critical flaws, for example, system
instability [1], incorrect computation [2], [3], and information
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leakages [4]-[6]. Fixing such flaws post-fabrication could be
a challenging and costly task [7]]. Consequently, detecting and
mitigating hardware vulnerabilities in the pre-silicon stage
becomes crucial to preserving system stability and security
with a reduced budget.

The hardware community has proposed several security ver-
ification techniques, from formal static methods to simulation-
based dynamic approaches [8]-[17]. In recent years, fuzzing
has gained attention for its capacity to automate vulnerability
detection and scalability on complex hardware designs. By
systematically probing target devices, hardware fuzzing excels
in discovering bugs and security vulnerabilities, making it a
practical tool to improve hardware security in increasingly
sophisticated computing systems [18]—[28]]. Industry leaders,
including Intel and Google, are actively investing in hardware
fuzzing research [18] to strengthen their verification efforts.
Unfortunately, existing fuzzers face several significant chal-
lenges. First, they primarily rely on random mutations or
heuristics to generate test cases, failing to capture the complex
dependencies and execution semantics inherent to modern
Instruction Set Architectures (ISAs). This shortcoming leads
to duplicated test cases and subpar exploration of edge cases.
Second, previous work typically refines test cases in an ad-
hoc manner, lacking a structured mechanism to refine input
based on semantic insights. Consequently, they struggle to
produce meaningful instruction sequences that reach deeper
hardware states. Although some fuzzers attempt to improve
test selection through, for example, steered control flow [24]]
or reinforcement learning [21]], they often operate without a
clear separation between test case refinement and coverage
exploration, leading to inefficiencies in both processes. Finally,
existing work relies on executing test cases solely on the slow
simulated DUT. Each iteration requires evaluating numerous
test cases, leading to excessive computational overhead and
limiting the fuzzer’s ability to explore a broad range of
hardware states in a constrained time frame.

Our goals and contributions: We present GoldenFuzz, a
novel hardware fuzzing framework that addresses these bottle-
necks by decoupling the traditional monolithic fuzzing process



from direct, continuous interaction with the target hardware.
Concretely, GoldenFuzz restructures hardware fuzzing into
two distinct stages: the Golden Reference Model (GRM)
fuzzing and the Device Under Test (DUT) fuzzing. In the first
fuzzing stage, inspired by the concept of a digital twin, Gold-
enFuzz introduces a fast, software-based GRM of the DUT[H
This enables rapid exploration and efficient refinement of
fuzzing strategies, guiding the generation of test cases that in-
herently achieve deeper architectural coverage. Subsequently,
the optimized fuzzing policy is transferred directly to the DUT
fuzzing stage, greatly accelerating the discovery of meaningful
hardware behaviors and potential vulnerabilities. GoldenFuzz
integrates a customized language model that captures the se-
mantic structures of instruction sequences, generating smarter,
more targeted test cases, effectively serving as a translator
fluent in the processor’s intricate architectural dialect. By
continuously analyzing both successful and unsuccessful test
cases, GoldenFuzz adapts its strategy to systematically target
complex, hard-to-reach processor states. Together, these de-
sign innovations enable GoldenFuzz to significantly surpass
state-of-the-art fuzzers in coverage growth, uncover deeper
and previously hidden vulnerabilities, and dramatically reduce
computational overhead in hardware fuzzing. Concretely, we
make the following contributions:

o We introduce a two-stage hardware fuzzer, GoldenFuzz,
that first emphasizes rapid test case refinement at low
computational cost, then shifts to focused vulnerability
detection to uncover critical weaknesses. During the first
phase, GoldenFuzz, for the first time, utilizes a GRM, a
software model designed to execute RISC-V instructions
in strict adherence to the ISA specification, to represent
the DUT. This implementation facilitates the evolution
of test cases to contain richer semantics, potentially
achieving higher hardware state coverage. This insight
transfers seamlessly to the DUT, reducing discrepancies
and maximizing meaningful fuzzing outcomes.

« We introduce a block-wise test case generation scheme
that produces multiple instruction blocks in each iteration
and appends the chosen block to subsequent iterations. A
new scoring mechanism, integrating inter- and intra-test
case evaluations, drives extensive instruction space ex-
ploration, ensuring that each progressive block effectively
aligns with fuzzing objectives.

e Our framework leverages a novel language model-based
generator capable of accurately producing assembly in-
structions by understanding inter-instruction semantics.
This generator integrates the target’s feedback, enhancing
the test case generation capability with higher coverage.
Furthermore, for the first time, we incorporate both
“winning” and “losing” test cases (in terms of hardware
coverage) into the fuzzing process. By directly comparing
these paired cases, our method continually refines its test

! Although the GRM and DUT implementations may differ internally due to
hardware-specific optimizations or undocumented behaviors, they both strictly
follow the ISA specification.

generation strategy to expose new vulnerabilities.

o To the best of our knowledge, GoldenFuzz identifies all
previously known bugs and vulnerabilities. Additionally,
five new vulnerabilities are discovered in tested cores
(RocketChip [29], Boom [30], and CVAG6 [31]]), including
four critical ones with CVSS 3.0 scores above seven
(from a maximum of ten). For the real-world application,
it identifies two previously unknown vulnerabilities in the
commercial BASI-H core extension.

The remainder of this paper is structured as follows. We
provide the necessary background information in Section
In Section we describe the design of GoldenFuzz in detail;
the implementation is introduced in Section Section
evaluates the performance of GoldenFuzz regarding the hard-
ware coverage and computational cost. Section details the
fuzzing findings, including detected vulnerabilities and bugs.
Section performs an ablation and hyperparameter study
on several critical fuzzing settings. Section discusses the
GoldenFuzz with more insights. Section discusses related
works. Section [X| concludes this work.

II. PRELIMINARIES
A. Fuzzing

Fuzzing is a widely used methodology for testing and
verifying complex hardware and software designs, such as
processors, cryptographic modules, and communication pro-
tocols, to uncover potential vulnerabilities [20]], [32]-[34]. A
traditional fuzzer begins with randomly produced yet valid
test stimuli. State-of-the-art fuzzers have employed iterative
mutation algorithms to expand the DUT’s state space cover-
age. Throughout this process, the DUT’s outputs, including
execution traces and any crash information, are captured and
analyzed. In software contexts, suspicious crashes may directly
reveal exploitable bugs. For hardware, the DUT’s execution
traces are compared against a GRM or predefined assertions.
Any detected discrepancies become red flags for potential
vulnerabilities. This iterative cycle repeats until an acceptable
level of state-space coverage is achieved or critical weaknesses
are discovered. GRM is only used for vulnerability detection;
it does not influence the fuzzing pipeline.

Hardware fuzzing strategies are generally categorized into
black, grey, and white boxes based on the degree of internal
knowledge available about the DUT [23]], [35]]. Among these
techniques, coverage-based white-box fuzzing has become
particularly popular for hardware verification, as it systemati-
cally evaluates state-space exploration using coverage metrics
such as finite-state machine (FSM) coverage, line coverage,
condition coverage, and multiplexer (MUX) toggle coverage.
Within a hardware fuzzing pipeline, initial input seeds are
generated and mutated to produce multiple test cases. Feed-
back from simulation-based coverage analysis of these test
cases then guides the selective refinement of promising inputs
while discarding unproductive ones. This feedback-driven loop
supports efficient navigation of the DUT’s state space; any
anomalies or unexpected DUT responses are recorded for
follow-up vulnerability assessment.



B. Language Model and Fine-Tuning

Language models are one of the most advanced methods
in Natural Language Processing (NLP), as they significantly
increase the capability of intelligent systems to analyze and
generate coherent text. They support various tasks by predict-
ing how words naturally follow one another, including trans-
lation, summarization, and conversational agents [36]. These
language models often rely on transformer architectures [37]],
which use attention mechanisms to capture complex relation-
ships across long text sequences. Among the most influential
transformer-based models are Generative Pre-trained Trans-
formers (GPT) [38]], built using a unidirectional approach.
GPT models predict each successive token using only previous
tokens, relying on stacked transformer decoder layers with
multi-head self-attention and feed-forward networks.

