
FirmAgent: Leveraging Fuzzing to Assist LLM
Agents with IoT Firmware Vulnerability Discovery

Jiangan Ji∗†, Chao Zhang†‡B, Shuitao Gan§, Lin Jian∗, Hangtian Liu∗,
Tieming Liu∗B, Lei Zheng†, Zhipeng Jia∗†

∗Information Engineering University, †Institute for Network Sciences and Cyberspace, Tsinghua University,
‡JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.

§Laboratory for Advanced Computing and Intelligence Engineering

Abstract—The rapid proliferation of IoT devices has intro-
duced substantial security vulnerabilities. Existing vulnerability
detection techniques exhibit various weaknesses: static analysis
solutions (including large language models, LLMs) suffer from
high false positives and provide no PoC (proof-of-concept) sam-
ples, while dynamic analysis solutions (e.g., fuzzing) often have
high false negatives. To address these challenges, we present
FirmAgent, the first hybrid solution that leverages fuzzing to
assist LLM agents in finding vulnerabilities in IoT firmware.
Our design is motivated by the key observation that fuzzing can
accurately identify input-related code points in firmware, while
static analysis can thoroughly analyze program paths starting
from those code points. FirmAgent utilizes fuzzing to collect
runtime input points (i.e., taint sources) and reconstruct potential
vulnerability paths. Then, it applies an LLM agent to perform
context-aware taint analysis along the potential paths and another
LLM agent to refine the fuzzing-generated testcase to generate
PoC testcases. We evaluate FirmAgent on 14 real-world IoT
firmware. It identifies 182 vulnerabilities with a precision of 91%,
including 140 previously unknown vulnerabilities, 17 of which
have been assigned CVE numbers. Our results demonstrate
that FirmAgent substantially outperforms SOTA tools in both
detection capability and precision.

I. INTRODUCTION

The proliferation of Internet of Things (IoT) devices has
transformed modern life, enabling unprecedented levels of
automation, connectivity, and convenience. From smart home
appliances and industrial control systems to networked medical
equipment, IoT devices now permeate nearly every aspect
of society. However, this rapid adoption has also raised
significant security concerns [1]. These devices often run
on lightweight, customized firmware and are deployed in
resource-constrained environments, frequently lacking com-
prehensive security mechanisms. Among them, IoT devices
that expose web services are particularly vulnerable, as these
services, while offering convenient interfaces for control and

BCorresponding authors: chaoz@tsinghua.edu.cn, fxliutm@163.com.

configuration, also significantly expand the attack surface.
Notably, many of these devices run Linux-based firmware,
making the security analysis of Linux-based IoT firmware a
critical area of research.

To detect vulnerabilities in IoT firmware, researchers have
developed both dynamic and static analysis approaches. Dy-
namic analysis, particularly fuzzing (including FirmAFL [2],
SNIPUZZ [3], FirmFuzz [4], and Greenhouse [5]), has demon-
strated strong capabilities in discovering exploitable vulnera-
bilities by automatically generating and executing test inputs.
However, it suffers from limited code coverage, especially in
IoT scenarios, where most conditional branches are closely
tied to specific input values. As a result, many fuzzing tools
leave large portions of the codebase untested. In contrast, static
analysis (including SaTC [6], Emtaint [7], HermeScan [8],
and OctopusTaint [9] offers broader coverage by examining
program code without execution. Techniques such as symbolic
execution and taint analysis can reveal latent vulnerabilities but
often suffer from high false positive rates due to challenges
such as inaccurate identification of source points, imprecise
alias analysis, and a lack of semantic understanding.

To leverage the complementary strengths of both ap-
proaches, researchers have explored hybrid techniques, such
as hybrid fuzzing (including SAVIOR [10], Driller [11],
QSYM [12], and HyLLfuzz [13]), which aim to combine
dynamic fuzzing with symbolic execution or LLM to by-
pass complex conditional checks and reach deeper execution
paths. In the IoT domain, hybrid fuzzers such as FirmHybrid-
Fuzzer [14] and RSFuzzer [15] have been proposed for MCU
and SMI processors, respectively. However, these approaches
often suffer from significant overhead due to the need to record
execution paths and solve constraints during fuzzing. More-
over, hybrid fuzzing for Linux-based IoT firmware remains
particularly challenging due to the difficulty of collecting
precise runtime constraints in emulated environments and
using them to guide seed mutation.

In order to find a new hybrid solution, we have conducted an
empirical study to understand the strengths of both techniques
in the Linux-based IoT firmware. Our findings indicate that
fuzzing is highly effective at covering a wide range of input
source points within firmware. However, due to strict parame-
ter checks and complex control logic, many security-sensitive

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231943
www.ndss-symposium.org

mailto:jiang.an22@outlook.com
mailto:chaoz@tsinghua.edu.cn
mailto:ganshuitao@gmail.com
mailto:gzcrdfzf@126.com
mailto:pydrfly@163.com
mailto:fxliutm@163.com
mailto:zhengl23@mails.tsinghua.edu.cn
mailto:ZippyJia@outlook.com

functions remain unreachable, resulting in numerous false neg-
atives. Conversely, static analysis can bypass input constraints
and perform thorough data-flow tracking from sources to sinks.
The source is where user inputs are introduced, and the sink
is where potentially risky operations occur. Notably, prior
studies such as LATTE [16] and IRIS [17] have shown that
leveraging LLMs for taint propagation enables significantly
improved precision and recall compared to traditional static
taint analysis techniques. However, identifying source points
via static analysis often has high false positives, which may
flag benign flows as vulnerable. Therefore, we propose utilize
fuzzing to accurately identify code points that accept external
input and then initiate LLM-based taint analysis from these
points to detect potential vulnerabilities.

To implement this strategy, we face three key challenges:
C1: Limited Code Coverage. In IoT firmware, critical web
service logic is often implemented in individual service han-
dler functions that are only reachable via specific URIs.
Without knowledge of these URIs, fuzzing cannot effectively
reach them. C2: Source Points Identification’s Accuracy and
Efficiency. Monitoring taint sources across the entire program
address space during fuzzing can result in numerous redundant
sources and significantly degrade performance. C3: Static
Taint Analysis’ Precision and Verification Overhead. Even
with accurate sources, traditional taint analysis suffers from
aliasing issues and limited capability of understanding code
semantics, leading to high false positives. Moreover, it also
cannot generate PoC for reported potential vulnerabilities
(alert), resulting in a heavy manual verification burden.

In this paper, we propose FirmAgent, a novel hybrid
solution specifically designed for vulnerability detection in
IoT firmware. Unlike LLM-based hybrid fuzzers [13] that
invoke LLMs during fuzzing to generate inputs satisfying
complex constraints, FirmAgent leverages dynamic infor-
mation collected during fuzzing to assist LLMs in reasoning
over code and identifying potential vulnerabilities. This design
eliminates the overhead of frequent LLM invocations during
fuzzing and mitigates crash-induced disruptions commonly
encountered in IoT fuzzing scenarios. FirmAgent requires
that the target firmware can be rehosted using a single-service
rehosting framework [5], ensuring that the network service
of interest can be successfully launched and interacted. To
overcome the difficulty in reaching diverse service handler
functions in firmware and increase the code coverage of
fuzzing, FirmAgent begins with a pre-fuzzing analysis to ex-
tract service handler functions, keywords, and distance metrics
between sink points and basic blocks, which guides the fuzzing
process to maximize coverage of potential source points. To
address the inefficiencies associated with taint source identifi-
cation during fuzzing, we implement a lightweight memory-
based detection mechanism using QEMU [18], which enables
efficiently identifying external inputs and dynamically com-
pleting call graphs. Thereby, it facilitates the generation of ac-
curate and complete potential vulnerability paths. Given these
source points and potential paths, we incorporate two LLM
agents: the taint propagation agent module, which performs

precise taint propagation analysis, and the PoC generation
agent module, which automates the PoC generation. Together,
these components validate the existence of vulnerabilities,
significantly reducing the manual effort traditionally required
for vulnerability verification.

To evaluate the effectiveness of FirmAgent, we conduct
experiments on 14 real-world IoT firmware samples. We
compare our tool with SOTA static analysis tools (HermeS-
can [8] and Emtaint [7]), SOTA dynamic analysis tool (Green-
house [5]), and SOTA hybrid analysis tool (Hy-FirmFuzz).
FirmAgent successfully identified 182 vulnerabilities with
a precision of 91%, including 45 command injection and
137 buffer overflow vulnerabilities. Of these, 27 and 113
were previously unknown, respectively, and 17 have already
been assigned CVE identifiers. In contrast, Emtaint detected
only 10 vulnerabilities with a precision of 37%, HermeScan
identified 71 with 33% precision, Greenhouse found 8 with
40% precision, and Hy-FirmFuzz detected 13 with 100%
precision. To assess the contribution of individual components
within FirmAgent, we conducted an ablation study. The
results show that several key modules, such as source point
identification, taint propagation agent, indirect call tracking,
and directed fuzzing strategy, significantly enhance the overall
detection effectiveness. We also evaluated the quality of the
automatically generated PoCs. Results show that 91.8% of the
PoCs were directly valid, confirming the practical value of our
LLM-guided PoC generation process.

In summary, this paper makes the following contributions:
• We conduct a systematic analysis of the strengths and

limitations of existing static and dynamic analysis tech-
niques for IoT vulnerability detection. Based on this,
we propose FirmAgent1, the first hybrid solution that
leverages fuzzing to assist LLM agents in discovering
vulnerabilities by combining the strengths of both static
and dynamic approaches.

• We design a lightweight fuzzing framework capable of
accurately identifying source points within firmware ex-
ecution. Building on this, we integrate two novel com-
ponents, a taint propagation agent and a PoC generation
agent, to enable precise vulnerability detection and auto-
matic PoC generation.

• We perform evaluations on real-world IoT firmware
samples. The results demonstrate that FirmAgent sig-
nificantly outperforms SOTA in detection effectiveness,
identifying 140 0-day vulnerabilities.

II. BACKGROUND AND MOTIVATION

A. IoT Vulnerability Discovery Techniques

Current research efforts in IoT vulnerability discovery pre-
dominantly adopt either static or dynamic analysis techniques.
To provide a comprehensive overview of the strengths and
weaknesses of representative vulnerability detection tools,
Table I compares existing approaches across three critical

1https://github.com/vul337/FirmAgent.git

2

https://github.com/vul337/FirmAgent.git

TABLE I: Comparison of SOTA Tools Based on Source
Identification Method, Taint Propagation Methodology,
and PoC Generation. DSE represents Dynamic Symbolic
Execution, SSE represents Structured Symbolic Expression,
AST represents Abstract Syntax Tree, and RDA represents
Reaching Definitions Analysis.

