
Better Safe than Sorry: Uncovering the
Insecure Resource Management in

App-in-App Cloud Services
Yizhe Shi

Fudan University
yzshi23@m.fudan.edu.cn

Kangwei Zhong
Fudan University

kwzhong23@m.fudan.edu.cn

Zhemin Yang
Fudan University

yangzhemin@fudan.edu.cn

Jiarun Dai
Fudan University

jrdai14@fudan.edu.cn

Dingyi Liu
Fudan University

23210240084@m.fudan.edu.cn

Min Yang
Fudan University

m yang@fudan.edu.cn

Super-app Server

mini-app

Mini-app’s Cloud Space s

home
address

medical
record

home
address

medical
record

App-in-app

Identity

Management

userId

Super-app Client

3. resource r

1. access
resource r

2. authorization
check

Fig. 1. Identity management mechanism in the app-in-app ecosystem.

services, such as user authentication and data storage. To meet
this demand, super-apps provide mini-app developers with
cloud spaces, eliminating the need for mini-app developers
to manage their own servers. Mini-app developers can conve-
niently store and manage sensitive data, such as user purchase
history and confidential files, in the cloud spaces. As a result,
the super-app becomes a vast information aggregator, housing
sensitive data from massive mini-apps.

To safeguard the sensitive resources stored in cloud spaces,
access to specific resources, such as a mini-app user’s med-
ical record, is restricted to authorized mini-app users only.
To secure and facilitate resource management for different
mini-app users, super-apps provide a centralized user identity
management mechanism. Specifically, super-apps assign each
mini-app user a unique identifier, which enables access control
to sensitive resources. Unlike traditional methods, where each
mini-app manages its users’ identities individually, mini-apps
can directly retrieve user identities from super-apps.

As depicted in Figure 1, a mini-app user requests access
to the sensitive resource r stored in the cloud space s. In
step 1, this request is forwarded to the super-app server side.
Before accessing the sensitive resources, the super-app server
transfers the user’s identity (i.e., userId) to the mini-app’s
cloud space s. Then the mini-app performs an authorization
check to determine whether the user has access to r in step

Abstract—In the app-in-app ecosystem, super-apps provide
mini-app developers access to various sensitive cloud services,
such as cloud database and cloud storage. These services enable
mini-app developers to efficiently s tore a nd m anage mini-app
data in the super-app server. To protect these sensitive resources,
super-apps implement an identity management mechanism, al-
lowing mini-app developers to verify user identity and ensure
that only authorized and trusted users can access specific
resources. However, flaws exist in the implementation of resource
management by mini-app developers, which can expose sensitive
resources to attackers.

In this paper, we conduct the first s ystematic s tudy o f t he in-
secure cloud resource management in the app-in-app ecosystem.
We design and implement a tool, ICREMINER, that combines
static analysis and dynamic probing to assess the security
implications on 22,695 real-world mini-apps that access app-in-
app cloud services in four super-app platforms. The results of
our study reveal that 2,815 mini-apps (12.40%) are affected by
the insecure resource management, involving 8,062 insecure cloud
operations. We have identified that some mini-apps of prominent
corporations are also vulnerable to these risks. Additionally, we
conduct an in-depth analysis of the significant s ecurity hazards
that can be caused by the vulnerability, such as allowing attackers
to steal sensitive user information and pay for free. In response,
we have engaged in responsible vulnerability disclosure to the
super-app platforms and corresponding mini-app developers. We
also provide several mitigation strategies to help them resolve the
vulnerabilities.

I. INTRODUCTION

Nowadays, the OS-like app-in-app paradigm, which in-
volves super-apps and mini-apps, has been becoming increas-
ingly popular. Super-apps now host an extensive collection
of over 7 million mini-apps [1]. The large number of mini-
apps has led to the demand for cost-effective, scalable backend

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230194
www.ndss-symposium.org

2, based on the user’s identity. Upon successful verification,
the sensitive resource r is returned to the mini-app client in
step 3. In this mechanism, mini-app developers can focus on
the authorization process to avoid unauthorized access, as user
identity is protected by super-apps.

In contrast, to safeguard the sensitive resources, modern
cloud infrastructures, such as AWS [2], Microsoft Azure
[3], and Google Cloud Platform [4], primarily issue cloud
credentials (such as AWS keys) to developers for accessing
the cloud resources in the client side. Specifically, developers
can configure permissions for cloud credentials, enabling mo-
bile applications to access cloud resources with credentials.
Previous studies have identified the misuse and leakage of
high-privileged cloud credentials, which can be obtained and
exploited by attackers, leading to significant privacy risks
[5], [6]. Unlike traditional methods, centralized user identity
management eliminates the need for mini-app developers to
use cloud credentials in the client side, which can mitigate the
risks of credential leakage.

Understanding the Security Risks. In this work, we conduct
the first systematic study of the security of the identity man-
agement mechanism in the app-in-app ecosystem. To under-
stand the security risks, we first perform an in-depth analysis
of the mechanism based on the developer documentation to
understand how it secures cloud resource access. Our analysis
reveals that while super-apps provide mini-app developers with
user identities, the primary responsibility for implementing
user identity check and managing sensitive resources falls on
mini-app developers in the cloud space. Specifically, when a
mini-app user tries to access sensitive resources, the mini-
app should retrieve and verify the user’s identity in the cloud
space to ensure the user has necessary access permissions (step
2). Unfortunately, mini-app developers may misinterpret the
mechanism and fail to ensure a secure implementation of the
authorization check, such as moving the check to the mini-app
client side. In this paper, we identify four types of insecure
practices, which undermine the security of sensitive resources
stored in cloud spaces and can lead to severe hazards.

Security Hazards Assessment. After thoroughly studying
and understanding the security of app-in-app cloud services,
we aim to assess the security risks introduced by the insecure
cloud resource management (ICREM) of mini-app developers.
Given the large number of available mini-apps, an automated
tool is required. In light of this, we are motivated to develop
a tool, called ICREMINER, to detect the security risks. This
task presents several challenges. One major challenge is that
the cloud-side code and resources are out of reach. As a
result, it is difficult to gain a comprehensive understanding
of sensitive resources managed in the cloud space, based
solely on analysis of the mini-app client. Traditional methods
primarily focus on analyzing the resources accessible through
leaked credentials in the client side, which cannot be applied
to our task. Furthermore, it is challenging to ensure that our
assessment does not lead to the leakage of sensitive resources
or pose risks to cloud services.

For the first challenge, since super-apps offer specific APIs
for mini-apps to access cloud resources, ICREMINER con-
ducts a fine-grained data flow analysis of cloud APIs to model
and understand cloud resource access from the mini-app client
side. To gain deeper insights into cloud resource management
within cloud side, we propose a semantic-driven approach
based on code semantics to infer cloud resources that are not
directly accessed in the mini-app client side. This approach
leverages large language models for inference, which have
demonstrated strong capabilities in understanding code seman-
tics [7], [8], [9]. For the second challenge, inspired by [5], [6],
ICREMINER performs zero-leakage probing without risking
access or modification of the cloud data. Additionally, we
propose a series of assessment measures tailored to different
types of app-in-app cloud services (Section IV-D).
Our Findings. We implement the prototype of ICREMINER
and apply it to 1,248,815 real-world mini-apps. Our analysis
reveals that 22,695 mini-apps manage sensitive resources in
the app-in-app cloud spaces. Among them, 2,815 mini-apps
(12.40%) are affected by the insecure resource management,
including 8,062 insecure cloud operations. Notably, our re-
search points out that the vulnerability affects mini-apps of
prominent corporations (e.g., Tencent) as well as those in
sensitive categories (e.g., Education and Government), which
cause severe security hazards. For example, attackers can steal
sensitive data belonging to mini-app users, such as personal
resumes, medical records, ID card photos, and purchase his-
tories. In addition, attackers can manipulate cloud resources,
such as altering account balances without any payment. We
have reported the vulnerabilities to the super-app platforms
and corresponding mini-app developers. We have received 35
responses and 893 mini-app developers have fixed the issues
or taken down their mini-apps.

In short, we make the following contributions.
• To the best of our knowledge, we conduct the first sys-

tematic study on security risks of insecure cloud resource
management in the app-in-app ecosystem.

• We propose a novel approach, called ICREMINER1,
that combines static analysis and dynamic probing to
automatically analyze the ICREM risks.

• We conduct a large-scale, empirical study on real-world
mini-apps and have identified 2,815 mini-apps that are
affected by this vulnerability. We also made responsible
vulnerability disclosure and propose corresponding miti-
gation strategies.

II. BACKGROUND

A. App-in-App Cloud Services

To facilitate the development of mini-apps and ensure a
secure environment to protect mini-app’s data, super-apps pro-
vide mini-app developers with cloud services. These services
enable mini-app developers to manage sensitive data through
well-defined cloud APIs. Based on their functionalities, the

1The source code is avaliable at https://doi.org/10.5281/zenodo.16946146.

2

https://doi.org/10.5281/zenodo.16946146

cloud services can be categorized into three types, i.e., cloud
database, cloud storage, and cloud routine (or cloud function).
Cloud Database Service. The cloud database provides
database services to store mini-app data, eliminating the need
for mini-app developers to configure and maintain their own
database servers. The cloud data is organized into collections,
i.e., data tables, which are used to store different types of
data, such as user profiles and purchase histories. Mini-apps
can access these collections with collection names. Besides,
when a mini-app user writes data into a collection from mini-
app client, the collection creates a new row to store the data
and attaches the user’s identity to the data record.
Cloud Storage Service. The cloud storage offers a space for
mini-apps to upload and download files, which supports vari-
ous forms of unstructured data, such as videos and images. The
file operations can be easily performed with cloud APIs. For
example, mini-apps can invoke wx.cloud.uploadFile
[10] to store files in the cloud storage. Additionally, each file
is assigned a unique file ID for further access.
Cloud Routine Service. The cloud routine executes server-
side code in the cloud space. When the cloud routine is called
in the mini-app client, the defined code logic is executed in
the cloud space. Mini-app developers can customize cloud
routines for different functional requirements. Furthermore,
unlike traditional authentication methods that rely on tokens
or cookies which should be managed by mini-apps in the
server side, mini-app developers can obtain user identities from
super-apps in the cloud side.

B. Protection Measures in Cloud Services

Given the presence of sensitive data in cloud side, including
user privacy and confidential files, robust protection measures
are essential. Traditional cloud providers (e.g., AWS [2],
Microsoft Azure [3], and Google Cloud Platform [4]), pri-
marily issue cloud credentials to developers for accessing the
cloud resources in the client side. Specifically, developers can
configure permissions for cloud credentials, enabling mobile
applications to access cloud resources with credentials. How-
ever, previous work has identified pervasive issues of cloud
credentials [5], [6], such as the leakage of high-privileged cre-
dentials. In contrast, super-apps implement customized cloud
architectures and manage the cloud resources based on user
identities. Specifically, super-apps adopt several measures to
safeguard the cloud resources.
Encrypted Channel. Traditional access to cloud services is
typically achieved through direct network requests, where pa-
rameters are susceptible to attacker manipulation using mature
tools, such as Burp Suite [11] and Charles [12]. For example,
attackers can easily issue network requests to access cloud
services using leaked cloud credentials. In contrast, super-apps
employ proprietary protocols to secure the communications
between the mini-app client side and the super-app cloud
side, such as MMTLS in WeChat [13]. These proprietary
protocols are customized, which increases the difficulty of
reverse engineering and traffic inspection.

