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Communication between RSM. A lot of modern infrastruc-
tures use replicated state machine (RSM) to achieve high
reliability of the services. Crash fault-tolerant consensus pro-
tocols (CFT) or Byzantine fault-tolerant protocols (BFT) are
often used to build RSM. Examples include cloud coordination
services [2], [3] and database systems [4], [5]. A line of work
studies the communication between RSM in the client-server
model [6], [7], where a request from the client may need
multiple infrastructures to interact and each infrastructure runs
a different consensus protocol.

Sharding-based blockchain/BFT. Sharding refers to an ap-
proach that divides the nodes in a system into multiple shards,
each consisting of a (small) subset of nodes. Client requests
(also called transactions) are processed by different shards
concurrently so the system enjoys higher throughput and better
scalability compared to non-sharding approaches. A typical
workflow is that each shard runs a dedicated consensus proto-
col (e.g., PBFT [8]) for intra-shard transactions (transactions
that only need to be processed by one shard). For cross-
shard transactions that need to be processed by more than
one shard, multiple shards need to communicate with each
other to agree on the order of the transactions [9], [10], [11],
[12]. Most sharding-based protocols in the Byzantine failure
model assume that each shard is correct, i.e., in a partially
synchronous setting, a correct shard does not have more
than one-third faulty nodes. Recently, some sharding-based
approaches also propose to handle faulty shards, where some
shards may have more than one-third faulty nodes [13], [14].
To deal with the faulty shard, the approaches usually employ
another shard (which is expected to be correct) to monitor the
progress. We call such a protocol cross-shard coordination
protocol. Communication between different shards can be
frequent for coordination purposes.

Cross-chain bridges. The interoperability of blockchains is
another example of cross-consensus communication [15]. In-
deed, each blockchain has its own consensus protocol. When
some transactions need to be processed by more than one chain
(e.g., asset transfer from one chain to another), a dedicated
protocol is needed to ensure the atomicity of the transaction
such that either all chains commit the transaction or none
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In this work, we propose a new primitive called cross-
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els the security properties of communication between two groups, 
where at least one group executes a consensus protocol. We 
provide three constructions of XRBC under varying assumptions 
and present three applications for our XRBC protocols: a cross-
shard coordination protocol via a case study of Reticulum (NDSS 
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I. INTRODUCTION

Byzantine fault-tolerant (BFT) protocols that tolerate arbi-
trary failures is a fundamental building block in distributed
computing and cryptography [1], enabling many applications
such as blockchains and multi-party computation. Conven-
tional BFT protocols only consider the communication among
nodes in the same group. Little effort has been made to
formalize the security properties of communication across
groups, especially when some group has built-in consensus
(the group executes a consensus protocol). In this work, we
call the communication between different groups where at
least one group has built-in consensus the cross-consensus
communication problem. Cross-consensus communication is
useful in a myriad of applications. In fact, many works
informally study the problem as part of their solutions. Below,
we summarize some representative scenarios.
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of them commits the transaction. Multiple approaches can be
used to instantiate cross-chain bridges. One type that involves
cross-consensus communication is the relay chain, where a
dedicated blockchain system is used to coordinate cross-chain
transactions [16], [17], [18].

A. The Research Problem

While many previous works have cross-consensus com-
munication as part of the solutions, the security properties
of entire systems are often studied without treating cross-
consensus communication as a building block. Take sharding-
based BFT as an example; most approaches simply specify
that “shard A sends some message v to another shard B [13].”
A trivial instantiation is that all nodes in A send v to all nodes
in B. To lower the communication, some work mentions that
we can rely on the leader (i.e., a designated node) of A to
send the message. Unfortunately, the correctness of such an
approach is not that clear. First, without a clear formalization,
we do not know what is correct. Second, one may argue that
correctness means “all correct nodes in B receive v.” However,
if the leader in A is faulty, we cannot easily ensure that all
correct nodes in B receive v.

Another notable example is that correct nodes in one group
do not necessarily send matching messages to another group.
For example, in Reticulum [19], nodes in one shard send their
“votes” to another shard, and the votes are not necessarily
matching. To ensure that the correct nodes in the other shard
receive matching votes, expensive broadcast primitives are
used, which might be an overkill.

Therefore, a long-overlooked research problem is:
Can we formalize cross-consensus communication and build

efficient constructions to improve upper-layer applications?

B. Our Contributions

A formal treatment of cross-consensus reliable broadcast
(XRBC). We formalize the notion of cross-consensus reliable
broadcast, abbreviated as XRBC (Sec. V-A). The idea is
to model the communication between two groups of nodes:
group A with m nodes and group B with n nodes. Among
the two groups, one or both groups have built-in consensus,
and nodes execute an atomic broadcast (ABC) [20] protocol1.
In particular, nodes in A send cross-consensus messages to
B. There are two cases: each cross-consensus message is a
message delivered in ABC; the message is an intermediate
message of ABC, e.g., a vote. In the former case, correct
nodes in A always send consistent messages. In the later case,
correct nodes do not always send consistent messages. XRBC
guarantees that correct nodes in B always deliver the cross-
consensus messages according to the same order.

Our XRBC primitive thus can be viewed as a reliable
broadcast [21], [22], [23] across two groups, and we consider

1ABC is the model for blockchains and also RSM, where all correct
nodes agree on the sequence of delivered messages. It is only syntactically
different from BFT-RSM (BFT for short) or CFT-RSM (CFT for short). Briefly
speaking, ABC does not consider the execution of transactions and focuses
on the consensus regarding the order of messages (or blocks in the context
of blockchains).

Cross-Consensus Reliable
Broadcast (XRBC)

XRBC-woA
(Sec. V-B)

XRBC-wA
(Sec. V-C)

XRBC-Sig
(Sec. V-D)

cross-shard coordination
(Sec. VI-A): Case Study

on Reticulum [19]

cross-shard transactions
(Sec. VI-B): Case study

on Chainspace [11]

cross-chain bridges
(Appendix D)

Fig. 1: Overview of the paper.

it a first-class primitive useful for multiple applications. Our
constructions resemble the design of reliable broadcast proto-
cols. However, the definitions are fundamentally different.

As a warm-up primitive, we also formalize group-to-group
parallel reliable broadcast (Group-PRBC), i.e., parallel reli-
able broadcast instances between two groups (Sec. IV). We
also provide a construction in the asynchronous network model
(there does not exist an upper bound on the message process-
ing and transmission delay) that largely resembles existing
asynchronous consensus mechanisms [21], [22], [24], [25],
[20]. We do not claim too much novelty in Group-PRBC and
mainly present it as a baseline for the ease of understanding.
Practical instantiations of XRBC under different assump-
tions. We provide three practical instantiations of XRBC,
as summarized below and also in Table I. All the protocols
are studied in the asynchronous network model. We present
three protocols, XRBC-woA, XRBC-wA, and XRBC-Sig,
each under different assumptions. As we show later, we have
identified interesting applications for each protocol, due to
their differences in the underlying assumptions.
Applications of XRBC protocols. We show that our XRBC
protocols can either be directly used or extended to benefit
different applications, as summarized in Fig. 1.
• Cross-shard coordination. We show that the model of our

XRBC-woA protocol can be used for cross-shard coordi-
nation protocols. We present a case study about Reticu-
lum [19], a protocol in the synchronous setting (the message
processing and transmission delay between any two correct
nodes is bounded by a known ∆). We show that by
formalizing the cross-consensus coordination protocol, one
can simplify the proof of correctness. We then present a
synchronous variant of XRBC-woA that lowers the com-
munication complexity of Reticulum (see Table II).
• Handling cross-shard transactions. We show that we can

use XRBC-wA or XRBC-Sig to simplify sharding-based
protocols that handle cross-shard transactions. We present
a case study about Chainspace [11] and show that our
formalization makes it easier to justify the correctness.
• Cross-chain bridge. We use our XRBC-Sig protocol to

build a middleware for the cross-chain bridge.

Implementation and evaluation. We implement and evaluate
our protocols on Amazon EC2 using up to 182 instances.
Our evaluation results show that all of our XRBC protocols
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protocol assumption messages communication time
Group-PRBC (Baseline) trusted PKI O(mn+ n3) O(nmL+ κnm+ κn2 +mn2 logn) O(1)

(Sec. IV) none O(mn+ n3) O(mnL+ κn2m+ κn3) O(1)

XRBC-woA (Sec. V-B) ABC in A; hash O(mn+ n2) O(mnL+ κn2) O(1)
XRBC-wA (Sec. V-C) ABC in A and B; hash O(mn+MABC) O(mnL+ Cκ

ABC) O(TABC)

XRBC-Sig (Sec. V-D) proof of delivery in A; hash;
ABC in A and B; trusted PKI O(n+MABC) O(nL+ κn+ Cκ

ABC) O(TABC)

TABLE I: Comparison of the protocols presented in this work. m is the size of group A and n is the size of group B. L is
the length of the cross-group/consensus messages. κ is the length of the security parameter (e.g., length of a digital signature
or a hash). O(TABC) and O(MABC) are the time complexity and message complexity of ABC in B, respectively. O(CκABC) is
the communication complexity of ABC for κ-bit inputs.

achieve low latency and decent throughput, making them
suitable for all the abovementioned applications. For instance,
in our case study on cross-shard coordination for Reticulum,
XRBC achieves 61.16% lower latency than the approach by
Reticulum.

II. RELATED WORK

Cross-consensus protocol. It was first mentioned in
Aegean [6] that two RSMs need to communicate in some
applications where some RSMs may need to send a specific
request to another RSM. A recent work Picsou [7] formalizes
the cross-cluster consistent broadcast (C3B) notion that mod-
els the communication between two groups of nodes and both
groups have built-in RSMs. As Picsou is conceptually the clos-
est one to our work, we summarize the main differences. First,
the context is different. Namely, Picsou assumes both groups
run RSM (i.e., ABC in our context). Such an assumption is
the same as that in XRBC-Sig. However, our XRBC-woA
and XRBC-wA only assume one of the groups has a built-
in ABC. Second, the security definitions are fundamentally
different. C3B focuses on the liveness property, i.e., one
RSM eventually receives the message from another RSM. In
contrast, we take a more systematic approach and consider the
“safety” of the messages. Our notion can thus benefit more
applications. Finally, the constructions are different. Picsou
focuses on achieving low latency in the optimal case. In
the optimistic case, one node in A communicates with one
node in B. Meanwhile, PKI is assumed. In contrast, XRBC
focuses on balancing communication and time complexity
under different cryptographic assumptions. TrustBoost [26]
provides a primitive called cross-consensus communication
(CCC). CCC also models the communication across groups,
and TrustBoost uses CCC to build a combined ledger of
multiple blockchains. CCC shares some similarities with our
idea. The construction is similar to the trivial instantiation of
XRBC that we present in Sec. V-A.

Reliable broadcast, Byzantine broadcast, and Byzantine
agreement. Reliable broadcast is a fundamental primitive in
distributed computing [21], [22]. Many efforts have been made
to optimize the communication complexity [27], [23], [28].
It has already become a crucial building block for many
applications [29], [30], [31], [25].

