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Abstract—High-level natural language knowledge in Cyber
Threat Intelligence (CTI) reports, such as the ATT&CK frame-
work, is beneficial to counter Advanced Persistent Threat (APT)
attacks. However, how to automatically apply the high-level
knowledge in CTI reports in realistic attack detection systems,
such as provenance analysis systems, is still an open problem. The
challenge stems from the semantic gap between the knowledge
and the low-level security logs: while the knowledge in CTI
reports is written in natural language, attack detection systems
can only process low-level system events like file accesses or
network IP manipulations. Manual approaches can be labor-
intensive and error-prone.

In this paper, we propose KNOWHOW, a CTI-knowledge-
driven online provenance analysis approach that can automati-
cally apply high-level attack knowledge from CTI reports written
in natural language to detect low-level system events. The core of
KNOWHOW is a novel attack knowledge representation, General
Indicator of Compromise (gIoC), that represents the subjects,
objects, and actions of attacks. By lifting system identifiers,
such as file paths, in system events to natural language terms,
KNOWHOW can match system events to gIoCs and further match
them to techniques described in natural language. Finally, based
on the techniques matched to system events, KNOWHOW reasons
about the temporal logic of attack steps and detects potential APT
attacks in system events. Our evaluation shows that KNOWHOW
can accurately detect all 16 APT campaigns in the open-source
and industrial datasets, while existing approaches all introduce
large numbers of false positives. Meanwhile, our evaluation also
shows that KNOWHOW reduces at most 90% of node-level false
positives while having a higher node-level recall and is robust
against several unknown attacks and mimicry attacks.

I. INTRODUCTION

Advanced Persistent Threat (APT) attacks are serious at-
tacks in the modern world. Recently, multiple APT attacks
have caused massive losses [39], [77]. To counter APT attacks,
researchers have proposed provenance analysis techniques that
mine system events to detect APT attacks [6], [87], [88],
[34], [4], [20], [35], [86]. However, most existing provenance
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analysis techniques are data-driven, which inevitably introduce
many false positives and make the detection result hard to
interpret [87], [86], [34], [21]. For instance, when an attacker
executes a “Word” document containing a macro virus [40],
data-driven approaches may mistakenly report other Word
processes as malicious and cannot explain why each “msword”
process is considered malicious, which can be confusing for
a security analyst encountering such malware for the first
time. This makes it challenging for security personnel to
process all alerts in a timely manner, potentially leaving
some unaddressed, which ultimately may pose risks to the
system [21], [34], [66].

Besides data-driven approaches, researchers also pro-
pose Cyber Threat Intelligence (CTI) knowledge driven ap-
proaches [54], [89], [53], [43], [44]. These approaches an-
alyze CTI reports (e.g., MITRE ATT&CK framework [55],
APT organization reports [48], [26] and research blogs [23],
[70]), extract knowledge from these documents, and map
the extracted knowledge to system events to detect attacks.
Existing CTI-knowledge-driven approaches fall into two cate-
gories: Indicator of Compromise (IoC) based approaches [72],
[28], [43], [36], [69] and high-level knowledge-based ap-
proaches [89], [44], [2]. The former one extracts low-level
IoCs, such as concrete attack-related file names and IP ad-
dresses, and detects whether system events contain the re-
ported IoCs. The latter one leverages human experts to curate
detection rules or log patterns to detect attacks in system
events.

Unfortunately, existing CTI-knowledge-driven approaches
are limited due to the lack of extensibility. IoC-based ap-
proaches ignore general information in CTI documents but
only focus on specific IoCs, which quickly become out-
dated [41] and cannot detect the varients of known attacks.
High-level knowledge-based approaches rely on manual rules,
which are expensive to build and imprecise. Holistically, both
types of approaches can hardly be extended to keep up with
the rapidly evolving attack techniques.

The key challenge of mapping the knowledge contained
in high-level CTI reports to low-level provenance data is
the semantic gap between natural language descriptions and
system events. For instance, the CTI description “Lazagne
carefully scanned the browser’s resource directory to exten-
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sively steal the credential files of users” should correlate with
system events like “la1 read ../firefox/resource..”, but the lack
of linguistic similarity makes direct matching difficult. IoC-
based approaches cannot handle this case since the description
contains no IoC. For high-level knowledge-based approaches,
building a mapping rule requires significant efforts from
advanced human experts.

Our insight to make CTI-knowledge-driven approaches
more extensible is that the mapping from high-level CTI
knowledge can be largely automated by focusing on core
elements in CTI reports. Specifically, we focus on three core
elements in CTI reports: attack conductors, attack actions,
and attack targets. These three core elements can be precisely
mapped to key elements in system events: processes, system
calls, and operation files. Therefore, by leveraging minimal
lifting rules, system events can be automatically mapped to
the three core elements in CTI reports using NLP techniques.

Based on our insight, we propose KNOWHOW, a CTI-
knowledge-driven provenance analysis approach that automat-
ically applies high-level attack knowledge from CTI reports
to detect APT attacks in low-level system events. The core of
our approach is CTI Knowledge Database (CKD) that features
a new intermediate representation, the General Indicator of
Compromise (gIoC), to represent the three core components
in CTI reports. To effectively match gIoCs and system events,
we propose a novel approach that lifts the semantics of system
events to the natural language level (e.g., lifting “firefox” to
“browser”), thereby bridging the gap between them. Besides,
we introduce a novel attack reasoning approach that automat-
ically identifies APT attacks in system events based on CKD.
Our attack reasoning approach aligns attack techniques with
attack tactics and APT Lifecycle stages, thereby reducing false
positives by eliminating attack steps that do not adhere to the
temporal logic of APT attacks [54], [15], [32], [19], [50], [79].

We conduct a comprehensive evaluation of KNOWHOW us-
ing the most recent and widely adopted open-source datasets,
along with an industrial dataset. KNOWHOW precisely iden-
tifies all attack campaigns within our datasets, whereas all
existing baselines exhibit much more false positives. Specifi-
cally, KNOWHOW reduces false positives at the node level by
81% and 90% for the two recent baselines, NODLINK [42]
and KAIROS [13], respectively. Regarding the effect of the
extraction on APT detection, our evaluation confirms that
knowledge extracted using KNOWHOW can help reduce false
positives in downstream APT attack detection tasks by 68%
and 79%, respectively, compared to utilizing knowledge from
LADDER and EXTRACTOR —two of the latest CTI infor-
mation extraction frameworks. Our evaluation further shows
that KNOWHOW’s novel CTI knowledge condensation repre-
sentation, gIoC, is the primary reason for its superiority over
existing approaches. Moreover, it has been deployed in open-
world scenarios, with the experimental results collectively
validating the practical usability of KNOWHOW.

We summarize our contributions as follows:
• We propose KNOWHOW, a CTI-knowledge-driven online

provenance analysis solution that can automatically apply

high-level attack knowledge from CTI reports to detect APT
attacks in low-level system events.

• We introduce a novel compact representation, gIoC, for
high-level attack knowledge and manage it within a novel
knowledge base, CKD.

• We design a novel attack reasoning method based on the
stages of the APT Lifecycle identified by querying CKD.

• We thoroughly evaluate KNOWHOW on widely used
datasets, as well as an industrial dataset. The results con-
firm that KNOWHOW meets the requirements for accurate,
efficient, and interpretable detection of APT attacks.

• We have deployed KNOWHOW within the OpenEuler
ecosystem, which is a production-grade, community-driven
Linux distribution, to verify its validity in real-world secu-
rity operations1.

Open Science. We release the core code and datasets in ht
tps://github.com/myh0301/KNOWHOW to facilitate further
research.

II. THREAT MODEL AND ASSUMPTIONS

We follow the same threat model used in previous works
on system monitoring [25], [87], [88], [53], [54], [6]. Specif-
ically, we assume the kernel and kernel-layer auditing frame-
works [80], [51], [68] are not compromised. Any kernel-level
attack campaign is outside the scope. We assume that there is
an external attacker, who attacks the victim system remotely.
Based on the above assumptions, the attacker can only achieve
system intrusion by inducing the victim to download and
execute a malicious payload or by exploiting a vulnerability.

III. BACKGROUND AND MOTIVATION

A CTI-knowledge-driven approach has two stages [72],
[28], [36], [57], [2], [89]: (1) extracting knowledge from CTI
reports and (2) mapping the extracted knowledge to low-level
system events. In practice, the extracted knowledge may also
be organized in standard formats, such as Structured Threat
Information eXpression (STIX) [57]. Based on the types of
extracted knowledge, we categorize existing CTI-knowledge-
driven approaches into IoC-based approaches and high-level
knowledge-based approaches. We show the differences be-
tween these two types of CTI knowledge in Figure 1.

A. IoC-Based Approaches

IoC-based approaches, such as EXTRACTOR [72], TTP-
DRILL [36], and THREATRAPTOR [28], extract concrete IoCs
from CTI reports and match them against entities observed
in system events. For instance, given the CTI text shown
in Figure 1, these methods extract specific IoCs such as
the malicious process name Lazagne and the suspicious file
path .../.config/google-chrome/User Data/Default/Login Data.
These IoCs are then used to match entities in system events
for attack detection.

1We have extended KNOWHOW with an automated APT report generation
module that transforms low-level alerts into structured, analyst-centric APT
reports by using LLMs. This extended version is provided in http://arxiv.org/
abs/2509.05698.
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Fig. 1: A comparison of various CTI-knowledge driven methods with the detection results using the extracted knowledge on
the Lazagne case[3], [11].

IoC-based approaches suffer from high false-negative rates
due to their reliance on static, time-sensitive indicators that
quickly become obsolete and fail to generalize across environ-
ments (e.g., “Lazagne” vs “la1” in Figure 1), while also ex-
hibiting knowledge omission by ignoring valuable behavioral
descriptions in favor of concrete artifacts. For example, IoC
only includes the Chrome browser path as Lazagne’s target,
ignoring the description “scan the browser’s login directory,”
thus failing to detect attacks on other browsers like Firefox in
Figure 1.