Identity Management. Super-apps implement an identity
management mechanism to provide unique identities to mini-
app users. Mini-app developers can determine whether a mini-
app user has access to specific resources based on the user
identity, thereby preventing unauthorized access. Specifically,
in cloud spaces, mini-app developers can leverage proprietary
APIs provided by super-apps to retrieve user identities for
seamless authentication, such as cloud.getWXContext
in WeChat [14]. This strategy eases the burden of mini-app
developers and mitigates the issues of cloud credential leakage.

Typically, the protection of sensitive resources is controlled
at the read/write level. Taking cloud database read permissions
as an example, three primary strategies are employed based
on the data’s security level in different scenarios: (1) publicly
readable to all users (for non-sensitive public information such
as user comments), (2) readable only to the data owner (mini-
app user) or mini-app developer (for private user informa-
tion such as order details), and (3) readable only to mini-
app developer (for system-level resources such as mini-app
logs). Additionally, mini-app developers can adopt customized
strategies to protect cloud resources based on user identity.

// mini-app appId: wxd3****c27

var t = wx.cloud.database({env: "chen***692"});

t.collection("course_users").where({

 phone: e.phone

}).get().then(function(o) {

 var i = o.data[0];

 t.setData({name: i.realname, address: i.realaddr});

 ...

 }

});

1

2

3

4

5

6

7

8

9

10

Fig. 2. Code snippet demonstrating access to the cloud database
‘course users’.

III. PROBLEM STATEMENT

A. A Motivating Example

In this section, we present a motivating example to illustrate
the attack vector targeting the insecure practices of mini-app
developers in app-in-app cloud services. As illustrated in Fig-
ure 2, a mini-app (wxd3***c27) accesses the cloud database
‘course users’ to retrieve user’s detailed information, such as
the real name and home address. The mini-app first gets a
reference to the cloud database of environment chen***692
in line 2. Then it targets the database ‘course users’ and
transfers the parameter ‘phone’ to fetch corresponding user
data in line 3 and line 4. Finally, the data is returned to the
mini-app client and the mini-app accesses the data in line
6. To safeguard mini-apps’ cloud resources, super-apps im-
plement various protection measures. For example, mini-apps
other than wxd3***c27 cannot access resources within the
environment chen***692. Moreover, mini-app developers
can configure access permissions based on user identities to
ensure that users can only access their own resources.

Unfortunately, we find that mini-app developers often adopt
flawed practices when implementing user identity checks. For

3

example, a secure approach for identity check is to obtain
current user’s identity, i.e., userId, in the cloud side and
use it to determine the resources that the mini-app user is
authorized to access. In this process, the user identity is
securely managed by the super-app server, making it hard to
tamper with. However, in current implementation, the mini-app
transmits the customized parameter ‘phone’ from the mini-app
client to the cloud in order to retrieve corresponding user data
in line 4. This practice undermines the security mechanism,
as a malicious user can manipulate the parameter ‘phone’ to
impersonate the user identity and gain unauthorized access to
other users’ cloud resources.

B. Typical Attack Process

To execute such an attack, the attacker should be able to
invoke cloud services with customized parameters, such as
‘phone’ in the motivating example, to access cloud resources
of the target mini-apps. In traditional cloud infrastructures,
this could be easily achieved by modifying network traffic.
However, as discussed in Section II-B, super-apps have intro-
duced proprietary security protocols, which hinder attackers
from monitoring or tampering with traffic data.

However, we found that attackers can leverage the code
caching mechanism of super-apps to achieve this on their
own devices without the need to modify network traffic, as
illustrated in Figure 3. Specifically, to optimize mini-app’s
performance, super-apps cache the mini-app code locally,
enabling faster loading when the mini-app is launched again.
The attacker can extract the cached code and inject a malicious
payload (step 1 and 2). To ensure the integrity of the cached
mini-app code, super-apps implement verification measures
before loading the code into the mini-app runtime. However,
these measures rely on local checks, such as verifying MD5
hashes or file signatures. Therefore, attackers can easily bypass
the integrity check on their devices using techniques like hook-
ing the verification functions in super-apps (step 4). Through
reverse engineering of super-apps, we successfully identified
and bypassed all file integrity checks implemented by super-
apps, injecting manually crafted code into our test mini-app.
The injected code was then loaded into memory and executed
(step 5), enabling access to sensitive data. Beyond modifying
cached code packages, attackers can also hook execution APIs
to replace original code with manually crafted code before it
executes. As the effects of different attack methods are similar,
this paper focuses on describing attacks in the context of the
caching mechanism.

C. Threat Model

Here, we discuss the threat model in our work, including
the assumptions and the attacker’s capabilities.
Assumptions. As illustrated in Figure 1, there are multiple
parties involved in the cloud resource access and protection
within the app-in-app ecosystem. We assume that the super-
app server and the cloud space are trusted, as the server side
is not visible to attackers. However, messages sent from the
mini-app client are considered untrusted.

attacker

Local Storage

mini-app code

mini-app code

1. extract

2. inject

Super-app Client

file integrity
check

mini-app
runtime

3. load

5. load

4. bypass

Super-app
Server6. access

attacker

Fig. 3. The process by which the attacker injects malicious payload into the
target mini-app.

Attacker’s Capabilities. The attacker is a malicious mini-app
user, whose objective is to access sensitive resources stored
in the cloud side. The attacker has the capability to inject a
crafted payload into the cached mini-app code. To inject the
crafted payload, the attacker only needs a rooted mobile device
and the ability to hook the integrity check APIs. Technically,
since the local storage of an attacker’s rooted device is under
their control, any local checks can be bypassed. Besides, it
is challenging to distinguish unexpected behaviors caused by
the injected payload because the mini-app code should have
the capability to invoke cloud APIs. Moreover, attackers do
not need to develop a malicious mini-app and publish it in the
mini-app market. They can execute the attack directly from
their own devices. Therefore, we believe this attack scenario
is practical and relatively easy to achieve.

3. sensitive resource allocation Cloud

Space

mini-app
user

Mini-app

Client

2. user identity check

1. resource
access

4. data
handling

sensitive resource

sensitive

resource

sensitive resource

phone
number

account
balance

...
phone

number
account
balance

...

Fig. 4. Insecure practices in cloud resources management within the app-in-
app ecosystem.

D. Insecure Practices in App-in-App Cloud Services

To systematically analyze insecure practices, we begin by
analyzing the cloud resource management mechanisms of
different super-apps. We analyze the developer documen-
tation provided by super-app platforms to model their re-
source management workflows. As illustrated in Figure 4, the
identity management mechanism comprises two key stages:
verifying user identities before granting user resource access
(User Identity Check) and determining the sensitive resources
that can be allocated to mini-app users (Sensitive Resource
Allocation). Next, we assess the security requirements that
should be enforced at each stage. Specifically, we examine
the security-related descriptions of each cloud service in the

4

documentation. The core principle guiding our analysis is the
principle of least privilege, i.e., ensuring that mini-app users
are granted only the necessary permissions. As a result, we
identify four types of insecure practices:

• User Identity Check. Many mini-app developers in-
correctly implement the user identity check in step 2.
First, some mini-app developers move the identity check
to the mini-app client side (UIC-1), returning all re-
sources to the mini-app client and filtering them based
on client-side logic in step 4. An attacker can easily
obtain all the exposed cloud resources. Second, some
mini-app developers perform identity check based on the
parameters transferred from the mini-app client (UIC-
2), such as user’s phone number in step 3, rather than
the user identity retrieved from super-apps. Previous
work has found that customized user identifiers are often
susceptible to privilege escalation vulnerabilities [15],
[16], [17], making it easy for an attacker to forge their
identities to retrieve other users’ information.

• Sensitive Resource Allocation. Upon in-depth analysis
of sensitive resources, we find that specific types of re-
sources should only be accessed or manipulated by mini-
app developers. First, privileged resources, such as the
mini-app developer’s GPT keys, should not be accessible
to mini-app users. However, some mini-app developers
improperly share privileged resources with mini-app users
in step 3, thereby enabling unrestricted access for all
mini-app users (SRA-1). Second, not all user information
should be entirely under the user’s control. For example,
certain user information, such as account balance, should
only be readable by mini-app users. Nevertheless, some
mini-app developers group all user information under the
same permission settings, granting users the ability to
write to these resources (SRA-2). As a result, users can
modify their account balances arbitrarily.

E. Generalizing Attack Vectors

Below we will discuss the attack vectors and the resulting
security hazards of the four types of vulnerable practices from
the perspective of different cloud services.
Cloud Database Service. The cloud database service serves
as the foundational service in mini-apps, with nearly all busi-
ness functions (e.g., login, registration, and payment) closely
tied to it. Cloud databases are organized into collections, with
each collection designed to store various types of resources,
which can be accessed with the collection names.

A common issue is that mini-app developers expose cloud
collections containing privileged resources (SRA-1). For ex-
ample, some mini-apps share API keys with the mini-app
client to conveniently access sensitive services, such as GPT
service. Additionally, many mini-app developers write sensi-
tive data directly to the cloud collections from the mini-app
client (SRA-2). For example, after a successful payment, some
mini-apps access the cloud collections and modify the user’s
account balance or shopping records in the mini-app client

side. This practice implies that mini-app users have permission
to write to corresponding collections, which should only be
readable by them. Moreover, the insecure practices for UIC-1
and UIC-2 are also prevalent in cloud databases, where mini-
app developers move the identity check to the mini-app client
side or expose cloud resources of other users.

Cloud Storage Service. Cloud storage is used to store and
retrieve various types of files. When uploading a file, mini-
app developers must specify the file path for storage in the
cloud space. Upon a successful upload, a unique file identifier,
known as the file ID, is generated. The file ID consists of two
components, i.e, a specific container ID and the cloud file path,
with the container ID being constant. Subsequent operations,
such as downloading the file, depend on this file ID.

Since cloud storage primarily consists of user files and are
accessed using a specific file ID, the security issue mainly
falls in type of UIC-2. Typically, mini-app developers do not
retrieve userId from the super-apps to verify whether a mini-
app user can access the files. Instead, they directly use the file
ID to retrieve the corresponding files, assuming that only the
current mini-app user possesses the file ID for their owned
files. In this context, the file ID is considered as the mini-
app user’s identity. However, this assumption does not always
hold, as many mini-app developers use predictable file paths,
allowing attackers to guess the file ID and gain unauthorized
access to the corresponding files.

Cloud Routine Service. Similar to RESTful APIs, cloud rou-
tines offer customized services that allow mini-apps to access
code logic running in the cloud side. Unlike cloud services
mentioned above, cloud routines are designed to be accessible
to all mini-app users. Therefore, the cloud routines must not
expose privileged resources to mini-app users. However, many
insecure practices exist.