Byzantine broadcast (BB) is a synchronous variant of reli-
able broadcast. The security properties are very close to those
for reliable broadcast. A synchronous BB can be achieved
under f < n [32]. One may relax the bound to f < n/2 or
f < n/3, and the optimization of the communication complex-
ity can be of independent interest [33]. Another synchronous
notion is Byzantine agreement (BA, i.e., the consensus variant
of Byzantine agreement where each node proposes a value
and all nodes decide the same value). For a group of n nodes,
the lower bound of synchronous BA is f < n/2 [34]. In this
work, we consider synchronous BB and Byzantine agreement
in our case study on the cross-shard coordination protocol.

Our XRBC primitive extends reliable broadcast from com-
munication among the same group of nodes to communication
across groups. Additionally, although our protocols presented
in this work are asynchronous, they can be easily extended to
synchronous ones. We show one example in our case study.

Cross-chain bridge. Many cross-chain solutions involve
cross-consensus communication. One example is the relay
chain, where a dedicated blockchain system is used to coordi-
nate cross-chain transactions [16], [17], [18]. As the cross-
chain transactions are coordinated by a blockchain that is
already safe (i.e., no double spending) and live (i.e., trans-
actions will eventually be processed), relay chains can handle
a large volume of cross-chain transactions to ensure the atom-
icity of cross-chain transactions. Industrial examples include
Cosmos [17], Polkadot [18], and CCIP by Chainlink [35].
Another example is the sidechain solutions for cross-chain
transactions. A sidechain is a parallel chain to a blockchain
(called mainchain), often used to improve the performance
of the system [36]. While the mainchain does not need to be
aware of the existence of the sidechain, a sidechain can be used
for cross-chain transactions between two chains, using the so-
called two-way peg solution [37], [38]. The technical report of
R3 corda [39] mentions that two blockchains can be used as
sidechains for each other to build a two-way peg. In both relay
chain and sidechain-based solutions, communication between
groups of nodes is involved. In this work, we present a solution
that uses our XRBC protocol to build a lightweight cross-
chain bridge. Our solution can be viewed as a two-way peg
where two blockchains directly communicate with each other
(serving as the sidechains of each other).
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III. SYSTEM MODEL AND BUILDING BLOCKS

We consider the communication between two groups of
nodes, denoted as A and B. A has m nodes and B has n
nodes, i.e., |A| = m and |B| = n. Nodes in A are denoted as
{PA

1 , · · · , PA
m} and nodes in B are denoted as {PB

1 , · · · , PB
n }.

We assume that nodes in A and B know the identities of each
other. We assume the existence of point-to-point authenticated
channels between each pair of nodes.

For the communication between A and B, one group is
the source, and the other group is the target. Without loss
of generality, we assume A is the source group.

When we present our protocols, we consider a fully asyn-
chronous network, making no assumption about message pro-
cessing and transmission delays. In one of our case studies, we
study a synchronous variant of our protocol. In a synchronous
network, the message processing and transmission are bounded
by some ∆, and all nodes know the value of ∆.
Threat model. We consider Byzantine failures, i.e., arbitrary
failures such as software bugs, hardware errors, and adversarial
attacks. A non-faulty node is called a correct node. Unless
otherwise mentioned, we assume that A has at most t faulty
nodes and m ≥ 3t + 1. We assume that B has at most f
failures and n ≥ 3f +1. These assumptions are optimal in an
asynchronous environment. We let m = 3t+1 and n = 3f+1
without loss of generality. One may relax the assumption on m
and t to enable more applications. In one of our case studies,
a synchronous network is considered. We assume n ≥ 2f +1
and do not make assumptions about t.

As summarized in Table I, we make different assumptions
for different protocols. For protocols using ABC in A or B as
a black box, the threat model and assumptions are also related
to the underlying ABC. For instance, for XRBC-woA, which
assumes ABC in A, XRBC-woA is secure against an adaptive
adversary (that corrupts nodes while the protocol is running)
if the underlying ABC is adaptively secure.
Byzantine reliable broadcast (RBC). The RBC abstraction
allows a sender Ps to reliably broadcast a message to a group
of nodes. An RBC protocol is specified by r-broadcast and
r-deliver such that the following properties hold:
• Validity: If a correct node Ps r-broadcasts a message v,

then any correct node eventually r-delivers v.
• Agreement: If some correct node r-delivers a message v,

then every correct node eventually r-delivers v.
• Integrity: Every correct node r-delivers some message v at

most once. Moreover, if a node r-delivers a message v with
sender Ps, then v was previously broadcast by node Ps.

Byzantine reliable agreement (RA). The RA abstraction is
an agreement version of RBC [40]. The only difference is
that each node holds an input. Without loss of generality, we
consider RA among n nodes, among which at most f are
Byzantine faulty. An RA protocol is specified by r-propose
and r-decide such that the following properties hold:
• Agreement: Same as in RBC.
• Validity: If all correct nodes r-propose v, then eventually

all correct nodes r-decide v.

• Integrity: If a correct node r-decides v, then at least n−2f
correct nodes r-propose v.
The names of the properties are slightly revised compared

to the original RA notion [40]. As mentioned in [40], we can
easily transform most RBC protocols into RA protocols.
Atomic broadcast (ABC). Atomic broadcast allows nodes
to reach an agreement on the order of messages (values). It
is also called total-order broadcast in the literature [1]. An
atomic broadcast protocol Π is specified by a-broadcast and
a-deliver. When a node is provided (by an adversary) with a
queue of payload messages of the form v ∈ {0, 1}∗, we say
the node a-broadcasts the messages. Correct nodes should a-
deliver the same sequence of messages in the same order. An
ABC protocol should satisfy the following properties.
• Safety: If a correct node a-delivers a message v before a-

delivering v′, then no correct node a-delivers a message v′

without first a-delivering v.
• Liveness: If a correct node a-broadcasts a message v, then

all correct nodes eventually a-deliver v.
ABC is only syntactically different from RSM (and BFT).

Namely, ABC focuses on the agreement on the order of
messages and does not consider the execution of transactions.
Multivalued validated Byzantine agreement (MVBA).
MVBA allows each node that has an input to agree on a
value that satisfies a predicate Q known by all nodes [20].
MVBA is specified by mvba-propose and mvba-decide events.
An MVBA protocol satisfies the following properties:
• External validity: Every correct node that terminates mvba-

decides v such that Q(v) holds.
• Agreement: If a correct node mvba-decides v, then any

correct node that terminates mvba-decides v.
• Integrity: If all nodes follow the protocol, and if a correct

node mvba-decides v such that Q(v) holds, then some node
mvba-proposed v such that Q(v) holds.
• Termination: If all correct nodes are activated and all

messages sent among correct nodes have been delivered,
then all correct nodes mvba-decide.
The predicate of MVBA can be both signature-based or

state-based. For a signature-based predicate, v is usually
validated by some data (e.g., digital signatures) [20], [41].
For state-based predicate, v can be locally validated without
requiring signatures [25]. State-based MVBA is equivalent
to index ACS [40] where the predicate is modeled as the
notion of party validation. In this work, we use the state-based
MVBA/Index ACS in our warm-up protocol.
(Synchronous) Byzantine broadcast (BB). The BB abstrac-
tion (also abbreviated as BC) is a synchronous primitive. BB
allows a sender Ps to reliably broadcast a message to a group
of nodes. A BB protocol is specified by b-broadcast and b-
deliver such that the following properties hold:
• Validity: If a correct node Ps b-broadcasts a message v,

then any correct node b-delivers v.
• Agreement: If some correct node b-delivers a message v,

another correct node b-delivers a message v′, then v = v′.
• Termination: Every correct node b-delivers.
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It is worth mentioning that for a group of n nodes, among
which at most f are Byzantine faulty, a synchronous BB can be
achieved under f < n [32]. Meanwhile, building efficient BB
with f < n/2 or f < n/3 is often of independent interest [33].

(Synchronous) Byzantine agreement (BA). A BA protocol is
specified by ba-propose and ba-decide. Each node ba-propose
a value v and all correct nodes ba-decide some value and
then terminate the protocol. BA should satisfy the following
properties:
• Validity: If all correct nodes ba-propose v, then all correct

nodes ba-decide v.
• Consistency: If some correct node ba-decides v, another

correct node ba-decides v′, then v = v′.
• Termination: Every correct node ba-decides.

In a synchronous network, for a group of n nodes, the lower
bound of synchronous BA is f < n/2 [34].

Digital signatures and hash function. We use digital signa-
ture and we require the conventional unforgeability property.
We use a cryptographic collision-resistant hash function. Given
a value v, we use hash(v) to denote the hash of the value.

IV. WARM-UP: GROUP-TO-GROUP RELIABLE BROADCAST

As a warm-up primitive, we first present group-to-group
parallel reliable broadcast (Group-PRBC) that models the
communication between two groups, where neither of the two
groups has to have built-in ABC. We also provide a practical
asynchronous construction and discuss the complexities.

Group-to-group parallel reliable broadcast (Group-
PRBC). Group-PRBC can be modeled as m parallel RBC
instances. Namely, each node PA

i in A reliably broadcasts a
message vi to all nodes in B, specified by the pr-broadcast
event. Each node PB

i in B pr-delivers a vector of messages
v. The j-th value in v is called the j-th slot, for which PA

j is
the designated sender. A Group-PRBC protocol should satisfy
the following properties hold:
• Validity: If a correct node PA

i in A pr-broadcasts a message
vi, then any correct node PB

i in B eventually pr-delivers
v[i] = vi.
• Agreement: If some correct node PB

i in B pr-delivers a
message v[j], then every correct node in B eventually pr-
delivers v[j].
• Integrity: For any slot s, every correct replica pr-delivers
v[s] at most once. Moreover, if a node pr-delivers a message
v[s], then v[s] was previously pr-broadcast by node PA

s .
The notion above is simply m parallel RBC instances.

A protocol satisfying the notion above does not necessarily
terminate. Indeed, conventional RBC does not guarantee ter-
mination if the sender is incorrect. Accordingly, any protocol
satisfying the above properties may never terminate. We thus
provide an additional termination property and also modify the
integrity property as follows.
• Termination: If all correct nodes in A pr-broadcast, any

correct node in B pr-delivers some v and |v| ≥ m− t.

The Group-PRBC Protocol

− Input: each node P A
i in A pr-broadcasts vi and the inputs by

correct replicas might not be the same
− Output: each node P B

i in B pr-delivers a set of messages v
where |v| = m

− Initialization: Wi ← ⊥

Node P A
i

− query RBCi and r-broadcast vi to all replicas in B

Node P B
i

− upon r-delivering vj in RBCj , set oi ← oj and Wi[j]← 1
− wait until |oi| ≥ m− t, set W ←Wi and mvba-propose W

to MVBAB

− // set the predicate of MVBA as follows: Q(W ) ≡ (there
exist at least m − t ℓ such that W [ℓ] = 1) and (for any
W [ℓ] = 1,Wi[ℓ] = 1)

Output condition
− wait until W is mvba-decided in MVBAB, then for each

W [ℓ] = 1, wait until o[ℓ] ̸= ⊥ and then set v ← o[ℓ]
− pr-deliver v

Fig. 2: The warm-up Group-PRBC protocol. The procedures
that make the protocol additionally satisfy termination and
modified integrity are highlighted in blue.

• Modified integrity: Every correct replica pr-delivers v at
most once. Moreover, if a node pr-delivers a message v and
v[s] ̸= ⊥, then v[s] was previously broadcast by node PA

s .

