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Abstract—Online e-commerce scams, ranging from shopping
scams to pet scams, globally cause millions of dollars in financial
damage every year. In response, the security community has
developed highly accurate detection systems able to determine if
a website is fraudulent. However, finding candidate scam websites
that can be passed as input to these downstream detection
systems is challenging: relying on user reports is inherently
reactive and slow, and proactive systems issuing search engine
queries to return candidate websites suffer from low coverage
and do not generalize to new scam types. In this paper, we
present LOKI, a system designed to identify search engine queries
likely to return a high fraction of fraudulent websites. LOKI
implements a keyword scoring model grounded in Learning
Under Privileged Information (LUPI) and feature distillation
from Search Engine Result Pages (SERPs). We rigorously validate
LOKI across 10 major scam categories and demonstrate a 20.58
times improvement in discovery over both heuristic and data-
driven baselines across all categories. Leveraging a small seed set
of only 1,663 known scam sites, we use the keywords identified by
our method to discover 52,493 previously unreported scams in the
wild. Finally, we show that LOKI generalizes to previously-unseen
scam categories, highlighting its utility in surfacing emerging
threats.

I. INTRODUCTION

Online scam websites, where miscreants set up legitimate-
looking sites designed to directly defraud users, are on the
rise [2]. Regulatory bodies like the Australian Competition
and Consumer Commission and the UK Financial Conduct
Authority report a rising trend in this threat [29], and the US
Federal Trade Commission (FTC) recently reported that fraud-
ulent shopping scams were the second most reported fraud
type in the country in 2024, accounting for over $432 million
in consumer losses [11]. As more types of transactions switch
to the online domain, new fraud vectors emerge, including
pet scams, fake charities, and investment fraud. Therefore,
identifying scam websites in a quick and proactive way is of
paramount importance to keep users safe.

The problem of detecting scam websites has attracted
significant interest from the security community, which has
developed several systems to determine if a website is fraudu-
lent or not [2, 19, 30]. These systems showed that developing
an oracle able to accurately classify scam websites is possible.

One of the main challenges, paradoxically, is to find websites
that are candidate to being fraudulent, which will then be
provided as input to said oracle. The most straightforward
avenue to find potential scam websites is by issuing search
engine queries, where we aim to identify queries that maximize
the number of scam websites returned. To measure the ef-
fectiveness of search queries in surfacing fraudulent websites,
we introduce the concept of toxicity and expansion, which we
define as the empirical propensity of a search query to surface
scam websites within its corresponding search engine result
pages (SERPs). For example, consider two queries related to
the category of cryptocurrency, “Double my bitcoin quickly”
(Qa), and “safe ways to buy bitcoins” (Qb). When issued to
a commercial search engine such as Bing, Qa yields 6 out of
20 results that correspond to scam websites, while Qb yields
only 2 out of 20 scam websites, with the majority of links
pointing to reputable or authoritative sources. In other words,
Qa exhibits higher toxicity (0.3) than Qb (0.1). Intuitively, Qa

allows to discover more scam websites (expansion of 6) than
Qb (expansion of 2).

Previous works issue queries based on manually curated or
heuristic-guided domain-specific lists of keywords, for exam-
ple, to identify cryptocurrency [23] and investment scams [29].
Another line of work uses static methods like TF-IDF and
topic modeling approaches [6] over the HTML of previously
identified scam websites to extract search queries and discover
a broader set of scam websites [24, 36]. While these techniques
offer scalability and pathways for automation, they suffer from
critical limitations. In particular, these methods exhibit a strong
bias toward capturing brand, business, or entity-specific lexical
cues that are closely tied to the seed dataset, rather than iden-
tifying more general-purpose linguistic indicators reflective of
the underlying modus operandi of scam campaigns. This limits
the generalizability of the extracted keywords across scam
types and reduces their capacity to support broad discovery,
limiting their toxicity and subsequent expansion.

An alternative approach is to issue search queries that
latently encode operational patterns of scam websites (i.e.,
urgency, scarcity, or high-return incentives), or artifacts in-
troduced by black hat search engine optimization (SEO)
techniques [28]. While this assumption may hold within cer-
tain domains and specific types of scams, especially those
characterized by aggressive SEO abuse and unintended brand
association (e.g., typosquatting attacks), it does not generalize
across the broader landscape of online scams.

Another common approach in the literature relies on reac-
tive data sources and online communities to probe and clas-
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sify scam websites, for example, victim-reported complaints,
subreddit submissions (e.g., /r/scams), and threat intelligence
feeds from commercial platforms (e.g., Palo Alto Networks,
Norton Security, etc.) While such sources are often grounded
in real-world harm and offer highly precise labels, they suffer
from delayed reporting, limited coverage, and implicit biases
towards the types of scams that only end up being reported in
online communities. Most importantly, these approaches are
by design retrospective, as they detect scams only after users
have encountered and reported them.

These limitations highlight the necessity for query mining
systems that can identify queries agnostic to content promotion
mechanisms and actually capture scam-related cues that can
generalize across diverse scam categories. In this paper, we
overcome the limitations of static and heuristic-based query ex-
traction systems by developing LOKI, a system that enables the
systematic querying of search engines to proactively identify
scam websites. LOKI is designed to maximize the toxicity of
search queries, and uses this metric to learn how to rank queries
and issue search queries that are likely to return the most scam
websites, to be fed to a high precision scam detection oracle.

LOKI can score candidate query keywords across multi-
ple business categories for toxicity scores. These predicted
keyword scores for each category can then be ranked and
prioritized for querying SERP, enabling proactive and efficient
discovery of scam websites. We rigorously evaluate LOKI in
its ability to systematically identify the most toxic keywords
to discover scam websites, and verify its generalization capa-
bilities across 10 different categories. To this end, we make
the following key contributions:

• Empirical analysis of heuristic-based sampling
strategies: We conduct a systematic comparison of
query toxicity and expansion across existing attribute-
based and entity-based query sampling methods. Our
analysis reveals that these approaches are brittle, ex-
hibit limited generalization across scam categories,
and consistently underperform in identifying high-
toxicity queries.

• Data-Driven Keyword Scoring Framework: We for-
mulate a novel data-driven approach for query toxicity
prediction. By leveraging Learning Under Privileged
Information (LUPI) and feature distillation, LOKI
learns to approximate the toxicity of search queries
using privileged features derived from SERPs. This
enables scalable and guided discovery of scam do-
mains by scoring and ranking large pools of candidate
queries without requiring SERP access at inference
time.

• Cross-Domain Validation Across Major Scam Cat-
egories: We validate our approach across high-impact
categories of online e-commerce scams known to
cause significant real-world financial harm. Our ap-
proach consistently outperforms both heuristic and
data-driven keyword sampling baselines in identifying
high-toxicity queries, demonstrating strong generaliza-
tion and robustness across scam domains.

• Scalable Scam Discovery at Internet Scale: Starting
from a small seed set of approximately 1,500 known

scam domains, LOKI discovers over 52,493 new scam
domains, demonstrating its efficacy, scalability, and
practical utility in real-world proactive scam detection.

Techniques such as LUPI and feature distillation are es-
tablished frameworks in the field of Machine Learning (ML).
However, these techniques have not been previously applied in
the context of ML for security. To the best of our knowledge,
our work provides the first application using SERPs for both
of these frameworks, including a novel application of these
frameworks for identifying scam websites. A visual summary
of the contributions of our work is presented in Figure 1.

II. DATASETS

To build and evaluate our system, we curate four datasets.
First, we build ground truth datasets of scam and benign
websites, which we will use to build an oracle to enable
the downstream evaluation of LOKI’s performance (see Sec-
tion III). Next, we curate a dataset of Google Ad Keyword sug-
gestions and SERP results, which we will use to validate our
methodology and compare various baselines (see Section IV)
and to build our LOKI system (see Section V). To encourage
reproducibility and allow researchers to build on our work, we
publicly release our datasets and models1. In this section, we
describe these datasets in detail.

A. Scam websites

Collecting an up-to-date and comprehensive set of scam
websites aggregated from multiple sources serves two primary
purposes: i) it enables the construction of a diverse training
set for our oracle classifier by capturing a broad spectrum
of scam categories, and ii) it provides a heterogeneous pool
of seed websites, which we subsequently use to expand our
collection of search keywords. To ensure this, we curate
scam websites from three different manually curated sources,
contributing to the diversity of our dataset (details provided
in Appendix A). The initial dataset of scam websites was
compiled during March 2024. Following the collection, we
performed a preprocessing step to filter out domains that were
either non-resolving or currently parked [1, 39]. Specifically,
we employed a regular expression-based filter to inspect the
HTML content of landing pages and identify parked domains.
This filtering step ensures that only live scam websites are
retained for downstream processing, as our system pipeline
depends on features that require interaction with active scam
websites. Upon filtering, we end up with a total of 1,663
websites as part of the scam dataset.

B. Benign websites

Curating a dataset of benign websites is essential to train an
accurate and reliable oracle classifier. Unfortunately, this type
of dataset is not directly available from previous work [2, 19];
therefore, we have to build one ourselves. This task presents
challenges. While benign websites are significantly more
prevalent than scam websites, the methodology used to sam-
ple benign domains has critical implications for the oracle’s
generalization capabilities, further affecting our downstream
evaluation. For example, sourcing benign examples exclusively

1https://doi.org/10.5281/zenodo.17049965
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Fig. 1: Overview of our system pipeline.

from popular domain ranking lists such as Tranco or the
Majestic Million may inadvertently bias the classifier toward
established, high-traffic websites, potentially leading the oracle
to fail generalizing to less popular but still legitimate websites.
Moreover, it is crucial to ensure that the benign dataset mirrors
the categorical diversity present in the scam dataset, to help the
oracle distinguish between legitimate and fraudulent content
within the same business vertical. This balanced representation
enhances the classifier’s robustness and reduces the risk of
category-specific overfitting.

To construct a systematic and representative benign dataset,
we adopt a sampling strategy grounded in real-world user
categorization. Specifically, for each scam website filtered as
an active scam in Section II-A, we query its domain on Trust-
pilot2, a crowdsourced consumer-review platform, to determine
whether the website has an associated profile or review history.
For domains with a presence on Trustpilot, we extract the
corresponding business category assigned by the platform. This
community-driven categorization scheme enables us to identify
the business vertical of scam websites and subsequently guide
the sampling of category-matched benign examples.

