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tenants—aiming to trigger either faults in their code, thus
causing denial-of-service [4], [5], or security bugs, therefore
breaking out of their sandbox (i.e., Virtual Machine (VM))
[6], [7], [8]. As such, securing hypervisors is of paramount
importance for the sustainable functioning of the cloud.

Besides ensuring VM isolation, a hypervisor also has the
major task of virtualizing the underlying hardware, which
consists of emulating the behavior of the CPU and I/O devices
(e.g., a network card). For that, CPUs implement a suite of
events called VM-exits by Intel [1, Chapter 28] and #VMEXITS
by AMD [2, Chapter 15.6] that are triggered on specific actions
of its VMs (e.g., writing to an MSR) and redirect execution to
the HV for handling. Due to the high amount of vulnerabilities
in the VM-exit handling code of HVs [9], [10], [11], [12], [13],
a significant amount of work has been put into scrutinizing
them automatically via fuzzing. Notably, while most prior work
focused on fuzzing the I/O emulation interfaces of HVs, i.e.,
PIO, MMIO, or Hypercalls [14], [15], [16], [17], [18], [19],
[20], [21], [22], the interfaces that emulate CPU behavior, e.g.,
(reading/writing) MSRs, MMIO instruction emulation, APIC
accesses, or hardware task switching have received signifi-
cantly less scrutiny [23], [24], [25], [26], [27]. Surprisingly,
although Intel defines 76 VM-exits [1] that could be triggered
during VM execution, the interfaces fuzzed by prior work
only account for 8 VM-exits (i.e., ≈ 10%), thus leaving a
potentially large attack surface still unexplored—we tackle this
issue in this work and focus on CPU emulation interfaces, as
they represent the majority of the VM-exits.

This alarming gap is mainly due to the difficulty of gen-
erating valid VM states that can be used as fuzzing inputs
to trigger specific VM-exits, as they must fulfill numerous
requirements imposed by the architecture. Prior work [23]
tackled this challenge by manually crafting initial architec-
turally valid VMs for a few hand-selected VM-exits. However,
crafting these requires significant effort as their architectural
requirements are scattered across several pages of the ISA
specification and are often described ambiguously or inconsis-
tently with the silicon implementation [27]. Further, most VM-
exits may be exerted in several ways, implicitly affecting CPU-
provided information for VM-exit handling (e.g., the exit
qualification field), thereby exercising a different exe-
cution path in the HV. As such, we deem manually crafting
valid VM states to cover the vast VM-exit space as infeasible,
which was also admitted by the authors of prior work [23].
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We provide a case study of HyperMirage by fuzzing the 
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I. INTRODUCTION

The adoption of hardware virtualization extensions—such
as Intel VMX [1], AMD SVM [2], and ARM Virtualization
Extension [3]—enabled several opportunities for the cloud
computing landscape. However, it also introduced a whole new
surface that attackers could abuse. Exploits against cloud in-
frastructures typically target hypervisors (HVs)—the software
components responsible for ensuring isolation between cloud
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In our work, we tackle these issues with a novel hypervisor
fuzzing approach—dubbed HyperMirage—which aims to craft
fuzzing inputs automatically to reach unexplored HV code
and find new bugs. Our key observation is that compiling
architecturally valid VM states as fuzzing seeds is redundant
for finding bugs in HVs. Instead, we introduce a novel tech-
nique called Direct State Manipulation (DSM) that generates
input VMs automatically, and avoids running them during
fuzzing, thus giving the HV the illusion that it did—hence the
name HyperMirage. DSM’s novelty lies in focusing its input
mutations directly on the elements that are consumed by the
HV while handling a VM-exit for a VM, which, according
to the Intel manual, broadly consist of the VM’s General
Purpose Registers (GPRs), memory, and, most notably, the
Virtual Machine Control Structure (VMCS).

Surprisingly, although the VMCS greatly influences execu-
tion in the HV, several of its crucial components were omitted
during fuzzing in prior work, which may potentially miss
security bugs in the HV. This is mainly because modifying a
field in the VMCS typically requires executing (a sequence of)
specific instructions in the VM, which may require significant
manual labor. In this work, we shed light on the structure
of the VMCS by systematically analyzing its specification
in architecture manuals and identifying those fields that are
relevant for finding bugs in HVs. We integrate this knowledge
into DSM and configure it to redirect input mutations directly
on these fields, as well as the guest’s GPRs and memory, thus
empowering HyperMirage to automatically explore the vast
space of architectural VM states in depth. By doing this, DSM
is able to reach architectural edge cases that reveal deep bugs
in the HV. However, it also leads to impossible architectural
states, which trigger false-positive crashes during fuzzing. We
evaluate the occurrence of these cases and find that they can
be trivially triaged.

Nevertheless, mutating the VM state randomly (in a black-
box manner) or based on coverage feedback (in a graybox
manner) is known to suffer from getting stuck at solving com-
plex branch conditions (such as multi-byte equality checks).
Prior work overcomes this issue via hybrid fuzzing, which
combines concrete and symbolic execution (i.e., concolic) to
systematically discover new execution paths in the analyzed
target. However, while efficient hybrid fuzzing solutions have
been employed on user space applications [28], [29], [30],
[31] and OS kernels [32], [33], they have yet to be effectively
applied to fuzz hypervisors. HyperFuzzer [23] proposed a
custom hybrid fuzzing approach to fuzz Hyper-V, which,
however, relies on a custom (closed-source) symbolic execu-
tion engine that employs a sub-optimal backend for solving
symbolic expressions, affecting its fuzzing throughput. Our
tool HyperMirage side-steps these limitations by providing
the first hybrid fuzzing infrastructure that integrates SymCC
[29], a state-of-the-art, highly optimized, symbolic execution
engine, into a bare-metal coverage-guided hypervisor fuzzer.
Out of the box, SymCC is built for user space programs,
requiring a runtime-loaded dynamic library performing both
symbolic expression generation and constraint solving with

the help of an embedded SMT-solver, making it unsuitable for
bare-metal targets. We tackle this issue by extending SymCC
with a novel symbolic record-and-replay approach that enables
instrumenting bare-metal targets and shifting the constraint
solving to an environment outside of the target.

We equip DSM with symbolic record-and-replay and inte-
grate them into Nyx [22], a state-of-the-art, high-throughput,
snapshot-based, graybox fuzzer, enabling it to inject architec-
tural events (i.e., VM-exits) into the target HV and perform
fine-grained and efficient mutations on the fuzzing inputs. We
then use the Xen [34] and KVM [35] hypervisors as case
studies for HyperMirage, as they are both mature and open-
source HVs that power several production cloud infrastruc-
tures. We find that HyperMirage identifies 9 new bugs in Xen
and 2 in KVM, spread across four different components, even
those already covered by Xen’s in-tree fuzzing infrastructure
as well as prior work on KVM. When compared to HyperPill
[14], an open-source state-of-the-art HV fuzzer, we find that
HyperMirage achieves 189% more coverage for Xen’s as well
as 79% more coverage for KVM’s virtual CPU implementa-
tion. Even more, HyperMirage finds that previously untouched
virtual CPU interfaces host comparable complexity to some
of those hand-picked by prior work. Finally, HyperMirage
achieves these results without manually specifying any expert-
crafted fuzzing seeds.

To summarize, we make the following contributions:
• We present HyperMirage—a novel hypervisor fuzzer that

relies on Direct State Manipulation (DSM) to generate
fuzzing inputs by directly manipulating the VM state that
is consumed by hypervisors, capable of exploring its sub-
states in depth and breadth.

• A novel hybrid fuzzing infrastructure for testing hypervi-
sors efficiently; we extend SymCC, a highly-optimized
state-of-the-art symbolic execution engine, and we in-
tegrate it into Nyx, a state-of-the-art coverage-guided
hypervisor fuzzer; to the best of our knowledge, we are
the first to leverage a symbolic execution engine that can
instrument hypervisor code and run natively (i.e., without
emulation).

• A case study and evaluation for HyperMirage on the
Xen and KVM hypervisors for Intel CPUs, demonstrating
that it can fuzz 200% more VM-exit interfaces than
prior work and achieves 189% higher coverage for Xen’s
and 79% for KVM’s virtual CPU implementation when
compared to an open-source state-of-the-art HV fuzzer.
HyperMirage discovers 9 new bugs in Xen and 2 in
KVM, all of which have been confirmed by the respective
project maintainers.

II. CPU VIRTUALIZATION EXTENSIONS

In this section, we give a primer on virtualization exten-
sions as implemented by the Intel x86 architecture (the most
widespread), aiming to outline the interactions between VMs
and HVs, as well as the architectural structures populated by
the former and consumed by the latter during VM-exits, which
HyperMirage targets to find deep bugs in HVs.
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Intel calls its virtualization extension Virtual Machine Ex-
tensions (VMX), AMD calls them Secure Virtual Machine
(SVM), while ARM calls them Virtualization Extensions (VE).
As the underlying fuzzing infrastructure (i.e., Nyx) leveraged
by HyperMirage is optimized for Intel CPUs, we focus on Intel
VMX in this paper. However, in Section VII, we provide a
discussion on the challenges of porting HyperMirage to AMD
SVM and ARM VE.