B. High-Level Knowledge-Based Approaches

High-level knowledge-based approaches recognize that CTI
reports often contain rich, descriptive content about attack
behaviors and patterns beyond simple IoCs. These methods
aim to extract such high-level knowledge from natural lan-
guage CTI reports [2] and convert it into actionable detection
rules through expert interpretation [89], [54]. An example of
extracted high-level knowledge from one of these approaches,
LADDER, is shown in Figure 1.

The key challenge is how to convert high-level knowledge
into actionable rules. To this end, researchers have proposed
many interesting methods that rely on expert-curated rules.
Specifically, HOLMES [54] and APTSHIELD [89] perform
pattern matching by checking whether observed system be-
haviors conform to their predefined attack lifecycle rules and
sensitivity labels, while RAPSHEET [33] uses the manually
curated rules to flag suspicious activities based on known
attack indicators. POIROT [53] and ATTACKG [43] use expert-
curated query graphs and attack technique templates derived
from CTI reports, which are then applied to system events for
detection. Likewise, TREC [44] performs graph-level feature
matching between selected procedures from the Atomic Red
Team [67] and system events to detect potential threats.

The limitation of existing high-level knowledge-based ap-
proaches is that they rely on static, concrete rules, which are
often too strictly defined and specific to individual systems.
This limitation hinders their ability to generalize to new
systems and adapt to evolving attack patterns. For example,

HOLMES, RAPSHEET, and APTSHIELD rely on manually
defined whitelists, such as trusted IP addresses, benign com-
mand lists, sensitive files, and critical system files. These
whitelists are often tailored to specific environments and
require continuous updates to remain effective. Moreover,
POIROT, ATTACKG, and TREC focus on concrete attack pro-
cedures extracted from CTI reports, which are often instance-
specific and lack sufficient abstraction, limiting their ability to
handle diverse and evolving attack variants.

C. Structured Threat Information eXpression

STIX provides a standardized way to represent both con-
crete IoCs and high-level attack descriptions (e.g., TTPs,
Attack Patterns). STIX, by standardizing the representation of
CTI knowledge, facilitates knowledge sharing across organi-
zations. However, how to effectively use the full knowledge
in STIX is still an open problem.

Moreover, although STIX supports representing high-level
knowledge in its design, the community uaually uses STIX
to share IoCs instead of high-level attack knowledge. A study
shows that over 94.93% of STIX objects contain only IoC
attributes, while less than 0.1% include high-level behavioral
descriptions [38].

D. Motivation and Insight

Our key insight for an extensible high-level knowledge-
based approach is that subject-verb-object phrases in CTI
reports encapsulate richer attack knowledge that can be struc-
tured into more meaningful and extensible representations.
These phrases decompose into three fundamental components:
attack conductors (who), attack actions (what operation), and
attack targets (on what), reflecting the core semantic structure
of attack behaviors, exemplified by “la1 reads login data files”
in Figure 1.

Unlike static and context-free IoCs, this structured
representation preserves richer semantic information by
including not only the core entities but also their relationships
and contextual descriptions. As shown in Figure 1, “steal the
credential files of system user” contains both the conductor
(lazagne), the action (steal), and the target (credential
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files of system user), which provides a more comprehensive
understanding of the attack behavior. The extracted knowledge
can then be used to match with the system events <la1,
read, .../firefox/resource/login_data...>
in a proper way to detect the attack, which can address
the limitation of existing high-level knowledge extraction
methods. Compared to STIX, our representation contains
more structured and actionable contextual information,
which is essential for understanding the attack behaviors.
Therefore, it can be used as a general structured knowledge
representation that bridges the gap between high-level CTI
knowledge and low-level system events, enabling more
effective and automated attack detection.

IV. CTI KNOWLEDGE DATABASE

To bridge the semantic gap between high-level knowledge in
CTI reports and low-level system events, we propose CKD, a
knowledge database dedicated to high-level attack knowledge
derived from CTI reports. CKD is defined as a set of ATT&CK
Technique Information Entries (ATIEs), each representing an
attack technique as defined by MITRE ATT&CK [55]. An
ATIE comprises four fields: a unique ID for a technique in
ATT&CK (uid), a description of the technique (des), a CTI
list (listcti), and a gIoC list (listgioc). Specifically, listcti
contains CTI reports in which the technique can be identified.
listgioc contains gIoCs, which encapsulate high-level attack
knowledge reported in the corresponding CTI reports in listcti
and will be elaborated on in the following subsections. To
support high performance APT detection, CKD also provides
a provenance query, ProvQ, that enables users to identify
ATIEs related to a given system event.

A. General Indicators of Compromises

gIoC is the key component in CKD that connects high-level
attack knowledge in CTI reports with low-level system events.
Conceptually, a gIoC is a compact representation of attack
descriptive sentences in CTI reports and can be automatically
learned from CTI reports using Natural Language Processing
(NLP) techniques. Formally, a gIoC is a Subject-Verb-Object
(SVO) triplet structure, (subject, verb, object), which captures
the core information of ”who performs which operation on
what” in attack descriptions. A typical gIoC is shown in Figure
1.

Specifically, the subject is the conductor of an attack. It
can be the name of an attacker, malware, or a hijacked
application that initiates attacks. For example, in the CTI sen-
tence, “APT41 used built-in commands net to enumerate local
administrator groups”[70], “APT41” is the attacker subject. In
contrast, in another CTI sentence, “Keydnap adds the setuid
flag to a binary to easily elevate in the future”[23], “Keydnap”
is the malware subject. The verb represents the action of
attacks, such as “use” and “enumerate” in the APT41 example,
and “add” and “elevate” in the Keydnap example. Finally,
object is the target of an attack, such as “built-in commands
net” and “local administrator groups” in the APT41 example,
and “the setuid flag” and “a binary” in the Keydnap example.

The key difference between gIoCs and conventional SVO
pairs is that the subjects and objects of gIoCs are attack-
relevant concepts and their associated information, such as
modifiers describing these concepts. On a high level, we define
a noun as an attack-relevant concept if it constitutes an IoC or
the name of a system object (e.g., an application name, domain
names, file names, etc.). Our emphasis on attack-relevant
concepts stems from our objective to correlate high-level CTI
reports with low-level system events. These concepts provide
clues about tools, IP addresses, and files that attackers might
utilize during an attack, which can facilitate the matching of
low-level events. By recognizing attack-relevant concepts, we
can avoid overly broad statements like “the attack originated
from state-owned groups,” which are less useful for automated
low-level event matching. Note that attack-relevant nouns are
more versatile than conventional IoCs, allowing our approach
to match low-level events with corresponding gIoC even when
the textual content does not match precisely.

Formally, we define a noun N as an attack-relevant concept
if it fulfills one of the following five conditions:
1) N is an IoC, such as a file name, an IP address, a file hash,

etc.
2) N is a domain name.
3) N is the name of an application or malware.
4) N is a command (e.g., cp) or its full name (e.g., copy)
5) N represents a general concept of system objects, including

but not limited to terms like “file,” “directory,” “IP address,”
“process,” “application,” “registry,” and their synonyms.

We propose conditions 2-5 to enhance the extensibility
of gIoCs. For example, condition 5 allows our approach
to capture expressions like “browser’s folder” in Figure 1,
thereby facilitating the matching of events involving Firefox
with attack knowledge pertinent to Chrome.

Given an attack-relevant concept, we also consider modifiers
(e.g., “browser data”) and subclauses (e.g., “steal the credential
files of system users”) that describe the concept and serve
as its related information. This is due to the fact that nouns
in CTI reports are often devoid of context and meaning. For
example, in Figure 1, the identified attack-relevant concept
in the sentence “..scans the browser’s resource directory.. ”
is “directory”, which carries limited significance. Instead, we
must identify the related information, such as “browser data”
and “steal the credential files of system users” to align with
low-level events involving access to Firefox’s user data and
system credential files.

Compared with IoCs, the key advantage of gIoCs lies in
their ability to reflect higher-level information. gIoCs extract
attack information from a behavioral perspective, whereas
IoCs focus on an instance perspective. Therefore, gIoCs can
be better extended across different environments. For exam-
ple, a typical type of IoC is the process name of malware
appearing in system events. Consequently, IoC knowledge can
only identify malware with the same process name in the
event, ignoring other pertinent information. In contrast, gIoCs
summarize attack behavioral information and match it across
various parts of the event, such as the target file of the malware
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TABLE I: Excerpts of the Extended IoC Parsing Rules.

Example Regular Expression

Registry
Run
Key

HKCU\
Software\
Microsoft\

Windows NT\
CurrentVersion\

Winlogon

ˆ(HKCU|HKLM|HKCR|
HKCC|HKEY LOCAL

MACHINE|HKEY
CURRENT USER|
HKEY CLASSES

ROOT|HKEY
CURRENT CONFIG|

HKEY USERS)
(\\[ˆ\\?/*|<>:”]+)*$

File
Name,

File
Path

C:\\Windows\
Microsoft.NET \
Framework64\,

/root/.vscode
-server/

ˆ(?:(?:[a-zA-Z]:|\.
{1,2})? [\\/](?:[ˆ\\

?/*|<>:”]+ [\\
/])*)(?:(?:[ˆ\\?/*

|<>:”]+?)
(?:\.[ˆ.\\?/*|
<>:”]+)?)?$

Typical
Linux

Command

scp, ssh, sftp, tftp,
curl, sshd, certutil,
wget, ls, rm, sh,

mv, stat, cat,
reg add, reg del,
kill, pkill, grep,

find, cat, ifconfig

Same as IoCParser

Typical
Windows
Command

Get-Process,
Get-Service,

Get-ChildItem,
New-Item,

Remove-Item,
Set-Location,

Clear-Host

Same as IoCParser

or executed commands. Hence, they are more effective in
detecting different variants of the malware.