Out of 1,663 scam websites sourced from Section II-A, 592
websites had active profiles or reviews on Trustpilot, resulting
in a total of 292 categories. Using this set of inferred cate-
gories, we proceed to sample the 40 most “relevant” websites
per category. According to Trustpilot’s ranking criteria, “rele-
vance” is determined by a combination of TrustScore, review
volume, and business engagement. In particular, qualifying
businesses must actively solicit reviews and receive at least
25 verified reviews within the preceding 12 months. Each API
call to Trustpilot’s category returns 20 businesses (websites),
and we make 2 API calls for each category to make the
data collection more manageable. Limiting the highly ranked
results (within the top 40 websites per category) also reduces
the likelihood of any scam websites contaminating the benign
set compared to including a larger set of results. We regard
this as a high-precision proxy for identifying reputable and
trustworthy websites, thereby mitigating the risk of introducing
mislabeled benign examples. Following this procedure, we
curate a total of 9,800 unique benign websites for inclusion
in the training corpus. To reflect the real-world distributional
imbalance between scam and benign websites, we intentionally

2https://www.trustpilot.com/

allow the dataset to be skewed toward benign examples rather
than enforcing a strict class balance. In the end, we have 1,663
scam websites and 9,800 benign websites spanning 292 diverse
Trustpilot categories.

C. Google Ads Keyword Suggestions

The third type of dataset utilized in our study comprises
search queries associated with the scam domains. While search
queries can be either single tokens (e.g., “shoes”) or multi-
word expressions (e.g., “cheap nike shoes”), we adopt the
definition of a “keyword” throughout the rest of this work
to represent both types of search queries. To collect these
keywords, we leverage the Google Ads Keyword Planner
API3, which provides keyword suggestions based on either
seed keywords or input domains. Our work is the first to
leverage Google Ads Keyword API to extract keywords for
query sampling, as prior research mostly focused on static
NLP methods such as TF-IDF [36] and topic modeling [24].
This deviation from static methods followed in previous works
allows us to leverage Google’s knowledge of large-scale search
behavior, allowing for the generation of keyword suggestions
grounded in real user search intent, historical query volume,
and contemporary trends. This enables a richer and more
realistic representation of the types of search queries that might
lead users to scam websites.

We use the Keyword Planner API to query each of the
scam domains curated in Section II-A, retrieving keyword
suggestions for every active scam website. In addition to
the keyword suggestions themselves, the API provides rich
metadata for each suggestion, including estimated monthly
search volume, competition level, and suggested bid price for
a keyword in the context of the advertisement marketplace.
We further incorporate some of these attributes in the design
and evaluation of keyword selection heuristics in Section IV-C.
Following this procedure, we obtain a total of approximately
1.5 million unique keyword suggestions originating from the
1,663 scam domains.

D. SERP Collection

The final type of dataset collection includes Search Engine
Results Pages (SERPs) returned as results of querying the

3https://business.google.com/us/ad-tools/keyword-planner/

3



keyword suggestions obtained via the Google Ads Keyword
Planner API. For each query, we collect the list of web pages
returned by different search engines. We collect SERP data
from four major search engines: i) Google Search, ii) Bing
Search, iii) Baidu Search, and iv) Naver Search. This multi-
platform approach ensures diversity in the indexed content and
ranking algorithms, thereby strengthening the generalizability
of our findings. We utilize the DataForSEO API4 to query
and retrieve SERP metadata for each candidate keyword. The
API simulates search queries using a clean user profile, i.e.,
without personalization or historical search context, and can be
configured with a fixed geographic location (e.g., New York,
USA)5. This methodology ensures that the returned SERP
results reflect an unbiased snapshot of each engine’s ranking
behavior at a specified time, unaffected by factors such as user
history, geolocation-based personalization, or recommendation
algorithms. It also ensures that our data collection is conducted
ethically, avoiding aggressive crawling of live search engine
websites.

III. ORACLE

To calculate the toxicity and expansion of search queries,
we need an oracle that can accurately determine whether a
web page is a scam. This has been common practice in similar
research, for example, to identify websites that carry out drive-
by-download attacks [14]. Unfortunately, previous systems that
are designed to detect scam websites were not made publicly
available in a directly usable manner [2, 19], and therefore
cannot be used off-the-shelf as an oracle. We therefore decide
to implement our own oracle, building upon a diverse set of
features proposed by previous works [2, 19] to enhance the
diversity and coverage of features and produce a more accurate
oracle. The developed oracle helps us compute the toxicity and
expansion scores for each search query, which we formally
define as:

Toxicity =
# Websites flagged as scam by oracle
# Websites returned by a search query

Additionally, we formally define the expansion metric as:

Expansion = # Scam websites returned by a search query

Our oracle takes a domain as input, extracts a set of 103
features related to the domain registration information, DNS
configurations, and features derived from the content of the
webpage.

Oracle Features. We build a comprehensive feature set for
detecting scam websites by integrating and extending the
features proposed in prior works [2, 19]. Our oracle leverages
a total of 103 features, which are grouped into five broad cat-
egories, as detailed below. This unified feature representation
captures both structural and behavioral attributes of websites,
and reflects the current best practices in data-driven scam
detection.

• Domain Ranking Features: These features charac-
terize a domain’s reputation, authority, and popularity
across the web, primarily using signals derived from

4https://dataforseo.com/apis/serp-api
5https://docs.dataforseo.com/v3/serp-overview/

third-party ranking services and threat intelligence
providers. For example, majestic_refips and
majestic_refsubnets quantify the number of
distinct referring IP addresses and subnets, serving
as indicators of backlink diversity. Features such
as majestic_tldrank and other Majestic-derived
scores capture citation and trust flow metrics, which
are commonly used to assess the credibility of a
domain based on its position within the web hyperlink
graph. The tranco feature corresponds to a domain’s
ranking in the Tranco list [33], a robust alterna-
tive to Alexa and other ranking services, while the
cisco feature reflects reputation or threat score from
Cisco Umbrella. Collectively, these features provide
a quantitative estimate of a domain’s visibility and
trustworthiness within the web ecosystem.

• DNS Features:
DNS (Domain Name System) features focus on
the records associated with a domain’s configu-
ration. These include boolean indicators such as
dns_has_mx and dns_has_cname, which denote
the existence of mail exchange and canonical name
records, respectively. Complementary count-based
features such as dns_num_mx, dns_num_cname,
and dns_num_aaaa quantify the number of corre-
sponding entries. Additional DNS record types con-
sidered include DNAME, HINFO, NS, RP, SOA, and
TXT, each offering insight into various aspects of
domain functionality and administrative control. The
feature dns_domain_verification_count re-
flects the number of verification-related records (e.g.,
for ownership or service validation). Collectively,
these features provide a comprehensive view of a
domain’s operational and security-relevant DNS con-
figuration. Usage of these features is in line with prior
work analyzing security implications of TXT records,
MX records, and presence of SPF and DMARC-based
protection mechanisms [19].

• URL Features:
URL-based features examine the structure and com-
position of the domain or URL itself. Features such
as tld and cheap_tld capture the type and cost
tier of the top-level domain, distinguishing between
commonly used, reputable TLDs and those often
associated with abuse due to their low registration
costs. The feature domain_subwords measures the
number of semantically meaningful components in the
domain name, potentially identifying keyword stuffing
and obfuscation. We use the open source library
WordNinja 6, which uses a probabilistic model to split
words using NLP based on English Wikipedia uni-
gram frequencies, to segment a domain into subwords.
To the best of our knowledge, domain_subwords
represents a novel feature not previously employed in
prior scam detection systems. Lexical indicators such
as url_has_hyphen and url_has_digit detect
the presence of special characters or digits, which are
frequently used in deceptive or algorithmically gen-
erated domains. Finally, url_subdomain_count

6https://github.com/keredson/wordninja
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quantifies the depth of the subdomain hierarchy, with
excessive subdomain use sometimes correlated with
malicious behavior. Together, these features provide
lightweight yet informative signals for assessing do-
main legitimacy, and have been utilized in prior
work [2].

• Domain Registration Features:
These features are derived from WHOIS records and
capture attributes related to the domain’s registration
history and registrar identity. Temporal features
such as domain_age and time_to_expiry
indicate the longevity and expected lifetime
of a domain, both of which have been shown
to correlate with domain credibility [2, 19]
Categorical features such as registrar_name,
is_cheap_registrar, registrar_country,
and registrant_country characterize
the registrar and the geographic provenance
of the registration. The boolean feature
privacy_protected reflects whether the
registrant’s information is obscured via privacy
protection services, a tactic frequently used in
malicious or deceptive domain registrations [2]
Additionally, free_email_provider identifies
whether the domain was registered using an email
address from a free email provider, which may be
indicative of low-cost or anonymous registrations.
Collectively, these features provide a detailed profile
of domain ownership and registration practices,
which are essential for assessing trustworthiness and
potential risk associated with scam websites created
as part of a scale operation

• Content Features:
Content-based features capture the structural
and semantic elements present on a website’s
landing page, offering insight into how the site
is constructed and how it engages with users.
These features include indicators of social media
integration (e.g., facebook_profile_linked,
twitter_profile_linked, etc.) and commu-
nication channels (e.g., num_mailto_links,
num_phone_links). Additional structural
attributes such as num_links, num_h1_h6_tags,
and num_css_classes quantify the complexity
and layout of the HTML content. Trust and
compliance signals are also captured via
features such as review_system_linked,
has_app_store, has_review_widget,
and trustpilot_present, which identify
the presence of third-party review platforms
(e.g., Yelp, Trustpilot, etc.) or mobile
application references. Moreover, features
like presence_work_with_us_link and
presence_cookie_consent_notice reflect
the inclusion of user-facing transparency and
recruitment information. Collectively, these features
provide a multifaceted view of the website’s content,
helping to infer its legitimacy, user engagement
strategy, and adherence to common web practices
associated with trustworthy entities. These features
capture particularly important signals for the oracle,

as prior work on detecting fraudulent e-commerce
platforms [19] demonstrated that content-based
features accounted for 5 of the top 10, and 10 of
the top 15 most influential features in their machine
learning–based classifier. This highlights the strong
predictive utility of content-centric attributes in
distinguishing scam websites from legitimate ones.

Note that the content features captured as part of the
oracle are based on the content present in the final destination
of a URL loading chain. Past studies [21, 22] observed
that malicious actors can compromise high-ranking benign
websites and dynamically redirect traffic to illicit websites
(i.e., Search Result Redirection attack), and such behavior can
distort classification from the oracle and subsequent toxicity
measurements. The crawler we use for capturing these features
overcomes any intermediate redirections and captures the
features from the final destination, after the content of the
page is loaded (including all the JavaScripts). Subsequently, the
oracle classifies a page exclusively on the final landing page
and its associated eTLD+1. This ensures that classification
of discovered websites as scam / benign, and furthermore,
the toxicity / expansion-related metrics are unaffected by
the Search Result Redirection phenomenon. A summary of
the features is presented in Table VIII (in Appendix). These
features are then passed to a supervised learning model trained
to distinguish scam websites from benign ones.