VMX introduces a new operation mode called root mode,
which follows the traditional ring-based privilege separation,
and is reserved for executing the HV and the privileged host
OS (e.g., Xen’s Dom0 and QEMU). Unprivileged VMs run
isolated in non-root mode, where they can execute arbitrary
kernel code in ring 0, switch to long-, protected-, or real-mode,
or any other architecturally-valid runtime state, independently
from the HV or the other VMs.

The VMCS is a central component of a HV’s interaction
with a VM under Intel VMX. It is responsible for transitioning
to non-root mode (VM-entry) and back into root mode (VM-
exit). It also enables the HV to define the isolation sandbox for
guest VMs and configure the CPU behavior while executing
them in non-root mode. Structurally, the VMCS is a 4KB array
of integers of different widths, whose layout is opaque to the
HV, as they can only be accessed via the special VMREAD
and VMWRITE instructions. Broadly, the VMCS maintains four
different types of fields:

1) Guest-State (VMCS[GS]): Configures the initial state
of a VM and temporarily saves it during the handling
of a VM-exit. Most notably, the guest VM can modify
its own state or execute certain instructions that directly
or indirectly manipulate VMCS[GS], thus making it a
crucial element for HyperMirage. It is subdivided into
two categories: the guest register state (VMCS[GrS])
and the guest non-register state (VMCS[GnrS]). Ex-
cept for general-purpose registers (GPRs), which have
fall-through semantics, VMCS[GrS] saves all of the
guest’s CPU registers during VM-exit, i.e., RSP, RIP,
RFLAGS, control registers (CRs), debug registers (DRs),
segment registers (e.g., SS, CS, DS, etc.), as well as
some MSRs. In contrast, VMCS[GnrS] holds fields that
are partly populated by the CPU on specific VM actions
(such as setting the interruptibility state on executing the
STI instruction), and partly by the HV (such as VMX-
preemption timer value).

2) Host-State (VMCS[HS]): Configures the HV state re-
stored during a VM-exit, such as the instruction address
of the VM-exit handling function. The VMCS[HS] is not
interesting to HyperMirage as it cannot be manipulated
by the VM to trigger bugs in the HV.

3) VMX Controls (VMCS[CTRL]): Governs CPU behav-
ior for non-root mode execution, VM-exits, and VM-
entries, and are configured by the HV. Alone, the non-
root mode execution controls host 64 different execution
control bits across one 64-bit and three 32-bit vectors,
as well as several sub-structures that govern if certain
actions in the VM should trigger a VM-exit. Specifically,

VMCS[CTRL] maintains memory pointers to 8 bitmaps
(e.g., the exception and the MSR bitmap), with each
bit instructing the CPU to trigger a VM-exit if the
corresponding event takes place in the guest VM. For
example, if a bit in the exception bitmap is set, then any
corresponding exception vectors issued in the guest VM
will be intercepted by the HV. In total, VMCS[CTRL]
consists of 31 different categories. Interestingly, some of
these may not be implemented by the HV, or may not be
configurable (e.g., due to a missing HW feature). Those
that are, however, must be explicitly configured by the
management interface of the HV (i.e., Dom0 for Xen,
QEMU for KVM) and require a clear understanding of
their semantics—all of which put an extra burden on a
security analyst.

4) VM-exit Information (VMCS[VEI]): Provides addi-
tional information that the HV may use to handle the
VM-exit, and is populated by the CPU. VMCS[VEI] is
highly complex as it comprises of 5 different categories
with rich semantics, all of which may be influenced by a
VM. The first category holds basic information about the
VM-exit, such as the exit reason, an exit qualification,
and the guest linear or physical address that led to the
VM-exit. Intel defines 76 exit reasons and provides 19
additional exit qualifications, each associated with one
or more VM-exits. Interestingly, 7 exit qualifications
are further subdivided into several fields of different
bit lengths, providing a large permutation of values.
The other categories of the VMCS[VEI] also have
rich semantics. For example, the information for VM-
exits due to instruction execution provides an instruction
length field and an instruction information vector that
can have 8 different formats depending on the instruction
that triggered the VM-exit.

To enable efficient virtualization of VM memory (MEM),
Intel introduced the concept of Second Level Address Trans-
lation (SLAT) in the form of Intel Extended Page Table (EPT).
This enables a VM to independently manage its own page table
without interference by the HV, as physical memory isolation
is provided by the SLAT, which directly map guest physical
addresses to host physical addresses.

Combining the aforementioned concepts, the lifecycle of a
VM under Intel VMX is depicted in Figure 1. First, the HV
allocates memory and configures it as physical memory for a
VM via EPTs, as well as allocates and configures a VMCS ➊.
Then, the HV launches the VM by executing the VMLAUNCH
instruction ➋. Implicitly, the CPU initializes itself as per the
VMCS[GS] fields. At this point, the CPU natively executes all
code in the context of the VM in non-root mode ➌. As soon
as the VM performs a privileged operation that the HV needs
to intercept (e.g., a write to an MMIO region), a VM-exit
is triggered, where parts of the current VM state are stored in
the VMCS[GS] fields, and the pre-configured HV state (e.g.,
the instruction pointer) is loaded from VMCS[HS]. The VMs
GPRs simply fall through and have to be preserved by the VM-
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Fig. 1: Lifecycle under Intel VMX.

exit handler. Importantly, the CPU also implicitly populates
the VMCS[VEI] fields ➍ with details on the exact action
that resulted in the VM-exit. Finally, the HV will handle the
VM-exit (e.g., validate and perform the write to the emulated
MMIO device) by reading out fields of the VMCS ➎ and
eventually resuming execution in the guest ➏.

III. MOTIVATION

We motivate the design of HyperMirage and its DSM
approach two-fold. First, the architectural complexity of Intel
VMX, as introduced in the previous section and documented
across several pages in the Intel manual, fundamentally hinders
scalability in fuzzing HVs via manually generated seeds.
Second, a real-world vulnerability discovered by HyperMirage
is triggered by an unusual VM state that would be hard for a
human analyst to generate.

A. Architectural Complexity of Intel VMX

Architecturally under Intel VMX, VM-induced HV code
execution is solely performed during handling of VM-exit
events. As such, to maximize fuzzing performance, a fuzzer
shall be able to repeatedly trigger as diverse VM-exits as
possible. Ideally, to maximize code coverage, a virtual CPU
fuzzer shall be able to fuzz all existing VM-exits. However,
achieving this in practice is challenging since Intel VMX
defines in total 76 different VM-exit reasons, all triggered
by drastically different VM states. Moreover, a majority of
VM-exits host further VMCS[VEI] fields as part of the
HVs VMCS, describing in detail the VM interaction result-
ing in the VM-exit. For instance, fully exerting all pos-
sible values of the exit qualification field for the
control-register access VM-exit already requires
131 different VM states. This is without accounting for further
VM-exit handling complexity depending on various other
state, such as the VM’s execution mode. Automatically gener-
ating VM states that, when executed, exert all possible values
for the per VM-exit information fields remains unrealistic as
their individual meaning is described across various pages in

the Intel Software Developer Manual (SDM), which is not
suited for automated analysis. Even worse, a specific HVs
configuration of the VMCS[CTRL] fields may disable certain
VM-exits entirely (e.g., control register accesses), requiring
even more manual labor to bring the HV to a state suitable
for fuzzing.

We make the observation that during the handling of VM-
exits, the HV interprets the current state of the offending VM
in four ways: the VM’s GPRs, parts of the VMCS: VMCS[GS]
and VMCS[VEI], as well as the VM’s memory (MEM). As
such, a methodology is required that automatically exerts
the HVs view on the aforementioned components without
requiring the execution of a corresponding VM in hopes of
bringing forth the desired values. This naturally encompasses
all possible states of a VM, including complex setups such
as different execution modes. Equipping a fuzzer with the
capability of directly modifying hardware structures such as
the VMCS brings forth the possibility of exerting the HV with
architecturally unusual or even invalid states. In the following
subsection, we motivate that this is in fact a desired property.

B. Real-World Vulnerability

Although unintuitive, we now highlight the fact that ar-
chitecturally unusual fuzzing inputs are in fact a desired
property, on account of a real-world vulnerability in the Xen
hypervisor, discovered by HyperMirage: CVE-2023-46842.
Initiating this vulnerability requires a malicious VM to prepare
an architecturally unusual register state before performing a
hypercall in 32-bit mode with a particularly long execution
time. The long execution time forces Xen to create a hypercall
continuation, storing the hypercall’s arguments (i.e., the VM’s
GPRs) for later resumption. During the resumption of the
continuation, Xen performs consistency checks on the stored
register state, asserting that none of the upper 32 bits are
set. If the validation fails, Xen panics due to the presumed
inconsistent state.

The assumption that GPRs coming from a 32-bit hypercall
must have its upper 32 bits cleared is, in principle, reasonable,
as code executing in 32-bit mode is unable to access the upper
32 bits of its GPRs. However, a malicious VM is able to
deliberately prepare its GPRs accordingly while executing in
long mode (i.e., 64-bit mode) before transitioning back to 32-
bit mode. Interestingly, the Intel SDM makes no statement
on what happens to the higher halves of GPRs during such a
transition. Behavior is only defined for GPRs that are available
in long mode (i.e., R8-R15 as well as certain SIMD registers)
[1, Chapter 10.8.5.4]. On all CPUs we tested, the higher halves
were preserved, leading to a denial-of-service of the entire HV.