Training a language model can be highly resource-intensive;
fine-tuning becomes an effective and low-cost learning strategy
when customizing pre-trained language models for specific
tasks. Common methods include Reinforcement Learning from
Human Feedback (RLHF) [39], which aligns the model’s
outputs with human preferences or guidelines, and Direct Pref-
erence Optimization (DPO) [40], [41]], which avoids explicit
reward shaping in favor of pairwise comparisons between
candidate outputs. These methods enable the model to capture
subtle human-defined quality metrics and to produce responses
that align with particular application needs.

III. GOLDENFUZzZ
A. General Framework

An overview of GoldenFuzz is shown in Fig. m First, our
fuzzer, powered by a customized language model (LM), is pre-
trained on a corpus of assembly instructions. Next, instead of
immediately testing on the slower DUT, the LM first interacts
with a fast software-based GRM. During this stage, the LM
generates small groups of instructions, denoted as instruction
blocks, based on previously tested examples. These instruction
blocks are rapidly evaluated on the GRM, and the feedback is
used to teach the LM to generate more valid and meaningful
instruction sequences.

After sufficient refinement, the DUT fuzzing stage starts,
where the improved LM now targets the actual hardware
(DUT) with a similar fuzzing pipeline. Because the LM was
previously refined to produce instruction blocks with high se-
mantic validity, test cases at this stage have a greater potential
to explore deep, complex hardware states, achieving more
effective testing while minimizing slow hardware simulation
overhead. Finally, by comparing execution traces from the
DUT against those from the GRM, GoldenFuzz efficiently
identifies discrepancies that reveal vulnerabilities and bugs.

B. The Motivation Behind the GRM Fuzzing

Traditionally, GRM serves primarily as an oracle to identify
mismatches and bugs by comparing DUT outputs against
expected behavior. In contrast, GoldenFuzz applies GRM
to coarsely refine the fuzzing policy before the actual
DUT fuzzing, addressing two critical limitations of prior
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Fig. 1: An Overview of the GoldenFuzz framework.

fuzzers [19], [21], [23]: their tendency to generate test cases
containing limited (fewer than 10) executable instructions,
and their computational inefficiency due to the prohibitive
overhead of cycle-level hardware simulation.

First, since the GRM strictly follows the RISC-V ISA
specification, refining the fuzzing policy using GRM feedback
encourages the generation of high-quality test cases. While
acknowledging that subtle deviations or undocumented be-
haviors in the DUT might not always be perfectly reflected
in the GRM, GoldenFuzz addresses this potential mismatch
not by attempting to improve coverage directly from the
GRM, but by setting a more general objective: to enhance
test case validity based on the ISA. This approach enables
the fuzzer to learn valid concatenations between instructions
and leave the more dedicated, coverage-guided fuzzing to the
DUT. Second, the GRM significantly reduces computational
overhead. Unlike DUT simulations, the GRM provides a
fast, ISA-compliant software environment, enabling efficient
fuzzing-policy training. By quickly learning patterns of struc-
turally valid instruction sequences, GoldenFuzz transitions
smoothly to real hardware, generating high-quality test cases
without costly online DUT-guided test case refinement. As
empirically validated in Section this approach facilitates
more valid and executable instructions per test case. Besides,
as demonstrated in Section [VI, our GRM-driven approach
enables the discovery of vulnerability classes that require deep
and sustained execution paths, issues that are typically missed
by conventional random or shallow test generation strategies.

C. Fuzzer Initialization

Before the two fuzzing stages, GoldenFuzz is initialized
to gain essential instruction generation capability. GoldenFuzz
treats a test case, containing a sequence of instructions, as a
linguistic construct akin to a senfence composed of meaningful
words. Essentially, each instruction is viewed as a linguis-
tic unit within a higher-level syntax, ensuring its collective
arrangement conveys a coherent intent to the DUT. Our
approach involves a fuzzer driven by a customized language
model (implementation detailed in Section [[V-A), leveraging
its adeptness in natural language processing tasks to generate
hardware-focused instruction synthesis. Note that an effective
instruction generation engine must internalize both intra-
instruction semantics (valid and meaningful construction of a



single instruction) and inter-instruction semantics (synergistic
assembly of multiple instructions to unveil vulnerabilities).
In this section, we initialize the model with robust intra-
instruction knowledge. The refinement of its inter-instruction
capabilities through dynamic interaction with the target is
elaborated in Section

We prepare a diverse set of randomly sampled instruc-
tions to equip the fuzzer with a foundational grasp of intra-
instruction semantics. More concretely, we assemble a cor-
pus of J assembly instructions {Iy, Is,...,I;}. The choice
of assembly instructions enhances the semantic connections
between instructions, facilitating the assembly of meaningful
sequences that can probe deeper into vulnerabilities. The in-
structions corpus is concatenated into a single linear structure
D, separated by <eoi> (end of instruction):

D=1 <eoi> Iy <eoi> I3 <eoi> .-+ I; <eoi>. (1)

This explicit segmentation aids in clarifying instruction
boundaries and preserving per-instruction semantics. Next,
each instruction I; is tokenized as 7;, forming T =
T Tecois To Teeois -+ Tj T-coi> such that each T; contains
k; tokens ti,tio, .tk

We define an auto-regressive objective that compels the
model to predict the subsequent token given all previously
observed tokens. Let t = {t1,ts,...,tx} represents the
entire token sequence of 7, with K (> J) being the total
number of tokens. The model is trained to estimate Py(t;11 |

ti,ta,...,t;) for each i, where 0 denotes the trainable pa-
rameters. We minimize the negative log-likelihood L:
K—1
‘C(Q):, Zlong(tiH ‘tl,tg,...,ti). (2)
i=1

Eq. [J] ensures that the model incrementally refines its
parameters to produce tokens following previous contexts.

D. Fuzzing Pipeline

As mentioned in Section both the GRM fuzzing and
DUT fuzzing phases in GoldenFuzz follow a similar fuzzing
pipeline. The key difference lies in their targets and scoring
functions. An overview of the GoldenFuzz pipeline is shown
in Fig. [2} consisting of three major steps.

o Test Case Generation and Simulation. Guided by the
current fuzzing policy, we produce test cases by sampling
from the GoldenFuzz’s memory and iteratively creating,
selecting (presented by the heart symbol), and concatenat-
ing instruction blocks (IBs) with each containing multiple
instructions. The chosen target (GRM or DUT) executes
these IB concatenations and provides feedback.

e Test Case Scoring. GoldenFuzz evaluates IBs differently
for each fuzzing stage. For GRM fuzzing, the IB is
simply evaluated by its validity. Instead of enforcing
validity at the instruction level, an IB that is executable
with no GRM exception is considered valid. IB-level
validity allows the fuzzer to learn the valid concatenation
between instructions, potentially construct multi-IB test

cases with non-trivial control flow patterns. For DUT
fuzzing, we employ a dual-layer scoring system. This
approach incentivizes newly uncovered coverage within a
single test case (intra-test scoring) while deducting points
for coverage already identified by other tests (inter-test
scoring). As a result, this technique drives the fuzzing
process toward more hidden hardware states.

o Fuzzing Policy Refinement and Memory Update. Using
the computed scores, we form preference pairs by iden-
tifying “winning” (e.g., ®), the color indicates the fuzzing
iteration) and “losing” () test cases based on their
scores. These pairs are directly fed back to the fuzzer,
driving it toward producing instruction sequences that
deliver improved coverage. At the same time, the fuzzer’s
memory is updated to maintain a consistent record of test
cases aligned with the evolving fuzzing policy.