A. The Warm-up Protocol

We present a Group-PRBC protocol in Fig. 2. The workflow
that executes n parallel RBC instances is written in black
and the procedures that make the protocol additional satisfy
the termination property and the modified integrity property
are highlighted in blue. For readers who are familiar with
asynchronous common subset (ACS) protocols [42], [30], [25],
[31], the Group-PRBC protocol is very similar to signature-
free ACS protocols such as FIN [25]. Namely, as we consider
an asynchronous environment, our protocol does not guarantee
that the messages pr-broadcast by any correct nodes in A will
be pr-delivered by correct nodes in B. The best we could do
is that the values pr-broadcast by at least m − t nodes in A
can be pr-delivered, same as that for ACS.
Complexity. Group-PRBC involves m parallel RBC in-
stances and one MVBA instance. Using the state-of-the-art
RBC [23] and MVBA [25], [40], [43] constructions, the pro-
tocol achieves O(1) expected time and O(mn+n3) messages
if we consider a signature-based setting and O(mn + n2)
messages if we consider a signature-based setting.

The communication complexity depends on the underly-
ing RBC and MVBA constructions. Our protocol achieves
O(mCLRBC + CmMVBA) communication, where CLRBC and CmMVBA

denote the communication complexities of L-bit RBC and m-
bit MVBA among n nodes, respectively.
• In the signature-free setting, we can use CCBRB [23] and

FIN-MVBA [25] for our protocol to achieve O(mnL +
κn2m + mn2 + κn3) = O(mnL + κn2m + κn3), where
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L is the size of each node’s pr-broadcast message and κ is
the length of the security parameter.
• If we use threshold signatures (which additionally as-

sume trusted PKI), we can use SigBRB [23] and Dumbo-
MVBA [41] for our protocol to achieve O(nmL+ κnm+
mn2 log n + mn + κn2) = O(nmL + κnm + κn2 +
mn2 log n) communication.

V. CROSS-CONSENSUS RELIABLE BROADCAST

We are now ready to discuss cross-consensus reliable broad-
cast. Compared to Group-PRBC, the main difference for cross-
consensus reliable broadcast is that it is expected that the
source group has built-in ABC (i.e., A executes an atomic
broadcast protocol). XRBC ensures that regardless of whether
correct nodes in A send consistent messages or not, correct
nodes in B will deliver the same messages.

In this section, we first present the definition of our XRBC
primitive, a first-class primitive that can be used in several
applications. We then present three different constructions:
XRBC-woA, XRBC-wA, and XRBC-Sig. The assumptions
and motivating applications are summarized as below.
• XRBC-woA: B does not have built-in ABC. XRBC-woA

offers flexibility since it does not assume ABC for B.
Later, we show in Sec. VI that XRBC-woA has a unique
application for cross-shard coordination. Namely, nodes in
A send their intermediate consensus messages that might
not be the same. Nodes in B only need to agree on whether
a sufficiently large fraction of nodes in A send consistent
messages.
• XRBC-wA: B has built-in ABC. XRBC-wA assumes built-

in ABC of B. The main advantage is that in some scenarios
(e.g., cross-RSM communication), node in B already execute
an ABC protocol anyway. We can thus reuse the infrastruc-
ture to provide reliable cross-consensus communication.
• XRBC-Sig: The protocol run by A has proof of delivery, and
B has built in ABC. An application scenario is a cross-chain
bridge, where the proof of delivery is often provided by
blockchain systems. In this way, we build a communication-
efficient protocol.
As summarized in Table I, compared to the naive Group-

PRBC construction, our protocols achieve improved commu-
nication, especially when m < n.

A. Defining Cross-Consensus Reliable Broadcast (XRBC)

XRBC. We define XRBC as follows. Each node PA
i in A

reliably broadcasts a message vi to all nodes in B, specified
by the x-broadcast event. Each node PB

i in B x-delivers a
message v. The message x-broadcast by correct nodes in A is
also called a cross-consensus message.

We consider the scenarios where messages sent by nodes in
A might or might not be consistent. XRBC ensures that even
if the messages sent by correct nodes are not consistent, B
will x-deliver cross-consensus messages in the same order.

The XRBC notion thus defines the order of messages x-
delivered by correct nodes in B. In particular, an XRBC

protocol is specified by x-broadcast and x-deliver such that
the following properties hold:
• Safety: If any correct node in B x-delivers v before x-

delivering v′, then no correct node in B x-delivers v′ without
first x-delivering v.
• Termination: If at least 2t + 1 correct nodes in A x-

broadcast v, any correct node in B eventually x-delivers
v.
• Integrity: Every correct node x-delivers v at most once.

Moreover, if a correct node x-delivers a message v, then v
was previously x-broadcast by correct nodes in A.
Our notion of XRBC does not assign a particular order to

the cross-consensus messages. The actual instantiation of most
ABC protocols, however, assigns a number to denote the order
(e.g., height, sequence number). Without loss of generality, we
use epoch number r to denote such an order.

Assumptions. Without loss of generality, we consider two
setups for the ABC instantiation in A: the cross-consensus
message v itself does not come with a proof of delivery; v
is associated with a proof of delivery π (e.g., a threshold
signature or an aggregate signature on v). In the former case,
nodes in B cannot verify whether v is valid (i.e., v is a valid
cross-consensus message from at least one correct node in A)
upon receiving v. In the latter case, any node can immediately
verify whether v is valid upon receiving (v, π).

We assume that all nodes in B expect to receive cross-
consensus messages for each epoch and will process them
accordingly based on the epoch number.

XRBC vs. Group-PRBC. The differences between our XRBC
notion and our warm-up Group-PRBC notion are two-fold.
First, XRBC favors the scenarios where messages sent by
correct nodes in A are expected to be consistent. Second, we
need to consider a sequence of messages. In this work, we
clearly use the epoch number to denote the sequence of a
message, although the epoch number is not exposed to the
API of XRBC. As we will show shortly, our XRBC protocols
can be more communication-efficient compared to our warm-
up Group-PRBC protocol.

XRBC vs. RBC. Although our XRBC resembles the idea of
RBC protocols, the definition of correctness is fundamentally
different. We only keep the integrity property of RBC and
expand it for XRBC. This is mainly because RBC is a one-
shot primitive where one node r-broadcast a message to all
nodes. In contrast, XRBC cares about the order of messages
sent from one group to the other. The safety property is thus
different. Meanwhile, our termination property resembles the
validity property of RBC. We provide more discussion on this
property in remark 2 below.

Remark 1. We do not assume the entire set of nodes in
A and B has built-in ABC, mostly because the problem is
reduced to ABC. Also, our XRBC notion can be extended to
communication among more than two groups. The application
scenario is the multichain infrastructure, such as Cosmos [17],
in which some transactions might be processed by multiple
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chains. Our primitive can be extended to such a scenario for
reliable communication across multiple groups.

Remark 2. The termination property we specify for XRBC
requires at least 2f + 1 correct nodes in A to x-broadcast v.
One question arises: Why not change the 2t + 1 threshold
of the termination property to another value, e.g., t + 1?
In fact, if we assume that correct nodes in A always send
consistent messages (e.g., messages a-delivered in ABC), there
exists a trivial instantiation. Namely, correct nodes in A assign
sequentially ordered epoch numbers to all cross-consensus
messages, where the order is the same as that in ABC of
A. Each correct node then sends the ordered cross-consensus
messages to all nodes in B. For any correct node in B, it waits
for 2t+1 matching v from A for each epoch and then x-delivers
v. If this were the case, we could lower the threshold of the
termination property from 2t+ 1 to t+ 1.

The case above does not capture the scenario where mes-
sages sent by correct nodes in A are not always consistent.
For example, the messages sent by nodes in A might be some
intermediate consensus messages. Jumping ahead, in the case
study of Reticulum, nodes in A send their votes to nodes
in B, and the votes by correct nodes are not always the
same. The goal of Reticulum is to ensure that nodes in B
only deliver some messages when a sufficiently large fraction
of correct nodes in A send matching votes. We believe our
relaxation of the requirements on messages from A enables
more interesting applications. Furthermore, we can adapt the
threshold or even adapt the termination property for different
applications. For instance, in our case study of Reticulum, we
change the termination property to unanimous voting.

Remark 3. In our work, we assume m ≥ 3t + 1 and
termination requires that 2t+1 correct nodes in A x-broadcast
matching messages. We believe such requirements can be
relaxed to enable more interesting applications.

B. XRBC-woA: XRBC without ABC in B

We first consider XRBC-woA, the model where B does not
execute an ABC protocol. We show the pseudocode of our
XRBC-woA protocol in Fig. 4 and the workflow in Fig. 3a.
In particular, every node in B executes the protocol for an
epoch r and waits for epoch r to output some value before
proceeding to epoch r + 1.

The protocol is built from only best-effort broadcast (where
each node sends a message to all nodes) and reliable agreement
(RA). First, every node in A sends a (CROSS, r, vi) message to
all nodes in B. Upon receiving t + 1 matching (CROSS, r, v)
messages, every node in B queries an RA instance RAr,B and
then r-proposes v. After some value v is r-decided, each node
in B x-delivers v and then proceeds to the next epoch.

Sketch of correctness and complexities. We show the
proof in Appendix F-A and provide a sketch here. Safety and
integrity of XRBC follow from the agreement and integrity
properties of RA. For termination, if 2t+1 correct nodes in A
x-broadcast v, no correct node in B can receive t+1 matching
v′ such that v′ ̸= v. Thus, all correct nodes in B r-propose v.

By the validity property of RA, all correct nodes r-decide v.
All correct nodes in B then x-deliver v.

Our protocol consists of only best-effort broadcast and RA,
so it achieves O(1) expected time. In the protocol, every node
in A sends a (CROSS) message to all nodes in B and only
nodes in B execute the RA instance. Our protocol thus achieves
O(mn + n2) messages, as all known RBC/RA constructions
achieve O(n2) messages.

We can replace the input to RA from v to hash(v) while
correctness still follows. Namely, after each node r-decides
hash(v), it waits for at least one (CROSS, r, v) such that
v = hash(v) and then x-delivers v. The communication com-
plexity of our protocol is thus O(mnL+CκRA), where CκRA is the
communication complexity of κ-bit RA protocol. Using our
instantiation in Fig. 4, our protocol achieves O(mnL+ κn2)
communication.

C. XRBC-wA: XRBC with ABC in B

Considering that B executes ABC, we can further simplify
the protocol. Namely, we can use ABC in B to achieve an
agreement for the x-delivered messages.

We show the pseudocode of XRBC-wA in Fig. 5 and the
workflow in Fig. 3b. On top of XRBC-woA, we replace RA
with ABC among nodes in B. We can also replace the input
to ABC with hash(v).
Sketch of correctness and complexities. We show the proof
in Appendix F-B. Briefly speaking, safety and integrity of
XRBC-wA follow from the safety of ABC and the fact that
no correct node a-delivers values twice in each epoch. For
termination, correctness follows from the liveness of ABC.

The complexities of our protocol in Fig. 5 depend on the
ABC construction. Namely, the protocol achieves O(TABC) ex-
pected time, O(mn+MABC) messages, and O(mnL+CκABC))
communication, where O(TABC), O(MABC), and O(CκABC) are
the time complexity, message complexity, and communication
complexity of ABC in B, respectively.