First, some mini-app developers move the user identity
check to the mini-app client side (UIC-1). An attacker can
easily access the exposed sensitive resources in the cloud
routines. Furthermore, instead of using the userId retrieved
from super-apps, many mini-app developers directly include
a self-defined user ID in the parameters of cloud routines,
such as phone number, and use it as the user identity for
further authorization check (UIC-2). This practice undermines
the security model of super-apps and introduces security risks
of unauthorized access, as attackers can manipulate the user
identities transmitted to the cloud side and access other users’
sensitive information. Additionally, some cloud routines di-
rectly request privileged resources from the cloud side (SRA-
1). An attacker can easily obtain leaked resources through the
cloud routines. Besides, super-apps provide mini-app servers
with various sensitive services, such as user notification and
AI services, to simplify development and management of
mini-apps. However, some mini-app developers expose these
services directly to the mini-app client through cloud routines,
allowing attackers to abuse these services. For example, we
find a mini-app exposes the notification service to the mini-app
client, which could be exploited by attackers to send malicious

5

content to mini-app users. Similar to cloud database service,
many cloud routines expose write permissions for sensitive
user data, such as modifying a user’s balance, which should
only be accessed in the server side after payment (SRA-
2). Otherwise, an attacker could exploit the cloud routine to
increase the balance without making a payment.

Client-side
Operation Extraction

Exposed
Capability Inference

Cloud API
Identification

Data Flow
Analysis

Hidden
Capability
Excavation

Client-side
Capability
Analysis

Insecure
Practice

Assessment

Mini-app

Fig. 5. The workflow to assess the insecure practices in app-in-app cloud
services.

IV. METHODOLOGY

A. Design Overview

In this section, we aim to assess the impacts of mini-
app developers’ insecure practices in real-world mini-apps
that expose sensitive cloud resources stored in the super-
app server side. However, it is difficult to understand
the practices employed by mini-app developers and to
determine whether these practices are vulnerable, as the
cloud side is out of reach. There are several studies that
focus on vulnerabilities in cloud infrastructures [5], [6], [18],
[19], [20], especially the permission misconfiguration of cloud
credentials, which differs from the threat model in our work.
Furthermore, previous work mainly focus on examining the
accessibility of cloud services or cloud containers [6], such
as “bucket” in AWS S3 [21]. However, in mini-apps, cloud
containers are often accessible to all mini-app users because
permission management is typically applied at the level of the
stored elements rather than the container itself. In addition,
super-apps provide mini-apps with various types of cloud
services, such as cloud routines, which have not been studied.
Therefore, traditional methods cannot be used to assess the
new threats in the app-in-app ecosystem.

To address these challenges, ICREMINER conducts an in-
depth analysis with three phases as illustrated in Figure 5. The
main insight is that operations performed in the mini-app client
side to access cloud services can reflect the potential practices
conducted by mini-app developers. Therefore, ICREMINER
first extracts all cloud operations performed in the mini-app
client side. Specifically, ICREMINER locates cloud APIs used
in mini-apps and performs data flow analysis to extract the
context information, such as the cloud-related parameters and
return values of cloud APIs. Second, ICREMINER combines
static analysis and dynamic probing to infer the exposed
capabilities, i.e., the cloud resources that can be accessed
by the mini-apps. Specifically, ICREMINER conducts capa-
bility analysis from two perspectives. On one hand, some
cloud resources are directly accessed in the mini-app client

and ICREMINER analyzes corresponding cloud operations
based on the context information. On the other hand, some
cloud resources, while not directly accessed in the mini-
app client side through cloud APIs, can still be reached via
injected crafted payloads (referred to as hidden capabilities
in this paper). To enhance our analysis, we propose several
inference methods to uncover hidden capabilities based on
code semantics. Finally, to assess whether the cloud practices
are vulnerable and expose excessive capabilities in the mini-
app client, ICREMINER applies security rules tailored to
different types of cloud services, including cloud database,
cloud storage, and cloud routine. Additionally, ICREMINER
analyzes the types of insecure practices. More technical details
are presented in the remaining subsections.

B. Client-side Operation Extraction

In this section, ICREMINER aims to extract all the cloud
operations performed in the mini-app client side. Given that
super-apps provide a variety of cloud APIs for mini-apps to
access cloud services, we perform a documentation analysis
to extract all related APIs. Then ICREMINER automatically
locates these APIs to identify cloud operations in the mini-app
client. To extract the context information of cloud operations,
such as parameters, ICREMINER first models specific APIs
provided by super-apps and constructs the inter-procedural
control flow graph of the mini-apps. Then, ICREMINER
conducts a fine-grained data flow analysis on the mini-app
client code to extract data dependencies of cloud parame-
ters. Moreover, ICREMINER further analyzes the values of
the cloud parameters to recover their semantics. Specifically,
some parameters are constant, such as the container name,
ICREMINER extracts the instructions associated with them
and retrieves the parameter values. Some cloud parameters are
dynamically generated, such as cloud file names. ICREMINER
collects the generation sequences of these parameters for
further analysis.

var t = wx.cloud.database();

t.collection("users") ...

data = getUserInfo();

inject

const db = cloud.database.

collection("users") ...

const res = getInfo(db) ...

Mini-app Client Super-app Server

①

②
①’

Fig. 6. An example of hidden capability.

C. Exposed Capability Inference

Before analyzing the insecure practices of mini-app devel-
opers, ICREMINER infers the exposed capabilities in cloud
operations (i.e., cloud resources exposed to mini-app users),
which are closely tied to the cloud-side practices. However,
cloud operations in the mini-app client reveal only part of the
exposed capabilities. For example, some cloud resources are
not directly accessed in the mini-app client and thus remain

6

‘hidden’. As illustrated in Figure 6, the mini-app invokes
getUserInfo (step 1⃝) and accesses the cloud database
‘users’ in the cloud side (step 2⃝). Although the mini-app
client does not directly interact with the cloud database, if the
database name is exposed to attackers, an attacker could inject
a malicious payload to access the cloud database (step 1⃝’),
risking the exposure of sensitive data. The main challenge
lies in that it is hard to identify hidden capabilities.

Therefore, the capability analysis consists of two steps.
First, ICREMINER infers the exposed cloud resources asso-
ciated with cloud operations performed in the mini-app client
side. For cloud database and cloud storage services, there
are generally two types of access control policies regarding
the readability of cloud elements: resources can either be
readable by all users or only by the data owner (mini-app
user). To assess whether an attacker can read specific cloud
resources, we propose a dynamic probing method that infers
exposed cloud resources without compromising user privacy.
Due to ethical considerations, we adopt a zero-leakage probing
to assess the security risks in section IV-D without risking
access or modification of the cloud data. Moreover, due to
the potential impacts of write operations on cloud resources,
we do not directly verify whether mini-app developers have
configured write permissions correctly. Instead, we assume
that if a mini-app performs a write operation of specific cloud
resources in the mini-app client side, it implies that the mini-
app has granted write access to the corresponding resources for
its users. Through static analysis, we can identify which cloud
resources are writable by users based on the specific cloud
APIs. For cloud routine services, access control policies are
generally simple, and they are often designed to be accessible
to all mini-app users. Therefore, we assume that attackers can
access these cloud routines invoked in the mini-app client side.
Besides, ICREMINER uses the context information of cloud
routines to represent their semantics, including routine names,
parameters and return values.

Second, ICREMINER infers the exposed cloud resources
associated with hidden capabilities. Specifically, our goal is to
identify the hidden cloud databases accessible from the mini-
app client side, using valid database names. While other types
of cloud services, such as hidden cloud storage and cloud
routines may also exist, inferring the complex parameters
of these services is highly impractical due to insufficient
information available from the mini-app client side. Through
an in-depth analysis of cloud database services accessed in
mini-apps, we gain insights into the detection of hidden cloud
databases and propose the following methods to infer hidden
database names.

Common Name Augmentation. Unlike cloud routines and
cloud storage, which are often tailored to specific mini-apps
and have complex structures, the names of cloud databases
tend to be more generic, commonly using terms like “users”,
“profiles”, and “logs”. Therefore, we conduct an analysis on
our dataset to collect the top 10 most frequently used database
names and their variations, such as changes in capitalization

and singular/plural forms. We consider these database names
are potentially used in other mini-apps.
LLM-based Inference. Database names are often closely
related to data operations in mini-app client side. For example,
the data operation getUserInfo retrieves user information
from a cloud database, which is often named “users” or other
similar formats. Based on this insight, ICREMINER conducts
a static analysis to extract methods from the mini-app client
that contains a specific token representing data operations,
e.g., get, set, and add. However, it’s hard to understand the
semantics of these data operations. Recently, Large Language
Models, such as GPT and Gemini, have demonstrated strong
capabilities in processing text information and understand the
semantics of code [7], [8], [9]. Unlike traditional semantic
search methods based on NLP techniques [22], which rely on
predefined name lists, LLMs exhibit stronger generalization
capabilities to infer database names. Therefore, we design
a name generation prompt that incorporates the contexts of
data operation-related methods to generate potential database
names based on Gemini. Furthermore, we evaluate the perfor-
mance across different LLM models. Due to page limit, the
results and the full prompt are presented in Appendix A.
Mini-app Correlation. Different mini-apps may share the
same cloud databases, particularly those developed by the
same mini-app developers. Therefore, we cluster mini-apps
developed by the same developers, as they are likely to utilize
similar database names for storing cloud data. Subsequently,
we expand the database names of each mini-app by including
names extracted from mini-apps within the same clusters.
Besides, we also correlate mini-apps with the same cloud
database names inspired by [6].

During the inference process, we ensure that our approach
does not compromise the privacy of any mini-app user or dis-
rupt the functionality of mini-apps. To prevent potential risks
associated with write operations to cloud services, we avoid
injecting any write operations into mini-apps. Additionally, we
do not store any cloud data due to ethical considerations.

D. Insecure Practice Assessment

After identifying the exposed cloud resources in the mini-
app client side, our objective is to assess whether the cloud-
side practices of mini-app developers are insecure. Specifi-
cally, we aim to understand whether these capabilities are
more-than-expected. The fundamental principle is that mini-
apps should not perform over-privileged operations. For
example, a mini-app user should not be able to perform read
operations to access other users’ sensitive information stored
in the cloud space. To formalize this procedure, we propose
several security rules for different cloud services to verify
whether more-than-expected behaviors exist.
Assessment of Cloud Database Service. As discussed in
Section III-E, there are potentially four types of insecure
practices associated with cloud database service. For SRA-
1, mini-app developers share privileged resources with the
mini-app client. Specifically, to identify the resources stored

7

in cloud databases, we analyze the sensitive APIs provided by
super-apps and variable names of the stored content in cloud
databases of real-world mini-apps, inspired by [9], [23], [24].
Specifically, three experts analyze and categorize the content
stored in the cloud database into different types of sensitive
resources, and construct a corresponding set of keywords
associated with each type. Then ICREMINER analyzes the
collection names and return values of cloud databases collected
from the mini-app client to determine the stored content based
on keyword matching. However, since the content stored in
hidden cloud databases is unknown, ICREMINER is unable to
assess whether the hidden cloud database might also be vul-
nerable without actually retrieving the stored data. For SRA-
2, the focus shifts to analyzing write operations to sensitive
resources. ICREMINER extracts write operations based on
the actions of cloud operations, such as setting or updating
the cloud database. It then analyzes the parameter names and
the data dependencies to determine whether any content that
should not be modified by mini-app users (e.g., product price,
account balance) is included in the write operations.

