
Targeted Password Guessing Using k-Nearest
Neighbors

Zhen Li, Ding Wang
College of Cryptology and Cyber Science, Nankai University, Tianjin 300350, China; wangding@nankai.edu.cn
Key Laboratory of Data and Intelligent System Security (NKU), Ministry of Education, Tianjin 300350, China

NDST, TBI Center, Nankai University, Tianjin 300350, China

due to their simplicity to use, easiness to change, and low
deployment costs [6], [7].

Recent research indicates that 21%-33% of users tend to
slightly modify their existing passwords when creating new
ones, a practice frequently influenced by website password
policies (e.g., minimum length and character composition
requirements [8]–[11]). Moreover, 20%-59% of users directly
reuse their existing passwords [12]–[14]. These behaviors
represent two vulnerable password reuse patterns: indirect
reuse (minor modifications) and direct reuse (exact repeti-
tion). Despite long-standing guidelines advising users to create
passwords of varying strengths for accounts with different
security levels [15]–[17], research consistently shows that
users struggle to avoid password reuse [18], [19].

In reality, password reuse poses a significant threat to
account security. Once attackers obtain passwords leaked from
one service, they can exploit them to compromise the victim’s
other accounts through credential stuffing attacks [20], [21].
Such attacks result in severe economic and security conse-
quences. For example, the retail industry alone suffers annual
losses of approximately $6 billion [22]. Recent large-scale
breaches, including CAM4 (10.8 billion credentials) [23] and
MOAB (26 billion credentials) [24], have provided attackers
with ample material for credential stuffing campaigns. Worse
still, recent research shows that when attackers exploit leaked
passwords to capture users’ indirect password reuse behavior,
it poses a more severe threat [13], [25], [26]. These findings
highlight the importance of modeling users’ password reuse
behavior to defend against attackers.

A. Motivations and design challenges

Considerable research [13], [25]–[28] has focused on de-
veloping targeted password guessing models to characterize
users’ password reuse behaviors and associated risks. Yet,
most targeted password guessing models (e.g., Pass2Edit [25]
and PointerGuess [29]) mainly capture two types of reuse
behaviors: minor password modifications (Type-1) and the
use of popular passwords (Type-2), while largely overlooking
more subtle behaviors (Type-3) involving semantic similarity.
Although Type-3 password pairs may appear dissimilar in
character composition, they share intrinsic semantic connec-
tions, making them equally vulnerable to targeted attackers.
Here, we describe the three reuse behaviors in more detail:

Abstract—As the number of users’ password accounts are
constantly increasing, users are more and more inclined to reuse
passwords. Recently, considerable efforts have been made to
construct targeted password guessing models to characterize
users’ password reuse behaviors. However, existing studies mainly
focus on characterizing slight modifications b y t raining o nly on
similar password pairs (e.g., Shark0301 → shark03). This
leads to overfitting and causes existing models to overlook users’
large modification behaviors (e.g., Shark0301 → Bear03). To
fill this gap, this paper introduces a new non-parametric method
named k-nearest-neighbors targeted password guessing (KNN-
TPG). KNN-TPG builds a datastore that retains the context
vector of all source passwords along with prefixes of the targeted
passwords. During the generation of a new password, KNN-
TPG retrieves k nearest neighbor vectors from the datastore to
ensure that the generated passwords align better with realistic
password distributions. By creatively combining KNN-TPG with
our proposed Transformer-based password model, we propose a
new targeted password guessing model, namely KNNGuess. At
each step of generating a new password, KNNGuess predicts and
utilizes three distinct distributions, aiming to comprehensively
model users’ password reuse behaviors.

We demonstrate the effectiveness of our KNNGuess model and
the KNN-TPG method through extensive experiments, which in-
clude 12 large-scale real-world password datasets, containing 4.8
billion passwords. More specifically, when the v ictim’s password
at site A is compromised (namely pwA), within 100 guesses, the
cracking success rate of KNNGuess for guessing her password
at site B (namely pwB , and pwB ̸=pwA) is 25.40% (for common
users) and 10.26% (for security-savvy users), which is 8.52%-
119.0% (avg. 55.33%) higher than its foremost counterparts.
When comparing with state-of-the-art password models (i.e.,
Pass2Edit and PointerGuess), this value is 8.52%-27.66% (avg.
18.09%) higher. Our results highlight that the threat of password
tweaking attacks is higher than users expected.

I. INTRODUCTION

Text passwords are currently the most commonly used au-
thentication method. Despite various alternative authentication
methods being proposed continually (e.g., multi-factor authen-
tication [1], [2] and hardware security key [3]), passwords have
remained the primary method for user authentication [4], [5]

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.232077
www.ndss-symposium.org

• Type-1: The user makes simple or moderate changes to
the source password, and the new password is similar
in structure to the source password (e.g., Shark0301
→ shark03). This type of modification behavior can
usually be captured explicitly by sequence-based metrics,
such as cosine similarity>0.3 [25] or edit distance<5
[13], [26] between new and old password pairs.

• Type-2: The user chooses to use a popular password
(e.g., Shark0301 → loveu4ever). Such popular
passwords often appear in publicly leaked dictionaries
and are therefore insecure [25], [28].

• Type-3: The user creates a new password based on a
partial pattern of the source password. While the two
passwords may appear “dissimilar”, they could be intrin-
sically similar in semantics and vulnerable to attackers
(e.g., Shark0301 → Bear11).

Several studies [13], [30], [31] have demonstrated that
similar passwords share fine-grained features (e.g., semantic
patterns) and have close distances (e.g., Euclidean distance) in
latent space. While these findings focus on similar passwords,
we observe that even dissimilar password pairs can show
similar transformation patterns in latent space embeddings.
For example, directly generating the target password Bear11
from Shark0301 can be challenging due to their substantial
differences in character composition. However, the similar
transformation patterns (e.g., Shark0301 → Shark03 and
Bear0311 → Bear11) project two source passwords closer
in the latent space and link their vector representations.
Consequently, during generation, the model can leverage this
proximity to increase the likelihood of generating Bear11.

To capture semantic similarity in Type-3 reuse behavior,
we introduce k-nearest-neighbors targeted password guess-
ing (KNN-TPG), a novel non-parametric password guessing
method based on KNN search [32]. KNN-TPG constructs a
datastore that stores the context vectors of source passwords
along with the prefixes of their corresponding target pass-
words. It learns to map a source password and the prefix of a
target password to the next correct character in the latent space.
When two passwords follow similar transformation patterns
(i.e., users modify their original passwords in similar ways),
their mappings tend to be similar. Consequently, even if the
source and target passwords appear different at the character
level, the vector representing the source password in the latent
space will have a close distance. During password generation,
this process is guided by retrieving information about the k
nearest neighbors from the datastore, thereby facilitating the
guessing of Type-3 password pairs.

By creatively integrating KNN-TPG with our proposed
Transformer-based character-level model, we develop KNN-
Guess, which effectively captures both Type-3 and Type-1
behaviors. Moreover, to model users’ Type-2 behaviors, we
further propose a new method for mixing popular password
lists. This method combines the guess list generated by KNN-
Guess with an external list of popular passwords to produce
the final guess list. Particularly, within 100 guesses, the
guessing success rates of our KNNGuess model outperform

its foremost counterparts (i.e., Pass2Edit [25], PointerGuess
[29], PassBERT [26], Pass2Path [13] and TarGuess-II [28])
by an average of 55.33%.

B. Our contributions
The contributions of this work are as follows:
• k-nearest-neighbors targeted password guessing. We

propose the k-nearest-neighbors targeted password guess-
ing (KNN-TPG) method, and integrate it with our
Transformer-based character-level model to design KN-
NGuess, a novel targeted password guessing model that,
for the first time, effectively captures all three types
of password reuse behaviors (i.e., minor modifications,
popular passwords, and semantic similarity). We further
introduce a new popular-password mixing method to
enhance overall cracking success rates.

• Extensive evaluation. We design 13 practical attack
scenarios on 12 large real-world password datasets and
conduct extensive experiments to demonstrate the ef-
fectiveness of our KNN-TPG method and the superior
guessing success rate of our KNNGuess model. Results
show that KNNGuess achieves an average improvement
of 55.33% within 100 guesses over its foremost counter-
parts (excluding identical pairs) and outperforms state-of-
the-art models (i.e., Pass2Edit [25], PointerGuess [29]) by
18.09%. Furthermore, incorporating KNN-TPG into the
base model TransGuess boosts its cracking success rate
by an additional 33.94% on average.

• Some insights. We analyze the stability of different
models’ guessing success rates as the training set size
varies. Results show that, without adjusting the original
hyperparameters, all models except KNNGuess exhibit
the phenomenon that increasing the number of training
password pairs leads to near-saturation in the model’s
effectiveness. This robustness of KNNGuess is attributed
to the integration of our KNN-TPG method, which ef-
fectively mitigates this issue, consequently achieving a
significantly later saturation point than its counterparts.

II. BACKGROUND AND RELATED WORK

A. Password reuse behavior

In recent years, the number of password accounts users
have to maintain continues to grow with the increase of
internet service providers. Research findings show that the
average user has 80-107 distinct online accounts [19], [33],
[34]. As a result, users are likely to reuse existing pass-
words across different services. This behavior reduces the
independence of accounts and increases users’ security risks,
making it commonly perceived as insecure. In 2014, Das et
al. [27] conducted a survey revealing that approximately 43%
of users reuse the same password across different services,
and they summarized eight transformation rules to model
reuse behavior. Subsequent studies [13], [25], [28], [35] have
approached the issue from the attackers’ perspective, aiming
to model users’ password reuse behavior by constructing
more effective/threatening password guessing models. Some

2

Source Password

Classifier

Character
(e.g., “P”, “e”, “a”, “r”)

Edit Operation
(e.g., (INS, 8, “5”) and (DEL, 6 , None))

PassBERT [26]
Pass2Edit [25]

Pass2Path [13] PointerGuess [29]

M
o

d
el

in
g

M
o

d
el

s
M

o
d

el
 O

u
tp

u
t

Generator
Encoder

Decoder

Datastore

KNNGuess [This work]

Fig. 1. Different modeling paradigms for existing-password-based targeted
guessing models can be divided into three categories.

other studies [36]–[39], from defenders’ perspective, detect
users’ reuse behavior to prevent credential stuffing attacks and
analyze the relationship between passwords and services.