Tool Source Identification Taint Propagation PoC

SaTC [6] Shared Keyword DSE ×
EmTaint [7] Predefined SSE ×
HermeScan [8] Shared Keyword + Filter RDA ×
Mango [19] Shared Keyword + Env RDA ×
Lara [20] Pattern + LLM AST ×
OctopusTaint [9] Shared Keyword + Env RDA ×
Greenhouse [5] × × Fuzzing
FirmAgent Fuzzing LLM Fuzzing + LLM

dimensions: source identification strategy, taint propagation
methodology, and PoC generation.

In terms of source identification, most tools (including
SaTC [6], Mango [19], HermeScan [8], and OctopusTaint [9])
rely on shared keyword matching combined with heuristic
enhancements such as environmental modeling or filtering
techniques. EmTaint uses a predefined list of source functions
that offers precision but often overlooks many actual sources.
Lara [20] employs a pattern-based approach augmented with
LLMs. However, its lack of open source availability makes
it difficult to evaluate its practical effectiveness. Overall,
frontend-backend string matching remains the most widely
adopted and empirically effective method for source identi-
fication in static analysis.

For taint propagation, traditional static techniques such as
symbolic execution [6], structured symbolic expression-based
on-demand alias analysis [7], reaching definitions analysis [8],
and abstract syntax tree [20] traversal are commonly em-
ployed. Despite ongoing efforts to enhance these methods and
reduce false positives, the absence of semantic understanding
in traditional approaches limits their ability to accurately han-
dle context-sensitive constructs such as sanitization functions,
leading to persistent inaccuracies.

Regarding PoC generation, current static analysis tools
face fundamental limitations, as they can identify potential
vulnerability locations but lack the capability to automatically
validate them. This often necessitates substantial manual effort
to assess each reported alert, significantly increasing the time
and resources required for vulnerability triage. In contrast,
dynamic analysis, particularly fuzzing, is uniquely capable
of simultaneously triggering vulnerabilities and producing
actionable PoCs. Our proposed tool, FirmAgent, bridges
this gap by combining fuzzing-generated test cases with LLM-
guided parameter analysis to automatically construct complete
PoCs. This approach addresses the high false-negative rate of
dynamic tools and the manual verification burden of static
tools. In the following sections, we analyze the key limi-
tations of current static and dynamic vulnerability detection
techniques in greater detail.

TABLE II: Accuracy of Static Source Function Identifica-
tion in Firmware Analysis. SF = source function, C-SF =
candidate source functions identified by HermeScan. CC and
C-CC denote the actual and candidate vulnerability call chains,
respectively.

Vendor Firmware C-SF SF SF.ratio C-CC CC CC.ratio

Trendnet TEW800mb 5 1 20.0% 101 14 13.9%
TEW 632BRPA1 6 1 16.7% 2 2 100.0%

ASUS FW RT G32 4 1 25.0% 4 3 75.0%
Dlink DIR 825 8 1 12.5% 13 4 30.8%
Netgear DC112A 8 2 25.0% 180 62 34.4%
Linksys FW WRT54Gv4 6 2 33.3% 23 14 60.9%

Average 6.2 1.3 21.6% 53.8 16.5 30.7%

B. Limitations of Existing Approaches

A key limitation of static analysis is its inability to ac-
curately identify source points, leading to false positives.
Existing static analysis tools typically employ shared keyword
matching to determine candidate source functions. Functions
that frequently contain certain predefined keywords are heuris-
tically marked as source points, and all of their invocations
are subsequently treated as taint entry points. However, our
empirical evaluation on real-world firmware samples reveals a
substantial discrepancy between these candidate functions and
actual source functions. We selected HermeScan, the most ac-
curate tool for identifying source points currently available, for
our experimental evaluation. As shown in Table II, only 21.6%
of the C-SF are true SF that genuinely accept external inputs.
The remaining candidate sources result in the construction of
C-CC, with an estimated 70% of such call chains being false
positives. This imprecision severely undermines the reliability
of static analysis results and limits its effectiveness in guiding
downstream vulnerability detection efforts.

Moreover, static analysis suffers from false negatives due
to indirect calls. Figure 1 demonstrates how indirect calls in
static analysis can lead to taint loss. In this vulnerability, the
first keyword of the call site contains both a URL and user-
controllable input. When the URL matches NTPSyncWith-
Host.cgi, execution enters function sub F934, which processes
user-controllable content after the ”?” character through string
concatenation. This ultimately leads to a command execution
vulnerability in the system function call for time configuration.
However, since the vulnerability resides within a function
pointer target function, SOTA static analysis tools struggle
to reconstruct the calling relationships accurately. The target
function is treated as an isolated node, disconnected from its
predecessors, which causes the loss of taint relationships be-
tween the call site and the target function, ultimately resulting
in a missed vulnerability.

On the other hand, dynamic analysis, particularly fuzzing,
is often constrained by its limited ability to bypass complex
conditional checks, thereby leaving a substantial portion of
the codebase unexplored. This challenge becomes even more
pronounced in IoT firmware, where numerous conditional
branches rely on hardware states or configuration values, mak-
ing it extremely difficult for fuzzing mutations alone to satisfy

3

if (result)
{

 result = sub_141E0((int)taint, dword_54520);
}
else
{

 Func_Pointer = httpd_struct[4];
 if (Func_Pointer)
 result = Func_Pointer(taint, dword_54520);

}

...

.data:000539E0 DCD "NTPSyncWithHost.cgi*"

.data:000539E4 DCD aTextHtml

.data:000539E8 DCD aCacheControlNo

.data:000539EC DCD sub_1022C

.data:000539F0 DCD sub_F934

.data:000539F4 DCD sub_151C0

...

char *sub_F934(char *taint, FILE *cgi_in)
{

 url_tmp = taint;
 strsep(&url_tmp, "?");
 url_remove = url_tmp;
 memset(v5, 0, 0xFAu);

 if (url_tmp && *url_tmp && !strchr(url_tmp, ';'))
 {
 sprintf(v5, "date -s %s", url_remove);

 system(v5);
 ...
}

Indirect call target

httpd_structIndirect call site

Alert

Fig. 1: An Example of an Indirect Call in a Trendnet
Router. Static analysis fails to detect vulnerabilities due to
taint propagation through parameters of the indirect call.

TABLE III: Reachability of Source and Sink Points in
Potential Vulnerability Paths via Fuzzing. PP denotes the
number of potential vulnerability paths identified, and R-
counts those verified as reachable via fuzzing.

Vendor Firmware R-Source Source Source.ratio R-sink Sink Sink.ratio R-PP PP PP.ratio

Trendnet TEW800mb 58 71 81.7% 3 11 27.3% 3 11 27.3%
TEW 632BRPA1 11 11 100.0% 3 5 60.0% 3 5 60.0%

ASUS FW RT G32 27 34 79.4% 0 3 0 0 3 0
Dlink DIR 825 11 11 100.0% 2 6 33.3% 2 4 50.0%
Netgear DC112A 95 101 94.1% 4 24 16.7% 4 20 20.0%
Linksys FW WRT54Gv4 32 33 97.0% 2 7 28.6% 2 7 28.6%

Average 39.0 43.5 89.7% 2.3 9.3 25.0% 2.3 8.3 28.0%

all the required execution conditions. As shown in Table III,
current fuzzing techniques can reach only approximately 25%
of the sink points, which implies that a considerable number of
potential vulnerabilities remain undetected, ultimately leading
to persistently high false-negative rates.

Figure 2 illustrates how dynamic analysis can fail due
to configuration dependent conditions. In this case, the vul-
nerability is triggered through user-controlled data via the
deviceName keyword, but execution requires specific nvram
values: either enable ap mode or enable sta mode must be
set to 1. This prerequisite configuration makes the command
execution vulnerability challenging to trigger. Current state-
of-the-art firmware fuzzing tools lack semantic understanding
of these conditions, and mutation-based approaches struggle
to satisfy such constraints, leading to missed vulnerabilities.

1. ...
2. websGetvar(a1, "deviceName", Name, 2048);
3. if (acosNvramConfig_match("enable_ap_mode", "1")
4. || acosNvramConfig_match("enable_sta_mode", "1"))
5. {
6. system("/sbin/rmmod br_dns_hijack");
7. snprintf(v79, 0x80u,"/sbin/insmod...=%s",Name);
8. system((const char *)v79);
9. }

Alert

Fig. 2: Decompiled Code of the httpd Binary from the
DC112A Device. Specific configuration checks hinder fuzzing
from reaching the system function.

C. Observation and Insights

While fuzzing struggles to reach sink points, this limitation
arises primarily from input constraints imposed along the exe-
cution paths that lead to these sinks. Many of these constraints
are difficult to bypass solely through fuzzing. In contrast, we
observe that source points are typically located along shal-
low execution paths within handler functions. Consequently,
fuzzing achieves high source coverage, as fewer conditional
branches must be satisfied to reach these points.

To validate this observation, we conducted an empirical
study across several firmware samples from different vendors.
Specifically, we employed the fuzzing module of FirmAgent
to dynamically assess the reachability of source and sink points
within potential vulnerability paths. As shown in Table III,
fuzzing was able to reach approximately 90% of source
points on average, whereas only 25% of sink points were
covered. This significant disparity in reachability suggests that
a large portion of potential vulnerabilities may be missed
when relying solely on traditional fuzzing techniques. In
contrast, static taint analysis provides a more comprehensive
exploration of potential paths, effectively mitigating the issue
of false negatives. For instance, in the vulnerability illustrated
in Figure 1, fuzzing was able to identify url tmp as a tainted
variable in sub F934, effectively resolving the issue of missing
taint propagation caused by indirect calls in static analysis.
However, due to the specific input format in subsequent logic,
existing fuzzers could not trigger the vulnerability. Similarly,
in the case shown in Figure 2, fuzzing propagated the taint
to Name (line 2) but failed to satisfy specific parameter con-
straints necessary to exploit the vulnerability. By leveraging
LLM-based taint analysis starting from these tainted point,
we were able to successfully identify the vulnerability.

These observations motivate an intuitive strategy: leverage
fuzzing to identify program locations that accept external
inputs and designate them as starting points (Csource) for
subsequent static taint analysis. This hybrid approach enables
a more thorough exploration of potential data flow paths and
improves both the coverage and precision of vulnerability
detection, thereby reducing false negatives and false positives.

III. CHALLENGES

Despite the advantages of combining fuzzing and static
analysis for IoT vulnerability detection, significant challenges
persist when applying these techniques to real-world firmware.