For other insecure practices, i.e., UIC-1 and UIC-2, the
focus is on detecting issues associated with user identity
check. If mini-app developers move user identity check to
the mini-app client side or rely on client-side parameters for
user identity check, an attacker can inject a cloud operation
to access the cloud resources belonging to other mini-app
users. Therefore, ICREMINER analyzes whether the exposed
capabilities detected in Section IV-C are more-than-expected
and allow access to other users’ resources. The primary chal-
lenge lies in identifying the resource owners, i.e., determining
which data belongs to which users. We discovered that when a
mini-app user adds cloud data to the cloud database from the
mini-app client, super-apps attach the mini-app user’s userId
to the cloud data. Therefore, we can determine the resource
owner based on userId.

Since there is no official API available to retrieve current
user’s userId, we propose a method to assess the security
risk using new user accounts. Our key insight is that, for
users who have not previously utilized the mini-app, their data
should not exist in the cloud database. Therefore, if the user
obtains a non-empty data record containing a userId in the
cloud database, it indicates a potential exposure of another
user’s information. To avoid harming mini-app users’ privacy
and compromising the cloud services, we record only a binary
response for the userId, indicating whether it exists or not.
Besides, no researcher has access to the cloud resources or
the userId. Furthermore, to analyze the specific type of
insecure practice, ICREMINER conducts an in-depth analysis
of cloud behaviors. Specifically, ICREMINER analyzes if
mini-app developers moves the identity check to the mini-app
client side (UIC-1) or if mini-apps transfer the customized
user identity to the cloud side within the parameters (UIC-2).

Regarding hidden cloud databases, since the stored re-
sources are unknown, it is impossible to determine whether
privileged resources are exposed without analyzing the stored
data. If a userId is identified, ICREMINER labels it as a

special instance of insecure practice UIC-1, where client-side
data handling does not exist due to the lack of resource access.

Assessment of Cloud Storage Service. Unlike cloud
databases, the default permission for cloud storage allows all
mini-app users to read stored files with file IDs. As discussed
in Section III-E, the insecure practices of cloud storage mainly
arise from the fact that many mini-app developers rely on
file IDs for user identity check (UIC-2). If an attacker knows
the cloud file path, they can easily access the stored files,
such as users’ passport pictures and confidential company files.
Additionally, even if the mini-app developer does not set the
file permissions to be publicly readable, the cloud path of the
stored file itself can still pose significant security risks. Some
popular cloud service providers (e.g., AWS and Azure) offer
developers specific APIs, such as s3:ListObjects [25],
to list container objects in cloud storage. These APIs require
certain permissions and can only be accessed with privileged
credentials. If the cloud path is guessable, an attacker could
potentially list all the files stored in the cloud storage.

Therefore, we aim to determine whether a file path is
guessable. However, it is not an easy task, as file paths are
often generated through complex operations rather than being
composed of constant values. In particular, many file paths
consist of a sequence of strings, with each segment typically
derived from a mini-app framework API or a JavaScript built-
in string API, such as substring, concat, or slice.

TABLE I
Common patterns that generate guessable variables.

Pattern Description

new Date().getTime() Return the current timestamp.
Date().now Return the current timestamp.
Math.round(100*Math.random()) Generate a random number with in

range of 0-99.
Math.floor(100*Math.random()) Generate a random number within

range of 0-99.
str.match(/\.[ˆ.]+?$/) Extract the file extensions from file

path, e.g., ‘.txt’ and ‘.jpg’.
/\.\w +$/.exec(str) Extract the file extensions from file

path, e.g., ‘.txt’ and ‘.jpg’.

After analyzing the file paths extracted from mini-apps, we
observe that various string operations can produce guessable
file paths. For example, new Date() generates a timestamp
for the current date, which could potentially be exploited by
an attacker to obtain files created within a specific time frame.
Besides, for strings that are initially unguessable, operations
like regular expressions or substring manipulations can signifi-
cantly reduce their complexity. For instance, the return value of
wx.chooseImage is randomly generated, but the operation
file.match(/.\w+$/) extracts only the file suffix, such
as ‘.jpg’, making the variable guessable. Therefore, ICREM-
INER models these operations and performs backward data
flow analysis to trace the generation sequence of file paths.
We summarize the common patterns that produce guessable
variables in Table I.

8

Based on these patterns, we propose a heuristic strategy to
iteratively analyze the generation sequence of a file path to
determine whether it is guessable. Specifically, we consider
a string guessable if its length is limited (e.g., less than
three characters), or if its value range is restricted (e.g., less
than 1,000). However, it is hard to process scenarios where
the string contains regular expressions due to their complex
structures and varied formats. Our key insight is that if a
regular expression generates guessable variables, such as file
suffixes, the execution results for different file paths should
be identical or similar. To identify these cases, ICREMINER
applies the extracted regular expressions to three randomly
generated file paths and observe whether the outputs are
guessable. Moreover, if the file path is dynamically generated
from a remote server, it is considered unguessable because the
server-side logic is unknown. Finally, if all the file components
are guessable, the entire file path is considered guessable.
Assessment of Cloud Routine Service. Cloud routines
provide tailored services for all mini-app users. Unlike the
two aforementioned cloud services, mini-app developers can
customize cloud routines in various formats and access the
code logics in the cloud side, such as interacting with cloud
databases and cloud storage. The types of insecure practices
associated with cloud routines are similar to those found
in cloud databases. For UIC-1, ICREMINER identifies the
existence of data handling for return values in mini-app
client side, such as retrieving specific user information from
return values based on user identity. For UIC-2, ICREMINER
analyzes the parameters of cloud routines to determine whether
mini-app developers transfer customized user IDs to retrieve
or manipulate cloud resources which violates secure practices
for retrieving user identity in the server side.

For other types of insecure practices (SRA-1 and SRA-2),
which mainly focus on that whether cloud routines exposed
privileged resources to mini-app users. ICREMINER analyzes
the return values of cloud routines to identify the accessible
cloud resources and examines the parameters to identify the
controlled content in write operations. Then, ICREMINER
analyzes whether privileged resources are present in the return
values or parameters. Similarly, ICREMINER identifies the
sensitive resources based on the previously categorized types
and keyword set, to determine whether the keywords exist
within the resources. Although these practices do not necessar-
ily indicate actual exposure of sensitive cloud resources, they
represent potential vulnerabilities, which are further verified
in the evaluation section.

V. SECURITY ASSESSMENT

In this section, we discuss our results in the detection of
above insecure practices. We apply ICREMINER on a large-
scale of real-world mini-apps to understand and assess the
security hazards that can be caused by ICREM. We first
introduce the experiment setup and then present the overview
of our assessment results. Next, we discuss the interesting
findings and the potential security hazards with case studies.

A. Experiment Setup

Analysis Statistics. To evaluate the effectiveness of ICREM-
INER and to uncover the landscape of ICREM risks in mini-
apps, we conducted a large-scale analysis of 1,248,815 mini-
apps, including 985,503 WeChat mini-apps, 83,312 TikTok
mini-apps, 93,128 Alipay mini-apps, and 86,872 Baidu mini-
apps. To assess the insecure cloud practices in mini-apps, we
performed a preliminary analysis to filter mini-apps that access
app-in-app cloud services based on cloud API identification.
As a result, we identified 22,695 mini-apps. The experiments
are conducted on an Ubuntu 18.04 LTS 64-bit server with 64
CPU cores (2.3GHz) and 206GB memory. On average, our
analysis takes 13.6s in the client-side operation extraction and
63.9s in the capability inference phase for each mini-app.
Research Questions. In summary, we aim to answer the
following two research questions:

• RQ1: How many mini-apps are influenced by the ICREM
risks in the wild?

• RQ2: What real-world impacts are posed by ICREM
risks?

B. Performance Validation

It is critical to understand the performance of ICREMINER
for ensuring the reliability of our security assessment.
Accuracy of ICREMINER. To assess the accuracy, we man-
ually checked all the detected vulnerabilities in the mini-apps
which access the cloud services. Specifically, three domain
experts manually analyzed the mini-app code to determine
whether the detection results are true positives. A result
was considered a true positive only if all experts reached a
consensus. In cases of disagreement, the experts were asked
to discuss their labeling criteria.

Furthermore, we conducted a systematic exploitability anal-
ysis in a controlled environment, and throughout the evalua-
tion, ethical considerations are at the forefront. Specifically,
we used two test accounts to simulate attacks against each
other, demonstrating the exploitability and real-world impact,
such as unauthorized file access and sensitive information
leakage. For example, we modified the fileId of user
A to that of user B to determine whether user A could
access user B’s resources. In total, we analyzed 1,943 mini-
apps. The remaining mini-apps contain write operations to
cloud resources. To avoid raising ethical concerns, we did not
perform any write operations that could alter user balances or
trigger unauthorized payments. Instead, we conducted code-
level semantic analysis to analyze the functionalities and
parameters involved, allowing us to assess their potential real-
world impact. For example, a cloud database named “balance”
suggests that it stores users’ account balances.

Finally, three experts took about one month each to evaluate
the detected mini-apps. As illustrated in Table II, ICREMINER
detected 3,057 vulnerable mini-apps and 8,289 vulnerable
cloud operations in these mini-apps. Moreover, 97.26% of the
detected cloud operations expose sensitive resources.

9

TABLE II
A summary of vulnerable mini-apps before and after manual filtering of false positives. op means cloud operations and %op represents the proportion of

detected operations relative to the preliminary results.

Cloud Service Preliminary Results False Positives/Insensitive Operations Sensitive Operations

op # app % total # op # app % op # op # app % op

cloud database 6759 2133 9.45% 57 53 0.84% 6702 2112 99.16%
cloud storage 1147 1022 4.53% 124 103 10.81% 1023 709 89.19%
cloud routine 383 316 1.40% 46 42 12.01% 337 284 87.99%

Total 8289 3057 13.54% 227 197 2.74% 8062 2815 97.26%

TABLE III
Detection results of different methods to infer cloud database names. (1)

Common Name Augmentation: Extend analysis using frequently used
database names, (2) LLM-based Inference: Utilize LLM to infer cloud

database names, (3) Mini-app Correlation: Correlate cloud database names
across different mini-apps.

Method Detection Results Insecure Practices

op # app # op # app

Common Name
Augmentation 1197 879 195 180

LLM-based Inference 3309 810 1100 390
Mini-app Correlation 141 57 40 20

ICREMINER 4202 1486 1262 539

Specifically, there are 53 false positives in the detection
result associated with cloud databases, primarily due to that
the exposed resources are not privacy-sensitive. For example,
some mini-apps use ‘credential’ to name unrelated variables.
Additionally, some cloud databases are used for testing and
do not expose sensitive resources. Moreover, there are some
hidden cloud operations that are not accessed in the mini-app
client. Since the contents stored in them are unknown, we
cannot determine whether the contents are sensitive and do
not consider them in the the assessment. For cloud storage,
we assess whether the cloud path is guessable and there are
no false positives, indicating that ICREMINER can accurately
identify guessable cloud paths. Furthermore, we analyze the
file descriptions provided in the mini-app client and filter
out stored files that are not privacy-sensitive, such as user
avatars and public feed images. As for cloud routines, the
false positives are primarily due to that the sensitivity of cloud
resources varies depending on the context. For example, mini-
app users pay for VIP service in a mini-app as***FM, and the
mini-app invokes a cloud routine setVIP to change the user’s
status. An attacker could exploit this by directly invoking the
cloud routine without making a payment. However, for unpaid
services, this vulnerability does not exist since users can apply
for VIP status for free, typically for promotional purposes.