1) Block-Wise Test Case Generation: One of the core
novelties in GoldenFuzz is a structured, block-wise test case
generation strategy that balances complexity, coverage, and
learning efficiency. Rather than generating full instruction
sequences in a single step, GoldenFuzz constructs test cases
incrementally from smaller units called instruction blocks
(IBs). Each IB contains one or more instructions, depending
on the current fuzzing configuration. In each fuzzing iteration
i, GoldenFuzz selects a set of previously generated IBs either
randomly or based on performance, depending on the fuzzing
stage (see Fig. [T). These selected IBs are used as prefixes
to generate new candidate blocks. Precisely, let b] denote
the j-th selected block from iteration i. For each bf , We
generate N new instruction blocks, forming a candidate set
Biy1 = {b},1,b7,,...,bY ,}. Bach new test case is then
constructed by concatenating a selected prefix b} with one
of the newly generated candidates b? "1 € Biy1, resulting in
biiv1 = bg &) bfﬂ (for simplicity, we omit the specific j
and £ in the notation). This strategy has three key advan-
tages. First, by using b as a starting point, we anchor the
execution in a known hardware state, allowing the fuzzer to
focus its exploration on how the new block bfﬂ affects the
state transition. Second, this block-wise construction simplifies
learning: instead of reasoning over full test cases of length
N instructions, the fuzzer only needs to learn over smaller
blocks of size roughly N/M when the test case is divided
into M blocks. This decomposition reduces the complexity
of the learning problem and improves convergence during
feedback-guided optimization. Finally, repeatedly sampling
new IBs allows the fuzzer to explore different (and potentially
new) hardware spaces. As a result, each iteration pushes the
hardware state exploration further, guiding the search process
into less-discovered state space while preserving the insight
gained from earlier discoveries.

Algorithm [T] illustrates the instruction block (IB) generation
process for a single fuzzing iteration. The process begins with
the selected IB set 3; from iteration i. To generate the next set
Bi+1, the fuzzer extends each IB b € B; by taking a sequence
of actions (Line 5), each appending a new instruction token
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Fig. 2: An Overview of the GoldenFuzz Pipeline.

Algorithm 1 Instruction Block Generation.

Require: B;, fuzzer,num_blocks, num_inst_per_block
Ensure: B,

1: Bi+1 < {}

2: for b in B; do

3 cnt + 0

4 while cnt < num_inst_per_block do

5 actions < fuzzer(b, num_blocks)
6 b, eoi < step(b, actions)

7 if eoi then

8 cnt < cnt + 1

9 end if
10 end while
11 Bi+1 <+ append(b)
12: end for
13: B;4+1 < remove_dead_blocks(Bit+1)
14: if GRM_fuzzing then
15 Bit1 < get_random_n(B;+1)
16: else
17: Bit1 < get_best_n(Bit1)
18: end if

to b (Line 6). This continues until a special separator token,
<eoi>, is generated, signaling the end of an instruction (Line
7). Once the number of instructions in the current IB reaches
the predefined limit, num_inst_per_block (Line 4), the
fully constructed block, consisting of the original prefix and
the newly generated instructions, is added to ;1 (Line 11).
After generation, each IB in B;;; is simulated to determine
whether it is “dead”. We consider an IB “dead” if it meets
one of two conditions: (1) it is syntactically invalid, meaning
it violates ISA specification, or (2) it prematurely terminates
execution, for example by containing control-flow terminators
like a ret (return) instruction. Since dead IBs cannot be
meaningfully extended in future iterations, they are excluded
from subsequent iterations. However, during the GRM fuzzing
stage, these IBs still serve as useful negative (“losing”) exam-
ples, contributing to the fuzzing policy refinement.

2) Inter and Intra-test Case Scoring: Traditional hardware
fuzzing methods usually assess each test case fully, measuring

total coverage only after the test case is complete. In contrast,
in the DUT fuzzing stage, GoldenFuzz evaluates each IB and
employs a dual-layer scoring system:

Intra-test case scoring. We employ intra-test case scoring to
incentivize newly uncovered coverage points within a single
test case. Let b; be the i-th IB in a test case, and let Hp,
represent the set of coverage points already revealed by b;.
When transitioning to IB b;1, the coverage newly discovered
by combining b; with b;; is denoted by G(b; ;+1). As newly
uncovered states are more valuable (more likely to trigger
unexplored hardware stats), they have a higher weight (w) than
previously seen states. Specifically, we use two base weights,
« and B (with a < f3), so that

a, if e Hy,,

B, if x & Hy,, ©)

w(z) =

where = denotes a coverage point. « is a lower reward for
coverage points that merely repeat what was already observed
by previous IBs, whereas § is a higher reward to incentivize
new coverage.

Inter-test case scoring. Inter-test case scoring deducts the
coverage score already identified by other test cases. Let f(x)
be the frequency with which a coverage point z is encountered
by test cases other than the current one. We introduce a small
constant factor to reduce S in proportion to f(x), thereby
lowering the reward for states that are already popular among
different test cases:

B'(z) = max (B — f(z) - factor, «). 4)

Intuitively, as f(z) increases, 5’(x) linearly transitions from
B (fully rewarding) down toward «, reflecting the diminishing
scores assigned to repeatedly covered points.

Combining two scoring schemes, the overall score for the
transition from b; to b; 4 is defined by summing the adjusted



weights for every coverage point x in G(b; ;4+1). We have:

Shiip) = >, w'(z), (5)
z€G(bi,it+1)

where 3 in Eq.[3]is replaced with () in Eq.[d]to form w’(z).
This strategy enables dynamic score adjustment in response
to coverage frequency, potentially mitigating the risk of the
fuzzer over-prioritizing already successful test cases. As shown
in Section the hardware coverage keeps increasing with
more test cases, while other fuzzer are saturated early.

3) Fuzzing Policy Refinement: After scoring test cases, the
next step is to refine the fuzzing policy using a principled, data-
driven approach. Traditional hardware fuzzers, as described
in Section typically adopt a mutation-based strategy
inspired by the American Fuzzy Lop (AFL) pipeline [32].
They randomly mutate successful test cases while discarding
unsuccessful ones. While straightforward, this approach is
inefficient and wastes valuable information: it neglects insights
from “losing” test cases that could guide future iterations and
makes refining “good” test cases erratic, as it lacks feedback
on which mutations are most effective.

GoldenFuzz overcomes these limitations by directly inte-
grating feedback into the fuzzing process. Instead of randomly
guessing which test cases are promising, GoldenFuzz explic-
itly pairs “winning” and “losing” test cases based on their
scores, forming preference pairs. These pairs allow the fuzzer
to efficiently utilize feedback regardless of test case coverage
and refine its preference (i.e., fuzzer’s fuzzing policy) through
direct comparison. By consistently prioritizing “winning” test
cases, the fuzzer evolves toward generating test cases with
higher coverage, thus probing into the deeper state space.

Concretely, we define the intrinsic reward of a test case b
using the model’s likelihood of generating it:

3 |6
= m Zlogﬂg(ti | t<¢), (6)

=1

r(b)

where t; denotes the i-th token of b; t.; represents the
sequence of tokens preceding t¢;; mp is the current fuzzing
policy parameterized by 6; and [ is introduced to scale the
reward. This per-token likelihood quantifies how “natural” or
policy-consistent a given test case is. Normalizing by sequence
length ensures that test cases are not unfairly penalized or
rewarded based on their instruction length alone, thus forc-
ing GoldenFuzz to generate high-quality IBs instead of just
making, e.g., long IBs, to win more rewards.

Using feedback from the GRM or DUT, pairwise prefer-
ences are established by comparing test cases and identifying
a “winner” based on the scoring function (Eq. 5). Given two
test cases b,, (“winner”) and b; (“loser”), employing Simple
Preference Optimization (SimPO) [41]], a specialized form of
Direct Preference Optimization [40] with lower computation
cost, we update the fuzzing policy by minimizing:

L(0) = —Ew, py~onlogo (r(biw) —r(big) =), (D)

where B denotes the set of preference pairs constructed from
the GRM evaluations; o denotes the sigmoid function; -y

establishes a target reward margin, ensuring that preference
differences translate into meaningful fuzzing policy shifts.
Eq. [/| encourages the fuzzer to shift output probability mass
toward generating ‘“winner” instruction sequences that are
empirically more likely to uncover new coverage points.