B. Building CKD from CTI Reports

We leverage NLP techniques to automatically identify con-
cepts relevant to attacks. For IoCs, we use the IoCParser [63]
to extract IoCs more effectively. However, we observe that the
original IoCParser lacks adequate support for identifying file
paths, registry run keys, and command line operations. There-
fore, KNOWHOW extends the regular expressions in IoCParser
to improve the identification of file paths and registry run
keys. Meanwhile, KNOWHOW maintains a list of commonly
used command lines to recognize command line entries in
CTI. Table I illustrates the regular expressions and command
line samples that we have extended. For conditions 2 and 3
mentioned in Section IV-A, we rely on large language models
to identify domain and application names. Specifically, given
a noun, we submit it to a large language model and inquire
whether it is a domain name or an application/malware name.
For condition 4, we maintain a list of common Linux and
Windows system commands, along with their corresponding
full names, based on their documentation. For condition 5,
we maintain a list of general concepts of system objects
and detect their synonyms using large language models. In
our approach, we can leverage existing NLP toolkits, such
as Stanford CoreNLP [78], to identify the modifiers and
subclauses associated with an attack-relevant concept.
gIoCs Extraction. After identifying and complementing the
attack-relevant concepts, our approach extracts gIoCs from

CTI reports. It first extracts sentences that contain these
concepts identified in the first step. Then, for each of these
sentences, we employ SVO toolkits to extract (subject, verb,
object) tuples, which serve as the backbones of gIoCs. For
example, for the sentence shown in Figure 1, the extracted
backbone is (Lazagne, scan, directory).

Then, we enhance the semantics of the extracted backbone
by appending the modifier text to its corresponding nouns. For
example, as shown in Figure 1, the enriched gIoC would be
(Lazagne, scan, directory browser’s user login). Here, we do
not take into account the order or grammatical correctness of
the text since these elements are adequate for modern NLP
techniques to generate sentence embeddings that can fuzzily
match low-level events, as will be discussed in Section IV-C.
Specifically, we treat subclauses as regular sentences and
process them in the same way as mentioned above. Therefore,
the subclauses will also generate gIoCs.

There are two challenges in generating gIoC. The first
challenge is the potential absence of certain components of
(subject, verb, object) in the subclauses. For example, in the
sentence depicted in Figure 1, the subclause “to steal the
credential files of system users” lacks a subject. To address
this, KNOWHOW directly borrows the missing component
from the main clause to form complete (subject, verb, object)
tuples. The second challenge is that many attack-relevant
concepts are specific IoCs, such as concrete file names and
IP addresses, which cannot be extended for broad attack de-
tection. To address this issue, our approach adopts a rule-based
method to extend common patterns of IoCs into gIoCs. Our
high-level strategy involves extracting components from IoCs
that carry semantic meaning. For example, for the file name
“/usr/bin/long file name/wallet.db”, our approach converts it
into a gIoC by using the first-level folder name as “the user
folder” and its file name as “wallet db file”. This conversion
allows a more extensible matching of files with similar names
within BOTH Linux and Windows user folders. The excerpt
of the conversion rules is outlined in Table II.
ATIEs Generation. The final step of our approach is con-
verting the extracted gIoCs to ATIEs. This step needs first
adding the ATT&CK technique IDs and descriptions to the
corresponding fields within the ATIE.

For the ATT&CK technique IDs and descriptions, our
approach first scans to determine whether the CTI report
references MITRE ATT&CK technique descriptions [55].
Specifically, the content is extracted using the PyMuPDF [65],
and regular expressions are employed to scan the technique
IDs and descriptions. Note that numerous popular threat intel-
ligence sources include ATT&CK technique labels, which are
explicitly summarized in their CTI reports [47], [74], [46]. If
the report explicitly cites a MITRE ATT&CK technique, our
approach generates an ATIE for that technique.

If a CTI report does not explicitly reference an ATT&CK
Technique, our approach attempts to associate it with an exist-
ing ATIE. To accomplish this, we have developed a function
akin to ProvQ, which will be elaborated on in Section IV-C,
to query the CKD for the most similar list of ATIEs. The
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TABLE II: Excerpts of the simplification table to turn IoCs
into gIoCs , where D means the name of this level dictionary,
F means the name of the files, E means the extension name
of the file, and Dom means the DNS domain name of the
corresponding IP. The simplification of directories is similar
to that of files, except that there is no extension name.

System Identifier Lifted Sentences

Linux
File

/etc/D/*/F .E etc D E file
/var/D/*/F .E var D E file

/proc/[PID]/D/*/F .E proc D E file
/bin/D/*/F .E,
/sbin/D/*/F .E,

/usr/bin/D/*/F .E,
/usr/sbin/D/*/F .E,

/usr/local/bin/D/*/F .E,
/usr/local/sbin/D/*/F .E

F E file

/home/aa/D/ ∗ /F.E$ user D F E file
/root/D/*/F .E root user D F E file
/lib/D/*/F .E,

/lib32/D/*/F .E,
/lib64/D/*/F .E,

/usr/local/lib/D/*/F .E,
/xx/lib/D/*/F .E

D library file

other: */F .E E file

Windows
File

HKEY *, HKCU*,
HKCR\*, HKLM*,

HKU*, HKCC*
registry run key

c:\\windows\system32\D\*\F .E windows system D F .E file
c:\\windows\D\*\F .E windows system D F .E file

c:\\ProgramFiles\D\*\F .E,
c:\\ProgramFiles(x86))\D\*\F .E D F E file

other: *\F .E F E file

IP
10.0.0.0/8, 172.16.0.0/12,

192.168.0.0/16 internal network

other external network Dom

Command
Operation

cp copy
scp, ssh, sftp, tftp,
curl, sshd, certutil transfer

wget download
ls,dir list

rm,del,rmdir remove
sh shell

stat, cat show
schtask schdule
rundll run, dll file

reg add add
reg del del

kill, pkill, taskkill stop
grep, find search

cat read
powershell command with

capital and lower-case letter
(e.g., Invoke-Command,

Get-ChildItem)

Divided by “-” and
capital letters.

(e.g., Invoke, Command;
Get, Child Item)

System
Call

execve execute
recvmsg, recvfrom receive
sendmsg, sendto send

chmod change, file mode

sole difference is that, rather than utilizing a system event, we
query the CKD using gIoCs derived from the CTI reports. We
also employ a similar method to compute similarity scores, as
outlined in Section IV-C.

C. Querying CKD with System Events

CKD provides the provenance query, ProvQ, that matches
the low-level system events to ATIEs. The key advantage of
ProvQ is that it allows fuzzy matching to gIoCs, providing a
more general detection even when IoCs fail to match system
events.
ProvQ takes a system event e =

(source, destination, syscalltype, commandline) and
returns a list of ATIEs that match the given event. We say that
e matches an ATIE, t, if their similarity score is greater than
the given query threshold θq . The similarity score Sim(e, t)
between e and t is defined as score(e, t) =

∑
S(e.y, t),

where y is one of “source”, “destination”, “syscalltype”, and
“commandline”, and S(e.y, t) is the occurrences of gIoCs in
t that appear in e.y, respectively.

We calculate S(e.y, t) by matching the semantics of e.y to
the subject-verb-object triplet of the gIoC. The high-level pro-
cess is shown in Figure 2. The challenge is how to determine
the occurrence of t in e.y since the natural language words in
gIoC cannot directly match the system identifiers, such as file
paths, in system events. To address this problem, KNOWHOW
first lifts the specific system events to extensible semantic
representations and then uses semantic aware embedding to
convert the system events and gIoCs into numeric vectors.
Finally, our approach calculates the cosine similarity of the
embedding vectors of the system events and gIoCs. If the
cosine similarity is above a threshold, our approach considers
the event “hits” a gIoC.
Event Semantic Lifting. The key step in constructing
ProvQ(e, θq) involves elevating low-level system events to
natural language sentences that can be matched with gIoCs.
The high-level idea is the same as the conversion method
mentioned in gIoC extraction in Section IV-B. For file paths,
we extract the file type name, application name, and the
necessary path information as the semantic representation.
The file type name can be inferred from the file’s extension,
while the application name is derived from its installation
location within specific folders (e.g. the name of the folder
directly under “/bin” is typically the application name). For
IP addresses, we utilize their domain name (when available)
in reverse DNS as the semantic representation. For example,
“64.233.160.0” is represented as “Google”. For IPs whose
DNS domain cannot be resolved, we label them as “unknown
network”. Finally, for command lines and system call types,
we expand abbreviations to their full forms for semantic
representation. For example, we expand the command “cp”
to “copy” and the system call “execve” to “execute”.
Event and gIoC Embedding. After lifting the system events
into natural language representations, KNOWHOW converts
system events and gIoCs into numerical vectors so that we
can calculate their cosine similarity. To this end, we leverage
FastText [24] to embed the lifted event entries and fields
in gIoCs into numerical vectors. We chose FastText due
to its ability to preserve semantics and be efficient. First,
embedding vectors of FastText can preserve the semantics of
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Fig. 2: The calculation process of S(e.y, t).