To assess the false negatives, we randomly selected 100
mini-apps that were not flagged as vulnerable, and then
manually analyzed the mini-app code to check whether they
contain undetected vulnerabilities. Taking the cloud routine
as an example, if we find that the cloud routine exposes
sensitive resources that were not detected, we consider it a
false negative. As a result, we do not find any false negatives.

TABLE IV
The statistics of large-scale assessment.

Super
-app

Cloud Database Cloud Storage Cloud Routine

app % total # app % total # app % total

WeChat 2057 9.39% 673 3.07% 247 1.13%
TikTok 26 9.09% 10 3.50% 10 3.50%
Alipay 13 4.22% 15 4.87% 15 4.87%
Baidu 16 7.84% 11 5.39% 12 5.88%

Overall 2112 9.31% 709 3.12% 284 1.25%

Performance of Hidden Capability Excavation. As illus-
trate in Table III, we compare the effectiveness of our proposed
methods for inferring hidden capabilities. By utilizing all these
methods, ICREMINER was able to identify 4,202 hidden
cloud database names in 1,486 mini-apps and 539 mini-
apps (36.27%) are vulnerable, which expose excessive cloud
resources to mini-app users. Although hidden capabilities do
not necessarily indicate a problem, a secure implementation
ensures that only necessary cloud resources can be accessed in
the mini-app client, adhering to the “minimization principle”.

Specifically, LLM can effectively assist in generating valid
database names and “LLM-based Inference” method proved
more effective, uncovering 390 vulnerable mini-apps. Addi-
tionally, the “Common Name Augmentation” method con-
tributed to the detection of 1,197 valid database names in 879
mini-apps, which indicates that some database names are fre-
quently used by different mini-apps. Furthermore, the “Mini-
app Correlation” method also helped ICREMINER identify 20
vulnerable mini-apps.

C. RQ1: Landscape of ICREM Risks

To evaluate the prevalence of vulnerabilities in real-world
mini-apps, we conduct a large-scale analysis of mini-apps
from different super-apps and present our findings below.
Additionally, we discuss the generality of ICREMINER in
Section VI.
Prevalence of ICREM. As illustrated in Table II, 2,815
mini-apps that access cloud services suffer from insecure
practices, leading to the exposure of sensitive resources. We
provide detailed case studies of vulnerable mini-apps that
access different types of cloud services in Appendix B.

We compare the detection results across different super-
apps in Table IV. The majority of vulnerable mini-apps are
WeChat mini-apps, primarily because a larger proportion of

10

TABLE V
The statistics of different types of insecure practices.

Super-app
User Identity Check Sensitive Resource Allocation

UIC-1 UIC-2 SRA-1 SRA-2

op # app % total # op # app % total # op # app % total # op # app % total

WeChat 1765 886 32.65% 4306 1846 67.94% 93 81 2.98% 1762 984 36.22%
TikTok 12 12 30.77% 19 12 30.77% 15 10 25.64% 9 7 17.95%
Alipay 13 13 39.39% 24 22 66.67% 8 8 24.24% 0 0 0
Baidu 7 7 26.92% 22 16 61.54% 7 7 26.92% 3 2 7.69%

Overall 1797 919 32.65% 4371 1896 67.35% 123 106 3.77% 1774 993 35.28%

WeChat mini-apps integrate cloud services. In contrast, cloud
services are less commonly used in the mini-apps of other
super-app platforms. For instance, there are 204 Baidu mini-
apps incorporate cloud services. As a result, WeChat mini-apps
exhibit more security vulnerabilities. Furthermore, our detec-
tion results show that mini-apps in other platforms also pose
severe risks and expose sensitive cloud resources. Our in-depth
analysis of the mini-app client reveals that a significant portion
of the vulnerable cloud databases (22.17%) are associated with
user information, such as user’s phone number and billing
address, posing a serious risk to users’ privacy. There are also
many vulnerable mini-apps that expose sensitive files stored in
the cloud storage. Since mini-app developers often store users’
files, including educational materials and company documents,
in easily guessable cloud paths, attackers can obtain the cloud
paths to download the corresponding files.

Unlike cloud database or cloud storage, cloud routines used
in mini-apps are often accessible to all mini-app users. To
date, no systematic work has revealed their security risks.
As illustrated in Table IV, many mini-app developers mis-
takenly expose sensitive operations through cloud routines,
such as altering a user’s account balance. Additionally, several
privilege escalation issues exist within cloud routines. For
example, many mini-app developers implement cloud routines
that retrieve user information based on phone number or
simple user ID, which attackers can tamper with to access
other users’ information.
Insecure Practices. As shown in Table V, the four types
of insecure practices are prevalent in mini-apps. The most
common insecure practices are related to user identity check
(UIC-1 and UIC-2). Specifically, 919 mini-apps move the
identity check to the mini-app client side, and 1,896 mini-
apps use client-side parameters for the user identity check.
However, an attacker can arbitrarily change the parameter
to access cloud resources of other users or directly steal
the exposed cloud resources before the client-side check.
Moreover, many mini-app developers assign write permissions
to sensitive resources, such as account balance (SRA-2). For
example, an e-commercial mini-app hui*** accesses cloud
database ‘user’ to change user’s account balance in the mini-
app client side after the user completes a payment. The attacker
can directly access the cloud database to increase the account
balance without any payment. Additionally, 3.77% of mini-
apps expose privileged resources to the mini-app client side

0

100

200

300

400

500

600

Busi
ne

ss
New

s
Too

l

Edu
cat

ion

Sho
pp

ing

Life
Styl

e

Ente
rta

inm
en

t

Heal
th

& M
ed

ici
ne

Foo
d &

 D
ini

ng

Gov
ern

men
t

Tran
spo

rta
tio

n
Spo

rts
Soc

ial
Trav

el

Fina
nc

enu
m

be
r o

f v
ul

ne
ra

bl
e

m
in

i-a
pp

s
Fig. 7. Distribution of vulnerable mini-app categories.

(SRA-1), most of which are API keys and AppSecret[26],
the root credential of mini-apps.

Distribution Across Categories. We then analyze the num-
ber of vulnerable mini-apps across different categories. As
illustrated in Figure 7, there are more vulnerable mini-apps
in categories that aggregate a large amount of information,
such as Business and Education. These mini-apps often contain
sensitive information, like company files and student details,
which pose a severe leakage risk. There are also many mini-
apps in the categories that related to user daily life, such as
News, Tool and Shopping, which also have a high proportion
of ICREM risks. These categories mainly collect user’s profile
and online activities. Although there are relatively fewer mini-
apps in some categories, such as Government, the exposed
cloud resources can lead to severe consequences.

1) Key Observations: Here, we highlight two key observa-
tions obtained during the assessment of real-world mini-apps.

“Write Operation” Vulnerability. Although we cannot
directly verify if mini-app developers have correctly config-
ured write permissions, we can still uncover the “tip of the
iceberg” regarding the security of write operations conducted
in the mini-app client. The common write operations is to
add or update user information, such as nickname or avatar.
However, issues arise when certain write operations, which
should be restricted, are accessible to users. For example,
when users attempt to recharge their account balance, it should
be updated only after the payment is successfully completed.
However, some mini-app developers mistakenly handle the
balance update operations in the mini-app client side, which

11

allows attackers to manipulate their balance without making
any actual payment. Through static analysis, we can identify
which cloud databases are writable by users based on specific
cloud APIs. From the analysis of written content, we found
that 993 mini-apps have vulnerable write operations.

Unsafe write operations can be categorized into two types.
The first type allows users to write sensitive personal infor-
mation. For example, in the mini-app AWS***, an attacker
can add themselves to the admin list without undergoing
authentication. Additionally, in a mini-app exp***, an at-
tacker can arbitrarily change the account balance without any
payment. The second type allows users to write to system
resources. For example, a mini-app allows users to modify the
notification content. Attackers might exploit this capability to
alter notifications and deceive other users.
Templated Cloud Services. Some mini-apps are developed
by the same developers using the same templates, which
results in similar vulnerability patterns across these mini-
apps and exacerbates the vulnerabilities. Among our detection
results, we found that 125 mini-apps (4.4%) were developed
using templates. On average, each template is used to develop
approximately 12 mini-apps. For instance, we identified a
third-party mini-app template for entertainment services that
exposes sensitive cloud routines to the client side, which can
be exploited by attackers to send notifications to other mini-
app users. This vulnerability affects 15 mini-apps developed
using this template. Additionally, the correlation results in
the hidden capability inference demonstrate that mini-apps
developed by the same developers often have similar or
templated implementations of cloud services. These mini-apps
often have the same insecure practices and expose sensitive
cloud resources.

D. RQ2: Real-world Impact and Case Studies

To demonstrate the real-world impact of ICREM risks,
we first analyze the scale of affected users. According to
data provided by super-app platforms, 115 vulnerable mini-
apps each have over 100,000 users, and the cumulative num-
ber of affected users exceeds 70 million. Furthermore, we
demonstrate the severity of ICREM risks by presenting the
security hazards implied in real-world mini-apps, combined
with detailed case studies.
Data Leakage in Cloud Services. Many mini-apps suffer
from data leakage, particularly those that expose excessive
privileges for users to access sensitive cloud data. For example,
a hospital mini-app g*** exposes the patient’s information
stored in the cloud database user, including patient’s name,
age, phone number and medical information.

As for the cloud storage, which is often made publicly
readable, if an attacker knows the file path, they can access
the cloud files. To keep the file path secret, super-apps provide
mini-apps APIs such as wx.chooseImage to choose local
images and the file name is randomly generated. However,
mini-app developers may use guessable file names, such
as timestamps. For example, an education mini-app b***
stores students’ educational materials with names based on

timestamps, which can be easily guessed and traversed by an
attacker. Using two test accounts, we successfully retrieved the
files of another account stored in the cloud server. Specifically,
we first logged into account A, uploaded files and recorded
the filenames. Then, we logged into account B and injected
access to account A’s files into the target mini-app. Finally,
we successfully obtained account A’s files.
Pay for Free. In the app-in-app ecosystem, the typical
recharge process involves two steps: the user completes the
payment, and then the mini-app updates the balance in the
cloud side. However, some mini-app developers execute the
second step in the mini-app client side, which can be exploited
by a malicious user. For instance, in a third-party ChatGPT
mini-app, AI***, users can purchase tokens to access GPT ser-
vices. After a payment is made, the mini-app directly invokes
the cloud database service user***Tokens to update the
user’s account balance. This enables an attacker to manipulate
the cloud database and arbitrarily increase token amounts
without completing a payment.
Privilege Escalation. A mini-app typically includes various
user roles, such as ordinary users, VIP users, and admin-
istrators. These roles can change in certain scenarios. For
example, ordinary users can upgrade to VIP status by making
a payment or entering an activation code. Some mini-apps
wrongly place role-change functionalities in the mini-app
client side. For example, in an education mini-app, the cloud
database vip*** is exposed to mini-app users. When a user
enters the correct activation code, the mini-app adds them to
the cloud database as a VIP user. Attackers could exploit this
by directly writing to the cloud database, adding themselves
to the VIP user list.