However, naively applying Eq. [/| to our fuzzing scheme
introduces significant challenges. DPO is typically employed
as an offline optimization method, where preference pairs are
collected before optimization. In contrast, hardware fuzzing
demands an online optimization approach, where the fuzzing
policy is refined iteratively during runtime. This continuous
refinement introduces the risk of overfitting. Over time, the
generated instruction risks drifting toward narrower instruction
sets, neglecting other potentially valuable regions of the state
space in the “distributional tails” [42]. Such rare points (a.k.a.
corner cases) are critical for exposing deep and previously
unseen vulnerabilities. Eventually, the fuzzer could collapse,
unable to produce even syntactically correct instructions.

To address this, we introduce a fuzzing memory M to bal-
ance immediate gains with maintaining exploration diversity.
After each iteration ¢, we identify /N top IBs and preference
pairs from B; and store these “exemplars” in M. M follows
the “first-in-first-out” principle: we remove the oldest set from
iteration ¢ — N to prevent unbounded growth and maintain a
rolling window of strong candidates:

M= M\ B y) UBJ,. ®)

The IB and preference pairs are sampled from M during
a new refinement iteration or fuzzing policy. We assign ex-
ponential recency weighting to each sample so that recent
samples are more likely to be sampled, but keep older samples
in the mix. This prevents forgetting earlier coverage strategies
and guards against overfitting to the current iteration’s local
maxima [43]]. Over time, this yields a stable fuzzing process.

E. Bug and Vulnerability Detection

Differential testing is extensively utilized in hardware
fuzzing to identify “crashes”. Under this methodology, a single
test case is executed on both the DUT and a GRM based on
the ISA. The execution traces obtained from these models are
then compared [19]], [21]], [23]], [24]. In alignment with state-
of-the-art hardware fuzzers, GoldenFuzz employs differential
testing involving the DUT and the GRM. This approach
has demonstrated its effectiveness across various hardware
fuzzers, particularly in the context of RISC-V fuzzers, which
have, to date, facilitated the discovery of most of bugs and
vulnerabilities [19]-[21], [23]-[25],

Although highly effective at identifying issues, differential
testing can generate many mismatches, many of which are
either duplicates or false positives [23]. Given the manual
nature of vulnerability analysis, prolonged investigation of
erroneous or redundant mismatches can significantly hinder
the efficiency and scalability of hardware fuzzing, particularly
as design complexity grows. In our workflow, each unique
mismatch, whether classified as a true bug or a false positive,



initially requires manual inspection. For the five new vulnera-
bilities, confirmation and classification typically took between
5 and 30 minutes per case, depending on the complexity of
the scenario and the need to trace privilege transitions or
instruction sequences. In the early stages of fuzzing, when
many mismatches are new, this manual effort could increase.
To (partially) address this limitation and improve scalability,
we propose a filtering approach to streamline the analysis
process. After each mismatch is analyzed, it is added to a
known mismatch list along with its environmental context
(e.g., privilege level, instruction type, register values, and
exception details). If the same mismatch recurs, the system can
automatically classify it without further manual intervention.
As fuzzing progresses, the proportion of previously seen mis-
matches increases, and the filtering mechanism substantially
reduces the number of cases requiring manual analysis. This
approach ensures that, even for large and complex designs,
the manual effort required for vulnerability confirmation and
analysis remains manageable.

IV. IMPLEMENTATION
A. Fuzzer Design and Pre-training

We implement our fuzzer using a GPT-2 language model
tailored for hardware instruction generation. Employing open-
source architecture, consisting of 1.5 billion parameters and a
vocabulary of over 50 000 tokens, poses two major challenges.
First, GPT-2’s pretrained parameters are grounded in natural
(English) language, which differs substantially from assembly
and binary code syntax. Second, GPT-2 employs Byte-Pair
Encoding (BPE) to handle tokenization, splitting infrequently
occurring words into smaller subword units. Although BPE
benefits broad-domain language tasks, it introduces unneces-
sary complexity for hardware instructions. To address these
issues, we built a customized GPT model designed explic-
itly for the RISC-V instruction set. Instead of relying on
subwords, we assign individual tokens to each opcode and
operand. This straightforward tokenization strategy preserves
opcode/operand-level correctness without vastly increasing the
vocabulary size. Besides, the token length of instruction is
more than half reduced compared with BPE, making the
training stage much easier, as the model does not need to learn
long token patterns. During our preliminary study, we also
experimented with reducing the model size by decreasing the
number of layers, attention heads, and embedding dimensions.
However, this led to suboptimal performance during fuzzing,
potentially due to the reduced model capacity limiting its
ability to capture the complex dependencies and semantics
required to generate effective and diverse instruction blocks.

Training data preparation is fundamental to the fuzzer’s
performance and its capacity to explore the DUT. To ensure
comprehensive test case coverage with different instructions,
our custom fuzzer model is trained from scratch using 10
million randomly generated RISC-V assembly instructions,
including all possible RISC-V instructions and extensions:
the fundamental 32-bit and 64-bit RISC-V ISAs and vari-
ous extensions, such as integer multiplication/division, single-

precision floating-point operations, atomic memory operations,
compressed instructions, and machine-level instructions. This
exhaustive inclusion allows our fuzzer to generate relevant
test cases with maximum diversity, including less frequently
utilized or specialized components of the instruction set.
Besides, due to the generative nature of the underlying
LLM, diverse and even syntactically incorrect instructions still
emerge naturally. While undesirable in typical LLM tasks,
this characteristic is beneficial in hardware fuzzing, as such
incorrectness helps evaluate corner cases. The initial training,
described in Section involves 50,000 epochs with a
learning rate le-6 and takes approximately one hour on one
NVIDIA A6000 GPU. During the subsequent fuzzing policy
refinement phase (discussed in Section [[V-B), we lower the
learning rate to 2e-7 to maintain stable fine-tuning and ensure
that the fuzzer’s output remains coherent.

B. Hardware Fuzzing Settings

Recall in Section GoldenFuzz initiates the fuzzing
process by generating test cases constructed from multiple
instruction blocks (IBs). In our configuration, each test case
contains five IBs, each with six instructions. Preliminary
experiments confirm that carefully chosen sets of around 30
instructions are generally sufficient to detect vulnerabilities,
aligning with our observations on state-of-the-art fuzzers. We
assess this hyperparameter choice in Section In both
fuzzing stages, 80 IBs are sampled from the fuzzing memory
in each iteration, each of which forms the input to the language
model for generating five new IBs.

Each generated test case is executed on the GRM or the
DUT. During the GRM fuzzing, as mentioned in Section [[II-B]
the fuzzing policy was refined by the test case validity judged
by the GRM. In the DUT fuzzing stage, hardware cover-
age, through Synopsys VCS [44], is used as the feedback,
which is determined by examining a range of metrics that
capture design behavior. These include finite state machine
(FSM) coverage, condition coverage, and line coverage. FSM
coverage evaluates how thoroughly the test cases explore the
different states and transitions within state machines. Condi-
tion coverage evaluates if logical conditions, such as branches
and conditional expressions, have been covered, thus revealing
how well decision points in the logic are tested. Line coverage
measures how many lines of the Register Transfer Level (RTL)
code have been stimulated. These coverage metrics offer a
comprehensive assessment of each test case’s effectiveness in
validating the hardware, guiding the fuzzing process toward
more complete and revealing explorations of the design’s
behavior. Besides, we randomize initial register values to
maximize the likelihood of triggering corner cases. In terms of
scoring function, we choose o = 0.1, 5 = 1, and factor = le-5
to heavily reward the exploration of new hardware states.

After computing scores, we form preference pairs of “win-
ning” and “losing” IBs to refine the fuzzing policy, guided
by the test case score using coverage metrics as inputs. We
consider the best-score and worst-score IBs to be “winners”
and “losers”, respectively. Hyperparameter tuning is crucial to



this iterative learning process. We pay special attention to three
hyperparameters: the learning rate, the reward scaling factor 3
for sequence likelihood (Eq. [6), and the target reward margin
v (Eq. . We test a range of values (le-7, 2e-7, 5e-7, le-6, and
5e-6) and find that a smaller learning rate (e.g., 2e-7) provides
efficient refinements and prevents the fuzzer from collapsing
into incoherent or repetitive outputs. Similarly, 8 = 10 (chosen
from a range of 1 to 10) delivers a balanced scaling between
winning and losing responses. For the target reward margin
v, we settle on 0.8 after a fine-grained grid search from 0.1
to 1 in increments of 0.1. Each training iteration uses a batch
size of 128, enabling efficient GPU memory usage and stable
fuzzing policy update. In general, these hyperparameters can
be directly applied to new targets, with adaptation (if needed)
starting from small learning rates and gradual adjustment of
reward scaling.