B. Password probability modeling

Classifiers and generators are commonly used in password
guessability modeling and generation. The classifier is often
associated with editing operations. By performing multiple
classification tasks on a set of editing operations, it identifies
several editing operations with the highest probabilities. These
operations are then applied to an old password to produce a
new password. The generator can either generate password
characters or a sequence of editing operations. As shown
in Fig. 1, there are three common modeling methods: The
first category uses a classifier to output a sequence of editing
operations (e.g., Pass2Edit [25], PassBERT [26]). The second
category uses a generator to produce a sequence of editing
operations (e.g., Pass2Path [13]). The third category uses a
generator to directly generate password characters [29]. Our
KNNGuess introduces offline datastore based on the third
category. Character-based models model users’ password reuse
behavior as a series of estimates for conditional probability
distributions. For instance, the probability of generating the
password pw = (c0, c1, ..., cN) is shown below:

P (pw) =

N∏
i=1

P (ci|c0, ..., ci−1), (1)

where N is the total length, and ci denotes the i-th character
of pw. The probability of generating the password pw is a
product of a series of conditional probabilities. Furthermore,
when analyzing the behaviors of users reusing passwords,
we can express the likelihood of a user creating a password
pwB = (c̃0, ..., c̃N) for website B, based on the password
pwA = (c0, ..., cM) used on website A as a conditional
probability as follows:

P (pwB |pwA) = P (c̃0, ..., c̃N |c0, ..., cM)

=

N∏
i=1

P (c̃i|pwA, c̃0, ..., c̃i−1).
(2)

C. Related work

At CCS’16, Wang et al. [28] proposed a password reuse
model called TarGuess-II, based on Probabilistic Context-Free

Grammars (PCFG) [40] and the Markov model [41]. Its core
idea is to describe users’ password reuse behavior based on
two levels of modification operations, namely structure-level
and segment-level. In the structure-level process, TarGuess-
II primarily considers the insertion and deletion operations
at the beginning and end of different structures (i.e., letter
segment L, digital segment D, and special character segment
S). In the segment-level process, it considers the insertion
and deletion operations within the same segment. Additionally,
it heuristically mixes popular passwords to model the user’s
behavior of using popular passwords, significantly enhancing
its cracking effectiveness.

At IEEE S&P’19, Pal et al. [13] introduced deep learning
techniques to model user reuse behavior, namely Pass2Path.
They trained a sequence-to-sequence (Seq2Seq [42]) model to
predict the modification operations needed to transform one
password to another. This approach results in higher cracking
success rates, as it allows the model to focus better on users’
typical password transformations.

At USENIX SEC’23, Wang et al. [25] for the first time
introduced a multi-step mechanism, proposing a new targeted
guessing model called Pass2Edit. They modeled the password
reuse process as a multi-classification problem, establishing
a direct connection between the editing operations and their
corresponding editing effects, resulting in better cracking
success rate than previous models. At the same time, Xu et
al. [26] proposed a pre-trained model named PassBERT based
on bidirectional Transformer. They used the pre-training and
fine-tuning paradigm to model users’ password reuse behavior.
Through the sequence labeling mechanism [43], PassBERT
can predict an editing operation for each character, thereby
forming a complete editing path.

At USENIX SEC’24, Xiu-Wang [29] introduced the pointer
mechanism to simulate users’ reuse behaviors and proposed
a new model, namely PointerGuess. PointerGuess defines
password reuse from both individual and population-wide
perspectives, thereby it can capture the complex password
modification behaviors of users.
Our differences. Our work is essentially different from the
above-mentioned in the following two key aspects.
Model architecture. We notice that only PassBERT [26] and
our work use Transformers. The main difference is that:
PassBERT’s core architecture relies on Transformers, while
in our work, Transformers is used only as the base model in
combination with the KNN-TPG method. We show that only
using Transformers doesn’t lead to satisfactory results (see
TransGuess’s results in Fig. 4). Particularly, our base model
can also be other Encoder-Decoder architecture, including
RNN, LSTM, or GRU.
Modeling ideas. The underlying idea of KNN-TPG is that
passwords with similar transformation patterns have re-
lated representation vectors in the latent space. In contrast,
Pass2Edit [25] and Pass2Path [13] focus only on character-
izing the editing sequence of password pairs. They differ
significantly in both the information retrieval approach and
the generation process.

3

III. KNNGUESS: A TARGETED PASSWORD GUESSING
MODEL COMBINED WITH KNN-TPG

In this section, we first introduce our Transformer-based
password guessing model TransGuess, which serves as the
base model. Then, we introduce our proposed non-parametric
method KNN-TPG. We combine it with the base model
TransGuess to create the final targeted password guessing
model, KNNGuess, to model users’ password reuse behaviors.

A. Base password model of KNNGuess

Transformers [44], a prominent deep learning model for
sequence-to-sequence tasks in the field of Natural Language
Processing (NLP), has been demonstrated to have strong fitting
ability. The structure of the Transformer includes an encoder
and a decoder. Each of them consists of multiple layers, with
each layer containing a self-attention mechanism and a feed
forward neural network. Inputs are processed by these layers
to produce the final output. Due to its powerful text learning
capabilities, we employ the Transformer as our base model for
targeted password guessing, namely TransGuess. TransGuess
is a sequence-to-sequence neural password guessing model,
it takes a leaked password from a user as input and outputs
password variations to capture users’ Type-1 behaviors.
Model architecture. TransGuess utilizes an encoder-decoder-
based architecture. The input password is mapped to high-
dimensional vector space v ∈ Rd through the embedding
layer. The hyperparameterized dimension d is maintained
consistently across all sub-layers of the model using residual
connections. The encoder generates a sequence of continuous
representations z from v, which includes contextual informa-
tion among the input password characters. After encoding,
the Decoder performs autoregressive decoding based on the
encoding result z and the generated results at each step.
Additional configurations of TransGuess. We align the
hyperparameters in the TransGuess model with those in the
Transformer [44] to ensure the base model is simple and
extensible (i.e., the dimension of the vector is 512, and the
encoder and decoder each have six identical layers.). Pal et al.
[13] demonstrated that using the key-sequence mechanism can
capture the capitalization-related transformations better and
improve the generation of special characters in passwords. We
incorporate the consideration of shift key and caps-lock on the
keyboard when processing password sequences. Specifically,
we convert each password into a sequence of key-presses (e.g.,
WANG123! is converted to ⟨caps⟩wang123⟨shift⟩1). Hence,
we exclude upper-case letters and some special characters from
the vocabulary, as they can be formed by other tokens. The
vocabulary, denoted as Σ, has a size of 54, comprises 48 types
of characters on the EN-US standard keyboard, and six special
identifiers: EOS, BOS, PAD, UNK, as well as ⟨caps⟩ and
⟨shift⟩. EOS stands for end-of-sequence, indicating the end
of a password. BOS, or begin-of-sequence, marks the start
of a password. PAD denotes padding, used to fill in spaces
and ensure passwords input into TransGuess have the same
length. UNK means “unknown token”, which is a special
symbol used to represent characters models don’t recognize

Encoder

Dump

Datastore

Decoder

𝑓(𝑖𝑛𝑝𝑢𝑡)

Segmental Pair(s)
<19890807,0807>

Identical Pair
<19890807, 𝑙𝑒𝑒0807>

0

<BOS>
0

7

8

𝑝𝑤𝐴 𝑝𝑤𝐵
… …

19890807 lee0807

… …
52rr1314 52yy1314

Training Set

{𝑓(19890807,<BOS>, θ), 0}

{𝑓(19890807,<BOS>0, θ), 8}

{𝑓(19890807,<BOS>08, θ), 0}

{𝑓(19890807,<BOS>080, θ), 7}

{𝑓(19890807,<BOS>0807, θ),<EOS>}

19890807

0807

TransGuess
Identical Pair :Identical to
original password pair.
Segmental Pair :Original
password pair with identical
segment structure, and the
two segments are similar.

Step
 In

crease

Fig. 2. The process of building the datastore involves generating two types of
password pairs: Segmental Pair(s) and Identical Pair from original password
pairs in the training set. These pairs are input into the TransGuess model to
produce a series of key-value pairs that form the datastore.

during password processing. We employ Adam as the model
optimizer with a learning rate of 5× 10−4 and a dropout rate
of 0.2 to alleviate overfitting. Typically, we set the training
epochs to 40 to ensure model convergence.

B. Non-parametric method: KNN-TPG

We introduce a non-parametric method, called k-nearest-
neighbor targeted password guessing (KNN-TPG), which can
be used in any trained neural password guessing models
without additional training. It builds a large datastore from the
training set. When generating a new password, we retrieve k-
nearest neighbors from this datastore to provide additional in-
formation beyond the base model TransGuess. This additional
information helps guide the generation of Type-3 passwords.
Initially, we train TransGuess on the training dataset to achieve
convergence of its loss. This ensures that our TransGuess has
the ability to capture users’ Type-1 reuse behaviors and map
inputs to a high-dimensional vector space. When using the
user’s password pwA = (c0, ...cM) to generate the variant
pwB = (c̃0, ..., c̃N), in each step of the generation process, the
decoder of TransGuess predicts the conditional probability dis-
tribution for the next token, denoted as PBasic(c̃i|pwA, c̃<i, θ),
conditioned on the leaked password pwA, previously generated
targeted tokens c̃<i, and the parameters θ of TransGuess.
Building datastore. A pair of passwords in the training
set generates two types of inputs: “Segmental Pair(s)” and
“Identical Pair”. The Identical Pair is exactly the same as
the original password pair in the training set. They include
all dissimilar passwords, helping the model learn the latent
semantic relationships between Type-3 type password pairs
in a high-dimensional space. The Segmental Pair(s) consists
of two similar segments within the original password pair.
They strengthen TransGuess’s ability to represent Type-1 reuse
behavior. Both segments share the same structure-level tags
(e.g., letter segment L, digital segment D, and special character
segment S). Therefore, Segmental Pair(s) may consist of one
or more pairs of password segments. Wang et al. [25] showed
that using cosine similarity instead of edit distance provides
a more accurate metric of similarity between passwords.
Therefore, we use sim(SegA, SegB) > 0.3 to determine the
similarity between two password segments, SegA and SegB .
The threshold of 0.3 is based on experimental findings by
Wang et al. [25]. The calculation method of similarity sim is
as follows:

4

sim(SegA, SegB)=

∑
g∈G

(cnt (SegA, g)∗cnt (SegB, g))√∑
g∈G

cnt2(SegA, g)
√∑

g∈G
cnt2(SegB, g)

,

where G denotes the collection of all 2-gram substrings within
SegA and SegB . The function cnt(Seg, g) signifies the fre-
quency of the substring g in the password segment Seg. Both
Identical Pair (XI ,YI) and Segmental Pair(s) (XS ,YS) will
serve as inputs to build the datastore. In the password pairs,
the source password is input into the Encoder of TransGuess,
while the targeted password is sequentially input into the
decoder. At each decoding step, a key-value pair is generated.
The datastore contains a set of key-value pairs. TransGuess
generates the key, a high-dimensional representation vector,
through an input password and previously generated password
tokens, denoted as f(pwA, c̃<i, θ), where f denotes a mapping
of the decoder that transforms the input into high-dimensional
representation. We utilize the hidden layer vector from the last
layer of the TransGuess decoder as the representation for the
function f . The value corresponds to the ground truth c̃i, which
represents each character in the targeted password. Formally,
the entire datastore can be described as follows:

{(Keys, V alues)} ={(f(pwA, c̃<i, θ), c̃i), ∀c̃i ∈ pwB |
(pwA, pwB) ∈ (XI , YI) ∪ (XS , YS)}.