A. Limited Code Coverage

In IoT firmware, numerous source points are embedded
within various service handler functions. If the corresponding
URIs and parameters are not provided during fuzzing, these
service handlers may never be invoked, preventing necessary
variable modifications and causing critical source points to be
overlooked. Therefore, we need to refine our fuzzing strategy
to systematically explore these code regions.

4

B. Accurate and Efficient Identification of Source Points

Throughout the execution from entry points to sink points,
numerous variables may receive external input. However, if
all tainted variables are recorded during fuzzing, the num-
ber of identified source points will be excessively large,
leading to redundant paths and an increased computational
burden. Moreover, continuously tracking inputs from the ini-
tial fuzzing stage imposes significant overhead, potentially
degrading fuzzing efficiency. Therefore, designing a precise
and computationally efficient method for source point identi-
fication remains a critical challenge.

C. Accuracy of Static Taint Propagation Analysis and Manual
Verification Overhead

Once the taint analysis starting points are identified, en-
suring accurate taint propagation is crucial. Traditional taint
analysis engines often suffer from pointer aliasing issues,
difficulty in recognizing sanitization mechanisms, and other
limitations that contribute to both false positives and false neg-
atives. Furthermore, conventional approaches typically mark a
potential attackable sink address as an alert, requiring manual
intervention to analyze the execution paths and construct a
PoC. This process is not only time-consuming but also requires
considerable expertise, posing a significant barrier to efficient
vulnerability validation.

IV. METHODOLOGY

A. Overview

We present FirmAgent, a fuzzing-assisted taint analysis
framework designed for efficient and precise vulnerability
detection in IoT firmware. As illustrated in Figure 3, the
framework operates in two main phases: Fuzzing-driven In-
formation Collection and Taint-to-PoC Agent. This design
effectively leverages the taint authenticity verification and test
case reachability obtained during dynamic analysis to enhance
the subsequent taint propagation analysis accuracy of LLMs.

1) Fuzzing-Driven Information Collection: This phase
combines lightweight static preprocessing with runtime instru-
mentation to monitor taint behavior and program execution
flows. It provides precise source points and comprehensive
call graphs for subsequent taint propagation analysis.

To address Challenge C1 (Section III-A), we conduct pre-
fuzzing analysis to extract three key elements: (1) URIs
registered by the web service, (2) input keywords that can
accept external data, and (3) sink function address ranges,
along with a mapping of basic blocks to their distances from
these sinks. These components provide critical semantic and
structural information to guide fuzzing. Specifically, the URIs
and keywords serve as a mutation dictionary for constructing
precise inputs, while sink address ranges define instrumen-
tation boundaries to reduce overhead and focus monitoring.
The basic block distance mapping enables a distance-oriented
mutation strategy, helping the fuzzer reach deeper execution
paths with more Csource points.

With this static knowledge, we employ a directed fuzzing
strategy that systematically mutates request templates by in-
jecting potentially malicious values into keyword fields. To
address Challenge C2 (Section III-B), we extend QEMU with
custom instrumentation to perform taint detection on memory
writes and control flow operations. During execution, the
instrumented QEMU monitors sink scope regions and detects
propagation of tainted data. We define the observable influence
of tainted input on program behavior as a Csource point.
Additionally, we collect the resolved targets of indirect calls,
which enables the reconstruction of a complete call graph for
downstream taint propagation analysis.

2) Taint-to-PoC Agent: To address Challenge C3 (Sec-
tion III-C), we conduct a precise and automated LLM-based
vulnerability analysis using information provided from the
fuzzing process. After obtaining all potential paths from
Csource to sink points, we deploy our taint propagation agent
to perform comprehensive data flow analysis on the decom-
piled code along these paths. This agent addresses several
limitations inherent in static analysis. These include handling
inaccuracies in IDA decompilation output, managing intra-
procedural and inter-procedural taint propagation, performing
alias analysis, and sanitization checks encountered in real-
world scenarios. For each vulnerability alert reported by the
taint propagation agent, our PoC generation agent systemati-
cally constructs concrete inputs capable of triggering the iden-
tified vulnerable behavior. This agent employs an approach
that combines constraint information collected during taint
propagation analysis with reachable test cases obtained from
the fuzzing phase to generate precise PoCs. These generated
PoCs are utilized to validate whether each alert represents a
genuine vulnerability.

B. Fuzzing-Driven Information Collection

In this section, we detail our fuzzing-driven information
collection framework that combines static pre-analysis and
dynamic runtime information collection, serving as the foun-
dation for subsequent vulnerability detection. The whole work-
flow is depicted as Algorithm 1.

1) Pre-fuzzing Analysis: To establish a foundation for ef-
fective fuzzing and vulnerability discovery in IoT firmware,
we first conduct a comprehensive pre-fuzzing analysis. This
analysis aims to extract critical information from firmware
binaries without execution, enabling more targeted and effi-
cient fuzzing. Our approach focuses on three key components
that guide subsequent fuzzing operations: Service Handler
Detection to identify potential entry points for each handler
function, Keyword Dictionary Analysis to identify and extract
parameters associated with external input, and Sink Scope
and Distance Calculation to prioritize code paths leading
to security-critical operations. These components collectively
form a knowledge base that significantly improves code cov-
erage to find more Csource.

a) Service Handler Detection: Effective fuzzing relies on
triggering the most backend service handlers, yet identifying

5

Firmware

Alert Taint Propagation Agent

CsourceRuntime Monitoring

Service Handler Detection

Keyword Dictionary Analysis

Rehosting Image

Sink Scope and Distance

Pre-fuzzing Analysis

PoC PoC Generation Agent

Te
st

ca
se

Dictionary-Based and
Distance-Guided Mutation

Memory Taint Detection

Indirect Call Resolution

Potential Paths

Ⅲ.C Taint-to-PoC Agent

Ⅲ.B Fuzzing-Driven Information Collection

Fig. 3: Overview of FirmAgent

Algorithm 1 Fuzzing-Driven Information Collection
Input: Firmware B, Request Template S, Timeout T
Output: Potential Paths P , Reachable Testcases R

1: H ← EXTRACTSERVICEHANDLERS(B)
2: K ← BUILDKEYWORDDICTIONARY(B)
3: Sinks, CallGraph← STATICEXTRACT(B)
4: Scope,DistMap← BACKWARDANALYSIS(B,Sinks)
5: emu← INITIALIZEEMULATOR(B)
6: P,R,Csource, IndCalls← ∅
7: for each h ∈ H do
8: Sh ← REPLACEURI(S, h)
9: startT ime← NOW

10: for each k ∈ K do
11: if NOW − startT ime > T then
12: break
13: end if
14: Input← TAINTINJECT(Sh, k)
15: Score← COMPUTESCORE(Input,DistMap)
16: Mutated← GUIDEDMUTATE(Input, Score)
17: EXECUTE(emu,Mutated)
18: if ISTAINTOBSERVED(emu, Scope) then
19: Csource← Csource ∪ TAINTADDR(emu)
20: R← R ∪ {Mutated}
21: end if
22: Targets← RESOLVEINDIRECTCALLS(emu)
23: IndCalls← IndCalls ∪ Targets
24: CallGraph← CallGraph ∪ IndCalls
25: P ← P ∪ GETPATH(CallGraph,Csource, Sinks)
26: end for
27: end for

these handlers is challenging due to incomplete documenta-
tion, frontend-backend mismatches, and legacy or hidden code
paths. Many handlers, including those for URI patterns, SOAP
operations, and HANP messages, lack corresponding request
patterns in public interfaces, leading to limited code coverage
and missed vulnerabilities. To overcome this, we propose
a context-aware handler detection framework that combines
static analysis with LLMs. We first extract initial request

patterns from exposed interfaces such as web server configs,
SOAP definitions, and API docs. These serve as seeds to locate
handler code blocks via string references and control flow
analysis. Next, we collect contextual information around these
handlers and use LLMs to learn generalized request handling
patterns. This enables us to discover undocumented handlers
by identifying structural similarities in the code. Compared
with conventional static approaches, our LLM-guided method
achieves enhanced handler coverage while maintaining high
precision through systematic pattern validation.

b) Keyword Dictionary Analysis: To address the limita-
tions of existing keyword identification methods like SaTC [6],
which rely on frontend-backend string matching and miss
backend-only logic, we propose a systematic keyword ex-
traction framework that leverages both network traffic and
program analysis. We begin by extracting the initial seed
from observed network traffic through manual interaction with
the rehosted firmware. Using these seeds, we analyze the
binary to locate functions that interact with them, rank these
functions by invocation frequency, and filter out generic string
operations (e.g., strcpy, strcmp). The top three functions are
then selected as candidate keyword handlers. To construct a
comprehensive keywords dictionary, we extract all parame-
ters passed to candidate keyword handler functions. When
the argument is a hardcoded string, we directly retrieve the
corresponding parameter at the call site as a keyword. For
arguments represented by variables, we perform backward
data-flow analysis to identify their origins. These cases fall
into three main categories: (1) Direct assignment from string
constants: If the variable is directly assigned a hardcoded
string, backward analysis can retrieve the string value, which
is then recorded as a keyword. (2) Initialization from the
.data section: If the variable originates from a global or static
variable stored in the .data segment, we locate its base address
and extract all associated string values as potential keywords.

6

(3) Dynamic string construction: In cases where the variable is
generated through string concatenation functions (e.g., sprintf,
strcat), we identify such operations during backward analysis
and continue to trace the sources of all string components
involved in the construction. We provide concrete examples
in Appendix Figure 8.

c) Sink Scope and Distance Calculation: This stage aims
to extract the address scope reachable by sink points and
compute the distance between each basic block and its nearest
sink. This facilitates more efficient and targeted fuzzing in
later phases. Our sink extraction process targets security-
critical APIs that are commonly associated with taint-based
vulnerabilities. Since each type of vulnerability in firmware
typically corresponds to specific sensitive APIs, we perform
comprehensive pattern matching over the binary to identify
these APIs as sink functions.

For each identified sink function, we perform backward
reachability analysis to determine all basic blocks that may
feasibly execute paths leading to that sink. This analysis helps
delineate the relevant address space where tainted data could
propagate. By narrowing down the required instrumentation
scope to these reachable paths, we significantly reduce runtime
overhead without sacrificing detection effectiveness. This tar-
geted analysis ensures that our dynamic taint detection remains
focused on the most security-sensitive code regions, thereby
improving fuzzing efficiency.

To further prioritize fuzzing efforts, we compute the
shortest-path distance from each basic block to the nearest
sink using the Dijkstra algorithm on the reversed CFG. Each
basic block n is then assigned a score based on both its CFG
depth and its proximity to a sink point, as defined by Eq. (1):

score(n) = depth(n) + w · dis(s) (1)

Here, depth(n) denotes the structural depth of block n in the
CFG, dis(s) represents the shortest distance to a reachable
sink s, and w is a weight parameter that balances exploration
depth and sink-directed focus. This scoring metric is later used
to guide mutation strategies during fuzzing, enabling a more
targeted and effective vulnerability discovery.