GoldenFuzz employs the Spike simulator [45]] as the GRM
during the profiling stage, while DUT implementations include
RocketChip [29], BOOM [30], and CVA6 [31]. We rely on
a combined simulation workflow involving Synopsys VCS
and Spike for vulnerability detection. Synopsys VCS pro-
vides detailed hardware simulation traces, recording register
updates and memory operations at each executed instruction’s
boundary. Concurrently, Spike serves as the high-level refer-
ence model for RISC-V ISA execution, producing idealized
reference traces that outline the expected register and memory
states after each instruction when running a RISC-V binary.
Our framework identifies discrepancies in register values,
memory addresses, and memory contents by comparing the
hardware simulation traces from VCS and Spike’s execution
traces utilizing a mismatch detector. Any mismatch flags a
potential bug or vulnerability in the DUT or Spike, which
will be analyzed manually by GoldenFuzz’s user to confirm
the bug or vulnerability.

We developed an automated framework to identify mis-
matches by parsing trace outputs generated by the target cores.
For each test case, this tool processes execution traces for both
the core and the GRM, which include details such as time,
clock cycles, addresses, instructions, execution privilege levels,
register values post-instruction execution, memory transac-
tions, and exception details. These traces are then compared
instruction by instruction. Since the initial portions of all test
cases are identical due to the initialization of the environment,
the parser skips these instructions. Upon detecting a mismatch
between the core and GRM traces, the framework applies the
filtering approach described in Section The mismatch
is disregarded if the environmental information associated
with the mismatch aligns with any predefined filter criteria.
Otherwise, it is logged in a file for further manual analysis.

V. PERFORMANCE EVALUATION

This section evaluates the performance of GoldenFuzz
through a comprehensive analysis and benchmark on hardware
coverage and computational cost.

A. Hardware Coverage

GoldenFuzz adopts a coverage-guided white-box fuzzing
strategy to maximize exploration of hardware states, thereby
elevating the probability of exposing bugs and vulnerabilities.
For the hardware coverage benchmark, we compare Gold-
enFuzz against four state-of-the-art fuzzers: Cascade [24],
DifuzzRTL [25], TheHuzz [19], and ChatFuzz [21]], with a
special emphasis on Cascade, the most recent among them, and
ChatFuzz, the most recent LLM-based fuzzer. For a thorough
assessment, we measure condition, line, and FSM coverage
across three RISC-V cores: RocketChip [[29], BOOM [30]], and
CVAG6 [31]]. Due to page limit, we limit our analysis of Di-
fuzzRTL and TheHuzz to condition coverage on RocketChip.

Coverage Increase: 1.35%

Coverage Increase: 2.09%

Cond (%)
2
3
Cond (%)
o
]

Coverage Increase: 3.04% Coverage Increase: 0.24%

g7 L5
275 g ‘
= | bk 1 4 80 ‘
s Coverage Increase: 0.0% _ Coverage Increase: 2.87%
2 --- Cascade - R 35 --- Cascade
S Mo +++ ChatFuzz = . ChatFuzz
E H —— This work E 30 —— This work
20+ B

10k 20k 30k 40k 50k 10k 20k 30k 40k 5

Number of test cases

(a) RocketChip

Number of test cases

(b) Boom

Coverage Increase: 5.16%

Cond (%)
P

Coverage Increase: 1.12%

R .
T 744

<80
® - | =
2 r \ 2
3 75 L |

gy

70 i ~ DifuzzRTL
=40 Coverage Increase: 5.25% FrT —.—. TheHuzz
3 /_P_H_,_,—--— ?mdg 4 68 i < ChatFuzz

prr—— ! uzz =
é " — This work 66" — This work
10k 20k 30k 40k 50k 10k 20k 30k 40k 5

Number of test cases Number of test cases

(c) CVA6 (d) All Fuzzers on RocketChip

Fig. 3: Coverage Benchmark.

The results are shown Fig. [3] We adjust the figure scale to
better visualize the trend in coverage. The coverage increase
introduced by GoldenFuzz compared with the best performing
fuzzer is shown in the figure title. GoldenFuzz consistently
outperforms Cascade and ChatFuzz across all tested cores
and coverage metrics, except FSM coverage on RocketChip
(bottom figure in Fig.[3a)), where both fuzzers achieve the same
coverage. Notably, Cascade employs basic block concatena-
tion, where each block terminates with an instruction that mod-
ifies the program counter. This approach allows its test cases to
grow to thousands of instructions, with 10000 instructions as
optimal for maximizing coverage and vulnerability detection.
In contrast, GoldenFuzz operates with significantly shorter test
cases with 30 instructions. Consequently, Cascade, in some
test scenarios, achieves higher coverage at the beginning due
to its longer test sequences. However, the early coverage
gains do not inherently sustain long-term exploration. The
coverage of GoldenFuzz steadily increases across all three



cores, eventually surpassing Cascade, whose coverage plateaus
earlier. On the other hand, although ChatFuzz also employs a
language model, the generated binary test case constrains the
fuzzer to understand the inter- and intra-instruction semantics,
eventually leading to lower coverage.

Next, we compare coverage among all tested fuzzers on
RocketChip using condition coverage metrics, again including
Cascade for completeness. As presented in Fig. Golden-
Fuzz significantly exceeds the coverage achieved by Difuz-
zRTL, TheHuzz, and ChatFuzz, each plateaus quickly. By
contrast, GoldenFuzz maintains superior coverage even as the
number of test cases grows. Impressively, it achieves coverage
comparable to that of other fuzzers using test cases of only 30
instructions and less than 1% of test cases, demonstrating its
efficiency in exploring diverse hardware states. This advantage

translates directly to detecting bugs and vulnerabilities with .

minimal hardware simulation overhead, affirming GoldenFuzz
as a high-performance tool for hardware security assessments.
We evaluate the robustness of GoldenFuzz in Section [VII-C

B. Computational Cost

The computational efficiency of a fuzzer directly impacts
its overall runtime performance. The overhead in GoldenFuzz
primarily stems from four components: (1) fuzzer pertaining,
(2) test case generation, (3) fuzzer’s fuzzing policy refinement,
and (4) DUT instrumentation. The pre-training of the fuzzers,
a one-time task, takes around one hour to finish on an NVIDIA
A6000 GPU. Although the three reset components primarily
run on a GPU, we analyze their computational performance on
both CPU and GPU for a fair comparison with related works.

On an AMD EPYC 9684X CPU, GoldenFuzz generates
each test case in just 0.34 seconds, which shrinks to 0.012
seconds on an A6000 GPU. These times significantly outper-
form advanced fuzzing tools such as Cascade (2.06 seconds
per test) and TheHuzz (2.47 seconds) in the same CPU set-
ting. Indeed, GoldenFuzz ’s instruction block-based workflow
keeps overhead low: each new test only requires (1) choosing
existing instruction blocks and (2) appending one block of six
additional instructions. By scaling up parallel input generation,
trading off memory for the ability to produce many tests
simultaneously.

In the GRM fuzzing stage, evaluating a test case takes
around 0.004 seconds with CPU, contributing only minimal
additional cost. Direct preference optimization appears to
be time-intensive. However, with our customized and small
language model and limited preference pairs per iteration,
each tuning iteration completes in under 40 seconds on an
A6000 GPU and less than 200 seconds using only a CPU. The
bottleneck for GoldenFuzz lies in DUT instrumentation, which
averages 1.36 seconds per test case when running 80 test cases
in parallel. Despite this, GoldenFuzz reduces its total testing
volume by more than half compared to other fuzzers and
still achieves comparable or even superior coverage (Fig. 3d),
substantially reducing the overall computational overhead.