(3)

During datastore construction, we process the training
set through TransGuess in batches to generate 128×512-
dimensional representation vectors (keys). These pair with the
prefix of target password tensors (values) at each decoding
step. We filter out padding symbols (values ≤1) before storing
valid key-value pairs. The decoding continues until reaching
maximum length or all-padding states, as formalized in Algo.
1. In Appendix B, we share some engineering tips to quickly
implement KNN-TPG beyond the core algorithm.

As shown in Fig. 2, consider the password pair of
pwA =19890807 and pwB =lee0807 in training set as
an example. The original password pair generates Segmental
Pair(s) < 19890807, 0807 > because the cosine similar-
ity score, sim(19890807,0807)=0.596>0.3. Besides, both
19890807 and 0807 are digital segments D. At each decod-
ing step, a key-value pair is generated. The value consists of
all the characters in the targeted password, namely: 0, 8, 0, 7,
and the end-of-sequence symbol EOS. All key-value pairs are
dumped into the datastore for subsequent retrieval processes.
Generating passwords. When generating reused passwords,
we first input source password pwA into the encoder
of TransGuess. At each decoding step, TransGuess first
outputs a conditional probability distribution, denoted as
PBasic(c̃i|pwA, c̃<i, θ), referred to as the Basic Distribution,
for the targeted password character c̃i. Moreover, TransGuess
outputs a high-dimensional representation vector called Basic
Decoder Representation, which is used as a query to retrieve
the k nearest neighbors from the datastore, according to L2

distance between the query and key. This allows obtaining
k distances, denoted as d = (d1, ..., dk). By employing the

Algorithm 1: Generate key-value pair algorithm.

Input: Datastore training set:
X = {(pw0

A, pw0
B), (pw1

A, pw1
B), ..., (pwm

A , pwm
B)}.

Output: Datastore with key-value pairs (D).
1 M← Trained TransGuess model;
2 K ← Decode max len;
3 for batch in X do
4 memory ←M.encode(batch);/* memory is the context

vector generated by the encoder of TransGuess. */
5 targeted← batch.target;
6 tgt← [BOS1, ..., BOSn]T ;/* Initialize decoding password

tensor, starting from begin-of-sequence. */
7 for decode step i ← 1 to K do
8 out←M.decode(tgt,memory);
9 key ← out[:,−1];/* Use the last vector of the hidden

layer as the key. */
10 value← targeted[:, i];
11 mask ← value > 1;
12 tgt← concat(tgt, value);
13 key, value← key[mask], value[mask];/* Exclude

key-value pairs that have been generated. */
14 D.add(key, value);

15 return D

following three operations: Temperature, Normalization and
Aggregation, we ultimately obtain a conditional probability
distribution for predicting the next token generated by the
retrieval distance d. This distribution is referred to as the KNN
Distribution, denoted as PKNN (c̃i|pwA, c̃<i, d).

The Temperature operation involves dividing all the dis-
tances (d1, ..., dk) by a certain value T, resulting in the new
distances dT = d/T . It adjusts the sensitivity and intensity
of the distances. Selecting a large T helps reduce differences
between various distances. This assists in preventing overfit-
ting to similar retrieval results, avoiding excessive focus on
a few items, and encouraging a more balanced distribution.
The Normalization operation scales distance to the standard
range of [0,1]. Specifically, we apply the softmax function to
−dT because smaller distances indicate higher probabilities for
the corresponding keys. The operation involves exponentiating
each distance and normalizing the result, ultimately obtaining
the probability distribution for each distance representing
value, denoted as P (value) ∝ exp(−dT). The Aggregation
operation combines values corresponding to different distances
by adding the probabilities of the same value. This results in
the probability distribution generated by retrieval distances.

When users modify passwords based on their existing ones,
there are instances where they need not consider the entire
password but only focus on a specific segment within the
passwords. We refer to this user’s modification as users’
“segmental attention behavior”. For instance, whether the old
password is Wang123 or lee123, there is a high likelihood
that users, in the practice of password reuse, might generate
wang123456 and lee123456. The transformation, in this
case, is independent of the characters preceding the password
segment 123, but significantly influenced by the segment 123
itself. To model such observed reuse behaviors, we introduce
a masking mechanism that simultaneously inputs the decoded
characters c̃j:i−1 into the Encoder of TransGuess at each
decoding step. During this input process, we mask out all

5

Retrieve

TransGuess

Retrieve Key Value

EOS

…
6

a

1

Datastore

Value Distanc

6
6

𝐿1
𝐿2

… …

K Nearest Neighbors

Value Distance

6
w

𝐿1
𝐿2

…

1 𝐿𝑘

…

Temperature

Normalization

Aggregation

Basic Decoder
Representation

Basic Distribution KNN Distribution Local Distribution

∗ 𝝀𝑩𝒂𝒔𝒊𝒄 ∗ 𝝀𝑲𝑵𝑵 ∗ 𝝀𝑳𝒐𝒄𝒂𝒍+ +
Final Distribution

=
“6”

Encoder

Decoder

Local Decoder
Representation

Operations
Representation

Source password

pink1988

Generated tokens ǁ𝑐<𝑖
Pink88050

88050

Masked tokens ǁ𝑐𝑗:𝑖−1

?

…

Step 9

<BOS>Pink
8805

<B
O

S>
P

in
k

8
8

0
5

0
6

…

Step 8

…

pink1988

KNNGuess
Model

<BOS>P

Source password

Step 1

Input

KNN
Search

Fig. 3. An example of decoding at the 9th step (i=9) during password guess generation. Here, we suppose the source password is pink1988 and the decoded
generated password is Pink88050. The Final Distribution for predicting the next character is obtained through interpolation of three distributions. TransGuess
generates the Basic Distribution and a high-dimensional vector called Basic Decoder Representation from the source password. By retrieving the k nearest
neighbors from the datastore and applying three operations, it obtains the KNN Distribution. The solid line in this figure illustrates the generation process.
The last segment of the generated tokens serves as the masked tokens, which are input into TransGuess to get Local Decoder Representation. Similarly, by
retrieving k nearest neighbors from the datastore, the Local Distribution is obtained. The dashed line illustrates the process of generating Local Distribution.

characters before the segment c̃0:j−1 that is currently under
generation. Therefore, all characters before position j are
masked because c̃j−1 and c̃j belong to different structure-level
tags(e.g., c̃j−1 is letter and c̃j is digit).

In Fig. 3, the input is source password pink1988. In the
subsequent decoding step after generating Pink88050, the
segment 88050 obtained by masking the generated tokens
is input into both Encoder and Decoder. Thus, TransGuess
also produces a representation vector, named Local Decoder
Representation. It is derived from the masked tokens 88050,
which like the Base Decoder Representation, is used as a
query to retrieve the k nearest neighbors from the datastore.
After undergoing Temperature, Normalization, and Aggrega-
tion operations, the model yields a conditional probability
distribution generated from local information, denoted as
PLocal(c̃i|c̃j:i−1, d), referred to as the Local Distribution.

We have three distinct distributions: Basic Distribution,
denoted as PBasic(c̃i|pwA, c̃<i, θ), KNN Distribution, denoted
as PKNN (c̃i|pwA, c̃<i, d) and Local Distribution, denoted
as PLocal(c̃i|c̃j:i−1, d) for predicting the next character. The
Basic Distribution and Local Distribution both capture users’
Type-1 reuse behaviors, while the KNN Distribution targets
Type-3 reuse. We use three parameters λBasic, λKNN and
λLocal, where the sum of these parameters is 1, to adjust the
proportions of each distribution. The final decoding result is
interpolated with these three distributions and three parame-
ters. Consequently, we obtain the Final Distribution, that is:

P (c̃i|pwA, c̃<i) = PBasic(c̃i|pwA, c̃<i, θ) · λBasic

+ PKNN (c̃i|pwA, c̃<i, d) · λKNN

+ PLocal(c̃i|c̃j:i−1, d) · λLocal.

(4)

As shown in Fig. 3, after obtaining the Final Distribution
for predicting the next token, the character ‘6’ with the
highest probability is selected and returned to the generated
tokens. In the next decoding step, the generated tokens are
Pink880506 and the masked tokens are 880506. The
decoding process continues until the EOS symbol is generated.

For each input password, we need to generate q password
guesses in decreasing order of likelihood. Thus, at each
decoding step, we employ the beam search decoding algorithm
[45] to obtain multiple password guesses. There is a parameter
called beam width (w) in the beam search algorithm, which
signifies retaining the top w sequences at each time step.
Specifically, during each decoding step, w sequences are
selected from w∗w sequences. Among these, sequences ending
with EOS are considered as one of the potential guesses.
Finally, we sort the results in descending order of probability
to get the final outputs. To get at least 1,000 password guesses,
we set the beam width to 1,000 in our model.

