Artifact
Evaluated

ANDss

Available

Identifying Logical Vulnerabilities in QUIC

Implementations

Kaihua Wang*, Jianjun Chen*!, Pinji Chen*, Jianwei Zhuge*, Jiaju Bai' , Haixin Duan*
*Tsinghua University TBeihang University
{wkh23, cpj24}@mails.tsinghua.edu.cn {jianjun, zhugejw, duanhx } @tsinghua.edu.cn baijiaju@buaa.edu.cn

Abstract—QUIC is a modern transport protocol increasingly
adopted by major platforms and services, making its security
and correctness critically important. However, the complexity of
QUIC specification and implementations introduces opportunities
for subtle and dangerous logic flaws. Existing QUIC testing tools
primarily focus on memory-related vulnerabilities and are ill-
equipped to detect logical vulnerabilities. Therefore, the discovery
of logical vulnerabilities is currently still highly dependent on
manual auditing.

In this paper, we introduce MerCuriuzz, a novel black-box
fuzzing framework designed to automatically uncover logical vul-
nerabilities in QUIC implementations. We evaluated MerCuriuzz
against 16 widely used QUIC implementations and discovered
14 previously unknown logical vulnerabilities affecting popular
implementations such as quiche, xquic, and aioquic. Those
vulnerabilities can pose severe security risks, enabling attackers
to exhaust server resources, crash services, or deny legitimate
users access to the server. We categorize those vulnerabilities
into six categories and propose mitigation strategies. We also
responsibly disclosed our findings to the affected vendors, and
11 of them were confirmed and rewarded by the vendors, such
as Cloudflare and Alibaba Cloud.

I. INTRODUCTION

The standardization of the QUIC protocol has progressed
over nearly four years [65]. According to global website
usage statistics from W3Techs [58], over 33% of websites
now support HTTP/3—which is based on QUIC—up from
25% in 2022. This rapid growth highlights QUIC’s emergence
as a core component of modern internet infrastructure, with
adoption expected to continue rising. Thanks to its inte-
grated design that mandates TLS encryption and eliminates
handshake latency [7], QUIC not only boosts communication
efficiency but also enhances security. Furthermore, its ability to
support faster data transfer and improved connection stability
compared to traditional TCP has made it a preferred choice for
content delivery networks (CDNs) and large-scale platforms.
For instance, Akamai and Kuaishou have collaborated to
optimize video streaming over QUIC [2], while major CDN
providers like Cloudflare and Fastly, and platforms such as

iCorresponding author.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231777
www.ndss-symposium.org

YouTube, TikTok, and Facebook, have widely adopted QUIC
as their primary transport protocol.

Given this widespread deployment, vulnerabilities in QUIC
implementations pose serious security risks to the Internet.
While QUIC incorporates numerous security features by de-
sign, recent reports [18], [19] have revealed a growing class of
logical vulnerabilities—subtle flaws arising not from memory
corruption but from incorrect implementations logic. These
vulnerabilities can be just as dangerous, enabling denial-of-
service (DoS) attacks, state inconsistencies, and other unin-
tended behaviors. A notable example is CVE-2024-22189 [45],
which is similar to the HTTP/2 Rapid Reset vulnerability [28]
and allowed attackers to overwhelm servers with minimal
effort by exploiting a subtle logic flaw in connection migration.
Unfortunately, state-of-the-art fuzzing and automated testing
techniques have limited success in detecting such logic flaws
in QUIC, due to the following three reasons.

First, there is a lack of effective and efficient mutation
techniques for the QUIC protocol to generate high-value frame
sequences that can cover a larger number of program paths.
Triggering logical vulnerabilities in the QUIC protocol often
requires sending many carefully crafted packets in a specific
sequence, which leads to a huge mutation state space. Given
that the number of states grows exponentially in the sequence
quantity, existing techniques based on random mutation are
infeasible to test the QUIC protocol in practice. Second,
logical vulnerabilities often do not result in common error
manifestations such as crashes or overflows, thus traditional
fuzzing frameworks have difficulty detecting whether a vul-
nerability has been triggered. Third, QUIC services involve
complex interactions, including port registration, service ini-
tialization, and frequent process restarts. These operations
require resetting the service state before each fuzzing iteration,
which significantly undermines the efficiency of the testing
process.

To address these challenges, we propose MerCuriuzz,
a novel testing method capable of automatically discovering
logical vulnerabilities in QUIC implementations. To tackle the
first challenge, we design a segmental mutation strategy that
decomposes test case generation into three separate mutation
stages, which maintains good mutation efficiency even when
dealing with complex and long QUIC frame sequences. For
the second challenge, we introduce a semantic and public
resource consistency detector based on differential testing.
This method allows us to detect traffic anomalies and potential

vulnerabilities in two differential QUIC services based on their
traffic characteristics and usage of public resources. For the
third challenge, we design and implement a snapshot manager
based on Nyx snapshot technology [50], [51], which enables
millisecond-level snapshot saving and recovery. This design
eliminates the overhead associated with resetting the system
state after each test case, including operations such as service
initialization and connection establishment.

We implemented the MerCuriuzz prototype and evaluated it
on 16 open source QUIC implementations recommended by
the QUIC work group [17]. Consequently, we discovered 14
logical vulnerabilities across these implementations, affecting
well-known projects such as quiche, xquic, and aioquic. We
further categorize them into 6 typical classes and demonstrate
their impact through controlled experiments on real-world
implementations. We responsibly disclosed these findings to
vendors and received vulnerability rewards from Cloudflare
and Alibaba, along with five CVE IDs. Furthermore, we
analyzed the common root causes of these logical vulnera-
bilities and proposed mitigation strategies to both the QUIC
specification and implementation developers.

In summary, we make the following contributions:

o We proposed MerCuriuzz', a novel methodology for
automatically discovering logical vulnerabilities in QUIC
implementations, enabling efficient identification of such
vulnerabilities.

o We implemented our approach and evaluated it on 16
mainstream QUIC implementations, discovering 14 logi-
cal vulnerabilities and 6 categories of attacks. These lead
to various security issues, such as resource exhaustion
and assertion failures, enabling denial-of-service attacks
on major QUIC services.

« We responsibly disclosed our findings to affected ven-
dors and received positive feedback. We also presented
three mitigation recommendations to address such logical
vulnerabilities of QUIC.

II. BACKGROUND
A. QUIC Protocol

QUIC is a modern, multiplexed transport protocol developed
by Google and standardized by the IETF as RFC 9000 [56].
It is designed to provide low-latency, secure, and reliable
communication over UDP, integrating features traditionally
split between TCP and TLS into a unified framework. QUIC
has gained increasing popularity in recent years, with 14
QUIC-related RFC documents proposed successively, includ-
ing HTTP/3 and DNS Over QUIC [8], [31], [56], [57]. Gen-
erally, the QUIC protocol can be logically decomposed into
two phases: (1) QUIC connection establishment or migration,
and (2) QUIC data transmission.

QUIC connection establishment. Initially, the QUIC pro-
tocol launches a handshake to establish a secure and authenti-
cated connection between the client and the server. Unlike tra-
ditional TCP + TLS protocols, which require multiple round-

Thttps://github.com/k4ra5u/MerCuriuzz

trip times (RTTs) to complete the handshake and encryption
setup, QUIC integrates the cryptographic handshake into the
transport layer and completes the entire process in a single
RTT under normal circumstances. This phase includes the fol-
lowing steps: (1) Connection Initiation: The client initiates the
connection by sending a ClientHello message, encapsulated
within a CRYPTO frame, alongside a randomly generated
Connection ID (CID); (2) Cryptographic Negotiation: The
server responds with a ServerHello message and cryptographic
parameters, establishing encryption keys; (3) O-RTT Data
(optional): If the client has previously connected to the server,
it may send early application data using O-RTT encryption
keys derived from session resumption for reconnecting; (4) I-
RTT Completion: The handshake concludes once the server
verifies the client’s finished message and both parties derive
the final 1-RTT keys.

QUIC connection migration. One of the distinguishing
features of the QUIC protocol is its native support for
connection migration. Unlike traditional transport protocols,
which bind the transport-layer connection to a four-tuple of
IP addresses and ports, QUIC decouples connection identity
from endpoint addresses by introducing CID. This design
enables seamless migration of ongoing connections across
network paths without requiring a full renegotiation, e.g.,
when a mobile device switches from Wi-Fi to cellular. In
certain scenarios, QUIC allows the use of O-RTT data during
connection migration, particularly when session resumption is
enabled. However, due to the risk of spoofing and path-based
attacks, path validation is required. This process involves: (1)
Path Challenge: Upon detecting a potential change in path,
the peer sends a randomly generated challenge token using a
PATH_CHALLENGE frame; (2) Path Response: The recipient
must echo the challenge value in a PATH_RESPONSE frame;
(3) ACK Confirm: If the peer receives the path response,
it returns an ACK frame to confirm address ownership and
reachability. Only after this validation succeeds, QUIC allows
application data to be sent on the new path.

QUIC data transmission. Once the handshake is com-
plete and secure communication is established, QUIC is
changed to the data transmission phase. Instead of delivering
a continuous byte stream, QUIC employs a frame-oriented
abstraction, wherein each QUIC packet encapsulates one or
more self-describing frames. These frames are broadly cat-
egorized into data frames and control frames. Data frames
(STREAM frames) are used to carry application data, while
control frames are utilized for managing connection state, flow
control, congestion control, and transport-level signaling. For
instance, the NEW_CONNECTION_ID control frame allows
connection migration by issuing new CIDs. This flexible
framing system allows QUIC to multiplex multiple types of
information within the same packet, enabling more efficient
utilization of the network. Additionally, QUIC offers TCP-
equivalent reliability through a combination of mechanisms.
First, each STREAM frame includes offset and length fields,
allowing data to be reassembled in order and detect losses on
a per-stream basis. Second, QUIC uses rich ACK frames that

support selective acknowledgment of received packet ranges,
enabling efficient retransmission strategies and minimizing
head-of-line blocking. Third, QUIC maintains packet-level
state, including packet numbers and transmission timestamps.
Based on acknowledgments and timeouts, the sender can
retransmit lost data frames, ensuring guaranteed delivery.

B. Protocol Logical Vulnerabilities

Protocol logical vulnerabilities have become an important
area of research in the field of cybersecurity in recent years.
These vulnerabilities differ significantly from traditional mem-
ory vulnerabilities in both nature and exploitation methods.
Traditional memory vulnerabilities, such as buffer overflows
and use-after-free (UAF) errors, are primarily due to low-
level programming errors related to memory management.
In contrast, protocol logical vulnerabilities arise from design
flaws in the protocol logic, regardless of memory safety.
Exploiting logical vulnerabilities does not require memory
corruption, instead, attackers manipulate the system’s intended
logic to achieve unintended behavior.

Landscape of logical vulnerability. In recent years, the in-
creasing complexity of network protocols and their widespread
adoption [22] have driven a rapid growth in research on
protocol logical vulnerabilities. Taking the QUIC protocol as
an example, vulnerabilities in QUIC prior to 2021 were pre-
dominantly memory-related issues, such as stack corruption.
However, after 2021, there was a significant rise in protocol
logical vulnerabilities. This trend is caused by several factors.
On one hand, the QUIC protocol has only been officially
standardized for three years, and its complex protocol logic
has not yet undergone extensive testing, with many QUIC
features still under development. On the other hand, due to
advancements in security tools, such as the increasing adoption
and improvement of tools like Sanitizers, traditional memory
vulnerabilities have become harder to exploit, prompting at-
tackers to focus more on logical vulnerabilities. This shift in
vulnerability landscape motivates us to systematically identify
and analyze logical vulnerabilities in QUIC implementations.

III. OVERVIEW
A. Threat model

In our attack, the attacker first establishes a secure and
legitimate connection with the victim’s QUIC server, then
sends a carefully crafted sequence of QUIC frames over this
connection to induce the victim into executing flawed code
logic. As a result, the victim enters an erroneous program
state and fails to provide proper QUIC interactions for users,
thereby achieving a DoS attack. To ensure the practicality of
our attack in real-world scenarios, we assume the following
basic properties.

In terms of attacker capability, we assume two capabilities.
First, the attacker can normally interact with the target QUIC
server, which can use the correct QUIC version and application
name to establish a connection. Second, the attacker can
locally execute the victim program and observe its public
resource usage metrics as provided by the operating system.

This assumption is feasible, for example, many closed-source
PCDN services provide local deployment solutions [42], [55].