V1. FuzzING FINDINGS
A. Testcase Quality

While Section has shown that GoldenFuzz significantly
improves hardware coverage, this section provides a deeper
empirical analysis of the mechanisms driving this improve-
ment. Concretely, we explain why GoldenFuzz achieves higher
and faster coverage compared to existing fuzzers.

2| CsSrs

| 11 x14,
5| csrs

1i x7,

%

1i %2, O0xa9bldOOfffffffff
pmpaddr0, x2

O0xffO0fO0fccdfaaaalf
pmpcfgl , x14

0x000000000005bcfa
csrs mstatus, x7

mret

Listing 1: Testcase Quality Running Example

Listing [I] shows a simplified test case generated by Gold-
enFuzz. While the instruction values and memory operations
involved in this testcase may initially seems arbitrary, they
actually constitute a minimal and valid sequence required to
transition the processor from Machine (M-mode) to Supervisor
(S-mode) privilege. Traditional fuzzers and verification tools
often fail to uncover such vulnerabilities because they struggle
with the enormous search space and typically lack the semantic
understanding needed to generate these specific privilege-
escalation scenarios. As a result, these tools are unlikely to
produce the precise instruction and memory patterns necessary
to trigger the vulnerabilities within a reasonable timeframe. In
contrast, GoldenFuzz leverages semantic guidance to synthe-
size such targeted behaviors efficiently, often within the first
1000 test cases. This capability explains why GoldenFuzz
was able to detect the five new vulnerabilities that other
tools missed. These results empirically support several key
mechanisms behind our framework’s effectiveness:

o Effectiveness of GRM feedback. The GRM steers the
generation process toward semantically valid test cases
that are less likely to trigger immediate exceptions, thus
enabling deeper exploration of the DUT. For instance,
instructions like 11 x2, 0xa9b1d00fffffffff and
csrs pmpcfg0, x14 emerge naturally as the fuzzer
explores the input space.

e Coverage-driven DUT fuzzing. When running on the
DUT, feedback based on hardware coverage metrics
(e.g., condition or transition coverage) guides the fuzzer
to generate tests that explore unvisited states. Privilege
transitions (Line 10), such as mret and sret, require
multiple conditions to be satisfied. Their presence in the
test case demonstrates that GoldenFuzz can learn and
exploit such constraints to expand coverage.

o Language model integration for enhanced understanding.
By integrating coverage feedback into the training pro-
cess, the language model-based fuzzer learns to associate




instruction patterns with state transitions. For example,
the co-occurrence of pmpaddr and pmpcfg reflects the
model’s understanding of PMP (Physical Memory Pro-
tection) configurations, indicating that the model captures
semantic dependencies across instruction sequences.

B. Detected Vulnerabilities

GoldenFuzz identified five previously unknown vulnerabili-
ties in the open-source cores and two from the commercialized
BAS51-H core [46]. These vulnerabilities have been reported to
the respective benchmark developers, who confirmed that they
were unaware of these issues before our disclosure. We have
obtained the following Common Vulnerabilities and Exposures
(CVE) entries for these vulnerabilities, CVE-2025-45883
and CVE-2025-45881. The five vulnerabilities we identified
are severe (four have a CVSS 3.0 score exceeding 7) and
complex, involving multi-instruction execution paths and trig-
gers from different privilege modes. Besides, the effectiveness
of GoldenFuzz is not limited to discovering these specific
vulnerabilities. During our analysis, we observed that our
fuzzer could also trigger bugs and vulnerabilities previously
reported but remained unresolved. Furthermore, static analysis
revealed that our fuzzer could generate test cases for vul-
nerabilities already addressed in recent updates [47], [48]. In
certain instances, our fuzzer even detected bugs not reported
in related fuzzing studies, although the benchmark developers
acknowledged being aware of these issues.

The following paragraphs explain each vulnerability and

present Proof-of-Concept (PoC) code to demonstrate how
these vulnerabilities can be triggered. The PoC code examples
are simplified and represent minimal subsets of the test cases
generated by the fuzzer.
V1l & V2 Incorrect Endiannes Changes in CVA6 Proces-
sors. The RISC-V ISA specification defines the MBE, and SBE
fields in the mstatus and mstatush registers as controlling
the endianness of memory accesses, with the exception of
instruction fetches, which are inherently little-endian. These
fields have the following specific roles. Machine Endianness
(MBE) governs the endianness for memory accesses in M-
mode. Setting MBE to 0 enforces little-endian memory accesses
while setting it to 1 enforces big-endian accesses. Supervisor
Endianness (SBE) determines the endianness of memory ac-
cesses in S-mode, provided that S-mode is supported in the
implementation. The SBE field is of particular importance for
supervisor- and Hypervisor-level operations, such as page table
management. However, a deviation from the expected behavior
has been observed on the RV64 CVAG6 core. Specifically, ma-
nipulating the MBE or SBE fields in the mstatus register does
not alter the endianness of explicit memory access instructions
as anticipated. For instance, despite clearing or setting the MBE
or SBE bits, the endianness of subsequent sw (store word) and
1b (load byte) instructions remains unaffected. The issue can
be reproduced via Listing [2}

0x12345678
0(tl)

|11i t2,
2l sw t2,

s11b t3, 0(tl) // Exp(0x78) != Obs (0x78)
{11 t0, (1 << 37) // Set MBE (bit 37)

s| esrs mstatus, tO

sl sw t2, 0(tl)

711b t3, 0(tl) // Exp(0x12) != Obs (0x78)

Listing 2: Sample Code Snippet Demonstrating the Triggering
of Vulnerabilities 1 and 2.

In the Listing we present code demonstrating the first
vulnerability associated with MBE. Notably, the same code can
be adapted to exploit a second vulnerability by altering the
execution mode from M-mode to S-mode. This transition can
be achieved by appropriately configuring the mstatus regis-
ter followed by executing the MRET instruction. Additionally,
the offset for setting the bit (£0) should be adjusted to 36,
corresponding to SBE, instead of 37, which pertains to MBE.
However, in both vulnerability scenarios, the expected value
from the last load instruction, Line 8, should be 0x12, rep-
resenting a big-endian load for 0x12345678. Nonetheless,
in both cases, the processor loads 0x78, indicating that the
endianness configuration did not change despite setting the
MBE and SBE bits.

The vulnerabilities V1 and V2 are classified as severe due

to their high CVSS 3.0 scores of 7.5. These vulnerabilities
present multiple attack vectors that adversaries can exploit
to compromise the confidentiality, integrity, and availability
of the system. Specifically, the processor fails to enforce the
expected endianness for certain memory access instructions,
such as sw and 1b. An attacker can exploit this flaw by cre-
ating scenarios where discrepancies between the expected and
actual behavior affect critical memory management structures,
such as page tables. This exploitation can facilitate bypass-
ing memory isolation mechanisms, leading to the corruption
of page tables or unauthorized access to memory regions.
Consequently, the attacker may gain elevated privileges or
extract sensitive information. Furthermore, by combining these
vulnerabilities with a software memory corruption attack,
an attacker can destabilize the operating system kernel or
hypervisor, resulting in arbitrary code execution or denial-of-
service conditions.
V3 Improper Masking of Delegated Supervisor Timer
Interrupts (STI) in CVA6 Processors. According to the
RISC-V ISA specification [49], [50]], delegated interrupts
should be masked at the delegator privilege level. Specifically,
if the Supervisor Timer Interrupt (STI) is delegated to S-
mode by setting the appropriate bit (5th bit in mideleqg),
the interrupt should not be taken when executing in M-mode.
In this configuration, STIs should only trigger in S-mode,
with control transferring to the corresponding S-mode interrupt
handler. Conversely, if mideleg[5] is cleared, the interrupt
is not delegated and should be taken in any mode, transferring
control to the M-mode handler.