2) Runtime Monitoring: Prior to fuzzing, we leverage user-
space emulation to rehost firmware web services. Subse-
quently, we collect critical information during the fuzzing
process. It consists of two complementary components: a
Mutation Strategy that leverages insights from pre-fuzzing
analysis to generate high-quality test cases, and a Informa-
tion Collection mechanism that efficiently captures runtime
behavior with minimal overhead. Together, these components
enable accurate source identification and reconstruct the call
graph for subsequent taint propagation analysis.

a) Mutation strategy: Our grey-box fuzzing approach is
designed to overcome the limitations of traditional mutation
strategies when applied to firmware web binaries. Techniques
such as bit flipping and simple splicing often yield low cover-
age, primarily due to the architectural nature of firmware: both
source and sink points are typically located within the service
handler routines. As a result, effective fuzzing must maximize

coverage of these service handlers to identify as many source
points as possible. To achieve this, mytool integrates insights
from the pre-fuzzing analysis phase into its mutation strategy,
effectively combining dictionary-based and distance-guided
seed mutations to maximize Csource coverage.

Leveraging specific service request patterns and a keyword
dictionary extracted during the pre-fuzzing phase, we sys-
tematically generate test cases by replacing parameters in
input requests. Each keyword is annotated with a customized
taint tag to facilitate tracking during sanitization checks and
to minimize false positives. These taint tags allow us to
precisely monitor how each input flows through the program
and determine whether it reaches critical sink points without
being properly sanitized.

During fuzzing, we dynamically monitor the current exe-
cution path by recording the basic block addresses visited.
Using a precomputed mapping between basic blocks and
their distance-based scores (as described in Section IV-B1c),
we calculate the score of each test case. This score reflects
the proximity of the current execution path to known sink
locations. Code segments closer to sink points typically exhibit
a higher possibility of source points. This score is then
used to guide both seed prioritization and input mutation.
Specifically, inputs that achieve higher scores are prioritized
for further mutation, while parameter values in low-scoring
inputs are selectively replaced with alternative keywords from
the dictionary. This feedback-driven strategy enables the fuzzer
to explore a broader range of source points effectively.

b) Information Collection: To enable accurate and ef-
ficient collection of runtime information during fuzzing, we
design a selective instrumentation mechanism guided by a
precomputed sink scope. Specifically, during the TCG (Tiny
Code Generator) execution phase of QEMU, we monitor only
those instructions whose addresses fall within the sink scope.
For each such instruction, our framework inspects the memory
state after execution to detect whether any memory location
transitions from an untainted to a tainted state. When such a
transition is observed, we record the corresponding instruction
address as a Csource point. This selective instrumentation
strategy allows us to precisely capture taint propagation
sources while significantly reducing the overhead associated
with comprehensive monitoring.

Beyond memory state detection, we also collect dynamic
control flow information, specifically focusing on indirect
call targets encountered during fuzzing. To achieve this, we
instrument basic blocks with lightweight callback functions.
Within these callbacks, we analyze branching instructions
to identify indirect call sites and record the corresponding
(caller, callee) address pairs. This runtime data enables the
reconstruction of a more complete call graph of the binary
program. With precise identification of Csource points and
a complete call graph, we can construct more accurate and
complete potential vulnerability paths in relation to predefined
sink points. This enriched path information provides a solid
foundation for subsequent taint propagation analysis.

7

C. Taint-to-PoC Agent

In our system, fuzzing is tightly integrated with real-time
taint analysis. We continuously extract Csource points and
construct potential paths to predefined sink points. These paths
are then subjected to taint propagation analysis using taint
propagation agent to identify potential vulnerabilities. Since
this process is a static analysis, its accuracy is paramount.
Compared to traditional taint analysis methods, such as sym-
bolic execution, on-demand alias analysis, and reaching defi-
nitions analysis, which often suffer from pointer aliasing and
limited semantic understanding. These issues can lead to a
high rate of false positives. LLM-based taint analysis [16],
[17] has shown significant advantages in reducing both false
positives and false negatives. Our empirical findings further
validate that LLM can reason effectively about taint flows at
the semantic level of decompiled code, demonstrating strong
potential for taint-style vulnerability detection. Importantly,
traditional taint analysis also lacks the ability to automatically
generate PoC to verify vulnerabilities. In contrast, LLMs
exhibit robust code reasoning capabilities [21], [22], enabling
them to analyze decompiled code and infer the concrete
parameter values required to trigger vulnerabilities. This capa-
bility allows LLMs to augment fuzzing-generated inputs with
the specific data needed to construct effective PoC test cases.
Motivated by these insights, we introduce LLMs as the central
component of the final vulnerability detection and verification
phase in FirmAgent. This phase consists of two specialized
agents: taint propagation agent, responsible for semantic-level
taint analysis, and PoC generation agent, which focuses on
validating the existence of vulnerability.

1) Taint Propagation Agent: After extracting potential
paths between Csource and sink points, we leverage LLMs
to perform taint analysis on decompiled code. However, static
decompilation tools such as IDA sometimes produce imprecise
outputs, including missing function parameters, missed return
value assignments, and incorrect control/data flow structures,
which can significantly impair the effectiveness of LLM-
based reasoning. To address these limitations, we apply an
LLM-driven refinement process to enhance the quality of the
decompiled code along the extracted potential paths (detailed
in Appendix B).

Following this refinement, we conduct precise data flow
analysis to determine whether tainted data originating from
Csource points can reach sensitive sink locations through valid
execution paths. Our analysis is performed at the function
level. As illustrated in Figure 4, we define a prompt template
that supplies the LLM with the decompiled function, along
with the relevant Csource and sink points. The LLM is then
asked to determine whether a taint flow exists between the
given Csource and sink. When unknown functions are encoun-
tered during analysis, we will provide function decompilation
code in an interactive way to taint them. Then we will continue
the analysis based on LLM functional interpretation. For inter-
procedural analysis where Csource and sink reside in different
functions, the sink point is defined at the callsite. The process

Prompt Template

Decompiled Code:{decompiled code}
Sources: {related source}
Sink: {related sink}

Perform a comprehensive taint analysis to determine whether
data from the source can propagate to the sink and cause a
vulnerability. Stop analysis if unknown functions appear in the
taint propagation path, and request the decompiled code in JSON
format:{”function def”:function name, ...}.

If taint propagation can be directly determined and cause
a vulnerability, report vulnerabilities as [(’alert’, source addr,
sink addr), ...] or [] if none found.

Fig. 4: The Prompt of Taint Propagation Agent.

begins with intra-procedural analysis of the source function,
followed by an additional prompt that guides the LLM to
identify the positions of tainted parameters at the callsite.
These identified parameters are then treated as taint sources in
the callee function for further intra-procedural analysis. This
iterative approach continues until the sink function is reached.
Furthermore, due to the LLM’s insufficient understanding of
firmware taint analysis, certain false positives occur. Through
our analysis, we identified that these false positives primarily
stem from three scenarios: improper handling of sanitization
logic, misinterpretation of indirect data dependencies, and
the incorrect treatment of values read from system files as
taint sources. To address this issue, we incorporated an alert
verification module after obtaining alerts from taint analysis.
We apply few-shot prompting to validate each alert gener-
ated during taint analysis (detailed in Appendix D). Finally,
to reduce redundant analysis of the same function across
multiple call chains, we implement a function-level caching
mechanism. This cache stores LLM-inferred taint behaviors,
enabling the system to reuse previously inferred results and
avoid repetitive analysis, thereby improving overall efficiency.

2) PoC Generation Agent: Once the taint propagation agent
identifies a potential vulnerability and raises an alert, the
PoC generation agent is invoked to synthesize an input that
concretely triggers the vulnerability. During taint analysis,
semantic constraints such as conditional branches, sanitization
logic, and specific input formats are required to reach the
vulnerable sink and are implicitly captured during the process.
These captured constraints are then extracted and formalized
into an intermediate vulnerability abstraction, which encodes
the essential preconditions necessary for successful PoC gen-
eration (detailed in Appendix C).

Meanwhile, the fuzzing engine explores program behavior
and produces concrete test cases that reach the identified
Csource points. The final step involves bridging the gap
between the syntactically valid input structures discovered by
fuzzing and the semantic exploit conditions inferred through
LLM-based reasoning. As illustrated in Figure 5, we provide
the PoC generation agent with both the fuzzing-derived test
case and the constraints obtained during taint analysis. Based

8

Prompt Template

Reachable test case: {testcase}
Input validation constraints: {constraints}
Decompiled code: {decompile code}

Please analyze the decompiled code in conjunction with the
input validation constraints to infer the expected values for each
input parameter. Then, complete the partial test case by filling in
the appropriate values to construct a valid and effective PoC. The
resulting input should satisfy all semantic conditions and ensure
that the taint can propagate from the identified source to the sink.

Fig. 5: The Prompt of PoC Generation Agent.

on the decompiled code and these inputs, the PoC generation
agent infers the required values for each relevant parameter
and augments the original test case accordingly, ultimately
producing a complete and effective PoC input.

V. IMPLEMENTATION

We implemented a prototype of FirmAgent, consisting
of over 4,000 lines of Python and 1,000 lines of C code.
As a first step, we use binwalk to extract the root file
system from firmware images and identify the web binary
for subsequent analysis. It does not require access to the
source code or symbols. In the pre-fuzzing analysis stage, we
employed custom IDAPython scripts within IDA Pro [23] to
extract critical binary program information, including function
call patterns, keyword dictionaries, and distance metrics. This
static analysis output forms the basis for both input generation
and dynamic analysis. To enable firmware emulation, we
adopted the Greenhouse framework [5], which supports user-
space rehosting of firmware components. During fuzzing, a
custom QEMU [18] plugin was used to capture indirect call
relationships and monitor memory state transitions. Further-
more, we integrated DeepSeek-R1 [24], configured with a
temperature of 0.7, into both the taint propagation agent and
PoC generation agent. FirmAgent is designed as a fully
automated framework: once fuzzing is initiated on the rehosted
environment, the system continuously detects input source
points in real-time and forwards their corresponding addresses
to the taint propagation agent for further processing.

VI. EVALUATION

To evaluate the effectiveness of FirmAgent, we conducted
a comprehensive set of experiments designed to address the
following research questions:
RQ1. How does FirmAgent vulnerability discovery per-

formance compare to existing state-of-the-art tools?
RQ2. How accurate and complete is FirmAgent in iden-

tifying Csource points by fuzzing?
RQ3. How does each module in FirmAgent contribute

to vulnerability detection?
RQ4. To what extent can FirmAgent generate practical

PoCs for real-world vulnerability?