The fact that hypervisor developers make assumptions about
architectural correctness in certain edge cases motivates the
design of DSM. Specifically, DSM exercises the HVs VM-exit
handler with VM states that may or may not be architecturally
valid. This design makes sure that no artificial constraints on
fuzzing inputs are imposed that may leave HV bugs, based on
incorrect architectural assumptions, undiscovered. Verification
work on architectural validity is imposed on human analysts

4



only when the fuzzer has already revealed that specific states
would trigger unwanted behavior in the HV. This specific de-
sign led to the aforementioned vulnerability being discovered
and reproduced during the early prototyping of HyperMirage.

IV. DESIGN

In this section, we introduce the design of HyperMirage. We
start out by describing the overall hybrid fuzzing setup lever-
aged by HyperMirage to test HVs efficiently. Then, we present
DSM, a novel technique that enables fuzzing the HV’s entire
view of a VM in a holistic, fine-grained manner. Finally, we
describe our novel symbolic record-and-replay approach that
enables SymCC [29] to perform efficient symbolic execution
on bare-metal software, including hypervisors.

A. Threat Model

We assume a standard multi-tenant cloud scenario, where
an attacker is able to control the entire execution of its
unprivileged guest VM running atop a potentially vulnerable
HV. The attacker’s goal is to exploit a vulnerability in the
HV to (1) break out of their isolated VM in order to elevate
their access to the HV or other isolated VMs or (2) disrupt
the HV’s execution, thereby causing a denial-of-service. To
achieve that, the attacker may bring its VM into an arbitrary
architectural state, and issue an arbitrary number of VM-exits,
in an arbitrary order, to trigger a bug in a vulnerable VM-exit
handler. To facilitate fine-grained and efficient input control
during fuzzing, we grant HyperMirage direct access to the
guest-controlled portions of the VMCS (i.e., VMCS[GS] and
VMCS[VEI]), typically jointly managed by the HV and the
CPU and only indirectly influenced by its VMs.

B. Fuzzing Overview
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GPRS

VMCS12
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PT Buffer
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Fig. 2: Overview of HyperMirage’s design.

Figure 2 provides an overview of the architecture of Hyper-
Mirage. HyperMirage models its fuzzing inputs in the form of
a VM’s four components: GPRs, VMCS[GS], VMCS[VEI]
and MEM. As discussed in Section III, this encompasses the

HV’s entire view of its VMs during VM-exit handling. To
directly impose this view, without the execution of a matching
VM, we propose a new HV fuzzing methodology: DSM. To
enable DSM, HyperMirage leverages nested virtualization for
the target HV, controlled by a host hypervisor. Moreover,
to bring the HV into a state ready for VM-exit handling,
HyperMirage requires an initialization phase, where an un-
privileged VM agent is spawned, which performs a handshake
with HyperMirage and creates a snapshot of the target HV. The
requirements of the VM agent are detailed in Section V.

During the fuzzing loop, the fuzzing control (AFL++)
generates a new input through random mutations or symbolic
execution. Then, the snapshot is restored, ensuring that each
fuzzing execution starts from a clean state, after which the VM
Agent immediately triggers a special hypercall. This signal
is recognized by the host HV, which has the capability to
directly apply the fuzzing input to the target HV’s view on the
VM agent via DSM (see Section IV-C). Finally, the host HV
resumes code execution at the target HV’s VM-exit handler.

To perform mutations on the fuzzing inputs, HyperMirage
deploys hybrid fuzzing. Coverage-guided random mutations
(i.e., graybox fuzzing) are required for easy-to-reach paths, as
well as the discovery of violations that are not directly repre-
sented in the program’s source code (e.g., out-of-bounds mem-
ory accesses). Symbolic execution (i.e., whitebox fuzzing) is
necessary to compute solutions for hard-to-reach paths that
are hidden behind a chain of complex constraints, which are
unlikely to be satisfied by random mutations.

To obtain coverage guidance for graybox fuzzing, we
record and parse an execution trace of the target HV via
Intel’s processor trace (Intel PT) functionality and forward the
coverage bitmap to AFL++. This approach has been proven
effective in previous work [36], [22]. For whitebox fuzzing,
we perform compilation-based symbolic execution by devising
a new runtime for SymCC that can be deployed on bare-metal
targets such as HVs. During execution of a fuzzing input, any
VM state accessed by the target HV is symbolized, and any
operations on symbolic values are recorded for later decoding.

Combining the aforementioned concepts, we obtain the
hybrid fuzzer for virtual CPUs: HyperMirage.

C. Direct State Manipulation

As described in Section III, exhausting the VM-exit handler
of a HV in depth by executing specially prepared VMs is
infeasible. As such, in contrast to previous work [24], [27],
[21], [22], [23], we introduce DSM to directly exert the HVs
view on its VM’s four crucial components.

Accordingly, we design the format of HyperMirage’s
fuzzing inputs as depicted in Figure 3. Every fuzzing input in-
corporates all GPRs, VMCS[GS], VMCS[VEI], and a region
for MEM. Most notably, we merely reserve a small, pre-defined
number of bytes (512) for the memory region. When testing
an input, we fill up the memory page that hosts the fuzzing
input by repeatedly overwriting the page with the MEM portion
until the entire page is covered. All memory belonging to the
VM agent is then remapped to this singular page. This lets
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us keep our fuzzing input size relatively low (< 1024 bytes),
while making sure that every VM memory read initiated by the
HV is retrieving bytes that are defined by the fuzzing input.
We specifically choose this repeating memory pattern to allow
unique byte combinations across page boundaries.

The fuzzing input is applied to the VM-exit handler of the
target HV as follows: Under Intel VMX, the host HV controls
the VMCS of all nested HVs (i.e., the VMCS of the target
HV for the VM agent, depicted as VMCS12 in Figure 2). As
such, the VMCS-related fields can be directly applied to the
VMCS12. Similarly, the host HV defines the virtual CPU for
the target HV and can, therefore, freely overwrite its GPRs
before resuming code execution at its VM-exit handler. Finally,
to redirect memory fetches, all physical memory belonging to
the VM agent is remapped in the SLAT governed by the host
HV. After remapping, all pages designated for the VM agent
will point to the page hosting the current fuzzing input, which
has been expanded as explained previously.

In the end, DSM has three distinct advantages: First, every
single tested input will trigger an interaction with the HV
(as a VM-exit is forcibly injected). Secondly, DSM has the
capability to explore every single virtual CPU interface of the
HV, and third, bypassing architectural requirements implies
that no hand-crafted fuzzing seeds must be specified.

D. Symbolic Record-and-Replay

To integrate high-performance symbolic execution into Hy-
perMirage, we turn to SymCC, a state-of-the-art compiler-
based symbolic execution framework. SymCC instruments the
analyzed target during compilation to report any constraints
imposed on symbolic inputs via calls to an injected runtime
library. In vanilla SymCC, this runtime library takes the form
of a dynamic library, implicitly loaded on process startup, that
packages an SMT solver (e.g., Z3 [37]) to solve symbolic
constraints. As HyperMirage deals with bare-metal software
(i.e., hypervisors), this design is not directly applicable. First,
bare-metal environments, in general, do not support dynamic
loading of libraries. Second, an SMT solver such as Z3,
designed for user space applications, will itself expect a man-
aged environment supporting dynamic memory allocations,
file system support, etc. While the first is trivial to solve
by linking the runtime statically, the latter is a fundamental

Component Language LoC

Direct State Manipulation C 2600
SymCC Compiler Pass C++ 47
SymCC Runtime C & C++ 1977
AFL++ Symbolic Mutator C++ 318

TABLE I: LoC of HyperMirage’s implementation.

limitation unless the SMT solver is completely re-tailored to
the environment of the bare-metal software.

We solve the second issue in a more generic manner via a
symbolic record-and-replay design that is specifically tailored
to analysis targets, which are unable to directly incorporate an
SMT solver. As such, the analysis target is only instrumented
to record symbolic operations occurring at runtime, such that
they can be retrieved at a later point in time and replayed to
an SMT solver hosted in a less restricted environment. To this
end, we split the runtime library into two components: the
frontend that is statically compiled into the target HV and the
backend that lives in the host HV.

The frontend merely stores the type of symbolic operation
and its parameters encountered at runtime in a designated
memory region. As the frontend is unable to access the SMT
solver, it utilizes place-holder values for all symbolic ex-
pressions, following a Static Single-Assignment (SSA) form.
The place-holder is simply an increasing counter, starting at
1. We specially reserve the null place-holder to represent
concrete values. This enables SymCC to perform its con-
creteness checks directly in the instrumented code, drastically
improving performance. Further, we need only mark those
values as symbolic that are directly retrieved from the VM’s
state. We identify those values as follows. GPRs follow fall-
through semantics, where the HVs VM-exit handler typically
directly pushes them to the stack, and passes a pointer to
the respective stack region directly to the C function of
the VM-exit handler. All VMREAD instructions reading from
VMCS[GS] and VMCS[VEI], naturally receive values from
the relevant VMCS fields. Finally, HVs implement a set
of functions to fetch VM memory. Instrumenting them to
symbolize their destination addresses after every function call
serves to symbolize all fetched VM MEM.