C. Mixing popular passwords

Unlike previous works that empirically mix popular pass-
words into the model-generated list (e.g., TarGuess-II [28],
Pass2Edit [25], assuming that the probability of choosing a
popular password is equal among all users while ignoring real-
world user heterogeneity. To address the limitations in prior
work, we propose a dynamic popular password interpolation
method that depends on the source password to capture the
users’ vulnerable behaviors of using popular passwords, which
will mix popular password list Listp with the guess list Listg
generated by KNNGuess. First, we need to build this list. To
ensure a fair comparison with previous work (e.g., Pass2Edit
[25] and TarGuess-II [28]), we use the same list of popular
passwords as before. Specifically, for the Chinese dataset, the
popular password list is LC={pw|the value of Pcsdn(pw) ∗
P126(pw) ∗ PDodonew(pw) ranks top-104}, while for the En-
glish dataset, it is LE={pw|the value of P000Webhost(pw) ∗
PYahoo(pw) ∗ PLinkedIn(pw) ranks top-104}. In fact, using
different popular lists for different datasets can increase the
cracking success rate. The probability that password pwS

generates a new password pwA is as follows:

P (pwA|pwS) = Norm{PModel(pwA|pwS) ∗ β} ∗ (1− αpop)

+Norm{PPopular(pwA|pwS) ∗ β} ∗ αpop.
(5)

6

We express the probability of generating a new password
as two components: the probability of the user modifying the
original password (including Type-1 and Type-3) and the prob-
ability of the user choosing a popular password (i.e., Type-2).
The final probability is obtained through linear interpolation
with a factor αpop. The value of αpop is calculated from the
training set and represents the proportion of users who choose
popular password. The interpolation factor 1−αpop represents
the proportion of users who have Type-1 and Type-3 behaviors
when constructing new passwords. PModel denotes the prob-
ability of our KNNGuess generating the password pwA using
pwS , and PPopular denotes the probability of pwS becoming
the popular password pwA. Note that when generating popular
passwords, we consider the influence of the original pass-
word pwS . This means that different original passwords (e.g.,
p@ssw0rd and summer0803) may yield varying probabili-
ties of generating the same popular password like Passw0rd.
In previous works [25], [28], [29], this was treated as identical
(i.e., PPopular(pwA|pwS) = PPopular(pwA)). Finally, we
normalize passwords probabilities in Listp and Listg to a
common scale for summation.

To ensure that the probability of generating a popular pass-
word is influenced by the original password, we calculate the
distance between the source password pwS and each popular
password pwpi

∈ Listp within a high-dimensional space. This
distance is multiplied by the probability of pwpi

in Listp.
After applying normalization, we obtain the final probability.
To prevent small differences in distance from resulting in neg-
ligible differences in probability, we amplify the probability
results by multiplying them with a parameter β. In this work,
we set β = 1, 000. We can express the PPopular(pwA|pwS) as:
PPopular(pwA|pwS) = Distanceh(pwA, pwS)∗Listp(pwA).

IV. EXPERIMENTS

We first elaborate on the experimental setup, including
the password dataset used, the attack scenarios constructed,
the hardware configuration and parameter selection. Then,
we conduct a fair comparison of KNNGuess with its fore-
most counterparts (i.e., PointerGuess [29], Pass2Edit [25],
Pass2Path [13], TarGuess-II [28] and PassBERT [26]).

A. Our datasets

Datasets. We conduct large-scale experiments on 12 pass-
word datasets containing 4.8 billion passwords to evaluate
our KNNGuess model and its foremost counterparts. Our
password datasets consist of 5 English datasets, 5 Chinese
datasets, and two large-scale mixed leakage datasets (see Table
I). These leaked password datasets were compromised by
hackers and made publicly available on the Internet between
2011 and 2021, which are openly accessible. The password
leakage datasets we utilized encompass websites of diverse
service types (e.g., e-commerce, social forum, and email), to
ensure the diversity of experimental scenarios and to test the
robustness of the password guessing models. Both 4iQ [46]
and COMB [47] are mixed password datasets, comprising
leaked passwords from various websites of different countries

and services. Various factors such as user types, language, ser-
vice types, and service policies affect password strength. For
example, 000Webhost users are primarily web administrators,
thus the passwords created might be more secure than those
created by common users. These leaked password datasets
are utilized to construct password reuse attack scenarios by
matching passwords that have the same corresponding email.
Datasets cleaning. For email addresses, we first removed
items with empty email and those without the ‘@’ symbol,
as they can’t match the same email address for the same user.
For passwords, similar to previous works [13], [25], we only
retained passwords containing 94 printable ASCII characters
(from 33 to 126) and removed passwords with lengths ≥ 30.
These serve as initial cleaning strategies, with each leaked
dataset in Table I undergoing the initial cleansing process.
Subsequently, when constructing password reuse attack sce-
narios, specific cleaning methods will be applied based on
the distinct website policies (see Table IV-B for details). For
example, although the training sets for Scenarios #1 are
the same, we need to remove password pairs with len<8 from
Tianya→Dodonew in Scenario #2, as the password policy
of the service CSDN to be guessed requires passwords with
len≥8 (while in Scenario #1, the password policy is none).
Open science. We will openly share our research artifacts to
enhance the reproducibility and replicability of our work. We
present our preliminary open-source solution in Sec. V-D.

B. Experimental setup

Attack scenarios. We consider modeling real-world tweaking
attacks based on multiple passwords obtained from the same
user through identical email matches. For different datasets,
similar to the previous works [13], [25], if the same email
appears in two datasets, we randomly select one of the
passwords associated with this email as the source password
pwA and the other as the targeted password pwB , forming an
item ⟨pwA, pwB⟩ in the training set.

Previous research [48], [49] has shown that various real-
world factors play a significant role in the characteristics
and strength of passwords. To closely approximate the be-
havior of informed attackers in real-world scenarios, we
constructed 13 meaningful attack scenarios, as shown in
Table II. Specifically, Scenarios #1-#4 (Chinese) and Sce-
narios #5-#8 (English) compare same/different service types
and strong/weak password policy transitions (e.g., CSDN’s
8-character minimum). Scenarios #9-#10 test mixed attacks
using combined datasets (e.g., LinkedIn+Twitter passwords to
attack MathWay+000Webhost), while #11-#12 employ large
leaked datasets (4iQ and COMB). Finally, scenario #13 specif-
ically examines the cracking behavior on RedMart’s MD5-
salted hashes, with all other tests using plaintext passwords.
See Table I for policy strength comparisons. In the training
set, service B in A → B is known, aiming to enable the
model to learn transformations from old passwords to new
ones. However, in the test set, service C in A → C is unknown,
representing a collection of passwords that attackers aim to
crack through service A.

7

TABLE I
DETAILS OF PASSWORD DATASETS LEAKED FROM VARIOUS WEB SERVICES AND DATA CLEANSING (“PWS” STANDS FOR PASSWORDS).

Dataset Language Leaked Time Original PWs Unique PWs Invalid emails Invalid PWs Removed % After cleaning Web service
LinkedIn English Jan. 2012 54,656,615 34,282,741 0 122,051 0.23% 54,534,564 Job hunting
000Webhost English Oct. 2015 15,299,907 10,526,769 49,061 67,401 0.76% 15,183,445 Web hosting
Twitter English May. 2016 25,575,929 16,249,287 3 287,548 1.12% 25,288,378 Social forum
RedMart‡ English Oct. 2020 1,108,774 — 0 — 0 1,108,774 E-commerce
MathWay English Jan. 2020 16,051,087 10,054,873 168,819 40,907 1.31% 15,841,361 Education
126 Chinese Dec. 2011 6,392,568 3,764,740 0 14,995 0.24% 6,377,573 Email
Tianya Chinese Dec. 2011 30,816,592 12,873,222 5,783 3,279 0.03% 30,807,530 Social forum
Dodonew Chinese Dec. 2011 16,282,286 10,010,744 225,931 30,085 1.57% 16,026,270 E-commerce & Gaming
Taobao Chinese Feb. 2016 15,072,418 11,633,759 1,176 90 0.01% 15,071,153 E-commerce
CSDN Chinese Dec. 2011 6,428,410 4,034,779 7 3,157 0.05% 6,425,246 Programmer forum
4iQ Mixed Dec. 2017 1,400,553,869 445,259,097 575,283 18,475,938 1.36% 1,381,502,648 Mixed
COMB Mixed Feb. 2021 3,279,064,312 855,833,811 81,542,117 15,718,941 2.97% 3,181,803,254 Mixed

‡RedMart, leaked from an online supermarket in Singapore, and all user passwords are in salted hash format. As we consider it as the real target, the data
for statistical password characteristics is underscored (i.e.,“—” and the value of 0).

TABLE II
SETUPS OF 13 DIFFERENT ATTACKING SCENARIOS (FOR EVALUATION RESULTS, SEE FIG. 4, AND FIG. 5)†

Scenario Language Training set setup Size (pairs) Identical pairs Test set setup Size (pairs) Identical pairs Clean strategies∗

1
Chinese

Tianya → Dodonew 624,925 28.71% Tianya → Taobao 57,7017 26.87% None
2 Tianya → Dodonew 434,255 23.33% Tianya → CSDN 826,559 33.18% len≥8
3 126 → Dodonew 188,926 36.32% 126 → CSDN 86,104 31.55% len≥8
4 CSDN → Dodonew 211,385 24.21% CSDN → 126 86,104 31.55% None
5

English
000Webhost → Twitter 695,560 16.07% 000Webhost → LinkedIn 265,083 19.14% len≥6

6 LinkedIn → Twitter 944,451 34.26% LinkedIn → MathWay 163,847 31.86% len≥5
7 Twitter → LinkedIn 316,388 34.83% Twitter → 000Webhost 471,650 16.07% LD, len≥6
8 LinkedIn → Twitter 482,763 35.84% LinkedIn → 000Webhost 259,175 19.55% LD, len≥6
9

Mixed
2 mixed English datasets 412,007 19.31% 2 mixed English Datasets 103,001 19.17% None

10 3 mixed Chinese datasets 1,265,219 32.51% 2 mixed Chinese Datasets 316,304 31.28% None
11 80% of 4iQ dataset 116,837,808 5.02% 20 % 4iQ dataset 29,209,452 4.94% None
12 80% of COMB dataset 342,921,727 34.23% 20 % COMB dataset 85,730,432 34.44% None

13 (hash) English 000Webhost → Linkedin 213,697 19.26% 000Webhost → RedMart 6,858 16.70% LD, len≥6‡

†A → B means: the passwords leaked by users on the website A can be used by an attacker to attack the same user’s account on the website B. Note
that both the training and test sets contain identical password pairs. However, during the training and testing processes, we do not use identical password
pairs(e.g., in attack scenario #1, the number of passwords inputted into the model for training is 624,925*(1-28.71%)=445,509).