In terms of the victim QUIC server, first, we assume that
the server is properly deployed, bound to a valid IPv4 network
address and port, and has unrestricted network connectivity,
allowing it to interact with external clients without firewall
or NAT constraints. Second, we do not impose any assump-
tions or limitations regarding the implementation language of
the server. The server may be written in any programming
language, as our approach is agnostic to the underlying tech-
nology stack.

B. Challenges

Although QUIC protocol logical vulnerabilities can have
serious practical impacts, research on automatically discov-
ering logical vulnerabilities in the QUIC protocol is still
lacking. To develop a fuzzing framework tailored for the QUIC
protocol that can efficiently detect state machine corruption
type logical vulnerabilities, three fundamental challenges must
be addressed:

Challenge 1: How to find frame sequences covering more
program paths in a huge mutation state space? To cover as
many program states as possible, the transmitted data frames
must follow both the syntax rules (as defined in the QUIC RFC
for data and control frames) and the semantic rules (based on
the state machine of the QUIC server). We need to consider
the dependencies between each frame in the sequence. If we
use traditional field-based mutation methods, such as those
in Bleem [29], to blindly mutate every field in the frame
to be sent, the state space of mutated frames will increase
exponentially with the length of the frame sequence. One
available solution is to generate frame sequences in batches
based on predefined rules, as in TLS-Anvil [30]. However,
such rules depend on the developer’s experience and can
only detect known issues, failing to uncover unknown errors.
Moreover, as a stateful protocol based on UDP, the behavior
of a QUIC implementation can be influenced by factors such
as the timing of the data sequence, packet ordering, packet
loss, and retransmission, leading to unique states. Therefore,
existing mutation strategies in protocol fuzzing cannot address
the challenges of mutating QUIC frame sequences.

Our solution. To address this challenge, we designed the
segmental mutation for QUIC protocol data. This is a multi-
stage test case generation strategy that divides the mutation
process into three targets: frame content mutator, frame se-
quence generator, and interaction behavior mutator. In the
frame content mutator stage, we focus on the definitions and
specifications of each frame as provided in the RFC docu-
mentation, performing mutations within syntactic constraints.
In the frame sequence generator stage, we predefine multiple
generation algorithms for each type of frame, expanding a
single frame into a complete sequence. In the interaction
behavior mutator stage, we simulate and mutate various char-
acteristics of the connection, such as response delay, frame
loss, retransmission, and out-of-order delivery.

Challenge 2: how to detect abnormalities in program
behavior and state? When a program exhibits logic errors,
there are generally two main manifestations. The first is
the inconsistency between its response to packets and the
Oracle standard. Since the RFC documentation does not define
every detail of QUIC interaction behavior, we must evaluate
the causes and types of inconsistencies and ignore those
that are unrelated to vulnerability exploitation. The second
manifestation is in the occupation of public resources. Logical
vulnerabilities typically exhibit normal memory states, leading
to a high rate of false negatives. Therefore, we must design
a new observation and feedback mechanism to determine and
verify whether the current interaction results in state or logic
anomalies.

Our solution. To address this challenge, we developed State
Anomaly Detectors that can detect whether logical vulner-
abilities have been triggered and assess the expected value
of the current interaction. Our Detectors consist of two main
parts: (1) Semantic Consistency Detector. This is a differential
testing module. By analyzing the returned frame sequences,
it detects behavioral inconsistencies between implementations.
To reduce false positives caused by minor variations, we ignore
certain frames and contents that do not affect the state of the
connection, and instead focus primarily on whether control
frame logic and data frame content meet the expected condi-
tions. (2) Resource Consumption Detector. First, we define
three types of resources: computational resources, memory
resources, and network handle resources. After obtaining the
average values of resource consumption from baseline tests,
we track the resource usage before and after each fuzzing
session, paying attention to whether it exceeds the threshold
generated by the baseline tests.

Challenge 3: how to mitigate the time overhead intro-
duced by state resets and connection recovery? As a stateful
communication protocol, a QUIC connection is forcefully
closed whenever one endpoint encounters a state error or
receives an unexpected packet, with the endpoint sending a
Connection Close frame. This closure resets all accumulated
connection states. Whether reconnecting or restoring the pre-
vious state, these processes incur significant time overhead.
More importantly, they consume computational resources and
reduce the accuracy of anomaly detection. Therefore, it is
crucial to reduce time overhead from repetitive tasks like state
resets and connection recovery, such as server restart and TLS
handshake.

Our solution. To address this challenge, we designed
a snapshot manager based on the fast snapshot restoration
technique of Nyx [50]. Since Nyx requires a QEMU [44]
virtual machine for the target program, we split the data
collection component of the detector from its core logic and
merged it with the QUIC communication module to form
a data converter. This converter is primarily responsible for
bridging the fuzzer and the QUIC server running inside the
virtual machine. Each target implementation is encapsulated
as a System Under Test (SUT), containing the target QUIC
server, the data converter module, and the harness. Upon

initial startup, the harness controls the converter to establish
a connection with the QUIC server. Once the connection is
established, a snapshot node is created. The relay handles
communication with the QUIC server and reports test results
back to the external fuzzer. After each fuzzing round, the
harness restores the snapshot to the moment just after the
connection is established, thereby saving the time otherwise
required for service restart and connection setup.

IV. MERCURIUZZ

We propose MerCuriuzz, a black box fuzzing framework for
QUIC protocol. Unlike traditional black box fuzzers focusing
on memory vulnerabilities, MerCuriuzz is capable of automat-
ically discovering logical vulnerabilities in QUIC implementa-
tions through segmental mutation and state anomaly detectors.
It also enables efficient state and connection resets using a
snapshot manager. In the following sections, we provide a
detailed description of the design and implementation of these
components. In addition, to support our mutations and detec-
tors, we design the Compressed Corpus for test case format,
and construct the Monte Carlo seed tree as the scheduler. The
implementation details of these components are described in
Appendix.

A. Workflow

Figure 1 illustrates the workflow of MerCuriuzz. Overall,
MerCuriuzz consists of four main phases: (1) receiving input
testcases and outputting objectives and crashes; (2) managing
and mutating the corpus; (3) managing snapshots and per-
forming differential evaluation; (4) executing input tests under
QEMU virtual machine snapshots. The complete workflow
includes the following seven steps:

@ We extract part of the QUIC traffic from the real world.
Then, we abstract the packet data to construct the initial seed.
@ The seed is inserted into the seed tree. The MCTS algorithm
recommends the next seed to fuzz. ® The selected seed is
mutated using Segmental Mutation to generate a complete
test case. @ The snapshot manager in the Diff Executor is
responsible for establishing virtual machine snapshots and in-
jecting the test case into two virtual machines. After execution,
the snapshot manager restores VMs to their initial snapshot
state, ready for the next round of testing. ® The QUIC
Converter processes the input from the host and packages
it into QUIC format packets to be sent to the target. The
internal Observers collect reports on public resource usage
and the interaction flow, which are transmitted back to the host
through a preconfigured channel. ® In the Evaluation stage,
two detectors assess whether any abnormal state or behavior
occurs. @ If a test case is identified as abnormal, it is reported
as an objective or crash. If no anomaly is found but the test
case is marked interesting, it is returned to the seed and the
process repeats from Step @.

B. Segmental Mutation

The core idea of segmental mutation is to reduce the explo-
sion of the state space caused by excessive mutability of seeds.

Corpus Scoring

Abstract l
Testcases
l <

MCTS Update

Recommendation

[

i

Inconsistent Input

Execution Results E B=
i =
®3 Segmental Mutation) I ' = =
Objectives & crashes \ @ Diff Executor ' < —
1 corpus ! Quic frames
' m Frame Content Mutator % ﬁ >
. QUIC Converter Server B
m Frame Sequence Generator % Snapshot Manager ' harness
R 1 Input }
MerCuriuzz :
Workflow Interaction Behavior Mutator %
Release snapshot H

Phase 1: 1/0 Of Mercuriuzz

Phase 2: Input Generation Input ;

@ Corpus @ MCTS Scheduler ® Evaluation : CEN
€
RFCs RW Packets | H Impl A J '7|7
2 'r:P“t Abstracting Frame Sequencﬁ | Observersin VM A
Corpus Evaluation :

—————————>
Quic frames E

Semantic Consistency
Detectors

'L E QUIC Converter Server A

harness

Public Resource , —
Consumption Detectors H

Phase 3: Fuzz & Evaluation

Impl B %
e —

Acquire snapshot Phase 4: Execution in VM

Fig. 1: Overview of MerCuriuzz.

We achieve this by extracting semantic constraints defined in
the RFC for each QUIC frame and analyzing the dependencies
among different frame types to prune and restrict mutation
spaces that clearly violate protocol specifications. To support
this, we design a custom test case format called Compressed
Corpus (CC). In short, a CC consists of several base frames
and a corresponding description document. The frame content
mutator mainly performs modification operations on base
frames. The frame sequence generator focuses on modifying
the generation algorithm and the repeat count of base frames
specified in the description document. The interaction behavior
mutator alters the behavioral rules of the client defined in the
document. By combining the base frames and the description
document, we can reconstruct a complete frame sequence and
interaction specification for fuzzing. Figure 2 illustrates the
process by which we mutate the base frame sequence in the
Compressed Corpus into a complete test case through the
three mutators described above. Here we define the base frame
sequence as a New Connection ID (NCI) frame.

Frame content mutator. Referring to the RFC specifi-
cations, we identify 34 distinct frame types, including both
control and data frames defined in RFC 9000, as well as
new frame types introduced by recent extensions such as the
DATAGRAM frame in RFC 9221. We conduct a detailed
analysis of the type characteristics and specific characteristics
of all the fields within these frames. We categorize all field
types into three major type characteristics: Content fields,
which represent a sequence of raw bytes; Length fields, which
indicate the length of the content field; Numerical fields, which
cover all numerical values except for length indicators. Each
field is subject to both general RFC constraints (e.g., no
numerical field may exceed 252) and frame-specific constraints
(e.g., in NCI frames, the seq_num must be greater than
the maximum existing CID seq_num). We perform multiple

rounds of frame content mutation; in each round, we randomly
select one of the three field types and mutate a specific
field while ensuring all constraints are met. As a result,
frame content mutation ensures that all mutated frames remain
compliant with the RFC and can be correctly accepted and
processed by the server.

Frame sequence generator. Building on the frame con-
tent mutator, we introduce the frame sequence generator.
We collect all inter frame constraints described in the RFC
documents. Starting from the base frames within the seed, the
generator applies the selected algorithm to construct successor
frames, forming a basic frame sequence. We predefine various
algorithms, such as fixed step increments of numerical fields
or overlapping / gaped modifications of offset / length fields,
to ensure that different frame types comply with protocol
constraints. By iterating over all base frames, the frame se-
quence generator assembles a complete initial frame sequence.
Although this approach may exclude some valid mutation
spaces, it significantly improves the quality of generated test
cases by reducing the exponential growth of the mutation space
to a linear scale. In Figure2, we describe a sequence length
of n, so the frame sequence generator produces n NCI frames
numbered 1 to n.

Interaction behavior mutator. In addition to mutating
frame content and sequence, the transmission order and
packet-loss scenarios of QUIC frames are equally critical due
to UDP’s unreliable datagram nature. QUIC servers may expe-
rience out-of-order frame reception, loss of critical frames, or
receipt of multiple retransmitted frames; peers may similarly
see delayed or missing replies. To model these scenarios, we
design an interaction behavior mutator. Mutation strategies
include partial frame dropping, repeated frame sending, and
reordering the initial frame sequence based on specific algo-
rithms. We predefine various remapping algorithms, such as

@ Compressed Corpus (CC))
Basic Frame sequence Description document
NCI Frame J
« Frame sequence length
seq_num S (numeric) » Sequence generator algorithm
retire_prior_to: Ry (numeric) Sequence reordering algorithm
« Interaction behaviour definition
CID: Cy (content)
1 ¢) Other fields
reset_token T, (content)
1
@ Frame content mutator J @ Frame sequence generator/ @ Interaction behavior mutator,)
Numeric field mutator Select one generator algorithm Select one generator algorithm
NCI Frame J PKN, J PNy)
seq_num S, (numeric) seq_num S,1 (numeric) seq_num: Szp1 (numeric)
retire_prior_to: R, (numeric) retire_prior_to: Rp1 (numeric) retire_prior_to: Ryp1 (numeric)
CID: C4 (content) CID: RandC; (content) CID: RandCy (content)
reset_token: T, (content) reset_token: RandT (content) reset_token: RandT (content)
PN,) PNy,)
Length field mutator (No such field) seq_num S, (numeric) seq_num: Sp2 (numeric)
NI Frame retire_prior_to: Ry, (numeric) retire_prior_to: Ryp2 (numeric)

- S cin: RandC, (content) ci: RandCp (content)
seq_num: 2 (numeric) reset_token: RandT, (content) reset_token: RandT; (content)
retire_prior_to: R, (numeric)
cID: C4 (content) PKNs J PKNs J
reset_token: T4 (content)

ceeene ceeees
Content field mutator
NCI Frame] e .
seq_num: Sz (numeric) seq_num S, (numeric) seq_num Spm (numeric)
retire_prior_to: Ry (numeric) retire_prior_to: Ryp (numeric) retire_prior_to: Roprm (numeric)
CIb G2 (content) ciD: RandC, (content) cip: RandCy (content)
reset_token T2 (content) reset_token RandT, (content) reset_token: RandTpp, (content)

Fig. 2: Mutation workflow diagram. The basic frame sequence
is mutated along the orange lines to generate complete test
cases, while the document is sent to each mutator along the
blue lines, specifying the mutation strategy.

randomly deleting or shuffling one frame every k frames (e.g.,
in a 100-frame sequence, randomly reordering or deleting one
frame every five frames). This introduces variability without
prematurely terminating the connection. In Figure 2, we map
the original sequence 1-n to a permuted sequence p; tO Pyy,.
Additionally, we impose rate limits on client-to-server reply
frames; in multi-round interactions, delaying, canceling, or
crafting incorrect replies can also lead to abnormal server
states.