words. For example, FastText ensures the distances between
“run” and “execute” to be small so that we can match the
system call “execute” to text “run” in CTI reports. Second,
compared to other techniques like large language models,
FastText is significantly faster. Such efficiency is critical for
attack detection systems like KNOWHOW as they are resource-
constrained [21]. Noting that we use large language models for
offline gIoC extraction in Section IV-B due to their superior
ability in identifying diverse and nuanced natural language
entities. In contrast, we avoid using LLMs to directly analyze
system events for efficiency.
Query Acceleration. A naive approach to realizing
ProvQ(e.y, θq) is to compare e to each ATIE, t, in CKD and
then further enumerate each gIoC within t to calculate the
score. However, such a native method is time-consuming and
unsuitable for online APT attack detection. To accelerate the
queries, we devised a two-stage searching method to eliminate
the need to compare every gIoC in CKD. The key idea is
driven by the observation that gIoCs can be very different
semantically. Thus, we do not need to compare system events
to gIoCs that are semantically far away. For example, we do
not need to calculate the similarity between “remove” and
“add a file”. Our two-stage searching method first clusters
gIoCs using the Mean-Shift algorithm [10], [64] based on
their embedding vectors. We chose Mean-Shift because it
is a non-parametric algorithm that does not require setting
hyper-parameters, such as the number of clusters manually.
Additionally, it is suitable for distributions with irregular
shapes and varying densities, making it capable of handling
clusters of arbitrary shapes, which aligns with our scenario
where clustering involves a large number of security-specific
terms. Thus, during the search, given a field e.y of a system
event e, KNOWHOW first identifies the cluster closest to e.y
and then finds the most similar gIoCs within that cluster. This
approach enables KNOWHOW to avoid comparing e.y with
gIoCs in other clusters, which are semantically far away.
Threshold Setting. We employ Grubbs’ Test [14], a standard
statistical method for outlier detection, to automatically de-
termine the value of θq based on benign data. We opt for
this method due to its elimination of the need for manually
specified parameters. Specifically, for a given benign dataset
comprising system events, we compute the similarity score of

each system event within the benign dataset against each ATIE
in the CKD. Subsequently, we apply the one-sided Grubbs’
Test to determine the outlier detection threshold for these
similarity scores, which serves as θq .

V. DESIGN OF KNOWHOW

KNOWHOW offers online, accurate, and interpretable detec-
tion of APT attacks based on CKD. The key idea is to utilize
a similarity score between system events and ATIEs as an
indicator of attacks, rather than relying on statistical anomalies
detected through data-driven approaches. This design presents
two key advantages over data-driven methods. Firstly, the
alerts generated by KNOWHOW are more interpretable. Instead
of simply presenting statistical anomaly scores, KNOWHOW
can explain why a specific event is deemed malicious by
identifying the attack technique used at each stage. Secondly,
KNOWHOW offers higher precision by reducing false positives
based on attack logic, which is a significant limitation in data-
driven approaches.

A. Detection Workflow

The detection workflow of KNOWHOW is illustrated in
Figure 3. It consists of three steps: 1 Detecting Anomalous
Events: Given a stream of system events, KNOWHOW first
matches each incoming event e with CKD to identify anoma-
lous events. It detects anomalies by querying a system event
in CKD using ProvQ, determining whether it corresponds
to an attack technique documented in CKD. If an event
matches at least one technique, it is classified as anomalous.
2 Constructing Provenance Graph: KNOWHOW constructs a

provenance graph based on the detected anomalous events and
treats it as a potential seed alert for attacks in an online manner,
adopting the same online graph construction approach as
NODLINK [42], which we chose for its high efficiency. During
the graph construction, the event-level anomalies are treated as
seed nodes and expand the subgraph by propagating anomaly
scores. Based on the attack aggregation assumption [42], this
expansion introduces lower-scored (benign in event-level de-
tection) nodes, reducing false negatives. 3 Applying Reason-
ing Model: KNOWHOW analyzes provenance graph with our
reasoning model, extended from APT Lifecycle model [54],
[45]. This step helps eliminate false positives that do not
contain sufficient steps to ensure a successful attack or that
do not follow the logical sequence of attacks.

B. Attack Reasoning

KNOWHOW utilizes the knowledge of the APT Lifecycle
to analyze attack graphs and reason about concise, APT
Lifecycle-structured attack alerts. The core idea is that a
successful attack must include sufficient steps that follow a
logical sequence, for example,“Initial Access” must precede
data theft. Missing critical stages (e.g., “Command and Con-
trol”) suggests an incomplete attack, while steps violating the
expected order are less likely to represent genuine threats,
helping prioritize high-confidence, logically consistent alerts.
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Fig. 3: The workflow of KNOWHOW. Given an event stream, KNOWHOW first queries CKD to detect anomalous events
by labeling attack techniques associated with them. Each event may correspond to multiple techniques. Next, KNOWHOW
constructs the provenance graph, with a zoomed-in view provided in the figure, highlighting the detected technique labels on
the edges. Finally, KNOWHOW performs attack reasoning on the provenance graph to generate alerts. Specifically, it maps the
anomalous nodes to reasoning model based on the technique labels of their outgoing edges, generating candidate lifecycles.
And then, KNOWHOW applies the reasoning model to eliminate false positives and produce precise, interpretable alerts.

The attack reasoning consists of two steps. First,
KNOWHOW maps nodes to the reasoning model based on
the industry-standard APT Lifecycle stage models [56], [49],
widely adopted in production environments [66], [21]. Second,
KNOWHOW uses the reasoning model to verify the temporal
order of stages within candidate lifecycles, remove invalid
stages, check the completeness of attack stages, and generate
alerts.
Reasoning Model. KNOWHOW’s reasoning model is designed
with two goals: (1) to provide strong guidance that improves
attack detection accuracy, and (2) to ensure high interpretabil-
ity, enabling security experts to understand detection results
without extensive training.

To achieve our design goals, we propose a relaxed APT
Lifecycle model based on the widely adopted APT Lifecycle
model within the industry [15], [32], [19], [50], shown in
Figure 4, where A → B indicates that stage A precedes stage
B. This model fulfills the first design goal by encapsulating the
general understanding of APT attacks. It captures the key steps
and the temporal relationships among them for typical APT
attacks in practice, enabling the identification of incomplete or
chronologically inconsistent alerts as potential false positives.
Regarding the second design goal, this model is derived from
the standard industrial models, enabling security experts to
grasp its terminology without specialized training.

Note that our reasoning model defines and uses a relaxed
APT Lifecycle that only requires the “Initial Compromise”
stage to precede all others and “Complete Mission” to occur
last. No strict temporal order is imposed on intermediate stages
such as “Escalate Privilege”. This design reflects practical
observations: attackers must first compromise a system before
performing follow-up actions. We relax ordering constraints
in the original Lifecycle models for other stages because they
often share mutiple techniques—e.g., a C2 mechanism may
support both “Establish Foothold” and “Escalate Privilege”.

Relaxing these constraints helps mitigate ambiguity and im-
proves robustness in real-world scenarios.

Usage of the Reasoning Model. KNOWHOW uses the rea-
soning model to reason the candidate lifecycles and infer
accurate attack alerts. It first streamlines alerts by removing
stage labels that violate the model’s temporal order. Then, by
evaluating lifecycle completeness, it generates alerts for valid
sequences and discards incomplete ones—likely false positives
from benign behavior.

Streamlining Alerts. As a highly automated system,
KNOWHOW may generate false positives in flagging anoma-
lous events, for instance, misclassifying a benign port scan as
“Initial Compromise”. To address this, KNOWHOW removes
events that violate the temporal order shown in Figure 4. For
example, as illustrated in Figure 3, if Initial Compromise”
appears after “Establish Foothold” in the provenance graph,
the former is pruned, as re-compromising the system after
already gaining access is logically inconsistent

Raising Alerts. Our insight to raise alerts is that failed
or incomplete attack candidates lacking essential attack be-
haviors can be mistaken for benign behaviors. For example,
an IT maintainer might also exhibit behavior resembling
port scanning during the “Initial Compromise” stage. Simply
detecting these incomplete attacks can lead to false positives.
Therefore, KNOWHOW necessitates that an alert encompasses
at least the “Initial Compromise” and “Establish Foothold”
stages, as they are essential for an attacker to penetrate the
victim system. Additionally, KNOWHOW demands that the
alert include at least one stage from “Escalate Privilege”,
“Internal Reconnaissance”, “Move Laterally”, and “Maintain
Persistence” because these represent the essential behaviors in
an attack. Notice that the presence of “Complete Mission” is
optional, as not all attackers will erase their tracks or harm
the victim’s system.
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C. Mapping Anomalous Nodes to the Reasoning Model

To enable reasoning, KNOWHOW needs to map anomalous
nodes in alerts to stages within our reasoning model to
generate the candidate lifecycles. To this end, we first map the
technique labels of each anomalous node to a tactic label. This
step is straightforward, as the ATT&CK framework already
provides the mapping relations [55]. Then, we employ the
mapping rules in Table III, derived from our comprehension
of the APT Lifecycle model, to assign the tactic labels to the
respective APT Lifecycle stages.

TABLE III: Tactic-Lifecycle Stage Mapping Table.

Tactic APT Lifecycle Stage
Reconnaissance, Initial Access Initial Compromise

Execution, Resource Development,
Command and Control Establish Foothold

Privilege Escalation, Credential Access Escalate Privilege
Discovery, Collection Internal Reconnaissance

Lateral Movement Move Laterally
Persistence, Defense Evasion Maintain Persistence

Exfiltration, Impact Complete Mission

The key challenge in mapping anomalous nodes to stage
labels lies in the one-to-many relationships: a node may have
multiple edges, while each single edge may correspond to
multiple ATIEs in CKD, linked to different tactics and thus
multiple APT stages. For instance, an alarm edge involving
“T1053 Scheduled Task” and “T1546 Event Triggered Execu-
tion” may relate to tactics like “Execution”, “Persistence” and
“Privilege Escalation”, mapping to stages including “Maintain
Persistence” and “Escalate Privilege”. As nodes typically have
many outgoing edges, aggregating edge-level stage labels
directly would assign multiple stages per node, causing a path
explosion during reasoning due to the need to evaluate all stage
label combinations for temporal order.