As soon as an input has finished executing, the backend
starts decoding and replaying the recorded operations. This,
in principle, follows the original SymCC approach. Special
handling is required for the introduced place-holder values.
During replay, we create a hashmap that maps place-holders to
their now-known symbolic expressions. Whenever a constraint
is solved for, HyperMirage forwards the required modification
of the fuzzing input to AFL++ to perform the guided mutation.

V. IMPLEMENTATION

In this section, we discuss the implementation details of
HyperMirage. In particular, we want to highlight the relative
simplicity of our implementation when compared to state-of-
the-art. The lines of code for each of our components are
depicted in Table I.
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A. Direct State Manipulation

We implement our novel DSM approach into the Nyx [22]
framework, a snapshotting-based, high-throughput graybox
fuzzer for HVs. We choose Nyx over more recent HV fuzzers,
such as HyperFuzzer [23] or HyperPill [14], since they are
closed-source or use emulation instead of native execution,
respectively. As such, the utilized host HV, as well as QEMU
in Figure 2, are modified versions of KVM-PT and QEMU-
PT as introduced in [22]. VMCS modification capabilities and
capabilities to catch VMRESUME events (thereby indicating
the finished VM-exit handling of the target HV) are imple-
mented directly inside of KVM-PT. The VM agent follows
the requirements of Nyx, i.e., it performs necessary hypercalls
to take the snapshot that is restored upon every fuzzing run.

The memory remapping, as described in Section IV-C, is
performed on the EPT level of the host HV (L0), which is
responsible for making physical memory available to the target
HV (L1). In turn, the target HV (L1) hosts its own set of EPTs
to allocate physical memory for the VM agent (L2). The VM
agent itself once again hosts its own page table (PT), mapping
L2 virtual addresses to L2 physical addresses. In essence, to
appropriately remap memory in the EPTs of L0, we must first
translate accessible L2 virtual addresses to their corresponding
L2 physical addresses. L2 physical addresses are then mapped
to L1 physical addresses via L1’s EPTs. Finally, with the
acquired L1 physical addresses, it is possible to adjust L0
EPTs to remap all those to the same page that hosts the fuzzing
input. The parsing of the L1 EPTs, as well as the L2 PTs, is
implemented in QEMU-PT. L0 EPT remapping is performed
via ioctls to KVM-PT.

In the end, this memory remapping avoids hooking or
modifying the memory accessing functionality of the target
HV. Instead, all memory reads and writes are forced to directly
interface with the fuzzing input without making the target
HV aware of this fact. For efficiency reasons, the memory
remapping is performed once during the snapshotting phase.

B. Hybrid Fuzzing Integration

We integrate our whitebox fuzzing approach based on
SymCC into AFL++ [38] in the form of a custom mutator
plugin. Where applicable, we follow the implementation of
the SymQEMU custom mutator [39]. This is, by their own
rights, preferred to the SymCC custom mutator, also part
of the AFL++ repository [40]. Custom mutators are alerted
whenever an input from the fuzzers’ input queue is picked for
mutation by AFL++. At this point, the SymQEMU heuristic
is applied, such that all inputs are only symbolically analyzed
exactly once. During symbolic analysis of an input, a number
of new diverging inputs are generated by applying solved-for
modifications, and the new inputs are retrieved by AFL++. In
turn, these newly generated inputs may trigger new coverage
and be placed into the queue of interesting inputs. Utilizing
this approach requires no code modifications to AFL++.

To perform symbolic testing of an input, the mutator spawns
its own parallel copy of the entire fuzzing setup, with the
distinct difference of booting an instrumented version of the

1 SymID _sym_build_add(SymID a, SymID b) {
2 if (unlikely(!trace_enabled))
3 return;
4

5 submit_operation(OP_ADD);
6 submit_value(a);
7 submit_value(b);
8 /* Represents symbolic return value */
9 submit_value(placeholder_id++);

10 }

Fig. 4: HyperMirage’s SymCC frontend handler for additions.

target HV. In essence, the SymCC-related blocks depicted
in Figure 2 are only present in this context. This ensures
that graybox fuzzing is not needlessly slowed down when no
symbolic execution is performed.

C. Record-and-Replay SymCC Runtime

As introduced in Section IV, we devise a new runtime
design for SymCC, split between its frontend and backend.
Every frontend handler first checks whether symbolic tracing
is enabled. Symbolic tracing is enabled by the host HV over-
writing a global variable in the target HV when a fuzzing input
is injected. Then, all values relevant to the operation associated
with the handler are pushed onto the shared memory region.
These values are operation identifiers, symbolic expressions, or
concrete values. Importantly, symbolic expressions are, at this
point, substituted with place-holder IDs following a SSA form.
An example implementation for symbolic additions is shown

in Figure 4. SymID represents the type for place-holder IDs (a
typedef for 16-bit unsigned integers), trace enabled controls
whether or not symbolic execution shall be performed, i.e.,
it is disabled during the snapshotting process. The submit *
invocations simply store the value in a designated memory
region. Importantly, adding two symbolic values creates a new
symbolic value, for which a new place-holder ID is returned.

When the backend gets to decoding and replaying the
previously stored ADD operation, it first translates a and b
into their actual symbolic values and forwards them to the
symbolic add handler of the vanilla SymCC backend, in
our case, the QSYM backend, which hosts a plethora of
optimizations to minimize time spent in constraint solving.
The place-holder ID of the return value is then associated
with the newly retrieved symbolic expression from QSYM.
In our prototype implementation, the backend is part of the
host QEMU process. Here, the designated memory region with
all recorded operations is mapped into QEMU’s own virtual
address space to avoid needless copying.

D. Bare-metal SymCC Challenges

Interrupts. One key issue with applying our record-and-replay
SymCC runtime to bare-metal software is the inherent pre-
emptibility of modern HVs. As such, it is possible that at any
time during the execution of a frontend handler, an interrupt
fires and code execution resumes at the interrupt handler. As
no selective instrumentation is performed on the target HV, the
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interrupt handler itself now records symbolic operations to the
designated memory region, resulting in incoherent recorded
traces. Instead of disabling interrupts entirely during fuzzing,
which may alter regular execution of the target HV and
possibly introduce deadlocks, HyperMirage deals with this
issue by temporarily disabling trace generation (by resetting
the trace_enabled global variable) as soon as an interrupt
reaches the target HV.
Inline Assembly. Bare-metal software frequently deploys a
variety of special instruction accesses (e.g., rdmsr), opti-
mizations, or security mitigations (e.g., Spectre retpolines
[41]) through invocations of inline assembly blocks. As
inline assembly blocks are not represented in LLVM IR,
SymCC fails to instrument their semantic meaning, thereby
losing soundness and failing to accurately recover constraints.
To combat this, we manually identify inline assembly con-
structs that are relevant to VM-exit handling (e.g., Xen’s
alternative_vcall mechanism, which is utilized to
replace indirect calls to VMX/SVM specific handlers with
direct calls after boot) and analyze every encountered inline
assembly block during instrumentation. If a known construct is
recognized, we emit appropriate invocations to our record-and-
replay frontend that correctly symbolize the respective inline
assembly operations. Note that prior work utilizing KLEE [42]
(an LLVM-based symbolic execution engine) on the Linux
kernel has addressed this challenge in a similar manner [43].

VI. EVALUATION

We evaluate HyperMirage by answering the following re-
search questions:
RQ1 How does HyperMirage compare to state-of-the-art hy-

pervisor fuzzers?
RQ2 How effective is DSM in exploring previously untouched

virtual CPU interfaces?
RQ3 Is HyperMirage able to discover novel vulnerabilities in

battle-tested hypervisors?
RQ4 Does DSM result in false positive crashing inputs, and

do they hinder triaging?

A. Experiment Setup

All experiments and fuzzing campaigns are performed on
a desktop machine with an Intel Core i7-6700 and 16GB
of DDR4 RAM. To evaluate HyperMirage, we implement
prototypes for the two popular open source hypervisors Xen
and KVM, targeting their latest major release build at the time
of writing: Xen v4.20.0 and KVM v6.15.0.

We choose to evaluate HyperMirage against the hypervisor
fuzzer HyperPill [14], as (1) it presents the most recent
advances in fuzzing hypervisors, (2) is openly available, and
(3) is capable of fuzzing a subset of virtual CPU interfaces
(i.e., MMIO, MSR writes1, port I/O, and hypercalls). Since
HyperPill’s focus lies primarily on fuzzing virtual devices, a
better fit would have been HyperFuzzer [23], a hybrid fuzzer
for virtual CPUs, which is unfortunately neither open source

1While HyperPill hosts code for MSR reads, it is currently unused.

nor does it evaluate any open source HVs, making a fair com-
parison to HyperMirage impossible. Nonetheless, we provide
a best effort performance evaluation against HyperFuzzer in
the Appendix.