Benefit of our segmental mutation. Remarkably, our
segmental mutation approach significantly reduces the muta-
tion state space. For instance, if the initial corpus contains
100 New Connection ID (NCI) frames. Each frame in-
cludes fields such as the seq_num, retire_prior_to,
the CID content, and the reset_token. Mutating all these
fields could theoretically yield 24°° combinations. However,
valid mutations require at least two following constraints:

SeqO f NewC'id > SeqO f LatestCid

SeqO f RetireCid € SeqO f ActiveC'ids
SeqOfLatestCid is the largest seq _num in the cur-
rently stored list of CIDs. SeqOfRetireCid is the
retire_prior_to field as well as the max identifier of
the CID we prepare to retire; this identifier must be present
in the current available CID list. Moreover, the values of the
CID and reset token do not affect the program’s execution
state. Therefore, the mutation space for these 100 CIDs
can be pruned to focus only on behaviors such as whether
to mutate SeqOfNewCid or SeqOfRetireCid, reducing
the mutation space to 22. This allows more computational
resources to be allocated to determining how to construct these
CID numbers.

C. State Anomaly Detector

Our state anomaly detector consists of two fundamental
parts: (1) a semantic consistency detector and (2) a public
resource consumption detector.

1) Semantic Consistency Detector: To efficiently identify
the inconsistencies, it is impractical to conduct an exhaus-
tive comparison of every frame sequence across all imple-
mentations. So, we abstract the frame sequences to extract
relevant semantic information and focus on monitoring spe-
cific indicators. After each round of interaction between the
MerCuriuzz and a QUIC implementation, these indicators are
independently recorded and passed to evaluate the difference.
Specifically, the process involves the following steps:

Abstracting frame sequence. To detect reply consistency,
we send data to all tested endpoints at the same rate and in
the same order during each fuzzing iteration. As previously
mentioned, directly comparing the content of each reply frame
may lead to excessive false positives due to implementation
differences among servers, resulting in inefficiency. To address
this, it is crucial to understand the root cause of inconsisten-
cies. First, we abstract all response frame data and extract
their key information. This key information is then compared
against the requirements specified in the RFC and other
response sequences to identify the causes of inconsistencies.
Specifically, we consider both the content of sent frames
and response frames. While sent frames are mostly identical,
during multi-round interactions between the client and server,
it is essential to understand the content of the sent frames to
determine and compare the validity of the response frames.
To achieve this, we extract the following features from the
frame sequences: (1) frame sequence numbers, (2) frame
types, and (3) the fields and content within the frames. In
the abstracted frame sequences, each element is represented
as a (sent, received) tuple. To simplify the model, we exclude
frames actively sent by the server, such as ping frames and
frames used to establish and initialize connections, as these
frames are not directly controllable by the fuzzer.

Detecting the disconnection and checking the causes
behind. When the server sends a ConnectionClose frame,
it typically indicates that the server has detected a critical
state error, potentially difficult to handle or indicative of a
vulnerability. Similarly, other mandatory control frames such
as ApplicationClose or ResetStream signify failures
in different layers of the QUIC protocol state. Consequently,
these control frames provide clear indicators of abnormal
behavior. If, during differential testing, some servers throw
such control frames while others continue to operate normally,
we classify the input as potentially containing a vulnerability.
To avoid excessive false positives caused by hard-coded server
logic that might produce these control frames at different times
or with mismatched sequence numbers, we do not consider
their positions within the frame sequence.

Examining control frame type and quantity. If the pro-
gram enters an abnormal state, it may manifest as an inability
to generate response frames, a noticeably slower response rate,

or ignoring subsequent frames after detecting a state error.
To identify such anomalies, we collect all response frames
from each server and compare the types and counts of control
frames, as well as response rates and contents. If any server’s
control frame messages differ significantly from the rest, it
implies that the server’s program state is in error.

Inspecting data frame payload. In addition to examining
control frames that indicate state changes, we also verify the
correctness of QUIC data frames. These include payload-
carrying frames, such as STREAM and CRYPTO frames, as
well as ACK frames used to acknowledge data from the peer.
For payload-carrying frames, we provide identical backend
resources to all servers and thus expect uniform response data.
Upon receiving these data frames, we parse them according to
the agreed-upon format (e.g., HTTP/3) and analyze fields that
must match (e.g., page content, return header status codes).
As the most commonly used server response frames, ACK
frames are non-retractable. By parsing ACK frames, we can
accurately determine which data the server has received and
processed. Hence, we specifically designed an ACK range
checker to record all ACK frames generated by each QUIC
implementation in a single fuzz run and compute the full set
of inputs each server has processed. If any implementation
shows inconsistent range information (e.g., repeated acknowl-
edgments or divergent ranges), the ACK range checker logs
these discrepancies.

2) Public Resource Consumption Detector: Setting public
resource consumption baseline. In order to identify abnormal
resource consumption, it is essential to first characterize the
expected baseline of normal resource usage. Since different
implementations are written in various languages, we define
and measure a public resource consumption usage baseline
for each implementation. Under established connection condi-
tions, the client transmits path_challenge frames padded
to 1200 bytes at a rate of 100 Mbps to the server and waits
for a path_response, calculating the average memory and
CPU usage. We chose path_challenge frames because the
server must fully read the frame data and construct a padded
response frame. Once processed, these path_challenge
frames are discarded, without allocating or occupying addi-
tional runtime memory.

Component of public resource consumption detector.
Our detector encompasses three components: (1) CPU Re-
source Usage Detector. We employ a CPU usage monitor,
assigning a fixed CPU thread for each server. By observing
whether CPU usage surpasses a defined threshold during
fuzzing, we determine if the server is experiencing exces-
sive public resource consumption. (2) Memory Resource Us-
age Detector. In a manner similar to CPU resource mon-
itoring, at the end of each fuzz iteration, we read the
/proc/<pid>/maps file to obtain the current memory
usage. (3) Network Resource Usage Detector. Considering
that network bandwidth usage can vary substantially based on
fuzzing content and configurations, this detector focuses on
network handle usage and service availability. Specifically, it
checks whether the server retains too many network handles

without promptly releasing them, and whether the service
remains capable of receiving complete QUIC requests and
completing the key exchange process after each fuzz iteration.

D. Snapshot Manager

To avoid the performance overhead caused by frequent
QUIC service restarts and state recoveries during fuzzing, we
introduce a snapshot manager based on Nyx. As illustrated
in Figure 1, the snapshot manager coordinates the delivery of
mutated inputs to two target implementations. However, tra-
ditional Nyx only supports coverage-guided greybox fuzzing,
which cannot accurately record and restore snapshots when
dealing with black box applications. To address this limitation,
we construct a dedicated System Under Test (SUT). We utilize
shared memory to establish input and output channels between
the snapshot manager and the SUT, enabling complex data
collection and message forwarding within the SUT itself.
Additionally, we implemented a harness running inside the
virtual machine. When the harness detects that the converter
has successfully established a connection with the target
implementation, it notifies the snapshot manager to create a
restore point for the entire SUT. This mechanism eliminates
the need for restarting the service and resetting the connection
in each fuzzing iteration.

SUT design. The original Nyx-fuzz framework provides
only three communication channels for interaction between
the fuzzer and the in-VM target: input delivery from the
fuzzer to the target, synchronization, and coverage feedback
transmission from the target back to the fuzzer. However,
inputs based on memory pipes and file-based formats cannot
be directly consumed by the target. Moreover, since the target
runs entirely inside the virtual machine, deploying observers
on the host side to monitor the target’s usage of shared system
resources is infeasible. To address these limitations, we made
the following modifications to the snapshot workflow.

First, we extended the Nyx codebase by introducing a
shared memory region res_shm that is accessible and mod-
ifiable by both the snapshot manager and the virtual machine.
We then designed and implemented a component named
quic_converter, which is responsible for establishing and
maintaining a QUIC connection with the target after startup.
Upon receiving compressed test cases from the snapshot man-
ager, quic_converter decompresses them into a complete
frame sequence and interacts with the target according to the
specifications in the associated descriptor. To enable traffic
monitoring and resource usage analysis, we decoupled the
Observer and Evaluator components within the state anomaly
detector. The observer, embedded in quic_converter,
monitors system resource usage and QUIC traffic during exe-
cution, and submits this data via res_shm to the evaluator for
further assessment after each test case is completed. Finally,
we implemented a harness that runs at the beginning of each
VM boot-up. The harness uses Nyx’s internal APIs to register
all communication channels inside the VM, invokes the target
program, and delivers inputs from the snapshot manager to the

target. It is also responsible for informing Nyx when to create
or restore a snapshot for the SUT.

Rapid status recovery. To ensure that the SUT can imme-
diately parse and transmit data to the target after each snapshot
restoration, we configure the system snapshot created by the
harness to cover both the quic_converter and the target.
During the initialization phase, the harness launches the target
and waits for it to start listening on its designated port. Once
the target is ready, it launches the quic_converter. When
a successful QUIC connection is established between the
quic_converter and the target, the quic_converter
sends a signal to the harness, which then instructs the snapshot
manager to save a snapshot. After each test case execution,
once the interaction between the quic_converter and the
target is completed, a second signal is sent to the harness.
The harness then triggers the snapshot manager to restore the
previously saved state. At this point, the SUT is rolled back to
the moment immediately after the connection was established,
thereby eliminating the overhead of both state and connection
reinitialization on the target. This design enables efficient and
continuous fuzzing.

V. EVALUATION
A. Experiment Setup

Targets and experiment platforms. To evaluate MerCuri-
uzz, we tested the 16 actively maintained QUIC projects [1],
(31, [6], [11], [16], [20], [25], [27], [35], [36], [40], [41], [43],
[46], [47] recommended by the QUIC Working Group [17].
These projects include well-known open-source implementa-
tions from companies such as Cloudflare, Google, and Alibaba,
as well as QUIC implementations in various programming
languages, such as quic-go in Golang and aioquic in Python.
For version selection, we uniformly chose the latest versions
released before January 31, 2025. Detailed project and code
lines are listed in Table III of Appendix C. For the test
platform, we used a server equipped with two ES5-2673V4
CPUs (40 cores, 80 threads, supporting the Intel PT technology
required by NYX snapshots) and 128 GB of memory, running
Ubuntu 24.04. Each QUIC service was allocated one dedicated
CPU core and 4 GB of memory.

Details of experiment implementation. Regarding the
implementation of all MerCuriuzz features, we wrote 18,000
lines of Rust code and 1,000 lines of C code to realize all
the above designs. To improve development efficiency, we
used LibAFL as the development framework and embedded
these components into it. Regarding the configuration of each
QUIC test target, all implementations except nginx were run
in single-threaded mode to ensure accurate measurement of
compute and network resources. Nginx cannot be configured
in single-threaded mode because QUIC connection handling
requires a dedicated worker thread. Thus, we configured it
to use only one worker thread. Regarding QUIC version
and ALPN selection, we used Version 1 and h3. The quinn
platform supports only Draft 29 and hq (HTTP/0.9 over
QUIC Draft 29), a relatively uncommon version currently
supported by only seven implementations (s2n-quic, picoquic,

neqo, Isquic, msquic, aioquic, and cloudflare). Therefore, we
performed differential testing of quinn only against these.
Regarding application-layer resource configuration, to ensure
stable application-layer output, we used a single GET request
for /index.html over HTTP/3. Regarding selecting differ-
ential targets, we did not designate any single implementation
as an oracle, instead, we paired the 16 implementations in
all possible combinations, generating 112 test pairs. We ran
24-hour fuzzing on each test pair and recorded all corpus
entries that led to observed inconsistencies.