D. XRBC-Sig: XRBC with Proof of Delivery

Motivation. Under the assumption that every cross-consensus
message v can be associated with a proof of delivery π, we
provide a construction as shown in Fig. 6. Our motivation is to
simplify the workflow such that one node in A sends the cross-
consensus message at a time. In this way, only O(n) messages
are needed (instead of O(mn) in other XRBC protocols).

We define a notion of responsible node for an epoch. In
particular, one designated node in A is supposed to send the
cross-consensus message v together with the proof of delivery
π to all nodes in B. We assume that all nodes in A are
aware of the identity of the responsible node for each epoch
r. The responsible node can be selected pseudorandomly
via approaches such as VRF [44], [45], [46] and common
coins [47], [30], [25].

A naive construction and the challenges. We show the
pseudocode that is correct only when every responsible node
is correct in black in Fig. 6. In each epoch, the responsible
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(c) Our XRBC-Sig protocol.

Fig. 3: Overview of our approaches. Bold arrows denote messages sent by all nodes in A and regular arrows denote messages
sent by one node.

XRBC-woA

− Input: each node P A
i in A x-broadcasts vi and the inputs by

correct nodes are the same
− Output: each node P B

i in B x-delivers v

Node P A
i

− send a (CROSS, r, vi) message to all nodes in B

Node P B
i

− upon receiving t + 1 (CROSS, r, v) messages from nodes in
A, r-propose v to RAr,B among B

Output condition for epoch r

− wait until v is r-decided in RAr,B and x-deliver v

An instantiation of RAr,B adapted from Bracha’s Broad-
cast [21], [22]
− upon v is r-proposed, send (ECHO, v) to all nodes in B
− upon receiving n − f matching (ECHO, v) message, send

(READY, v) to all nodes in B
− upon receiving f + 1 matching (READY, v) messages and a

(READY, v) message has not been sent, send (READY, v) to
all nodes in B

− upon receiving n− f (READY, v) messages, r-decide v

Fig. 4: The XRBC-woA protocol (XRBC protocol without
ABC in B) for epoch r. The instantiation of RAr,B is the
same as that by Das et al. [40]. One can replace the input to
RAr,B with the hash of v to achieve lower communication.

node sends a (CROSS, r, vi, π) message to all nodes in B. After
receiving a valid (CROSS) message, every node in B sends a
(REP, r,hash(v), σi) message to the responsible node. Upon
receiving n − f valid (REP) messages, the responsible node
combines the signatures into a certificate σ and then sends a
message (CONFIRM, r, h, σ) to all nodes in B. Finally, nodes
in B query ABC and a-broadcast h. After some value h is a-
delivered, nodes obtain the corresponding v, x-deliver v, and
enter the next epoch.

The challenge of the naive construction is to handle the
case where the responsible node is Byzantine. Namely, the
following scenarios may happen: 1) the responsible node does
not send the cross-consensus message v to any node in B; 2)
the responsible node sends v to some correct node(s) such that

XRBC-wA

− Input: each node P A
i in A x-broadcasts vi and the inputs by

correct nodes are the same
− Output: each node P B

i in B x-delivers v

Node P A
i

− send a (CROSS, r, vi) message to all nodes in B

Node P B
i

− upon receiving t + 1 (CROSS, r, v) messages from nodes in
A, a-broadcast v

− set up a predicate in ABC as follows: an a-broadcast value
v is valid after receiving t + 1 (CROSS, r, v) messages and
(CROSS, r − 1, ∗) is a-delivered

Output condition for epoch r

− wait until a-delivering v in ABC and x-deliver v

Fig. 5: The XRBC-wA protocol (XRBC protocol with ABC
in B) for epoch r. One can replace the input to ABC with the
hash of v to achieve lower communication.

v is x-delivered but other nodes do not receive v.
To handle 2), we need to ensure that the responsible node

in epoch r′ > r help nodes in B x-deliver v. We set up a pp
field in the (CROSS) message to do so. To handle 2), the nodes
in B need to strictly follow the order of epoch numbers when
they a-broadcast any messages in ABC. Finally, we set up a
Fetch and a Catchup procedure.

The protocol. The pseudocode of our fully-fledged XRBC-
Sig protocol is shown in Fig. 6 and the workflow is shown in
Fig. 3c. We highlight those procedures to address the case of
a Byzantine responsible node in blue.

For any node PA
i , if PA

i is a responsible node for epoch
r, it first checks whether there exists a Cer[r′] = ⊥ for
any r′ such that r′ < r. If so, PA

i adds the cross-consensus
message in epoch r and the proof of delivery in pp. In this
way, any potentially undelivered cross-consensus messages
with proofs of delivery might be included in pp. Then, PA

i

sends a (CROSS, r, vi, π, pp) message to all nodes in B. It then
waits for n−f (REP) messages with matching signatures. After
that, PA

i combines the signatures into a certificate σ and sends
a (CONFIRM, r,hash(v), σ) message to all nodes in A and B.
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XRBC-Sig

− Input: each node P A
i in A x-broadcasts vi and the inputs by

correct nodes are the same
− Output: each node P B

i in B x-delivers v
− Initialization: epoch r, certificate Cer ← ⊥, last epoch lr

Node P A
i in epoch r

− if P A
i is responsible for epoch r

− set r′ ← r − 1, while Cer[r′] = ⊥
− set pp ← pp ∪ (r′, vr′ , πr′), where vr′ is the cross-

consensus message in epoch r′ and πr′ is the PoD
− r′ ← r′ − 1

− send a (CROSS, r, vi, π, pp) message to all nodes in B, where
π is the PoD for vi in epoch r

− wait until receiving n − f matching (REP, r, hash(v), σj)
messages from B, let σ be the certificate for the n − f
signatures, send (CONFIRM, r, hash(v), σ) to all nodes in
A and B

− upon receiving f + 1 matching (FETCH, lr, hr) messages
from B

− for r′ ∈ [lr + 1, hr − 1], set pp ← pp ∪ (r′, vr′ , πr′),
where vr′ is the cross-consensus message in epoch r′

and πr′ is the PoD
− send a (CATCHUP, r, pp) to all nodes in B

− for any P A
i in epoch r

− upon receiving a valid (CONFIRM, r, h, σ) from P A
j such that

P A
j is responsible for epoch r

− Cer[r]← (r, h, σ)
− for any r′ < r, Cer[r′]← ⊥

Node P B
i

− upon receiving (CROSS, r, v, π, pp) message from P A
j

− if the lowest r′ in pp satisfies r′ > lr + 1, send a
(FETCH, lr, r′) message to P A

j

− wait until either condition is triggered: 1) (CATCHUP, r, pp)
is received from P A

j and then process pp in the same way
as below; 2) some value is x-delivered in epoch r′

− for each (r′, v′, π′) ∈ pp (ordered by r′)
− a-broadcast (r′, v′, π′) and wait until x-delivering

(r′, v′)

− send a (REP, r, hash(v), σi) to P A
j , where σi is a digital

signature for (r, hash(v))
− upon receiving (CONFIRM, r, h, σ) message from P A

j

− if it has previously received a (CROSS, r, v, π) message such
that hash(v) = h, a-broadcast (r, v, π)

Output condition for epoch r

− after (r′, v′) has been x-delivered for any r′ < r, wait until
a-delivering v, x-deliver v and set lr ← r

Fig. 6: The XRBC-Sig protocol (XRBC protocol with proof
of delivery in A and ABC in B). The procedures that address
incorrect responsible nodes are highlighted in blue. PoD for
Proof of delivery.

If PA
i is not a responsible node for epoch r, it waits for a

certificate in the (CONFIRM) message and updates its Cer[r].
For any node PB

i in B, it waits for a valid (CROSS, r, v, π, pp)
message from the responsible node in A. Then it processes the

messages in the pp field. There are two cases: 1) the lowest
epoch number r′ for any cross-consensus messages in pp is
the same as its last completed epoch lr; 2) the lowest epoch
number r′ in the pp field is higher than its last completed
epoch. In the second case, PB

i sends a (FETCH, lr, r′) message
to the responsible node in A. Then, PB

i waits until one of the
conditions is satisfied: it receives those cross-consensus mes-
sages between epoch lr+1 and r′−1 from the responsible node
via a (CATCHUP) message; it has x-delivered some message for
epoch r′. If PB

i receives some pp via the (CATCHUP) or the
(CROSS) message, it processes the cross-consensus messages
according to the epoch numbers in ascending order. For each
epoch r′, PB

i a-broadcasts (r′, v′, π′), where v′ is the cross-
consensus message and π′ is the proof of delivery. Each node
a-broadcasts a new message for epoch r′ after it x-delivers
some message for epoch r′ − 1. In this way, we can ensure
that the cross-consensus messages are x-delivered in the same
order, so the safety of XRBC is achieved.

Sketch of correctness. We sketch the correctness of XRBC-
Sig. Safety and integrity follow those of ABC and the fact that
correct nodes in B always x-deliver the messages according
to the order of epoch numbers. We thus focus on termination.

Since there is only one responsible node for each epoch r,
it is possible that no value is a-delivered and x-delivered for
nodes in B. Our protocol uses the pp field to ensure that there
exists a correct responsible node in some epoch r′ > r. If the
responsible node is selected, it will use the pp field to carry
the missing cross-consensus messages. Correct nodes in B
will eventually x-deliver the messages. Under the assumption
that the responsible node is selected pseudorandomly, if a
responsible node for epoch r is Byzantine and the cross-
consensus message v is not x-delivered, with probability m−t

m ,
the responsible node in epoch r + 1 is correct. If so, the
responsible node in epoch r + 1 will ensure that the correct
nodes in B a-broadcast the cross-consensus message in epoch
r. By the liveness property of ABC, all correct nodes in
B x-deliver the message. In the worst case, t consecutive
responsible nodes are faulty. The details of the proofs can
be found in Appendix F-C.

Complexity analysis. The protocol involves a constant num-
ber of communication steps between the responsible node and
the nodes in A. Following the sketch of correctness above, the
time complexity of our protocol is O(TABC).

The message complexity of our protocol is O(n+MABC),
as one node in A sends messages to nodes in B in each epoch.

The communication complexity of our protocol is O(nL+
κn + CκABC), under the optimization that the a-broadcast
message is replaced by the hash of the message. Namely, this is
because each responsible node is supposed to send a constant
number of piggybacked cross-consensus values together with
their proofs of delivery. While the proof of delivery can be
instantiated in many different ways, the length of each proof
can be as low as O(κ) if we use threshold signatures.

Discussion. With our XRBC-Sig protocol, the complexity of
the cross-consensus protocol does not depend on the size of
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the source group anymore. Note that we can further optimize
the message complexity (and possibly the communication
complexity) by additionally requiring one responsible node in
B as the receiver of each cross-consensus message. However,
this would increase the time complexity for the protocol. We
provide additional discussion in Appendix A.

VI. APPLICATIONS

We present three applications of our XRBC protocols. In
this section, we present two sharding-based protocols. We
discuss the third one (cross-chain bridge) in Appendix D.