We execute HyperMirage and HyperPill for 24 hours as
recommended in [44] and collect average execution times
per fuzzing input as well as the amount of covered edges.
For simplicity, we restrict both of their execution to a sin-
gle core2. We provide HyperMirage with a single fuzzing
seed, initialized with random data, to emphasize the fact
that HyperMirage requires no manually-crafted fuzzing seeds.
Further, for HyperMirage we perform the experiment once
in pure graybox mode, i.e., without the symbolic execution
component, and once in hybrid mode. To force HyperPill to
focus its fuzzing efforts on the virtual CPU implementation of
the HV, we restrict its coverage range to the .text sections
of Xen and the KVM modules, respectively. To obtain accurate
coverage and performance numbers, we disable any supported
sanitizers and memory leak detectors for these experiments.

B. Coverage

In this section, we explore HyperMirage’s edge discovery
capabilities. Specifically, we first evaluate HyperMirage’s effi-
cacy in achieving HV coverage when compared to HyperPill.
Then, we turn towards the evaluation of HyperMirage’s cover-
age across all VM-exits implemented by Xen and KVM, i.e.,
those that have not yet previously been fuzzed.

We plot the total coverage of both HyperMirage and Hy-
perPill in Figure 5. Further, we obtain per-VM-exit coverage
for HyperMirage during the hybrid fuzzing runs by counting
occurrences of the current value of the exit reason field
of the fuzzing inputs’ VMCS[VEI] whenever a new edge is
discovered. To minimize over-counting of edges that are not
VM-exit specific (i.e., code present at the beginning of the
VM-exit handler before distinguishing on the exit reason),
we make sure the randomized seed for HyperMirage hosts an
undefined exit reason. All edges discovered by an input hosting
an undefined exit reason in its VMCS[VEI] are simply ignored
during counting. These results are depicted in Table II. Note
that some building blocks can, in principle, be reached from
multiple VM-exits (e.g., the instruction emulator is exerted
by both APIC Access and EPT Violation VM-exits), yet we
are only counting their first occurrence (which might lead
the coverage statistics for those VM-exits to appear low).
Furthermore, we analyzed the code base of both Xen and
KVM to classify whether specific VM-exit reasons have no
handling code at all (●), contain only trivial code that is not
expected to exhibit coverage (❍), or are unreachable due to
missing CPU feature support (◗).

1) Total Coverage Comparison: Figure 5 shows that Hy-
perMirage achieves drastically more coverage than HyperPill
for both Xen and KVM. HyperMirage achieves 189% more
coverage for Xen and 79% for KVM. Analyzing Table II to

2In reality, both projects are parallelizable up to the number of cores
available on the system.
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Fig. 5: Discovered edges of HyperMirage (HM) and HyperPill. The y-axis depicts discovered edges. The x-axis depicts the
time in hours.
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Xen 8086 2971 458 323 235 231 178 136 124 119 112 111 78 ● ❍ 72 43 42 40 26 23 21 20 20 14 13 12 12 11 8 7 5 5 ❍ 5 4 4 ❍ 3 ● ❍ ❍ ● ❍ ● ❍ ❍ 2 ❍ ❍ 1 1 ❍ ❍ 0 ❍ ● ● ◗ ◗ ● ● ● 0 ● ●
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● VM-exit not implemented by the HV.
❍ VM-exit handler that does not exhibit coverage.

◗ Missing hardware support on the experiment machine.

TABLE II: Per-VM-exit edge discovery of HyperMirage.

figure out where HyperMirage acquires the majority of its
coverage, we find that the vast majority of edges for Xen stem
from the EPT Violation (i.e., MMIO) as well as VMCALL
(i.e., hypercall) VM-exits. For KVM, we find EPT Violation,
as well as MSR write emulation, to be the largest coverage
trigger. As these are all VM-exits supported by HyperPill,
we derive that the advantages of HyperMirage do not only
stem from the ability to fuzz a wider range of VM-exits, but
also from fuzzing them more effectively. This is particularly
interesting, as HyperPill contains manual specifications for its
supported interfaces, whereas HyperMirage is not aware of
any particular interfaces at all. In the following, we explore
these three interfaces in more detail to provide insights into
why we believe HyperMirage outperforms HyperPill.

EPT Violation (similarly EPT Misconfiguration and APIC
Access) VM-exits are utilized to intercept accesses to MMIO
regions. In order for a HV to perform the MMIO access, it
needs to decode and emulate the offending memory accessing
instruction, which brings forth a huge attack surface. For
HyperPill, we find that every single MMIO interaction is built
with eight variations of the same MOV instruction, varied only
by direction of access (i.e., read/write) as well as operand
size (i.e., 1, 2, 4, or 8-byte access). While this approach is

suitable for fuzzing underlying emulated devices (typically
implemented in user space), it falls short in achieving coverage
in the x86 emulator. In contrast, HyperMirage gets direct feed-
back from the constraints imposed by the decoding component
of the instruction emulator and can leverage DSM to replace
the decoded instruction as seen by the HV, therefore effectively
exploring the entire x86 instruction emulator.

For hypercalls, symbolic execution is expected to be much
more effective in accurately deducing the utilized calling
convention as well as available command and sub-command
values. While HyperPill deploys an ad-hoc mechanism for a
similar purpose, it relies on filling GPRs with random values
and recognizing them in operands of CMP instructions during
execution of a fuzzing input. While suitable for simple equality
constraints, this approach falls short when non-equality com-
parisons are performed or register values are either masked
or truncated before being compared to. This is the case e.g.,
for compatibility mode hypercalls, which mask out the upper
halves of the GPRs before interacting with them.

For the MSR write emulation interface, we apply reasoning
similar to that of hypercalls. An effective fuzzer needs to be
able to enumerate all MSRs that are emulated by the target
HV as well as any constraints imposed on the supplied MSR
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values. Once more, the ad-hoc mechanism deployed by Hy-
perPill falls short in recovering non-trivial constraints, whereas
HyperMirage discovers solutions even for complex constraints,
due to its integration of symbolic execution. Finally, the
much higher throughput of HyperMirage (see Section VI-C)
inevitably contributes to faster discovery of new edges.

2) Per VM-exit Coverage: As HyperMirage and DSM are
specifically designed to be able to holistically target all VM-
exits supported by the target HV, we now evaluate how
well HyperMirage explores previously untouched virtual CPU
interfaces. This is a key limitation in previous approaches [21],
[23], [14], which hand-picked and restricted their evaluation
to the interfaces hypercalls (VMCALL), task switch, port I/O
(I/O Instruction), MMIO (EPT Violation / EPT Misconfigura-
tion / APIC Access), and MSR emulation.

First and foremost, we see that MMIO-related VM-exits
(i.e., EPT violation, but note that coverage may similarly be
exerted by EPT Misconfiguration or APIC access VM-exits),
MSR emulation, and VMCALL VM-exits make up 86% of
all discovered edges for Xen and 77% for KVM, thereby
justifying the focus of prior manually-driven approaches on
these interfaces. Conversely, we find a plethora of virtualiza-
tion interfaces that host similar complexity to ones manually
chosen by prior work. For example, the task switch interface
(hand-picked by HyperFuzzer [23]) merely amounts to 0.8%
of edge coverage for Xen and 2.9% for KVM. However, we
find that, dependent on the HV, interfaces such as nested
virtualization, LDTR/TR accesses, RDTSCP, CPUID, and CR
accesses account for equal or more coverage when compared
to the task switch interface. Prior work argued that task switch
is an interesting interface to target, as it was involved in
previously discovered bugs [23]. We note that this similarly
holds true for interfaces not covered by existing research, e.g.,
nested virtualization [45], [46], [47], [10], CPUID [48] or CR
access [49]. We find that 11.7% for Xen and 18.9% for KVM
of our total coverage stems from virtual CPU interfaces that
were not targeted by previous work. As such, we find that
DSM enables HyperMirage to meaningfully increase coverage
on a HVs’ virtual CPU implementation. VM-exits that have a
low edge coverage either share a lot of code with other VM-
exits (e.g., ACCESS LDTR OR TR for KVM), contain little
handling code (e.g., MWAIT, WBINVD), or are dependent
on HV state (e.g., VMLAUNCH, VMFUNC) and therefore
difficult to exert (see Section VII).

The higher coverage achieved by the hybrid configuration
over the graybox configuration shows that the integration of
symbolic execution effectively improves virtual CPU coverage.
Nonetheless, we see that pure graybox fuzzing, facilitated
by DSM, itself already effectively explores the virtual CPU
implementation of both Xen and KVM. This can largely be
attributed to the huge portion of coverage stemming from the
HV’s x86 memory-accessing instruction emulator. Intuitively,
hybrid fuzzing should fare better, as a large variety of different
instruction opcodes must be generated by the fuzzer. An
analysis of Xen’s and KVM’s source code reveals that opcode
decoding is performed on a byte-by-byte basis, which enables

random mutations to quickly progress by guessing individual
bytes of an opcode and therefore triggering new coverage.
This incrementally leads the graybox approach to exploring
large parts of the instruction emulator. Interestingly, such a
pattern is a known optimization deployed by previous fuzzing
approaches [50], where, for example, 4-byte integer compar-
isons are split up into four individual byte-wise comparisons.

The difference in edge-count between Xen and KVM di-
rectly reflects the complexity of their kernel-level component.
For instance, Xen’s hypercall interface supports 21 hypercalls,
some of which have alternative compatibility implementations
for 32-bit guests, whereas KVM merely supports 5 rather
simplistic hypercalls.