Oracle Validation. To identify the most effective model
for our oracle, we train and evaluate five different machine
learning classifiers. The models we evaluate include: i) Ran-
dom Forest, ii) Gradient Boosting, iii) Logistic Regression,
iv) Linear Discriminant Analysis Classifier, and v) Support
Vector classifier. We evaluate all models using 5-fold cross-
validation, employing an 80-20 stratified train-test split within
each fold, preserving the class distribution reflecting real-world
proportion of scam websites and benign websites. A summary
of the results from the 5 models is presented in Table I.
We find that the Gradient Boosting method performs the best
in the task, with the highest F1 score, while the Random
Forest model ranking a close second. Across all folds, both
precision and recall exceed 90%, underscoring the robustness
and reliability of the oracle in distinguishing scam websites
from legitimate ones. These findings are consistent with prior
work, e.g., Scamdog Millionaire [19] employed Random Forest
as the classifier of choice for scam detection, further validating
the effectiveness of ensemble-based models for this task. In
the rest of our experiments, we adopt the Gradient Boosting
classifier as the implementation of our oracle.

Model Precision Recall F1 Score
Random Forest 0.940 0.940 0.939
Gradient Boosting 0.983 0.965 0.978
Logistic Regression 0.868 0.867 0.868
Linear Discriminant Analysis 0.933 0.932 0.932
Support Vector Classifier 0.825 0.816 0.817

TABLE I: ML model performance for scam detection.

IV. MOTIVATION OF LOKI

The goal of LOKI is to retrieve a high proportion of scam
websites surfaced through search results. To the best of our
knowledge, no prior work has conducted an empirical evalu-
ation on identifying the most effective strategy for sampling
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keywords to support guided, search-based discovery of scam
websites. In this section, we evaluate the ability of query intent-
based and search traffic-based attributes in surfacing search
results with high toxicity, showing that they do not generalize
across domains. This is critical to develop a robust system, as
scam types (and the language used by miscreants) change over
time, also as a reaction to detection systems. In this section,
we first discuss the filtering steps that we apply to our query
selection process in Section IV-A. We then discuss how we
group scam categories for our evaluation in Section IV-B. Next,
we present our sampling techniques, including traffic level,
query intent-based metadata (Section IV-C), and semantic
attributes derived from query understanding (Section IV-D).
Finally, we present our evaluation of the two strategies in
Section IV-E, showing that they are insufficient, motivating
the need for LOKI.

A. Branded Keywords Filtering

Query understanding literature distinguishes search queries
between branded (those including the name of a company,
brand, or product line, e.g., “nike air max”) and un-branded
(those containing more generic descriptions, e.g., “trail running
shoes”) [7]. This distinction is particularly important in the
context of scam website discovery, as branded queries tend to
return SERPs dominated by legitimate and high authority do-
mains associated with the brand, thereby lowering the toxicity
of the keywords. Consequently, filtering branded keywords is a
critical step for both ensuring high toxicity keyword selection
and maintaining focus on queries that are more likely to lead
to scam websites.

For this reason, we filter the results suggested by the
Google Keyword API to only keep un-branded queries. We
leverage the zero-shot text classification capabilities of Large
Language Models (LLMs) (i.e. FLAN-T5-XXL) to build a
branded keyword classifier. Since this filter module is useful
to clean up our dataset but is not a novel research contribution,
we report its details in the Appendix B. The FLAN-T5-XXL
model used as part of this module achieves a F1 score of 90%
on the test dataset, which we consider sufficiently accurate for
the purposes of filtering branded keywords within our pipeline.
Following the validation of our branded keyword classification
model, we apply it to the large-scale keyword dataset obtained
in Section II-C. This filtering step results in a final corpus of
approximately 1.2 million un-branded keywords, which we use
for our experiments in the rest of the paper.

B. Categories Selection

The scam websites collected in Section II-A, and the
category-matched benign websites, map to 292 unique Trust-
pilot categories. To manage the size of keyword analysis and
downstream evaluation, we focus on categories that are associ-
ated with at least five distinct scam domains. This leads us to a
total of 49 different categories, which serve as the basis for all
subsequent analyses in the rest of the paper. To facilitate a more
structured evaluation, we further group these 49 categories
into 10 broader scam types, as outlined in Table II. These
aggregated scam types enable us to analyze the performance
of keyword sampling strategies across semantically coherent
business and service verticals.

Scam Type # Cats Example Categories (Scam Count)
Shopping / Fashion (C1) 8 clothing, jewelry, beauty (363)
Crypto / Money (C2) 9 cryptocurrency, finance, investment (278)
Adults / Gambling (C3) 4 dating services, gambling (15)
Medical / Pharmacy (C4) 2 pharmacy, health (30)
Pets / Animals (C5) 2 pet stores, animals (44)
Electronics (C6) 3 internet, phone (271)
Business / Admin (C7) 3 business services, admin services (69)
Education (C8) 3 career services, education training (39)
Marketing / Sales (C9) 2 internet marketing, sales (36)
Online Marketplace (C10) 3 auction services, marketplace (114)

TABLE II: Distribution of different categories.

C. Query Sampling by Attributes

To better characterize the toxicity and expansion lev-
els associated with different types of keywords, we study
keyword sampling from the lens of: i) search traffic-based
features derived from Google’s advertising ecosystem metadata
and ii) semantic attributes inferred using Natural Language
Understanding (NLU) of the search queries [15]. First, we
leverage search traffic metadata provided by the Google Ads
Keyword Planner API, which offers a real-world estimation of
keyword popularity proxied via advertiser competition. Each
keyword suggestion returned by the Google Ads Keywords
API is labeled as: i) Low competition, ii) Medium competition,
and iii) High competition. For example, a generic and high-
value query such as “nike shoes” is typically labeled as High
competition, due to strong brand recognition and commercial
value. In contrast, more specific or niche queries such as
“cheap sports shoes with durability” tend to fall under the
Medium or Low competition categories. Prior research study-
ing TSS websites [36] found that approximately 91% of the
search phrases associated with TSS scams are labeled as either
Low or Medium competition by the Google Ads Keyword
Planner API. Furthermore, the study observed an inverse
relationship between keyword popularity and scam toxicity
(formally defined as pollution level in their study), indicating
that higher popularity terms tend to correspond with lower
toxicity levels. Based on these findings, we hypothesize that
Low and Medium competition keywords are more effective for
discovering highly toxic keywords and restrict our analysis to
keywords labeled as Low or Medium competition throughout
this study.

Next, we classify keywords based on their semantic intent,
using a taxonomy derived from established practices in query
understanding [15]. Specifically, we group keywords into the
following intent-based categories using a publicly available
multi-label query classification model7:

• Informational Intent Keywords: Queries reflecting
shoppers intent to gather more information or conduct
preliminary research before buying the products and
services. Recognizing this browsing intent of shop-
pers, e-commerce platforms commonly supplement
their product catalogs with auxiliary content—such as
blogs, buying guides, and customer testimonials—to
enhance credibility, improve search visibility, and
drive upstream traffic through informational queries
(e.g., “chosing right mattresss size,” “difference be-
tween etf and stocks”).

• Commercial Intent Keywords: Queries reflecting a

7https://huggingface.co/dejanseo/Intent-XL
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strong user intent to make a purchase or engage in
transactional behavior. These types of queries often in-
volve product comparisons, evaluations of alternatives,
or searches for deals and discounts, thereby signaling
a readiness to buy (e.g., “best trail running shoes,”
“dyson airwrap vs revlon styler”).

• Long Tail Keywords: Queries that are highly specific
multi-word search phrases, which often signal strong
transactional or purchase intent. We define long tail
keywords as search queries containing more than 3
words separated by a tokenizer. These types of queries
generally exhibit lower overall search volume, but they
are associated with higher conversion likelihood due
to their specificity and alignment with user intent (e.g.,
“affordable standing desk with drawers,” “organic
cotton baby clothes for sensitive skin.”)

D. Query sampling by Segments

Next, we explore segment-wise query sampling, where
query segments potentially reflect behavioral or linguistic
cues associated with deceptive scam-attracting tendencies.This
allows for a systematic approach to sampling toxic queries,
ultimately improving the discovery pipeline for scam websites.
We decompose search queries using Natural Language Under-
standing (NLU) techniques to analyze the relationship between
different query segments (e.g., named entities, action verbs,
price-related tokens, etc.) and their associated toxicity scores.
Prior work in scam detection has focused on curating these
query segments manually, and specific to a scam category [29],
suffering from limitations in coverage and temporal adaptabil-
ity with shifts in the behavior of scam operations. Automat-
ically extracting query segments across multiple scam types
presents an important avenue for detection as the diversity and
volume of scam content evolve rapidly. The motivation of this
approach is to automatically identify the use of scare tactics,
urgency, or persuasive calls to action as linguistic markers
commonly employed by scam websites [3, 10].

Given a search query such as “cheap christmas shoes
for sale,” a query segmentation model extracts semantically
meaningful segments such as price (e.g., cheap), occasion (e.g.,
christmas), product (e.g., shoes), and modifiers (e.g., for sale).
This is a non-trivial problem that intersects with the broader
task of query understanding [12]. In this work, we adopt the
approach recently introduced in QueryNER [31], which formu-
lates the query segmentation task as a Named Entity Recog-
nition (NER) task. The authors construct a domain-specific
ontology over a large-scale shopping queries dataset [34],
defining 17 distinct semantic categories for query segments.
These categories encompass a wide range of attributes, includ-
ing product attributes (e.g., quantity, shape, color, condition),
product metadata (e.g., department, occasion, origin), and
shopping behavior indicators (e.g., price cues, transactional
modifiers). Among the various token categories identified,
modifiers are of particular relevance to keyword toxicity, as
they frequently serve to constrain, specify, or disambiguate
user intent. For example, two different modifier terms “without
verification” and “trusted seller” appended to a base query
“buy bitcoins,” serve as different types of soft constraints that
can influence both the type of e-commerce websites returned
in the results and the likelihood of the query surfacing scam

websites. We use the publicly available BERT model 8 fine-
tuned on a training dataset of 7,000 queries and category
tokens to extract semantic segments from input queries. The
model outputs token-level annotations, which we aggregate
into coherent segments by post-processing the output. These
segments are subsequently used as heuristics for sampling
queries based on the presence of each token category.