Dataset: Since FirmAgent requires fine-grained run-
time information collection, we selected firmware samples
that could be successfully emulated. Our dataset consists of
firmware from major vendors, including Netgear, D-Link,
Tenda, Trendnet, Linksys, ASUS, and TOTOLINK, covering
14 firmware samples that span a diverse range of architectures
and functionalities. This selection ensures a representative
evaluation of our approach across different IoT ecosystems.

Baseline Comparison: To benchmark the effectiveness of
FirmAgent, we compare it against SOTA analysis tools
across static, dynamic, and hybrid approaches. Specifically,
we evaluate the static analysis tools EmTaint [7] and Her-
meScan [8], the dynamic analysis tool Greenhouse [5], and
the hybrid analysis tool Hy-FirmFuzz. Hy-FirmFuzz extends
FirmFuzz [4] by integrating a concolic execution engine built
upon angr [25] and replacing the original Firmadyne [26]
emulation framework with FirmAE [27] to support emulation
across our firmware dataset. The evaluation focuses on the
capability to detect buffer overflow and command injection
vulnerabilities, using key metrics such as detection precision,
analysis time, and the ability to discover previously unknown
vulnerabilities. In addition, we consider other representative
tools, such as SaTC [6], LARA [20], Mango [19], and Oc-
topusTaint [9]. However, we exclude these tools from direct
comparison for the following reasons: a) SaTC: Prior research
has demonstrated that HermeScan and EmTaint outperform
SaTC in vulnerability detection. b) LARA: The tool is not
publicly available, making it impossible to reproduce its re-
sults. c) Mango: Since Mango and HermeScan both utilize
reaching definitions analysis for taint tracking and achieve
comparable results, we select only one of them for comparison.
d) OctopusTaint: We found that its open-source code lacks
essential components, such as source point identification,
making it unsuitable for testing on new firmware.

Vulnerability Confirmation: To evaluate the effective-
ness of our tool in confirming vulnerabilities, we compare
FirmAgent with representative SOTA approaches, including
EmTaint, HermeScan, and Greenhouse. For traditional static
analysis tools such as EmTaint and HermeScan, manual verifi-
cation is required to confirm each reported vulnerability. This
typically involves analyzing the corresponding binary code and
crafting a tailored PoC to validate the authenticity of each
alert. In contrast, both Greenhouse and FirmAgent generate
executable PoCs, allowing us to directly test and confirm
vulnerabilities on real-world IoT devices.

Experiment environment: All of our experiments were
conducted on an Intel Xeon Platinum 8358 CPU with 128
logical cores running at 2.60GHz. The machine was equipped
with 2.0T RAM and was running on Ubuntu 20.04 LTS.
To ensure consistency in evaluation, each firmware sample
was analyzed in an isolated environment using docker-based
rehosting, and all experiments were repeated four times to
mitigate potential measurement bias.

9

A. Comparison with the SOTA Tools

Table IV presents the vulnerability detection results of the
evaluated tools on our dataset. EmTaint, HermeScan, Green-
house, Hy-FirmFuzz, and FirmAgent reported 27 alerts, 215
alerts, 20 crashes, 13 crashes, and 200 alerts, respectively.
Among these, FirmAgent achieved a 91% precision and
successfully confirmed 182 real vulnerabilities, comprising 45
command injection and 137 buffer overflow vulnerabilities.
Notably, 27 command injection and 113 buffer overflow vul-
nerabilities were previously unknown.

In comparison, EmTaint, HermeScan, Greenhouse, and Hy-
FirmFuzz achieved precision of 37%, 33%, 40%, and 100%,
respectively, confirming 10, 71, 8, and 13 real vulnerabili-
ties. These tools identified subsets of 7, 51, 4, and 5 zero-
day vulnerabilities, respectively. FirmAgent demonstrated
superior performance with 18.2X, 2.6X, 22.8X, and 14X more
vulnerabilities discovered compared to EmTaint, HermeScan,
Greenhouse, and Hy-FirmFuzz, respectively. Furthermore, we
analyzed the overlap in vulnerabilities detected by each tool,
as illustrated in Figure 6. We found that FirmAgent contains
all vulnerabilities reported by the other tools.

We conducted a detailed analysis of the false positives and
false negatives produced by each tool to better understand
their limitations. For FirmAgent, all 18 false positives were
related to buffer overflow vulnerabilities. Through log analysis,
we found that these inaccuracies primarily stemmed from
limitations in the LLM reasoning process. Specifically, in some
cases, the relevant variables were defined outside the current
function scope (e.g., global variables), making it difficult for
the LLM to accurately determine the relationship between the
actual input and the target buffer. As a result, LLM erroneously
flagged these cases as vulnerabilities. In contrast, for command
injection detection, the LLM achieved higher accuracy. This is
largely because such vulnerabilities do not require reasoning
about buffer sizes, and the number of relevant sink points in
firmware is typically much lower than for buffer overflows.

For EmTaint, false positives were mainly caused by over-
aliasing, which resulted in the unintended tainting of unre-
lated variables. Furthermore, EmTaint lacks the capability to
correctly handle in-program sanitizers, which further leads
to its false positives. False negatives arose primarily due to
EmTaint inability to identify customized source points in
the firmware and its limited support for analyzing certain
firmware samples. As a result, many potential execution paths
remained unanalyzed. HermeScan exhibited false positives due
to misidentification of source points and a similar inability to
process sanitizer logic. Its false negatives were largely due
to limitations in its reaching definition analysis, which led to
taint loss in complex data flow scenarios. Greenhouse false
positives were mainly attributed to crashes caused by exceed-
ing memory constraints or incomplete emulation by QEMU,
which were incorrectly interpreted as genuine vulnerabilities.
Its false negatives resulted from its lack of support for hidden
URIs and parameter dictionaries, as well as program-specific
constraints that limited its code coverage. Consequently, many

sink points were not tested during analysis. Hy-FirmFuzz
exclusively tests URLs and their corresponding parameters that
are exposed in the frontend interface. However, the majority of
functional interfaces within the firmware are not displayed in
the frontend, resulting in significant false negatives. Since Hy-
FirmFuzz performs real-time detection of various vulnerability
types during runtime, it does not produce false positives.

Regarding time efficiency, FirmAgent performs taint anal-
ysis in real-time during fuzzing, which constitutes its total
analysis time. In our evaluation, we constrained fuzzing time
to one hour per firmware sample. This is relatively higher
than the average analysis time of EmTaint (approximately
3 minutes) and HermeScan (approximately 8 minutes). In
comparison, Hy-FirmFuzz and Greenhouse required 78 min-
utes and 24 hours, respectively. While FirmAgent incurs
higher time overhead than static analysis tools, it compensates
with significantly greater precision and automation in vul-
nerability confirmation, including the generation of concrete
PoCs. Moreover, since fuzzing and analysis are independent
per firmware, FirmAgent supports parallel processing to
improve overall efficiency.

Conclusion: Compared with SOTA static, dynamic, and hy-
brid analysis tools, FirmAgent effectively addresses several
key challenges in vulnerability detection, including inaccurate
source point identification, false positives caused by sanitizer
misinterpretation, and insufficient coverage during dynamic
fuzzing. As a result, both the false positive and false negative
rates in vulnerability detection are significantly reduced.

B. Source Point Identified by Fuzzing

Table V presents the source point identification results of
FirmAgent on our firmware dataset. Experimental results
show that all source points identified by FirmAgent are
actual sources capable of receiving external input, yielding an
accuracy of 100%. This high accuracy stems from the fact that
during dynamic analysis, only memory locations that exhibit
taint propagation are selected as Csource points. Therefore, no
false positives were observed in source identification.

However, the coverage of source points is not always
complete. Through manual verification of candidate source
points identified by static analysis tools, we determined
all external input acceptance points (All-Source). On aver-
age, FirmAgent was able to identify 94.2% of the true
source points reachable via fuzzing. The remaining undetected
sources fall into two main categories. First, some source points
reside in functions that are dynamically unreachable due to
legacy or dead code in the firmware. Since these functions are
never invoked during execution, excluding them from analysis
actually helps reduce false positives without impacting vulner-
ability detection. Second, certain source points lie on complex
inter-procedural paths, where reaching the corresponding sink
requires specific input conditions to be met in earlier execution
stages. As a result, fuzzing may fail to trigger these paths,
leaving some source points unobserved. Since FirmAgent
utilizes LLMs to analyze code segments in the call chain,
including those missing source points, we guide the LLM to

10

TABLE IV: Vulnerability Detection Results of Emtaint, HermeScan, Greenhouse, Hy-
FirmFuzz, and FirmAgent. A ”/” denotes cases in which a tool failed to run. prec = alert

vuln .

Vendor Firmware
Emtaint HermeScan Greenhouse Hy-FirmFuzz FirmAgent

Alert Vuln Prec Alert Vuln Prec Crash Vuln Prec Crash Vuln Prec Alert Vuln Prec

Trendnet TEW800mb 14 10 71.4% 10 5 50.0% 0 0 0 0 0 0% 25 23 92.0%
TEW 632BRPA1 FW1.10B31 4 0 0 1 1 100.0% 2 1 50.0% 1 1 100% 10 8 80.0%
TEW673GRUA1 FW100B40 1 0 0 2 1 50.0% 3 1 33.3% 2 2 100% 9 8 88.9%

ASUS FW RT G32 C1 5002b 0 0 0 5 3 60.0% 0 0 0 0 0 0% 3 3 100.0%
DLink DIR 825 REVB 2.03 3 0 0 3 1 33.3% 9 3 33.3% 2 2 100% 10 8 80.0%

DIR 601 REVA 1.02 5 0 0 2 0 0 2 1 50.0% 0 0 0% 5 4 80.0%
DCS 934L REVA 1.04.15 / / / 15 6 40.0% 0 0 0 0 0 0% 12 11 91.7%

Netgear DC112A V1.0.0.64 0 0 0 57 1 1.8% 0 0 0 0 0 0% 42 40 95.2%
JNR3300 V1.0.0.34PR 0 0 0 18 9 50.0% 2 0 0 1 1 100% 12 11 91.7%
XWN5001 V0.4.1.1 0 0 0 18 11 61.1% 0 0 0 0 0 0% 14 12 85.7%

Tenda W6 S v1.0.0.4 510 en / / / 9 4 44.4% 2 2 100.0% 3 3 100% 14 12 85.7%
HG7 HG9 HG10re 300001138 0 0 0 26 16 61.5% 0 0 0 0 0 0% 17 16 94.1%

Linksys FW WRT54Gv4 4.21.5 / / / 27 3 11.1% 0 0 0 3 3 100% 15 14 93.3%
TOTOLINK LR350 v9.3.5 0 0 0 22 10 45.5% 0 0 0 1 1 100% 12 12 100.0%

Total 27 10 215 71 20 8 13 13 200 182

Average 2.5 0.9 37.0% 15.4 5.1 33.0% 1.4 0.6 40.0% 0.9 0.9 100% 14.3 13.0 91.0%

40

108

HermeScan

Greenhouse
Emtaint

182

FirmAgent

4313

Hy-FirmFuzz

1

1

Fig. 6: Vulnerability Con-
tainment Relationships.