∗Clean strategies refer to additional cleaning strategies applied to password pairs in the training set, beyond the initial cleaning strategy(see Section IV-A).
Different cleaning strategies can result in the same training set having different sizes (e.g., scenario #6 and scenario #8).

‡(LD, len≥6) means that we only retain passwords with a length greater than or equal to 6, and containing at least one letter and one digit.

TABLE III
CRACKING SUCCESS RATE CORRESPONDING TO DIFFERENT

HYPERPARAMETERS.†

Parameter Attack scenario #4: CSDN → 126

λBasic
‡ 0.7 0.5 0.3 0.5 0.5 0.5 0.5 0.5

λKNN 0.2 0.4 0.6 0.4 0.4 0.4 0.4 0.4

k 32 32 32 8 16 48 32 32
T 300 300 300 300 300 300 10 1,000

Success rate 42.39% 43.82% 43.63% 43.49% 43.54% 43.63% 43.69% 43.67%
† We conduct tests under attack scenario #4, as detailed in Table II. The

“Rate” represents the cracking success rate of the KNNGuess model under
different parameter combinations, with 1,000 guessing attempts.

‡ λBasic and λKNN represent the proportions of the basic distribution and
KNN distribution in the final distribution respectively when predicting the
next token. “k” denotes the number of retrievals from the datastore each
time, and “T” represents the value of the Temperature operation, as detailed
in Sec. III-B. The bold values indicate the highest cracking success rate.
The hyperparameters we take achieve the optimal effect.

Hardware Configuration. To ensure the fairness of the
experiment, we conducted training and testing on the same
workstation to compare our KNNGuess model with its main
competition models. Our workstation is equipped with the
NVIDIA RTX 3090 GPU (including 24GB of VRAM), Intel
Xeon Silver processor, 256GB of RAM, and a 4TB hard drive.
We believe that such a configuration is not difficult to achieve
for malicious attackers.
Key parameters selection. In KNNGuess, we find that the
proportion hyperparameters λBasic, λKNN and λLocal of
three distributions within the final distribution will affect the
model effectiveness. Through extensive experimentation, we
determine λBasic = 0.5, λKNN = 0.4, λLocal = 0.1. In

theory, setting λBasic = 0.5 ensures the strong generalization
ability of TransGuess, while λKNN = 0.4 allows KNN-TPG
to learn the transformation methods for similar passwords in
the latent space, and constrains the generated password by
the distribution observed in the entire training set. Setting
λLocal = 0.1 models the users’ segmental attention behavior
(which means the users only focus on a certain segment of
the passwords during modification). In Table III, we show
experimental results for some different values to illustrate the
rationality of our choice of parameters, and we discuss the
reasons why different parameter values affect the effectiveness
of KNNGuess in Appendix C.

Clearly, the effectiveness of KNN-TPG depends on two
factors: the number of retrievals k from the datastore and
the parameter T of the Temperature operation. We explore
the impact of different parameter values on KNN-TPG and
select the most suitable ones for targeted password guessing.
We chose k=32 and T=300. Theoretically, choosing a large
k may result in retrieving more noise, thereby reducing the
effectiveness of the model, while selecting a small k may
lead to retrieval results being biased towards a single outcome,
thereby affecting the normal distribution of the next characters.
For the parameter T in Temperature operation, the appropriate
parameter can encourage a more balanced distribution. We
present the reasons for choosing these values in Table III.
Guessing approaches for comparison. We compare KN-
NGuess with its main counterparts (i.e., PointerGuess [29],

8

100 101 102 103
Guess number

26%

28%

30%

32%

34%

36%
Fr

ac
tio

n
of

 su
cc

es
sf

ul
ly

 c
ra

ck
ed

Pass2Path
PassBERT
Top-PW

KNNGuess
KNNGuess-orig-mix
KNNGuess-nomix
Pass2Edit
PointerGuess
TransGuess
TarGuess-II

(a) #1: Tianya → Taobao

100 101 102 103
Guess number

30%

35%

40%

45%

50%

55%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

Top-PW
Pass2Path
PassBERT

KNNGuess
KNNGuess-orig-mix
KNNGuess-nomix
Pass2Edit
PointerGuess
TarGuess-II
TransGuess

(b) #2: Tianya → CSDN
100 101 102 103

Guess number

30%

35%

40%

45%

50%

55%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

Top-PW
Pass2Path
PassBERT

KNNGuess
KNNGuess-orig-mix
KNNGuess-nomix
Pass2Edit
PointerGuess
TarGuess-II
TransGuess

(c) #3: 126 → CSDN

100 101 102 103
Guess number

30%

40%

50%

60%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PointerGuess
KNNGuess-nomix
TarGuess-II
TransGuess

Pass2Path
PassBERT
Top-PW

KNNGuess
KNNGuess-orig-mix
Pass2Edit

(d) #4: CSDN → 126
100 101 102 103

Guess number

20%

25%

30%

35%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

KNNGuess-nomix
TarGuess-II
PointerGuess
TransGuess

PassBERT
Pass2Path
Top-PW

KNNGuess
KNNGuess-orig-mix
Pass2Edit

(e) #5: 000Webhost → LinkedIn

100 101 102 103
Guess number

30%

35%

40%

45%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

TransGuess
TarGuess-II
PassBERT

Pass2Path
Top-PW

KNNGuess
KNNGuess-orig-mix
KNNGuess-nomix
PointerGuess
Pass2Edit

(f) #6: LinkedIn → MathWay

100 101 102 103
Guess number

15%

20%

25%

30%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassBERT
Pass2Path
Top-PW

KNNGuess
KNNGuess-orig-mix
KNNGuess-nomix
Pass2Edit
TransGuess
PointerGuess
TarGuess-II

(g) #7: Twitter → 000Webhost
100 101 102 103

Guess number

20%

25%

30%

35%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassBERT
TarGuess-II
Top-PW

KNNGuess
KNNGuess-orig-mix
KNNGuess-nomix
Pass2Edit
PointerGuess
TransGuess
Pass2Path

(h) #8: LinkedIn → 000Webhost

100 101 102 103
Guess number

20%

25%

30%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

TarGuess-II
Pass2Path
Top-PW

KNNGuess
KNNGuess-orig-mix
KNNGuess-nomix
Pass2Edit
PointerGuess
TransGuess
PassBERT

(i) #9: English datasets: 2 mixed → 2 mixed

100 101 102 103
Guess number

30%

40%

50%

60%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

KNNGuess-nomix
PointerGuess
TarGuess-II

TransGuess
Pass2Path
PassBERT
Top-PW

KNNGuess
KNNGuess-orig-mix
Pass2Edit

(j) #10: Chinese datasets: 3 mixed → 2 mixed
100 101 102 103

Guess number

5%

10%

15%

20%

25%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

KNNGuess-orig-mix
KNNGuess-nomix

PassBERT
TarGuess-II
Top-PW

KNNGuess
PointerGuess
TransGuess
Pass2Edit
Pass2Path

(k) #11: 4iQ dataset: 80% → 20%

100 101 102 103
Guess number

35%

40%

45%

50%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

TransGuess
TarGuess-II
PassBERT

Pass2Path
Top-PW

KNNGuess
KNNGuess-orig-mix
Pass2Edit
KNNGuess-nomix
PointerGuess

(l) #12: COMB dataset: 80% → 20%
Fig. 4. Experimental results of 12 attack scenarios. The training set is shown in Table II, and the test set is as the subtitle. The attack effect (i.e., cracking
success rate) of KNNGuess is slightly/significantly better than that of our primary competitors: TarGuess-II [28], Pass2Path [13], PassBERT [26], Pass2Edit
[25], and PointerGuess [29]. Note that in all attack scenarios, all password guessing models initially guess the original password, thus each figure starts from
the same point. This starting point accurately reflects the proportion of identical password pairs present within the test set (see Table II for detailed data).

Pass2Edit [25], Pass2Path [13], TarGuess-II [28], PassBERT
[26]) and their variants (e.g., mixing the popular password list)
across the 13 attack scenarios we design. The source code of
all models is open-source/shared by the original authors, and
we adhere to all parameters specified in the original papers.
To compare with our new popular password mixing method,
we use the same popular password list and mixed method
from previous work [25], [28], [29] on our KNNGuess model,
namely KNNGuess-orig-mix. Further details about the other
models can be found in Appendix A.

C. Evaluation results
The effectiveness of KNNGuess. Fig. 4 shows that our
KNNGuess outperforms its primary counterparts in most at-
tack scenarios (see Figs. 4(a)-4(d) and 4(g)-4(l)) and slightly
surpasses the Pass2Edit in attack scenarios #5-#6 (where
our model significantly outperforms all other models except
Pass2Edit). Specifically, our KNNGuess model, with a budget
of 1,000 guesses across the first 12 attack scenarios, out-
performs TarGuess-II [28], Pass2Path [13], PassBERT [26],
Pass2Edit [25] and PointerGuess [29] by an average of

33.79%, 73.25%, 112.4%, 11.82% and 19.16% (avg. 50.08%).
In attack scenario #13, we evaluate the effectiveness of each
model in cracking real-world passwords stored as salted
hashes. As shown in Fig. 5, our KNNGuess model still
achieves the highest cracking success rate. Specifically, our
model improves by 18.84% and 111.61% compared to state-
of-the-art Pass2Edit [25] and PointerGuess [29], respectively.
We provide the cracking success rates of all models at some
representative guess numbers (i.e., 10, 100, 1,000). Overall,
see Table X and Table XI of the full version of our paper
http://bit.ly/41Lxub9 for details.

Additionally, KNNGuess achieves a greater improvement in
cracking success rate for chinese users. Specifically, compared
with Pass2Edit, which performs best among existing models
in such scenarios, KNNGuess outperforms it by an average
of 11.82% across 12 attack scenarios and achieves a 22.61%
improvement on the chinese user datasets. We attribute this
performance gap to the inclusion of three distinct user cate-
gories in our evaluation (i.e., common users, security-savvy
users, and mixed-password datasets). Notably, security-savvy

9

users tend to adopt more cautious password practices and
exhibit lower rates of password reuse.