VI. DISCUSSION

Generality of ICREMINER and Limitations. To understand
the impacts of ICREM risks on different super-apps, we
conducted an in-depth analysis of several prominent super-
apps, i.e., WeChat, TikTok, Baidu, and Alipay. The cloud
services in these super-apps have similar implementations, and
the cloud APIs have similar names. For example, WeChat
uses wx.cloud.uploadFile [10], while Alipay employs
CloudContext.uploadFile [27] for uploading files to
cloud storage. Besides, to perform our attacks, the attacker
needs to inject malicious payload into the target mini-app,
using methods such as exploiting the caching mechanism as
discussed in Section III-B. Through further analysis of super-
apps, we found that while they implement different integrity
checks, these local checks can be easily bypassed. Therefore,
ICREMINER can be easily extended to different super-apps.
Moreover, attackers do not need to publish a malicious mini-
app in the mini-app market and they can execute the attack
from their own devices, making it practical.

Furthermore, there are several limitations in our proposed
method. First, as discussed in Section V-B, our method may
introduce some false positives, primarily because some data
are not privacy-sensitive. ICREMINER determines whether

12

data is privacy-sensitive based on variable names and data
dependencies. Considering additional semantics from the mini-
app client side may bring improvement, which we leave
for future work. Second, hidden cloud operations cannot be
fully discovered. Although we have proposed several inference
methods, it is impossible to achieve complete inference based
on client-side analysis. Third, our current work focuses on
the analysis in four prominent super-apps. The assessment
can demonstrate the scalability of ICREMINER, and we also
analyze the security issues in other super-apps, such as Line
and VK, as presented in Appendix C.

Ecosystem-specific Factors. Unlike traditional cloud archi-
tectures, where cloud credentials issued to developers are
used for both authentication and authorization, the app-in-
app ecosystem decouples these two processes. Specifically,
the super-app platform provides a centralized authentication
mechanism, managing user identities across all mini-apps.
This design often leads mini-app developers to assume that
adequate security protections have been enforced by the super-
app platform. However, super-app platforms only manage user
identities and do not enforce access control over the cloud
resources accessible to users. This fundamental change causes
inconsistent authorization enforcement in different mini-apps
and introduces new security risks. We believe that super-app
platforms should play a more proactive role to provide stronger
support for secure authorization. Furthermore, super-app plat-
forms do not ensure the integrity of the mini-app code they
host, which further exacerbates the risks. We have reported
and discussed our findings with the super-app platform.

Mitigations. For super-apps, it is essential to provide mini-
app developers with clear documentation to help them un-
derstand the security mechanism of app-in-app cloud services
and how to correctly safeguard sensitive resources. Super-
apps should remind mini-app developers to set appropriate
permissions for sensitive resources. Furthermore, super-apps
can implement stricter access control mechanisms. For exam-
ple, sensitive resources can be tagged with user IDs, allowing
the super-app to verify resource ownership when a malicious
user attempts to access them. Besides, super-apps can take
measures to detect runtime code injection (e.g., Xposed, Frida)
to mitigate the security issues. In addition, super-apps can
assess the security of the current runtime environment, such
as checking whether the device has been rooted or whether
other security compromises are present.

For mini-app developers, it is crucial to avoid placing
sensitive operations, such as retrieving root credentials, in
the mini-app client side. Besides, mini-app developers must
ensure that access to sensitive resources is properly secured,
especially by performing user identity check in the cloud
side. Moreover, mini-app developers need to focus on the
hidden cloud operations, which can also expose sensitive
resources. We believe that ICREMINER offers a valuable tool
for detecting and mitigating insecure resource management by
mini-app developers. Furthermore, It is feasible for mini-app
developers to utilize our tool to find potential security risks.

VII. RELATED WORK

Studies on App-in-App Ecosystem. In recent years, many
studies focus on the security of the app-in-app ecosystem,
including the security of mini-apps [24], [26], [28] and super-
apps [29], [30], [31], [32], [33]. For example, Lu et al. [29]
systematically analyzed the resource management flaws in
super-apps, which fail to provide effective control to protect
privileged APIs. [33] studied hidden APIs in super-apps that
are undocumented and can expose sensitive resources. [26],
[28], [34] identified credential leakage issues in mini-apps.
[31] discovered discrepancies in the sensitive APIs of WeChat
across platforms, which can be exploited by attackers to
steal user’s privacy. Zhang et al. [30] conducted a systematic
study on identity confusion vulnerabilities, where super-apps
fail to properly verify the mini-app identity before granting
access to privileged APIs and found three types of confusion
vulnerabilities. In contrast, our work focuses on a new issue:
insecure practices in cloud resource management by mini-
apps. Besides, the vulnerabilities we identified have not been
uncovered in previous work.
Identity Checks. Many studies have examined the security
flaws in identity check. Previous research [15], [35] mainly
focused on the check of user’s identity in the server side,
to prevent unauthorized access to other users’ resources. For
web applications, many research focused on the security issues
during multi-origin communications [36], [37], [38], [39],
especially the issues within postMessage Handler. Further-
more, Zhang et al. [30] conducted the first systematic study
of identity confusions in this ecosystem and identified three
types of confusion vulnerabilities. Yang et al. [24] identified
the issue of missing appId checks in the receiver mini-app
during cross-mini-app communication. We perform the first
systematic study of the identity management mechanism for
mini-app users in the app-in-app ecosystem.
Broken Access Control. The identified insecure practices in
mini-apps fall under the category of “Broken Access Control”
in the OWASP Top 10 [40]. This issue is prevalent in mobile
and web applications and has been studied in prior work [41],
[35], [15], [42], [17], [43]. These work primarily focus on
horizontal privilege escalation. For example, Zuo et al.[42]
investigated post-authentication security and identified the
vulnerable access control in mobile services. Li et al.[17]
analyzed user tag spoofing attacks in mobile apps, and Liu et
al.[43] studied vulnerabilities caused by missing owner checks
in web applications. In contrast to these works, we focus
on systematically analyzing security issues in cloud resource
management within the app-in-app ecosystem, which differ
significantly in both architecture and threat models.
Cloud Security. Serverless services have experienced rapid
growth in recent years, and many studies focus on the cloud
security. Several work used formal methods to verify the
security of permission configurations in cloud side [44],
[45], [46], [19], [47]. Shevrin et al. [19] formally examined
multi-step attacks that exploit cloud policy misconfigurations.
Besides, some studies investigated data breaches in cloud

13

infrastructures [20], [48], [49], where sensitive information
is exposed through publicly accessible cloud storage buckets.
Additionally, may work focused on the misuse or permission
misconfigurations of cloud credentials [5], [6], where high-
privileged credentials are exposed to the client side, allowing
attackers to access sensitive resources.

The work most related to us is PrivRuler [6]. PrivRuler
conducted a fine-grained assessment of the cloud capabilities
owned by mobile apps, and verified if these capabilities exceed
the legitimate requirements of the apps. In contrast, our study
focuses on the security implications of ICREM, with sensitive
cloud resource exposure as part of the implication. It’s not
trivial to apply traditional method to this task. First, unlike
traditional cloud architectures, which issue cloud credentials
to developers to manage access to cloud resources, the app-
in-app cloud architecture is based on the identities, which
are managed by the super-apps. Second, while PrivRuler only
focuses on cloud storage and notification service, we conduct
a systematic analysis of three types of app-in-app cloud
services, i.e., cloud database, cloud storage and cloud routine.
Third, PrivRuler aims to infer accessible cloud containers
as it assumes that cloud policies are often defined at the
granularity of container objects. However, mini-apps operate
with permissions granted at the element level. Consequently,
PrivRuler’s vulnerability patterns are unsuitable for detecting
vulnerabilities in this context. We propose a novel method that
employs semantic inference to identify potential vulnerabilities
in mini-apps, including the hidden capabilities.

VIII. CONCLUSION

In this paper, we perform the first systematic study of
the insecure cloud resource management in the app-in-app
ecosystem. We design and implement a novel approach, called
ICREMINER, combined with static analysis and dynamic
probing to assess the security implications. We also propose
methods to detect hidden vulnerability in the cloud side with
the help of LLM. By applying ICREMINER on 1,248,815 real-
world mini-apps, we find 22,695 mini-apps access app-in-app
cloud services and 2,815 of them (12.40%) are affected by the
insecure resource management. Finally, we have made respon-
sive disclosure to the super-app platforms and corresponding
mini-app developers. We also provide several mitigations to
enhance the security of the app-in-app ecosystem.

IX. ETHICS CONSIDERATIONS

Throughout the course of our research, we ensure com-
pliance with all relevant laws and regulations, and adhere to
community practices and guidelines, such as those outlined by
[50] and [51]. Our work was reviewed by our institution’s IRB
and this study is considered as “minimal risk”. Furthermore,
we followed best practices established by prior related work
to assess the cloud resources unauthorized access [5], [6],
[20]. To perform necessary evaluation, we only used our own
accounts with explicit consent of all participants involved.
Besides, we did not store any data or launch any attacks against
the cloud server to collect or manipulate sensitive resources.

To avoid impacting mini-apps’ cloud services, we proposed
a variety of innovative methods to analyze the security of cloud
services based on the semantics in the mini-app client side.
During the dynamic probing, we carefully followed the prac-
tices of prior researches [5], [6], [52], [53], [20], [54], which
focus on identifying vulnerable or malicious services, includ-
ing the cloud services. Besides, we adhered to principles that
prevent the leakage of real user’s data and avoid introducing
changes to the cloud services. In addition to these guidelines,
we made extra precautions to minimize any potential harm
to cloud services or mini-app users. First, we did not perform
any write operations and conducted security inferences without
accessing the cloud data. Second, we did not conduct fuzz
testing on cloud services. Instead, we limited the detection rate
to simulate manual access, thereby preventing any potential
damage to the cloud services. Moreover, for the mini-app
dataset collection, we adhered to the methods established in
previous studies [26], [34]. To avoid overloading the super-
app’s servers, we also limited the download speed to a few
seconds per mini-app.