B. Results and Findings

MerCuriuzz generated a total of 10M test cases across all
test targets. We collected all test reports and corpus informa-
tion. First, we performed three rounds of traffic replay to elim-
inate false positives caused by public resource fluctuations.
Then, we removed duplicate data based on traffic features and
MerCuriuzz’s anomaly judgments. Each report selected by the
above steps was manually analyzed. In total, we discovered 14
new logic vulnerabilities in QUIC implementations affecting
prominent cloud service providers such as Cloudflare and
Alibaba Cloud. We have responsibly disclosed our findings to
the affected vendors. Up to now, we have received five CVE
IDs, two commitments to assign CVE IDs, and three Alibaba
vulnerability database IDs. In addition, four vulnerabilities
earned bug bounties. Table I summarizes the information on
these vulnerabilities. We conducted an in-depth analysis of
the experimental results and identified 6 novel interesting cate-
gories of logic vulnerabilities in QUIC. Below, we elaborate on
how MerCuriuzz uncovered these vulnerabilities and explain
the underlying principles behind them.

Category 1: Crypto Flood. Crypto frames in the QUIC
protocol are used to transmit TLS handshake messages during
connection establishment. When a message is long, crypto
frames are segmented for transmission. Similar to QUIC
stream structures, crypto frames provide simple in-order deliv-
ery of these messages, achieved via the offset and length fields
in each crypto frame, which mark the current encrypted data
length and its position. STREAM frames constrain peer-sent
data size using the FIN bit and the MAX_STREAM_DATA
transport parameter; unlike STREAM structures, crypto has
no such mechanisms, allowing unlimited use of crypto frames
to send data. Additionally, section 7.5 of the RFC mandates
buffering at least 4096 bytes of out-of-order crypto frames but
does not specify how to handle excessive out-of-order data. As
shown in Figure 3(a), during fuzz testing, our frame sequence
mutator generated approximately 500 crypto frame variants
with different offset/length ranges; some implementations,
such as aioquic, picoquic, and xquic, cached all these crypto
frames in memory. Our memory resource detector captured the
corresponding memory growth, thereby identifying this flaw.

Category 2: Path_challenge Flood. In connection
migration, both endpoints use path_challenge (PC) and
PATH_RESPONSE (PR) to verify a new path’s reachability.
When the server sends PR1 in response to the first PC frame
PC1 but has not received an ACK for PR1 before the next

TABLE I: The 14 security defects discovered by MerCuriuzz

Bugs ID Project Name Language Description Impact Status Assign CVE DSM DSCD DPCD RAD
MO1 Aioquic Python CRYPTO Flood Memory Exhausting fixed ° v

MO02 Picoquic C CRYPTO Flood Memory Exhausting fixed ° v

MO03 Aioquic Python PC Flood Memory Exhausting fixed ° v

Mo04 Aioquic Python ACK Confusion CPU Exhausting fixed ° v v

MO5 Cloudflare Rust Connection Hold-on Flood Silent DoS fixed - v v

MO06 H2o C ACK Confusion Immediate Crash reported) v v v v
MO7 H2o0 C Double Unregistered CID Immediate Crash reported) v v v v
MO8 Xquic C CRYPTO Flood Memory Exhausting fixed o) v

M09 Xquic C PC Flood Memory Exhausting fixed o v v

M10 Xquic C NCI Flood Memory Exhausting fixed o v v

Ml11 Lsquic C Memory leak during TLS handshake = Memory Exhausting reported - v v

M12 Aioquic Python Double Unregistered CID CPU Exhausting reported v v

M13 Aioquic Python Close The Stream Twice CPU Exhausting reported v v

M14 neqo Rust Assert Error Immediate Crash fixed ° v v v v

@ M06 and MO7 are fixing, and were promised assigned CVE IDs.

O M09-M11 assigned Alibaba Vulnerability Library IDs, no CVE IDs.
DSM: Disable segmental mutation.

DSCD: Disable Semantic Consistency Detector.

DPCD: Disable Public Resource Consumption Detector.

RAD: Replace all anomaly detectors with LibAFL’s default.

PC frame PC2 arrives, it must buffer both PC1 and PC2 until
it either receives the corresponding ACK or determines that
PR1 failed and the new path is unreachable. If the rate of
clearing completed path challenges is slower than the arrival
of new challenges, memory accumulation occurs. Our frame
sequence mutator generated a large number of PC frames,
and our interaction behavior mutator limited the fuzzer’s send
rate, revealing memory buildup in aioquic and xquic. We use
Figure 3(b) to show how Path Challenge Flood works. Notably,
the memory-consumption logic differs: aioquic leaks memory
by failing to free buffers allocated for PC frames, whereas
xquic accumulates too many PR frames unsent, causing the
send queue to grow rapidly.

Category 3: New_connection_id Flood. New Connection
ID (NCI) frames are used to request new CIDs, which identify
new paths during connection migration. Generally, a QUIC
server allows no more than four coexisting CIDs, so NCI
frames use the retire_prior_to field to retire old CIDs and send
Retire Connection ID (RC) frames. Under normal processing,
after the client sends an NCI, the server sends an RC frame,
and the client acknowledges it with an ACK. The problem
arises in the server’s processing of NCI frames and the
acknowledgment of RC frames. Since handling an NCI frame
involves multiple memory operations such as CID registration
and storage, the server may respond to NCI frames with some
delay. Additionally, if the client delays the acknowledgment
of an RC frame, the server may assume it was lost and add
it to the retransmission queue. Similar to previous cases, if
the rate at which the server receives NCI frames exceeds its
processing capacity, or if RC frames are added to the send
queue faster than they are removed, the send queue may grow
without bound. We illustrate the impact of this rate mismatch
in Figure 3(c). In our test framework, the frame sequence
mutator generated a large number of valid NCI frames, each
retiring a previously registered CID to maintain the current
CID count. During testing, we found that xquic can cache

excessive RC frames, risking memory buildup.

Category 4: Connection Hold-On Flood. Unlike the pre-
vious three vulnerabilities involving direct unbounded mem-
ory consumption, we discovered a more subtle logic flaw
while fuzzing Cloudflare Quiche’s quiche-server (hereafter, the
server). During testing, we observed a strange phenomenon:
CPU and memory resources appeared normal, yet network
resources reached the timeout limit and connections could
not be established. After carefully reviewing the source code
and network traffic, we summarized the vulnerability trigger
process as shown in Figure 3(d), as follows: The server stores
all client connections throughout their life cycles in a hash
map; whenever QUIC data is received, it polls these clients
to determine which client the data belongs to and processes
them in order. At this time, a local variable total write is
defined to indicate how much data has been sent to the
current client; however, if total_write is zero (meaning all
streams are marked as closed), the developer erroneously
uses break to exit the loop over all clients instead of skip-
ping the current client. Suppose user Alice is loading an
HTTP/3 page via the quiche-server. Bob opens numerous
connections to occupy the front positions in the hash map
and uses STOP_SENDING frames to close the streams on
those connections; the quiche-server then ends the polling over
clients prematurely and cannot send any data to Alice. This
covert denial-of-service attack cannot be detected simply by
monitoring process state or CPU and memory usage, and even
traditional fuzzers cannot find it, because the attacker and vic-
tim are not on the same connection. MerCuriuzz reestablishes
connections when network resource exhaustion is detected and
evaluates their availability, thus reliably uncovering this type
of vulnerability.

Category 5: Double Unregistered CID. We mentioned
above how the server handles NCI frames. We discovered
that this process can cause another logical vulnerability. As
shown in Figure 3(e), since the number of stored CIDs is

Attacker

____ CRYPTO Frames

~” "Offset 0 Length 2000~ -

R

QUIC server

FINISHED

CRYPTO

CRYPTO

e

QUIC server

*| PR

— | _pop
ERASE

CRYPTO

CRYPTO Buffer

Waiting for
data at the gap

“«
, Gaps between
two CRYPTO

1

- Waiting For ACK To
Complete Challenge

PC1

Attacker

NCIO f—

NC [
NCI2 [

ACK,RCO [«

() New Connection ID Flood

At

Establish Conn|

Stop Streams

e

QUIC server

WorkFlow of NCIO

. Cached in Buffer

NCIo

NCI1

NCI2

NCI3

NCI4
NCI5
NCI&

NCI7

NCI8

=

QUIC server

Released

Stucked

NCI4.

cker

At

PKN A f—

ACK Range [1,2)
PKN 2

ACK Range [2,3) [——

Max 4 CIDs

QUIC server

— | o[]
——{—» CIDO | CID1

1> CID0 | CID1 | CID2

> cibo | cib1 | cip2 | CID3

unregws!erl Replace
> CIb4 CID1 CID2 CID3

Retire CID 0

CID4 | CID1 | CID2 | CID3

i @

e

Packet Status

PKN 1: Acked
PKN 2: Acked
PKN 3:

QUIC server

“Time of Ci
E— Al Packets

Packet Status

ock
oa ¥

ACK Of PR2

(b) Path Challenge Flood

(d) Connection Hold-On Flood

ACK Range [2,3)

ACK Range [4,5) |-

(f) ACK Confusion

Fig. 3: During the fuzzing process, we identified 6 categories of interesting logical vulnerabilities. To illustrate their attack
models, we present corresponding sequence diagrams.The vertical dimension of the diagram (the Y-axis) represents the flow
of time, with events occurring sequentially from top to bottom.

fixed after negotiation, when the CID count is saturated, the
server must first unregister older CIDs before adding new ones.
A QUIC server must first process the retire_prior_to field to
unregister all matching CIDs, and then replace them with new
CIDs. However, the server also needs to notify the client of
the retired CIDs via RC frames. If it does not temporarily
store the CIDs that have been unregistered, it fails to find the
CID and encounters an error. In our testing, we found that h2o
uses a similar logic. It performs two unregister operations. On
the second unregister, the old CID has already been replaced,
causing a crash error.

Category 6: ACK Confusion. ACK frames indicate to the
peer that packets have been received. To improve acknowl-
edgment efficiency, an ACK can include multiple ranges to
acknowledge packets. For example, acknowledging packets
numbered 1, 2, 4, 5, and 7 may use an ACK frame with the
ranges [1,3), [4,6), and [7,8). As shown in Figure 3(f). During
fuzzing, our mutator generated ACK frames with overlapping
ranges. All packets in these ranges existed and had been
legitimately sent by the server. Most QUIC implementations
ignore such duplicate ACK frames; stricter implementations
consider overlapping ranges invalid and terminate the con-
nection. We found that h20, when processing these ACKs,
neither ignores them nor terminates the connection. Instead,
it repeatedly updates the acknowledgment status of the same
packet, causing an already acknowledged packet to have its
state modified again at a later time, which can lead to a Time
of Check to Time of Use (TOCTOU) issue when the server

10

triggers Connection Close.

C. Real-World Attack Impact

Impact 1: immediate service crash. Some vulnerability
types directly cause the server process to crash. Even when
watchdog tools monitor the server’s status, an attacker can
force the server to crash and restart frequently with a minimal
payload, leading to a DoS attack. For example, in M07, an
attacker sends four NCI frames to h2o to fill the CID list, then
one additional NCI frame to replace an old CID, triggering an
assertion failure and crash in h2o with under 1 KB of traffic. In
MO06, the TOCTOU issue does not trigger reliably and requires
the attacker to repeatedly send specially crafted ACK frames.
In our tests, an average of 200 ACK frames causes one h2o0
crash, enabling an attack with 4KB of traffic in approximately
0.5 s.