E. Validation

To systematically evaluate the effectiveness of different
keyword segment and attribute-based methods for sampling
the most “toxic” search queries, we construct a targeted
validation dataset. Given the computational and monetary cost
(through API costs) associated with querying SERP results
for over 100,000 un-branded candidate keywords, we sample
a representative subset of keywords for validation. Specifically,
we construct a targeted validation dataset by randomly sam-
pling a fixed number of keywords (100 per scam category),
stratified across the keyword attributes and query segments
discussed in the aforementioned sections. We restrict SERP
data collection for this dataset to three major search engines:
i) Google, ii) Bing, and iii) Baidu to balance coverage and
efficiency. In contrast, our large-scale evaluation in Section VI
will use SERP data from all four search engines for broader
generalizability. Sampling 100 keywords per category across
49 scam-relevant categories yields a total of 4,900 unique
search queries, from which we collect approximately 125,000
unique websites via SERP responses to serve as the validation
dataset for assessing the effectiveness of various heuristic
strategies in surfacing scam websites. We compute the toxicity
and expansion scores for each of the 4,900 keywords as
the proportion of websites returned by the keyword that are
classified as scams by the oracle. For each keyword, we
use all the SERP results returned by the DataforSEO API,
deduplicated by root domain, to compute the toxicity and
expansion scores (85 results on average per query). We do
not limit the toxicity calculation to any top results in this step
to get an overall estimate of how “toxic” the set of results
returned by a query is, regardless of how “top” ranked the scam
websites themselves are. While it is useful to consider where
the websites are being ranked in terms of users being exposed
to the websites in real-world SERP results, we don’t filter
the SERP results by position for the toxicity estimation and
modeling task, since for the purpose of a proactive detection
system, our objective is to identify as many scam websites
surfaced by a query as possible. The prevalence of scam
websites within a category is highly category dependent (e.g.,
the cryptocurrency category exhibits a significantly higher
susceptibility to scams than categories such as “education and
training.”) To account for this, we analyze the effectiveness of
the sampling strategies within individual categories, rather than
aggregating results across all categories. Specifically, we select
C1, C2, C3, C4, and C5 as the evaluation categories, as they
correspond to scam types most prominently victimizing real-
world users, according to recent findings by Kotzias et al. [18].
This selection grounds our evaluation in realistic, high-impact
scam categories, thereby enhancing the practical relevance and
external validity of our results.

8https://huggingface.co/bltlab/queryner-bert-base-uncased
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C1 C2 C3 C4 C5

Sampling Type Tox. Exp. Tox. Exp. Tox. Exp. Tox. Exp. Tox. Exp.

Max 0.20 66.05 0.23 79.75 0.28 94.15 0.39 133.65 0.274 92.95

Informational 0.097 32.60 0.071 24.20 0.089 30.33 0.147 49.33 0.144 45.22
Commercial 0.071 23.83 0.099 33.48 0.130 43.72 0.092 31.11 0.117 39.86
Low Competition 0.116 38.72 0.097 32.96 0.133 45.04 0.209 59.96 0.191 64.64
Medium Competition 0.121 40.84 0.095 32.12 0.129 43.24 0.165 55.63 0.175 59.39
Long Tail 0.081 27.47 0.094 32.06 0.129 43.86 0.194 64.64 0.093 31.62

TABLE III: Performance of attributes for keyword toxicity and
expansions.

Toxicity by query attribute. We evaluate the effectiveness
of sampling keywords using different attributes by analyzing
their relationship with query-specific toxicity scores. For each
attribute heuristic introduced in Section IV-C, we filter the
subset of keywords that match the attribute (e.g., query is
of informational intent, query is of long tail distribution
etc.) To obtain robust estimates of the average toxicity and
expansion scores associated with each attribute, we employ a
bootstrapped sampling procedure over the respective scores of
the filtered query subsets. Specifically, for each query attribute,
we conduct 1,000 bootstrap simulations by randomly sampling
20 toxicity scores (with replacement) from the corresponding
subset of matched queries and compute their mean. This
approach yields an empirical distribution of average toxicity
values, enabling us to get an estimate of how strongly each
attribute correlates with query toxicity. We repeat a similar
process for estimating the query expansion scores.

Table III reports both the mean toxicity scores and ex-
pansion rate associated with queries filtered by different at-
tributes across the evaluation scam categories (C1–C5). We
also provide a reference Max score for each category, providing
the upper bound of average keyword toxicity and expansion
when the keywords are sampled by sorting their ground truth
toxicity and expansion scores. The results illustrate that certain
attributes are more consistently associated with elevated toxi-
city and expansion levels. In particular, queries characterized
by Low Competition and Medium Competition demonstrate
higher average toxicity and expansion across all categories,
with Low Competition achieving the highest toxicity in C4
(0.209) and Medium Competition following closely in C5
(0.175). This finding is consistent with prior work on TSS;
however, while previous analysis was specific to only one
category of scam, we find this relationship generalizes across
a broader set of scam categories. Moreover, upon referencing
the performance of these attributes to the Max score, we find
that even the best attribute-based sampling provides largely
suboptimal results in terms of the toxicity and expansion,
across all 5 categories.

Toxicity by query segments. Next, we assess keyword toxicity
and expansion associated with sampling strategies based on
query segments. We treat segment types introduced in Sec-
tion IV-D (e.g., price, modifier, etc.) as semantic attributes
that capture linguistic patterns or tactics commonly employed
by scam websites. While the taxonomy proposed by [31]
defines 17 different token types, not all of them are relevant or
provide sufficient coverage across scam categories. We observe
that only five token types: i) Core Product Type, ii) Content,
iii) Product Name, iv) Modifier, and v) Price consistently meet
the minimum threshold of at least 20 keyword matches per
category, allowing for stable bootstrapped toxicity estimation.
Therefore, we focus our analysis on these five high-coverage

C1 C2 C3 C4 C5

Sampling Type Tox. Exp. Tox. Exp. Tox. Exp. Tox. Exp. Tox. Exp.

Max 0.20 66.05 0.23 79.75 0.28 94.15 0.39 133.65 0.274 92.95

Core Product Type 0.09 33.83 0.09 30.87 0.14 48.03 0.22 74.99 0.13 43.97
Content 0.08 47.08 0.09 32.54 0.18 61.03 0.23 79.69 0.08 28.87
Product Name 0.08 27.23 0.09 31.84 0.14 48.75 0.13 45.31 0.12 41.27
Modifier 0.09 32.72 0.10 34.58 0.16 54.92 0.20 69.04 0.08 28.98
Price 0.08 40.52 0.08 27.72 0.14 48.75 0.24 80.86 — —

TABLE IV: Performance of entities for keyword toxicity.

query segments, as they offer both semantic interpretability and
robust empirical support for evaluating segment-based query
sampling strategies across diverse scam categories. For each
scam category (C1 through C5), we identify the top 20 highest-
ranked query segments within each token type (e.g., modifier,
price, etc.) and filter the set of keywords that contain any
of these segments. For multi-word segments (e.g., “for sale,”
“freshly used”, etc.), a keyword is considered a match if all
constituent words of the segment appear anywhere within the
query text.

Table IV presents the mean toxicity and expansion scores
for each token type across the five scam categories (C1–C5).
Similar to the previous section, the results reveal that all
query segments consistently produce suboptimal sampling in
reference to the Max scores, and no single query segment
type emerges as uniformly effective across all scam cate-
gories. The variability observed in Table IV further illustrates
the generalization challenges associated with segment-based,
attribute-based, or any rule-based keyword sampling methods.
In the absence of category-specific priors, query segment-
based keyword sampling approaches become suboptimal.This
limitation is particularly critical in the proactive discovery of
emerging scam categories, where contextual signals necessary
for selecting relevant segments or attributes are often absent.
These findings reinforce the limitations of static heuristics and
highlight the need for a more robust and adaptive keyword
discovery strategy, as embodied by the data-driven approach
proposed in LOKI.

Source C1 C2 C3 C4 C5

C1 0.09 0.08 (–1%) 0.13 (–4%) 0.18 (–5%) 0.10 (–3%)
C2 0.09 0.10 0.17 0.21 (–2%) 0.09 (–4%)
C3 0.09 0.09 (–1%) 0.17 0.14 (–9%) 0.09 (–4%)
C4 0.08 (–1%) 0.10 0.10 (–7%) 0.23 0.10 (–3%)
C5 0.08 (–1%) 0.10 0.15 (–2%) 0.18 (–5%) 0.13

TABLE V: Cross Category Comparison Table.

Cross-Category Generalization of Heuristic Selection. Our
findings in the previous sections motivate an important ques-
tion: Can heuristic signals derived from toxic query segments
in one scam category generalize to others? Enabling such
generalization would greatly improve the effectiveness of
query-powered systems to discover scam sites, removing the
need for category-specific keywords and accounting for time
and evasion-related changes. In this question, we investigate
whether high toxicity query segments identified in one cat-
egory can generalize effectively for sampling toxic queries
across other scam categories. For example, in category C1, the
query segments most associated with toxic keywords include
terms “cheap,” “free,” and “sale.” We evaluate whether these
segments retain their discriminatory power when applied to
other scam categories. For each scam category in the validation
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set, we extract the top 20 query segments most associated
with high toxicity queries and compute the average toxicity
of queries containing these segments, using the matching and
scoring methodology previously outlined in Section IV-E. This
provides an upper bound on the predictive capacity of in-
category query segments. We then apply these query segments
to the remaining categories and measure their effectiveness in
sampling toxic queries for other scam categories. Specifically,
using a reference category (e.g., C1), we use its top toxic
query segments to sample queries in other categories (C2–C5)
and compute their bootstrapped toxicity scores.This process is
repeated for each category (C1 through C5) as the reference,
resulting in a matrix of cross-category toxicity scores.

Table V presents the results of our cross-category gen-
eralization experiment, where each row corresponds to the
source category from which the reference query segments were
extracted (denoted as “Source”), and each column corresponds
to the target category where the reference query segments
were applied for sampling the queries. The diagonal entries
indicate within-category performance, while off-diagonal val-
ues reflect the toxicity scores obtained by applying query
segment heuristics from the source category to sample queries
in a different target category. The red percentages indicate
the relative drop in toxicity compared to the diagonal (i.e.,
in-domain) baseline. Across all source categories (C1–C5),
we observe a consistent drop in toxicity when the source
heuristics are applied to other target categories. For example,
using C1’s top segments in C3, C4, and C5 results in a
4–5% reduction in toxicity relative to C1’s own performance.
This trend applies across all categories, as no source category
provides a heuristic set that consistently generalizes to all
others without incurringa measurable performance drop. These
results indicate that, even when derived from labeled data,
query segment–based heuristics exhibit limited generalization
across scam categories.

Takeaways. Sampling keywords by heuristics such as query
attributes and query segments performs suboptimally in iden-
tifying the most effective queries in terms of toxicity and
expansion, and does not generalize across different categories.
This shows the need for a generalizable, data-driven method
to achieve the objective of sampling the most toxic set of
keywords for improved discovery of scam websites, which we
present in the next section.

V. LOKI

The empirical observations made in the previous section
motivate the need for a scalable, data-driven framework that
can learn to identify toxic queries, overcoming the limitations
of category-specific heuristics and rules. Guided by this in-
sight, we now introduce our system LOKI, centered around
modeling the toxicity of search keywords. The objective of the
model trained in LOKI is to estimate each query’s underlying
toxicity score without having access to its corresponding SERP
results at test time. Given a pool of candidate queries collected
from Google Ads Keywords API, LOKI predicts a continuous
score of keyword toxicity (between 0-1) for the queries. The
highest-ranked queries are then selected and queried for search
engine results, enabling a guided approach for the discovery
of scam websites in the wild.

In this section, we first illustrate the modeling consider-
ations behind LOKI. We then present our evaluation strategy
and discuss our system’s implementation. Finally, we present
the results of LOKI on the toxicity prediction task, compare
it against relevant baselines, and discuss the takeaways of our
results.