Regarding vulnerability disclosure, to help address the
vulnerabilities and prevent the exposure of mini-apps’ sen-
sitive data, we adhered to responsible disclosure practices
to super-app platforms and mini-app developers. The super-
app platforms have recognized this vulnerability. Besides, we
actively worked together with them to fix these problems. To
notify the affected mini-app developers, we made efforts to
extract contact information from various sources, including
privacy policies, and official websites of the companies behind
the mini-app. Consequently, we collected emails for 1,869
mini-apps. Most of the remaining mini-apps were developed
by individual developers, making it difficult to collect the
contact information. We have reported detected vulnerabilities
to the corresponding developers. To date, we have received 35
responses and 893 mini-app developers have fixed the issues
or taken down their mini-apps. The mini-app developers have
expressed their gratitude for our efforts in detecting vulnera-
bilities. They have actively sought our assistance in resolving
the issues, and we have helped them fix the vulnerabilities.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the
paper. This work was supported in part by the National Natural
Science Foundation of China (62172104, 6240211). Zhemin
Yang and Min Yang are the corresponding authors. Min Yang
is a faculty of Shanghai Institute of Intelligent Electronics &
Systems, and Engineering Research Center of Cyber Security
Auditing and Monitoring, Ministry of Education, China.

REFERENCES

[1] QPSoftware. (Accessed April 23, 2025) The development trends of
wechat mini-program. [Online]. Available: https://qpsoftware.net/blog/
development-trends-wechat-mini-program

[2] Amazon. (Accessed April 23, 2025) Amazon web services. [Online].
Available: https://aws.amazon.com

[3] Microsoft. (Accessed April 23, 2025) Microsoft azure. [Online].
Available: https://azure.microsoft.com

14

https://qpsoftware.net/blog/development-trends-wechat-mini-program
https://qpsoftware.net/blog/development-trends-wechat-mini-program
https://aws.amazon.com
https://azure.microsoft.com

[4] Google. (Accessed April 23, 2025) Google cloud: Cloud computing
services. [Online]. Available: https://cloud.google.com

[5] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak? uncovering
the data leakage in cloud from mobile apps,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019.

[6] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Credit karma: Understanding
security implications of exposed cloud services through automated
capability inference,” in 32nd USENIX Security Symposium (USENIX
Security), 2023.

[7] C. Fang, N. Miao, S. Srivastav, J. Liu, R. Zhang, R. Fang, A. Asmita,
R. Tsang, N. Nazari, H. Wang et al., “Large language models for code
analysis: Do llms really do their job?” 2024.

[8] Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and
Y. Liu, “Gptscan: Detecting logic vulnerabilities in smart contracts by
combining gpt with program analysis,” 2024.

[9] C. Yue, K. Chen, Z. Guo, J. Dai, X. Sun, and Y. Yang, “What’s done
is not what’s claimed: Detecting and interpreting inconsistencies in
app behaviors,” in Network and Distributed System Security Symposium
(NDSS), 2025.

[10] WeChat. (Accessed April 23, 2025) uploadFile. [Online].
Available: https://developers.weixin.qq.com/minigame/en/dev/wxcloud/
reference-client-api/storage/uploadFile.html

[11] PortSwigger. (Accessed July 9, 2025) Getting started with burp suite.
[Online]. Available: https://portswigger.net/burp/documentation/desktop/
getting-started

[12] Charles. (Accessed July 9, 2025). [Online]. Available: https://www.
charlesproxy.com/

[13] Tencent. (Accessed April 23, 2025) Mmtls: Introduction of tlsv1.3
based tecent security communication prtocol. [Online]. Available:
https://github.com/WeMobileDev/article/blob/master/SUMMARY.md

[14] WeChat. (Accessed April 23, 2025) getWXContext. [On-
line]. Available: https://developers.weixin.qq.com/miniprogram/en/dev/
wxcloud/reference-server-api/utils/getWXContext.html

[15] M. Monshizadeh, P. Naldurg, and V. Venkatakrishnan, “Mace: Detecting
privilege escalation vulnerabilities in web applications,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2014.

[16] F. He, Y. Jia, J. Zhao, Y. Fang, J. Wang, M. Feng, P. Liu, and Y. Zhang,
“Maginot line: Assessing a new cross-app threat to pii-as-factor authen-
tication in chinese mobile apps,” in Network and Distributed System
Security Symposium (NDSS), 2024.

[17] S. Li, Z. Yang, G. Yang, H. Zhang, N. Hua, Y. Huang, and M. Yang,
“Notice the imposter! a study on user tag spoofing attack in mobile
apps,” in 32nd USENIX Security Symposium (USENIX Security), 2023.

[18] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git?
characterizing secret leakage in public github repositories.” in Network
and Distributed System Security Symposium (NDSS), 2019.

[19] I. Shevrin and O. Margalit, “Detecting {Multi-Step} {IAM} attacks in
{AWS} environments via model checking,” in 32nd USENIX Security
Symposium (USENIX Security), 2023.

[20] S. El Yadmani, O. Gadyatskaya, and Y. Zhauniarovich, “The file that
contained the keys has been removed: An empirical analysis of secret
leaks in cloud buckets and responsible disclosure outcomes,” in 2025
IEEE Symposium on Security and Privacy (SP), 2024.

[21] Amazon. (Accessed April 23, 2025) Aws bucket. [On-
line]. Available: https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/aws-resource-s3-bucket.html

[22] J. Lee, J.-K. Min, and C.-W. Chung, “An effective semantic search
technique using ontology,” in Proceedings of the 18th international
conference on World Wide Web (WWW), 2009.

[23] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang, “Finding
clues for your secrets: Semantics-driven, learning-based privacy dis-
covery in mobile apps.” in Network and Distributed System Security
Symposium (NDSS), 2018.

[24] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery: Root
causes, attacks, and vulnerability detection,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2022.

[25] Amazon AWS. (Accessed April 23, 2025) ListObjects.
[Online]. Available: https://docs.aws.amazon.com/AmazonS3/latest/API/
API ListObjects.html

[26] Y. Zhang, Y. Yang, and Z. Lin, “Don’t leak your keys: Understanding,
measuring, and exploiting the appsecret leaks in mini-programs.” in

Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2023.

[27] Alipay. (Accessed April 23, 2025) uploadFile. [Online]. Available:
https://opendocs.alipay.com/cloud/09tn5v?pathHash=5b248a39

[28] S. Baskaran, L. Zhao, M. Mannan, and A. Youssef, “Measuring the
leakage and exploitability of authentication secrets in super-apps: The
wechat case,” in Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2023.

[29] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang,
“Demystifying resource management risks in emerging mobile app-in-
app ecosystems,” in Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security (CCS), 2020.

[30] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang, “Identity confusion in {WebView-based} mobile
app-in-app ecosystems,” in 31st USENIX Security Symposium (USENIX
Security), 2022.

[31] C. Wang, Y. Zhang, and Z. Lin, “One size does not fit all: Uncovering
and exploiting cross platform discrepant {APIs} in {WeChat},” in 32nd
USENIX Security Symposium (USENIX Security), 2023.

[32] ——, “Rootfree attacks: Exploiting mobile platform’s super apps from
desktop,” in The 19th ACM ASIA Conference on Computer and Com-
munications Security (ACM AsiaCCS), 2024.

[33] ——, “Uncovering and exploiting hidden apis in mobile super apps,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2023.

[34] Y. Shi, Z. Yang, K. Zhong, G. Yang, Y. Yang, X. Zhang, and M. Yang,
“The skeleton keys: A large scale analysis of credential leakage in mini-
apps,” in Network and Distributed System Security Symposium (NDSS),
2025.

[35] S. Son, K. S. McKinley, and V. Shmatikov, “Fix me up: Repairing
access-control bugs in web applications.” in Network and Distributed
System Security Symposium (NDSS), 2013.

[36] Y. Cao, V. Rastogi, Z. Li, Y. Chen, and A. Moshchuk, “Redefining
web browser principals with a configurable origin policy,” in 2013 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2013.

[37] G. Yang, J. Huang, and G. Gu, “{Iframes/Popups} are dangerous in
mobile {WebView}: Studying and mitigating differential context vul-
nerabilities,” in 28th USENIX Security Symposium (USENIX Security),
2019.

[38] G. Yang, J. Huang, G. Gu, and A. Mendoza, “Study and mitigation
of origin stripping vulnerabilities in hybrid-postmessage enabled mobile
applications,” in 2018 IEEE Symposium on Security and Privacy (SP),
2018.

[39] M. Steffens and B. Stock, “Pmforce: Systematically analyzing postmes-
sage handlers at scale,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2020.

[40] (Accessed September 6, 2024) Owasp top 10. [Online]. Available:
https://owasp.org/Top10/

[41] F. Sun, L. Xu, and Z. Su, “Static detection of access control vulnerabili-
ties in web applications,” in 20th USENIX Security Symposium (USENIX
Security), 2011.

[42] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic discovery
of vulnerable authorizations in online services,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[43] F. Liu, Y. Shi, Y. Zhang, G. Yang, E. Li, and M. Yang, “Mocguard:
Automatically detecting missing-owner-check vulnerabilities in java web
applications,” in 2025 IEEE Symposium on Security and Privacy (SP),
2025.

[44] M. Bouchet, B. Cook, B. Cutler, A. Druzkina, A. Gacek, L. Hadarean,
R. Jhala, B. Marshall, D. Peebles, N. Rungta et al., “Block public access:
trust safety verification of access control policies,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(FSE/ESEC), 2020.

[45] W. Eiers, G. Sankaran, A. Li, E. O’Mahony, B. Prince, and T. Bultan,
“Quantifying permissiveness of access control policies,” in Proceedings
of the 44th International Conference on Software Engineering (ICSE),
2022.

[46] Z. Jin, L. Xing, Y. Fang, Y. Jia, B. Yuan, and Q. Liu, “P-verifier:
Understanding and mitigating security risks in cloud-based iot access
policies,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2022.

15

https://cloud.google.com
https://developers.weixin.qq.com/minigame/en/dev/wxcloud/reference-client-api/storage/uploadFile.html
https://developers.weixin.qq.com/minigame/en/dev/wxcloud/reference-client-api/storage/uploadFile.html
https://portswigger.net/burp/documentation/desktop/getting-started
https://portswigger.net/burp/documentation/desktop/getting-started
https://www.charlesproxy.com/
https://www.charlesproxy.com/
https://github.com/WeMobileDev/article/blob/master/SUMMARY.md
https://developers.weixin.qq.com/miniprogram/en/dev/wxcloud/reference-server-api/utils/getWXContext.html
https://developers.weixin.qq.com/miniprogram/en/dev/wxcloud/reference-server-api/utils/getWXContext.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-s3-bucket.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-s3-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjects.html
https://opendocs.alipay.com/cloud/09tn5v?pathHash=5b248a39
https://owasp.org/Top10/

[47] J. Backes, U. Berrueco, T. Bray, D. Brim, B. Cook, A. Gacek,
R. Jhala, K. Luckow, S. McLaughlin, M. Menon, D. Peebles, U. Pugalia,
N. Rungta, C. Schlesinger, A. Schodde, A. Tanuku, C. Varming, and
D. Viswanathan, “Stratified abstraction of access control policies,” in
Computer Aided Verification: 32nd International Conference, 2020.

[48] J. Cable, D. Gregory, L. Izhikevich, and Z. Durumeric, “Stratosphere:
Finding vulnerable cloud storage buckets,” in Proceedings of the 24th In-
ternational Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2021.

[49] A. Continella, M. Polino, M. Pogliani, and S. Zanero, “There’s a hole
in that bucket! a large-scale analysis of misconfigured s3 buckets,”
in Proceedings of the 34th Annual Computer Security Applications
Conference (ACSAC), 2018.