A. Cross-shard Coordination

We present a case study about cross-shard coordination in
Reticulum [19], a synchronous two-layer sharding protocol.
We show that we can adapt our XRBC-woA protocol to
the synchronous setting and provide a more communication-
efficient cross-shard coordination protocol. Additionally, our
protocol has fewer assumptions, as summarized in Table II.

protocol Reticulum [19] ours

assumptions n ≥ 2f + 1;
n+m ≥ 2(f + t) + 1

n ≥ 2f + 1

msg. O((m+ n)2) O(mn+ n2)
comm. (trusted) O(mκ(m+ n)2) O(κmn+ κn2)
comm. (bulletin) O(mκ(m+ n)3) O(κmn+ κn2 + n3)

TABLE II: Comparison of cross-shard coordination protocols.
Here, “trusted” means that the protocol relies on threshold sig-
natures and thus requires trusted setup. “Bulletin” means that
the protocol assumes the standard public key infrastructure.

Cross-shard coordination in Reticulum [19]. Reticulum
uses a two-layer structure: a layer with process shards and a
layer of control shards. Process shards process the submitted
transactions, and the control shards manage the process shards.
Each process shard is managed by one control shard. The
idea is to use small process shards so the performance is
high when the process shard is failure-free. Meanwhile, large
control shards are used to ensure the correctness of the system
when the process shard has failures. Let the process shard be
A (m nodes) and the control shard be B (n nodes). Reticulum
assumes n ≥ 2f + 1 (which is optimal in the synchronous
setting). Additionally, n+m ≥ 2(f + t) + 1.

In the protocol, a crucial phase is that each node in the
process shard A sends its vote (a message with κ length) to all
nodes in both A and the control shard B. The votes by correct
nodes are not always consistent. To disseminate the vote, each
node uses the (∆ + δ)-BB [33] protocol, a synchronous BB
protocol that tolerates fewer than half Byzantine failures. The
(∆ + δ)-BB protocol works roughly as follows (note that in
our context, the sender is a node in A and the receivers are
nodes in both A and B).
• (Propose). The sender PA

s sends (v, σ) to all nodes in A
and B, where σ is a signature for v.
• (Vote). Upon receiving a proposed value from PA

s , send a
vote together with (v, σ) to all nodes in A and B.

• (Commit and lock). If no equivocation of PA
s is detected (in-

formally, equivocation means that PA
s sends two conflicting

values in the propose phase) and f + 1 matching votes are
received, forward the votes to all nodes. Lock v in this case.
• (Byzantine agreement). Invoke a Byzantine agreement in-

stance and use the locked value as input. Deliver the output
of the Byzantine agreement protocol.
As there are m senders (from A) and m+n receivers (both

A and B), m BB instances are invoked so the protocol can
be viewed as m parallel BB. The communication complexity
is O(κ(m+ n)3) under the trusted setup assumption (i.e., the
votes are signed using threshold signature) and O(κ(m+n)4)
under the standard PKI assumption. To avoid such a high
communication overhead, Reticulum presents a simplified
solution that combines the “vote”, “commit and lock”, and
“Byzantine agreement” phases. Namely, in the propose phase,
each node in A sends its proposed value to A and B. In the
“vote” phase, every node aggregates the proposed values and
then sends the vote messages to other nodes. In this way, the
communication can be lowered to O(mκ(m+ n)2) under the
trusted setup assumption and O(κ(m + n)3) under the PKI
assumption. The bottleneck under the trusted PKI assumption
is the combined “vote” phase, where each node needs to send
all the m received values. Meanwhile, the bottleneck under
the PKI assumption is the “commit and lock” phase and the
“Byzantine agreement” phase. We provide a detailed analysis
in Appendix C.

Discussion. The simplified parallel BB does not achieve the
security properties of m parallel BB instances. To see why,
consider the fact that some node PA

i in A is faulty. It can
simply send different v to different nodes. Obviously, the
votes by correct nodes are not matching. Eventually, all correct
nodes will deliver ⊥. In fact, some non-⊥ value is delivered
only when all nodes in A are correct.

Such a design already inherently suits the needs of Retic-
ulum as the goal is to use the above design as a fast path
to improve the performance in the optimistic case. Namely,
if all nodes in A send the same value v to both A and B,
all nodes deliver v. Unfortunately, no formalization is given.
Additionally, the communication cost is still high.

Synchronous XRBC-woA. We can use our XRBC-woA
paradigm to make the cross-shard coordination protocol sim-
pler and more communication-efficient. We provide a syn-
chronous variant of our XRBC-woA protocol that achieves
O(κmn + κn2) communication under the trusted setup as-
sumption and O(κmn+κn2+n3) under the PKI assumption.

We show the pseudocode of our synchronous XRBC-woA
protocol in Fig. 7. Our protocol only assumes that n ≥ 2f +1
(i.e., we do not need the n+m ≥ 2(f+t)+1 assumption). To
further suit the needs for Reticulum, we revise the termination
property of XRBC as a new unanimous termination property.
For this new termination property, we expose the epoch
number r to the API.
• Unanimous voting: In some epoch r, if all nodes in A

x-broadcast v, all correct nodes in A and B x-deliver v.
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Other than the unanimous voting property, the safety and
integrity are the same, except that all nodes in A and B x-
deliver messages.

− Input: each node P A
i in A x-broadcasts vi and the inputs by

the nodes might not the same
− Output: each node P A

i in A and P B
i in B x-delivers v

Node P A
i

− send a (CROSS, r, vi) message to all nodes in B

Node P B
i

− upon receiving m (CROSS, r, v) messages from nodes in A,
ba-propose v to BAr,B among B

− upon ba-deciding v′ (v′ might be ⊥) in BAr,B, send
(NOTIFY, v′) to all nodes in A and B

Output condition for epoch r

− upon receiving f + 1 matching (NOTIFY, v) messages, x-
deliver v

Fig. 7: The communication-efficient cross-shard coordination
protocol from a synchronous variant of XRBC-woA protocol.

Compared to our XRBC-woA protocol presented in
Sec. V-B, there are two main changes for the protocol in Fig. 7.
First, we replace RA with BA since BA is a synchronous
primitive. Second, to ensure that nodes in both A and B will
x-deliver messages, all nodes in B send a (NOTIFY) message to
A and B and every node x-delivers only after receiving f + 1
matching (NOTIFY) messages.

Safety and integrity follow as BA is a synchronous variant
of RA. Namely, BA ensures that all correct nodes in B decide
the same values. As there are at most f faulty nodes in B, any
correct node will x-deliver the same value.

For unanimous voting, if all correct nodes x-broadcast the
same value, all correct nodes will ba-propose the same value
in BAr,B. According to the validity property of BA, all correct
nodes ba-decide v in BAr,B. Then, all correct nodes in A and
B x-deliver v.

Assuming N is the total number of nodes, the state-of-
the-art BA protocol achieves O(κN2) communication under
the trusted setup assumption [33] and O(κN2 + N3) under
the PKI assumption [32]. Thus, our synchronous cross-shard
coordination protocol achieves O(κmn+κn2) communication
under the trusted setup assumption and O(κmn+ κn2 + n3)
under the PKI assumption (see Appendix C for details).

B. Handling Cross-shard Transactions
Cross-shard transactions refer to the transactions that need

to be processed by more than one shard. Many works present
efficient solutions for handling cross-shard transactions [9],
[10], [11], [12]. In this section, we present a case study on
Chainspace [11]. We show that we can use our XRBC-wA and
XRBC-Sig protocols to improve the time complexity or/and
the communication complexity of Chainspace.
Cross-shard protocol in Chainspace [11]. Chainspace uses
an atomic commit protocol (which can be viewed as a shard-
level two-phase commit protocol [48]) to handle cross-shard

transactions. Considering that A and B are two shards that
need to process the cross-shard transaction tx, the protocol
works roughly as follows.
• (Initial broadcast) The client sends tx to both A and B.
• (Sequence prepare) Nodes in each shard execute a con-

ventional Byzantine fault-tolerant (BFT) protocol (e.g.,
PBFT [8] in Chainspace). After an agreement is reached
locally, both A and B notify each other about the decision.
• (Process prepare) Nodes in each shard again execute a

BFT protocol to agree on the notification result. After
an agreement is reached, tx is committed. Another shard
(called output shard) is employed to finalize the result.
The communication between different shards occurs at the

“sequence prepare” phase, where both A and B notify each
other about the decision.

The issue with a BFT-Initiator. Chainspace mentions that it
can use a BFT-Initiator (e.g., leader of a shard) for sending
the decision to other shards. In this way, the communication
can be optimized. To address the case that the BFT-Initiator
might be faulty, a two-phase process is used to recover from
a faulty BFT-Initiator, as shown below.
• All nodes in each shard monitor whether the BFT-Initiator

has correctly sent out the message.
• If the BFT-Initiator does not proceed according to the

protocol, nodes may time out and act as BFT-Initiators.
The proof of Chainspace focuses on the correctness, where

all nodes in A send messages to B, and discusses the cor-
rectness of the optimization. We argue that the correctness of
the optimization might be trickier than expected. Consider the
following scenario: after A agrees on the result “prepare” in
the sequence prepare phase, nodes in A are expected to send a
(Prepare) message to all nodes in B. Here, the BFT-Initiator is
expected to send the message. We now consider the following
scenario:
• An agreement is reached for nodes in A. The BFT-Initiator

does not send the (Prepare) message to any node in B.
• Nodes in A are expected to monitor such a behavior and

serve as BFT-Initiators if they time out.
Monitoring whether nodes in B have received the (Prepare)

messages is highly challenging, if not impossible. This is
because nodes in B are the only parties that will receive the
messages. Without their feedback, nodes in A cannot know
whether the BFT-Initiator has sent a (Prepare) message or
not. This is similar to the challenges for our naive solution
described in Sec. V-D. Meanwhile, the timeout mechanism
might slow down the performance of the system under faulty
BFT-Initiators.

We would like to emphasize that Chainspace is provably
secure if all nodes in A send the messages to all nodes in B.
In fact, we found that most protocols that use a cross-shard
communication pattern largely ignore the details about the
reliability of the communication [10], [9], [12]. For instance,
Pyramid [10] and RapidChain [9] mention that some shard
A sends a message to a shard B. We can only ensure that
all nodes in B eventually receive a cross-shard message if
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all nodes in A send the message to all nodes in B. Such a
paradigm has O(Lmn) communication.

Thus, we claim that by modeling cross-consensus reliable
broadcast as a dedicated primitive, it becomes easier to model
the correctness of sharding-based protocols.

Cross-shard protocol from XRBC-wA and XRBC-Sig. We
can use XRBC-wA or XRBC-Sig to instantiate “A sending
a message to B.” The protocol already ensures that B x-
deliver the cross-shard messages in a total order (safety of
XRBC), and they eventually receive the cross-shard messages
(termination). We can use XRBC-wA to build a signature-free
protocol so that neither A nor B needs to provide proof of de-
livery. Also, we can use XRBC-Sig to build a communication-
efficient but signature-based protocol. It is worth mentioning
that our XRBC-Sig protocol can be directly used in protocols
like Chainspace and Pyramid to lower the communication
complexity from O(Lmn+ κmn) to O(nL+ κn).

Note that several sharding-based protocols point out that
showing proof of delivery is not necessarily an advantage.
For instance, RapidChain [9] mentions that one major issue
for Omniledger [12] needs to disseminate proof of delivery
(called proof-of-acceptance in the paper), which incurs a large
communication overhead. Thus, both XRBC-wA and XRBC-
Sig are useful for sharding-based protocols.