A. LOKI: Modeling Considerations

Using query segment classification models like BrandNER
(which we previously used for attribute-level toxicity analysis
in Section IV-C) is insufficient for LOKI, as these models are
unable to capture the underlying intent and latent attributes
influencing SERP-level toxicity of a query, which is at the core
of our approach.LOKI needs a more comprehensive modeling
framework that can learn these latent properties directly from
real-world SERP data, rather than relying on intermediate
lexical features. For this reason, we adopt transformer-based
models like DistilBERT [35] to predict query toxicity directly.
This model is ideal for our task, because it avoids the brittle-
ness that is inherent to models based on intermediate lexical
features, and can capture rich linguistic and structural features
through its contextualized embeddings [16]. Most importantly,
these structural representations are learned in a task-specific
manner during fine-tuning, aligning language understanding
with the toxicity prediction objective.

A key innovation of LOKI is that rather than stopping at
vanilla fine-tuning of transformer models over query-toxicity
score pairs, we enhance the learning setup by integrating
an additional modality of information: the SERP metadata
associated with each query. In the standard setup, the model
learns to predict the latent toxicity of a query purely from
its textual representation. By incorporating SERP level meta-
data, we introduce auxiliary signals that help bridge the gap
between the query and its observed toxicity score by offering
insight into the nature of the search results that contributed
to (or minimized) that toxicity. These metadata capture the
qualitative aspects of the retrieved content (e.g., webpage
descriptions) that are not directly observable from the query
alone, thereby grounding the abstract notion of toxicity in
real-world search engine retrievals. However, a key practical
constraint in this setting is that while SERP data is available
during training, it is unavailable at inference time, as querying
search engines at scale is counterintuitive for real-time query
sampling (and computationally expensive). To overcome this
issue, we adopt the Learning Under Privileged Information
(LUPI) framework [38], which posits that access to supple-
mentary information during training, even if unavailable at
inference time, can significantly improve the generalization
ability of the model. In our case, the SERP metadata available
during training serves as privileged information that guides the
model in learning more discriminative representations of query
toxicity.This enables the model to establish a richer query-to-
toxicity mapping, even when SERP information is not available
at test time.

To operationalize the LUPI framework within a Ma-
chine Learning setting, we adopt a teacher–student distillation
paradigm in which the teacher model has access to the SERP
metadata (the privileged information) during training, and the
student model learns to predict query toxicity using only the
query text. This approach is motivated by the intuition that
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effective teachers do more than simply providing the correct
answer: they also convey the underlying rationale behind those
answers [20]. In our case, rather than asking the model to
directly infer a continuous toxicity score from queries alone,
we use the SERP metadata to provide additional context that
explains how a particular query received its toxicity label. The
resulting student model is optimized to predict toxicity solely
from the query text, with no access to SERP information at
inference time. Furthermore, the privileged SERP information
serves as an inductive bias, enabling the regression model
to more effectively approximate the underlying relationship
between query semantics and toxicity. Given access to SERP
metadata for queries in the training dataset, we train our LUPI
model using the teacher–student framework and evaluate the
student model to predict toxicity scores using only query text,
without issuing search queries.

B. Leave-One-Category-Out Cross-Validation

LOKI’s goal is to capture the latent notion of query toxicity
in a category-agnostic manner. Given the absence of prior
datasets or standardized benchmarks for this task, we adopt a
5-fold cross-validation strategy to evaluate the generalization
performance of our model. To evaluate the model’s gener-
alization across scam types, we adopt a leave-one-category-
out cross-validation setup (analogous to Leave-One-Out Cross-
Validation (LOOCV) in standard ML), where each fold holds
out queries from a distinct scam category as the test split. In
each fold, the model is trained on queries from four categories
and evaluated on the held-out fifth category. This setup ensures
that the test queries originate from entirely unseen business
verticals, providing a rigorous assessment of the model’s
ability to generalize beyond category-specific patterns. This
evaluation framework represents a hard generalization setting,
in which the model must learn to infer toxicity signals purely
from the structure and semantics of the query, without relying
on implicit correlations with previously seen queries from
the same category. By enforcing this separation, we mitigate
risks of unintended feature leakage, reduce overfitting, and
more faithfully assess the extent to which the model captures
category-agnostic properties of query toxicity.

We construct five cross-validation folds, with each fold
holding out one scam category for evaluation while training
on the remaining four. Consistent with the evaluation criteria
outlined in Section IV-E, we select C1, C2, C3, C4, and C5
as the held-out categories, allowing for fair and consistent
comparison across baseline methods. As an example of the
Leave-One-Category-Out Cross-Validation setup, in Fold 1
(F1), we train on all categories except C1 (Shopping / Fashion)
and evaluate on C1. We repeat this process for the remaining
folds. Note that this leave-one-category-out cross-validation
framework is flexible and can be readily extended to assess
model performance on any other scam categories (C6-C10) or
new scam categories identified by future studies, depending on
specific research goals.

C. LOKI: Implementation

As discussed, the training procedure of LOKI follows a
two-stage approach grounded in the Learning Under Privi-
leged Information (LUPI) paradigm. In the first stage, we
train a teacher model that has access to both the query text

and the corresponding privileged information in the form
of SERP metadata. This model is tasked with learning to
predict query toxicity using the additional SERP modality.
Importantly, this step functions not only as the foundation for
subsequent distillation but also as a validation of the utility
of incorporating privileged information through the additional
modality. By comparing the teacher model’s performance to
baseline transformer models (e.g., DistilBERT) that rely solely
on query inputs, we can empirically assess the added value of
incorporating SERP level metadata. In the second stage, we
then train a student model that has access only to the query
text. The student is optimized to mimic the teacher’s output,
thereby distilling the additional knowledge encoded via the
privileged SERP information into a model deployable under
real-world constraints, where such metadata is not available at
inference time.

1) Teacher Model: The teacher model implemented in
LOKI is designed to predict query toxicity based on the contex-
tual relationship between a query and its corresponding Search
Engine Results Pages (SERP). To model these two distinct
input modalities, the architecture incorporates two indepen-
dent instances of the DistilBERT encoder: one dedicated to
processing the query and the other to processing the SERP con-
tent. This architecture enables the model to learn specialized
contextual representations for each modality, without forcing
a shared embedding space. The query representation is ex-
tracted from the embedding of the special classification token
([CLS]) in the final hidden state of the query encoder. This
token is primarily used in transformer architectures such as
BERT to summarize the entire input sequence for downstream
classification or representation learning tasks [9]. For SERP
inputs that may consist of multiple result entries per query, we
flatten the entries, encode each individually using the SERP
encoder, and apply mean pooling across all entries to derive
a single aggregated SERP embedding. These two embeddings
are then concatenated and passed through a fusion linear layer
followed by ReLU activation and dropout for regularization.
The final output layer is a regression head that produces a
continuous toxicity score. Optionally, the model also returns
the attention map from the query encoder, which is later
utilized in the distillation process to guide the student model.
A visual representation of the teacher model architecture is
presented in Figure 2.

2) Selecting the privileged information: An important as-
pect of the teacher model implementation involves identifying
the proper subset of the available SERP metadata to be used as
the privileged information during training. Given the diversity
and volume of metadata returned by search engines through
the DataForSEO API, careful selection is required to determine
the most informative signals for guiding the teacher model. To
this end, we explore multiple strategies for selecting privileged
information across four distinct axes, each capturing a different
facet of the SERP context, as detailed below.

• Search Engine: We collect SERPs available for each
query in the validation dataset from 3 different search
engines (i.e., Google, Bing, and Baidu). We experi-
ment with selecting the SERP from each of the search
engines individually and together.

• SERP Metadata: The DataForSEO API returns a
rich set of metadata for each SERP entry, includ-
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Fig. 2: Overview of LOKI pipeline.

ing the page title, snippet description, presence in
Q&A forums, mentions in Google Business, and other
contextual indicators. To determine which metadata
fields are most effective as privileged information, we
conduct ablation experiments using different subsets
of these features.

• SERP Filtering: The domain of SERP (benign or
scam websites) can affect the model training. To
address this, we explore filtering strategies wherein
only SERP entries corresponding to scam websites,
as identified by our oracle labeling mechanism, are
retained as privileged information. We compare this
filtered setup to a baseline that includes all SERPs
without filtering.

• SERP Size and Ranking: Finally, we investigate the
impact of both the number of SERP entries encoded
per query and the strategy used to select them. We
compare two sampling strategies: random selection
versus rank-based selection, where SERPs are chosen
according to their position in the original search
engine results. On average, each search query for a
search engine returns around 85 SERPs. Additionally,
we experiment with varying the number of SERP
entries included per query (ranging from 5 to 50.)

We identified the optimal configuration for training the
teacher model by systematically evaluating all four axes of
privileged information selection in a grid search setup, varying
the search engine source, metadata type, filtering strategy, and
number and ranking of SERP entries. Specifically, using the
top 20 ranked SERP descriptions from Google, filtered to
include only scam domains, yielded the best performance
for the teacher model. This configuration is adopted for all

subsequent training and evaluation of the teacher models.

Teacher model results. The teacher model was trained using
the AdamW optimizer [27] with a learning rate of 2e-5 for
5 epochs. The objective function was the Mean Absolute
Error (MAE), implemented via the L1 loss, to encourage
robust regression of toxicity scores. We select the best model
based upon validation loss on a held-out validation dataset
(sampled as 10% of the test dataset for each fold). Evaluation
is conducted using the stratified 5-fold leave-one-category-out
cross-validation setup described in Section V-B. As a baseline,
we compare against the DistilBERT model trained solely
on query text, with no access to privileged SERP metadata
and the best-scoring query sampling strategies (both attribute-
based and token-based from Section IV-E). Additionally, to
approximate an upper bound on achievable toxicity scores
within each category, we include the Max score by sampling
the top 20 queries based on their ground truth toxicity scores.

The evaluation results are summarized in Table VI. Across
all five held-out categories, the teacher model incorporating
SERP metadata consistently outperforms the baseline query-
only model. Notably, for categories C3 and C5, the teacher
model’s performance approaches the upper bound in terms of
both toxicity and expansion, providing an improvement over
the suboptimal query sampling of attribute-based approaches
found in Section IV-E. These results provide strong empiri-
cal validation of our intuition: incorporating SERP metadata
as privileged information significantly enhances the model’s
ability to learn the latent toxicity of queries.