C. Performance

To gauge performance metrics of HyperMirage, we compare
its throughput to HyperPill and discuss its memory footprint.

HyperMirage HyperPill
Hybrid Graybox

Xen 3357 3720 23
KVM 2023 2277 93

TABLE III: Average executions per second by HyperMirage
and HyperPill.

1) Throughput: We depict average executions per second
for HyperMirage and HyperPill in Table III. We find that
HyperMirage drastically outperforms HyperPill with 144×
more executions for Xen and 17.69× executions for KVM.
This is unsurprising as HyperPill is built upon Bochs, an x86
CPU emulator, while HyperMirage is executing entirely native
and built with high throughput in mind. We attribute lower
throughput for KVM when compared to Xen to the higher
system noise, as Linux is more eager to schedule L1 user space
processes. The low drop-off in throughput when going from
HyperMirage’s graybox to hybrid fuzzing can be explained
by the fact that HyperMirage tailors an existing state-of-the-
art concolic executor, QSYM, to HVs, which implements
various fuzzing optimizations, such as optimistically solving
constraints and uninteresting basic block pruning [28].

0 20 40 60 80 100

KVM

Xen

Graybox Execute Snapshot Restoration
Constraint Solving PT Decoding
Constraint Recording

Fig. 6: Percentage of time spent by HyperMirage per compo-
nent.

To emphasize this, we evaluate where HyperMirage spends
most of its time during a long-running fuzzing campaign in
Figure 6 and find that the majority of time is spent during
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regular graybox execution of the target. Merely ≈ 16% of time
for Xen and ≈ 8% for KVM is spent recording and solving
constraints. This confirms that the integration of state-of-the-
art symbolic executors is worthwhile, as overall coverage
improves, yet the throughput of randomized mutations (which
are required to discover bugs that are not directly modeled in
the source code) is hardly impacted.

2) Memory Consumption: To set up a fuzzing instance,
HyperMirage requires as much memory as the target HV
and its nested VM require. With symbolic execution support,
HyperMirage spawns this setup twice, essentially doubling
the memory footprint. The memory consumed by AFL++, as
well as the SymCC QSYM backend, is negligible compared
to the overhead of spawning two nested VMs. For both Xen
and KVM, we managed to set up fuzzing VMs with memory
consumption as low as 128MB. Together with a duplicated
symbolic executor VM as well as the remaining overhead of
the infrastructure, memory usage per hybrid fuzzing instance
can be as low as 512MB.

D. Bug Discovery

Ultimately, the goal of a fuzzer is to unveil new bugs in the
target software. We depict the bugs discovered during Hyper-
Mirage’s development and fuzzing campaigns in Table IV. In
total, HyperMirage has discovered 11 bugs out of which 4 are
confirmed as security critical. All bugs were reported to the
respective project maintainers, and CVEs were assigned. We
now describe the discovered vulnerabilities and appropriate
real-world attack scenarios as well as the components of
HyperMirage that led to their discovery.
CVE-2023-46842. The nature of this vulnerability has already
been extensively described in Section III-B. In essence, any
Xen HVM guest may set up an architecturally undefined,
specially prepared GPR state before triggering a long-running
hypercall, all the while executing in 32-bit protected mode
in order to panic the HV. DSM enables the discovery of
this vulnerability, as no artificial constraints are imposed on
the architectural validity of inputs. Previous fuzzing methods,
relying on manually specified interactions with the HV, would
likely miss this architectural edge case.
CVE-2024-45818. Guest memory accesses to MMIO regions
are trapped, and the offending instructions are emulated by
Xen. If a memory access hits the VGA region (0xa0000 -
0xc0000), Xen intentionally acquires a lock until the emula-
tion is finished. However, this lock is acquired on every single
memory access. Therefore, any HVM guest can execute an
instruction that performs multiple memory accesses (e.g., REP
MOVS) to the VGA region and force the HV to deadlock. The
constraints required to reach this condition greatly favor hybrid
fuzzing. Nonetheless, we witnessed the discovery of this bug
during a two-week-long graybox-only fuzzing campaign.
CVE-2025-38351. The Hyper-V hypercall emulation of KVM
enables guests to perform paravirtualized Translation Looka-
side Buffer (TLB) flushes by supplying a list of Guest Virtual
Addresses (GVAs), which are in turn flushed by KVM via
the INVVPID VMX instruction. Missing validation of these

GVAs enables malicious guests to send up non-canonical
GVAs, resulting in the INVVPID instruction failing, and as
a result triggering a warning in the KVM host. Such warnings
result in host panics in case the panic_on_warn kernel
parameter is set, which is commonplace for host kernels in
cloud environments [51]. The discovery of this vulnerability
relies on the joint effort of constraint solving as well as
random mutations. The symbolic executor quickly reaches the
offending sub-command of the hypercall handler. Then, as
the failure of INVVPID on non-canonical addresses is not
modeled in source code, supplying it with an invalid GVA
relies on random graybox mutations.
CVE-2025-38469. As part of the Xen hypercall emulation,
KVM provides a hypercall that enables guests to interact
with the scheduler. A specific code path in one of the sub-
command handlers of this hypercall allocates a dynamic
buffer for temporary storage, but does not release it again
before returning from the function in a specific error-handling
case. Reaching this error-handling case requires a chain of
constraints across the VMCS (exit reason = 18), registers
(RAX = 29 && RDI = 3) as well as memory values fetched
from the GVA passed in via RSI (a 4-byte integer with value
between 1 and 128 followed by an invalid 8-byte GVA). Since
detecting memory leaks requires deploying Linux’s memory
leak detector kmemleak, which drastically decreases fuzzing
performance, as a single memory leak scan takes between
100 and 1000 milliseconds (depending on the amount of
physical RAM), this bug was only discovered during hybrid
fuzzing. The lower throughput stemming from kmemleak
makes random graybox mutations highly ineffective, whereas
HyperMirage’s symbolic record-and-replay leads HyperMi-
rage to the offending error-handling case in only 25 minutes.

All above vulnerabilities enable a malicious VM to impact
its host HV as long as the VM is able to control its own
kernel, which is standard in cloud tenant scenarios. With that,
we find that HyperMirage is effective in discovering bugs
and vulnerabilities in real-world HVs in a variety of virtual
CPU interfaces without requiring tedious manual labor of pre-
defining appropriate VM states for any interface.

E. False Positives

A potential drawback of DSM is the occurrence of false
positives, i.e., fuzzing inputs that crash the target HV but
are infeasible to reproduce during regular execution of a
VM. As such, we provide an analysis of the crashing inputs
discovered by HyperMirage during the 24-hour hybrid fuzzing
experiments. For brevity, we restrict this analysis to the Xen
experiments, but note that the same analysis on KVM reveals
comparable results. For Xen, HyperMirage discovers in total
157 unique crashing inputs. From these, we de-duplicate
crashing inputs by their signal, e.g., the emulation of different
instructions violating the same assert are treated as a singular
crash. Among the 18 de-duplicated crashing inputs, we classify
whether they represent architecturally valid VM states. In
total, we found 13 (i.e., 72%) of the crashing inputs to be
false positives. While at first glance this seems like a huge
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CVE Commit Hypervisor Description VM-exit Component Signal

CVE-2023-46842 1166467e Xen HVM hypercalls may trigger Xen bug check. VMCALL Hypercall Panic
N/A d980886f Xen Out-of-bounds shift in memory exchange hypercall. VMCALL Hypercall UBSan

CVE-2024-45818 c41c3d8c Xen Deadlock in HVM standard VGA handling. APIC Emul. MMIO Panic
N/A 672894a1 Xen MMIO cache emulation failure. APIC Emul. MMIO Assert
N/A N/A Xen MMIO cache emulation failurer. APIC Emul. MMIO Assert
N/A 59e6ad65 Xen Missing cleanup on HVM memory mappings. EPT Violation Instruction Emul. Assert
N/A a677964c Xen Incorrect offset in instruction emulation. EPT Violation Instruction Emul. Assert
N/A 73570ceb Xen Incorrect IP rollback in instruction emulation. EPT Violation Instruction Emul. Assert
N/A a150ecce Xen Out-of-bounds shift in FPU emulation. EPT Violation Instruction Emul. UBSan

CVE-2025-38351 fa787ac0 KVM INVVPID failure during PV TLB flush. VMCALL Hypercall Panic
CVE-2025-38469 5a53249d KVM Memory leak in schedop poll hypercall. VMCALL Hypercall Kmemleak

r This bug was rediscovered under different circumstances after a fixing commit has been released.