Impact 2: exhausting server memory. During CRYPTO,
PC, and NCI flood attacks, the server continuously caches
either the attacker’s sent frames or data generated in the
process of responding, eventually allocating more memory
than the physical limit allows and being forcibly terminated
by the operating system. Throughout this period, the attacker
must continuously send data to the server. We also conducted
experiments to validate the impact under practical conditions,
assuming both the attacker and victim use a 1000 Mbps
network bandwidth and the server is allocated 4 GB of
memory. In the case of crypto flood, we tested aioquic and
xquic. All crypto frame contents sent by the attacker were

received and cached by the server, resulting in memory usage
growing at a steady rate of 1 GB/min and triggering forced
process termination after 4 minutes. In PC flood, the server
only stores 8 bytes of challenge data per frame and gradually
releases old challenges, so the memory growth rate is slower.
However, for aioquic, the memory usage still increased at 0.4
GB/min, triggering a DoS attack within 10 minutes. For NCI
flood, we tested xquic under attack and achieved a memory
growth rate of 0.6GB/min, reaching a DoS condition within 7
minutes.

Impact 3: silent DoS. Some vulnerabilities, such as Con-
nection hold on flood, do not manifest through explicit failures
and are categorized as Silent DoS. To assess the impact of such
attacks, we designed the following experiment. We allocated
one CPU core and 4 GB of memory to the Cloudflare quiche
server. A 4 KB HTML page was provided for the victim to
request via GET. During the test, the victim sent a GET request
to the server every second and recorded the response time.
Meanwhile, the attacker injected malicious clients into the
server’s hash map using the aforementioned attack strategy,
gradually increasing the sending rate. When no attack was
taking place, the victim’s average response time was 10 ms. As
the attacker’s rate increased to 1 client per second, the victim
occasionally failed to establish a connection, though refreshing
the page would recover the session. At 3 clients per second, the
victim rarely succeeded in establishing a connection, and the
average response time increased to over 300 ms. At 10 clients
per second, the victim was unable to receive any response
from the server at all, resulting in a severe DoS effect.

Impact 4: exhausting CPU resource. For other aioquic
vulnerabilities such as M04, M12, and M13, the server does
not crash entirely but instead causes the subprocess of the
current connection to crash. Aioquic promptly collects and
reports the error, then restarts the subprocess. However, this
recovery process consumes significant CPU and memory I/O
resources.

To evaluate the impact of these attacks, we used the same
server and victim configuration as in the Silent DoS exper-
iment. The attacker sent malicious requests to aioquic at a
bandwidth of 10 Mbps. Initially, the average response time
for client requests was 12 ms. As aioquic repeatedly triggered
exceptions and restarted subprocesses, CPU utilization quickly
reached 100%, accompanied by a large volume of error output.
The time it takes for the victim to access the page gradually
increases, and after one minute of sustained attack, the average
response time exceeded 1 second.

D. Comparison Experiment

1) Comparison with SOTA Fuzzing Framework: We sur-
veyed three SOTA black box protocol fuzzing tools: BooFuzz,
DPIFuzz, and Bleem, and selected two of the currently open
source tools for evaluation. DPIFuzz is currently the latest
differential fuzzing framework for QUIC, and BooFuzz is a
widely tested black-box fuzzing framework. BooFuzz does
not support TLS handshake or encryption mechanisms of the
QUIC protocol. To enable QUIC fuzzing, we implemented a

11

middleware using cloudflare-quiche. This middleware replaces
BooFuzz in establishing connections with the target QUIC
server. We then supply templates for various QUIC frames;
BooFuzz generates plaintext frames based on these templates,
and the middleware automatically parses and interacts with
the server, returning results to BooFuzz to complete one test
round. Bleem is a black box protocol fuzzing tool that operates
as a man-in-the-middle (MITM), collecting frame sequences
from both the client and server during their interaction. It
automatically learns frame formats and performs mutations on
the frame sequences. However, since Bleem is not yet open-
sourced, we do not include it in the Comparison experiment
in this evaluation.

Comparison of mutation and detection capabilities. Ta-
ble II lists the main differences in vulnerability detection capa-
bilities among BooFuzz, DPIFuzz, Bleem, and MerCuriuzz. In
terms of mutation capabilities, all three tools perform random
and unconstrained mutations at the content level. Among them,
only Bleem supports mutations at the frame sequence level,
and none of them support mutations of interaction behaviors.
MerCuriuzz, through its segmental mutation strategy, is ca-
pable of performing mutations at all three levels. In terms
of detection capabilities, BooFuzz, Bleem and MerCuriuzz
use port occupancy and process status to determine crashes;
DPIFuzz only analyzes traffic and does not automatically
detect crashes, and developers must manually maintain server
state and check for failures. For correctness, BooFuzz and
Bleem do not verify correct output; DPIFuzz only checks the
correctness of QUIC stream data, and MerCuriuzz checks both
data frames and control frames. For consistency detection,
BooFuzz and Bleem lack differential testing support; DPIFuzz
only detects byte-level inconsistencies; MerCuriuzz detects
semantic-level inconsistencies. Finally, only MerCuriuzz can
detect and report abnormal resource consumption.

TABLE II: Comparison of Mutation and Detection Capabilities Among fuzzers

Mutation-level Detection

Fuzzer

Content Sequence Interaction Crashes Correctness Consistency — Resource Consumption

BooFuzz
DPIFuzz
BLEEM

o
o
o

e}
e}
L]

L] o o o

o
o

4 4 4 o
L] o o o
MerCuriuzz ° ° ° 4 4

@ Capable o Partially Capable to mutate or detect o Not Capable.

Comparison of code coverage. For the evaluation of
test-case generation and comparison of actual testing results,
we introduced coverage and the number of detected vulner-
abilities as objective metrics. Although none of the three
fuzzers is coverage-guided, coverage information allows us to
gain insight into the diversity of generated test cases and the
likelihood of detecting vulnerabilities. In the fuzzing process,
we selected four QUIC applications implemented in C and
C++ and collected coverage via code instrumentation. We ran
each application with each of the three fuzzers for 24 hours;
the coverage data are shown in Figure 4.

Overall, the coverage of BooFuzz growth was relatively
slow and reached saturation prematurely on all four imple-
mentations. This is because BooFuzz randomly populates
each field of QUIC frames, resulting in an excessively large

PICO
© QUIC o XQUIC
s S
N s
Q

A »
N 7

5 oS

Q 2
S S| —

$ <

o o
v o Q,Q

S ’1«00
0 S

N o

O N
¥ =

& v
W AV

Soh 04h 08h 12h 16h 20h 0Oh 0Oh 04h 08h 12h 16h 20h

00h

LSQUIC H20(quickly)
& NS
v &
N
N N
v Q'
,))QQ SV
e %00 —
s ¥ Legend
) o egen
@0 r QQ MerCuriuzz
NV 4
QB QQ I VerCuriuzz_DSM
'{J/ W DPIFuzz

B BooFuzz

QOOh 04h 08h 12h 16h 20h 0O0h %Oh 04h 08h 12h 16h 20h 0Oh

Fig. 4: Coverage comparison of MerCuriuzz, MerCuriuzz_DSM, DPIFuzz, and BooFuzz across four applications

mutation state space. It therefore struggles to find test cases
that trigger more program paths. MerCuriuzz overcomes this
challenge by performing a frame sequence mutator. DPIFuzz
outperforms BooFuzz in coverage: after a rapid initial increase,
it continues to grow slowly, but the overall improvement
is limited. This behavior stems from its internal design:
DPIFuzz provides detailed generation and mutation algo-
rithms for STREAM frames according to the RFC, ensuring
each STREAM frame can be received without causing state
anomalies, which yields high early coverage of the server’s
STREAM-frame processing logic. For all other frame types,
DPIFuzz uses simple random generation and thus faces the
same large state-space issue. Furthermore, we used DPIFuzz
and BooFuzz to perform 24-hour black-box fuzzing on 16
QUIC applications. Neither tool detected any known vulnera-
bilities or triggered anomalies or crashes.

2) Ablation Experiments: To evaluate our contributions,
we conducted ablation experiments and designed three fuzzer
variants, each disabling or replacing one of MerCuriuzz three
key components:

Assessing the segmentation-based mutator. Disable seg-
mental mutation (MerCuriuzz_DSM). Among its three mod-
ules, we turned off the frame sequence mutator and interaction
behavior mutator. We did not replace the segmentation-based
mutator with AFL’s default mutator; instead, we retained the
frame content mutator to avoid breaking frame structure. We
tested the four QUIC applications used in the comparative
experiments and recorded coverage changes over 24 hours,
as shown in Figure 4. Although this variant outperformed
BooFuzz and DPIFuzz in some cases, it still lagged notice-
ably behind full MerCuriuzz. Among the 14 defects, Mer-
Curiuzz_DSM detected only 7 (Table I). Under the DSM
mode, vulnerabilities such as crypto flood and NCI flood
went undetected, because merely sending packets in order
and immediately processing all responses does not trigger
them. Only when the fuzzer actively drops some normally
sent frames and delays responses can these bugs be triggered
and caught by the Semantic Consistency Detector.

Assessing the anomaly detectors. We evaluated three
variants. Disable Semantic Consistency Detector (MerCuri-
uzz_DSCD), Disable Public Resource Consumption Detec-
tor (MerCuriuzz_DPCD), and Replace all anomaly detectors
with LibAFL’s default (MerCuriuzz_RAD). We measured each
variant’s ability to detect vulnerabilities. We evaluated the

12

vulnerability detection capabilities of each variant, as shown
in Table I. Under the DSCD mode, a total of 9 vulnerabilities
were detected. However, some vulnerabilities in PC Flood and
aioquic could be easily missed if only the Public Resource
Consumption Detector is used. Under the DPCD mode, 8
vulnerabilities were detected. It fails to effectively detect
vulnerabilities like CRYPTO Flood and Connection Hold on
Flood, which primarily rely on public resource consumption
and are not easily identifiable through traffic analysis. The
results show that the two detectors focus on different aspects
of detection and are highly complementary, with identifying
vulnerabilities that the other misses. Under the RAD mode, all
vulnerabilities except for M06, M07 and M14, which cause
service crashes, were difficult to detect.

Picoquic | Xquic [62316 242,072

S2n-quic | Quinn [NA8.656 219.128

Ngtcp2 | Nginx [N 52,952 208.616

[25.688
46.17

[—— 53.746

Haskell | Neqo

Aioquic | MsQuic 198.822

Lsquic | H2o [— 66.932 173.044

Quic-go | Haproxy [FE——— 61598 202.198

Cloudflare | Google |FEEG— 67.428

204.104

50 100 150 200 250 300K

m Mercuriuzz-Net m MerCuriuzz

Fig. 5: Comparison of the number of executions during 24
hours of Fuzzing. Efficiency increased by up to 350% in the
best case; average improvement (excluding Haskell — Neqo)
reached 225%.

Assessing the snapshot manager. Replace snapshots with
service-restart resets (MerCuriuzz_RS). We ran 24-hour tests
on all target implementations and counted the total num-
ber of differential test executions; results are in Figure 5.
Most tests performed well. In the S2n-quic vs. quinn com-
parison, MerCuriuzz achieved a 350% efficiency improve-
ment over the non-snapshot version. Excluding Haskell and
Neqo, the average improvement was 225%, demonstrating
that NYX snapshots effectively eliminate SUT state reset and
connection-establishment overhead. Because snapshot perfor-
mance depends heavily on CPU and memory bandwidth, faster
compute and storage media could further boost MerCuriuzz’s

speed. We also observed poor performance on Haskell and
Neqo due to the Haskell implementation’s inefficiency, yet
snapshots still yielded an 80% speedup.

E. Analysis of False Positive and Duplicate Rates

Improvements to reduce duplicate reports. We employ
two complementary methods to identify and filter duplicate
test reports. (1) Compare the root causes of reports. Whenever
the State Anomaly Detector flags an exception, such as a
mismatched CC frame in differential testing or discrepancies
in data frames, MerCuriuzz emits an anomaly brief detailing
the type of anomaly and its trigger. A single vulnerability may
trigger multiple detectors (e.g., a CRYPTO FLOOD attack
may produce CC, DATA, ACK mismatches, and abnormal
memory usage). We merge these briefs into a unique finger-
print per testcase; matching fingerprints reveals overlaps with
previous reports. (2) Eliminate public resource fluctuations.
Even inside a VM, CPU, memory, and I/O may fluctuate due
to other processes, the host, or MerCuriuzz itself. We replay
each testcase’s traffic and verify that identical briefs recur.
Only reports with unique fingerprints and identical briefs under
replay are accepted. Together, these methods remove most
duplicates and greatly reduce the duplicate report rate.

Measurement and analysis. We evaluated the filter on
24 hour fuzzing runs of implementations with known logic
flaws. We logged total reports, deduplication effectiveness,
and causes of remaining duplicates or false positives. Aioquic
as the implementation in which we discovered the greatest
number of logical flaws, , our run executed 99,411 independent
testcases. Applying fingerprint matching yielded 92 unique
inconsistency reports. After replay verification, 16 reports re-
mained that pinpointed aioquic defects, covering all discovered
vulnerabilities. Of these, 50% were duplicates (8/16), and
18.75% were false positives (3/16). Manual review confirmed
each classification.