Moreover, KNNGuess shows significant improvement at
low guess budgets. As shown in Table IV, when allowed
100 guesses and excluding identical password pairs (i.e., the
targeted password is not the same as the original password),
the cracking success rate of KNNGuess for common users
(see Figs. 4(a)-4(f) and 4(j)) are 25.40%. While that of
PointerGuess, Pass2Edit, PassBERT, Pass2Path and TarGuess-
II are 22.12%, 23.46%, 13.39%, 15.28% and 20.92%. That
is, the cracking success rate of our KNNGuess model is
14.83%, 8.27%, 89.69%, 66.23% and 21.41% higher than
PointerGuess, Pass2Edit, PassBERT, Pass2Path and TarGuess-
II. Analogously, the cracking success rate of the KNNGuess
for security-savvy users is 10.26% (see Figs. 4(g)-4(i)). While
that of PointerGuess, Pass2Edit, PassBERT, Pass2Path and
TarGuess-II is 8.58%, 9.67%, 7.03%, 6.04% and 7.06%.
The cracking success rate of KNNGuess is 19.58%, 6.10%,
45.95%, 69.87% and 45.33% higher than PointerGuess,
Pass2Edit, PassBERT, Pass2Path and TarGuess-II.
The effectiveness of KNN-TPG. The TransGuess introduced
in Sec. III-A obtains our KNNGuess model by integrating
KNN-TPG. Therefore, we compare the guessing success rate
of TransGuess with our KNNGuess model across 12 attack
scenarios to show how KNN-TPG method improves the base
model’s effectiveness. The results show that our KNNGuess
model outperforms TransGuess in all attack scenarios. Mean-
while, TransGuess performs relatively well at low guess num-
bers, but its guessing success rate improves only marginally
as the guessing budget increases. However, KNN-TPG enables
the base model to maintain considerable competitiveness even
at high guess numbers. Specifically, our KNNGuess model
shows an improvement in cracking success rate compared with
TransGuess by 3.04%-110.28% (avg. 30.30%). When allowed
10 guesses, KNNGuess is on average 28.81% (absolutely)
higher than TransGuess. Besides, with 1,000 guesses allowed,
our KNNGuess model shows an average increase of 33.94%
over TransGuess.
The effectiveness of the new popular password mixing
method. In TarGuess-II [28] and Pass2Edit [25], they used
the same method of mixing popular passwords for the model
to achieve higher cracking success rate. To ensure a fair
comparison with these two models, we use the same popular
password lists but our new mixing method introduced in Sec.
III-C. We multiply the probability of each password in the
model’s output guessing list by a factor α, representing the
proportion of users who do not choose popular passwords,
and this factor is derived through statistical analysis across
different training sets. For the popular password list, we use
the frequency of each password as its probability. These two
lists are merged in descending order of probability to form the
final guess set. When the same password appears in both lists,
the maximum of the two probabilities is retained.

To demonstrate the effectiveness of the new mixing popular
password method we proposed in Sec. III-C, we compared the
guessing success rates of KNNGuess with KNNGuess-nomix

(i.e., the KNNGuess model without mixing popular password)
and KNNGuess-orig-mix (i.e., using the same mixing method
from previous work [25], [28], see Sec. IV-B for details) in Fig.
4. Our KNNGuess model still achieves the highest cracking
success rate. More specifically, KNNGuess improves by an
average of 10.21% compared with KNNGuess-nomix, which
shows that the vulnerability of users’ Type-2 reuse behaviors
has been underestimated in previous work (e.g., Pass2Path
[13], PassBert [26] and PointerGuess [29] did not consider
it), because capturing such behavior can effectively increase
the cracking success rate. Additionally, our KNNGuess model
improves by 9.21% compared with the KNNGuess-orig-mix
model, indicating that our new mixed popular password
method better simulates users’ use of popular passwords. It
provides a more accurate and comprehensive representation
of users’ password reuse behaviors (i.e., Type-2).

To explore the abilities of different models, we compare
all models with mixed popular passwords in four scenar-
ios. Notably, when mixing popular passwords, all models
use the same mixing method and the same list of popular
passwords, except for KNNGuess (using the new mixing
popular password method proposed in this paper). As shown
in Fig. 6, when all models mix popular passwords, KNNGuess
improves by 14.42%, 17.70%, 42.19%, 37.32%, and 32.42%
compared with Pass2Edit [25], PointerGuess [29], PassBERT
[26], Pass2Path [13], and TarGuess-II [28], respectively. By
comparing the results in Fig. 4, we find that the PassBERT
and Pass2Path models can greatly improve effectiveness by
mixing popular passwords, indicating that these two models
are not strong in capturing users’ Type-2 reuse behaviors.

We also completely remove the mixing popular passwords,
as shown in Fig. 7, When all models do not mix popular
passwords, KNNGuess improves by 34.0%, 21.09%, 114.5%,
92.42%, and 56.21% compared with Pass2Edit, PointerGuess,
PassBERT, Pass2Path, and TarGuess-II, respectively. Mixing
popular passwords does not improve PointerGuess as much as
other models. This shows that PointerGuess can generate some
popular passwords without mixing them, which explains why
it performs better in attack scenarios without mixed popular
passwords. Table IX shows detailed experimental data.
Overhead. We measure the attack speed of different deep
learning models in scenario #13. For a fair comparison, all
models are trained for 40 epochs and use only one process
on the same workstation during generation, and none of the
models used any accelerated generation methods, such as
beam search in [29]. The results are shown in Table V. The
training duration of KNNGuess comprises both model training
time and datastore construction time. The results indicate that
KNNGuess spends the most time in the generation. One of
the reasons is that it generates three probability distributions
and interpolates at each step for predicting the next character.
Besides, the larger parameter k in KNN-TPG also contribute
to increased generation time.

Fortunately, for online guessing attacks, the computational
complexity is not particularly important, because the rate-
limiting policy of websites forces attackers to focus on suc-

10

TABLE IV
A GRASP OF THE CRACKING EFFECTIVENESS OF OUR KNNGUESS COMPARED WITH THE SOTA MODELS PASS2EDIT [25] AND POINTERGUESS [29].

Attack settings Guesses # Against common users Against security-savvy users† Against mixed users
Success rate Improvement rate‡ Success rate Improvement rate Success rate Improvement rate

Excluding identical password pairs
in the test set

10 19.72% + 13.50% 5.91% + 15.77% 13.83% + 12.90%
100 25.40% + 11.45% 10.26% + 12.44% 19.22% + 10.71%

1,000 30.62% + 11.49% 15.89% + 21.30% 23.32% + 12.12%

Including identical password pairs
in the test set

10 42.98% + 3.94% 22.95% + 3.05% 30.15% + 4.13%
100 47.10% + 4.04% 26.61% + 3.54% 34.55% + 4.14%

1,000 50.72% + 4.53% 31.24% + 7.89% 37.83% + 5.24%
† 000Webhost is mainly used by web administrators, so its users are likely to be more security-savvy than common users (i.e., Scenarios #7-#9). Mixed

users include both security-savvy users and common users, representing the average level of attack (i.e., Scenarios #11-#12).
‡ The improvement rate of our KNNGuess model compared with the State-Of-The-Art models Pass2Edit [25] and PointerGuess [29].

TABLE V
RUNNING TIME OF DIFFERENT ATTACK MODELS.†

Attack models Train time Test time Speed (PW/s) ‡

KNNGuess 0:15:34 2:06:35 903
Pass2Edit [25] 0:16:12 1:53:10 1,010
PointerGuess [29] 0:16:07 1:01:36 1,840
Pass2Path [13] 0:10:12 0:53:12 2,148
PassBERT [26] 0:40:09 0:21:04 5,426

† The format of time is “hour:minute:second”. All models are trained for 40
epochs and generate 1,000 guesses for each password in the test set.

‡ The speed of generating guesses is determined by dividing the total number
of guesses by the total testing time.

100 101 102 103
Guess number

16%

20%

24%

28%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassBERT
Top-PW

KNNGuess
Pass2Edit
TarGuess-II
TransGuess
PointerGuess
Pass2Path

Fig. 5. The experimental results in the salted hash attack scenario #13. The
training and test sets are listed in Table II. Our KNNGuess model still achieves
the highest cracking success rate compare with other models.

cessfully guessing passwords within as few guesses as possible
[50]. Additionally, websites often impose longer login time
restrictions on users than the time it takes for the model
to generate a guessing list. For example, the Alexa top-10
websites allow 120-1,440 (e.g., 1,440 for Google, Baidu and
Yahoo) online login attempts per day (see Table 7 of [51]),
while the NIST recommended threshold is 100 attempts in
30 days [52]. Therefore, the generation time of KNNGuess is
acceptable for online guessing attacks.

V. FURTHER EXPLORATION

We now provide a deeper understanding of the superiority of
our KNNGuess model and KNN-TPG method by investigating
(1) the passwords cracked by each model; (2) the password
guessing lists generated by each model; and (3) the saturation
in cracking success rates of each model. Furthermore, we
demonstrate how KNNGuess’s password-cracking capability
can be transformed into a practical password strength meter.

A. Analysis of cracked passwords

We examine password pairs cracked by different models
in 12 attack scenarios, focusing on overlaps between the
password cracking results of the models, similarities among
cracked password pairs, the length of guessed passwords, and
the occurrence of three types of users’ reuse behavior.

100 101 102 103
Guess number

26%

28%

30%

32%

34%

36%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

TarGuess-II
PassBERT-mix
Top-PW

KNNGuess-mix
PointerGuess-mix
Pass2Edit
Pass2Path-mix

(a) #1: Tianya → Taobao
100 101 102 103

Guess number
30%

35%

40%

45%

50%

55%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

TarGuess-II
PassBERT-mix
Top-PW

KNNGuess-mix
PointerGuess-mix
Pass2Edit
Pass2Path-mix

(b) #3: 126 → CSDN

100 101 102 103
Guess number

20%

25%

30%

35%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

TarGuess-II
Pass2Path-mix
PassBERT-mix
Top-PW

KNNGuess-mix
PointerGuess-mix
Pass2Edit

(c) #5: 000webhost → LinkedIn
100 101 102 103

Guess number
15%

20%

25%

30%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

Pass2Path-mix
TarGuess-II
Top-PW

KNNGuess-mix
PointerGuess-mix
Pass2Edit
PassBERT-mix

(d) #7: Twitter → 000webhost
Fig. 6. Experimental results of all models mixed with popular passwords in
four attack scenarios. The training set is shown in Table II, and the test set
is as the subtitle. After mixing popular passwords, our KNNGuess achieves
the highest cracking success rate compared with its counterparts.