D. Distillation of Student Model

Next, we distill this representation learnt by the teacher
model using a feature distillation framework. The goal of
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C1 C2 C3 C4 C5

Sampling Type Tox. Exp. Tox. Exp. Tox. Exp. Tox. Exp. Tox. Exp.
Max 0.19 66.05 0.23 79.75 0.28 94.15 0.39 133.65 0.27 92.95
Best Attribute / Entity 0.12 40.84 0.10 34.58 0.18 61.03 0.24 80.86 0.19 64.64
DistilBERT 0.09 32.16 0.17 54.52 0.23 75.36 0.26 98.33 0.20 68.32
Teacher 0.15 53.45 0.19 67.3 0.26 84.85 0.30 112.55 0.25 84.00
Student 0.12 50.34 0.20 67.9 0.24 79.45 0.30 110.75 0.22 75.95

TABLE VI: Performance of LOKI’s teacher and student models with
SERP information.

this distillation process is to transfer the latent query-toxicity
mapping from the privileged teacher to a student model that
relies solely on query inputs, enabling the student model to
predict toxicity scores of keywords in the wild, where SERP
metadata is unavailable.

The student model is a lightweight regression architecture,
structurally identical to the baseline model, designed to predict
toxicity scores using only the query input. Unlike the baseline,
however, the student is trained to approximate the behavior
of the teacher model while simultaneously learning to predict
toxicity scores. It is to note that, compared to model-based
distillation, where a teacher model has higher complexity than
the student model (in terms of parameter size, or neural com-
plexity of the model itself), feature-based distillation can use
student models that are of comparable capacity and complexity
to the teacher models.

Consistent with the baseline and teacher SERP models,
the student model uses a single instance of the DistilBERT
transformer encoder to generate contextualized representations
of the query. Specifically, the final hidden state corresponding
to the [CLS] token is extracted as the query level embedding.
This representation is then processed by two task-specific
heads: i) prediction head, and ii) distillation head. The first
head, the prediction head consists of a dropout layer followed
by a two-layer feedforward network with ReLU activation,
resulting in a continuous output estimating the toxicity score.
In parallel, the distillation head consists of a projection layer
that transforms the query representation into an intermediate
representation intended to mimic the teacher model’s fused
representation, which was originally trained with access to
the privileged information. Note that this projection layer is
a simple linear layer, as the teacher model and student model
share the same architectural backbone, and this architectural
symmetry eliminates the need for complex feature align-
ment typically needed in distillation between heterogeneous
architecture [13]. The output from the distillation head thus
facilitates feature-based knowledge distillation, which we use
as part of training the student model. A visual representation
of the student model architecture and the distillation process
is presented in Figure 2. To effectively transfer the teacher’s
knowledge into the student model, we employ a multi-objective
distillation framework comprising four complementary loss
components:

• Ground Truth Loss: Loss aligning with direct super-
vision using MAE between the student’s prediction
and the true label.

• Prediction Matching Loss: Loss aligning student
predictions with the teacher’s predicted scores using
MAE.

• Hint Matching Loss: Loss to supervise the recon-

struction of the student’s intermediate representation
as close as possible to the teacher’s fused representa-
tion using Mean Squared Error (MSE).

• Attention Matching Loss: Minimizes the distance
between the attention maps of corresponding layers
in the student and teacher model using Mean Squared
Error.

The loss function used during training the student model
is formally represented as:

Ltotal = λGT · LGT + λPM · LPM + λHM · LHM + λAM · LAM (1)

We identify the best weighing coefficients for the individual
loss components through hyperparameter tuning on a held-out
validation dataset. We initialize the student model with the
parameters from the best teacher model, as it has been shown
in the distillation literature that it improves model performance
and convergence steps compared to random initialization [40].
The teacher model is frozen during training, and only the
student model is optimized using AdamW with linear learning
rate warmup. Additionally, early stopping based on validation
loss is employed to prevent overfitting.

Student model results. The performance of the student model
following the distillation procedure is summarized in Table VI.
We find that the student model is able to approximate the
performance of the teacher model reasonably well across
most scam categories, indicating effective knowledge trans-
fer through the distillation process. Moreover, the student
consistently outperforms both the data-driven baseline model
(DistilBERT), which is trained solely on ground truth super-
vision without access to privileged information and the best-
performing attributes or entities. This improvement highlights
the utility of incorporating LUPI from a more informative
teacher, even when the student model operates under input
constraints during inference time.

Notably, in certain categories such as C2 and C4, the
student model achieves parity with the teacher model, in-
dicating near-perfect distillation. Conversely, the benefits of
distillation are less pronounced in some categories, such as C1,
where there is a notable performance gap between the student
and teacher. This gap can be attributed to the limitations
of feature-based distillation under out-of-distribution (OOD)
conditions, where performance deteriorates when the student
encounters distributional shifts not seen during training. The
cross-validation strategy described in Section V-B is intention-
ally designed to mimic an OOD evaluation scenario, where
there is no category (domain) overlap between the training
and testing splits, amplifying the effect of domain shift and
approximating a worst-case evaluation scenario requiring hard
generalization.

Takeaways. In this section, we first empirically validated
our intuition that SERP based representations offer valuable
contextual signals for the task of toxicity prediction by training
a privileged teacher model that leverages both the query and
its associated SERP content, demonstrating significant perfor-
mance gains over standard BERT-based regression baselines.
Next, we demonstrated that this privileged knowledge can
be effectively transferred to a lightweight student model via
feature distillation. The distilled student model, which relies
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solely on the query text, achieves consistently higher toxicity
estimation and subsequently increased expansion factor across
all five scam categories compared to the standard baseline.
Given our evaluation setup, which is deliberately designed to
be challenging by excluding the scam category altogether from
training in each fold, we argue that LOKI is well positioned to
generalize to both known and emerging scam categories. This
generalization is crucial, as the primary utility of this keyword
scoring model lies in its ability to surface queries indicative
of novel or evolving scam categories and business verticals
over time. Additionally, the final model is based on a compact
DistilBERT architecture, enabling real-time deployment for
query ranking.

In the next section, we illustrate the real-world utility
of our system by applying it to identify scam websites in
the wild. We further demonstrate the system’s capacity to
generalize by discovering scam websites in previously unseen
scam categories, thereby affirming its effectiveness in detecting
emerging threats.

VI. APPLYING LOKI IN THE WILD

We previously validated the efficacy of LOKI by compar-
ing it against static heuristics and data-driven baselines for
sampling the most toxic queries on ground truth data. Now,
we use these toxic queries sampled by LOKI to discover new
scam websites in the wild. To this end, we use LOKI to
rank the toxicity of the keywords collected in Section II-C
corresponding to the scam websites sourced from 49 different
categories curated in Section IV-B. We select the top 20
ranked keywords from each category, resulting in a total
of 980 distinct queries. Following the methodology used in
Section IV-E, we use these 980 queries to collect SERPs from
Google, Baidu, Bing, and Naver, resulting in a total of 271,161
websites. The collected websites are passed through the oracle
classifier, which labels 52,493 (19.3%) of them as scams. We
refer to this set of newly identified fraudulent websites as the
“discovered scams.”

We present a summary of the discovered scams corre-
sponding to the different categories curated in Section IV-B
in Table VII. As expected, the highest number of scams
were identified in the Crypto / Money (C2) category with
8,900 websites, followed by Adults / Gambling (C3) category,
totaling 6,822 websites. Additionally, LOKI helped us identify
scams in underexplored categories, i.e., Education (C6) and
Business / Admin (C5). This demonstrates the generalizability
of our system beyond traditionally well-studied scam verticals
such as Shopping, cryptocurrency and investment scams [23].

User Impact Evaluation. The primary goal of LOKI is to build
a proactive pipeline that can detect new scam websites, so that
security systems can alert users when they access the scam
website, which can happen through gateways other than search
engine queries themselves (e.g., social media ads, spam emails,
etc). We utilize scam websites occurring on SERP results
primarily as an index to discover these websites. However, we
find that based on different search engines, these scam websites
do end up appearing in the top search results. 13.98% of scam
websites appear in the top 20 Google Search results, whereas
the ratio is much higher on Bing (22.22%), Naver (29.1%),
and Baidu (45.3%).

Scam Type Identified Scams
Shopping / Fashion (C1) 6,034
Crypto / Money (C2) 8,900
Adults / Gambling (C3) 6,822
Medical / Pharmacy (C4) 1,932
Pets / Animals (C5) 2,737
Electronics (C6) 3,249
Business / Admin (C7) 3,459
Education (C8) 3,841
Marketing / Sales (C9) 2,305
Online Marketplace (C10) 2,756

TABLE VII: New scam websites identified by LOKI for each
category.
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Fig. 3: ScamAdviser score of the scam websites identified by LOKI.

While our pipeline incorporates a robust oracle for scam
identification, dedicated downstream systems such as Scamdog
Millionaire [19] and ScamNet [5] can serve as alternative
mechanisms for classifying the websites discovered by LOKI,
when available. The stream of websites discovered by LOKI
has a higher likelihood of being scams, and thus can be
prioritized by downstream detection systems over randomly
sampled websites and websites sourced through reactive sam-
pling approaches. Since there is no ground truth attached to
the new scam websites discovered by LOKI, we use third-
party scores such as ScamAdviser, Trustpilot, and social media
profiles of the websites for further verification.A detailed
analysis of each of the validation steps follows.

A. ScamAdviser Validation

Prior work [19] used scores from third-party security
services such as ScamAdviser as a filtering mechanism and
validation mechanism for building ground truth datasets of
scam websites and benign websites. We specifically borrow
the ScamAdviser threshold used by the work, i.e., 85, for
selecting benign websites as part of their ground truth for our
analysis. We query the ScamAdviser API with the discovered
scams and record their scores (ranging from 0 to 100). Figure 3
shows the cumulative distribution of ScamAdviser scores for
the scam websites identified by LOKI. The CDF reveals that
approximately 62% of the scam websites receive a score below
the benign threshold (i.e., 85), and alarmingly 25% of the
websites receive the labeling of Very Likely Unsafe, Likely
Unsafe, and Caution Recommended by the ScamAdviser
system (i.e., score below 60).
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B. TrustPilot Validation

Similarly, prior work [19] has used TrustPilot ratings as
a mechanism for filtering and identifying scam websites. We
collect the TrustPilot profiles of the identified scam websites,
collecting 5,540 TrustPilot ratings (i.e., 10.55% of the web-
sites). This is in line with findings inthe literature where almost
90% of scam websites are not listed in Trustpilot as business
profiles. Additionally, 52 of these websites were reported by
TrustPilot to be breaching their community guidelines, which
is indicative of the websites using fake reviews or building
inauthentic indicators of trust. 3,366 scam websites (60.75%)
receive a Trustscore rating of Poor, indicating that most of
the TrustPilot reviews received by scam websites are negative.
Only 665 (12.03%) of the scam websites receive a Trustscore
rating of “Excellent,” which has been used by prior works as
a filtering criteria for benign websites [19]. Although some of
the higher TrustPilot scores can be attributed to false positives
from the oracle, others could reflect illegitimate reviews that
bypassed Trustpilot’s detection system and therefore warrant
further analysis using advanced Natural Language Processing
(NLP) based methods.