Duplicate reports typically stemmed from benign, irrelevant
traffic altering the fingerprint, which can be quickly discarded
during manual review. False positives fell into three categories:
(1) public resource fluctuations. Sustained high CPU or I/O
delays may still trigger spurious anomaly briefs. (2) Stricter
scrutiny and restrictions on traffic. Some test targets enforce
constraints not defined in the RFC (or enforce them more
strictly). For instance, Isquic upon receiving DATAGRAM
frames it immediately emits a CC Frame, whereas other imple-
mentations accept them without error, this cause differential
anomalies without real flaws;(3) Deviation in the prediction
of vulnerabilities. For some logical vulnerabilities, vulnerabil-
ities will only occur when public resources are continuously
occupied or the program responds with a long delay. Due
to efficiency requirements, we avoid fuzzing efficiency being
too slow by limiting the maximum frame sequence size of
a single testcase. As a result, an individual testcase cannot
always trigger the full vulnerability, and we rely on manual
confirmation to determine whether a genuine logic flaw exists.
A typical example is quic-go’s mitigation for the PC Flood
attack: it requires 256 in-flight PATH_RESPONSE frames to

13

trigger, but most fuzzed cases fall short of this threshold,
leading to false positives flagged by the Semantic Consistency
Detector.

VI. DISCUSSION
A. Mitigation

Insights on QUIC and RFC Specifications. Through
analyzing the vulnerabilities uncovered by MerCuriuzz, we
observed that many QUIC implementations faithfully follow
the mandatory and recommended requirements defined in
RFC documents. However, in areas where the RFC does not
provide explicit guidance, implementations still diverge. These
differences can lead to exploitable vulnerabilities, especially
when implementations make differing assumptions. For exam-
ple, the RFC’s specification for the crypto frame mandates a
minimum buffering capacity but does not define an upper limit.
Similarly, in the case of PC and NCI frames, the RFC requires
endpoints to respond to every path_challenge and to send a
retire_connection_id frame for every retired CID. However, it
does not place any constraints on the maximum number of
PC frames a connection can receive or the maximum number
of CIDs that can be retired. We recommend supplementing
the QUIC RFC with definitions for these upper bounds to
prevent excessive resource consumption and ensure consistent
behavior across implementations. For instance, A maximum of
512 KB of out-of-order crypto frame data should be buffered.
This limit is unlikely to interfere with normal certificate trans-
mission and key exchange. No more than 256 path_challenge
frames should be accepted before a connection migration is
completed. This provides ample allowance for endpoints to
probe and establish a low-RTT path, after which the count can
reset. A maximum of 256 CID retirements should be allowed
prior to completing a migration. In typical scenarios, switching
CIDs primarily serves to indicate a new path, and this limit is
sufficient to cover most network environments.

Insights on QUIC implementations. We recommend
adding audits for variable length arrays in high-level pro-
gramming languages. During our vulnerability analysis, we
observed an interesting phenomenon: memory consump-
tion—related logical vulnerabilities are more likely to occur
in high-level programming languages (such as Python and
Rust). Unlike C, these languages often support variable length
structures with built-in iteration and query methods, such as
list and dict in Python, and vector in Rust. Developers do
not need to manually manage the memory usage of these
structures, and iterators eliminate the need to count the number
of elements. As a result, attackers are provided with the
opportunity to allocate arbitrary memory within these variable-
length structures. Therefore, QUIC service providers and soft-
ware developers can mitigate vulnerabilities caused by public
resource consumption by enforcing stricter element number
limits on these special structures.

Sustained fuzzing. This work tests 16 open-source tools
among all current QUIC implementations. Due to limita-
tions of the experimental environment and time, we did not
test other closed-source QUIC implementations or additional

QUIC tools. Therefore, we suggest that developers integrate
the findings of this work into their development workflows
and continuously fuzz QUIC projects to discover more imple-
mentation flaws and logical vulnerabilities. Although logical
vulnerabilities are important and have a wide impact, their
early manifestations are easy to overlook, and they have
not received sufficient attention so far. Hence, the entire
community needs to work together and adopt a systematic
security perspective to mitigate this problem.

B. Limitation

In terms of vulnerability discovery, we do not necessarily
uncover all security issues in QUIC, this is an inherent
limitation of fuzzing, which cannot exhaust all possibilities. In
the future, combining symbolic execution with logical vulner-
ability discovery may enable more precise logical vulnerability
testing frameworks. In terms of the tool’s scope, we have not
yet adapted MerCuriuzz to protocols beyond QUIC; however,
such porting is feasible, as discussed in next subsection. In
terms of vulnerability determination and confirmation, our
current workflow still requires manual intervention for vali-
dation and root cause analysis. We plan to address this by
integrating automated state-machine construction. Therefore,
constructing a state machine to assist differential testing, as
well as automating the mechanisms for report verification and
replay, will be a key focus of our future research.

C. Porting to Other Protocols

Although MerCuriuzz is principally designed for the QUIC
protocol, similar logic vulnerabilities may exist in other pro-
tocols. In general, porting MerCuriuzz to new protocols is
feasible, and we are actively working toward this goal.

Specifically, the following are the parts that can be reused
or less modified. The public resource detector mainly detects
system resource usage, and the snapshot manager is responsi-
ble for managing the VM and transferring data to the fuzzer,
and thus can be directly reused. The frame sequence generator
and the interaction behavior mutator in the sectional mutation
use predefined algorithms to expand the base frame sequence
and therefore require only minor modifications. The following
are the parts that need to be re-adapted. The frame content
mutator and semantic consistency detector modules are mainly
designed for the QUIC protocol, so when porting to other
protocols, in order to improve the quality of the testcases,
we need to extract the constraints on length, content, and
numeric fields in the frames based on the definition of the
frames as defined in the RFC document and redefine semantic
inconsistencies based on the protocol characteristics. In addi-
tion, we use converters to abstract protocol interactions into
interfaces, so developers only need to write the corresponding
protocol interaction programs, which greatly improves the
porting efficiency.

In terms of predictions, MerCuriuzz favors protocols with
streams and contexts, such as HTTP/2 and HTTP/3, which we
believe are highly portable and expect to see more adaptations
in the future. For protocols that do not have a context, such

14

as HTTP/1 or SMTP, the frame sequence generator and the
interaction behavior mutator will no longer be available, and
for protocols that do not have a flow structure, such as TLS,
the modules of the segmentation mutation and state anomaly
detector will not be fully functional, as they do not involve
flow and congestion control.

VII. RELATED WORK

In this section, we review prior work on logical vulnerabil-
ities and fuzzing techniques for the QUIC protocol.

Logical vulnerabilities in QUIC. Early studies such
as QuicSand [38] examined QUIC’s defenses against
resource-exhaustion attacks. Cao et al. [9] and Cui et
al. [12] further analyzed large-scale DoS vectors like 0-RTT
and I-RTT attacks. Developers have also uncovered issues
during implementation—for example, Seemann’s blog on
quic-go [52]. However, these efforts rely on manual analysis
of QUIC features and code audits, lacking automated methods
to detect logical flaws in existing implementations.

Automated testing frameworks. No prior work focuses
on logic-vulnerability testing for QUIC. McMillan et al. [33]
perform formal analysis and fuzzing on the QUIC handshake.
DPIFuzz [49] disguises test traffic to evade DPI but does
not target logic bugs. BLEEM [29] supports general-purpose
protocol fuzzing, detecting only memory errors via crash ob-
servation. In fuzzing work targeting other protocols [26], [37],
[53], [59]-[62], [64], [66], they leverage specific application
behaviors or semantic inconsistencies to detect implementation
discrepancies. In contrast, MerCuriuzz is the first automated
fuzzer that uncovers QUIC logic flaws from both semantic
inconsistencies and resource-consumption anomalies.

State machine testing for logical bugs. State machines
have been widely used to detect illegal transition paths in
protocols like TLS. De Ruiter et al. [13] build a TLS state
machine via black-box testing; Stone et al. [32] extend it to
grey-box; Fiterau-Brostean et al. [14] integrate test-case gen-
eration and evaluation. Rasool et al. [48] constructed a QUIC
state machine and ported it to other protocols. State machines
have proven effective for discovering and validating logic
vulnerabilities. Jero et al. [21] found TCP congestion-control
flaws by analyzing its state machine and crafting abstract
attacks. Our testcases require repeatedly triggering the same
state through state machine self loops, yet this still poses a
challenge due to state space explosion. This motivates our
future work to integrate automata into MerCuriuzz.

Other QUIC attacks. Numerous works target QUIC’s
broader attack surface. McMillan [63], Zhang [63], and
Chatzoglou [10] expose TLS-handshake flaws. Damian [34]
demonstrates UDP loop attacks that reflect stateless resets,
causing feedback loops. Gbur et al. [15] present QuicForge,
forging QUIC traffic as DNS. These studies underscore
QUIC’s evolving security challenges and the need for auto-
mated testing tools.

VIII. CONCLUSION

This paper presents MerCuriuzz, a novel automated tool de-
signed to systematically test and uncover logical vulnerabilities

in QUIC protocol implementations. We propose the Segmental
Mutation strategy for generating structured test inputs. Addi-
tionally, to effectively determine whether a logic bug has been
triggered, we adopt a differential testing approach by designing
and implementing two types of detectors: the Semantic Consis-
tency Detector and the Public Resource Consumption Detector.
We design the Snapshot Manager to efficiently restore the state
of the SUT. We applied MerCuriuzz to a comprehensive set of
16 actively maintained QUIC implementations recommended
by the IETF QUIC working group. In doing so, we discovered
14 previously unknown logical vulnerabilities. All findings
were responsibly disclosed to the affected vendors, and we
received acknowledgment and bounty rewards from teams
including Cloudflare, Alibaba Cloud, quickly, aioquic, and
picoquic. We hope this work raises awareness of resource-
exhaustion logic bugs and encourages the broader community
to proactively defend against such subtle but impactful threats.

IX. ETHICS CONSIDERATIONS

Ethical considerations. We take the utmost care of potential
ethical issues. (1) In terms of experiment, we deployed all
QUIC services and fuzzing frameworks in a controlled internal
network. All our experiments were conducted locally, which
does not affect any other servers or users; (2) In terms of
disclosure process, companies encourage security tests through
bug bounty programs, and we carefully follow disclosure
guidelines when disclosing issues to vendors.

Responsible disclosure. We have reported all vulnerabilities
to the affected vendors. Up to now:

Alibaba Cloud accepted the report of XQUIC, classified
the vulnerability as high severity, and awarded 7,200
CNY as a bounty.

Cloudflare accepted the report and fixed the bug. Consid-
ering the vulnerable HTTP/3 server to be only the demo
implementation recommended by Cloudflare Quiche,
rather than a mandatory production standard, they only
awarded 200 USD as a bounty.

h2o0 and quicly acknowledged our report and have agreed
to assign CVE identifiers for the reported vulnerabilities.
aioquic and picoquic are interested in the vulnerabilities.
They invited us to assist in fixing the vulnerabilities.
We raised three issues [5], [23], [24] with aioquic, one
issue with picoquic [4], and submitted CVE requests to
cve.mitre.org, receiving four CVE identifiers: CVE-
2024-51410, 51411, 51413, and 51414.

Isquic confirmed the vulnerability, but the developers
attributed the root cause to BoringSSL’s memory man-
agement issues [54] and refused to fix the issue or assign
a CVE.

neqo confirmed the vulnerability [39], and helped us to
assign the CVE identifier: CVE-2025-6703.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers and our
shepherd for their insightful feedback that helped improve the
quality of the paper. We are grateful to Keran Mu and Qi

15

Wang for their peer review and helpful suggestions. This work
was supported by the National Natural Science Foundation
of China (grant #62272265). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of their employers or the funding agencies.