100 101 102 103
Guess number

26%

28%

30%

32%

34%

36%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

Pass2Path
PassBERT
Top-PW

KNNGuess-nomix
PointerGuess
TransGuess
Pass2Edit-nomix
TarGuess-II-nomix

(a) #1: Tianya → Taobao

100 101 102 103
Guess number

30%

35%

40%

45%

50%

55%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed
Pass2Path
PassBERT

KNNGuess-nomix
PointerGuess
TransGuess
Pass2Edit-nomix
TarGuess-II-nomix
Top-PW

(b) #3: 126 → CSDN

100 101 102 103
Guess number

20%

25%

30%

35%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PointerGuess
TransGuess
TarGuess-II-nomix
PassBERT
Pass2Path
Top-PW

KNNGuess-nomix
Pass2Edit-nomix

(c) #5: 000webhost → LinkedIn
100 101 102 103

Guess number
15%

20%

25%

30%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed Pass2Path
Top-PW

KNNGuess-nomix
Pass2Edit-nomix
TransGuess
PointerGuess
PassBERT
TarGuess-II-nomix

(d) #7: Twitter → 000webhost
Fig. 7. Experimental results of no-mixing popular passwords in four attack
scenarios. The training set is shown in Table II, and the test set is as the
subtitle. Our model KNNGuess-nomix achieves the highest cracking success
rate compared with other models that no-mixing popular passwords.

Overlap. To compare the cracking abilities of different mod-
els, we select three models: KNNGuess, Pass2Edit [25] (as the
best-performing operation-sequence-based model), and Point-
erGuess [29] (as the best-performing character-based model).
With a budget of 1,000 guesses, we analyze the overlap of
password pairs cracked by three models across 12 attack
scenarios, as well as the password pairs cracked individually
by each model. As shown in Fig. 8, KNNGuess cracks
passwords that the other two models cannot crack at a rate of
14.69% (4,630 pairs of 31,523 unique cracked pairs), while

11

14.69%

16.18%

3.71%

1.41%1.95%

3.77%

58.30%

KNNGuess

Pass2Edit [25]

PointerGuess [29]

Fig. 8. The overlap ratio of passwords cracked by KNNGuess, Pass2Edit
and PointerGuess. Our KNNGuess model has the highest number of cracked
password pairs and the highest individual cracking ratio (i.e., 14.69%).

Pass2Edit [25] and PointerGuess [29] achieve only 3.71%
(1,168 of 31,325) and 1.46% (461 of 31,523), respectively.
Similarity distribution. We analyze the similarity distribu-
tion of password pairs cracked by all models to understand
their cracking capabilities. We consider using spatial distance
metrics: edit distance [53] and cosine similarity [54]. Addi-
tionally, we use the Longest Common Subsequence algorithm
[27], which considers the order and position of characters in
a sequence, serving as a sequence alignment-based metrics
method for comparing the similarity between sequences.

We evaluate the ability of different models to crack pass-
word pairs with different similarity scores, as shown in Fig.
9. Note that a smaller edit distance score indicates greater
similarity between two passwords, while for cosine similarity
and the longest common subsequence algorithm, a higher score
signifies greater similarity between two passwords. The results
show that our KNNGuess model exhibits the highest consis-
tency in the distribution of cracked password pairs compared to
all password pairs in the test set. In cases of similar password
pairs (e.g., edit distance=1 or cosine similarity ∈ [0.8,1.0]),
KNNGuess exhibits the smallest proportion of cracked pass-
word pairs, closely resembling the distribution of password
pairs in the test set. This trend also exists when the password
pairs are dissimilar (e.g., edit distance ≥ 5).Moreover, we
show the password length distribution for passwords cracked
within 1,000 guesses by different models in Fig.11 of the full
version of our paper http://bit.ly/41Lxub9 .
Quantitative Comparison. As shown in Table VII, we pro-
vide the proportion and number of password pairs that belong
to the three types of user reuse behaviors and are cracked by
different models across all 12 attack scenarios. KNNGuess
achieves the highest cracking of Type-3 reused password
pairs (636 of all cracked 35,000 passwords), indicating that
our KNN-TPG can effectively capture users’ Type-3 reuse
behavior. In addition, KNNGuess can guess the largest number
of popular passwords (6,370 of 35,000) and outperforms other
models (i.e., 6,284 of Pass2Edit [25] and 6,156 of TarGuess-II
[28]) using the mixing popular password method, indicating
the effectiveness of our new mixing popular password method.
Pass2Path [13] and PassBERT [26] focus on Type-1 type reuse,
so they rarely guess popular passwords. PointerGuess [29]
directly fits the distribution of the entire password pairs space
(i.e., Types 1-3). Although it can crack a certain number of
Type-3 password pairs (355 of 25,958), it will affect the ef-
fectiveness of cracking other types of passwords. PointerGuess

cracks significantly fewer Type-1 and Type-2 password pairs
compared with both KNNGuess and Pass2Edit (e.g., 27.92%
and 18.92% reduction respectively of Type-1).

B. Analysis of password guessing lists

To better understand why different models show different
effectiveness for certain password pairs, we show examples of
passwords that KNNGuess is able to crack but other models
cannot (i.e., password pairs that belong to the 14.69% in Fig.
8). As shown in Table VI, the results show that KNNGuess
exhibits the highest capability of “associative generation”. This
demonstrate that KNN-TPG provides additional information to
the model during the generation process, enabling it to produce
more diverse outputs. For instance, when generating the seg-
ment zxc123, it assigns more weight to generate subsequent
numbers, allowing correct results to be guessed with fewer
attempts. An interesting observation is that the KNNGuess
model will associatively generate popular passwords related
to the source password when it contains a popular password
segment (e.g., deriving popular passwords such as 123456,
123123 and 123456789 from the segment 123 contained
in the source password zxc123!@#).

Meanwhile, the guessing lists effectively demonstrate the
characteristics among different models, as shown in Table VI.
TarGuess-II [28] exhibits characteristics of segment modifica-
tion, resulting in the password guesses with only one segment
in its guessing list (e.g., password zxc). PassBERT [26] excels
in replacement operations, generating passwords similar to
the source password (e.g., password zxc123153). Pass2Path
[13] features the generation properties of the Seq2Seq [42]
framework, enabling the insert/delete operation within pass-
words (e.g., password zxc1231123). Pass2Edit [25] can
perceive changes in passwords during generation and the
model will pay more attention to generating passwords under
a specific structure (e.g., password zxc12123). PointerGuess
[29] can generate popular passwords without mixing popular
password lists (e.g., password 123456 and 123456789).

C. Analysis of the cracking-rate saturation

We now investigate how KNNGuess performs with varied
sizes of the training set, and find it saturates much later than
its counterparts. More specifically, when the training set size
increases from 5×106 to 5×107, the guessing success-rates of
all its counterparts show a clear saturation trend. That is, for
targeted password guessing models, increasing the dataset size
of password pairs moderately improves the guessing success-
rate of the models, whereas inputting an excessive amount
of password pairs as training data leads to a cracking rate
saturation. We take the COMB dataset [47] as an example,
which has the largest number of leaked passwords. From
the training set of the COMB dataset, we randomly select
password pairs of sizes 5 ∗ 104, 5 ∗ 105, 5 ∗ 106, 5 ∗ 107. The
four different-sized password pair datasets are used as training
inputs for all models. We show the comparison results with
Pass2Edit [25] in Fig. 10. We can find that the effectiveness
of Pass2Edit and PointerGuess is close to saturation after

12

TABLE VI
THE GUESSING LISTS GENERATED BY KNNGUESS AND THE OTHER COMPARED MODELS FOR AN EXAMPLE PASSWORD.†

Models Examples of a password pairs: ((zxc123!@#, zxcvbnm123)
Guesses 1 2 3 4 5 6 7 8 9 10

KNNGuess-nomix‡ zxc123!@# zxc123 zxc123123 zxc123456 123456 123123 zxcvbnm123 zxc12345 123456789 zxcvbnm
Pass2Edit-nomix [25] zxc123!@# zxc123 zxc123123 zxc123! zxc12123 zxc1123 ZXC123 zxc12323 zxc zx123
PointerGuess [29] zxc123!@# zxc123 123 123456 123123 zxc123456 zxc ZXC123 zxc123123 123456789
Pass2Path [13] zxc123!@# 123123 1xc123123 c123123 xc123123 zxc1231123 zxc1231213 zxc123123 zxc12312a3 zxc12313
PassBERT [26] zxc123!@# zxc12313 zxc1233 zxc1231 zxc123113 zxc123153 zxc12373 zxc12323 zx12313 zxc12353
TarGuess-II-nomix [28] zxc123!@# zxc123 zxc zxc123!@ zxc12!@# 123 zx123!@# 123!@# zxc12 zx123

†All models guess the source password in the (source password, targeted password) pair as the first guess, modeling users’ behavior of reusing directly. A
password with dark gray represents a specific one that only one model can generate within 10 guesses, and bold passwords indicate successful guesses.

‡“-nomix” means that the model does not perform mixing popular password list operations, and represents the original guess generated by the model.