To address the one-to-many mapping problem, we trans-
form it into a one-to-limited mapping via label merging,
assigning edges, and subsequently nodes, a limited set of
stage labels. Our core concept is to retains stage labels with
“relatively high” scores, computed as the cumulative similarity
(Sim(e, t)) between event e and matching ATIEs. Using
Grubbs’ Test, we identify high outliers as “relatively high”
scores and keep their corresponding stages; if no high outliers
exist, we remove low outliers and retain the rest. This strategy

avoids over-reliance on the single highest-scoring stage, which
may be a false positive. Since node stage labels are derived
from their outgoing edges, which also yields a one-to-many
mapping, we apply the same one-to-limited method to assign
the node a refined set of stage labels with “relatively high”
scores.

Specifically, We deduce the correct stage labels for a node
by performing one-to-limited mapping over its outgoing edges.
Nodes without successors, which means they have no gener-
ated events or outgoing edges, are skipped, and stage selection
begins from their predecessors. For node n, the stage labels of
its outgoing edges serve as candidate options, each weighted
by its corresponding anomaly score. The labels with “relatively
high” weights (determined via Grubbs’ Test, as before) are
selected for n. We then backtrack to n’s predecessor to vote on
its stage labels, repeating this process iteratively until all nodes
in the attack graph are assigned APT lifecycle stages. Finally,
nodes sharing the same stage label are merged into single
nodes in the reasoning model to form candidate lifecycles,
as illustrated in Figure 3.

VI. EVALUATION

We implemented a prototype of KNOWHOW and evaluated
it with realistic attack scenarios. In this section, we first
detail the implementation and the experimental environment.
Then, we introduce our evaluation protocol, including met-
rics, knowledge sources, datasets, and baselines. To evaluate
KNOWHOW, we focus on answering the following research
questions:
RQ 1: Can KNOWHOW detect APT attacks accurately and
precisely with the help of gIoC?
RQ 2: Does KNOWHOW correctly label the ATT&CK tech-
niques to system events?
RQ 3: Is KNOWHOW efficient enough for online detection?
RQ 4: Is KNOWHOW robust against mimicry attacks, incom-
plete attack lifecycles, new and unseen attacks?
RQ 5: How each component in KNOWHOW contributes to the
overall detection process?

A. Implementation and Experiment Environment

We implemented KNOWHOW on Python3.8.8 with around
2,000 lines of code (LoC) across all components. In our
deployment, KNOWHOW utilizes the FastText model [24] to
encode gIoCs and key information from input system events.
The embedding space of FastText is pre-trained through
CBOW model [52] using over 10,000 attack-related statements
extracted from 1,500 paragraphs in the MITRE ATT&CK
technique description [55] and 80 pieces of attack descriptions
sourced from public CTI reports [1]. Meanwhile, KNOWHOW
employs Sklearn [73] to implement the Mean-Shift algorithm
in the query acceleration component (Section IV-C). For CKD
and dataset management, KNOWHOW leverages the Elastic-
Search database [22] for data management and querying. All
experiments were conducted on a Ubuntu 22.04 machine with
a GTX 3090 GPU, a 40-core 2.40GHz CPU, and 128GB of
main memory.
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B. Evaluation Protocol

Metrics. NodLink [42] has proposed to use graph-level and
node-level accuracy to evaluate the effectiveness of attack
detection more comprehensively. Graph-level accuracy com-
prises two parts: graph-level precision and graph-level recall,
which are defined as GTP

GTP+GFP and GTP
GTP+GFN , respectively.

GTP , GFP , and GFN stand for graph-level true positives,
false positives, and false negatives, respectively. The graph-
level positive is the number of reported graphs that con-
tain attack steps, while the negative represents the number
of reported graphs that do not contain attack steps. Node-
level accuracy also comprises two parts: node-level precision
and node-level recall, which are defined as NTP

NTP+NFP and
NTP

NTP+NFN , respectively. NTP , NFP , and NFN are the
numbers of node-level true positives, false positives, and false
negatives, respectively. Given a reported provenance graph, we
consider a node in the graph as an NTP if it represents an
attack step.
Knowledge Sources. To build CKD, KNOWHOW crawled the
technique descriptions from ATT&CK v10.0, which encom-
passed 567 techniques. Additionally, 80 CTI reports containing
attack-related sentences were randomly selected from Threat-
Miner [1] and Mandiant [49]. Following the construction of
CKD, KNOWHOW generated one ATIE for each technique,
amounting to a total of 567 entries. Among these, there were
27,652 gIoCs and 1,795 IoCs. All our CTI reports are dated
before December 2022.
Datasets. The general information of our datasets is shown
in Table IV. We first evaluate KNOWHOW on three public
datasets: THEIA, TRACE, and In-lab Arena. THEIA and
TRACE originate from the DARPA Transparent Computing
Engagement #3 (E3) database [17], which has been exten-
sively utilized in recent researches [42], [13], [88], [81]. And
we labeled the ground truth nodes following the E3 docu-
ment [18]. We did not incorporate the CADET dataset because
the necessary information, such as full command lines and
parameters, is missing in it, hindering fine-grained knowledge
discovery. In-lab Arena [62] was simulated by NODLINK [42],
replicating real attacks that took place at Sangfor, one of
the most prominent Chinese security vendors. We rely on
the documents provided by the NODLINK repository [42] for
labeling the attack techniques in In-lab Arena. We refrain from
using the DARPA Transparent Computing Engagement #5
(E5) dataset because we observed discrepancies between attack
reports and actual logs in several cases in it. For example, it
lacks the corresponding write event of the “sshdlog” injection
operation documented in THEIA.

In addition to these three datasets, we constructed a newly
simulated dataset, NewlySim, for our evaluation, with the
aim of testing the effectiveness of KNOWHOW in handling
unknown new attacks. Specifically, using NewlySim, we ex-
ploited two new vulnerabilities, CVE-2023-22809 [59] and
CVE-2024-28085 [60]. These vulnerabilities were selected for
their high risk and broad impact. For example, CVE-2023-
22809 is rated “High” by the NVD [61], affects multiple

TABLE IV: Summary of our evaluation datasets. “Duration”
and “Event Rate” denote the duration of data collection and the
average number of events generated per second, respectively.

Dataset # APTs Duration # Hosts Event Rate # Attack Actions
THEIA 1 247h 1 11.25 eps 97
TRACE 2 264h 1 75.76 eps 93

In-lab Arena 5 144h 5 48.23 eps 202
NewlySim 2 336h 3 168.69 eps 39

Open-World 6 168h 186 28.13eps 212

versions of “sudo”, posing a widespread threat. Similarly,
CVE-2024-28085 targets util-linux, which is a core component
in most Linux distributions, making it highly relevant to Linux
users. Most importantly, neither exploit is covered in our CTIs,
as our CKD contains only CTIs published before December
2022.

To build NewlySim, we deployed a three-machine scenario
comprising a hijacked attacker machine, an extranet interactive
jump server machine, and an intranet working machine. The
adversary first gained access to the intranet interactive jump
server machine through social engineering channels and then
utilized the ”ssh” service on the springboard to infiltrate
the intranet machines. On the intranet working machine,
the adversary launched two attack campaigns, leveraging the
aforementioned vulnerabilities to achieve privilege escalation.
With system-level privileges, the adversary executed various
malicious actions that are common in APT attacks, including
malicious payload acquisition and execution [5], [83], internal
environment reconnaissance [75], [16], OS credential dumping
[84], [71], important file scanning and collection [12], [9],
information leakage [58], [31], and attack evidence eradication
[76], [82], thus completing an APT attack. We also used a
trusted machine to log into the intranet machine to generate
benign data through regular Microsoft Office operations. The
attack lasted for 168 hours, during which we also collected
the benign dataset in the same environment for 168 hours.

Finally, we also evaluated KNOWHOW using an Open-
World dataset generated from a realistic industrial environ-
ment. We deployed KNOWHOW within one of the world’s
largest cloud providers, Huawei, and participated in their
internal penetration test. During our experiment, KNOWHOW
was deployed across over 180 endpoints, including diverse
servers, workstations, and desktops, all running various op-
erating systems such as Linux, Windows and openEuler. We
first collected benign data over a 20-hour period and manually
verified it to ensure no attacks were present. Then, a profes-
sional red team initiated attacks on the machines monitored
by KNOWHOW over a seven-day period. The ground truth for
the Open-World dataset was provided by the this red team.

For the DARPA datasets, we follow the same practice of
NodLink [42] to split the training and test datasets. We first
select 20% of the data that covers the time period of attacks as
the test dataset. Then, we use the remaining 80% of the data,
which only contains benign events, as the training dataset [42].
For other datasets, we use the provided benign data for
training and anomaly data for testing. We first apply event-
level detection on the training set to derive the threshold using
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Grubbs’ Test, and then evaluate KNOWHOW ’s performance
on the test set.
Overlap Between CTI Reports and Data. To ensure the
fairness of the evaluation, we have verified that the attack
techniques utilized in our datasets are NOT documented in
our CTI reports directly. For the DARPA dataset, we manually
inspected it to confirm that none of the knowledge in our CTI
reports were used in the attacks. For the In-lab Arena dataset
and the Open-World dataset, all of our CTI reports are dated
before December 2022, which is before the generation dates
of these datasets. We further examined the attack techniques
employed in these two datasets and confirmed that they were
not mentioned in the CTI reports. In our NewlySim dataset,
we deliberately chose to use techniques that are dated after
January 2023.
Baselines. To evaluate the effectiveness of KNOWHOW
in detecting APT attacks, we compare it with five end-
to-end provenance-based APT attack detection systems:
HOLMES [54], AIRTAG [20], NODLINK [42], KAIROS [13],
and EXTRACTOR [72]. The first four baselines are non-CTI
driven detection systems and EXTRACTOR is a state-of-the-
art CTI-driven system that extracts IoC patterns from CTI
reports. EXTRACTOR is a representative CTI-extraction system
that extracts IoC graphs from CTI reports. Following the
evaluation methodology in its paper [72], we use EXTRACTOR
to generate graphs and feed them into POIROT for detection,
ensuring a fair and comparable evaluation. To evaluate the
effectiveness of gIoC in APT attack detection, we replace the
knowledge in CKD with knowledge extracted using two state-
of-the-art knowledge extraction methods: TTPDRILL [36] and
LADDER [2]. We also compare KNOWHOW with an IoC-
only version of KNOWHOW, which utilizes IoCs extracted by
IoCParser in the knowledge base. Table V lists a summary of
all the baseline systems. These three CTI extraction baselines
are designated as “TTPDRILL + KNOWHOW”, “LADDER +
KNOWHOW”, and “KNOWHOW with only IoC”.
Setup for Baselines. For AIRTAG, NODLINK, KAIROS, EX-
TRACTOR, TTPDRILL, and LADDER, we utilize the open-
source code released by the respective authors. We apply all
the optimizations and recommended hyperparameters outlined
in their original papers to train the models using the same
benign dataset as KNOWHOW. For HOLMES, we adopt the
implementation provided by the authors of NODLINK. For
AIRTAG, we retrain the BERT using the benign dataset,
which is identical to the one used for the other baselines
and KNOWHOW, following the training parameters specified
in their open-source code.