However, a deviation from the specified behavior has been
observed in the Rv64 CVA6 [31] core. Specifically, when
the STI is delegated to the S-mode by setting mideleg([5],
the interrupt remains visible in the M-mode, contrary to
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2l esrs mip,
slesrr t0, mip
/|esrr tO,

>l esrs mstatus,
5| /// Switch to HS-mode
i|hfence.gvma zero,

expectations. Even though the STI is delegated, it is still
reflected in the mip register while executing in the M-
mode rather than being masked. Instead, the interrupt should
only appear in the sip register when executing in S-mode,
indicating proper delegation. This behavior violates the RISC-
V specification, as delegated interrupts should not appear at
the delegator privilege level (in this case, M-mode). The issue
can be reproduced using the PoC code snippet in Listing

1i t0, (1 << 5)//
t0 //
//

//

Load STI interrupt
Set STI in mip register
Check mask

sip Check delegation

Listing 3: Sample Code Demonstrating the Masking of
Delegated STI.

The vulnerability V3 is classified as severe due to its high
CVSS 3.0 scores of 7.6. Specifically, when the STI is delegated
to the S-mode, it remains visible in the M-mode, violating
the expected isolation between privilege levels defined by the
RISC-V ISA. An attacker operating in S-mode can exploit this
flaw by triggering repetitive STI interrupts and observing side
effects in M-mode, such as execution timing variations or un-
expected interrupt handling. This behavior allows the attacker
to infer sensitive information about the M-mode firmware’s
internal state, including interrupt handling logic, memory man-
agement operations, or context-switching activities. Moreover,
if M-mode software inadvertently processes these unexpected
interrupts, it may expose unintended information or introduce
vulnerabilities. For instance, M-mode may log the interrupts,
update counters, or modify critical state variables, enabling
an S-mode attacker to deduce whether M-mode is engaged in
specific privileged operations or to infer details about memory
layout and interrupt delegation mechanisms. Such leakage
can be leveraged to bypass privilege isolation, potentially
escalating the attacker’s privileges or providing a foothold for
further exploitation.
v4 Improper Handling of stval Register in CVA6
Processors for HFENCE.GVMA Instruction. According to
the RISC-V ISA specification [49]], [50], when an illegal
instruction exception occurs in Hypervisor/Supervisor Mode
(HS-mode), the stval register can optionally return the
faulting instruction bits. Specifically, if stval is written with
a nonzero value when an illegal instruction exception occurs, it
should contain the shortest of: a) the actual faulting instruction,
b) the first ILEN bits of the faulting instruction, and c) the first
SXLEN bits of the faulting instruction.

1i t0, (1 << 20)

t0

// Load TVM
// set TVM

zero // Exception here

Listing 4: Sample Code Demonstrating the Improper stval
Handling for HFENCE.GVMA

Furthermore, in HS-mode, when the mstatus.TVM flag
is set, executing the HFENCE . GVMA instruction should trigger
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an illegal instruction exception. Upon triggering the exception,
the stval register should be set to the value of the faulting
instruction. In this case, stval should hold the value of
the HFENCE .GVMA instruction itself. However, a deviation
from this expected behavior has been observed in the CVAG6
core [31]]. Specifically, instead of setting stval to the
correct faulting instruction value (0x62000073), the core
erroneously sets it to O0x1. This behavior violates the RISC-V
specification, as the stval register is expected to contain the
faulting instruction. The issue can be reproduced using the PoC
code snippet in Listing 4 The vulnerability V4 is classified as
moderate (CVSS 3.0 score 5.5), due to its potential impact on
exception handling and debugging. This vulnerability could
lead to uncertainty during debugging or exception handling.
This, in turn, may result in incorrect exception handling
behavior, particularly in complex systems that rely on accurate
faulting instruction information for diagnostics or recovery
procedures. In systems where accurate fault reporting is crucial
for security or stability, this could introduce difficulties in iden-
tifying the root cause of the exception, potentially affecting
system reliability or security.

V5 Access Control Issue in CSR Register Files. During
the discussion with the CVA6 developers regarding vulner-
abilities V1 and V2, we realized a newer vulnerability that
can be interpreted by V1 and V2, which could be far more
critical. This issue represents a critical access control problem
in the Control Status Register (CSR) register files module.
Specifically, the MBE and SBE bits, which are expected to be
read-only and set to zero, can be modified, contrary to the
CVAG6 specification [51]. As demonstrated in Listing the
MBE and SBE bits could be changed, despite being expected
to be locked at zero. The vulnerability V5 is classified as
severe (CVSS 3.0 score 7.6), due to its potential impact on
CSR access control, as it allows for unintended modification
of critical status information that is supposed to be protected.
Two New Vulnerabilities on a Commercial Core. Golden-
Fuzz successfully detected two bugs in the implementation of
extensions of Beyond’s BA51-H core [46], a commercialized
design developed during the CROSSCON project [52]. For
confidentiality reasons, we cannot disclose the full bug details.
However, one of the identified issues appeared while accessing
specific registers, highlighting a subtle interaction flaw within
the newly developed functionalities. This discovery demon-
strates GoldenFuzz’s capability to uncover critical design flaws
in evolving commercial hardware, showcasing its significant
value for industrial applications.

VII. ABLATION AND HYPERPARAMETER STUDY
A. The Need for GRM Fuzzing

As the core component of GoldenFuzz, GRM plays a crucial
role in reducing overhead within the GoldenFuzz framework
by acting as a “digital twin” of the DUT. To assess the
effectiveness and necessity of this component, we conduct an
ablation study on the performance of GoldenFuzz with and
without GRM.
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Fig. 4: Ablation and Hyperparameter Studies on Critical Settings.

Figure [ presents the results across three key metrics: 1)
coverage points, which aggregate condition, line, and finite-
state machine (FSM) coverage; 2) invalid rate, which measures
the proportion of IBs that are syntactically invalid; and 3)
extendable rate, which quantifies the percentage of IBs that are
suitable for concatenation in future iterations. As defined in
Section [[II-D} an IB is considered extendable (or, not “dead”)
if it is syntactically valid and fully executable, or largely so
in the case of branch instructions. Across all three metrics,
GRM-guided fuzzing (red curve) consistently outperforms the
baseline that explores solely the DUT. Specifically, GRM
fuzzing achieves higher overall coverage, generates fewer
invalid IBs, and yields a greater proportion of extendable
IBs. These results highlight a critical advantage of using a
GRM during early-stage policy refinement: it enables safer
and more efficient coverage exploration without risking the
stability or limited observability of the DUT. From a higher
level, by leveraging the GRM for initial, rapid, and low-
cost coverage-guided test case refinement before targeting the
actual hardware, GoldenFuzz significantly accelerates deep
architectural exploration and vulnerability discovery.

B. The Selection of Instruction Blocks Settings.

Instruction block-based testcase generation enable Gold-
enFuzz to steadily explore new hardware states with low
computation overhead. To evaluate the impact of instruction
block (IB) granularity on fuzzing effectiveness, we compare
three block configurations: five IBs of six instructions each (5-
6), three IBs of ten instructions (3-10), and one IB containing
all 30 instructions (1-30). The y-axis in Fig. Ab] shows the
hardware coverage points achieved over learning iterations.

The results demonstrate that using more, smaller IBs (5-
6) consistently leads to higher coverage. This improvement
stems from two key advantages. First, smaller blocks offer
finer-grained exploration, allowing each IB to independently
probe different hardware states. This increases the likelihood
of reaching diverse execution paths and reduces the risk of
coverage stagnation. Second, block-wise generation signifi-
cantly eases the learning task for the fuzzer. Indeed, the fuzzer
only needs to learn how to construct shorter, more manageable
IBs, reducing the search space and accelerating convergence.
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In contrast, larger IBs (e.g., 1-30) are more prone to
becoming dead, i.e., failing to execute due to syntax or runtime
errors such as invalid instructions or premature termination.
Indeed, longer IBs have a higher chance of being discarded,
which reduces the pool of viable test cases and leads to lower
overall coverage. This degradation can reach a point where the
system fails to generate any valid IBs at all.

While configurations like 30-1 (30 one-instruction IBs) may
offer greater stability due to minimal instruction complexity
per block, they introduce significant computational overhead
and reduce the contextual expressiveness of each block. Our
experiments show that a middle ground, such as the 5-6 con-
figuration, offers the best trade-off between learning efficiency,
coverage growth, and computational feasibility.