TABLE IV: Bugs discovered by HyperMirage. Entries without CVEs are deemed non-security-critical. The Commit ID
represents the patch that resolves the bug.

number, resulting in a lot of manual overhead, 4 out of
the 13 false positives were trivially filtered out via textual
matching against the panic messages. To be precise, these
cases effectively contain panic messages of the form ‘feature
FEAT not enabled’. Further, the remaining 9 false positives
can be grouped into the following three categories.
Segmentation Asserts (7 false positives). For interaction with
segment descriptors under Intel VMX, the CPU caches the
values of active segment descriptors in appropriate fields in the
VMCS[GS] area. Whenever Xen interacts with these cached
values, it performs a variety of architectural assertions on their
attribute and base values (e.g., that the base holds a canonical
address). As DSM enables direct mutation of these fields,
the aforementioned asserts will inadvertently be violated. We
manually verify these asserts and conclude that they are not
reachable under regular execution, as either the CPU similarly
rejects non-conforming values, or they are already caught
by Xen’s emulator for segment-loading instructions. Manual
analysis required ≈ 1 hour of manual labor, after which we are
able to categorically classify these asserts as false positives.
Fatal Page Fault (1 false positive). During the handling of
the VM-entry failure due to Model Specific
Register (MSR) loading VM-exit, Xen accesses its
MSR loading area in order to print diagnostic information.
In regular execution, this VM-exit only occurs if previously
set up by the HV, at which point Xen would also allocate
the MSR loading area. Without this allocation, accessing
the MSR loading area results in a fatal page fault, trivially
identifiable as a false positive. Triaging until the root cause
took ≈ 10 minutes of manual labor.
General protection fault in emulation of fxsave /
fxrstor (1 false positive). To emulate the fxsave and
fxrstor instructions, Xen eventually executes these instruc-
tions natively in Xen’s context. For this, the operand’s memory
address (resolved according to the appropriate segment de-
scriptor) is first mapped into HV memory. A specially crafted
input can force Xen to execute this instruction on an unaligned
block of memory, triggering a general protection fault. During
an attempt to reproduce this behavior outside of the fuzzer,
we realized that Xen indeed performs an alignment check

on the memory operand. However, the alignment check and
the actual memory mapping utilize different methodologies
to identify the VM’s current execution mode. The alignment
check assumes the VM is executing in long mode by bits set
in CR0 as well as the EFER MSR, thereby not expanding the
memory address according to the segment descriptor, as they
are ignored in long mode. Later, when the address is mapped,
Xen checks for the VM flag of the RFLAGS register and re-
alizes it is executing in virtual 8086 mode, where the segment
descriptor base and limit apply. This inconsistency results in
Xen possibly mapping an unaligned address. Understanding
this inconsistency required ≈ 2 hours of manual labor.

In the end, we find that only a small number of crashing
inputs require manual analysis to distinguish them from true
positives. We believe that the ratio compared to discovered
real-world bugs and vulnerabilities is justifiable. We also
highlight that while the analysis of the fxsave-related false
positives did not reveal an actual bug, it nonetheless exposed
an inconsistency in Xen’s decision code on the VM’s current
execution mode. We believe these types of inconsistencies are
still worth patching in order to avoid related bugs in the future.

VII. DISCUSSION

In this section, we briefly highlight the current limitations of
our prototype HyperMirage, and provide directions for future
work we deem promising.
Improved Error Detection. HyperMirage detects errors by
hooking error-handling mechanisms implemented by the HV
itself, i.e., panic or assert, which catch CPU exceptions
as well as developer-introduced sanity-checks. However, more
subtle bugs, such as out-of-bounds memory accesses that do
not directly trigger CPU exceptions, are currently not caught
by Xen, as only KVM implements KASAN, an Address
Sanitizer [52] for kernel space. Conversely, we find that
primarily Xen introduces developer sanity-checks e.g., for
certain incorrect emulation results, which is hardly the case
for KVM. As such, it is desirable to obtain a generic ASAN
implementation that is applicable to a wide range of HVs,
as well as a generic approach to detecting bugs that result
in incorrect emulation of a HV. While prior work described
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approaches to tackle these issues, they are either not available
for HVs (e.g., BoKASAN [53]) or not suitable for high-
performance fuzzing [24], [27].

Automated Reproducer Generation. Currently, all crashing
inputs produced by HyperMirage are manually analyzed, and
relevant values (e.g., GPRs, memory, execution mode, etc.)
have to be transplanted into a stand-alone reproduction envi-
ronment. To further ease an analyst’s job, the majority of this
process should be automated by generating appropriate repro-
ducers from the VM state description of the crashing input.
This would reduce reproduction efforts to the manual transla-
tion of complex fields of the VMCS[GS] and VMCS[VEI],
whose semantics are difficult to infer automatically.

VM-Exit Dependencies. While we and prior work observe
that the majority of VM-exit handling code is entirely depen-
dent on the current state of the VM [23], there remains a
small portion of HV-state dependent code. For instance, the
nested virtualization interface is likely not fully explored by
HyperMirage, as it contains HV-internal state management,
which is influenced by individual VM-exits. For instance,
exerting the VMPTRLD VM-exit is only meaningful when
previously VMXON has successfully been executed. However,
our current fuzzing infrastructure is, in general, not well-suited
for this HV-internal state management as the entire HV-state is
reset after handling an individual VM-exit. We leave modeling
these inter-VM-exit dependencies for future work.

Porting to other Architectures. HyperMirage currently tar-
gets the virtual CPU implementation provided by Intel VMX,
as it benefits from Nyx’s integration with Intel’s Processor
Tracing feature for speeding up coverage tracing, which is not
present on AMD or ARM CPUs. However, HyperMirage is
compatible with other solutions, such as the instrumentation-
based coverage tracing infrastructure provided by AFL++.

Since both AMD and Intel CPUs are x86-based, AMD SVM
is conceptually very similar to Intel VMX. For example, while
upon VM-exit VMX stores the VM’s state in the Guest-State
Area of the VMCS, AMD saves it in the Save State Area
of the Virtual Machine Control Block (VMCB). Additionally,
instead of Intel EPTs, AMD implements second-level address
translation as NPTs, which have a similar format to EPTs.
Moreover, while GPRs must be HV-saved on VMX, the SVM
hardware automatically stores them in the Save State Area of
the VMCB. As such, adoption to AMD SVM requires minor
changes in DSM and relevant parts in our symbolic record-
and-replay approach to respect the layout of the VMCB.

While VMX and SVM serialize the guest’s state automati-
cally in the VMCS and VMCB, ARM VE does not employ a
similar approach. In contrast, aiming to improve performance
on HV-VM context switching, VE leaves it up to each HV
implementation to fetch the VM state components that it needs
to handle a VM-exit. Therefore, testing HVs that implement
ARM VE via HyperMirage would require analyzing the target
HV and identifying the state needed during each VM-exit. We
leave this open for future work.

VIII. RELATED WORK

We now discuss related work on fuzzing HV interfaces
in commodity HVs (including Xen and KVM) as well as
applications of hybrid fuzzing techniques.
Hybrid Fuzzing. Hybrid fuzzing has been mainly studied for
improving bug discovery in user space [54], [55], [28], [56],
[29], [30]. QSYM relies on dynamic binary translation (DBT)
at the instruction level to transform machine instructions to
IR and perform symbolic computations via an optimized
symbolic backend. SymCC [29] avoids expensive DBT by
instrumenting target programs at compile time and directly
calling a symbolic execution backend linked into the target
program, demonstrating a significant increase in performance
over QSYM. SymQEMU [30] builds upon SymCC by per-
forming its instrumentation on the IR of QEMU’s Tiny Code
Generator (TCG), making the SymCC approach available for
binary-only targets. HFL [32] introduced hybrid fuzzing to
OS kernels (e.g., Linux) by leveraging S2E [57], which relies
on a custom DBT module in QEMU to generate symbolic
instructions and on KLEE for delegating the computation of
symbolic values. HyperFuzzer [23] was the first to leverage
hybrid fuzzing to find bugs in HVs by employing a custom
(closed-source) symbolic execution engine based on recording
and decoding pure control-flow traces. As it provides the best
performance, HyperMirage extends SymCC with the symbolic
record-and-replay technique, making it available for fuzzing
bare-metal targets with high throughput.
Testing CPU Emulation. ‘Fuzzing the Xen Hypervisor’ [58]
deploys a black-box hypercall fuzzer, which is, however, lim-
ited by its restriction to a single virtual CPU interface as well
as black-box mutations without feedback guidance. ‘Virtual
CPU Validation’ [24] validates CPU emulation implementa-
tions by leveraging tests written for physical CPUs. PokeEmu
[25] and FastPokeEmu [26] reveal issues in HVs by per-
forming symbolic execution on a high-fidelity emulator (e.g.,
Bochs) to generate test cases for low-fidelity emulators (e.g.,
QEMU TCG) as well as native execution environments (e.g.,
QEMU+KVM). MultiNyx [27] performs multi-level symbolic
execution on the HV under test and a reference CPU emulator,
aiming to generate test cases that systematically analyze the
implementation of the HV. While effective in generating
complex test cases, they suffer from low testing throughput.
HyperFuzzer [23] addresses these limitations by integrating
fuzzing and symbolic execution into a hybrid fuzzer that tests
Hyper-V’s virtual CPU implementation; however, it relies on
manually generated VM states used as fuzzing seeds to target
specific VM-exits, which limits it to only testing 5 VM-exits.
IRIS [59] proposed automatically inferring valid VM states
to fuzz Xen’s virtual CPU implementation by dynamically
profiling the VM-exits generated by the Linux kernel under
a suite of workloads. However, this only generates regular
architectural VM states, which prevents IRIS from discov-
ering bugs. Instead, HyperMirage generates VM states that
fuzz CPU virtualization automatically by analyzing the HV
codebase, and comprehensively by adopting the novel DSM
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technique, which is able to explore the VM-exit interface in
depth and reveal bugs that can only be triggered by unusual,
yet valid, architectural states.
Fuzzing I/O Emulation. Hyper-Cube [21] is a black-box HV
fuzzer that relies on random mutations on custom bytecode,
whose opcodes represent interactions with the MMIO and
port I/O interfaces of HVs. NYX [22] is a fast snapshot-
based graybox fuzzer that enhances this concept by allowing
grammar specifications for the bytecode interpreter. ViDezzo
[15] and Truman [19] focus on better inferring the interactions
between virtual devices and device drivers in order to perform
smarter input mutations. As HyperMirage focuses on fuzzing
the CPU emulation interfaces of HVs, where different chal-
lenges apply, we do not believe it is effective in scrutinizing
virtual devices implemented in user space. Moreover, Hy-
perMirage’s novelty lies in applying state-of-the-art concolic
execution to kernel space, and not user space, where concolic
executors are readily available. HyperPill [14] is capable of
fuzzing the MSR, MMIO, port I/O, and hypercall interfaces
of binary-only HVs in an emulated environment. Similar to
HyperMirage, HyperPill directly manipulates VMCS fields to
improve fuzzing throughput, but overall throughput remains
low because of emulation. While HyperPill leverages only
coverage-guided fuzzing on a subset of available VMCS fields,
HyperMirage explores the whole VMCS in depth via DSM and
hybrid fuzzing, managing to cover the majority of VM-exits
implemented by the HV.