C. RQ 1: Effectiveness in APT Attack Detection

We calculate the graph- and node-level accuracy of
KNOWHOW and the baselines to evaluate the effectiveness
of KNOWHOW in APT detection. The results are shown in
Table VI and Table VII. KNOWHOW performs both the best
graph- and node-level accuracies compared to the baselines.
Graph-Level Accuracy. For graph-level accuracy,
KNOWHOW achieves the precision and recall of 1.00,

TABLE V: Summary of our baselines.

Type Name Methodology Venue Year

Detection
Baselines

HOLMES Manual Rules IEEE S&P 2019
AIRTAG Date-driven Usenix Security 2023
NodLink Date-driven NDSS 2024
KAIROS Date-driven IEEE S&P 2024

EXTRACTOR
+ POIROT CTI-IoC-driven Euro S&P 2021

CTI
Extraction
Baselines

TTPDrill +
KNOWHOW *

Basic Syntax
Analysis ACSAC 2017

LADDER +
KNOWHOW * Language Model RAID 2023

KNOWHOW
with only IoC

Regular Expression
matching NA NA

TABLE VI: The graph-level accuracy results for KNOWHOW
and baselines. P stands for precision, and R stands for recall.

Dataset
Detection
Baselines

THEIA TRACE In-Lab Arena NewlySim Open-World
P R P R P R P R P R

HOLMES 1.00 1.00 0.15 1.00 0.04 1.00 0.14 1.00 0.15 0.40
AIRTAG 1.00 1.00 1.00 1.00 0.83 1.00 1.00 1.00 0.63 1.00

NODLINK 1.00 1.00 0.67 1.00 1.00 1.00 1.00 1.00 0.71 1.00
KAIROS 0.91 1.00 0.88 0.88 1.00 1.00 0.50 1.00 0.63 1.00

EXTRACTOR
+ POIROT

0.33 1.00 0.33 1.00 0.50 1.00 0.25 1.00 0.43 0.30

KNOWHOW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 1.00

except for Open-World dataset. There is a false positive of
KNOWHOW at the graph level in the Open-World dataset.
After an investigation by the red team, it was confirmed that
the false positive was caused by an update to the system’s
security software, which involved serious high-risk behaviors
similar to attacks. Nevertheless, all baselines also fail to detect
this attack. Data-driven methods (i.e., NODLINK, KAIROS,
and AIRTAG) have low graph-level precision because they
rely on extracting normal behavior characteristics from benign
data, which cannot handle rare but benign events. HOLMES’s
graph-level precision is the lowest due to the incompleteness
of the knowledge included and the over-generalization in
the handling of objects, such as treating all non-trusted IP
addresses as a means of initial compromise.
Node-Level Accuracy. For node-level accuracy, KNOWHOW
has higher node-level precision and recall in each dataset than
the baselines. Most baselines suffer from low precision and re-
call, because they cannot identify rare but benign nodes or have
complete rules capturing all attack behaviors. For data-driven
approaches, the training set significantly impacts detection
effectiveness. That said, if normal behaviors are not included
in the training set, they are prone to being identified as

TABLE VII: The node-level accuracy results for KNOWHOW
and baselines. P stands for precision, and R stands for recall.

Dataset
Detection
Baselines

THEIA TRACE In-Lab Arena NewlySim Open-World
P R P R P R P R P R

HOLMES 0.01 0.98 0.01 0.74 0.01 0.32 0.01 0.40 0.04 0.21
AIRTAG 0.31 0.84 0.26 0.88 0.18 0.96 0.19 0.86 0.30 0.87

NODLINK 0.23 1.00 0.25 0.98 0.17 0.92 0.28 0.94 0.48 0.90
KAIROS 0.13 0.93 0.11 0.94 0.32 0.92 0.17 0.96 0.33 0.94

EXTRACTOR
+ POIROT

0.34 0.77 0.34 0.88 0.56 0.54 0.29 0.25 0.38 0.22

KNOWHOW 0.62 1.00 0.82 0.98 0.82 1.00 0.78 1.00 0.82 1.00
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malicious. For example, in NewlySim, a normal user’s unique
file handling process, including using the tar command (absent
from benign data), led to false alarms (NFPs) by all data-
driven baselines except NODLINK. While NODLINK employs
Grubbs’ test and limited-step anomaly score propagation to
reduce NFPs, it still generates a significant number due to the
absence of node behavior and temporal logical order checks,
as seen in KNOWHOW. HOLMES performs the worst due to its
coarse-grained rule design. For example, HOLMES categorizes
read operations originating from untrusted IP addresses as
Untrusted Read. However, in normal scenarios, numerous
legitimate network access operations occur, resulting in a large
number of IP addresses that have never appeared in the system
becoming untrusted, causing false positives.
Effectivenss of gIoC. To further evaluate the effectiveness
of gIoC in CKD, we compare KNOWHOW’s performance
augmented with gIoC knowledge against three CTI extrac-
tion baselines. We find that KNOWHOW with gIoC achieves
superior accuracy in both graph- and node-level detection, out-
performing all baselines. The results are shown in Table VIII
and Table IX.

TABLE VIII: The graph-level accuracy results for KNOWHOW
and baselines. P stands for precision, and R stands for recall.

CTI Extraction Baselines Ours

Dataset
TTPDRILL +
KNOWHOW *

LADDER +
KNOWHOW *

KNOWHOW
with only IOC KNOWHOW

P R P R P R P R
THEIA 0.17 1.00 0.20 1.00 0.50 1.00 1.00 1.00
TRACE 0.50 1.00 0.40 1.00 0.67 1.00 1.00 1.00

In-Lab Arena 0.56 1.00 0.33 0.80 0.83 1.00 1.00 1.00
NewlySim 0.17 1.00 0.17 1.00 0.17 1.00 1.00 1.00

Open-World 0.67 0.80 0.38 0.30 0.35 0.60 0.91 1.00

TABLE IX: The node-level accuracy results for KNOWHOW
and baselines. P stands for precision, and R stands for recall.

CTI Extraction Baselines Ours

Dataset
TTPDRILL +
KNOWHOW *

LADDER +
KNOWHOW *

KNOWHOW
with only IOC KNOWHOW

P R P R P R P R
THEIA 0.31 1.00 0.15 0.54 0.23 0.88 0.62 1.00
TRACE 0.67 0.98 0.12 0.63 0.18 0.83 0.82 0.98

In-Lab Arena 0.54 0.92 0.21 0.52 0.32 0.65 0.82 1.00
NewlySim 0.12 0.84 0.08 0.12 0.19 0.68 0.78 1.00

Open-World 0.59 0.37 0.11 0.37 0.11 0.27 0.82 1.00

For the “TTPDRILL + KNOWHOW” and “KNOWHOW with
only IoC” baselines, the reliance on IoC alone, coupled with
the limited number of corresponding IoCs in CTI reports,
is the primary cause of poor performance. This limitation
leads to numerous missed attack-related events, resulting in
a large number of false negatives. Furthermore, both baselines
generate many false positives, as IoCs are tied to specific
paths, files, and command lines that don’t necessarily indi-
cate malicious behavior across all operations involving these
entities. In our evaluation, we observe that both baselines
can only detect malicious external IP nodes and nodes with
specific command lines or file names (e.g., the del command
used to erase attack traces, or the /etc/passwd file accessed
by attackers). However, they struggle to detect malicious

processes or files disguised as normal nodes. Additionally,
certain IoC-related files and folders can also be accessed by
legitimate processes. Relying on IoC makes it difficult for
KNOWHOW to distinguish between these benign external IPs
and legitimate command operations, leading to a significant
number of false positives.

“LADDER + KNOWHOW” performs poorly because part
of the extracted knowledge contains a significant amount of
irrelevant information, which distorts the matching process
with system events. More specifically, the incomplete and
imprecise extraction by LADDER leads to incorrect query
scores and ultimately disrupts the accurate scores derived from
true IoCs.

In contrast, with gIoCs, KNOWHOW can identify attack
behaviors, such as downloading of a malicious file from
an external IP, the execution of the malicious file, and the
removal of the malicious file after execution is completed,
even if the names of malicious nodes don’t appear in the CTI.
This is because, using the event semantic lifting method in
Section IV-C, KNOWHOW can detect the malicious process
and file node from the granularity of behavior and maps the
gIoC dealing with the situation when the malicious file is
renamed to disguise itself as a normal file.

D. RQ 2: Accuracy of Technique Labeling

A key advantage of KNOWHOW is its ability to link
ATT&CK technique labels to low-level system events, yielding
interpretable and precise detection. With properly assigned
ATT&CK technique labels, KNOWHOW can map system
events to lifecycle stages. This capability enables temporal rea-
soning to filter out likely benign sequences, thereby enhancing
detection precision without compromising interpretability.