REFERENCES
[1] aiortc, “GitHub - aiortc/aioquic: QUIC and HTTP/3 implementation in
Python — github.com,” https://github.com/aiortc/aioquic, 2025.
Akamai, “Akamai and kuaishou implement quic to improve video
experience,” https://www.akamai.com/newsroom/press-release, 2022.
alibaba, “GitHub - alibaba/xquic: XQUIC Library released by Alibaba
is a cross-platform implementation of QUIC and HTTP/3 protocol. —
github.com,” https://github.com/alibaba/xquic, 2025.
AsakuraMizu, “Security vulnerability due to unbounded storage of TLS
stream - Issue 1745 - private-octopus/picoquic — github.com,” https:
//github.com/private-octopus/picoquic/issues/1745, 2024.
AsakuraMizu and k4raSu, “[SECURITY] aioquic may store an unlimited
number of remote path challenges - Issue 544 - aiortc/aioquic —
github.com,” https://github.com/aiortc/aioquic/issues/544, 2024.
aws, “GitHub - aws/s2n-quic: An implementation of the IETF QUIC
protocol — github.com,” https://github.com/aws/s2n-quic, 2025.
S. Bauer, P. Sattler, J. Zirngibl, C. Schwarzenberg, and G. Carle,
“Evaluating the benefits: Quantifying the effects of tcp options,
quic, and cdns on throughput,” in Proceedings of the 2023 Applied
Networking Research Workshop, ser. ANRW °23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 27-33. [Online].
Available: https://doi.org/10.1145/3606464.3606474
M. Bishop, “RFC 9114: HTTP/3 — datatracker.ietf.org,” https://
datatracker.ietf.org/doc/rfc9114, 2022.
X. Cao, S. Zhao, and Y. Zhang, “O-rtt attack and defense of quic
protocol,” in 2019 IEEE Globecom Workshops (GC Wkshps), 2019, pp.
1-6.
E. Chatzoglou, V. Kouliaridis, G. Karopoulos, and G. Kambourakis,
“Revisiting quic attacks: A comprehensive review on quic security and
a hands-on study,” International Journal of Information Security, vol. 22,
no. 2, pp. 347-365, 2023.
Cloudflare, “GitHub - cloudflare/quiche: Savoury implementation of the
QUIC transport protocol and HTTP/3 — github.com,” https://github.
com/cloudflare/quiche/, 2025.
B. Cui, Z. Li, and F. Yu, “Manipulated client initial attack and defense
of quic,” in 2022 IEEE 24th Int Conf on High Performance Computing
& Communications; 8th Int Conf on Data Science & Systems; 20th Int
Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud
& Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys),
2022, pp. 611-618.
J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS
implementations,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, Aug. 2015,
pp. 193-206. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 5/technical-sessions/presentation/de-ruiter
P. Fiterau-Brostean, B. Jonsson, K. Sagonas, and F. Taquist, “Automata-
based automated detection of state machine bugs in protocol implemen-
tations.” in NDSS, 2023.
K. Y. Gbur and F. Tschorsch, “Quicforge: Client-side request forgery in
quic.” in NDSS, 2023.
google, “quiche - Git at Google — quiche.googlesource.com,” https:
//quiche.googlesource.com/quiche/, 2025.
Q. W. Group, “Implementations — github.com,” https://github.com/
quicwg/base-drafts/wiki/Implementations, 2021.
h2o0, “cve.org,” https://www.cve.org/CVERecord?id=CVE-2021-43848,
2021.

[2]
[3]

[4]
[5]

[6]
[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]
(17]
(18]
[19] , “cve.org,”
CVE-2023-50247, 2023.
——, “GitHub - h2o0/h20: H20 - the optimized HTTP/1, HTTP/2,
HTTP/3 server — github.com,” https://github.com/h20/h20, 2025.

S. Jero, E. Hoque, D. Choffnes, A. Mislove, and C. Nita-Rotaru,
“Automated attack discovery in tcp congestion control using a model-

guided approach,” in Proceedings of the 2018 Applied Networking
Research Workshop, ser. ANRW ’18. New York, NY, USA:

https://www.cve.org/CVERecord?id=
[20]

[21]

https://github.com/aiortc/aioquic
https://www.akamai.com/newsroom/press-release
https://github.com/alibaba/xquic
https://github.com/private-octopus/picoquic/issues/1745
https://github.com/private-octopus/picoquic/issues/1745
https://github.com/aiortc/aioquic/issues/544
https://github.com/aws/s2n-quic
https://doi.org/10.1145/3606464.3606474
https://datatracker.ietf.org/doc/rfc9114
https://datatracker.ietf.org/doc/rfc9114
https://github.com/cloudflare/quiche/
https://github.com/cloudflare/quiche/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://quiche.googlesource.com/quiche/
https://quiche.googlesource.com/quiche/
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://www.cve.org/CVERecord?id=CVE-2021-43848
https://www.cve.org/CVERecord?id=CVE-2023-50247
https://www.cve.org/CVERecord?id=CVE-2023-50247
https://github.com/h2o/h2o

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Association for Computing Machinery, 2018, p. 95. [Online]. Available:
https://doi.org/10.1145/3232755.3232769

Y. A. Joarder and C. Fung, “A survey on the security issues of quic,” in
2022 6th Cyber Security in Networking Conference (CSNet), 2022, pp.
1-8.

k4raSu, “[SECURITY] Accepting and storing an unlimited number of
CRYPTO frames within a single connection - Issue 501 - aiortc/aioquic
— github.com,” https://github.com/aiortc/aioquic/issues/501, 2024.
——, “[SECURITY] Excessive ranges in a single ACK frame causes an
exception in python programs - Issue 549 - aiortc/aioquic — github.com,”
https://github.com/aiortc/aioquic/issues/549, 2024.

kazu yamamoto, “GitHub - kazu-yamamoto/quic: IETF QUIC library in
Haskell — github.com,” https://github.com/kazu-yamamoto/quic, 2025.
Y. Liang, J. Chen, R. Guo, K. Shen, H. Jiang, M. Hou, Y. Yu, and
H. Duan, “Internet’s Invisible Enemy: Detecting and Measuring Web
Cache Poisoning in the Wild,” in 31th ACM Conference on Computer
and Communications Security, 2024.

litespeedtech, “GitHub - litespeedtech/Isquic: LiteSpeed QUIC and
HTTP/3 Library — github.com,” https://github.com/litespeedtech/lsquic,
2025.

J. D. Lucas Pardue, “HTTP/2 Rapid Reset: deconstructing the record-
breaking attack — blog.cloudflare.com,” https://blog.cloudflare.com/
technical-breakdown-http2-rapid-reset-ddos-attack/, 2023.

Z. Luo, J. Yu, F. Zuo, J. Liu, Y. Jiang, T. Chen, A. Roychoudhury,
and J. Sun, “Bleem: Packet sequence oriented fuzzing for protocol
implementations,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023,
pp. 4481-4498. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/luo-zhengxiong

M. Maehren, P. Nieting, S. Hebrok, R. Merget, J. Somorovsky,
and J. Schwenk, “TLS-Anvil: Adapting combinatorial testing for
TLS libraries,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 215-232. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/maehren

A. Mankin, “RFC 9250: DNS over Dedicated QUIC Connections —
datatracker.ietf.org,” https://datatracker.ietf.org/doc/rfc9250, 2022.

C. McMahon Stone, S. L. Thomas, M. Vanhoef, J. Henderson,
N. Bailluet, and T. Chothia, “The closer you look, the more you
learn: A grey-box approach to protocol state machine learning,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 2265-2278. [Online].
Available: https://doi.org/10.1145/3548606.3559365

K. L. McMillan and L. D. Zuck, “Formal specification and testing
of quic,” in Proceedings of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM °19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 227-240. [Online].
Available: https://doi.org/10.1145/3341302.3342087

D. Menscher, “Blog: Preventing Cross-Service UDP Loops in
QUIC — bughunters.google.com,” https://bughunters.google.com/blog/
5960150648750080/, 2024.

Microsoft, “GitHub - microsoft/msquic: Cross-platform, C implemen-
tation of the IETF QUIC protocol, exposed to C, C++ and Rust. —
github.com,” https://github.com/microsoft/msquic, 2025.

Mozilla, “GitHub - mozilla/neqo: Neqo, the Mozilla Firefox implemen-
tation of QUIC in Rust — github.com,” https://github.com/mozilla/neqo,
2025.

K. Mu, J. Chen, J. Zhuge, Q. Li, H. Duan, and N. Feamster, “The
Silent Danger in HTTP: Identifying HTTP Desync Vulnerabilities with
Gray-box Testing,” in 34th USENIX Conference on Security Symposium,
2025.

M. Nawrocki, R. Hiesgen, T. C. Schmidt, and M. Wihlisch, “Quicsand:
quantifying quic reconnaissance scans and dos flooding events,” in
Proceedings of the 21st ACM Internet Measurement Conference,
ser. IMC ’21. ACM, Nov. 2021, p. 283-291. [Online]. Available:
http://dx.doi.org/10.1145/3487552.3487840

neqo, “transport/fc.rs: panic attempting to send MAX_DATA with
value larger max varint — github.com,” https://github.com/mozilla/neqo/
security/advisories/GHSA-jfv6-x22w-grhf, 2025.

nginx, “GitHub - nginx/nginx: The official NGINX Open Source repos-
itory. — github.com,” https://github.com/nginx/nginx, 2025.

16

[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]

[50]

(51]

[52]

[53]

[54]
[55]
[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

ngtep2, “GitHub - ngtep2/ngtcp2: ngtep2 project is an effort to imple-
ment IETF QUIC protocol — github.com,” https://github.com/ngtcp2/
ngtcp2, 2025.

onethingcloud, “onethingcloud.com,” https://www.onethingcloud.com/,
2025.

private octopus, “GitHub - private-octopus/picoquic: Minimal imple-
mentation of the QUIC protocol — github.com,” https://github.com/
private-octopus/picoquic, 2025.

gemu, “QEMU — gemu.org,” https://www.qemu.org/, 2025.

quic go, “cve.org,” https://www.cve.org/CVERecord?id=
CVE-2024-22189, 2024.

——, “GitHub - quic-go/quic-go: A QUIC implementation in pure Go
— github.com,” https://github.com/quic-go/quic-go, 2025.

quinn rs, “GitHub - quinn-rs/quinn: Async-friendly QUIC implementa-
tion in Rust — github.com,” https://github.com/quinn-rs/quinn, 2025.
A. Rasool, G. Alpdr, and J. de Ruiter, “State machine inference of
quic,” 2019. [Online]. Available: https://arxiv.org/abs/1903.04384

G. S. Reen and C. Rossow, “Dpifuzz: A differential fuzzing framework
to detect dpi elusion strategies for quic,” in Proceedings of the 36th
Annual Computer Security Applications Conference, ser. ACSAC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
332-344. [Online]. Available: https://doi.org/10.1145/3427228.3427662
S. Schumilo, C. Aschermann, A. Abbasi, S. Wor-ner, and T. Holz, “Nyx:
Greybox hypervisor fuzzing using fast snapshots and affine types,” in
30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 2597-2614. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity2 1/presentation/schumilo

S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-net: Network fuzzing with incremental snapshots,” in Proceedings
of the Seventeenth European Conference on Computer Systems,
ser. EuroSys ’22, 2022. [Online]. Available: https://doi.org/10.1145/
3492321.3519591

M. Seemann, “Hello, I am Marten Seemann. — seemann.io,” https://
seemann.io/, 2025.

K. Shen, J. Lu, Y. Yang, J. Chen, M. Zhang, H. Duan, J. Zhang,
and X. Zheng, “HDiff: A Semi-automatic Framework for Discovering
Semantic Gap Attack in HTTP Implementations,” in 52nd Annual
IEEF/IFIP International Conference on Dependable Systems and Net-
works, 2022.

Spwpun, “a memory leak issue - Issue 460 - litespeedtech/Isquic —
github.com,” https://github.com/litespeedtech/Isquic/issues/460, 2023.
tempload, “tiptime.cn,” https://www.tiptime.cn/, 2025.

M. Thomson, “RFC 9000: QUIC: A UDP-Based Multiplexed and
Secure Transport — datatracker.ietf.org,” https://datatracker.ietf.org/doc/
rfc9000, 2021.

S. Turner, “RFC 9001: Using TLS to Secure QUIC — data-
tracker.ietf.org,” https://datatracker.ietf.org/doc/rfc9001, 2021.
W3Techs, “Usage Statistics of HTTP/3 for Websites, April 2025 —
w3techs.com,” https://w3techs.com/technologies/details/ce-http3, 2025.
E. Wang, J. Chen, W. Xie, C. Wang, Y. Gao, Z. Wang, H. Duan, Y. Liu,
and B. Wang, “Where URLs Become Weapons: Automated Discovery
of SSRF Vulnerabilities in Web Applications,” in 2024 IEEE Symposium
on Security and Privacy, 2024.