TABLE V: The Csource Identification Results of
FirmAgent. Csource denotes external input point identified
by fuzzing, T-Source denotes external input points, All-Source
denotes Total external input points. Src.Ratio = Csource

All-Source .

Firmware Csource Source All-Source Src.Ratio

TEW800mb 58 58 71 81.7%
TEW 632BRPA1 FW1.10B31 11 11 11 100.0%
TEW673GRUA1 FW100B40 64 64 64 100.0%
FW RT G32 C1 5002b 27 27 34 79.4%
DIR 825 REVB 2.03 11 11 11 100.0%
DIR 601 REVA 1.02 21 21 24 87.5%
DCS 934L REVA 1.04.15 37 37 41 90.2%
DC112A V1.0.0.64 95 95 101 94.1%
JNR3300 V1.0.0.34PR 129 129 133 97.0%
XWN5001 V0.4.1.1 148 148 153 96.7%
W6 S v1.0.0.4 510 en 306 306 321 95.3%
HG7 HG9 HG10re 300001138 52 52 56 92.9%
FW WRT54Gv4 4.21.5 32 32 33 97.0%
LR350 v9.3.5 433 433 458 94.5%

Average 101.7 101.7 107.9 94.2%

treat these source functions as source points to compensate for
parts not reached during dynamic analysis. Consequently, no
false negatives were observed in vulnerability detection due to
missing source points.

Conclusion: All source points identified by FirmAgent
are real and externally controllable, effectively eliminating
the false positives common in traditional static approaches.
Although a small portion of source points may be missed,
this does not lead to missed vulnerabilities, and can even help
reduce false positives.

C. Ablation Study

To evaluate the effectiveness of key components in
FirmAgent, namely Csource, the taint propagation agent
module, the directed fuzzing strategy, and the indirect call
resolution, we conducted an ablation study:

Effectiveness of Csource and Taint Propagation Agent.
To assess the advantage of our Csource and taint propagation
agent module over traditional taint analysis approaches, we
replaced FirmAgent taint analysis with those from Emtaint
(Firm-Emt) and HermeScan (Firm-Her), while keeping the
Csource consistency. We then assessed the improvements
brought by our Csource selection when integrated with Em-

TABLE VI: Ablation Study on the Contribution of Each
Component in FirmAgent to Vulnerability Detection.
Firm-Directed removes the directed strategy; Firm-Indirect
disables the use of indirect call information collected during
dynamic execution; Firm-Cut removes the LLM-based decom-
piled code refinement and alert verification components; Firm-
Emt and Firm-Her replace FirmAgent taint propagation
module with Emtaint and HermeScan, respectively.

Tools Alert TP FP TPR FPR

Firm-Directed 194 176 18 90.7% 9.3%
Firm-Indirect 187 169 18 90.4% 9.6%
Firm-Cut 232 172 60 74.1% 25.9%
Firm-Emt 34 15 19 44.1% 55.9%
Firm-Her 120 71 49 59.2% 40.8%
FirmAgent 200 182 18 91.0% 9.0%

taint and HermeScan. Finally, we compared their overall
effectiveness against the FirmAgent to highlight the benefits
of our taint analysis strategy. As shown in Table VI, Firm-Emt
reported 34 alerts, of which 15 were true positives, achieving
a precision of 44.1%. This represents an improvement of five
additional vulnerabilities compared to the original Emtaint,
primarily due to FirmAgent use of dynamically extracted
custom source points, many of which are not covered by
Emtaint predefined source list. However, Firm-Emt exhibited
higher false negatives due to its limited instruction support in
certain firmware and higher false positives due to excessive
alias analysis. Firm-Her reported 120 alerts with 71 true
positives, achieving a precision of 59.2%. While the number
of detected vulnerabilities was consistent with HermeScan
results, the false positive rate decreased from 67.0% to 40.8%.
This reduction stems from our refined source point selection,
which filters out candidate source points that do not accept
external input. Nevertheless, false negatives persisted due to
inaccurate alias analysis that led to lost taint.

Effectiveness of the Directed Fuzzing Strategy. To eval-
uate the contribution of the directed fuzzing strategy, we
disabled this component in FirmAgent. As shown in the
Table VI, Firm-Directed reported 194 alerts, including 176

11

true vulnerabilities, six fewer than the FirmAgent. These
missed vulnerabilities correspond to deep path source points
that were not reached without the guidance of the directed
fuzzing strategy, highlighting its importance in improving path
exploration depth.

Effectiveness of Indirect Call Resolution. To assess the
impact of indirect call resolution, we disabled the use of dy-
namically collected indirect call targets. As shown in Table VI,
Firm-Indirect reported 187 alerts, of which 169 were true
positives, 13 fewer than FirmAgent. Our analysis revealed
that these missed vulnerabilities involved tainted parameters
passed through indirect calls to sink functions. Without dy-
namic resolution of indirect calls, these control-flow paths
could not be constructed, leading to false negatives.

Effectiveness of LLM Refinement and Verification Mod-
ules. To evaluate the effectiveness of the decompiled code
refinement and alert verification components in taint propa-
gation agent, we conducted an ablation study by disabling
them. As shown in Table VI, Firm-Cut reported 232 alerts,
with 172 true positives, ten fewer than FirmAgent. It also
introduced 42 additional false positives, reducing the precision
to 74.1%. Through analysis, we found that the false nega-
tives were caused by missing critical parameters in functions
within the IDA decompiled code, leading to taint loss. The
false positives resulted from the LLM’s inability to handle
sanitization processes accurately, recognize non-propagating
taints, and identify system file sources.

Conclusion. The ablation study demonstrates that each
component of FirmAgent plays a critical role in enhanc-
ing the overall effectiveness of vulnerability detection. The
Csource points identified through fuzzing significantly reduce
false positives commonly encountered in traditional taint anal-
ysis tools. The taint propagation agent module improves the
precision of taint propagation, the directed fuzzing strategy
increases the likelihood of reaching deep Csource points, and
the indirect call resolution bridges critical gaps in control
flow analysis. Collectively, these modules work synergistically
to reduce both false negatives and false positives, thereby
enabling more accurate and comprehensive vulnerability dis-
covery in IoT firmware.

D. PoC Effectiveness

To evaluate the practical effectiveness of the PoCs generated
by FirmAgent, we conducted effectiveness testing on real-
world devices without any manual intervention. PoCs that
could be successfully executed in this fully automated setting
were categorized as E-PoC. For the remaining PoCs that
failed to trigger vulnerabilities automatically, we manually
analyzed the program logic, adjusted the input parameters, and
considered those that could be successfully verified through
minor manual effort as H-PoC. The remaining cases were
deemed false positives (F-PoC).

As shown in Figure 7, excluding 18 false positives, among
the remaining 182 PoCs generated by FirmAgent, 167 were
directly effective without requiring any modification and 15
could be made effective with minimal manual adjustments.

TEW
80

0m
b

TEW
_6

32
BRPA

1

TEW
67

3G
RU

FW
_R

T_G
32

DIR
_8

25

DIR
_6

01

DCS_9
34

L

DC11
2A

JN
R33

00

XW
N50

01
W

6_
S

HG7_
HG9_

HG10
re

FW
_W

RT54
G

LR35
0

0

5

10

15

20

25

30

35

40

C
ou

nt

Total: F-PoC(18), E-PoC(167), H-PoC(15)
H-PoC
E-PoC
F-PoC

Fig. 7: The Result of PoC Effectiveness. E-PoC denotes
directly effective PoCs, and H-PoC refers to PoCs that become
effective after manual modification, and F-PoC represents false
positives that result in ineffective PoCs.

Most of the H-PoC were associated with command injection
vulnerabilities. The primary reason for failure stems from the
diversity of command injection payloads, as different execu-
tion contexts often require distinct malicious input to success-
fully trigger the vulnerability. This increases the complexity of
reasoning required by LLMs, making it difficult to consistently
generate valid payloads. For instance, some firmware employs
blacklist-based input filtering mechanisms, which restrict the
use of special characters commonly used in command injection
(e.g., ’;’, ’|’, ’&’). However, these filtering mechanisms are
often incomplete or circumventable. Successfully triggering
them typically requires expert knowledge to understand the
execution context and craft an effective PoC accordingly.
Our findings demonstrate that this category of vulnerabilities
remains a challenge for fully automated triggering by current
LLM-based approaches.

Conclusion: FirmAgent achieved an effective PoC gen-
eration rate of 91.8%, significantly reducing the manual effort
required for vulnerability verification compared to traditional
static analysis tools. Analysts only need to assess a small
fraction of the remaining PoC, which streamlines the overall
process of confirming vulnerabilities.

VII. DISCUSSION

A. Limitations of Firmware Rehosting

The capability of FirmAgent is fundamentally depen-
dent on the underlying firmware rehosting framework. While
Greenhouse is one of the state-of-the-art solutions that sup-
port rehosting user-space components from firmware sam-
ples of mainstream router vendors, its success rate remains
low, especially when dealing with newer firmware versions.
Furthermore, Greenhouse is currently limited to emulating
a single service at a time. As a result, FirmAgent can
only detect vulnerabilities within that binary, potentially over-
looking vulnerabilities that span across binaries or require
full-system emulation. We anticipate that advancements in
firmware rehosting technologies will expand the range of

12

supported devices and improve compatibility with more recent
firmware versions. In future work, we will try to improve
the generality of our system by integrating multiple rehosting
strategies to support multi-binary and more comprehensive
firmware emulation.

B. False Positives in FirmAgent

While FirmAgent achieves a significantly lower false
positive and false negative rate compared to prior approaches,
it is not entirely immune to inaccuracies. Our analysis reveals
that most false positives arise from buffer overflow detection.
Specifically, the LLM occasionally fails to account for the
actual size relationships between input data and target buffers.
This often results in secure code locations being misclassified
as vulnerable due to hypothetical overflow scenarios that are
infeasible in practice. To mitigate this issue, future iterations
of FirmAgent may incorporate more precise data modeling
techniques or leverage retrieval augmented generation (RAG)
and fine-tuning strategies to enhance the LLM understanding
of memory semantics and size constraints in vulnerability
contexts. This would improve the overall precision of buffer
overflow detection.

VIII. RELATED WORK

A. Firmware Rehosting and Fuzzing

Firmware rehosting provides a foundation for dynamic
firmware analysis by enabling embedded system execution in
a controlled and analyzable environment. Early approaches
such as QEMU and Avatar [28] offered general-purpose
emulation and hardware-in-the-loop capabilities. Building on
these foundations, frameworks like Firmadyne [26] and Fir-
mAE [27] proposed automated solutions for rehosting Linux-
based firmware at scale, enabling large-scale vulnerability
analysis across heterogeneous devices. To improve service-
level analysis granularity and scalability, Greenhouse [5] in-
troduced a user-space rehosting approach targeting individual
firmware binaries. Rehosting enables further dynamic anal-
ysis, particularly fuzzing. FirmAFL [2] integrated greybox
fuzzing with rehosting to discover vulnerabilities in user-space
firmware components. EM-Fuzz [29] and IoTHunter [30]
embedded real-time checkers into the emulation environ-
ment to enhance fuzzing effectiveness by providing runtime
feedback. FirmFuzz [4] employs static analysis to generate
valid input seeds and extracts contextual information about
potential vulnerabilities, thereby enhancing dynamic analysis
for uncovering deep vulnerabilities in embedded firmware.
For firmware that cannot be rehosted, researchers have ex-
plored black-box fuzzing techniques. IoTFuzzer [31] uses
mobile applications to send malformed payloads to physical
devices, while SRFuzzer [32] leverages heuristic-guided muta-
tion strategies to target IoT web interfaces. LABRADOR [33]
leverages response-based execution trace inference and IO-
oriented distance measurement to guide efficient fuzzing.

B. Static Analysis in IoT Firmware

Static analysis of IoT firmware enables vulnerability de-
tection without requiring execution, making it suitable for
large-scale or safety-critical applications. KARONTE [34]
pioneered cross-component static dataflow analysis to detect
vulnerabilities that arise from interactions among firmware
modules and linked libraries. SaTC [6] identified that de-
velopers often reuse keywords between front-end interfaces
and back-end binaries, which can be exploited to localize
potential sources of user input. EmTaint [7] proposed a pre-
cise taint analysis method that resolves indirect calls using
a structured symbolic expression and an on-demand alias
analysis scheme. HermeScan [8] introduced a lightweight,
context-sensitive Reaching Definitions Analysis built upon
an expanded control-flow graph, significantly reducing the
overhead compared to symbolic execution-based approaches.
Mango [19] enhanced scalability and efficiency through a
novel sink-to-source analysis combined with an Assumed Non-
impact optimization technique. OctopusTaint [9] introduced
a sanitization inspection mechanism and a recursive tracing
algorithm, both of which substantially reduce false positives
and improve overall accuracy in vulnerability detection.

C. LLMs for Vulnerability Detection

Recent advances in LLMs have opened up new possibilities
for vulnerability detection by enabling deep semantic under-
standing and reasoning over code. ChatAFL [35] leverages
LLMs to infer protocol formats and generate structurally
valid test cases, thereby enhancing code coverage during the
fuzzing process. It represents an LLM-assisted fuzzing frame-
work, where LLMs are integrated directly into the fuzzing
loop to improve input quality and effectiveness. In contrast,
FirmAgent adopts a fundamentally different approach: it is a
fuzzing-assisted static analysis framework that utilizes runtime
information collected during fuzzing to guide LLM-based taint
analysis and PoC generation.

Lara [20] combines traditional pattern-based static analysis
with LLM-assisted reasoning to identify key elements such as
URIs and keywords in firmware, improving detection accuracy.
LATTE [16] leverages LLMs to perform taint analysis directly
on binary code, significantly improving both the automation
and accuracy of vulnerability detection. IRIS [17] proposes a
hybrid approach that fuses LLM-inferred specifications with
the CodeQL [36] static analysis framework, enabling the
detection of previously overlooked vulnerabilities. Moreover,
IRIS uses LLMs contextual reasoning ability to filter out
false positives, thereby improving precision. However, these
existing approaches are purely static and lack targeted design
for firmware taint analysis, resulting in suboptimal analysis
accuracy. In contrast, FirmAgent collects runtime data from
firmware execution to identify source points and indirect calls
that assist in taint analysis. Furthermore, when employing
LLMs for taint analysis, we incorporate specialized strategies
including refined decompilation, intra-procedural analysis, and
alert verification to enhance detection accuracy.

13

IX. CONCLUSION

In this paper, we systematically analyze the limitations of
existing vulnerability detection techniques in IoT firmware and
observe a critical gap: dynamic analysis reaches many sources
but fails to propagate taint to sinks (causing false negatives),
while static analysis explores all source-to-sink paths but
struggles to identify true sources (causing false positives).
To address these complementary shortcomings, we propose
FirmAgent, a novel framework that integrates the strengths
of both dynamic and static analysis. Specifically, we employ
lightweight fuzzing to dynamically identify source points in
the binary. These are then used as starting points (Csource)
for taint propagation agent to trace data flows toward potential
sinks. Finally, our framework utilizes a PoC generation agent
to confirm whether the identified alerts represent exploitable
vulnerabilities. We evaluate FirmAgent on 14 real-world
firmware samples. The framework successfully identifies 182
vulnerabilities with a precision of 91%. Compared to existing
state-of-the-art static and dynamic analysis tools, FirmAgent
significantly reduces both false positives and false negatives,
demonstrating its effectiveness and practicality in IoT vulner-
ability detection.

ETHICS CONSIDERATIONS

This research focuses on analyzing publicly available IoT
firmware and does not involve any interaction with human
subjects, personal data, or deployed systems. All vulnera-
bilities discovered during our experiments were responsibly
disclosed to the corresponding vendors, following established
responsible disclosure practices. Our work strictly adheres to
ethical research guidelines, and no attempts were made to
publicly release any identified vulnerabilities.

ACKNOWLEDGMENT

We would like to sincerely thank all the reviewers for
their insightful suggestions that helped us to improve this
paper. This work is supported by the National Natural Science
Foundation of China under grant U24A20337 and 62276091,
Natural Science Foundation of Henan Province of China
(No.242300420698), and Joint Research Center for System
Security, Tsinghua University (Institute for Network Sciences
and Cyberspace) - Science City (Guangzhou) Digital Technol-
ogy Group Co., Ltd.

REFERENCES

[1] S. Sinha, “Iot connections market update.” IoT Analytics, 2024. [Online].
Available: https://iot-analytics.com/number-connected-iot-devices/

[2] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“{FIRM-AFL}:{High-Throughput} greybox fuzzing of {IoT} firmware
via augmented process emulation,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1099–1114.

[3] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and
Y. Xiang, “Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference,” in Proceedings of the 2021 ACM SIGSAC conference
on computer and communications security, 2021, pp. 337–350.

[4] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer,
“Firmfuzz: Automated iot firmware introspection and analysis,” in
Proceedings of the 2nd International ACM Workshop on Security and
Privacy for the Internet-of-Things, ser. IoT S&P’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 15–21. [Online].
Available: https://doi.org/10.1145/3338507.3358616

[5] H. J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher, T. Reddy,
W. Gibbs, Z. L. Basque, F. Dong, Z. Smith et al., “Greenhouse:{Single-
Service} rehosting of {Linux-Based} firmware binaries in {User-Space}
emulation,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 5791–5808.

[6] L. Chen, Y. Wang, Q. Cai, Y. Zhan, H. Hu, J. Linghu, Q. Hou, C. Zhang,
H. Duan, and Z. Xue, “Sharing more and checking less: Leveraging
common input keywords to detect bugs in embedded systems,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 303–319.

[7] K. Cheng, Y. Zheng, T. Liu, L. Guan, P. Liu, H. Li, H. Zhu, K. Ye, and
L. Sun, “Detecting vulnerabilities in linux-based embedded firmware
with sse-based on-demand alias analysis,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2023, pp. 360–372.

[8] Z. Gao, C. Zhang, H. Liu, W. Sun, Z. Tang, L. Jiang, J. Chen, and
Y. Xie, “Faster and better: Detecting vulnerabilities in linux-based iot
firmware with optimized reaching definition analysis,” in NDSS, 2024.

[9] A. Qasem, M. Debbabi, and A. Soeanu, “Octopustaint: Advanced
data flow analysis for detecting taint-based vulnerabilities in iot/iiot
firmware,” in Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, 2024, pp. 2355–2369.

[10] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and
L. Lu, “SAVIOR: towards bug-driven hybrid testing,” in 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. IEEE, 2020, pp. 1580–1596. [Online]. Available:
https://doi.org/10.1109/SP40000.2020.00002

[11] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Driller: Augmenting fuzzing through selective symbolic execution,”
in 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society, 2016. [Online]. Available:
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

[12] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A
practical concolic execution engine tailored for hybrid fuzzing,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 745–761. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

[13] R. Meng, G. J. Duck, and A. Roychoudhury, “Large language
model assisted hybrid fuzzing,” 2024. [Online]. Available: https:
//arxiv.org/abs/2412.15931

[14] L. Situ, C. Zhang, L. Guan, Z. Zuo, L. Wang, X. Li, P. Liu, and
J. Shi, “Physical devices-agnostic hybrid fuzzing of iot firmware,” IEEE
Internet of Things Journal, vol. 10, no. 23, pp. 20 718–20 734, 2023.

[15] J. Yin, M. Li, Y. Li, Y. Yu, B. Lin, Y. Zou, Y. Liu, W. Huo, and J. Xue,
“Rsfuzzer: Discovering deep smi handler vulnerabilities in uefi firmware
with hybrid fuzzing,” in 2023 IEEE Symposium on Security and Privacy
(SP), 2023, pp. 2155–2169.

[16] P. Liu, C. Sun, Y. Zheng, X. Feng, C. Qin, Y. Wang, Z. Xu, Z. Li,
P. Di, Y. Jiang et al., “Llm-powered static binary taint analysis,” ACM
Transactions on Software Engineering and Methodology, 2025.