Therefore, in this section, we evaluates KNOWHOW ’s
accuracy in assigning technique labels. The main challenge
lies in establishing ground truth. While the Open-World dataset
is fully labeled with ATT&CK techniques, the In-Lab Arena
dataset is partially labeled, and for the remaining unlabeled
datasets, we engaged the same red team in Open-World
dataset to annotate techniques based on attack documents. To
ensure consistency, each attack behavior was assigned at most
three techniques during both annotation and expert review.
A labeling is considered correct if KNOWHOW matches any
ground-truth techniques. Our evaluation covers 643 attack
actions spanning 12 tactics and 65 techniques.

In our experiment, KNOWHOW accurately labels 559 of all
643 attack actions, accounting for a 87.0% accuracy. After
manual inspection, 507 out of 559 actions can be labeled
by gIoCs while only 101 actions can also be identified by
IoCs. For example, in the dataset, there is an event accessing
the process memory file, (cp, read, /proc/11793/mem), which
is triggered by the attacker performing an OS credential
dumping. For this event, no IoC mentioned in CTI can be
matched with the exact path of “/proc/11793/mem”. However,
there are related sentences in CTI stating “The attackers
usually dump the process memory in the system.” With these
sentences, KNOWHOW can extract gIoC as (attacker, dump,
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process memory in the system), which can then be matched
to the event. Of the 84 mislabeled actions, 69 are those that
are not labeled by KNOWHOW as the top 3 accurate labels,
and the other 15 are incorrectly labeled by KNOWHOW.

The reason why KNOWHOW does not give accurate label
to the 69 attack actions is that these actions correspond to
multiple attack techniques, causing ambiguity. For example,
in the In-Lab Arena dataset, attackers downloaded malicious
payloads by abusing PowerShell commands. This top 3 actions
can correspond to Ingress Tool Transfer (T1105), Sched-
uled Task/Job (T1053), and Develop Capabilities-Malware
(T1587.001), while KNOWHOW gives Abuse PowerShell
(T1059.001), which results in an incorrect label. Inspecting
the candidate label set of this attack action in KNOWHOW,
we find that Ingress Tool Transfer (T1105) is also a candidate,
but with a lower similarity score.

For the other 15 mislabeled attack actions, it is because
KNOWHOW did not properly understand the semantics of the
attack action, resulting in incorrect labeling. For example, in
our datasets, the attackers used the echo command to write
invalid data to a malicious payload (execution file) to achieve
an obfuscated operation, which reflected Obfuscated Files or
Information (T1027). The KNOWHOW incorrectly labeled this
attack action as Windows Command Shell (T1059.003) because
it didn’t understand the attack correctly and thought it was a
simple malicious command execution.

Although labeling inaccuracies may appear concerning, they
do not severely hinder attack reasoning, as predicted tech-
niques are often semantically related to the ground truth. This
enables KNOWHOW to map them to similar lifecycle stages,
preserving reasoning flow and preventing premature pruning
of valid paths, thus avoiding graph-level false positives. Mean-
while, Section VI-G explains how attack reasoning further
mitigates event-level false positives from technique labeling.
In addition to the overall analysis presented above, Section VII
provides concrete examples illustrating how technique labels
are captured by matching system events with gIoCs. We
recognize that our evaluation datasets and covered attack
techniques are limited in representing real-world complexity.

To facilitate future research, Figure 5 presents the ten
most frequently observed MITRE ATT&CK techniques in
our experiments. The most common techniques are primarily
associated with four tatics, including Execution, Internal Re-
connaissance, Command and Control, and Credential Access.
Among these, techniques under Internal Reconnaissance (e.g.,
commands such as ifconfig and arp) are relatively easy to de-
tect using IoCs, as often involving well-known system utilities.
In contrast, the remaining techniques are more challenging
to identify with IoCs alone, and require gIoCs for accurate
mapping. The case-level details are illustrated in Section VII.

E. RQ 3: Efficiency

To evaluate the efficiency, we compare the throughput of
KNOWHOW with baselines on different datasets. The through-
put is defined as the number of system events processed per
second (eps). We omit TTPDRILL and LADDER because

Fig. 5: Top 10 frequent techniques in our experiments.
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Fig. 6: Working throughput among different frameworks.
TTPDRILL and LADDER have the same throughput as
KNOWHOW.

they share the detection component of KNOWHOW, leading
to the same throughput.

Figure 6 depicts the throughput of all the systems across
different datasets. KNOWHOW is comparable to the SOTA
online detection works. HOLMES achieves exceptionally high
throughput in the In-Lab Arena and NewlySim datasets as
it only has 16 rules, resulting in the lowest accuracy in
Section VI-C. AIRTAG exhibits the lowest throughput because
it uses the time-consuming BERT for event encoding.

Moreover, we analysis the impact of CTI scale on detec-
tion efficiency. Larger volumes of CTIs may generate more
gIoCs within CKD, potentially slowing down ProvQ perfor-
mance. However, the theoretical time complexity of ProvQ
is O(log(n)), where n denotes the number of gIoCs, and that
is a complexity that remains acceptable even as the number
of gIoCs increases. Specifically, under the low-dimensional
manifold hypothesis, which is empirically effective for textual
data[7], [85], our Mean-Shift algorithm clusters the n gIoCs
into k clusters, where k = O(log(n)). Furthermore, by
organizing the k ATIE clusters in CKD using a KD-tree struc-
ture, the approximate time complexity of ProvQ becomes
O(k + log(n/k))[8], [27]. Substituting k = O(log(n)), this
complexity simplifies to O(log(n)). Therefore, the efficiency
of KNOWHOW remains largely unaffected by the scale of CTI.
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TABLE X: Detection result of KNOWHOW on the Mimic-
Prov dataset with different insertion ratios. Columns with an
insertion ratio of 0.00 indicate the original dataset and no
mimic structure is inserted. P, R are the same as Table VI.

Ratio 0.00 0.20 0.50 1.00 2.00
Metrics P R P R P R P R P R
Graph 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Node 0.78 1.00 0.43 1.00 0.51 1.00 0.31 0.90 0.42 1.00

F. RQ 4: Robustness

Mimicry Attacks. Existing research has demonstrated that
existing APT detection systems, particularly those based on
graph learning, exhibit considerable vulnerability when facing
mimicry attacks [29]. They find that attackers can mislead
graph-learning-based detection approaches by inserting some
benign behaviors into their attacks, causing the attack prove-
nance graph to contain benign structures. The proportion of the
size of the above-mentioned benign subgraph to the average
size of normal benign structures in the benign data is called the
insertion ratio. It shows that when the insertion ratio exceeds
2.00%, the attacker can escape the detection algorithm.

To evaluate the robustness of KNOWHOW against mimicry
attacks, we constructed a mimicry dataset, Mimic-Prov, fol-
lowing the steps described in [29], and evaluate KNOWHOW
on it. We include this dataset in our code repository. Note that
we did not utilize th dataset openly sourced by [29] because
it removes contextual information (e.g., process names and
command-line arguments) which is crucial for KNOWHOW’s
detection. To accommodate the impact of insertion ratios
of benign substructures on the system’s performance, we
constructed multiple datasets with four different ratios: 0.20%,
0.50%, 1.00% and 2.00%. Table X shows statistic details.

Our experimental results show that KNOWHOW success-
fully detected ALL attack events at the graph level across
these insertion ratios within the Mimic-Prov dataset. Notably,
at a 1.00% insertion ratio, node-level recall drops below 1,
indicating successful evasion of some attack actions by mimic
structures. Upon further analysis, we find that the missed
nodes correspond to simple, shallow reconnaissance activities
(e.g., ifconfig, arp), which lack complex event sequences
and derived successor nodes, hence are more vulnerable to
mimicry attacks. However, more complex and deep attacks,
which dominate our datasets, are less susceptible to such
interference.
Incomplete Attacks. We also evaluate how incomplete attack
lifecycles impact the detection effectiveness and robustness
of KNOWHOW. We conduct a controlled experiment based
on the In-lab Arena dataset. The In-lab Arena dataset was
chosen for its unparalleled complexity of attack steps, enabling
reliable incomplete-scenario construction. We simulate incom-
plete attacks by removing attack steps from the original attack
sequences in the dataset. We define the attack integrity ratio
as the ratio of remaining to original attack steps, and evaluate
KNOWHOW across the modified datasets with integrity ratios
of 0.60, 0.70, 0.80, 0.90, and 1.00. Detection performance is

TABLE XI: Detection result of KNOWHOW on the incomplete
attacks with different integrity ratios. Columns with the attack
integrity ratio of 1.00 indicate the original dataset and no attack
behaviors is removed. P, R are the same as Table VI.

Ratio 0.60 0.70 0.80 0.90 1.00
Metrics P R P R P R P R P R
Graph 1.00 0.67 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00
Node 0.76 0.83 0.76 0.82 0.84 1.00 0.74 1.00 0.82 1.00

TABLE XII: The intermediate detection result for each com-
ponent of KNOWHOW. P, R are the same as Table VI.

Node-level
Result

Event-level Detection Graph Construction Attack Reasoning
P R P R P R

THEIA 0.47 0.74 0.41 1.00 0.62 1.00
TRACE 0.67 0.83 0.60 0.98 0.82 0.98

In-Lab Arena 0.52 0.74 0.46 1.00 0.82 1.00
NewlySim 0.48 0.70 0.46 1.00 0.78 1.00

Open-World 0.63 0.79 0.57 1.00 0.82 1.00

measured in terms of precision and recall as in Section VI-B.
The results are in Table XI. We observe that when the attack

integrity ratio is 0.80 or higher, both graph- and node-level
detection performance remain stable and effective, except for a
limited increase in node-level false positives. It means remov-
ing a small portion of attack behaviors does not compromise
the overall integrity of the attack lifecycle, thereby allowing
normal alerting through attack reasoning.