C. Instagram Followers Validation

Another important social signal associated with both gen-
uine and scam websites is their social media presence on
Facebook and Instagram. Prior work [2] identified a lack of
social media presence, relatively lower social media account
age, and a lower number of followers as strong indicators
of scam websites. We leverage these findings to understand
the composition of social media followers of the discovered
scam websites. Of the 52,493 discovered scam websites, only
12,866 (24.5%) of the websites have a linked Instagram profile.
Of these, 1,082 (8%) of the linked Instagram profiles are
broken (provided Instagram links do not resolve to a valid
profile), corroborating the findings in prior work [2]. We plot
the cumulative distribution function (CDF) of the Instagram
follower counts associated with the scam websites in Figure 4.
The distribution reveals a strong right skew, over 90% of scam-
linked Instagram accounts have fewer than 5,000 followers,
and approximately 50% fall below the 500 follower mark.
Notably, 25% of these accounts have fewer than 100 followers,
which might be indicative of relatively newer scam operations.
Therefore, LOKI can be effective in identifying scam websites
proactively before they expand their operations and incur
significant financial damages.

Takeaways. LOKI enabled large-scale discovery of scam
websites across a diverse set of categories, including those
that have been traditionally underrepresented in prior work.
Moreover, the discovered websites offer high-yield websites
for downstream detection systems, enabling more targeted
and efficient classification than reactive or random sampling
approaches. While the external validation mechanisms (e.g.,
ScamAdviser and Trustpilot) provide useful corroboration
of scam likelihood, they are inherently limited by outdated
scoring heuristics and incomplete coverage of the underlying
system. These signals often lag behind emerging threats and
can be subject to manipulation, meaning they do not fully
capture the true prevalence of scams surfaced by LOKI. As
such, our validation results likely represent a conservative
estimate of the system’s effectiveness.
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Fig. 4: Instagram follower counts of the scam websites identified by
LOKI.

VII. RELATED WORK

In this section, we review relevant work on approaches to
sample malicious websites in relevant security problems, and
existing systems to classify scam websites.

Keyword-based approaches to sampling malicious websites.
Prior efforts for discovering scam websites predominantly
rely on domain-specific keyword lists enriched through static
methods. These keyword lists are usually constructed using
brittle heuristics or manual curation, limiting their ability to
generalize across diverse scam categories or adapt to new
scam campaigns. Srinivasan et al. [36] derive search keywords
from an initial corpus of TSS domains via TF-IDF weighting
and subsequently perform a post-hoc analysis that correlates
query-level traffic characteristics to the toxicity of the TSS sites
discovered. Similarly, Liu et al. [24] employ a topic modeling
approach [6] on the HTML content of known scam websites
to extract representative search queries, which are then used to
identify a diverse set of TSS websites [24, 36]. Another line of
work focuses on the detection of Fake Removal Advertisement
(FRAD) websites by crafting a template of removal-intent
queries (e.g., how to remove virus) to surface malicious do-
mains targeting users searching for malware remediation [17].
EvilSeed [14] employs TF-IDF-based sampling on the output
of Yahoo’s Term Extraction API to identify popular topics and
terms misused by miscreants to drive search engine traffic.
Leontiadis et al. [21] sample illicit online drug selling websites
by iteratively expanding a manually curated seed set of 218
drug-related queries to identify search-redirection attacks in the
illicit online pharmacy ecosystem. A common theme across all
of these works is that they focus on a single type of malicious
behavior (e.g., TSS, FRAD etc.), while our work focuses on
studying a diverse set of scam categories (10), thus providing
a more general and comprehensive understanding of guided
search-based discovery of scam websites. Additionally, we
provide a framework for systematic baselines and a rigorous
evaluation methodology for assessing the efficacy of different
keyword-based sampling strategies.

Scam detection systems. Recent work in scam detection
has focused on developing scalable and effective systems for
identifying fraudulent e-commerce websites across a wide
range of online services. Bitaab et al.[2] present the first-ever
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detection system that goes beyond the scope of traditional
phishing websites to detect fraudulent e-commerce sites by
leveraging a comprehensive infrastructure including crawling,
feature extraction, and supervised learning. Kotzias et al.[19]
introduce Scamdog Millionaire, a detection system designed
for identifying fraudulent “e-shops” at scale for a commer-
cial security system. Towards developing explainable scam-
detection systems, ScamNet[5] incorporates the reasoning ca-
pabilities of Large Language Models (LLMs) for explainable
scam detection, producing human-understandable reasoning
behind classification decisions. ScamMagnifier[4] leverages
the shared payment infrastructure of organized scam opera-
tions, offering insights into coordinated scam ecosystems and
enabling broader detection strategies. Collectively, these works
demonstrate the evolution of scam detection systems from
static classifiers to explainable, campaign-aware frameworks
prioritizing different phases and modus operandi of fraudulent
websites.

VIII. DISCUSSION AND CONCLUSION

We presented LOKI, a novel data-driven framework for
mining high-toxicity search queries in order to maximize
the yield in discovery of fraudulent e-commerce websites
via Search Engine Results Pages (SERPs). Through a com-
prehensive evaluation of existing search traffic features and
query understanding heuristics, we demonstrated that prior
approaches perform inconsistently across different scam cat-
egories and yield suboptimal sampling of toxic queries. To
overcome these limitations, we developed a category-agnostic,
data-driven keyword scoring model powered by real-world
SERP feedback. We rigorously validate the efficacy of LOKI
on ranking the most toxic set of keywords from a pool of
1.5 million candidate keywords, demonstrating that the search
keywords identified by LOKI outperform both supervised and
unsupervised baselines in the task of discovering new scams.
We further applied LOKI in the wild to discover 52,493 pre-
viously unreported scam websites spanning ten distinct scam
categories, thereby demonstrating its practical effectiveness in
real-world settings.

Our paper takes a first step towards developing systems to
proactively identify scam websites by leveraging data-driven
query mining. We believe that the end-to-end system pipeline
proposed in our approach serves as a new paradigm for security
analysts to stay ahead of scam adversaries in the rapidly
evolving scam ecosystem. By shifting from reactive and
manually crafted keyword lists to proactive, SERP-informed
query mining, LOKI presents itself as a sound framework
for longitudinal discovery of scam websites. We believe that
LOKI (which we make publicly available9) will be an effective
tool for enabling security analysts to proactively identify scam
websites.

Ethics. All datasets used in this work were either publicly
released by other researchers or reported by users on public
scam detection forums and communities. Additional sources of
data (i.e., Google Keyword Suggestions and the SERP results)
are collected from the official API providers, following those
API’s terms of service. This work is not considered human
subjects research by our institution, since we do not interact

9https://doi.org/10.5281/zenodo.17049965

with humans and do not collect any private information.
Although we issue potentially toxic queries to the search
engines to measure toxicity and identify new scam websites
during experimentation, all requests are subject to strict rate
limits and comply with the providers acceptable-use policies
to ensure responsible use of the crawling infrastructure. While
LOKI is developed to aid the proactive detection efforts, the
query ranking outputs can be misused by adversaries as part
of curating their own “content blacklist” to avoid using these
keywords in their page source, in an effort to prevent these
webpages from being indexed by the search engines within the
context of the identified toxic keywords. However, eliminating
such restrictions on the content published in the scam websites
compromises the intended tactics of the scam operations and
ultimately decreases the effectiveness and presentation of the
scam websites.

Design implications. LOKI’s design is motivated with a focus
towards practical adoption in real-world security systems. The
core component, a light-weight regression model designed
on DistilBERT has a very small memory footprint (268
Megabytes), and can be served with inference on a standard
device with minimal GPU configurations or even by offloading
the model weights to a CPU. Input to LOKI is a list of
queries related to a scam website or a brand vertical, which
can be sourced from anywhere. During the design of our
system, these keywords are sourced from Google Ads keyword
Suggestions to approximate real-world traffic and issue queries
resembling real-world search behavior, but LOKI can be fed
any input stream of keywords (including results from other
keyword extraction systems). Other components of our work
can be easily integrated into existing security subsystems (e.g.,
alternate and dedicated oracles to classify the new websites
discovered via SERP can be used.) Moreover, the end-to-
end system pipeline, as illustrated in Figure 1 can be used
to enable continuous discovery of new scam websites with
minimal human supervision. Starting from a small seed of
scam websites to query identification and ranking, the newly
identified scam websites from LOKI can be fed back to the end-
to-end system to identify websites with evolved scam tactics,
in a loop.

Extending the capabilities of LOKI. LOKI is designed to be
campaign-agnostic as we demonstrated that it generalizes well
across the scam categories identified in the paper, discovering
new scam websites across 10 categories (in Table VI). To adapt
Loki to any new type of scam campaigns or categories, we first
need to identify a few websites (either scams or benign) that
are related to an e-commerce campaign or business category.
These websites can then be passed through our pipeline in
Figure 1: first, Google Ad Keywords for getting keyword
suggestions, and the student Loki model to rank the targeted
set of keywords to be issued for SERPs. Finally, the ranked set
of keywords can be queried via SERP APIs or search engine
interfaces and passed through an oracle to identify potential
scam websites. This way, starting from a seed set of websites
related to a category or campaign, we can easily identify new
scam websites related to the campaign.

Limitations. While our system demonstrates strong gener-
alizability and improved discovery of scam websites across
diverse categories, it is not without limitations. First, the
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discovery enabled by our approach is inherently constrained
to websites that are indexed by the search engines studied.
Scam websites that rely on alternative discovery mechanisms
(e.g., direct social media links or messaging platforms) or
intentionally exclude themselves from search engine indexing
remain beyond the reach of LOKI. Finally, scammers increas-
ingly employ social engineering, multimedia-driven lures, or
multilingual and multi-modal deception strategies that may not
rely on conventional linguistic constructs captured by search
keywords. LOKI’s purely keyword-based keyword discovery
will miss such scams, limiting the system’s applicability in
adversarially evolving threat landscapes.
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APPENDIX A
DATA COLLECTION: SCAM WEBSITES

A brief description of each of the sources for scam websites
follows:

• BeyondPhish: BeyondPhish represents the first large-
scale effort to systematically collect and analyze
fraudulent e-commerce websites [2]. The dataset is
constructed by leveraging user-submitted reports from
the popular subreddit /r/scams, which are subsequently
verified by security experts who manually inspect and
label live websites as scams. The study’s definition
of Fraudulent e-Commerce Websites (FCWs) is well-
aligned with our operational definition of scam web-
sites. Scam websites present in the dataset expand
over 6 different categories, such as shipping scams,

adult services, etc. This publicly available dataset
(released in 2023) contains 4,123 scam websites, of
which only 1,315 websites were active during the
time of our evaluation. Although the HTML source
code is available for all entries, our pipeline depends
on features extracted from live websites; hence, we
restrict our usage to the subset of currently active
domains.

• The Scam Directory: The Scam Directory is a
community-led effort to label scams and alert users
for online protection. The platform maintains a catalog
of different categories of scams, e.g, fashion scams,
non-delivery scams, sport scams, etc. Recent work
on classifying scam websites [19] incorporates this
dataset as part of building their e-commerce scam
classifier model.