[50] (Accessed April 23, 2025) Vulnerability disclosure cheat sheet. [Online].
Available: https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability
Disclosure Cheat Sheet.html

[51] (Accessed September 6, 2024) Owasp web secu-
rity testing guide. [Online]. Available: https://owasp.org/
www-project-web-security-testing-guide/

[52] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity of
embedded network devices: results of a wide-area scan,” in Proceedings
of the 26th annual computer security applications conference (ACSAC),
2010.

[53] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast internet-
wide scanning and its security applications,” in 22nd USENIX Security
Symposium (USENIX Security), 2013.

[54] Z. Xu, A. Nappa, R. Baykov, G. Yang, J. Caballero, and G. Gu,
“Autoprobe: Towards automatic active malicious server probing using
dynamic binary analysis,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2014.

TABLE VI
Detection results of different methods to infer cloud database names.

Method Detection Results Insecure Practices

op # app # op # app

Gemini-based Inference 3309 810 1100 390
GPT-based Inference 3103 740 1050 363

Deepseek-based Inference 2691 629 931 308
Llama-based Inference 3131 789 1053 372
Bert-based Inference 1180 565 191 176

APPENDIX A
COMPARISON OF DATABASE NAME INFERENCE METHODS

To better evaluate and explain the differences among large
language models in LLM-based inference, we assess the
performance of several representative models, including Gem-
ini (gemini-pro), GPT (gpt-3.5-turbo), DeepSeek (deepseek-
r1:70b), and Llama (llama3.3:70b). All models are evaluated
using their default configurations. The full prompt used is
shown in Table VII. Furthermore, to demonstrate the ef-
fectiveness of LLM-based methods, we also compare our
approach with the BERT-based semantic search technique. The
evaluation results are shown in Table VI. We can observe that
all LLM-based methods outperform the BERT-based method.
The semantic search approach can only infer simple database
names and fails to generalize when mini-apps use customized
or unusual names. Among the LLM-based methods, Gemini-
based inference achieves the best performance in our task.
As a result, ICREMINER adopts Gemini for database name
inference.

APPENDIX B
VULNERABLE MINI-APP EXAMPLES

In this section, we randomly select 10 vulnerable mini-apps
from each app-in-app cloud service and provide a detailed
description in Table VIII. Due to ethical considerations, we
do not provide detailed information about these mini-apps.
The table illustrates the data stored in cloud databases and
cloud storage, as well as the operations performed by cloud
routines. Specifically, we manually analyze the mini-app code
to understand the stored data in cloud databases and the
detailed information of files stored in cloud storage. For cloud
routines, we analyze the parameters and return values to
understand their functionalities.

APPENDIX C
MEASURING THE INSECURE CLOUD RESOURCE

MANAGEMENT IN OTHER SUPER-APPS

We conducted an analysis of other emerging super-apps, i.e.,
Line and VK, and crawled 4,324 Line mini-apps and 862 VK
mini-apps for evaluation. We found that 15 Line mini-apps and
7 VK mini-apps integrate cloud services. Among them, 3 Line
mini-apps and 2 VK mini-apps are vulnerable, and we have
reported these issues to the corresponding developers. Since
these super-app platforms host a relatively small number of
mini-apps, there are not so many vulnerable mini-apps in these
super-app platforms. Nevertheless, the results demonstrate that
such risks also influence other super-app platforms.

16

https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/

TABLE VII
The prompt used for LLM-based inference.

Section Details

Role
You are an expert in mini-app development, with in-depth knowledge of the app-in-app cloud mechanism,
especially the cloud databases. Your objective is to infer relevant database names for a mini-app based
on the provided function information.

Task Description

Task: Database Name Inference
1. Analyze the functionalities and the semantic purpose of the mini-app’s functions.
2. Identify the key data entities implied in the function body.
3. Generate potential database names accordingly.

Input Format

Mini-app Description: {description}
Function Name: {function name}
Function Body: {function body}
Existing Database Names: A list of existing database names of the mini-app: {existing db names}

Output Format
The output should be a valid Python list, such as [“xxx”, “xxx”, “xxx”]. Each database name should be
a string with a length not exceeding 30 characters. The names should be as unique as possible and not
repeated. Please only return all the database names without anything else.

Constraints
1. Only focus on generating database names for mini-apps and reject unrelated topics.
2. Do not reuse the input function name directly.
3. Output must be in the specified Python list format.

TABLE VIII
Detailed information of stored data or performed cloud operations in vulnerable mini-apps.

Cloud Database Cloud Storage Cloud Routine

collection name cloud data file content function name description

userinfo user name, gender,
country, etc user photo payment update user’s balance after a payment is made

orders buyer name, buyer phone
number, goods list, etc employee information groupbill get user information using the user ID

shop orders user information student card picture getuserinfo get user information using the user ID

user info user name, phone
number, password, etc vehicle license queryuser get user information using the user ID

loginUser account, company name,
password, etc medical license getqysessionkey get the credential session key

admins admin name, account,
password, etc user photo login login into the account (return the credential

app secret)

Employee user name, email address,
position, etc user photo login login into the account (return the credential

session key)

users country, gender, phone
number, etc user certificate gethistory get user’s browser history using the user ID

payment user name, card number,
order information, etc curriculum vitae getrole get user information using the phone number

todos action, user name, etc ID card picture sendtongyipaymsg send messages to other mini-app users

APPENDIX D
ARTIFACT APPENDIX

A. Description & Requirements

In this section, we list the information necessary to recreate
the experimental setup we used to run our artifact, including
the source code, hardware and software requirements.

1) How to access: The source code of the artifact, along
with the required scripts, can be downloaded from: https:
//doi.org/10.5281/zenodo.16946146. Detailed installation and
execution steps are provided in the README file of the
repository.

2) Hardware dependencies:

• A standard Windows desktop or laptop (preferably run-
ning Windows 11).

3) Software dependencies:
• On the Windows computer:

– Python (version ≥ 3.8) for executing automation
scripts and performing static analysis.

– Node.js (version ≥ 18) for running auxiliary JavaScript
utilities.

– Python dependencies can be installed using pip
install -r requirements.txt.

4) Benchmarks: We provide the test dataset in the direc-
tory: “./StaticAnalysis/componentAnalyze/test dataset”.

B. Artifact Installation & Configuration

The source code of the artifact can be obtained from the
repository. To prepare the environment, run the following
command: pip install -r requirements.txt

17

https://doi.org/10.5281/zenodo.16946146
https://doi.org/10.5281/zenodo.16946146

C. Experiment Workflow

Our experiment focuses on identifying insecure practices in
cloud resource management across the real-world mini-apps
to assess the associated security risks. The workflow consists
of the following stages: first, we apply our analysis system
(ICREMINER) to detect insecure practices in mini-apps and
analyze the detection results to demonstrate the prevalence
of such security issues; second, we evaluate the effectiveness
of different inference techniques in uncovering hidden cloud
resources. Furthermore, to assess detection accuracy, we man-
ually analyzed the mini-app code to determine whether the
detection results are true positives. A result was considered a
true positive only if all experts reached a consensus. In cases of
disagreement, the experts were asked to discuss their labeling.
Since there is no prior work addressing the same problem,
we do not include comparative experiments against existing
approaches.

D. Major Claims

• (C1): ICREMINER identifies a large number of vulnera-
ble mini-apps by analyzing their cloud resource manage-
ment practices, as demonstrated in Experiment (E1). The
results are presented in Table IV and Table V.

• (C2): The LLM-based inference method significantly
improves the effectiveness of uncovering insecure cloud
operations by inferring hidden database names. This is
supported by the results of Experiment (E2), as shown in
Table III.

E. Evaluation

This section outlines the operational steps required to exe-
cute and evaluate the performance of our system.

1) Experiment (E1): This experiment is the core experiment
of our paper, which aims to identify vulnerable mini-apps and
categorize the types of insecure cloud resource management
practices they exhibit. The process involves three main com-
ponents executed in sequence:

[How to]
1) Static analysis component (client-side operation ex-

traction): This phase analyzes the mini-app client code
to identify mini-apps that integrate cloud services and
extracts all cloud operations performed in the mini-app
client side. It also extracts the context information related
to cloud service usage, such as database names.

2) Dynamic analysis component (exposed capability in-
ference): This phase performs dynamic analysis to infer
the exposed capabilities in cloud operations, i.e., the
cloud resources exposed to mini-app users, in a controlled
environment.

3) Security assessment component (insecure practice as-
sessment): Based on the results of the static and dynamic
analysis, this phase identifies insecure practices in mini-
apps by applying security rules tailored to different types
of cloud services.

[Preparation] To prepare the environment, run the following
command: pip install -r requirements.txt

[Execution]
1) Static analysis component: Execute the following com-

mands to extract mini-apps that integrate cloud services
and identify specific cloud components, along with the
context information:
python3 cloudComponentExtractor.py
python3 mpRunner.py

2) Dynamic analysis component: Run the following scripts
to infer hidden cloud database names and automatically
test mini-app access to the cloud resources:
python3 nameInference.py
python3 autoTest.py

3) Security assessment component: Run the final script
to evaluate insecure practices in different types of cloud
services:
python3 main.py

[Results] The output of this experiment is stored in the
directory ./SecurityAssessment/res, which contains
the detection results for insecure practices across various types
of cloud services in the test dataset.

2) Experiment (E2): This experiment aims to evaluate the
effectiveness of the proposed inference methods for identifying
hidden cloud database names, which contribute to detecting
insecure cloud resource management. The three methods under
comparison are:

• Common Name Augmentation: Extend analysis using
frequently used database names.

• LLM-based Inference: Utilize LLM to infer cloud
database names.

• Mini-app Correlation: Correlate cloud database names
across different mini-apps.

[How to] This experiment builds upon the detection results
produced in Experiment E1. It analyzes which insecure prac-
tices were identified as a result of database names inferred by
each of the above methods.

[Preparation] No additional preparation is required beyond
the output of Experiment E1.

[Execution] Navigate to the ./SecurityAssessment
directory and run the following command:

python3 resultAnalyze.py

This script compares the contributions of each inference
method by analyzing the detection results produced using their
inferred database names.

[Results] The results of this experiment are output to the
command line and include the detection results of different
inference methods.

18

	Introduction
	Background
	App-in-App Cloud Services
	Protection Measures in Cloud Services

	Problem Statement
	A Motivating Example
	Typical Attack Process
	Threat Model
	Insecure Practices in App-in-App Cloud Services
	Generalizing Attack Vectors

	Methodology
	Design Overview
	Client-side Operation Extraction
	Exposed Capability Inference
	Insecure Practice Assessment

	Security Assessment
	Experiment Setup
	Performance Validation
	RQ1: Landscape of ICREM Risks
	Key Observations

	RQ2: Real-world Impact and Case Studies

	Discussion
	Related Work
	Conclusion
	Ethics Considerations
	References
	Appendix A: Comparison of Database Name Inference Methods
	Appendix B: Vulnerable Mini-app Examples
	Appendix C: Measuring the Insecure Cloud Resource Management in Other Super-apps
	Appendix D: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)