When the attack integrity ratio falls below 0.80, we notice
an increase in false negatives at the graph-level detection. For
ratios of 0.60 and 0.70, two of three attack graphs are detected,
while a simpler graph (less than 50 nodes) is missed. We
further find that the missed attack graph only contains the
Initial Compromise stage and Establish Foothold stage, which
is at the earlier stage of the attack. These stages have minimal
behavioral distinction from benign activity, thus challenging
for all knowledge-based methods.
New and Unseen Attacks. To further evaluate KNOWHOW’s
capability in detecting unseen attacks, besides the statistic
analysis on NewlySim dataset in Section VI-C, we conducted
a case study on the attack in NewlySim, which exploits CVE-
2023-22809, a privilege escalation vulnerability absent from
CKD, as one of attack actions, in Section VII.

G. RQ 5: Component-wise Analysis

We conduct a component-wise analysis to illustrate the
impact of each component of KNOWHOW by measuring node-
level precision and recall after each step. We follow the
same evalution protocal mentioned in Section VI-B. The steps
includes event-level detection with gIoC (Step 1), constructing
provenance graphs based on anomalous events (Step 2) and
attack reasoning (Step 3). This breakdown reveals how suc-
cessive stages refine results, balancing early-stage trade-offs.
The results are in Table XII and we analyze it as follows.

Step 1 initially identifies high-confidence anomalies (e.g.,
Lua script execution, sudo privilege escalation). However,
events with benign-like features (e.g., ambiguous network
connections) may fall below the detection threshold, limiting
recall (In-Lab Arena: 74% recall). Step 2 improves recall (up
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26%) by propagating scores to connected nodes. For example,
undetected attacker-controlled sshd nodes inherit scores from
detected downstream actions and these scores then exceed the
detection threshold, enabling the previously missed nodes to
be identified. However, over-propagation to benign nodes (e.g.,
hostguard spawning malicious sh) introduces false positives,
reducing precision (down 6%). Step 3 restores precision (up
36%) by enforcing lifecycle constraints. Temporally incon-
sistent nodes (e.g., hostguard process incorrectly labeled in
Establish Foothold) are filtered, while fragmented attacks are
reconstructed through subgraph alignment which improves the
final node-level precision.

In conclusion, our three-stage design systematically ad-
dresses earlier limitations: propagation recovers missed signals
(recall), while knowledge-guided reasoning suppresses con-
textual false positives (precision). The interplay demonstrates
KNOWHOW’s robustness against sophisticated APT attacks.

VII. CASE STUDY

In this section, we analyze how KNOWHOW detects unseen
attacks and Living off the Land (LotL) techniques through
case studies on the NewlySim and Open-World datasets.

NewlySim Dataset. Figure 7 shows the detection result of
KNOWHOW on an APT campaign from NewlySim dataset,
which exploits CVE-2023-22809—a privilege escalation vul-
nerability that not documented in CKD. Attackers first up-
loaded the exploit script exp.sh via scp, then executed it to gain
sudo privileges through sudoedit, accessing critical system
files. Finally, attackers collected and compressed password
files and transferred them to the jump server using LotL
processes (cp, tar, scp).

Fig. 7: Detection result of the APT campaingn using CVE-
2023-22809 from the NewlySim dataset.

Despite CVE-2023-22809 being undocumented in CKD
and the LotL actions, KNOWHOW successfully detected all
attack actions by attackers through gIoCs with few false
positives, whereas the SOTA baselines failed. This capability
stems from three key factors: ① Although CVE-2023-22809
is not documented, CKD contains similar attack behaviors.
For instance, the ATIE of T1548.003 includes gIoCs like
(Adversary, read, sudoers file), (Adversary, perform, sudoers
file), which align with system events generated when accessing
the sudoers file. KNOWHOW uses this semantic similarity
to detect novel vulnerabilities and infer attack intent. ②

KNOWHOW can identifies LotL behaviors involving legiti-
mate tools like cat, scp, and tar. For example, the ATIE of
T1548.003 contains the gIoC, (Adversary, read, etc shadow
file), matching events where the attacker used cp to read
the shadow file. Event Semantic Lifting and Event and gIoC
Embedding first lift the “cat” command to “show”, then reduce
the distance between “read” and “show” through embedding,
allowing KNOWHOW to realize the LotL actions. ③ Attack
reasoning enables KNOWHOW to reduce false positives. For
instance, other benign tar operations of normal users accessing
shared files (e.g., /etc/ld.so.cache in Figure 7) that
are often misclassified by data-driven baselines, are correctly
identified as non-malicious through contextual analysis in
attack reasoning.

Open-World Dataset. Figure 8 presents the detection
result of KNOWHOW on an APT campaign from the Open-
World dataset that exemplifies the extensive use of LotL
techniques, leaving minimal forensic footprints. Specifically,
attackers first accessed to the target host from a compromised
server, and leveraged the LotL command, curl, to down-
load a malicious script, t.sh. Subsequently, attackers executed
t.sh, which invoked three Base64-encoded, obfuscated Python
commands to perform internal network reconnaissance and
sensitive data exfiltration. To evade detection, attackers used
the LotL command, rm, to delete the script after execution.
Finally, the stolen data is exfiltrated via the built-in redis
service, which is then terminated by the LotL command, pkill,
to eliminate evidence of the attack.

Fig. 8: Detection result of the APT case in the Open-World
dataset.

Although this attack campaign employed several LotL tech-
niques, KNOWHOW achieved full detection with minimal false
positives, while the other baselines failed. This capability also
stems from the same three key factors: ① CKD contains the
attack knowledge that that closely reflects attacker behaviors.
For example, the ATIE of T1140 includes gIoCs such as
(Adversary, use, base64 encoded file) and (Attacker, run,
base64 obfuscated scripts), which aligns with the attacker’s use
of obfuscated Python commands in the event-level detection.
Similarly, other malicious activities, such as downloading
the t.sh script via curl from a compromised host, removing
the script, exfiltrating sensitive data, and performing internal
reconnaissance, were also successfully detected at the event
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level. ② KNOWHOW can effectively identify LotL behaviors.
For example, the LotL behaviors, such as invoking redis,
who, and id, are assigned high scores with the existing CKD
knowledge are subsequently filtered out during event-level
detection. ③ Attack reasoning enables KNOWHOW to reduce
false positives especially on the LotL behaviors. For example,
data-driven approaches generates numerous false positives in
this case, because the redis service is widely used legitimate
system users, and its benign usage can easily be misclassified
as malicious. KNOWHOW significantly reduces such false
positives during the attack reasoning step. This is because this
false positives occurred either before the Initial Access stage
or after the Complete Mission stage and were therefore filtered
out by KNOWHOW, significantly reducing false alarms.

VIII. OTHER RELATED WORK

Data-Driven Provenance Analysis. Data-driven methods
[42], [88], [86], [4], [13], [87], [20], [37], [81], [30] are widely
studied in APT detection. These methods typically employ
deep learning models to extract features from provenance
graphs and then apply various algorithms to classify nodes
or subgraphs as benign or malicious. Different from CTI-
based methods, data-driven methods do not rely on static
knowledge of attack techniques and vulnerabilities but instead
learn from historical data to identify patterns and anomalies.
However, they often face challenges such as high resource
consumption, high false positive rates, and difficulties in
interpreting results [21].

IX. DISCUSSION

Mimicry Attacks and Evasion. A potential evasion involves
an adaptive attack where the attacker, aware of KNOWHOW’s
design, blends attack steps with crafted benign steps to mislead
the one-to-limited mapping of reasoning module, as happened
in Section VI-F. For this to succeed, attackers must: ①
effectively misclassify most attack steps using plausible benign
actions, otherwise KNOWHOW can infer the attack lifecycle
from remaining steps; ② have full knowledge of CKD and
KNOWHOW ’s training data, requiring extensive local testing
to refine attack sequences. These conditions make such attacks
technically challenging and require nontrivial work. Hence,
while theoretically possible, the likelihood of a successful
adaptive attack evading KNOWHOW appears very low.
Limitations: We acknowledge three limitations in the de-
sign and evaluation of KNOWHOW. First, while KNOWHOW
demonstrates scalability to previously unseen and LotL attacks
by capturing behavioral mechanisms (as demonstrated in Sec-
tion VII), it cannot detect entirely novel attacks where every
step is completely unprecedented and exhibits no similarity
to known behaviors in the CKD. Although such cases are
rare in practice, this limitation is inherent to all knowledge-
driven detection approaches. Second, like prior systems (e.g.,
NODLINK, HOLMES, KAIROS), KNOWHOW requires a com-
plete attack graph for accurate alerts, which introduces detec-
tion delays and makes early-stage detection challenging due
to limited information. However, the experimental results in

Section VI-F demonstrate that KNOWHOW can still achieve
accurate detection with relatively low false positive rates,
even before the attack has fully completed. Third, our current
evaluation is based on a limited set of CTI reports and datasets.
These datasets cover only a subset of known attack techniques,
as illustrated in Section VI-D, and the types and distributions
of these techniques may not fully reflect real-world attack
scenarios. Therefore, whether KNOWHOW can maintain strong
performance in more complex, real-world environments re-
mains to be validated through future deployment efforts.

X. CONCLUSION

In this paper, we propose KNOWHOW, a CTI-knowledge-
driven online provenance analysis solution that can automati-
cally learn high-level attack knowledge from CTI reports and
apply this knowledge to detect APT attacks in low-level system
events. Our evaluation shows that KNOWHOW outperforms ex-
isting baselines in terms of both accuracy and interpretability.
For interpretability, KNOWHOW can automatically map system
events to high-level technique descriptions and summarize
them into APT Lifecycle stages, while none of the baselines
can achieve this goal. Furthermore, KNOWHOW maintains the
same level of efficiency as the baselines and is robust to attacks
stemming from unknown vulnerabilities and existing mimicry
attacks.
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