VII. EVALUATION

Implementation. We implement XRBC-woA, XRBC-wA,
and XRBC-Sig in Golang 2. We use gRPC as the commu-
nication library. We use HMAC to realize the authenticated
channel, SHA256 as the hash function, and ECDSA as the
digital signature scheme. For the ABC protocol in B, we use
HotStuff [49]. Note that we can use any ABC protocols, e.g.,
variants of HotStuff that outperform HotStuff [50], [51], [52].

As XRBC is a new primitive, we do not have an existing
work to compare. Thus, we use Group-PRBC as the baseline
when assessing our XRBC protocols. We also assess the
performance of our case study on Reticulum. In particular,
we compare our protocol in Fig. 7 with the vanilla approach
by Reticulum (presented in Sec. VI-A). For the underlying
cryptographic primitives, we use the same approaches as our
XRBC protocols to obtain a fair comparison. Our implementa-
tion of the protocols involves more than 11,000 lines of code.

Deployment considerations. Our XRBC protocols serve as
dedicated protocols for reliable communication across two
groups. In terms of deployment, our software can be built and
used as a middleware. Since we already provide clear APIs
(i.e., x-broadcast and x-deliver) for our protocols, our middle-
ware can expose these two events to existing infrastructures
(i.e., implementations of ABC). The integration is expected to
be relatively straightforward.

Evaluation setup. We evaluate the performance on Amazon
EC2 using up to 91 virtual machines (VMs). We use m5.xlarge

2Our codebase can be found at: https://doi.org/10.5281/zenodo.16945739
or https://github.com/DSSLab-Tsinghua/XRBC

instances. The m5.xlarge instance has four virtual CPUs and
16GB memory. We evaluate our protocols in both LAN and
WAN settings. Unless otherwise mentioned, we deploy our
protocols in the WAN setting, where replicas are evenly
distributed across the following regions: us-west-2 (Oregon,
US), us-east-2 (Ohio, US), ap-southeast-1 (Singapore), and
eu-west-1 (Ireland). In some experiments, we evaluate the
performance in the us-west-2 (Oregon, US) region.

We conduct the experiments with different network sizes
and batch sizes. We use m = 3t + 1 and n = 3f + 1 in all
experiments and use f and t to denote the numebr of faulty
nodes. We use b to denote the batch size, where each replica
sends b (CROSS) messages one after the other. By default, each
transaction has 250 bytes. In one of our experiments, we vary
the transaction size to assess our improved XRBC-woA and
improved XRBC-wA protocols.
Evaluation metrics. We repeat each experiment five times
and report the average results. Throughput is measured as
the number of non-repetitive (CROSS) messages (i.e., one for
each epoch) processed during the experiment. The latency is
measured as the duration from the time each node in A sends a
(CROSS) message to the time nodes in B x-deliver the message
in each epoch. If more than one (CROSS) message is sent (i.e.,
b > 1), we report the average latency to process each message
and call it amortized latency.

Most of our experiments focus on the latency of the
protocols. In all the applications we have found for XRBC
protocols, cross-consensus communication is usually used to
communicate smaller messages (e.g., a hash). Our protocols
can improve their latency and, accordingly, the performance
of the entire system.
XRBC vs. the baseline protocol. We compare the latency and
throughput of XRBC and Group-PRBC, our baseline protocol.
We report the performance for f = 10, 20, and 30. For each
f , we evaluate b = 100 and 500. As shown in Fig. 8a and
Fig. 8b, the performance of XRBC protocols is consistently
higher than that of Group-PRBC. We believe evaluating such
a batch size is sufficient for XRBC protocols. As mentioned
previously, for the applications we have identified for XRBC
protocols, we do not need a larger batch size.
Latency of XRBC protocols. We assess the latency of our
XRBC protocols for different f . As shown in Fig. 8c, we vary
the batch size b and report the amortized latency. Among the
three XRBC protocols, XRBC-woA consistently outperforms
XRBC-wA and XRBC-woA. This is expected, as we use RA
for nodes in B to agree on the order. RA is more latency-
optimal (terminating in two communication steps) compared
to the ABC approach we use (i.e., HotStuff).
Scalability of XRBC protocols. We show the performance of
the protocols by varying f from 10 to 30. As shown in Fig. 8c,
the latency of our protocol only slightly degrades as f grows.
Even in the extreme case when f = 30, XRBC-woA achieves
12 ms latency. We believe this is because in our protocols,
nodes in B only take the hash of the cross-consensus messages
as input, making our protocol very lightweight.
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Fig. 8: Evaluation results of our XRBC-woA, XRBC-wA, and XRBC-Sig protocols.
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Fig. 9: Evaluation of our cross-shard coordination case study on Reticulum [19] (Sec. VI-A) and cross-shard transactions on
Chainspace [11] (Sec. VI-B).

Latency breakdown. We report the latency breakdown of
XRBC-woA, XRBC-wA, and XRBC-Sig. We assess the cases
for f = 10, 20, and 30, and for b = 1. As shown in Fig. 8d-
Fig. 8f, we break the latency of our protocol into three parts:
Crypto, (CROSS) and consensus in B. Crypto denotes the time
of cryptographic operations. (CROSS) denotes the latency of
sending the (CROSS) message. Consensus in B denotes the
amortized latency at B, i.e., RA in XRBC-woA, and ABC in
XRBC-wA and XRBC-Sig. In all the cases, consensus in B is
the bottleneck. This is mainly because (CROSS) only involves
one step of communication between A and B. Our protocols
involve the basic cryptographic operations such as digital
signatures and hash, so the overhead is very low. Meanwhile,
the latency for consensus in B is in general very close for the

three protocols. In practice, we believe the main overhead of
all XRBC protocols is thus the ABC approach in B.

n b m = n m = 4 < n

n = 31 300 12.3 5.2
n = 61 300 25.0 10.2
n = 91 300 35.3 12.5

Fig. 10: Amortized latency of XRBC-woA for m = n and
m < n.

Latency with m = n and m < n. We assess the performance
of XRBC-woA when m = n and m < n. As shown in
Fig. 10, the latency of XRBC-woA is consistently lower when
m = n. This is mainly because each node in B expects
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to receive much fewer matching messages to complete the
protocol. This has validated our claim that our protocols have
a higher performance gain when m < n.

Case study on cross-shard coordination comparison. We
assess the latency of our protocol in Fig. 7 and compare
it with the vanilla approach by Reticulum. As shown in
Fig. 9a-Fig. 9c, compared to the vanilla approach, our protocol
achieves 57.03%-61.16% lower latency for f = 30, 7.58%-
24.38% lower latency for f = 20, and 4.37%-19.90% lower
latency for f = 10. The results validate our claim that XRBC
is a crucial building block that benefits upper applications.

Case study on Chainspace [11]. As mentioned in Sec. VI-B,
our case study focuses on the claim that it is not straight-
forward to use the optimization of BFT-Initiator. To evaluate
the situation, we implement the basic workflow as mentioned
in Sec. VI-B. Namely, the BFT-Initiator in A sends a cross-
consensus message to all nodes in B. Upon receiving such a
message, each node in B sends a reply to all nodes in A. If
a node in A does not receive a reply from f + 1 nodes in B
within a certain time (200 ms in our experiment), it triggers a
view change to elect a new BFT-Initiator.

We evaluate the latency of the scenario above under one
faulty BFT-Initiator, and compare it with XRBC-Sig. The
latency is the time from a transaction is sent to the time it
is x-delivered. All experiments are conducted in the LAN
setting by setting b = 1 and t = 1. As shown in Fig. 9d,
the latency of XRBC-Sig is 48.4% and 52.0% lower than that
of the Chainspace scenario for f = 1 and f = 5, respectively.
Note that the latency of the Chainspace scenario is related to
the actual timer. In contrast, our protocol does not need such
a timer. Thus, our results show that our protocol can improve
the performance in addition to making correctness more clear.

XRBC-Sig under failures. We also use Fig. 9d to show
the performance of XRBC-Sig under failures. As seen in the
figure, under the failure of the responsible node, the latency of
XRBC-Sig is around 30% higher than that in the failure-free
case.

VIII. CONCLUSION

We propose a new primitive called cross-consensus reliable
broadcast (XRBC). We present three XRBC protocols under
different assumptions and show their applications in sharding-
based protocols and cross-chain bridges. Our experimental
results show that all of our protocols achieve low latency and
decent throughput.
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APPENDIX A
DISCUSSION

XRBC-woA vs. XRBC-wA. The advantage of XRBC-woA is
that it always achieves O(1) time, and the communication or
message complexities do not depend on ABC in B. Later, we
show in Sec. VI that XRBC-woA has a unique application for
cross-shard coordination. Meanwhile, the advantage of XRBC-
wA is that if nodes in B execute an ABC protocol anyway,
we do not need to implement RA on top of it. Namely,
we can reuse the ABC implementation to process cross-
consensus messages. This makes XRBC-wA a perfect solution
for sharding protocols that handle cross-shard transactions.

Improving XRBC protocols using techniques of reliable
broadcast (RBC). Since our XRBC primitive extends the
notion of reliable broadcast, the communication of our pro-
tocols can be optimized using similar optimization techniques
for reliable broadcast [23], [28]. For example, we can use
erasure coding or online error correction code to improve the
communication complexity of XRBC-woA and XRBC-wA by
lowering the O(mnL) term.

APPENDIX B
ADDITIONAL RELATED WORK

Cross-chain bridge. Many cross-chain solutions involve
cross-consensus communication. One example is the relay
chain, where a dedicated blockchain system is used to coordi-
nate cross-chain transactions [16], [17], [18]. As the cross-
chain transactions are coordinated by a blockchain that is
already safe (i.e., no double spending) and live (i.e., trans-
actions will eventually be processed), relay chains can handle
a large volume of cross-chain transactions to ensure the atom-
icity of cross-chain transactions. Industrial examples include
Cosmos [17], Polkadot [18], and CCIP by Chainlink [35].
Another example is the sidechain solutions for cross-chain
transactions. A sidechain is a parallel chain to a blockchain
(called mainchain), often used to improve the performance
of the system [36]. While the mainchain does not need to be
aware of the existence of the sidechain, a sidechain can be used
for cross-chain transactions between two chains, using the so-
called two-way peg solution [37], [38]. The technical report of
R3 corda [39] mentions that two blockchains can be used as
sidechains for each other to build a two-way peg. In both relay
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chain and sidechain-based solutions, communication between
groups of nodes is involved. In this work, we present a solution
that uses our XRBC protocol to build a lightweight cross-
chain bridge. Our solution can be viewed as a two-way peg
where two blockchains directly communicate with each other
(serving as the sidechains of each other).

APPENDIX C
ANALYSIS OF THE COMPLEXITIES

Assuming N is the total number of nodes, the state-of-the-
art BA protocol known so far achieves O(κN2) communica-
tion under the trusted setup assumption [33] and O(κN2+N3)
under the PKI assumption [32]. We now analyze the communi-
cation complexity of the combined (∆+ δ)-BB protocol used
in Reticulum and our synchronous cross-shard coordination
protocol.