IX. CONCLUSION

HyperMirage is an efficient hybrid fuzzer for virtual CPUs
that achieves coverage in a wide variety of virtual CPU inter-
faces, without requiring expert knowledge in crafting fuzzing
seeds. For this, we introduced Direct State Manipulation, a
novel fuzzing methodology to directly exert a HV’s view
on its VMs without requiring their execution. Moreover, we
are the first to make the state-of-the-art symbolic executor,
SymCC, available for bare-metal software. Our evaluation
shows that HyperMirage achieves drastically higher coverage
over HyperPill. HyperMirage identifies 9 new bugs in Xen and
2 in KVM, all of which have been confirmed by the respective
project maintainers.

AVAILABILITY

To encourage open research, we make HyperMirage avail-
able at https://github.com/tum-itsec/hypermirage.
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APPENDIX

To perform an in-depth performance evaluation of Hyper-
Mirage, we turn towards the state-of-the-art hybrid fuzzer for
virtual CPUs: HyperFuzzer [23]. Unfortunately, no completely
fair evaluation is possible, as HyperFuzzer’s experiments were
performed on Hyper-V, for which source code is unavailable,
and HyperFuzzer itself is closed source, meaning that we
cannot port it to Xen or KVM. Nonetheless, HyperFuzzer
represents the research project that is most similar to Hyper-
Mirage as its focus is the virtual CPU implementation of HVs,
and it also deploys a hybrid fuzzing methodology. Therefore,
we believe a comparative evaluation is of utmost importance,
and we aim to provide as fair an evaluation as possible by
minimizing the amount of differentiating factors.

A. Experiment Setup

We reproduce the methodology of HyperFuzzer’s perfor-
mance evaluation on the example of Xen. As HyperFuzzer
evaluated their performance metrics separately for the four
interfaces Hypercalls, Task Switch, APIC emulation, and MSR
emulation, we artificially restrict HyperMirage to exactly these
interfaces as well by exempting the exit reason field of
VMCS[VEI] from any mutations. Then, we execute HyperMi-
rage for 120 minutes on each interface to generate a corpus
of interesting inputs dubbed the “expanded fuzzing” set by
the HyperFuzzer authors. The obtained per-interface coverage
is depicted in Figure 7. Note that, for completeness’s sake,
we also include the coverage achieved by the graybox and
whitebox-only experiments performed in Appendix C

To rule out hardware performance differences, the experi-
ment is carried out on an equivalent CPU3 (see Section VI-A)
as the one utilized by the HyperFuzzer authors.

3HyperFuzzer utilized a K-line CPU, which, if not overclocked, is identical
to our model.
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Fig. 7: Discovered edges of HyperMirage per interface during the 120-minute fuzzing campaign. The y-axis depicts discovered
edges. The x-axis depicts the time in minutes.

B. Efficiency

We evaluate the efficiency of HyperMirage by (1) testing
all inputs in the expanded fuzzing set for new coverage (i.e.,
without performing any mutations) and (2) running them
through our symbolic record-and-replay component to solve
constraints and measure raw run time taken per execution. In a
single symbolic execution run, we include both the recording
and replay phases (see Section IV-D) in the execution time
measurement.

HyperMirage HyperFuzzer
Testing Symbolic Testing Symbolic

Hypercalls 0.21 320.83 0.48 781.89
Task Switch 0.28 40.86 0.33 457.83
APIC Emu. 0.21 438.83 0.36 212.66
MSR Emu. 0.17 226.86 0.36 387.51

Average 0.21 256.84 0.38 459.97

TABLE V: Efficiency comparison between HyperMirage and
HyperFuzzer per interface during the 120-minute fuzzing
campaign. Numbers represent average execution time in mil-
liseconds.

The mean runtime of a single execution per interface is
depicted in Table V. In all cases, excluding one, HyperMirage
outperforms HyperFuzzer in single-execution efficiency for
both graybox testing as well as symbolic analysis. Graybox
testing sees a speed-up of 1.7× averaged across all interfaces,
as HyperMirage merely restores the taken snapshot and re-
sumes code execution at the HVs VM-exit handler, opposed
to HyperFuzzer, which spawns and initializes a new VM
for every tested input. For symbolic execution, HyperMirage
achieves up to 2.4× performance improvement for hypercalls
and an up to 11× increase for simpler interfaces such as task
switching.

A notable outlier is the symbolic execution speed for the
APIC emulation interface, where HyperMirage incurs a 2x
slowdown. This is likely due to HyperMirage’s significantly
higher edge count on Xen (up to 10000, see Figure 7)
when compared to HyperFuzzer’s on Hyper-V (up to 40004

4Edge coverage shot up to just below 4500 towards the end, however this
is unlikely to meaningfully affect average execution time.

[23]). For this interface, Xen deploys a sophisticated x86
instruction emulator, which will result in a complex chain
of constraints for HyperMirage to solve. While Hyper-V will
deploy a similar emulator, the coverage numbers indicate
a much lower complexity. As such, to even out complex-
ity discrepancies between implementations as measured by
edge count, a more realistic comparison would be against
HyperFuzzer’s efficiency numbers for the hypercall interface,
which achieved coverage of approximately 8000 edges (and
therefore, edge discovery is still higher for HyperMirage).
With this comparison, HyperMirage depicts an improvement
over HyperFuzzer by ≈ 1.8× for complex interfaces.

We find that HyperMirage also drastically outperforms
HyperFuzzer in symbolic execution efficiency. Where Hyper-
Fuzzer requires parsing and disassembling of a full execution
trace of the HV, HyperMirage simply records symbolic op-
erations during execution via optimized compiler-based tech-
niques, and forwards constraints during a lightweight decoding
phase to its solving backend.

C. Throughput

To evaluate the throughput of HyperMirage, we calculate
the average number of executions per second in three different
setups: hybrid fuzzing, graybox-only fuzzing, and whitebox-
only fuzzing. For whitebox-only fuzzing, we disable an op-
timization in the custom mutator plugin (see Section V-B),
namely that every interesting input is only symbolically exe-
cuted once, as otherwise, at some point, no further mutations
would be performed. The results, as well as comparable
numbers from HyperFuzzer (targeting Hyper-V), are displayed
in Table VI. The results show that HyperMirage outperforms
HyperFuzzer in hybrid fuzzing speeds on every single inter-
face, with an average speed-up of factor 2.5×. Interestingly,
this remains true even for the APIC emulation interface, where
raw efficiency numbers show that the symbolic execution
component on the expanded fuzzing set has a longer runtime
than the equivalent for HyperFuzzer. This can be attributed
to HyperMirage’s integration of QSYM [28], which hosts a
plethora of optimization strategies specially tailored to fuzzing.
For the task switch interface, hybrid and graybox fuzzing
throughput is effectively equal. This is to be expected when
considering the raw symbolic execution run time, as seen in
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HyperMirage HyperFuzzer
Hybrid Graybox Whitebox Hybrid Graybox Whitebox

Hypercalls 3721.20 4375.23 115.13 979.40 2945.03 35.63
Task Switch 4442.17 4422.11 159.32 1369.95 4378.22 106.88
APIC Emu. 2422.04 4352.77 20.53 1774.05 3650.68 210.85
MSR Emu. 2658.75 5024.86 129.83 1171.24 3967.35 76.67

Average 3311.04 4543.74 106.20 1323.65 3735.32 107.50

TABLE VI: Throughput comparison between HyperMirage and HyperFuzzer per interface during the 120-minute fuzzing
campaign. Numbers represent average executions per second.

Table V. In essence, this interface is too simplistic for the
symbolic execution component to spend much time solving
constraints.
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