C. Robustness of GoldenFuzz.

To evaluate the robustness and consistency of our fuzzing
strategy, we conducted five independent fuzzing runs and
measured the resulting coverage across three metrics: line,
coverage, and FSM coverage. Figure [dc| presents the mean cov-
erage and its variance (shaded regions) as the number of test
cases increases; the y-axis scales are set differently for better
visibility. Across all three metrics, GoldenFuzz demonstrates
stable and consistent behavior. Indeed, the narrow variance
bands across all metrics demonstrate that GoldenFuzz is not
only effective but also robust, consistently achieving high ar-
chitectural coverage regardless of initialization or randomness
in the fuzzing process.

VIII. DISCUSSION

Cross-design Generalization. A key advantage of Golden-
Fuzz is its portability across implementations of the same ISA.
In our evaluation across three distinct RISC-V cores, including
the Out-of-Order BOOM processor [30], no changes were re-
quired to the framework. Indeed, all ISA-compliant processors,
regardless of their microarchitecture, must expose the same
architectural state at instruction retirement. Consequently,
GoldenFuzz is directly applicable to any conforming RISC-V
core. Adapting GoldenFuzz to other ISAs (e.g., ARM or x86)
and more complex (closed-source) designs follows the same
workflow. While technically feasible, the practical limitations



are primarily tied to (1) the availability of GRM and (2) the
closed-source nature of ISA and design implementation. Recall
that GoldenFuzz relies on GRM for the low-cost fuzzing policy
refinement and, like other white-box fuzzers [[19], [21]], [24],
[25]], leverages RTL-level coverage feedback to explore deeper
hardware states. The lack of GRM would degrade GoldenFuzz
to a conventional fuzzer that directly interacts with DUT;
the lack of design insight further degrades GoldenFuzz into
a pure random fuzzer and poses a significant challenge to
vulnerability detection. These availability and open-source
constraints reflect a broader challenge in applying advanced
fuzzing techniques to commercial and closed-source platforms.
LLM Advances for GoldenFuzz. Recent advances in Large
Language Models (LLMs) offer promising avenues for fur-
ther improving hardware vulnerability detection. Incorporating
techniques like Retrieval-Augmented Generation (RAG) [53]]
could enhance hardware fuzzing by integrating design spec-
ifications, thereby increasing the efficiency of vulnerability
detection. For instance, an LLM could retrieve relevant design
documentation to inform its test case generation, leading to
more targeted and effective fuzzing. Additionally, allowing the
fuzzer to understand human languages opens the opportunities
of applying prompt engineering techniques to generate more
refined test cases specifically tailored for, e.g., targeted build-
ing blocks within the hardware design or certain CWEs. These
advancements could lead to more intelligent and context-aware
fuzzing strategies, thus uncovering critical vulnerabilities.

IX. RELATED WORK

Hardware fuzzing frameworks have been widely deployed
to various designs, such as SoCs, CPUs, and isolated IP blocks.
We categorize them into generic fuzzers and processor fuzzers.
Generic Fuzzers. Existing works, such as Laufer et al. [54]
and Li et al. [55], demonstrate the feasibility of using FPGA
emulation-based generic fuzzing based on multiplexer control
signals. However, these approaches are reliant on specific
hardware design languages (e.g., HDL), limiting their scal-
ability. Further, the overheads in monitoring multiplexers in
complex designs hamper the usability [28]]. In contrast, Trippel
et al. [[18] proposed fuzzing hardware-like software by fuzzing
the hardware simulation binary rather than porting software
fuzzers directly on the hardware designs. Verilator [56] trans-
lates the hardware to equivalent software. This approach
allows fuzzing to utilize existing software coverage metrics,
such as basic block and edge coverage [28]. Still, it faces
scalability problems when, e.g., fuzzing a whole CPU.
Processor Fuzzers. TheHuzz [19] simulates the RTL design
of the processor with the binary format of the instruction
using Synopsys VCS [44] that traces code coverage through
various metrics, including branch, condition, toggle, FSM,
and functional coverage. However, this method suffers from
low computation efficiency and hardware coverage. Difuz-
zRTL [25] generates instructions and collects control register
coverage to guide the fuzzing process. Following this work,
MorFuzz [26] achieves a final coverage that is 4.4 times
higher than DifuzzRTL by generating fuzzing seeds based on
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syntax and semantics and using runtime information feedback
to mutate instructions. ProcessorFuzz [28] is a concurrent work
that generates instructions and collects coverage of control
and status registers. However, these works only focus on the
coverage of registers generating the select signals of MUXes,
leading to missing bugs and vulnerabilities. To increase the
design coverage and detect more vulnerabilities, HyPFuzz [20]]
was proposed to guide the fuzzer by the formal verifica-
tion tools reaching hard-to-reach design spaces. Alternatively,
SoC Fuzzer [57|] directs the fuzzing based on the security
properties (generic cost function) that detect vulnerabilities
in the DUT. Finally, Cascade [24] aims to enhance instruc-
tion execution efficiency by constructing long programs and
eliminating control flow influences. It conducts the entire
fuzzing process at the program-level granularity without using
any mutation strategies to guide fuzzing. However, these
approaches overlook the complexity of input semantics and
receive limited feedback from the DUT. Unfortunately, overly
long and complex test cases lead to high time consumption;
the basic block’s usage constrains the test case’s variety, thus
reducing the bug detection capability. ChatFuzz [21] uses
a pre-trained language model, fine-tuned by reinforcement
learning on instruction binaries, for the hardware fuzzing.
In contrast, we specifically customize a GPT model with
the proposed hardware fuzzing scheme, leading to lighter
computation overhead and significantly better performance in
hardware coverage and vulnerability detection.

X. CONCLUSION

In this paper, we present GoldenFuzz, a novel language-
model-based hardware fuzzer that decouples test case refine-
ment from coverage and vulnerability exploration. It first
uses a software-based Golden Reference Model (GRM), a
“digital twin” conforming to the DUT’s ISA, to efficiently
refine fuzzing strategies before executing targeted tests on the
actual DUT, reducing the cost for cycle-accurate simulations.
Empirical results show that GoldenFuzz outperforms state-
of-the-art fuzzers in both coverage and computational cost.
It detects all previously known vulnerabilities and uncovers
seven new ones in open-source and commercial cores, four
of which are rated highly severe (CVSS > 7.0), highlighting
their real-world impact.
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ETHICS CONSIDERATIONS

GoldenFuzz is a hardware fuzzing tool developed to ad-
vance the functional and security verification of hardware,
particularly processors. Its intended users include security
researchers, hardware manufacturers and designers, and hard-
ware security companies. By using the GoldenFuzz frame-
work, users can discover new bugs and vulnerabilities in
hardware designs under test. We thoroughly evaluated Gold-
enFuzz on three widely recognized benchmarks, discovering
five new bugs and vulnerabilities. In line with the Menlo
Report principles [58]], particularly the principle of “Respect
for Persons”, we have ensured that the security vulnerabili-
ties identified by GoldenFuzz were promptly communicated
to the responsible teams for CVA6 [31], BOOM [30], and
RocketChip [29]. This timely disclosure was essential to
mitigate risks and protect individuals from potential harm that
could arise if adversaries were to uncover these vulnerabilities
independently. The responsible parties have acknowledged the
issues and are actively working on implementing fixes to
address the concerns raised in this paper.

To further adhere to the principle of justice, which re-
quires fairness in distributing benefits and burdens, we have
carefully considered the potential risks associated with the
misuse of GoldenFuzz. To prevent harm and ensure that the
framework is used to advance research and enhance hardware
security, access to the source code for GoldenFuzz will be
restricted. It will be made available only upon request and with
confirmation that it will be used exclusively for responsible
research by academic users and hardware manufacturers. This
approach aligns with the Menlo Report [58] emphasis on
promoting social value while protecting individual rights and
privacy, ensuring that GoldenFuzz contributes positively to the
hardware security community without introducing risks.
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