Theorem 1. The combined (∆+ δ)-BB protocol presented in
Sec. VI-A achieves O(mκ(m + n)2) under the trusted setup
assumption and O(κ(m + n)3) under the PKI assumption,
where the length of input of each sender PA

s is the same as
the security parameter κ.

Proof. In the “propose” phase, every node in A sends a value
of length κ to A and B.

In the “vote” phase, under the trusted PKI assumption, each
vote in the “vote” phase on a pair (v, σ) is a partial signature
on the hash of (v, σ). In the “commit and lock” phase, the
combined vote (of f + 1 votes) is a threshold signature of
length O(κ). Under the PKI assumption, each vote in the
“vote” phase still has length κ, but the combined f + 1 votes
now have length κ(m+ n).

Meanwhile, in the “vote” phase, every node needs to send
all the received m values in the “propose” phase (the length
of which is mκ).

Therefore, under the trusted PKI setting, the communication
complexity is:

m∑
i=1

O(κ(m+ n))︸ ︷︷ ︸
propose

+

m+n∑
i=1

O(mκ(m+ n))︸ ︷︷ ︸
vote

+

m+n∑
i=1

O(κ(m+ n))︸ ︷︷ ︸
commit and lock

+O(κ(m+ n)2)︸ ︷︷ ︸
Byzantine agreement

=O(mκ(m+ n)2)

(1)

Under the PKI setting, the communication complexity is:
m∑
i=1

O(κ(m+ n))︸ ︷︷ ︸
propose

+

m+n∑
i=1

O(mκ(m+ n))︸ ︷︷ ︸
vote

+

m+n∑
i=1

O(κ(m+ n)(m+ n))︸ ︷︷ ︸
commit and lock

+O(κ(m+ n)2 + (m+ n)3︸ ︷︷ ︸
Byzantine agreement

=O(κ(m+ n)3)
(2)

Theorem 2. Our synchronous cross-shard coordination proto-
col achieves O(κmn+κn2) communication under the trusted
setup assumption and O(κmn + κn2 + n3) under the PKI
assumption.

Proof. In the “cross” phase, every node in A sends its value v
(length κ) to all nodes in B. In the “notify” phase, every node
in B sends a value v (length κ) to all nodes in A.

Therefore, under the trusted PKI setting, the communication
complexity is:

m∑
i=1

O(κn)︸ ︷︷ ︸
cross

+ O(κn2)︸ ︷︷ ︸
Byzantine agreement

+

n∑
i=1

O(κm)︸ ︷︷ ︸
notify

=O(κmn+ κn2)

(3)

Under the PKI setting, the communication complexity is:

m∑
i=1

O(κn)︸ ︷︷ ︸
cross

+ O(κn2 + n3)︸ ︷︷ ︸
Byzantine agreement

+

n∑
i=1

O(κm)︸ ︷︷ ︸
notify

=O(κmn+ κn2 + n3)

(4)

APPENDIX D
CROSS-CHAIN BRIDGE

As mentioned previously, cross-chain bridge is a solution
for achieving blockchain interoperability [15]. Most existing
solutions assume a partially synchronous model [53]. In this
section, we present an efficient and asynchronous cross-chain
bridge scheme built from XRBC-Sig. Our approach is com-
patible with any blockchains that use conventional ABC as its
consensus mechanism. Additionally, our solution can also be
viewed as a two-way peg [37], [38], where each chain is the
sidechain of the other chain. For any cross-chain transactions,
one chain is the source chain and the other is the target chain.

As shown in Fig. 11, we use XRBC-Sig as a middleware.
The middleware is coupled with the client role (that submits
the transactions to the system) of both the source chain and
the target chain. We deploy the middleware on every replica
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Fig. 11: A cross-chain bridge scheme from our XRBC-Sig
protocol.

of both chains. Let A be the source chain and B be the
target chain. The protocol roughly works as follow: 1) The
middleware at A listens to the results of the source chain
via the client module; 2) After a cross-chain transaction is
created, the middleware queries XRBC-Sig and then sends
the transaction to the XRBC-Sig module of replicas at B; 3)
After the middleware at B receives the cross-chain transaction,
it processes the transaction via the XRBC-Sig protocol. When-
ever ABC at B needs to be queried, the middleware forwards
the transaction to the client module of the target chain B.
Finally, the transaction is x-delivered according to the protocol.

Our solution ensures the atomicity of cross-chain transac-
tions. Namely, as long as a valid cross-chain transaction is
created, the safety and integrity property of XRBC ensure
that correct replicas in the target chain deliver the cross-chain
transactions in the same order and the termination property
ensures that the transaction will eventually be delivered by the
target chain. In fact, our solution can be further extended to
achieve chain unlinkability and cross-chain confidentiality [15]
by integrating our solution with other cryptographic primitives.

As we will later show in our evaluation, our solution is
highly efficient, thanks to the natural advantage of two-way
peg. For instance, as only the source chain and the target chain
are involved, the latency is already near-optimal.

APPENDIX E
PROOF OF OUR GROUP-PRBC PROTOCOL

Theorem 3. Our Group-PRBC protocol (without the high-
lighted procedures in Fig. 2) satisfies validity, agreement, and
integrity of Group-PRBC.

Proof. After every correct node PA
i pr-broadcasts vi, it r-

broadcasts vi to all nodes in B using RBC. According to
the validity property of RBC, validity of Group-PRBC holds.
Similarly, according to the agreement property and integrity
property of RBC, agreement and integrity of Group-PRBC
hold.

Theorem 4. Our Group-PRBC protocol (with the highlighted
procedures in Fig. 2) satisfies validity, agreement, termination,
and modified integrity of Group-PRBC.

Proof. Validity and agreement hold as every correct node
PA
i r-broadcasts its pr-broadcast value vi. We now prove

termination and modified integrity.

Termination. If all correct nodes in A pr-broadcast some
value, according to the validity property of RBC, any correct
node PB

i in B will r-deliver some value in each RBC instance
started by a correct node in A. As there are m − t correct
nodes in A, |Wi| ≥ m− t eventually holds for PB

i . According
to the protocol, every correct node PB

i then mvba-proposes
Wi to MVBAB.

We now show that the predicate Q(W ) eventually holds if
W is mvba-proposed by a correct node. First, every correct
node PB

j mvba-proposes W after |oj | ≥ m − t. Therefore,
there exist at least m − t ℓ such that W [ℓ] = 1. Second, if
a correct node PB

j sets W [ℓ] = 1, it has r-delivered some
value in RBCℓ. The agreement property of RBC ensures that
every correct node PB

i eventually also r-delivers some value in
RBCℓ and then sets Wi[ℓ]← 1. According to the termination
property of MVBA, every correct eventually mvba-decides.

According to our protocol, each correct node waits until it r-
delivers some value in RBCℓ and sets o[ℓ] ̸= ⊥. According to
the external validity property of MVBA, we know that Q(W )
holds for PB

i . According to the definition of the predicate,
we know that o[ℓ] eventually becomes non-⊥ in the above
case. Every correct node eventually pr-delivers some value.
Additionally, the predicate also requires that there exists at
least m− t ℓ such that W [ℓ] = 1. Accordingly, |v| ≥ m− t.

Modified integrity. According to the protocol, every correct
node only pr-delivers once. If a node pr-delivers v[s] ̸= ⊥, it
has r-delivered some value in RBCs. The integrity property of
RBC ensures that v[s] was previously r-broadcast by PA

s .

APPENDIX F
PROOF OF OUR XRBC PROTOCOLS

A. Proof of XRBC-woA

Theorem 5. Our XRBC-woA protocol (Fig. 4) satisfies safety,
termination, and integrity of XRBC.

Proof. Safety. According to the protocol, every correct node
completes the protocol for an epoch r before starting epoch
r + 1. As the messages x-broadcast by A are not repetitive,
we show that if a correct node PB

i x-delivers v in epoch r,
a correct node PB

i x-delivers v′, v = v′. Namely, if v ̸= v′,
PB
i r-decides v and PB

j r-decides v′, violating the agreement
property of RA. Then, it is not hard to see that safety holds.

Termination. If every correct node in A starts epoch r, they all
send (CROSS, r, v) for the same v (according to the assumption
of XRBC). Therefore, any correct node PB

i eventually receives
t + 1 matching (CROSS) messages and then r-proposes v to
RAr,B. No correct node will r-propose some v′ ̸= v, as there
are t faulty nodes in A and correct nodes send (CROSS, r, v).
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According to the validity property or RA, all correct nodes
r-decide v.
Integrity. According to the protocol, every correct node only
x-delivers once in an epoch r. If a correct node PB

i x-delivers
v in epoch r, it has r-decided v in RAr,B. According to the
integrity property of RA, at least n − 2f correct nodes r-
propose v. As every correct node r-proposes v upon receiving
t + 1 (CROSS, r, v) messages and there are at most t faulty
nodes in A, integrity of XRBC holds.

B. Proof of XRBC-wA

Theorem 6. Our XRBC-wA protocol with ABC in B (Fig. 5)
satisfies safety, termination, and integrity of XRBC.

Proof. Safety. According to the protocol, every correct node
x-delivers v in epoch r after it a-delivers v. It will starts epoch
r + 1 before epoch r ends. Towards a contradiction, assume
that a correct node PB

i x-delivers v before x-delivering v′

and another correct node PB
j x-delivers v′ before x-delivering

v. According to the protocol, PB
i a-delivers v before a-

delivering v′ and another correct node PB
j a-delivers v′ before

a-delivering v, violating the safety property of ABC.
Termination. If every correct node in A starts epoch r, they all
send (CROSS, r, v) for the same v (according to the assumption
of XRBC). Therefore, any correct node PB

i eventually receives
t+ 1 matching (CROSS) messages and then a-broadcasts v to
ABC. According to the liveness property of ABC, all correct
nodes eventually a-deliver v and then x-deliver v in epoch r.
Integrity. According to the protocol, every correct node only
x-delivers once in an epoch r. If a correct node PB

i x-delivers
v in epoch r, it has a-delivered v in ABC. According to the
predicate we set up for ABC, every correct node considers a
a-broadcast value v valid after receiving t + 1 (CROSS, r, v)
messages. It is not too hard to see that at least one correct node
in B has previously received t+1 (CROSS, r, v) messages. As
there are at most t faulty nodes in A, v was previously x-
broadcast by correct nodes in A.

C. Proof of XRBC-Sig

Theorem 7. Our XRBC-Sig (Fig. 6) satisfies safety, termina-
tion, and integrity of XRBC.

Proof. Safety. According to the protocol, every node PB
i x-

delivers some value in epoch r after (r′, v′) has been x-
delivered for any r′ < r. Towards a contradiction, assume
that a correct node PB

i x-delivers v before x-delivering v′

and another correct node PB
j x-delivers v′ before x-delivering

v. According to the protocol, PB
i a-delivers v before a-

delivering v′ and another correct node PB
j a-delivers v′ before

a-delivering v, violating the safety property of ABC.
Termination. If all correct nodes in A x-broadcast v for epoch
r, a responsible node PA

k will send a (CROSS) message. There
are two cases: 1) PA

k is correct; 2) PA
k is faulty. If PA

k is
correct, it will send a valid (CROSS, r, v, π, pp) message to all
nodes in B. Every correct node in B will reply with a (REP)

message with a digital signature. As there are at least n −
f correct nodes in B, PA

k eventually receives n − f (REP)
messages and then sends a (CONFIRM) messages to both A
and B. Accordingly, any correct node in A sets Cer[r] as a
non-⊥ value and any correct node B x-delivers (r, v).