Q. Wang, J. Chen, Z. Jiang, R. Guo, X. Liu, C. Zhang, and H. Duan,
“Break the Wall from Bottom: Automated Discovery of Protocol-Level
Evasion Vulnerabilities in Web Application Firewalls,” in 2024 IEEE
Symposium on Security and Privacy, 2024.

Y. You, J. Chen, Q. Wang, and H. Duan, “My ZIP isn’t your ZIP:
Identifying and Exploiting Semantic Gaps Between ZIP Parsers,” in 34th
USENIX Conference on Security Symposium, 2025.

J. Zhang, J. Chen, Q. Wang, H. Zhang, C. Wang, J. Zhuge, and
H. Duan, “Inbox Invasion: Exploiting MIME Ambiguities to Evade
Email Attachment Detectors,” in 31th ACM Conference on Computer
and Communications Security, 2024.

J. Zhang, L. Yang, X. Gao, G. Tang, J. Zhang, and Q. Wang, “Formal
analysis of quic handshake protocol using symbolic model checking,”
IEEE Access, vol. 9, pp. 1483614 848, 2021.

L. Zheng, X. Li, C. Wang, R. Guo, H. Duan, J. Chen, and K. Shen,
“ReqsMiner: Automated Discovery of CDN Forwarding Request Incon-
sistencies with Differential Fuzzing,” in Proceedings 2024 Network and
Distributed System Security Symposium, 2024.

J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and
G. Carle, “It’s over 9000: analyzing early quic deployments with
the standardization on the horizon,” in Proceedings of the 21st ACM

https://doi.org/10.1145/3232755.3232769
https://github.com/aiortc/aioquic/issues/501
https://github.com/aiortc/aioquic/issues/549
https://github.com/kazu-yamamoto/quic
https://github.com/litespeedtech/lsquic
https://blog.cloudflare.com/technical-breakdown-http2-rapid-reset-ddos-attack/
https://blog.cloudflare.com/technical-breakdown-http2-rapid-reset-ddos-attack/
https://www.usenix.org/conference/usenixsecurity23/presentation/luo-zhengxiong
https://www.usenix.org/conference/usenixsecurity23/presentation/luo-zhengxiong
https://www.usenix.org/conference/usenixsecurity22/presentation/maehren
https://www.usenix.org/conference/usenixsecurity22/presentation/maehren
https://datatracker.ietf.org/doc/rfc9250
https://doi.org/10.1145/3548606.3559365
https://doi.org/10.1145/3341302.3342087
https://bughunters.google.com/blog/5960150648750080/
https://bughunters.google.com/blog/5960150648750080/
https://github.com/microsoft/msquic
https://github.com/mozilla/neqo
http://dx.doi.org/10.1145/3487552.3487840
https://github.com/mozilla/neqo/security/advisories/GHSA-jfv6-x22w-grhf
https://github.com/mozilla/neqo/security/advisories/GHSA-jfv6-x22w-grhf
https://github.com/nginx/nginx
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/ngtcp2
https://www.onethingcloud.com/
https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic
https://www.qemu.org/
https://www.cve.org/CVERecord?id=CVE-2024-22189
https://www.cve.org/CVERecord?id=CVE-2024-22189
https://github.com/quic-go/quic-go
https://github.com/quinn-rs/quinn
https://arxiv.org/abs/1903.04384
https://doi.org/10.1145/3427228.3427662
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1145/3492321.3519591
https://seemann.io/
https://seemann.io/
https://github.com/litespeedtech/lsquic/issues/460
https://www.tiptime.cn/
https://datatracker.ietf.org/doc/rfc9000
https://datatracker.ietf.org/doc/rfc9000
https://datatracker.ietf.org/doc/rfc9001
https://w3techs.com/technologies/details/ce-http3

Internet Measurement Conference, ser. IMC "21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 261-275. [Online].
Available: https://doi.org/10.1145/3487552.3487826

Y.-H. Zou, J.-J. Bai, J. Zhou, J. Tan, C. Qin, and S.-M. Hu, “TCP-Fuzz:
Detecting memory and semantic bugs in TCP stacks with fuzzing,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, Jul. 2021, pp. 489-502. [Online]. Available:
https://www.usenix.org/conference/atc2 1/presentation/zou

[66]

APPENDIX A
COMPRESSED CORPUS

To support the aforementioned mutation strategies, we de-
signed a Compressed Corpus (CC) structure to represent the
traffic of a single interaction from the client’s perspective. We
define a frame loop set S = {(f1, f2,..., fm),len}, which
represents an ordered combination of initial frames fi to f,,,
repeated len times. In addition to multiple frame loop sets
T ={S1,...,S,}, aCC also contains the following attributes:
Send-to-receive ratio (sr : rr): Defines the ratio at which sr
frames are sent before receiving rr frames from the server. By
adjusting the sr : rr ratio, it is possible to simulate network
congestion scenarios with high precision.

Packet loss and reordering Algorithm (P A): Selects an
algorithm to modify the current sequence, simulating charac-
teristics such as unstable packet loss and out-of-order delivery.

Random seed (RS): To ensure consistency and repro-
ducibility in differential testing between both sides, the current
random seed is also included in the corpus.

During the frame content mutation phase, one or more initial
frames from S; are selected for field-level mutation, modifying
elements of the set and other attributes in C'C. In the sequence
mutation phase, we use the random seed to select a frame
sequence mutation algorithm for each frame in S, arrange
them in the current order, and expand each set in 7" to form a
complete frame sequence. In the interaction behavior mutation
phase, we use the reordering and packet loss algorithms to
construct the final frame sequence.

By applying a segmented mutation algorithm to expand and
mutate a CC, we balance the constraints necessary to avoid
state explosion while maintaining mutation diversity, thereby
improving mutation efficiency.

APPENDIX B
CORPUS UPDATE AND RECOMMENDATION

Monte Carlo Seed Tree. To guide fuzzing more effectively in
a black-box setting and to evaluate seeds in a systematic way,
we not only rely on differential detection and public resource
consumption detectors to determine whether a vulnerability is
triggered, but also use these detectors to quantify our level of
interest in each seed. Besides marking certain seeds as “inter-
esting,” we must also exclude those deemed “uninteresting.”
Hence, we design and maintain a Monte Carlo seed tree to
update and recommend seeds in the corpus.

Specifically, for constructing and maintaining this seed tree,
we begin from a virtual root node and connect each initial seed
downward. Whenever the mutator selects a seed represented by
a node in the tree and mutates it, the leaf node corresponding

17

to that seed is expanded. Once the test concludes, if the evalu-
ation result indicates the seed is “interesting,” we compute its
Upper Confidence Bound (UCB) and propagate that value back
to the root node. If the result is “uninteresting,” we delete that
node. This iterative process incrementally builds and refines
the seed tree.

Our approach differs from the standard Monte Carlo al-
gorithm in that, theoretically, each parent node can have
infinitely many child nodes (since the mutation state space
is unbounded). Consequently, our selection algorithm must
decide whether to mutate a node at level ¢ of the seed
tree, rather than exclusively picking leaf nodes. Moreover,
to prevent the seed tree from growing excessively large and
dispersing fuzzing energy too thinly (which would effectively
degrade to a traversal of all seeds), we introduce a time
parameter into the UCB formula. This gives newly added
subtrees more energy for testing.

APPENDIX C
Quic IMPLEMENTATIONS

Below are the 16 recommended implementations selected
from the QUIC workgroup, along with statistics on the pro-
gramming languages used and the code size of these imple-
mentations.

TABLE III: Tested QUIC Projects and Their Versions

Number Project Name Language code lines
1 Cloudflare QUIC rust 57K
2 Google QUIC C++ 317K
3 Quic-go Golang 75K
4 Aioquic python 20K
5 Haproxy C 295K
6 H2o(quickly) C 516K
7 Lsquic C 111K
8 MsQuic C 188K
9 Haskell quic haskell 20K
10 Neqo Rust 66K
11 Ngtcp2 C 75K
12 Nginx C 193K
13 Picoquic C 104K
14 Quinn Rust 27K
15 S2n-quic Rust 194K
16 Xquic C 77K
APPENDIX D

ARTIFACT APPENDIX

A. Description & Requirements

This tool is developed as a fork of the LibAFL v0.13.0
framework and integrates several other open-source compo-
nents to implement its features. For QUIC interaction, it
uses Cloudflare’s quiche component from cloudflare. Snapshot
support is enabled through libnyx, packer, and QEMU-Nyx
modules of Nyx-fuzz project. The tool targets mainstream
QUIC implementations and is primarily written in Rust, with
portions in C and Python.

https://doi.org/10.1145/3487552.3487826
https://www.usenix.org/conference/atc21/presentation/zou

1) How to access: The MerCuriuzz main program is avail-
able on GitHub and can be accessed via Mercuriuzz. Its
auxiliary components have been functionally adapted based
on the original projects for use with MerCuriuzz, including:
LibAFL, Cloudflare-quiche. libnyx, QEMU-Nyx, packer. We
have also uploaded our artifacts to a DOI-providing platform:
https://doi.org/10.5281/zenodo.17015304.

2) Hardware dependencies: Running the minimal imple-
mentation requires at least 4GB of memory and 8 logical CPU
cores (CPU IDs 0-7). Running the snapshot-based implemen-
tation also requires a processor that supports Intel Processor
Trace (Intel PT) (supported by most Intel CPUs; AMD CPUs
have been tested) and KVM virtualization support (if the
host is itself a virtual machine, nested virtualization must be
enabled).

3) Software dependencies: All Linux-kernel-based operat-
ing systems are supported; Ubuntu versions 22.04 or 24.04 are
recommended.

4) Benchmarks: None.

B. Artifact Installation & Configuration

From the initial setup to running a complete minimal
instance involves several steps:

First install the required runtime libraries and components,
including build tools and the libraries needed to execute the
code. These are described in the “Environment” section of the
README. As test targets, we chose two implementations:
Isquic, and neqo. The build and testing processes are detailed
in the “Target Installation” section of the README. Finally,
building and running the MerCuriuzz project itself is covered
in the “Building” section of the README, with all the
detailed steps provided there.

Figure 1 illustrates the workflow of MerCuriuzz. Overall,
MerCuriuzz consists of four main phases: (1) receiving input
testcases and outputting objectives and crashes; (2) managing
and mutating the corpus; (3) managing snapshots and per-
forming differential evaluation; (4) executing input tests under
QEMU virtual machine snapshots.

Regarding the code paths for
we take the MerCuriuzz directory as the root.
The implementation of the MCTS scheduler is
located in libafl-modules/src/schedulers,
while Segmental =~ Mutation is implemented in
libafl-modules/src/mutators. The executor func-
tionality resides in 1ibafl-modules/src/executors,
providing both a minimized implementation based on
local area networks and a full implementation based on
snapshots. All evaluation features are distributed under
libafl-modules/src/ across the observers and
feedbacks directories. The former collects data, while the latter
evaluates this data. The snapshot component is decoupled
from the MerCuriuzz project, requiring manual configuration
of virtual machines for each QUIC implementation, along
with adding necessary runtime libraries to the filesystem.
Virtual machine initialization and snapshot functionalities

each module,

18

are controlled using vendors/packer/packer/linux_x86_64-
userspace/src/harness.c.

The main program is located in the fuzzers directory. For
the minimized implementation, use network_quic_fuzz;
for snapshot-based experiments, use nyx_quic_fuzz. The main
program connects all components and interfaces with either
QUIC implementations or virtual machine processes to enable
continuous fuzzing execution.

https://github.com/k4ra5u/MerCuriuzz
https://github.com/k4ra5u/LibAFL
https://github.com/k4ra5u/quiche
https://github.com/k4ra5u/libnyx
https://github.com/k4ra5u/QEMU-Nyx
https://github.com/k4ra5u/packer
https://doi.org/10.5281/zenodo.17015304

	Introduction
	Background
	QUIC Protocol
	Protocol Logical Vulnerabilities

	Overview
	Threat model
	Challenges

	MerCuriuzz
	Workflow
	Segmental Mutation
	State Anomaly Detector
	Semantic Consistency Detector
	Public Resource Consumption Detector

	Snapshot Manager

	Evaluation
	Experiment Setup
	Results and Findings
	Real-World Attack Impact
	Comparison Experiment
	Comparison with SOTA Fuzzing Framework
	Ablation Experiments

	Analysis of False Positive and Duplicate Rates

	Discussion
	Mitigation
	Limitation
	Porting to Other Protocols

	Related Work
	Conclusion
	Ethics Considerations
	References
	Appendix A: Compressed Corpus
	Appendix B: Corpus Update and Recommendation
	Appendix C: Quic Implementations
	Appendix D: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration

