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Abstract—Label noise presents a significant challenge in net-
work intrusion detection, leading to erroneous classifications and
decreased detection accuracy. Existing methods for handling
noisy labels often lack deep insight into network traffic and
blindly reconstruct the label distribution to filter samples with
noisy labels, resulting in sub-optimal performance. In this paper,
we reveal the impact of noisy labels on intrusion detection
models from the perspective of causal associations, attributing
performance degradation to local consistency of features across
categories in network traffic. Motivated by this, we propose
CoLD, a Collaborative Label Denoising framework for network
intrusion detection. CoLD partitions the original feature set into
multiple subsets and employs Local Joint Learning to disrupt
local consistency, compelling the encoder to learn fine-grained
and robust representations. It further applies Causal Collabo-
rative Denoising to detect and filter noisy labels by analyzing
causal divergences between multiple representations and their
potentially true label, yielding a purified dataset for training
a noise-resilient classifier. Experiments on several benchmark
datasets demonstrate that CoLD effectively improves classifica-
tion performance and robustness to label noise, highlighting its
potential for enhancing network intrusion detection systems in
noisy environments.

I. INTRODUCTION

In the field of network security, Intrusion Detection Systems
(IDS) are critical for identifying and mitigating malicious
activities [1]. As network traffic continues to grow in both
complexity and volume [2], [3], the need for accurate and
reliable IDS becomes increasingly urgent [4], [5], [6]. Modern
IDSs predominantly rely on data-driven models trained on
labeled data [7], [8], [9], where high-quality labels are essen-
tial for learning effective representations of network behavior.
However, in real-world environments, obtaining clean labels
is always challenging [10], [11], and the performance of IDS
models is severely constrained by the quality of training data.

As illustrated in Fig. 1, an IDS safeguards trusted internal
networks and operates in conjunction with firewalls to defend
against threats originating from untrusted external sources.
The user interface allows administrators to monitor system
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Fig. 1: The overview of IDS with data-driven models in noisy
environments.

performance and manage alerts. The general IDS pipeline
includes a feature extractor, a labeling module, and a data-
driven model used during both training and detection phases.
In this pipeline, the labeling process is fundamental to dataset
quality. However, it is prone to noise due to human bias,
labeling error, and the dynamic nature of evolving network
environments [12], [13]. For example, a full attack sequence
may initially resemble benign activity [14], as adversaries of-
ten use low-rate stealth attacks or encryption techniques [15],
[16] to mimic normal patterns. Advanced malware, including
polymorphic and metamorphic variants [17], [18], further blurs
the distinction between benign and malicious behaviors. As a
result, network traffic flows are frequently mislabeled. IDS
models trained on such noisy datasets tend to perform poorly,
generating false positives for benign actions and failing to
detect critical threats [11]. This undermines system reliability
and imposes a heavy burden on security teams [19], [20].
Existing approaches for handling noisy labels generally fall
into two categories: robust training and dataset purification.
Robust training methods attempt to make models resilient to
noise by modifying loss functions [21], [22], [23], [24] or
adjusting training strategies [25], [26], [27], [28]. However,
they often rely on assumptions such as prior knowledge
of label reliability [27], [28] or access to clean validation
data [24], which are often unrealistic in network intrusion
detection tasks. In contrast, dataset purification seeks to di-



rectly detect and correct mislabeled instances. Approaches
based on metric learning [13], [29], [30], [31], [32] and active
learning [33] have made progress in reducing label noise.
Nevertheless, many of these approaches rely on distance-based
measurements, which struggle to differentiate between clean
and noisy samples in the presence of local consistency. Local
consistency refers to the phenomenon where features from
different categories share similar distributions in the feature
space. In such cases, mislabeled and correctly labeled samples
may appear deceptively similar. This may result in the removal
of underrepresented or ambiguous samples, leading to the
loss of valuable information. In addition, the mechanisms by
which label noise influences model learning in network traffic
remain poorly understood, hindering the development of more
effective solutions.

To address these challenges, we introduce CoLD, a
Collaborative Label Denoising framework for network intru-
sion detection. CoLD is built upon an in-depth investigation
into noisy label learning on traffic datasets, revealing that
performance degradation is largely driven by spurious asso-
ciations induced by local consistency across traffic categories.
Specifically, local features from different categories often
share similar distributions, making it difficult for models to
distinguish between them. While a high-performing IDS model
should extract distinct representations of traffic categories
in latent space, noisy labels disrupt this process by intro-
ducing spurious associations between erroneous labels and
features [11]. This misguidance forces the model to learn naive
patterns from locally consistent features, ultimately blurring
true decision boundaries and impairing detection accuracy.

The proposed CoLD comprises three main components:
Feature Reordering, Local Joint Learning, and Causal Col-
laborative Denoising. Feature Reordering enhances semantic
relevance by rearranging the feature set based on Pearson
correlation coefficients. Local Joint Learning partitions the
reordered features into multiple subsets and applies self-
supervised training to disrupt local consistency, encouraging
the model to learn fine-grained and robust representations.
Causal Collaborative Denoising purifies the dataset by using a
Gaussian Mixture Model (GMM) to analyze the divergence of
causal associations between multiple representations and their
potential true labels. This process identifies and filters noisy
samples, resulting in a purified dataset for training a noise-
resilient classifier.

In summary, this paper makes the following contributions:

o We investigate the influence of noisy labels from the
perspective of causal associations and attribute it to the
local consistency across categories in network traffic.

o We propose CoLD, a collaborative label denoising frame-
work that integrates self-supervised representation learn-
ing and causal inference to effectively identify and filter
noisy labels, enabling a purified dataset for training a
noise-resilient classifier.

o We conduct extensive experiments on benchmark datasets
to evaluate the effectiveness of CoLD. The results show
that CoLD significantly improves classification perfor-

mance and robustness to label noise, outperforming ex-
isting baselines and state-of-the-art methods.

o We demonstrate the effectiveness of CoLD by evaluating
it in realistic enterprise networks. The results indicate
that CoLD can operate in challenging environments and
enhance the performance of intrusion detection systems.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work on noisy label learning and robust
intrusion detection. Section III analyzes the impact of noisy
labels on detection performance from a causal perspective and
outlines our motivations. Section IV describes CoLD in detail.
Section V presents comparative experiments on benchmark
datasets against state-of-the-art methods. Section VI reports
the initial deployment and evaluation of CoLD in realistic
enterprise networks. Section VII discusses the findings and
future directions. Finally, Section VIII concludes the paper.

II. RELATED WORK
A. Noisy Label Learning

Noisy label learning methods related to our work can
be broadly categorized into two groups: robust training and
dataset purification. Robust training methods aim to mitigate
the impact of incorrectly labeled training data on model
performance. Some works design robust loss functions [21],
[22], [23], [34] and training strategies [25], [26], [27], [28],
[35], [36], [37] to ensure performance despite mislabeled
samples. Other methods apply the label transition matrix [38],
[39], [40], which records the probability of a category be-
ing mislabeled into another category, to rectify loss values
impacted by noisy labels. These methods generally rely on
specific assumptions that are difficult to meet in network in-
trusion detection. Dataset purification methods aim to identify
and correct mislabeled samples during training. The widely
adopted option is the training loss, assessing the disparity
between the model prediction and given labels [18], [41], [42],
[43], with higher loss indicating incorrect labels. In addition,
some methods design measurement functions [31], [44], [45],
[46] to distinguish between clean and noisy labels. Although
these methods have proven effective in image recognition or
natural language processing, they are challenging to generalize
to network intrusion detection tasks due to a lack of deep
insight into network traffic.

B. Robust Intrusion Detection

Advances in deep learning have significantly improved the
capabilities of intrusion detection systems [47], [48], [49].
These models are capable of learning complex representations
from raw traffic data due to their strong capacity for pattern
fitting. However, most existing research has been conducted
in closed-world settings, which limits the generalization abil-
ity of these models in diverse or evolving real-world en-
vironments [50], [51]. This constraint results in decreased
performance when such models are deployed in practical
scenarios [33]. To overcome this limitation, recent studies have
explored the development of more robust intrusion detection
methods. For example, Diallo et al. [5] proposed supervised



adaptive clustering techniques to learn cluster centers that
improve robustness against outliers and enhance generaliza-
tion. Yue et al. [6] applied data augmentation and contrastive
learning to extract semantic relationships between samples,
further strengthening model robustness. Other works [52],
[53], [54] developed adaptive intrusion detection techniques
to address the challenge of concept drift, which is caused by
evolving attack patterns.

Nevertheless, the success of intrusion detection models is
closely tied to the quality of the training data, and label
noise still poses a major challenge. Qing et al. [55] utilized
distribution differences between benign and malicious traffic to
estimate potential labels, but their method is limited to binary
classification and assumes a balanced dataset. Zhao et al. [33]
designed an effective online anomaly detection framework
that relies on security experts to relabel samples based on
uncertainties predicted by quality and classification models,
at the cost of increased manual labor. Wu et al. [18] intro-
duced a semi-supervised learning framework that integrates
robust training by leveraging early-epoch loss magnitude to
distinguish clean from noisy labels. They identified noisy
samples and treated them as unlabeled data used for repre-
sentation learning. While they demonstrated the effectiveness
on malware classification tasks, their method’s reliance on a
predefined label splitting ratio constrains its flexibility and
limits its applicability across varying noise levels. Yuan et
al. [13] combined data cleaning and robust training by ap-
proximating an ideal representation function. However, their
approach relies on clear boundaries between noisy and clean
samples. In high-noise scenarios, the boundaries are obscured
due to local consistency, where features from different classes
exhibit similar distributions. As a result, underrepresented
clean samples may be discarded, leading to information loss
and suboptimal performance.

These limitations underscore that label noise remains a
critical barrier to building reliable IDSs. We identify two
core challenges: C1. While it is well-established that noisy
labels negatively impact data-driven models, the underlying
mechanism of how noisy labels affect learning in network
traffic remains poorly understood. C2. Existing methods are
either not suitable for network intrusion detection or their
ability to purify datasets is insufficient to cope with more
challenging label noise environments. In this work, we address
both challenges. For C1, we investigate the root causes of per-
formance degradation from a causal association perspective,
revealing that local consistency promotes spurious associations
between features and noise labels. This insight is supported
by theoretical analysis and empirical validation. For C2, we
propose a Causal Collaborative Denoising method. It employs
Local Joint Learning to generate fine-grained representations
that disrupt local consistency, and leverages causal collabora-
tive inference to effectively identify and remove noisy labels
while preserving underrepresented clean samples.

In summary, CoLD differs from existing methods by lever-
aging a causal perspective to address label noise, targeting
local consistency in network traffic features that often mis-

Fig. 2: Causal Graph via SGM. Each traffic flow X comprises
causal features X, and non-causal features X,,. Note that only
the causal feature X, determines the ground truth label Y.

lead traditional models. Unlike distance- or confidence-based
approaches, CoLD employs self-supervised multi-view repre-
sentation learning and causal divergence analysis to identify
and filter noisy labels, achieving superior performance in high-
noise environments.

III. MOTIVATING COLD: CAUSAL ANALYSIS AND LOCAL
CONSISTENCY

In this section, we introduce the motivation behind the
CoLD, emphasizing that it arises from a causal analysis of
noisy label learning and key observations on network traffic
data. Our analysis reveals how noisy labels introduce spurious
causal associations and mislead the model’s learning through
local consistency, thereby providing both theoretical insights
and practical foundations for our approach.

A. Noisy Labels in a Causal View

Understanding the root cause of performance degradation
caused by noisy labels is fundamental to designing targeted
solutions and improving model robustness. To this end, we
employ the Structural Causal Model (SCM) to delineate the
interactions between features and labels, thus constructing a
detailed causal graph. Causal modeling provides an effective
framework for representing path dependencies, as the training
of classification models fundamentally relies on capturing
these underlying causal relationships [56], [57]. Fig. 2 il-
lustrates this interaction with five variables: the input traffic
sample X, causal features X., non-causal features ~Xn, the
ground-truth label Y, and the observed noisy label Y. Here,
causal and non-causal features X. and X, are distinct yet
partial subsets of X. Whether a feature is causal or non-causal
depends on the specific label (Y or Y'), meaning X, could be
causal for Y but non-causal for Y. X, can be regarded as a
feature subset of X that exhibits similar distributions across
different categories, potentially establishing opposite causal
associations with Y and Y. Below, we explain the causal graph
in detail:

e X.— X <+ X,: The input X comprises two subsets of
features: causal features X, and non-causal features X,,,
which may overlap but are not completely coincident.

e X, — Y: From a causal view, the ground-truth label Y
is determined solely by causal features X..

o X, — Y: While X,, is non-causal features of Y, it can
directly influence the noisy label Y.
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Fig. 3: Examples for Local Consistency. Tiggre, Panda,
Caphaw, and BuerLoader are different types of traffic.

e X .«--»>X,: Dashed arrows represent additional depen-
dencies between causal features X, and non-causal fea-
tures X,,, offering insights into how non-causal features
might indirectly affect Y through complex pathways.

The causal architecture defines that X . directly influences
Y, establishing a clear causal pathway. However, in general
learning tasks with the ground-truth label Y, X, «--» X, — Y
can create spurious associations between non-causal features
X, and the ground-truth label Y. This makes X, a confounder
between X, and Y, opening a backdoor path X, --+ X, —
Y[58]. Bias introduced through such backdoor path is a
primary cause of degraded model performance. Additionally,
with the involvement of noisy label Y, the bias is further
amplified. Although X, is non-causal for Y, it becomes
increasingly relevant to Y. This shift in causal relevance
underscores the flexible nature of feature relevance depending
on whether the given label is ground truth (Y') or noisy (V).
The noisy label Y compels the model to focus on associations
involving X, distorting the causal pathway. Specifically, the
causal association betwgen X, and Y is ignored, while a
shortcut X, --» X,, — Y is activated. As a result, X., which
was originally causal for Y, establishes a spurious causal
relationship with Y.

In scenarios where Y is correctly identified, the causal
influence of X, is predominant, and the association between
X, and Y is typically overshadowed. However, when Y is
gansformed into Y, the situation reverses. The noisy label
Y directs the model to focus on features that are causally
associated with noise labels, causing the model to overem-
phasize X,,. This shift introduces spurious associations that
distort the model’s learning process. Features within X,
which present local consistency across samples of different
categories (Y and Y), misleading the model to capture its
causal significance with Y. Consequently, models trained on
noisy data form erroneous shortcuts, bypassing the real causal
pathways established by X..
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Fig. 4: The Local Consistency from MALTLS-22 Dataset.
The horizontal axis represents the top-20 or last-20 important
features. The vertical axis represents the number of category
combinations with similar distribution.

B. Instantiated Local Consistency

Previously, we discussed how local features with similar
distributions can promote undesired associations in the model,
thereby propagating bias. In this section, we formally define
this phenomenon as local consistency and further instantiate
it across traffic categories in network data. Intuitively, local
consistency arises from the fact that different types of net-
work traffic are often generated under similar conditions [13],
[14]. For example, IoT devices sharing the same firmware or
protocols may produce comparable traffic patterns, regardless
of whether the activity is benign or malicious. Furthermore,
the evolution of attack strategies has also enabled adversaries
to mimic benign behaviors, such as embedding malicious
payloads in encrypted traffic [50], [53], making it ever more
challenging to distinguish between classes in feature space. By
incorporating label noise learning in multi-class scenarios, our
approach effectively addresses local consistency both within
malicious categories and between benign and malicious traffic.
This strategy meets the challenges posed by increasingly
complex network attacks and facilitates more fine-grained
detection.

To illustrate this phenomenon, we analyze the MALTLS-
22 dataset. As shown in Fig. 3, different attack types exhibit
almost identical distributions across certain features. indicating
that even when two traffic samples demonstrate high local
consistency, an ideal classifier should still be capable of
categorizing them into distinct classes. To further examine
the pervasiveness of local consistency, we conduct a detailed
analysis using the same dataset. Specifically, we measure the
similarity of feature distributions across categories using the
Kolmogorov-Smirnov (KS) test at a 0.05 significance level.
Feature importance is determined via a random forest classi-
fier, and both the top-20 and bottom-20 features are evaluated.
The results presented in Fig. 4 show substantial local con-
sistency, particularly among the last-20 features, where over
80 category combinations share similar distributions. Notably,
even the top-20 most important features, typically expected to
provide strong discriminative power, exhibit significant overlap
across categories. This high degree of local consistency, even



among important features, increases the likelihood that noisy
samples can mislead the model into learning naive patterns
that fail to capture the true decision boundaries. Consequently,
the model may struggle to associate them with their correct
categories, resulting in degraded performance.

Takeaway. Through the above causal analysis and
instantiation of local feature consistency, we have de-
veloped a comprehensive understanding of how noisy
labels impact model performance. From a causal per-
spective, the interaction between causal and non-causal
features explains how noisy labels distort true causal
pathways, leading to spurious associations that mis-
guide learning. Local consistency, arising from shared
feature distributions across categories, further ampli-
fies this problem by encouraging the model to learn
naive, non-discriminative patterns. Empirical analysis
of real-world network traffic confirms that even high-
importance features can exhibit substantial overlap
across classes. These findings underscore the impor-
tance of disrupting local consistency and suppressing
spurious associations to improve the robustness of
intrusion detection models in noisy environments.

C. Motivation for CoLD

Noisy labels cause models to overemphasize partial features
with local consistency across categories, leading to spurious
associations and degraded performance. To mitigate the ef-
fects of local consistency, an intuitive approach is to create
multiple views of the feature space for the model, rather than
relying solely on a single input [13], [31]. Therefore, we
propose partitioning the raw feature set into multiple subsets,
akin to augmentation strategies in image processing such as
cropping [59]. These multiple views help isolate the pure
causal effects from the misleading associations introduced
by locally consistent features. Considering that the cropped
image patches remain continuous while the correlations be-
tween different traffic features may be insufficient, we reorder
the input features before partitioning to enhance the inter-
relationships within the subsets. By employing joint self-
supervised learning across these partitions, the model diver-
sifies the latent representations and enhances its ability to dis-
tinguish true causal associations from spurious ones. Guided
by the observed labels, each subset is analyzed for its distinct
causal impact, enabling robust differentiation between causal
and non-causal associations, thereby identifying noise labels.
This methodology strengthens the reliability of IDS models
by maintaining clear categorical distinctions and mitigating
performance degradation in noisy scenarios.

Takeaway. The motivation behind CoLD lies in ad-
dressing the spurious associations introduced by noisy
labels and local consistency. By reordering and par-
titioning features to create multiple subsets, CoLD

enables the model to learn fine-grained and robust
representations. This multi-view strategy, combined
with self-supervised learning, enhances the model’s
ability to distinguish true causal signals from noise,
ultimately improving the reliability and robustness of
network intrusion detection in noisy environments.

IV. METHODOLOGY
A. Preliminary

Problem Setting. Let x € R? be a network traffic flow
comprisin§ d dimensions of features. Each flow in dataset D =
{(x4, yz)}f:)l1 associates with an annotation y; € {1,2,..., K},
where |D| is the total number of flows and K denotes the
number of categories. In practice, obtaining pure annotations
is challenging and some flows may be mislabeled, i.e., y; may
be a noise label. The goal of noisy label learning is to train
a robust model M(6) : R? — RX, that is resilient to the
noisy labels in training data and generalizes effectively on
clean testing data. Generally, M (6) can be expressed as E o G,
where E is an encoder network that maps the input x to its
latent representation and G generates predictions coherently
based on the representation.

Overview of CoLD. Fig. 5 illustrates our proposed CoLD,
designed to enhance the robustness of network intrusion
detection systems by effectively filtering noisy labels from
datasets. Building on the investigation outlined in Section III,
CoLD identifies noise labels by analyzing the divergence of
causal associations between multiple representations and their
potential true labels. The framework consists of three main
components: Feature Reordering, Local Joint Learning, and
Causal Collaborative Denoising.

(1) Feature Reordering reorganizes features into subsets
with reordered adjacency relationships. The process leverages
inter-relationships among input features, grouping those with
similar semantics to enhance spatial correlation. Through
subset partitioning, each subset maximizes local correlations,
thereby retaining essential semantic information. It is assumed
that the model typically has incompletely coincident feature
subsets, but some level of overlap between feature subsets is
also allowed. As visualized in the diagram with connected
nodes, given an input traffic sample with several features
x = {fy,fo,f3,fy,f5, {6, f7}, its features are first reordered
based on Pearson correlation coefficients, where f; denotes
the i-th feature of sample. After that, the reordered sample is
partitioned into a series of subsets x = {1, 2, x3}, where
ry = {fl,f6,f3}, T = {fg,f5,f2}, and I3 = {f27f4,f7}, for
subsequent processing.

(2) Local Joint Learning focuses on learning noise-
independent representations through local alignment and
global reconstruction operations. The high-level idea of Local
Joint Learning is to disrupt the local consistency and obtain
a global representation that is causally related to the potential
true label. It should be noted that the process is self-supervised,
thus suppressing spurious associations from noisy labels and
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supervised training to disrupt local consistency, encouraging the model to learn fine-grained and robust representations. Causal
Collaborative Denoising purifies the dataset by using a Gaussian Mixture Model (GMM) to analyze the divergence of causal
associations between multiple representations and their potential true labels. This process identifies and filters noisy samples,
resulting in a purified dataset for training a noise-resilient classifier.

facilitating the learning of deep semantics of traffic flows.
Specifically, each subset is fed into a shared encoder to obtain
local fine-grained representations. These representations are
used to reconstruct the sample through a decoder and generate
a global representation by aggregating local representations.
Guided by local alignment loss (£;,) and global reconstruction
loss (Lg4r), we could obtain a robust encoder to map the input
X to its latent representation.

(3) Causal Collaborative Denoising identifies noisy labels
by evaluating causal associations between feature subsets and
potential true labels using a Gaussian Mixture Model (GMM).
The GMM models causal associations among multiple repre-
sentations of the same sample and assigns a potential label for
each subset, enabling the quantification of causal divergence
to detect label noise. To this end, we propose the Causal
Divergence Metric, which measures the probability of noise
transfer between labels of multi-subsets and the observed label.
Samples with significant causal divergence are regarded as
noisy. Unlike methods [13], [31] that rely on raw distances
or confidence scores, our approach leverages fine-grained
representation modeling to uncover causal divergences, ensur-
ing high accuracy in identifying and isolating noisy labels.
Following dataset purification, the resulting purified dataset
minimizes the impact of noise and facilitates robust training
of the final classifier.

B. Feature Reordering

In noisy label learning, local consistency can mislead
the model into focusing on non-causal features, establishing
associations with noisy labels, and propagating biases. To
mitigate the negative impact of these non-causal associations,
we propose dividing the original feature set into subsets and
performing representation learning on these subsets. Before
partitioning, we reorder the features to exploit the inter-
relationships among input features, arranging those features

with similar semantics together. This reordering endows the
sample with spatial correlation, ensuring that each subset
maximizes local feature correlation and retains meaningful
information.

We are motivated to employ the Pearson correlation coeffi-
cient for feature reordering due to its effectiveness in quanti-
fying linear dependencies among features. In many network
traffic datasets, a substantial degree of feature redundancy
is attributable to linear or near-linear correlations [48], [60],
[61]. Furthermore, the Pearson correlation coefficient is com-
putationally efficient and robust to scale differences among
features, making it practical for high-dimensional settings. By
capturing these relationships, Pearson correlation enables us
to efficiently group and partition relevant features, crucial for
mitigating the propagation of noise and bias in downstream
learning. Specifically, we compute the Pearson correlation
coefficients between features to construct a feature correlation
matrix FCM € R4, where d is the dimensionality of the
feature set. Each element of F'C'M is calculated as:

FCM,; = o
J

Vi,je{1,2,...,d}, (1)

Jf,;
where Cov(x(f;), x(f;)) is the covariance between feature f;
and feature f;, oy, and oy, are the standard deviations of feature
f; and feature f;, respectively.

Each element F'C'M;; represents the absolute value of the
Pearson correlation coefficient between two features. To group
the most correlated features together, we construct a Maximum
Spanning Tree (MST) that maximizes the total weight of all
edges in the graph. Feature ordering is then determined by
performing a Depth-First Search (DFS) traversal on the MST,
starting from the feature pair with the highest correlation.
This approach ensures that the resulting subsets maximize
correlations with adjacent features, providing a robust basis
for subsequent learning tasks.



C. Local Joint Learning

The high-level idea of Local Joint Learning is to disrupt
the local consistency and derive a global representation that
is causally related to the potential true label. The Local Joint
Learning is self-supervised, thus avoiding interference from
noisy labels and facilitating the learning of deep semantics of
traffic flows.

We consider disrupting local consistency on two levels:

original feature space and latent representation space. In the
original space, we generate a perturbed version of the traffic
sample as the model input through the feature obfuscation
technique. Given a feature-reordered sample x;, we can easily
construct a series of subsets {x; 1,%;2,...,2;nm}, where M
is the number of feature subsets. This partitioning is similar
to image cropping in image processing [59], transforming
the representation learning problem into a multi-view learn-
ing task where each subset represents a local view of the
full feature set. Theoretically, for traffic flows of the same
category, the local view provided by each feature subset
should assist the model in learning similar representations, as
they embody similar semantics. However, noisy labels conflict
with the true semantics and induce locally consistent subsets
to establish causal associations with them, which should be
avoided as much as possible. To counter this, we propose
the Local Joint Learning method that comprehensively learns
the true semantic representations of samples from multiple
perspectives. This approach aims to mitigate the influence of
locally consistent features in the latent space and provide a
reliable basis for identifying label noise. Specifically, joint
learning is conducted in a self-supervised manner, modeling
the relationships between different subsets of a sample through
local alignment. Global reconstruction is employed to intro-
duce global information into subsets’ representation, thereby
obtaining label-independent robust representations.
Feature Obfuscation. According to Section III-B, local con-
sistency indicates that the feature subsets of different traffic
flow categories often share a similar distribution. Therefore,
we aim to increase the diversity of local features through
feature obfuscation. To achieve this, we apply random masking
to the flow x; along the feature dimension. The mask vector
m is randomly sampled from a Bernoulli distribution with a
predefined probability parameter J. Subsequently, the sample
x; from the same batch as x; and the mask vector m are
used jointly as inputs. The perturbed version of each sample
is generated as follows:

X =m0ox; + (1 -m)ox;, 2)

where ©® denotes element-wise multiplication. The perturbed
sample X; is then processed by an encoder to transform it into
several subset representations, and a corresponding decoder
reconstructs the original input data.

Local Alignment. Aligning representations of each subset
ensures that the extracted representations are consistent within
their local neighborhoods, thus mitigating the impact of local
consistency features on the model. To achieve this goal, we

feed each feature subset into a shared encoder E to obtain
the corresponding local latent representations. Subsequently,
by aligning these feature representations of each subset, we
encourage the encoder to derive representations from multiple
local views, better exposing the true semantics and eliminating
confounding features. Specifically, for multiple subsets of X;,
the task could be turned into a multi-view representation
learning problem. Therefore, we design a local alignment loss
function £;, based on contrastive learning [62].

Given a sample from a single feature subset with input x; ;,
which represents features of the j-th subset in the ¢-th sample,
the encoded latent representation of this subset is denoted as
z;,; = E(x;;). The positive pair is defined as the feature
representations {z; ;,2; ,} from different subsets of the same
sample, while all other samples are considered negative pairs.
The local alignment loss is shown as follows:

exp (sim (2 j,2;p) /T)
Sy Sgly exp (Sim (25, Znq) /T)
3)
where sim (z; ;,2;,) measures similarity between the latent
representations z; ; and z; ;, here dot product is employed due
to its stability. z,, , denotes all subsets from other samples that
are treated as negative pairs. 7 is an adjustable temperature
parameter. N and M denote the total number of samples in
the batch and the number of feature subsets, respectively. £,
encourages the encoder to learn fine-grained representations
by leveraging multiple local views of the same sample.
Global Reconstruction. We hypothesize that an effective
local representation should be a partial sampling of the
global feature, which should reflect as much as possible the
overall structure and relationships of the global feature. To
achieve this, we propose a global reconstruction loss. This
loss minimizes the distance between the reconstructed local
features and the original input global features. For a sample
X; , the reconstructed version from subset j is represented
as X;; = D(z;;) € R?, where D is a decoder. The global
reconstruction loss is defined as:

1 N M
Lor = 5737 2 D %igs il 2. )

i=1 j=1

N M
ﬁla:_zzlog

i=1 j=1

To ensure compatibility, the decoder’s output layer is ex-
tended to match the dimensions of the reconstructed local
features with those of the global features. Finally, the overall
objective of Local Joint Learning combines local alignment
and global reconstruction losses:

L="Lig+ Ly (5)

By minimizing this objective, the encoder is encouraged to
learn discriminative features from multiple local perspectives
while ensuring global perception, thereby obtaining label-
independent true semantic information. For a single sample
x; with a given subset number M, we can obtain M rep-
resentations z; j,j € [1,M] from all subsets based on the



encoder output. We then aggregate the representations of all
feature subsets to produce an aggregated representation z; for
collaborative reasoning. The process can be expressed as:

zio = agg(zi1,2i2,....Zi ), j € [1, M], (6)

Here, agg indicates the aggregation function, which can be
MEAN, SUM, CANCAT, or other methods. A comparison of
these aggregation methods is provided in Section V-C. Once
the global representation is obtained, it is utilized for causal
collaborative inference alongside multiple subset representa-
tions to identify noisy labels.

D. Causal Collaborative Denoising

Existing dataset purification methods, such as [13], detect
noisy labels by measuring the distance between a sample
and its confidence sample. However, this approach is limited
because obtaining a reliable confidence sample is challeng-
ing, especially in high-noise scenarios. To overcome these
limitations, we leverage a Gaussian Mixture Model (GMM)
to establish the causal relationship between the multi-view
representations of a sample and its potential label.

GMM is well-suited for this task as it can effectively
model complex distributions of network traffic samples, which
often exhibit class overlap and diverse attack behaviors.
Moreover, GMM provides soft probabilistic assignments for
each sample rather than hard binary decisions, enabling the
model to capture subtle distinctions between clean and noisy
samples. This capability is crucial for accurately identifying
the potential causal relationship between feature subsets and
their assigned labels. Samples that exhibit significant causal
divergence-meaning they cannot be well characterized by the
Gaussian component corresponding to their label-are identified
as potentially having noisy labels.

To model the distribution of each representation z; ;, we
first map it through a linear head network denoted by H,
resulting in a transformed representation z; ; = H(z, ;).
This transformed representation is then modeled using the
GMM. To facilitate this, we introduce discrete latent vari-
ables y € {1,2,..., K'}, which are responsible for assigning
the observations z; ; to one of the K mixture components.
Consequently, the GMM operates in an unsupervised manner,
defining the probability distributions over the transformed data
points z; ;:

TN (Zij | 1k, ok)
Sy mN Za | s on)
where 7, represents the weight of the k-th Gaussian compo-
nent, satisfying Zszl 7 = 1. N (2 |pw, ox) is the proba-
bility density function of this component with mean p; and
covariance matrix o. Each representation z; ; is assigned a
predicted label y; ; = argmaxy 7; k. thus the labels from
multiple feature subsets are treated as multi-labels for the
sample x;.

In an ideal scenario where all samples have clean labels,
the transformed latent vector z; ; would be identical to the

(7

Yingk =

annotation y;, and the parameters pj and oy can be solved
through a standard Expectation-Maximization (EM) algorithm.
However, in the presence of noisy labels, z; ; is expected to be
estimated in an unsupervised manner, independent of label y;.
To bridge this gap, we use predictions %; from a downstream
classifier to update parameters of the linear head 6, effectively
linking y; and z; ;. When the process is controlled by cross-
entropy loss, it can be written as:

0} = min [ Z 7, log y] . @®)

As mentioned in Section III-B, the subset with local con-
sistency will establish associations with the noisy label under
its guidance, whereas the other subsets will maintain relative
stability. By establishing the multiple causal associations be-
tween the latent representation z; ; and clustering label y; ;, we
employ collaborative inference to identify incorrectly labeled
samples. Subset representations influenced by noisy labels tend
to form conflicting causal associations. Inspired by this, we
leverage the divergence in causal associations across subsets to
detect potentially mislabeled samples. If the causal association
of a subset is significantly different from others, it indicates
that the sample may be noisy. To identify these inconsistencies,
we propose a Causal Divergence Metric (CDM) to quantify the
probability of noise transfer between a sample’s multi-label
¥s,; and the original observed label y;.

CDM(x;) = = ZP Uij # vilxi), )

where P(y;; # y;|®;) signifies the transition probability
between the cluster label and the observed label, indicating
their divergence of causal associations. We use this metric to
determine if the sample x; has been mislabeled. For a binary
probability model, CDM(x;) can be simplified to:

CDM(x;) = Z (Gi,j # vilxi)- (10)

Here, 1(-) is an indicator function that returns 1 if the
condition is true, otherwise 0. By comparing the divergence
metric results with a predefined threshold e, we identify
samples with noisy original labels, enabling their isolation
from the dataset. In this paper, we adopt a rigorous evaluation
by setting ¢ = 0, ensuring that a sample x; is retained only if
all its subsets are causally associated with the observed label.

D, + D\ {x; : CDM(x;) > €}. (11)

Samples with lower causal divergence are selected to con-
struct a clean subset of data. This purified dataset D, is then
used to train a downstream classifier, ensuring the model
learns from accurate and representative samples. By isolating
noisy labels and leveraging clean data, the classifier achieves
significantly improved robustness and accuracy in network
intrusion detection.



In summary, CoLD is a collaborative label denoising frame-
work specifically designed to enhance the robustness of data-
driven IDS models in noisy environments. The complete
algorithm is outlined in Algorithm 1. CoLD comprises three
integrated components: Feature Reordering, which reorganizes
input features to optimize semantic coherence and prepare
meaningful subsets for learning; Local Joint Learning, which
applies self-supervised strategies to disrupt local consistency
and extract fine-grained and robust representations; and Causal
Collaborative Denoising, which utilizes GMM along with
a Causal Divergence Metric to identify and isolate noisy
labels. By combining these components, CoLD effectively
filters mislabeled samples and generates a purified dataset for
downstream classifier training, enabling the construction of
high-performance, noise-resilient IDS models.

V. EXPERIMENTS ON BENCHMARK DATASETS
A. Experimental Setting

TABLE I: Dataset Description.

Dataset ‘ CICIDS-2017 ‘ MALTLS-22
Benign 32.50% 36.94%
Mal. (Head-3) 44.90% 12.33%
Mal. (Tail-3) 9.70% 4.10%
Mal. (Others) 12.9% 46.63%
# of Classes | 9 | 23
Gini coefficient | 0.82 | 0.84

Mal. is the abbreviation of Malicious.

Datasets. In this work, we use a refined version of CICIDS-
2017 [14] and MALTLS-22 [13] to evaluate the performance
of the proposed CoLD. The reason for choosing these two
datasets is that they are widely used for intrusion detection
tasks [4], [5], [6] and noisy label learning [13]. They cover
diverse attack categories, which facilitates the construction of
a more challenging noise environment. In real-world scenarios,
benign traffic significantly outweighs malicious traffic, leading
to an imbalanced distribution of classes within the dataset. This
disparity can be quantified using the Gini coefficient, which
is calculated as:

k

GiniCo. = 1— Y p?,
=1

(12)

where p; represents the probability of each class within the
dataset. A higher Gini coefficient signifies greater imbalance,
closer to 1, whereas a coefficient closer to O indicates a
more balanced class distribution. The dataset descriptions
are summarized in Table I. For simplicity, we present the
proportion of benign traffic and group the malicious categories
into Head-3, Tail-3, and Others. The data is split into training
and testing sets using an 8:2 ratio. Controlled proportions of
label noise are introduced only in the training set, while the
test set remains clean and unchanged for evaluation.

The MALTLS-22 dataset [13] contains 22 types of realistic
encrypted malicious traffic. The traffic was captured over four

Algorithm 1 CoLD: Collaborative Label Denoising

Input: Dataset D = {(xi,yi)}gll, number of categories
K, number of feature subsets M, mask probability d,
threshold e, number of iterations 7', encoder network e,
decoder network d, projection head h, classifier g.

Output: Purified dataset D,, encoder network e.

Feature Reordering

1: compute feature correlation matrix FCM € R4¥4:
FCM;; = S200X0) i e (1,2, d}.

Ot *Of;

2: construct Maximum Spanning Tree (MST) using FCM.

3: reorder features through depth-first search (DFS) traversal
of MST.

Local Joint Learning

4: fort=1to T do

5:  for each sample x; € D do

6: generate perturbed version of x;: X; = moOx;+ (1—
m) ® x;, where m ~ Bernoulli(d).

7: partition X; into M subsets {z;1,%;2,...,%im}
based on feature order.

8: encode latent representations: z; ; = e(x; ;), where
Jj €10, M].

9: align local views using local alignment loss:

exp(sim(zi,j,2i,p)/T)

Lo = — 2511 ZJAL log SN

10: reconstruct global features from local views:
%;; = d(z;;), where j € [0, M].

11: compute reconstruction loss:
Lor = w7 Licr Ly |1 ill2-

12: update encoder and decoder parameters via:
L=2Lig+ Lgr.

13: aggregate representations of subsets to get global
representation: z; o = agg(z;1,%;2,...,2; ), where
Jj €1, M].

14:  end for

15: end for

Causal Collaborative Denoising

16: for each sample x; € D do

17:  for each subset representation z; ;,j € [1, M] do

18: project to latent space using h: z; ; = h(z; ;)

19: fit Gaussian Mixture Model (GMM) and compute

. e N (Zi s,
osterior probabilities: 7, i = —r& LR .
P P Visjok iy N (g psor)

20: obtain cluster labels: y; ; = arg maxy, v; j k
21:  end for
22:  predict label for z; ¢ using g: 7; = g(z;0)
23:  update head parameters via cross-entropy loss:
» = ming, f_ ZZJ\L1 y;logy;
24:  computer causal divergence:
CDM(x;) = 47 3200 P(ij # vilx:)
25:  remove noisy samples to obtain a purified dataset:
D, < D\ {x; : CDM(x;) > €}
26: end for

n=1 g1 exp(sim(zi j,2n,q)/T)’
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Fig. 6: Example of Label Conversion Matrices with Noise
Ratio of 40%.

years from 2018 to 2021 and labeled with precise threat
intelligence to ensure ground truth. Within this dataset, all
traffic was encrypted with TLS, resulting in similar behavior
across local features. From Table I, it can be seen that the
benign traffic and Head-3 malicious traffic account for nearly
50%, which reveals its imbalance. We have maintained the
original data distribution in the experiments.

The updated CICIDS-2017 dataset [14] has been refined by
removing errors and inconsistencies. In its original form, over
80% of the samples are labeled as benign, making it unsuitable
for evaluating robustness under noisy conditions. In such
skewed distributions, a naive model could achieve deceptively
high accuracy by predicting all samples as benign. To reduce
this bias, we downsampled dominant classes and excluded
those with fewer than 1000 instances. This filtering process
resulted in a representative subset containing 9 categories,
with a class distribution more closely aligned with the Gini
coefficient observed in MALTLS-22.

Noise Setting. Following established setups in prior noise
modeling studies [13], [31], [37], we implement two distinct
label corruption schemes: symmetric and asymmetric noise.
In the symmetric noise setting, label corruption is applied
uniformly across both benign and malicious samples. In
contrast, the asymmetric noise setting introduces corruption
exclusively within the malicious class. This setting simulates a
more realistic adversarial scenario in which malicious behavior
is intentionally disguised as benign. Fig. 6 presents the label
transition matrices under a 40% noise ratio for both settings.
The horizontal axis denotes the ground truth labels, while the
vertical axis represents the observed noise labels. The first row
and column correspond to benign traffic, and the remaining
entries represent various types of malicious traffic. In the
left figure, 40% of benign samples are randomly mislabeled
as various types of malicious traffic, and vice versa. In the
right figure, 40% of malicious samples are mislabeled as
benign, while all benign labels remain unchanged. To enable
comprehensive evaluation, we vary the noise ratio across
{10%, 20%, 40%, 50%, 60%, 80%}.

Baselines. We consider three categories of work for compar-
ison: intrusion detection methods, robust training methods,

TABLE II: Summary of Selected Compared Methods.

Method
ACID [5], CLEID [6]

Decoupling [36], Co-Teaching [27],
Co-Teaching+ [28]

Dataset Purification | FINE [31], MORSE [18], MCRe [13]

Category |

Intrusion Detection |

Robust Training

and dataset purification methods. Representative works are
summarized in Table II, which includes six state-of-the-art
noisy label learning methods [36], [27], [28], [31], [18], [13]
and two of the latest intrusion detection models [5], [6]. Here
is a brief introduction to them.

e ACID [5] utilizes supervised adaptive clustering to learn
cluster centers that serve as extensions of the input
features, which enhances the robustness against outliers;

o« CLEID [6] leverages data augmentation and self-
supervised contrastive learning to extract semantic infor-
mation of different traffic types, thereby enhancing the
model’s robustness;

o Decoupling [36] updates the parameters based on samples
that receive different predictions from two classifiers;

¢ Co-Teaching [27] trains two networks with distinct initial
states simultaneously and prompts them to select clean
samples from each other;

¢ Co-Teaching+ [28] is similar to Co-Teaching, but it has
a greater tendency to select samples of disagreement for
another network;

« FINE [31] filters noisy labels by employing eigen decom-
position of their gram matrix in the latent space;

« MORSE [18] is a representative semi-supervised noisy
learning work. It takes possibly incorrectly labeled data
as unlabeled data and thus avoids their potential negative
impact on model training.

e« MCRe [13] is a framework for handling noise malicious
traffic based on self-supervised representation learning
and distance measurement, capable of filtering samples
with noise labels to purify datasets.

Model Structure and Optimizer. In Local Joint Learning,
the encoder consists of a two-layer fully connected network,
with each hidden layer having the same dimensionality as
the input features. The decoder adopts a symmetric structure
to reconstruct the original input. For Causal Collaborative
Reasoning, a linear head is appended to the encoder, followed
by a fully connected layer that serves as the classifier. Both
training stages utilize the Adam optimizer with an initial
learning rate of 0.001 and a batch size of 128. All experiments
were conducted on NVIDIA RTX 3090 GPUs and repeated
three times using different random seeds. The reported results
represent the average metrics across these three trials. The
code will be released soon.

Evaluation Metric. To evaluate the performance, the F1-score
is selected as the evaluation metric. Considering the imbalance
of network traffic datasets, the macro measurement is adopted.
As the experiments of the synthetic noisy datasets are repeated



three times, the mean and standard deviation of the test F1-
score are calculated. With the detection result and the ground
truth of one testing dataset, we can calculate the number of true
positive samples (TP), the number of false positive samples
(FP), and the number of false negative samples (FN). Then, the

three metrics can be computed as follows: precision = -

9 . " TP+FP°
_ _TP _ __ 2Xprecision Xreca
recall = TP+FN’ and Fl-score = precision+recall *

Paired t-test. Following previous work [18], we use a paired
t-test to measure the statistical significance of performance
comparison between MCRe and CoLD. Specifically, given
two sets of Fl-score obtained by MCRe and CoLD, we first
compute their difference, i.e., Diff = Flcorp — Flymcre. With
the Diff, we set the null hypothesis as Hy : E(Diff) < 0
and compute the p-value. If the p-value is smaller than a
threshold (e.g., 0.05), we can reject Hy and conclude that
CoLD outperforms MCRe with statistical significance.

B. Comparison Results

Tables IIT and IV present results on MALTLS-22 dataset
and CICIDS-2017 dataset, respectively. From the results, the
following observations and conclusions can be drawn:

(1) Overall, model performance consistently declines as the
level of label noise increases. For example, under the ‘None’
setting (i.e., 0% noise), ACID and CLEID achieve 92.43% and
91.42% performance on the MALTLS-22 dataset, respectively.
However, when 20% symmetric noise is introduced, their per-
formance drops significantly to 77.46% and 60.61%. Robust
training methods show minimal degradation at lower noise lev-
els, but performance deteriorates rapidly when noise exceeds
50%. In contrast, dataset purification methods exhibit greater
resilience to high levels of noise. Notably, MCRE and MORSE
maintain robust performance even at a 60% noise level. These
results highlight the effectiveness of dataset purification in
mitigating the impact of label noise, particularly in intrusion
detection tasks. This observation provides strong empirical
motivation for our proposed CoLD framework, which builds
upon and extends these strengths to further improve robustness
in noisy environments.

(2) CoLLD demonstrates superior and consistent performance
across a variety of settings, highlighting its resilience to label
noise. Notably, its robustness becomes increasingly evident
as noise levels rise. For instance, even under 60% symmet-
ric noise, CoLD’s performance drops by only 3.4% on the
MALTLS-22 dataset and 1.6% on the CICIDS-2017 dataset
compared to the 20% noise setting. This stability is primarily
attributed to the carefully designed Local Joint Learning
module, which disrupts local consistencies in the feature
space, thereby reducing the model’s reliance on spurious, non-
causal associations induced by noisy labels. In addition, the
Causal Collaborative Denoising module enhances robustness
by analyzing causal associations between representations and
latent true labels. Through this mechanism, CoLD identifies
and filters out samples with significant causal divergence,
resulting in more accurate and noise-resilient model training.

(3) Intrusion detection techniques such as ACID [5] and
CLEID [6] exhibit subpar performance in the presence of

label noise. When exposed to the MALTLS-22 dataset with the
symmetric noise ratio escalating from 20% to 40%, ACID and
CLEID experience performance drops of 15.75% and 53.68%,
respectively. This notable decline underscores the significant
challenge that label noise poses to intrusion detection models,
highlighting the limitations of current robust intrusion detec-
tion technologies in handling such scenarios. Of particular
concern is the rapid performance deterioration observed in
CLEID, likely stemming from its use of mixups for gener-
ating augmented samples. In the presence of label noise, the
distinctions between different categories will become blurred,
potentially exacerbating the propagation of errors induced by
label noise throughout the model’s decision-making process.

(4) Robust training methods designed for label noise, such
as Decoupling [36], Co-Teaching [27], and Co-Teaching+ [28],
aim to prevent models from overfitting to noisy labels by
designing robust loss functions and training strategies. While
these methods outperform traditional robust intrusion detection
methods [5], [6] in low-noise settings, their performance dete-
riorates significantly in high-noise environments. For instance,
on the CICIDS-2017 dataset, the Fl-score of Co-Teaching+
drops from over 99% at a 20% noise ratio to less than 10%
when the noise ratio reaches 60%. These results suggest that
such methods struggle to extract effective domain knowledge
and lack positive feedback mechanisms in high-noise sce-
narios, resulting in ineffective parameter updates and limited
generalization capabilities. Consequently, these methods face
significant challenges in their application to network intrusion
detection, particularly in noisy real-world environments.

(5) FINE [31] detects noisy labels by leveraging feature
decomposition and representation similarity, achieving com-
petitive performance in high-noise settings. We guess the
reason is that the main eigenvector amplifies the difference
between clean and noisy samples, making them easier to
identify and remove. While FINE has shown success in image
recognition tasks, its performance in traffic classification is
limited due to fundamental domain differences. Unlike im-
ages, network traffic lacks spatial structure and often exhibits
local consistency, where features from different classes share
similar distributions. This reduces the separability of feature
vectors and weakens the effectiveness of similarity-based noise
detection. As a result, FINE struggles to maintain stable
performance in the context of network traffic data.

(6) MORSE [18] utilizes a pre-trained model on noisy
datasets to distinguish between noisy and clean samples, which
relies on a predefined splitting ratio. It then applies a semi-
supervised learning approach for classification. For fairness in
comparison, we set the splitting ratio to match the actual noise
ratio. The results show that MORSE maintains relatively stable
performance across different scenarios. We believe that its
semi-supervised design enables better utilization of all samples
for representation learning, giving it a significant advantage
over FINE, which directly filters out suspected noisy samples.
However, the pre-trained model in MORSE can be easily
misguided by noisy labels, leading to inaccurate noisy sample
segmentation. In contrast, CoLD employs a self-supervised



TABLE III: Results on MALTLS-22 Dataset.

Noise Type | None | Symmetric | Asymmetric
Noise Ratio ‘ 0% ‘ 10% 20% 40% 50% 60% ‘ 10% 20% 40% 50% 60%
ACID 92.43/1.83 | 81.51/3.21 77.46/4.55 61.71/3.84 31.74/4.02 4.38/1.32 | 80.01/1.85 79.63/2.18 69.48/3.65 39.30/1.78 2.46/0.19
CLEID 91.42/1.12 | 80.98/0.02 60.61/1.02 6.93/1.74  2.73/0.14  2.38/0.03 | 85.39/0.05 60.71/1.25 4.93/0.54 3.42/0.35  2.35/0.03
Decoupling | 91.30/0.62 | 89.12/0.79 88.11/1.13 72.66/2.02 31.73/2.35 3.01/1.14 | 89.54/0.43 90.00/0.37 75.18/0.90 38.37/4.04 3.54/0.42
Co-Teaching | 93.47/0.16 | 92.85/0.17 87.26/0.19 47.50/0.80 7.95/0.53  2.85/0.15 | 92.57/0.07 90.75/0.29 73.25/0.64 32.98/4.74 2.66/0.11
Co-Teaching+ | 91.12/0.31 | 89.49/0.26 89.18/0.56 74.73/0.60 35.50/1.64 3.50/0.12 | 90.33/0.15 89.23/0.53 86.59/1.71 44.86/5.47 3.02/0.06
FINE 75.76/0.13 | 64.97/1.35 65.61/0.54 65.37/0.46 57.21/0.27 46.91/1.54 | 65.43/0.01 64.96/0.51 61.69/1.00 59.19/1.54 59.04/1.04
MORSE 82.04/1.46 | 77.91/0.13 76.33/0.71 75.71/0.13 74.39/0.85 74.71/1.20 | 79.36/0.09 77.63/1.90 74.13/0.28 73.92/2.77 70.13/1.09
MCRe 88.49/3.18 | 87.73/1.94 88.19/0.68 87.03/0.44 86.96/0.38 86.07/0.82 | 85.66/1.39 85.56/0.73 85.49/0.64 84.97/0.83 84.37/1.13
CoLD (Ours) 92.97/0.32 | 93.11/0.19 92.14/0.53 91.82/0.42 90.07/0.67 88.75/0.76 | 93.55/0.34 91.91/0.35 90.84/0.38 88.08/0.40 86.48/0.65
u p=0.043 | p=0.017  p=0.000  p=0.000  p=0.000  p=0.000 | p=0.002 p=0.000  p=0.000  p=0.003  p=0.008
TABLE IV: Results on CICIDS-2017 Dataset.
Noise Type | None | Symmetric | Asymmetric
Noise Ratio ‘ 0% ‘ 10% 20% 40% 50% 60% ‘ 10% 20% 40% 50% 60%
ACID 99.27/0.45 | 97.13/2.88 97.03/0.83 88.01/1.68 52.27/8.43 5.56/0.27 | 99.15/2.13 98.05/0.64 88.96/3.27 24.29/2.34 5.67/0.23
CLEID 96.59/0.17 | 86.82/6.46 81.25/1.89 58.50/0.74 11.56/0.26 5.88/0.12 | 93.83/0.26 80.86/1.45 34.66/1.78 10.62/1.45 7.46/0.80
Decoupling | 99.01/0.16 | 98.76/0.18 98.61/0.67 95.79/0.85 30.60/4.26 5.82/0.12 | 98.99/0.22 98.83/0.22 94.88/1.26 46.18/1.58 6.02/0.21
Co-Teaching | 99.74/0.33 | 99.40/0.29 99.32/0.13 72.30/1.36 30.83/1.76 30.26/2.45 | 99.41/0.12 98.34/0.11 85.75/2.35 45.98/5.35 6.17/0.61
Co-Teaching+ | 99.70/0.48 | 99.43/0.52 99.35/0.12 98.15/0.52 41.48/3.53 6.61/5.65 | 99.58/0.43 99.19/0.17 97.10/0.43 54.22/5.47 6.29/0.31
FINE 88.54/0.21 | 80.87/0.38 78.85/0.23 81.88/0.24 82.45/0.63 77.93/0.38 | 85.15/0.11 84.27/0.21 74.25/1.03 88.99/1.41 85.13/2.42
MORSE 98.48/0.84 | 95.06/0.47 90.25/0.52 82.04/0.44 77.34/1.12 72.11/1.23 | 89.32/0.51 85.55/0.69 82.82/1.38 74.91/2.17 74.60/1.14
MCRe 98.86/1.30 | 98.81/1.01 99.13/0.10 98.97/0.32 98.99/0.22 96.13/0.41 | 97.90/0.92 97.06/0.34 93.66/0.13 90.59/1.04 83.25/2.66
CoLD (Ours) 99.71/0.36 | 99.51/0.23 99.31/0.18 98.98/0.21 99.07/0.31 97.76/0.57 | 99.55/0.31 99.48/0.23 98.32/0.34 96.67/0.76 95.43/0.97
u p=0.128 | p=0.130 p=0.029 p=0445 p=0.132  p=0.002 | p=0.021  p=0.000 p=0.000 p=0.000  p=0.003
TABLE V: Comparision Results with 80% Noise. divergence to identify noisy labels. This approach is grounded
Dataset | MALTLS-22 | CICIDS-2017 in an understapdmg pf . trafﬁc prgperﬂes, allowing CoLD
- to more effectively distinguish noise from clean data and
Noise Type |  Sym. Asym. |  Sym. Asym. . . .
preserving informative samples to achieve strong performance.
FINE 6.42+0.34  39.66+1.05 | 6.73x0.12  50.32+2.17 - .
MORSE S580+183 63574200 | 51854217 62094235 We .evaluatfz performance under. the challenging 80% noise
MCRe 85.97+1.44 79.44+1.47 | 90.97+1.38 84.63+4.23 scenario. While such extreme noise rates are uncommon in
87.0421.12  84.0240.80 | 95162151 93.54+1.06 static datasets, this setting is critical for validating robustness
CoLD (Ours) ‘ p=0.014 p=0.003 ‘ p=0.000 p=0.020 in open-world environments [13], [31], [35], [43]. In security

approach during the Local Joint Learning phase, creating label-
independent representations from multiple views, which are
then used in the subsequent denoising process. Moreover, our
method does not require a predefined noisy label ratio, which
significantly broadens its applicability.

(7) While MCRe [13] falls short of CoLD in overall
performance, it still achieves notable results by leveraging
carefully designed representation constraints and distance-
based metrics, outperforming several baseline methods. How-
ever, its reliance on distance-based noisy label detection leads
to the removal of clean samples that are distant from the
confidence center, resulting in the loss of valuable information.
This limitation is reflected in the model’s sharp performance
fluctuations in the clean setting (i.e., large standard deviations
in “None” setting) and its inferior performance compared to
robust training methods under low noise settings, like Sym-
10%. In contrast, CoLD avoids this issue by employing causal

systems, annotation models often introduce systematic noise
due to concept drift (e.g., a legacy model may mislabel a large
proportion of unseen attack samples as benign) [50], [63].
Under traditional supervised learning frameworks, if noisy
labels dominate the class distribution (e.g., 80% of benign
samples flipped to malicious in binary classification), models
tend to overfit erroneous distributions due to label dependency.
However, this work focuses on multi-class scenarios, where
noise is typically more dispersed (see Fig. 6). Even with an
overall noise rate of 80%, label flips for individual classes
are generally sparse (e.g., 10% “Benign—Dos Attack”, 10%
“Benign—Bot Attack”) rather than concentrating on a single
mislabeling direction.

As shown in Table V, CoLD maintains strong performance
even under such extreme settings. This result underscores the
advantages of Causal Collaborative Denoising over distance-
based dataset purification methods like MCRe. Specifically,
MCRe assumes clear separability between clean and noisy
samples, which becomes unreliable at high noise rates. In



such settings, local consistency across traffic categories can
mislead the model into learning spurious associations, blurring
the boundary between clean and mislabeled data. CoLD over-
comes this by employing Local Joint Learning, which creates
multi-view representations from feature subsets in a self-
supervised manner. This disrupts spurious correlations caused
by local consistency and encourages the model to learn causal
patterns shared across views. While causal features across cat-
egories may still offer weak learning signals, CoLD amplifies
this signal through multi-view comparison. By analyzing the
causal discrepancies between noisy labels and GMM-based
predictions, CoLD isolates noisy samples without relying on
label distribution statistics. This design enables robust learning
even in high-noise environments.

Takeaway. The experimental results highlight the ef-
fectiveness and robustness of CoLLD in handling noisy
labels, even under extreme conditions. Compared to
state-of-the-art methods, CoLD consistently demon-
strates superior performance across various noise sce-
narios, including the challenging 80% noise setting. Its
superior performance and generalization highlight the
strength of Causal Collaborative Denoising in isolating
noisy samples and enabling noise-resilient network
intrusion detection in real-world environments.

C. Ablation Study

TABLE VI: Ablation Study with 40% Symmetric Noise. FR,
LA, GR, and LP denote Feature Reordering, Local Alignment,
Global Reconstruction, and Label Purification, respectively.

FR | MASK | LA | GR | LP | MALTLS-22 | CICIDS-2017

. 0.1 ° . . 90.96 98.98
° 0.3 . ° ° 91.82 98.52
. 0.5 ° ° . 91.36 98.34
o 0.3 . . . 91.69 96.39
. 0.3 o . . 89.14 97.01
° 0.3 . o ° 88.55 96.60
. 0.3 o o . 84.67 91.08
° 0.3 ° ° o 85.85 89.32

e with; o without.

To evaluate the contributions of each proposed compo-
nent, we conduct an ablation study on the MALTLS-22
and CICIDS-2017 datasets under 40% symmetric noise. The
results are presented in Table VI, where FR, LA, GR, and
LP denote Feature Reordering, Local Alignment, Global Re-
construction, and Label Purification, respectively. Across both
datasets, CoLD consistently outperforms its ablated variants,
confirming the effectiveness of the full framework. Each
component contributes to overall performance improvements,
with the best results achieved through their integration. Among
these components, LP stands out as a key contributor, high-
lighting the strength of the proposed Causal Collaborative
Denoising module. LA and GR constitute the Local Joint
Learning module, and omitting these operations led to a
significant decline in performance. This demonstrates that

the Local Joint Learning module effectively maps features
to the hidden representation space, enhancing the model’s
ability to capture causal association. Additionally, we observe
that FR provides a smaller performance gain on MALTLS-
22 compared to CICIDS-2017. This can be attributed to the
inherent feature correlations in the MALTLS-22 dataset, which
reduce the need for reordering. Nevertheless, we recommend
retaining FR, as it enhances adaptability in scenarios where
the original feature arrangement lacks correlation.

TABLE VII: Comparison of Different Aggregation Methods.

Method | Sym-40%  Sym-60% | Asym-40%  Asym-60%
NULL 91.73 89.99 90.98 86.23
MAX 85.65 84.54 85.88 83.14
MIN 85.15 85.03 83.41 84.33
SUM 87.12 87.46 86.02 85.36
CANCAT 90.45 90.32 90.11 85.45
MEAN 91.82 90.07 90.84 86.48

During the Causal Collaborative Denoising phase, local
representations are aggregated to form the final global repre-
sentation. We evaluated several aggregation functions to assess
their impact on model performance. The experimental results
on the MALTLS-22 dataset are summarized in Table VII,
where NULL denotes the use of the best-performing individual
subset without aggregation. Overall, the model maintains
stable performance across different aggregation strategies.
However, aggregation using MAX or MIN functions tends to
degrade performance, likely due to the loss of nuanced feature
information. In contrast, MEAN and CONCAT consistently
deliver strong results, with MEAN achieving a favorable
balance between performance and computational efficiency.
While CONCAT can offer slightly better accuracy, it in-
curs additional memory and computation costs. Therefore,
we recommend MEAN as the default aggregation function
due to its effectiveness and lower overhead in deriving final
representations after Local Joint Learning.

D. Parameter Study

In this paper, we introduce the method of partitioning
raw features into subsets for joint learning and collaborative
denoising. This section delves into exploring the influence
of the number of subsets and the degree of overlap. Fig. 7
presents the findings of this investigation. Overall, increasing
the degree of overlap enhances performance. However, exces-
sively detailed partitioning would diminish the representation
capabilities of subsets, while overly coarse partitioning may
lead to insufficient collaborative reasoning. For the MALTLS-
22 dataset, the best results are achieved with 4 subsets and
an overlap of 0.75. In contrast, for the CICIDS-2017 dataset,
performance is relatively insensitive to variations in overlap
when using 4 or 6 subsets. Fig. 8 illustrates the performance
of subsets with varying degrees of overlap on the MALTLS-22
dataset, with the number of subsets fixed at 4. It is evident that
at lower degrees of overlap, there is significant performance
disparity among subsets, resulting in unstable performance.



Based on these observations, we recommend adopting a higher
degree of overlap alongside a moderate partition granularity.
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E. Complexity Analysis

We analyze the computational complexity of CoLD with
respect to its three primary components: Feature Reordering,
Local Joint Learning, and Causal Collaborative Denoising.
The complexity of Feature Reordering arises from computing
pairwise correlations among features, resulting in a time
complexity of O(Nd?), where N is the number of samples
and d is the number of features. In the Local Joint Learning
stage, both the encoder and decoder are implemented as simple
fully connected networks, so the per-subset complexity is
O(d). Given M feature subsets and N samples, the total cost
for this step is O(NMd). Additionally, pairwise similarity
computations for loss terms introduce an extra O(N M?) cost,
making the overall complexity for this stage O(N(Md+M?)).
For Causal Collaborative Denoising, the main computational
cost comes from GMM fitting, which incurs a complexity of
O(NKd) per EM iteration, where K is the number of mixture
components.

Overall, the complexity of CoLD is primarily influenced by
the number of subsets M, the number of samples N, the fea-
ture dimensionality d, and the number of mixture components
K. Since Feature Reordering can be performed offline, it does
not affect the computational complexity during inference. In
practice, the training cost can be further reduced by using
a small number of subsets (e.g., M = 4) and by adopting
mini-batch training, which allows the computational cost to

scale approximately linearly with the batch size. These design
choices make CoLD computationally efficient and scalable for
large-scale datasets.
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Fig. 9: Time and storage overhead of comparison methods.

We present the empirical time and storage overhead of
CoLD and compare it with other methods, as shown in
Fig. 9. Time overhead is reported as the average processing
time per sample. The results show that CoLD incurs lower
time overhead than FINE, primarily because FINE involves a
more complex feature decomposition process. While MORSE
demonstrates lower storage and computational requirements,
its performance is notably inferior. In contrast, CoLD pro-
cesses multiple feature subsets in the Local Joint Learning
phase to achieve fine-grained representations, accepting a
moderate increase in complexity for enhanced noise purifica-
tion. Overall, CoLD’s time cost is moderate and comparable to
that of McRE, while its storage overhead remains significantly
lower. These results highlight that CoLD achieves robust
performance and noise resistance with a favorable trade-off
between efficiency and accuracy, making it a practical choice
for real-world applications.

VI. EVALUATION IN REALISTIC ENTERPRISE NETWORK

While CoLLD has shown strong performance on benchmark
datasets, it is crucial to further evaluate its effectiveness and
robustness in real-world environments. In this section, we
present the initial deployment and evaluation of CoLD in a
large-scale enterprise network, aiming to assess its practical
applicability and reliability.

A. Task Description

Intrusion detection systems (IDSs) are crucial for protect-
ing enterprise networks from sophisticated attacks such as
Advanced Persistent Threats (APTs) [64], which often evade
traditional defenses. Provenance-based IDSs [65], [66], [67],
[68] leverage contextual information from system logs to
detect APTs, but their performance is challenged by unreliable
ground truth and pervasive label noise [69]. In this task,
we integrate CoLD with several representative enterprise-level
IDSs [67], [68] and evaluate its effectiveness on the OpTC
dataset [70]. This evaluation extends CoLLD’s applicability to
realistic enterprise networks and systematically investigates



its ability to improve intrusion detection performance under
various levels of label noise.

B. Comparative Discussion

A variety of IDSs have emerged in recent years to identify
malicious activities on enterprise networks, leveraging network
traffic and log data. In large-scale enterprise settings, network
architectures are highly dynamic, involving a diverse set of
active entities—including hosts, users, virtual machines, and
applications—that interact in complex and evolving patterns.

To address these challenges, Jbeil [66] modeled authenti-
cation events as temporal graphs, leveraging Temporal Graph
Networks for inductive learning. This approach allows for the
detection of static phases of lateral movement in APT attacks
as the graph structure changes dynamically. However, modules
tailored for specific attack phases may prove ineffective when
applied to complex real-world scenarios. Flash [67] employed
Word2Vec to transform node attributes into semantically rich,
time-sensitive feature vectors and then utilizes Graph Neural
Networks to capture both local and global graph structures.
This enables the model to effectively encode complex temporal
dependencies within the provenance graph. However, Flash’s
approach requires a large volume of high-quality log data
to ensure the completeness and reliability of the constructed
provenance graphs. Argus [68] introduced a dynamic graph
representation learning framework that integrates Graph Con-
volutional Networks with Long Short-Term Memory networks
for feature extraction. By embedding timestamp information
and supporting dynamic updates, Argus can track and model
real-time changes in graph topology. Despite their effec-
tiveness, these methods face persistent challenges related to
the collection and annotation of enterprise-scale event data,
particularly under conditions of label noise.

In contrast to the aforementioned approaches that are tai-
lored for specific attack patterns or scenarios, CoLD serves
as a more general and versatile causal collaborative denoising
framework. Its primary goal is to purify noisy samples and
enhance the robustness of IDSs in the presence of label noise.
Although CoLD is mainly applied to network traffic in our
previous experiments, its modular design and causal denoising
mechanism are broadly applicable to a wide range of data
modalities. In fact, CoLD can be seamlessly integrated with
existing IDSs such as Flash and Argus, complementing their
strengths and further improving their resilience to noisy labels.
This flexibility facilitates the practical deployment of CoLD
in diverse and large-scale enterprise environments.

C. Evaluation Settings

To integrate CoLD with existing IDSs, we adopted a
decoupled approach, dividing the enterprise-level intrusion
detection task into a feature extraction module and a denoising
learning module. Specifically, we utilized established prove-
nance graph representation learning methods to extract features
from enterprise network logs [70], which were then used as
inputs for downstream classifiers. To meet real-time processing
requirements, we selected XGBoost as a lightweight and

efficient classifier. CoLD operates as a plug-in module that
enhances the classifier’s training process by effectively filter-
ing out noisy samples. This modular design not only broadens
CoLD’s applicability but also significantly reduces resource
consumption during deployment. For empirical evaluation,
we conduct a comprehensive comparison between CoLLD and
two representative provenance-based IDSs, Flash [67] and
Argus [68], using the F1-score as the evaluation metric. Specif-
ically, we integrated CoLD into their established pipelines
by preserving the original provenance graph construction and
feature extraction of each system. This ensures a fair and
consistent assessment of CoLD’s effectiveness in enhancing
intrusion detection performance under varying noise settings,
while maintaining the unique characteristics and strengths of
the baseline methods.

D. Evaluation Results

TABLE VIII: Results on OpTC Dataset.

Method | Sym-10%  Sym-40% | Asym-10% Asym-40%
Falsh 93.57 79.49 94.08 85.15
Falsh+CoLD | 94.04 t047 84.89 t+540 | 94.30 t022  93.78 1863
Argus 91.45 81.81 93.94 86.28
Argus+CoLD | 93.73 228 87.83 1602 | 94.70 1076  93.51 1723
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Fig. 10: Hyperparameter optimization of integrated systems.

Based on the analysis in Section V-D, we perform hyper-
parameter optimization for CoLLD within an appropriate range
under the Sym-40% setting, with the results shown in Fig. 10..
The comparative performance of CoLD on the enterprise
dataset under various noise settings is shown in Table VIIIL.
From these results, we draw the following observations and
conclusions:

(1) As label noise increases, the performance of baseline
IDSs is notably challenged. However, integrating CoLLD con-
sistently leads to significant improvements. For instance, at a
symmetric noise level of 40%, CoLD boosts the performance
of Flash and Argus by 5.40% and 6.02%, respectively, demon-
strating its effective denoising capability in enterprise-level
detection scenarios.

(2) Flash exhibits superior performance under low noise
conditions compared with Argus, as it incorporates more
features to represent graph nodes, such as process names,
command line arguments, file paths, and IP addresses. Nev-
ertheless, as noise levels rise, Flash’s performance degrades



more rapidly, largely because many of its features lack class
discriminability and are more susceptible to being misled by
local consistency.

(3) Argus demonstrates greater robustness to high levels
of label noise. Its use of lower-dimensional feature repre-
sentations tends to favor smaller, more overlapping feature
subsets, which helps maintain stability. In contrast, due to
the limited quality of the dataset, many features leveraged by
Flash are sparse, requiring a larger overlap to preserve the
representational capability for sample discrimination.

Overall, these results confirm the effectiveness of CoLLD in
real-world enterprise environments and demonstrate its ability
to enhance the noise resilience of existing IDSs.

VII. DISCUSSION
A. Application in Online/Streaming Network Environments

Online or streaming IDSs are required to process large
volumes of network data in real time while adapting to
continuously evolving behavior patterns. The modular ar-
chitecture of CoLD makes it well-suited for extension to
such scenarios in real-world deployments. Specifically, the
Feature Reordering module supports both offline computation
and periodic updates, whereas the Local Joint Learning and
Causal Collaborative Denoising modules can be incrementally
updated as new data arrives. Leveraging a sliding window
technology, CoLD efficiently updates its model parameters
on streaming data, thus maintaining computational efficiency
and low latency. As the underlying data distribution shifts,
the encoder, decoder, and classifier can be periodically fine-
tuned using continual learning techniques, thereby preventing
catastrophic forgetting and ensuring sustained performance.
Furthermore, as discussed in Section VI, CoLD can be
seamlessly integrated as a denoising module within existing
online IDS pipelines, filtering incoming training data streams
before model updates. This design enables the IDS to remain
robust against evolving attack strategies and dynamic label
noise, making CoLD a practical and adaptive solution for
real-world intrusion detection systems operating in dynamic
environments.

B. Behavior of CoLD across Different Datasets

In this paper, we conduct a comprehensive evaluation of
CoLD across multiple representative datasets to provide in-
sights into its generalization and behavior under diverse real-
world network settings. Specifically, we evaluate CoLD on
MALTLS-22, which consists of encrypted traffic and a wide
range of attack types, and CICIDS-2017, which covers both
benign and malicious behaviors across multiple protocols.
These datasets embody key practical challenges such as traffic
encryption, attack diversity, and severe class imbalance.

Across all noise settings and datasets, CoLD consistently
demonstrates robust performance and significantly outper-
forms baseline methods. Notably, its advantages are especially
pronounced on MALTLS-22, highlighting CoLD’s ability to
disrupt misleading local consistency and capture fine-grained

representations, which are essential for handling high fea-
ture redundancy and subtle inter-class differences. Ablation
studies confirm that all components of CoLD contribute to
performance gains, with Feature Reordering being particularly
impactful on CICIDS-2017, where the original feature arrange-
ment shows lower correlation. Parameter analysis indicates
that while CoLD prefers different parameter settings across
datasets, it maintains strong robustness to parameter variations
under moderate partition granularities. We also observe that
factors such as feature dimensionality and sparsity should
be considered when selecting feature subset size and overlap
degree for optimal results.

Beyond these two benchmarks, our evaluation on the OpTC
dataset (Section VI) further demonstrates CoLD’s adaptability
and effectiveness in realistic enterprise network environments.
Overall, these results confirm that the collaborative causal
denoising mechanisms in CoLD are generalizable, enabling
the framework to adapt effectively to heterogeneous data
modalities and address the diverse and complex challenges
of real-world network intrusion detection.

C. Limitation and Future Work

First, we currently employ Pearson correlation to reorder
features, which primarily captures linear statistical relation-
ships between features. Future work should explore more
advanced techniques to capture complex, nonlinear, or higher-
order dependencies among features. Second, while CoLD
achieves robust representations, it introduces additional com-
putational complexity during the joint learning and denois-
ing process. Improving the framework’s efficiency will be
a focus of subsequent research. Third, integrating CoLD
with incremental or continual learning strategies represents
a promising direction to further enhance its adaptability to
evolving network environments and streaming data. We leave
these improvements as important avenues for future work.

VIII. CONCLUSION

In this paper, we presented CoLD, a Collaborative Label
Denoising framework designed to address the challenges posed
by noisy labels in network intrusion detection. Leveraging
causal analysis, we identify the impact of noisy labels and
attribute it to local consistency across different categories
in network traffic. Based on these insights, CoLD integrates
three key components: Feature Reordering organizes features
based on their statistical properties to preserve correlation,
Local Joint Learning utilizes multiple views to learn robust
representations that are less susceptible to label noise, and
Causal Collaborative Denoising employs Gaussian Mixture
Model to identify and filter mislabeled traffic flows, resulting
in a purified dataset for training classifiers. Extensive experi-
ments on benchmark datasets demonstrate that CoLD signif-
icantly improves classification performance and robustness to
label noise, outperforming state-of-the-art approaches. These
findings underscore the potential of CoLD to enhance the
performance of IDSs in noisy environments, paving the way
for more reliable and secure network infrastructures.



IX. ETHICS CONSIDERATIONS

This research aims to advance the field of network intrusion
detection by addressing the challenges posed by noisy labels.
The proposed framework, CoLD, is designed to improve
the accuracy and robustness of intrusion detection systems,
contributing to enhanced cybersecurity for organizations and
individuals. However, we acknowledge that such advance-
ments can have dual-use implications. While the technology is
intended to strengthen defenses against malicious activities, it
could potentially be misused to evade detection by malicious
actors. To mitigate this risk, we emphasize that this research is
strictly intended for defensive applications, and we advocate
for its deployment in ethically governed environments.

Additionally, the datasets used in this study are publicly
available and do not contain personally identifiable informa-
tion (PII). We ensure compliance with all relevant data privacy
regulations. By using anonymized and publicly accessible
datasets, we minimize the potential for harm or misuse of
sensitive information.
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