• ScamGuard: ScamGuard is a public platform that
allows consumers to report potential scam websites
and publish their list of identified scam domains. This
platform covers a broad spectrum of 8 different scam
categories, e.g., investment scams, fake stores, crypto
scams, pet scams, etc. Similar to The Scam Directory,
prior work [19] utilizes this dataset as part of curating
their labeled dataset for training a Machine Learning
(ML) based scam classifier.

APPENDIX B
BRANDED KEYWORD CLASSIFIER

Classifying keywords as branded or un-branded is a well-
recognized task within the Search Engine Optimization (SEO)
industry, where it is used to inform marketing strategies and
search traffic analysis. However, despite its practical signifi-
cance, there exists no publicly available dataset, benchmark,
or standardized model for this classification task. Existing
solutions are predominantly proprietary and lack transparency,
thereby limiting their applicability in academic or open source
contexts. To address this gap, we develop a custom classifica-
tion pipeline to identify and filter branded keywords as part of
our data preprocessing stage.

We begin by constructing a validation dataset to guide
the classification of branded versus un-branded keywords. To
this end, we randomly sample 4,000 query keywords from
the Google Ads Keyword Suggestions dataset (described in
Section II-C), covering 25 unique domains. For each domain,
we manually label both branded and un-branded keywords,
resulting in a dataset comprising 2,064 branded keywords and
1,936 un-branded keywords.

Next, we leverage the zero-shot classification capabilities
of Large Language Models (LLMs) to classify if the keywords
are branded. The rationale behind this approach is that foun-
dation models, pretrained on extensive and diverse internet
corpora, inherently capture a wide range of factual knowledge,
including the names of commercial brands, products, and
organizations. With carefully designed prompts and a clear
definition of “brandedness,” we expect LLMs to be effective at
identifying branded keywords without requiring task-specific
fine-tuning. Recent security works [25] leverage LLMs’ inter-
nal representations to associate brand and domain information
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Classify if the provided user query is a branded query,
or un-branded query. Branded Queries are ones that
includes a specific company or brand name, indicating
the user is already familiar with the brand. (e.g. nike
shoes, apple watch etc). Un-branded Queries are ones
that does not mention any specific brand, suggesting
the user is looking for general information without a
particular company in mind (e.g. shoes for mens, wrist
watch etc).
Remember that mention of brands can happen at any
position within the queries. Additionally, some brand
name can be entirely generic terms, in which case use
of context is necessary for proper classification.
Return your response as 1 for branded and 0 for un-
branded. User query: 0
Response:

Fig. 5: Prompting structure for branded keyword filtering.

for the purpose of reference-based phishing detection without
a pre-defined reference list.

This classification task is performed in a zero-shot manner,
relying solely on prompt engineering rather than supervised
training. Recent work has demonstrated the utility of LLMs for
related classification problems, including zero-shot detection of
scam websites [5] and few-shot classification of e-commerce
websites [37]. Although the task is unsupervised, we use our
manually annotated validation dataset to evaluate different
prompt templates (i.e., verbalizers), and select the one that
yields the highest classification accuracy for branded keyword
identification. We implement the FLAN-T5-XXL model for
our task, a state-of-the-art instruction-tuned language model
which has shown state-of-the-art in multiple text classification
benchmarks[26, 8], and novel tasks such as claim-based stance
detection [32]. We experiment with different prompts for the
task definition, and find that the following task definition in
Figure 5 performs the best on the validation dataset. Using
this configuration, the FLAN-T5-XXL model achieves an F1
score of 90%, which we consider sufficiently accurate for the
purposes of filtering branded keywords within our pipeline.

C ORACLE FEATURES

In this section, we list the features (previously discussed
in Section III) used in the development and validation of the
oracle model for classifying whether a website is scam or
benign.

Category Feature Type

Domain Ranking

majestic refips N
majestic refsubnets N
majestic tldrank N
tranco N
majestic N
cisco N

DNS Features

dns has mx B
dns num mx N
dns has cname B
dns num cname N
dns has dname B
dns num dname N
dns has hinfo B
dns num hinfo N
dns has aaaa B
dns num aaaa N
dns has ns B
dns num ns N
dns has rp B
dns num rp N
dns has soa B
dns num soa N
dns has txt B
dns num txt N
dns domain verification count N

URL Based

tld C
cheap tld B
domain subwords N
url has hyphen B
url has digit B
url subdomain count N

WHOIS Based

domain age N
time to expiry N
registrar name C
is cheap registrar B
registrar country C
registrant country C
privacy protected B
free email provider B

Content Based

facebook profile linked B
twitter profile linked B
instagram profile linked B
youtube profile linked B
pinterest profile linked B
tiktok profile linked B
presence of contact link B
num mailto links N
num telephone links N
num whatsapp links N
review system linked B
has app store B
has review widget B
num links N
num internal links N
num external links N
num img tags N
num iframe tags N
num external http links N
num links with ip N
presence work with us link B
presence cookie consent notice B
trustpilot present B

TABLE VIII: Feature Categories and Their Types (B = Boolean, N
= Numeric, C = Categorical).
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D ARTIFACT APPENDIX

This document presents the artifact of our NDSS’26 pa-
per: “LOKI: Proactively Discovering Online Scam Websites
by Mining Toxic Search Queries.” This artifact appendix is
structured as follows:

1) We first present a brief description of our artifact,
alongside the hardware and software requirements
needed to run the models and reproduce the experi-
mental results associated with the artifact;

2) We then describe the steps necessary to download the
models and benchmarks used in the artifact, followed
by a simple functionality test ensuring that the model
proposed as part of the artifact can run inference
properly against all the benchmarks;

3) Finally, we detail the evaluation workflow by dis-
cussing the major claims made in our paper, and
subsequent experiments associated with the claims.

A. Description & Requirements

The primary evaluation environment of this artifact is
preferred through interactive Python scripts. The datasets and
models of the artifacts are available in Zenodo and interfaced
through Transformers library for easy and seamless running of
experiments for artifact evaluation purposes. to reproduce the
benchmarking results.

1) How to access: All the models, datasets and evaluation
scripts associated with this artifact are publicly hosted in the
Zenodo collection https://doi.org/10.5281/zenodo.17049965

2) Hardware dependencies: The keyword scoring model
forming the core of the artifact has some important hardware
requirements to run successfully. Both the teacher model and
student model developed as part of LOKI need an estimated
GPU vRAM of 1.2 GB and 700 MB to load the models and run
evaluation on the benchmarks. Therefore, it is recommended
to have access to an evaluation machine with a minimum of
1.5GB of GPU memory, and a recommended GPU compute
capability of 7.0. However, for real-time workflows, an in-
crease in GPU memory can facilitate a larger batch size during
inference, optimizing the workload. Additionally, 2 CPU cores
alongside the aforementioned GPU hardware requirements are
recommended for seamless evaluation.

3) Software dependencies: The major environmental de-
pendencies needed during the artifact evaluation period is listed
below.

• CUDA Toolkit (v11.3)

• CUDNN (v8.2)

• GCC (v9.3.0)

The list of software packages and the corresponding ver-
sions for these packages is available inside the requirements.txt
of the Zenodo repository. It is recommended that for successful
evaluation of the artifact, proper environmental dependencies
as listed above are met, and appropriate packages are installed
with the command pip install -r requirements.txt

4) Benchmarks: The different datasets, baseline mod-
els, supplementary data files (raw_data_keywords.csv,
query_ner_output.json, keywords_categories.
json) and the trained LOKI models required for the experi-
ments associated with this artifact are organized in the Zenodo
collection. Alongside the benchmark datasets associated with
the major claims presented in the experiments, we also pro-
vide the raw datasets of benign and scam websites, and the
Search Engine Ranking Pages (SERPs) associated with the
search keywords in the raw_datasets folder of the Zenodo
repository. Each of the experimental scripts associated with
the claim loads the corresponding models and datasets at the
beginning, and once the models and datasets are downloaded,
they are cached internally as per transformer library’s default
behavior.

B. Artifact Installation & Configuration

The setup procedure for this artifact includes ensuring
that appropriate hardware and software requirements are met.
After downloading the files from Zenodo, setup necessiates
following the steps outlined in README.md present on the
root of the Zenodo repository.

C. Major Claims

• (C1): LOKI can be used to score search queries for
their likelihood to surface scam websites (measured
by toxicity), and subsequently filter a smaller “mean-
ingful” set of candidate queries from a large pool of
search queries. This is proven by the experiment (E1)
which uses the final student model trained as part of
LOKI to score and rank search queries randomly sam-
pled from the entire Google Ad Keyword suggestions
dataset.

• (C2): LOKI outperforms existing attribute-based and
entity-based query sampling methods for sampling
search queries that provide the highest toxicity and
expansion scores acros 5 different categories of scam
websites. This is proven by the experiment (E2) whose
results are illustrated/reported in Table II, III, and
Table V.

D. Evaluation

1) Experiment (E1): [Loki Inference Test] [1 human-
minute + 0.01 compute-hour]: Loki can be used to score
a set of search keywords and produce toxicity scores for
candidate queries, ranking them by their propensity to score
scam websites in downstream Search Engine Ranking Pages
(SERPs).

[How to] The steps necessary to perform this experiment
are detailed below:

[Preparation] Make sure that you follow all the instruc-
tions in the Setup section, and all software dependencies are
met using pip install -r requirements.txt.

[Execution] With the prepration steps confirmed, run the
script experiment 1.py.

[Results] This script samples 100 search queries from the
set of 1.5M Google Ads Keyword Suggestions, scores them
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through Loki’s student model without access to Search Engine
Ranking Pages (SERPs) and sorts them according to their
toxicity score. Note that this experiment is not associated
with any benchmarks or baseline comparisons, and is intended
to demonstrate the intended application of LOKI by security
practicioners, where they can sample the most toxic set of
search queries for downstream retrieval of scam websites.

2) Experiment (E2): [Loki Evaluation] [1 human-minute +
0.1 compute-hour]: LOKI outperforms existing attribute-based
and entity-based query sampling methods for sampling search
queries that provide the highest toxicity and expansion scores
across 5 different categories of scam websites.

[How to] The steps necessary to perform this experiment
are detailed below:

[Preparation] It is recommended to first making sure E1

runs succesfully, ensuring the pre-requisite setup steps are
performed correctly and all the datasets and models are loaded.

[Execution] With the preparation steps confirmed, run the
script experiment 2.py. This script runs the series of main ex-
periments highlighted in the paper in order: i) benchmarking of
attribute-based method for keyword sampling (corresponding
to Table II), ii) benchmarking of entities for keyword sampling
(corresponding to Table III), iii) benchmarking of baseline
DistilBERT models for keyword sampling (corresponding to
Table V) iii) comparison of Loki’s teacher and final student
model (corresponding to Table V).

[Results] This script runs the evaluation automatically
for each fold, and prints the results of the baseline models
(attribute-based and entities-based), and the Loki models (both
teacher and student models) in all five folds.
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