If PA
k is faulty, there are two different cases for B: 1) some

correct node in B receives a valid (CONFIRM, r, h, σ) message
and a (CROSS, r, v, π) message such that hash(v) = h; 2)
no correct node in B receives a valid (CONFIRM) message.
There are also two cases for A: 3) some correct node in A
receives a valid (CONFIRM) message; 4) no correct node in A
receives a valid (CONFIRM) message. We now show that for
any combinations of the cases above, any correct node in B
eventually x-delivers v.
Case 1) and 3). If some correct node in B receives a valid
(CONFIRM, r, h, σ) message and a (CROSS, r, v, π) message
such that hash(v) = h, the node will a-broadcast (r, v).
According to the liveness property of ABC, correct nodes in
B eventually a-deliver (r, v) and then r-deliver v.
Case 1) and 4). Same as above.
Case 2) and 3). If some correct node PA

i receives a (CONFIRM)
message in epoch r, it sets its Cer[r] as a non-⊥ value.
Without loss of generality, we discuss the case where PA

i is
the responsible for epoch r + 1. The case where PA

i is not
responsible for epoch r+1 is the same as the combination of
case 2) and 4) and we omit the detail here. As Cer[r] ̸= ⊥
for PA

i , PA
i only sends a (CROSS, r+1, v, π,⊥) message to B.

In this case, correct nodes in B will send a (FETCH) message
to PA

i . Accordingly, PA
i will send a (CATCHUP) message to all

nodes in B. It is then not difficult to see that correct nodes will
a-broadcast v. According to the liveness property of ABC, all
correct nodes x-deliver v.
Case 2) and 4). Nodes will proceed to epoch r+1 in this case.
If the responsible node PA

i in epoch r + 1 is correct, it will
send the cross-consensus message for epoch r together with
the proof of delivery in its (CROSS) message. According to the
protocol, correct nodes in B will parse the pp field as (r, v, π)
and then a-broadcast v. According to the liveness property of
ABC, all correct nodes x-deliver v. As there are n−f correct
nodes in B, it is not difficult to see that eventually some correct
responsible node will ensure that the above happens so correct
nodes eventually x-deliver v.

Integrity. According to the protocol, every correct node only
x-delivers once in an epoch r. If a correct node PB

i x-delivers
v in epoch r, it has a-delivered v in ABC. According to the
protocol, every correct node considers a a-broadcast value v
valid if it has previously received a proof of delivery for v.
Then, v was previously x-broadcast by correct nodes in A.

APPENDIX G
ARTIFACT APPENDIX

We propose a new primitive called cross-consensus reliable
broadcast (XRBC). The XRBC primitive models the security
properties of communication between two groups, where at
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least one group executes a consensus protocol. Our experimen-
tal results show that all of our protocols achieve low latency
and decent throughput.

This artifact demonstrates how to reproduce the results
presented in of Section VII of our paper. The experiments do
not require any specialized hardware. Our test environment is
a computer equipped with a 4-core CPU, 16 GB of RAM,
100 GB of storage, a 100 Mbps network connection, and the
Linux operating system.

Note that all results reported in our paper require ac-
cess to the Amazon EC2. In this artifact appendix, we
present the workflow to reproduce scaled-down experi-
ments using one machine. For readers who are interested
in reproducing the results on EC2, please refer to the
https://doi.org/10.5281/zenodo.16945739 directory
of our repository.

A. Description & Requirements

1) How to access:
1. Download the repository from

https://doi.org/10.5281/zenodo.16945739
(click the button ”Download” and decompress “/xrbc-ae-
25-revised.zip” manually or follow the command:
unzip xrbc-ae-25-revised.zip -d xrbc-ae-25

2. Enter the cloned repository directory (denoted as $HOME)
and adding the execute permission.
cd xrbc-ae-25

3. Download all dependencies using scripts
bash autoEnv.bash

2) Hardware dependencies: The experiments do not require
any specialized hardware. The experiments use only commod-
ity hardware: a 4-core CPU, 16 GB RAM, 100 GB storage, and
100 Mbps network. We recommend using the Linux operating
system.

3) Software dependencies: None.
4) Benchmarks: None.

B. Artifact Installation & Configuration

The artifact can be accessed by downloading the repository
from a stable link. All the scripts, source codes, and sample
output files can be accessed via the stable URL: https://doi.
org/10.5281/zenodo.16945739.

C. Experiment Workflow

To simplify replication, we provide three test
scripts—autoE1.bash, autoE2.bash, and
autoE3.bash—that can be used to reproduce Claims
C1, C2, and C3, respectively. The workflow proceeds as
follows.

1. Download the repository from https://doi.org/10.5281/
zenodo.16945739 and unzip the repository by:
unzip xrbc-ae-25-revised.zip -d xrbc-ae-25
cd xrbc-ae-25
bash autoEnv.bash
Upon successful installation, the terminal will display the
log shown below

[SUCCESS] Installation verification completed
2. Run the experiments sequentially: E1, then E2, then E3.

bash autoE1.bash
bash autoE2.bash
bash autoE3.bash

3. Once all server and client nodes are running, the corre-
sponding logs will appear in the terminal.
[INFO] Starting server node 35
2025/07/16 14:52:52 **Starting replica 35**
2025/07/16 14:52:52 Starting sender 35
2025/07/16 14:52:52 starting connection manager
2025/07/16 14:52:52 ready to listen to port
[SUCCESS] All server nodes have been started
[INFO] Waiting for server nodes to fully
start...
[INFO] Step 4: Starting client node [INFO]
Starting client: ./client 100 0 1 100
[SUCCESS] Client node has been started (PID:
29253)

4. After executing each experiment, inspect the per-node log
located at
$HOME:/var/log/[nodeid]/[ymd]_Eva.log.
The log file is as follows.
2025/07/16 14:29:12 10, 1, 1, 10496: 79-10417, 0

5. The script automatically extracts all records from the log,
computes average latency, and writes the results to the
corresponding output files. An example of the E1 log is
shown below.
[INFO] Processing results...
[INFO] Parsing log files from directories 4 to
35 for date: 20250716
[INFO] Result file will be written to:
../resultE1.txt
[SUCCESS] Results written to ../resultE1.txt
[INFO] E1: Number Of Nodes: 31, Number Of Nodes
(Group A): 4, Number of Request: 1, Average
Total Latency(ms): 11440, Average Cross Latency
(ms): 1135, Average Consensus in B Latency:
10305
[INFO] Averages calculated from 31 log files
[INFO] Test completed, cleaning up...

6. The results are written to $HOME/resultE1.txt,
$HOME/resultE2.txt, and
$HOME/resultE3.txt, respectively. An example of
the E1 output is as follows.
E1:
Number Of Nodes (Group B): 31
Number Of Nodes (Group A): 4
Number of Request: 1
Average Total Latency(ms): 11440
Average Cross Latency (ms): 1135
Average Consensus in B Latency: 10305

D. Major Claims

• (C1): The main overhead of our XRBC protocol is
incurred by the consensus in group B. This claim is val-
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idated by experiment (E1), which reproduces the results
reported in Fig. 8d in the paper.

• (C2): Our XRBC protocol achieves higher performance
when the number of nodes in Group A (i.e., m) is smaller
than the number of nodes in Group B (i.e., n). Note:
this claim is not included in our original submission. In
response to the reviewers’ suggestions, we have explicitly
incorporated this claim into both our rebuttal and the
revised manuscript.

• (C3): The latency of XRBC grows in a controlled and
predictable manner as the number of faulty-tolerated
nodes (i.e., as Group B’s size and the fault bound f
increase), with bounded per-node incremental overhead.
This observation is substantiated by experiment (E3),
which reproduces the results presented in Fig. 8c of the
paper.

E. Evaluation

We conduct three types of experiments: XRBC latency
breakdown (E1), latency comparison when m < n (E2), and
latency degradation as f grows (E3).

1) Experiment (E1): [10 computer-minute] We break down
the latency of XRBC into two phases: Cross and Consensus
in B. This experiment reproduces the results with f = 10, t =
1, b = 1, the same parameters used in Fig. 8d of the paper.

[How to:] run the experiment with the command under
$HOME :

bash autoE1.bash

After the total experiment is completed, all data are reported
in

$HOME/resultE1.txt

[Results] From the E1 test results (resultE1.txt), Con-
sensus in B accounts for 90 % of total latency, while Cross
adds only around 10 %, confirming Claim 1: Consensus in B
dominates XRBC latency.

E1:

Number Of Nodes (Group B): 31

Number Of Nodes (Group A): 4

Number of Request: 1

Average Total Latency(ms): 11440

Average Cross Latency (ms): 1135

Average Consensus in B Latency: 10305

2) Experiment (E2): [10 computer-minute] To confirm that
fewer Group-A nodes improve performance, we run E2 by
setting the size of Group A as m = 16 and m = 4. Meanwhile,
the size of Group B is n = 31.

[How to:] run the experiment with the command under
$HOME : bash autoE2.bash

After the experiment is completed, all data are reported in
$HOME/resultE2.txt

[Results] The E2 results (resultE2.txt) show that
lowering the size of Group A from 16 to 4 nodes improves
the latency of the Cross phase by nearly a factor of three, thus
validating Claim 2 that XRBC achieves better performance
when m<n.

E2:

Number Of Nodes (Group B): 31
Number of Request: 1
Average Cross Latency (ms) when Number of Nodes

(Group A) is 16: 3094
Average Cross Latency (ms) when Number of Nodes

(Group A) is 4: 1135
3) Experiment (E3): [10 computer-minute] We rerun the

experiment with n = 31 and n = 91, where n is the
node count in Group B, to verify that latency degrades
only marginally as n grows. Other parameters are fixed at
m = 4, b = 1. which are the same configuration settings as
Fig. 8c of the paper.

[How to:] run the experiment with the command under
$HOME :

bash autoE3.bash
After the experiment is completed, all data are reported in
$HOME/resultE3.txt
[Results]
The E3 results (resultE3.txt) show that scaling

Group B from 31 to 91 nodes increases XRBC latency in
a controlled, predictable manner. When all nodes run on a
single machine, the performance of the protocol depends on
the hardware. Once the resources of the hardware is saturated,
each added node contributes a limited and stable amount
of extra latency, so total latency grows without superlinear
escalation. Although absolute latencies vary with hardware,
the same bounded per-node incremental pattern appears across
runs (see resultE3.txt), matching the qualitative trend in
Fig. 8c and supporting Claim C3.

E3:
Number of Nodes (Group A): 4
Number of Request: 1
Average Total Latency(ms) when Number of Nodes

(Group B) is 91: 16759
Average Total Latency(ms) when Number of Nodes

(Group B) is 31: 11440

F. Notes

If one uses IDE to run the scripts, executing
autoE1.bash, autoE2.bash, and autoE3.bash
may freeze the IDE due to the large computer resources
taken to launch the experiments. After starting the bash
script, wait for about two minutes. If the IDE is not
responsible, please close the IDE and restart the experiments.
As mentioned above, the data log in resultE1.txt,
resultE2.txt, resultE3.txt is updated if the
experiments are successfully launched.
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