[17] Z. Li, S. Dutta, and M. Naik, “IRIS: LLM-assisted static analysis
for detecting security vulnerabilities,” in The Thirteenth International
Conference on Learning Representations, 2025. [Online]. Available:
https://openreview.net/forum?id=9LdJDU7E91

[18] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
Proceedings of the FREENIX Track: 2005 USENIX Annual Technical
Conference, April 10-15, 2005, Anaheim, CA, USA. USENIX, 2005,
pp. 41–46. [Online]. Available: http://www.usenix.org/events/usenix05/
tech/freenix/bellard.html

[19] W. Gibbs, A. S. Raj, J. M. Vadayath, H. J. Tay, J. Miller, A. Ajayan,
Z. L. Basque, A. Dutcher, F. Dong, X. Maso et al., “Operation mango:
Scalable discovery of {Taint-Style} vulnerabilities in binary firmware
services,” in 33rd USENIX Security Symposium (USENIX Security 24),
2024, pp. 7123–7139.

[20] J. Zhao, Y. Li, Y. Zou, Z. Liang, Y. Xiao, Y. Li, B. Peng, N. Zhong,
X. Wang, W. Wang et al., “Leveraging semantic relations in code and

14

https://iot-analytics.com/number-connected-iot-devices/
https://doi.org/10.1145/3338507.3358616
https://doi.org/10.1109/SP40000.2020.00002
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://arxiv.org/abs/2412.15931
https://arxiv.org/abs/2412.15931
https://openreview.net/forum?id=9LdJDU7E91
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html

data to enhance taint analysis of embedded systems,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024, pp. 7067–7084.

[21] R. Widyasari, J. W. Ang, T. G. Nguyen, N. Sharma, and D. Lo, “De-
mystifying faulty code with llm: Step-by-step reasoning for explainable
fault localization,” arXiv preprint arXiv:2403.10507, 2024.

[22] U. Kulsum, H. Zhu, B. Xu, and M. d’Amorim, “A case study of llm
for automated vulnerability repair: Assessing impact of reasoning and
patch validation feedback,” in Proceedings of the 1st ACM International
Conference on AI-Powered Software, 2024, pp. 103–111.

[23] I. Guilfanov, “Ida pro disassembler and debugger,” 2022. [Online].
Available: https://hex-rays.com/

[24] DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang,
R. Xu, Q. Zhu, and S. M. et al., “Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.12948

[25] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in 2016 IEEE
symposium on security and privacy (SP). IEEE, 2016, pp. 138–157.

[26] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware,” in NDSS, vol. 1,
2016, pp. 1–1.

[27] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in Proceedings of the 36th Annual Computer Security Applications
Conference, 2020, pp. 733–745.

[28] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar 2: A
multi-target orchestration platform,” in Proc. Workshop Binary Anal.
Res.(Colocated NDSS Symp.), vol. 18, 2018, pp. 1–11.

[29] J. Gao, Y. Xu, Y. Jiang, Z. Liu, W. Chang, X. Jiao, and J. Sun, “Em-fuzz:
Augmented firmware fuzzing via memory checking,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, pp. 3420–3432, 2020.

[30] P. Khandait, N. Hubballi, and B. Mazumdar, “Iothunter: Iot network
traffic classification using device specific keywords,” IET Networks,
vol. 10, no. 2, pp. 59–75, 2021.

[31] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing,” in NDSS, 2018.

[32] Y. Zhang, W. Huo, K. Jian, J. Shi, H. Lu, L. Liu, C. Wang, D. Sun,
C. Zhang, and B. Liu, “Srfuzzer: An automatic fuzzing framework
for physical soho router devices to discover multi-type vulnerabilities,”
in Proceedings of the 35th annual computer security applications
conference, 2019, pp. 544–556.

[33] H. Liu, S. Gan, C. Zhang, Z. Gao, H. Zhang, X. Wang, and G. Gao,
“Labrador: Response guided directed fuzzing for black-box iot devices,”
in 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2024, pp. 127–127.

[34] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting insecure multi-
binary interactions in embedded firmware,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 1544–1561.

[35] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” in Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS),
2024.

[36] P. Avgustinov, O. de Moor, M. P. Jones, and M. Schäfer, “QL: object-
oriented queries on relational data,” in 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome,
Italy, ser. LIPIcs, S. Krishnamurthi and B. S. Lerner, Eds., vol. 56.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 2:1–2:25.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ECOOP.2016.2

APPENDIX

A. Keyword Extraction

v4 = wlan0_eth;
...

v8 = get_cgi(v4)

Pulibc Interface Keywords

A

B

cgi = (char *)get_cgi((int)"html_response_page");
v3 = (char *)get_cgi((int)"html_response_message");

v4 = (char *)get_cgi((int)"html_response_return_page");
...
v5 = get_cgi((int)"countdown_time");

v12 = "wla_";
...

sprintf(v25, "%s%s", v12, "auth");
v26 = get_cgi(v25)

v2 = (int *)ui_to_nvram;
if (ui_to_nvram < (char **)&unk_10002174){

 ...
 v4 = (const char *)nvram_safe_get(v3);
 cgi = (const char *)get_cgi(*v2);
}

.data:10001084 ui_to_nvram: .word aCountdownTime # "countdown_time"

.data:10001088 .word aHostname # "hostname"

.data:1000108C .word aSystemTime # "system_time"

...

Direct assignment from string constants

Argument is a hardcoded string

C Initialization from the .data section

D Dynamic string construction

Fig. 8: Four Common Patterns for Extracting Keywords.

B. LLM-Based Refinement of Decompiled Code

The prompt used for LLM-based decompilation refinement
(as illustrated in Figure 9) is designed to address the limitation
of traditional static analysis tools: the generation of imprecise
decompiled code due to issues such as missing function param-
eters, omitted return value assignments, and inaccurate control
or data flow structures. These deficiencies can significantly
impair the accuracy of subsequent taint analysis.

Figure 10 presents a real-world example in which IDA fails
to reconstruct the correct high-level logic due to architectural
and contextual limitations. A key reason for IDA failure to
preserve the return value of get cgi(”date”) lies in its incorrect
interpretation of the system() function signature. Consequently,
the return value of get cgi(”date”) is mistakenly considered
unused, leading IDA to optimize away the function call. Such
omissions can result in false negatives during taint analysis,
as essential data flow relationships are lost. In contrast, our
LLM-based refinement approach leverages semantic context
understanding and pattern recognition capabilities to recover
missing data flows and accurately reconstruct argument con-
struction processes, thus preserving essential taint propagation
relationships and improving overall detection fidelity.

Prompt

Decompiled Code:{decompiled code}
Please carefully review the decompiled code and produce a

more accurate, semantically correct version of the C code. Your
output should restore meaningful variable names, preserve the
original logic, and infer any implicit behaviors such as string
formatting, argument construction, or return value assignments.

Fig. 9: The Prompt of Decompiled Code Refinement.

15

https://hex-rays.com/
https://arxiv.org/abs/2501.12948
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2

1. get_cgi("date");
2. v7 = (char *)get_cgi("timeTag");

3. if (!strcmp(v7, "manual")) {
4. system("date -s %s ");
5. }

1. char *date = (char *)get_cgi("date");
2. char *timeTag = (char *)get_cgi("timeTag");

3. if (!strcmp(timeTag, "manual")) {
4. char command[64];
5. snprintf(command, sizeof(command), "date -s '%s'", date);
6. system(command);

7. } After Refinement

Before Refinement

Fig. 10: A Real-World Example of LLM-Based Decompiled
Code Refinement. Before Refinement represent the original
decompilation result produced by IDA, After Refinement rep-
resent the refined version generated by LLM-based approach.

C. PoC Generation and Security Impact

The PoCs generated by FirmAgent are HTTP-format
request packets. Since the fuzzing phase already provides test
cases that reach the source point (including URL and headers),
we need to analyze the parameter constraints between the
source and sink points to identify concrete input values. For
example: {NtpDstEnable: ”1”, NtpDstOffset: ’A’*300, ...}.
These values are used to complete the request body and form
a full PoC. The generated PoCs can trigger two primary
vulnerability types: buffer overflows, which can cause pro-
gram crashes, and command injections, which allow arbitrary
command execution.

D. Alert Verification

Code:
int sub_E96C()
{
 ...
 Value = cgiGetValue(dword_42D0C, "rtick");
 v1 = 0;
 while (Value[v1])
 {
 if ((unsigned __int8)Value[v1] - 48 > 9)
 {
 syslog(149, "... rtick=%s", Value);
 exit(1);
 }
 ++v1;
 }
 sprintf(v5, "'%s'.gif '%s'.txt", Value, Value);
 system(v5);
 ...
}
Analysis: The input is validated within the loop to
ensure that only numeric characters are allowed. Any
invalid input triggers an exit, rendering malicious
user-constructed strings ineffective.
Result: NO

(a) Example of the sanitizer process identifying validation logic that
eliminates malicious inputs, such as numerical character checks.

Code:
if (*taint)
{
 if (!strcmp(taint, "2"))
 {
 v4 = "factory_hm info fat 2";
 }
 else
 {
 v4 = "factory_hm info fat 1";
 }
 system(v4);
}
Analysis: The taint is only used in conditional
statements and does not directly influence the value
of v4, which is always assigned a constant.
Result: NO

(b) Example of non-propagating taint where the tainted data is used only
for conditional checks without affecting sink parameters.

Code:
int sub_463F0()
{
 ...
 FILE *f = fopen("/etc/passwd", "r");
 fgets(buf, sizeof(buf), f);
 system(buf);
 ...
}

Analysis: The data is directly read from a system
file (/etc/passwd) and passed to a sink. However,
since the file contents are not user-controllable,
they cannot be exploited by users.
Result: NO

(c) Example of source originates from system files.

Fig. 11: Illustrative examples of mitigating false positives
across three scenarios: (a) sanitizer processes, (b) non-
propagating taint, and (c) system file sources.

16

	Introduction
	Background and Motivation
	IoT Vulnerability Discovery Techniques
	Limitations of Existing Approaches
	Observation and Insights

	Challenges
	Limited Code Coverage
	Accurate and Efficient Identification of Source Points
	Accuracy of Static Taint Propagation Analysis and Manual Verification Overhead

	Methodology
	Overview
	Fuzzing-Driven Information Collection
	Taint-to-PoC Agent

	Fuzzing-Driven Information Collection
	Pre-fuzzing Analysis
	Runtime Monitoring

	Taint-to-PoC Agent
	Taint Propagation Agent
	PoC Generation Agent

	Implementation
	Evaluation
	Comparison with the SOTA Tools
	Source Point Identified by Fuzzing
	Ablation Study
	PoC Effectiveness

	Discussion
	Limitations of Firmware Rehosting
	False Positives in FirmAgent

	Related Work
	Firmware Rehosting and Fuzzing
	Static Analysis in IoT Firmware
	LLMs for Vulnerability Detection

	Conclusion
	References
	Appendix
	Keyword Extraction
	LLM-Based Refinement of Decompiled Code
	PoC Generation and Security Impact
	Alert Verification