1 2 3 4 5
Edit Distance

0%

20%

40%

60%

80%

Pr
op

or
tio

n

KNNGuess
Pass2Edit
Pass2Path

PassBERT
PointerGuess
Test set

KNNGuess
Pass2Edit
Pass2Path

PassBERT
PointerGuess
Test set

(a) Edit distance algorithm

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Cosine Similarity

0%

20%

40%

60%

80%

Pr
op

or
tio

n

KNNGuess
Pass2Edit
Pass2Path

PassBERT
PointerGuess
Test set

KNNGuess
Pass2Edit
Pass2Path

PassBERT
PointerGuess
Test set

(b) Cosine similarity algorithm

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Longest Common Subsequence

0%

20%

40%

60%

80%

Pr
op

or
tio

n

KNNGuess
Pass2Edit
Pass2Path

PassBERT
PointerGuess
Test set

KNNGuess
Pass2Edit
Pass2Path

PassBERT
PointerGuess
Test set

(c) Longest common subsequence algorithm
Fig. 9. The similarity distribution of password pairs cracked by 5 attack models. Figs. 9(a)-9(c) show the results using spatial distance metrics and sequence
alignment-based metrics (i.e., edit distance, cosine similarity, and longest common subsequence (LCS) algorithm), to measure the similarity distribution of
cracked passwords. The “Test set” represents all password pairs in the test set. KNNGuess is particularly good at predicting distant password reuse behaviors.

TABLE VII
THE NUMBER OF PASSWORD PAIRS CRACKED BY EACH PASSWORD MODEL

FOR THREE TYPES OF REUSE BEHAVIORS.†

Model name Type-1 Type-2 Type-3
KNNGuess (This work) 27994 (79.98%) 6370 (18.2%) 636 (1.82%)

Pass2Edit [25] 26025 (79.85%) 6284 (19.28%) 283 (0.87%)
PointerGuess [29] 21884 (84.31%) 3719 (14.33%) 355 (1.4%)

Pass2Path [13] 15368 (99.11%) 7 (0.05%) 131 (0.84%)
PassBERT [26] 19242 (99.73%) 3 (0.02%) 49 (0.25%)
TarGuess-II [28] 21394 (76.95%) 6156 (22.14%) 254 (0.91%)

†We defined three types of user reuse behaviors in Sec. I-A. For example,
Type-1 means that user makes simple changes to the source password.

Train size (5 * 10x + 4)0.0 0.5 1.0 1.5 2.0 2.5 3.0

Guess Number
200

400
600

800
1000

Fraction of successfully cracked
30%

35%

40%

45%

50%

55%

Total PW pairs
KNNGuess
Pass2Edit
PointerGuess

Total PW pairs
PointerGuess

KNNGuess
Pass2Edit

Fig. 10. KNNGuess, PointerGuess and Pass2Edit’s [25] effectiveness in
scenario #12 (see Table II) when the training set size changes. The x-axis
represents the size of the training set, the y-axis indicates the number of
guesses, and the vertical axis represents the cracking success rate of guessing.
“Total PW pairs” represents the highest guess success rate achieved by
combining the guess lists of the three models.

the training set size exceeds 5 ∗ 106, and the effectiveness
has a downward trend, while our KNNGuess model still has
an increasing trend. We put the results of other models in
Appendix D.

There are two possible reasons for the saturation of the
guessing success rate: (1) The oversized training set introduces

more noise. The excessive noise affects the model’s generaliza-
tion ability, especially when the password pairs increase from
5 ∗ 106 to 5 ∗ 107 (45 million additional pairs). All models
use filtering methods (e.g., edit distance [53] and cosine
similarity [54]) to screen the training set. There are differences
between different filtering methods, and they cannot ensure
the filtering of all bad data that may affect the convergence of
the model (which is also why KNN-TPG can demonstrate its
advantages). Therefore, the oversized training set brings more
noise and affects the model’s fitting ability; (2) The data dis-
tribution changes. The training process of the model involves
fitting the data distribution of the training set. The COMB
dataset contains leaked passwords from multiple languages,
websites with different policies, and different types of services.
Increasing the size of the training set too much introduces
more types of password pair transformations, which makes it
difficult for the model to generalize. A significant difference in
distribution between the new and old training sets can cause
the model to perform poorly on the new training set. Our
KNNGuess mitigates this limitation through its KNN-TPG
component, which retrieves semantically relevant candidates
from the datastore when the model’s generalization capacity
is insufficient. This retrieval mechanism enhances training
robustness by compensating for the model’s coverage gaps.

D. Application to a targeted password strength meter
Password strength meters (PSMs) help users assess the

strength of their passwords when creating new ones, aim-
ing to prevent users from generating weak passwords and
assist in creating strong ones. Previous works [14], [30],
[31], [55] proposed methods to measure password strength
accurately, but faced limitations. For instance, guessing-based
PSMs depend on the algorithm’s effectiveness and only assess
overall strength, without providing modification suggestions.

13

Old password: 0606LTT

New password: 06060514

50 99 99 99 76 52 55 49

0 6 0 6 0 5 1 4

KNNGuess model

With the leaked password
“0606LTT”, it takes only 3
guesses to crack the new
password “06060514”.

The score of each character
in the new password

…

BOS

6: 𝑃1
1

0: 𝑃2
1

L: 𝑃3
1

6: 𝑃1
2

L: 𝑃2
2

…

…

Guess list

Fig. 11. Example of inputting a password pair into KNN-PSM, it provides
two pieces of information: how many guesses are needed to correctly guess
the new password in the event of an old password leak, and the predictability
score for each character in the password, where a higher score indicates that
users are more likely to choose that character.

Therefore, we devise KNN-PSM based on the KNNGuess,
which not only offers users macro-level password strength
advice from the perspective of the entire password, but also
provides modification suggestions from the perspective of each
individual character in the password. As shown in Fig. 11,
we present the results of inputting a pair of password pair
into KNN-PSM. KNN-PSM outputs two results: the predictive
score for each character (e.g., the first character “0” has a
score of 50), and the number of attackers required to crack the
new password in the event of the old password being leaked.
For example, when the attacker knows the leaked password
0606LTT, it only takes 3 times to crack 06060514.

At each decoding step, as we generate each character
of the new password correctly, we obtain the probability
of generating the character in the final distribution. This
distribution is generated jointly by the Basic Distribution,
KNN Distribution, and Local Distribution. In Sec. IV-C, we
demonstrate that its predictive probabilities are more accurate
than only using the Basic Distribution to predict the next
character. By normalizing the probabilities, we obtain scores
for each character in the new password:

scorei =
probi[targetedi]∑vocab size−1

j=0 probi[targetedj]
, (6)

where the scorei represents the score of the i-th character
in the new password, targetedi denotes the i-th character in
the new password, and prob represents the final distribution,
i.e., the prediction of probabilities for all characters. The
normalized score (Eq. 6) quantifies the model’s confidence in
predicting each character. For the predictive score, a higher
score indicates that attackers are more likely to guess this
character, implying that choosing this character at this position
is less secure. KNN-PSM warns users to modify the character
at this position (e.g., the red color in Fig. 11) to reduce the
predictive score and improve password security. Therefore,
users can refer to the number of guesses needed to crack to
dynamically modify the old password or choose a completely
new one. Further, we release the trained model as a pass-
word strength meter. This approach evaluates input passwords
by estimating their guessability or assigning strength levels,

preventing weak ones. A preliminary anonymous version is
available at https://github.com/KNNGuess/KNNGuess-code .

VI. CONCLUSION

This paper introduces a new non-parametric method, k-
nearest-neighbors targeted password guessing (KNN-TPG),
for modeling users’ password reuse behaviors. By creatively
integrating it with our Transformer-based model, we obtain
a new password guessing model, named KNNGuess. The
KNN-TPG method maps all passwords in the training set
to high dimensional vectors and builds a datastore offline,
from which the KNN-TPG retrieves k neighbor information
during password generation to enhance its guessing capability.
KNNGuess effectively characterizes users’ password reuse be-
haviors, and accurately models attackers’ password tweaking
attacks, providing a better understanding of password security.

ETHICS CONSIDERATIONS

Although these datasets are publicly available on the Inter-
net and the dark web, and widely used in previous password
research [13], [25]–[28], [56], we treat them as private. In
order to prevent potential damage to the individuals, we handle
these datasets with caution and minimize the risk of secondary
leakage. During the experimental process, we implement the
following precautionary measures: (1) After completing the
matching of identical email addresses for the same user, we
promptly delete all email information to ensure that personally
identifiable information (PII) is not leaked (meaning that pass-
words and users’ corresponding email addresses do not appear
simultaneously). (2) We ensure that all datasets are processed
and stored on computers and hard drives not connected to
the Internet. We only report macro-level aggregated statistical
information and show some typical passwords. (3) After
completing the experiments and analysis, we promptly delete
all processed data (e.g., multiple passwords corresponding
to the same user on different service websites) to prevent
attackers from exploiting them for further password guessing
attacks. Note that while we use leaked password datasets
to characterize more sophisticated attackers, our fundamental
goal is to assist security administrators/users in accurately
assessing their password strength from the perspective of
guessing attacks (as the number of guesses can serve as a good
indicator of password strength [14], [51], [55], [57]). All the
leaked datasets we used are obtainable from various publicly
available sources on the Internet, ensuring the reproducibility
of experimental results.

ACKNOWLEDGMENT

The authors are grateful to the shepherd and anonymous
reviewers for their invaluable comments. Ding Wang is the
corresponding author. This research was in part supported
by the National Natural Science Foundation of China under
Grants Nos. 62172240, 62222208 and 62572259, and by the
Fundamental Research Funds for the Central Universities,
Nankai University (Grant No. 63243154). See the full version
of this paper at http://bit.ly/41Lxub9 .

14

https://github.com/KNNGuess/KNNGuess-code

REFERENCES

[1] M. Shirvanian and S. Agrawal, “{2D-2FA}: A new dimension in two-
factor authentication,” in Proc. ACM ACSAC 2021, pp. 482–496.

[2] P. Shrestha, A. T. Mahdad, and N. Saxena, “Sound-based two-factor
authentication: Vulnerabilities and redesign,” ACM Trans. Priv. Secur.,
vol. 27, no. 1, pp. 1–27, 2024.

[3] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel, “Is
FIDO2 the kingslayer of user authentication? A comparative usability
study of FIDO2 passwordless authentication,” in Proc. IEEE S&P 2020,
pp. 268–285.

[4] J. Bonneau, C. Herley, P. Oorschot, and F. Stajano, “The quest to
replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. IEEE S&P 2012, pp. 553–567.

[5] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password memora-
bility and security: Empirical results,” IEEE Secur. Priva., vol. 2, pp.
25–31, 2004.

[6] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The request
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. IEEE S&P 2012, pp. 553–567.

[7] J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano, “Passwords
and the evolution of imperfect authentication,” Commun. ACM, vol. 58,
no. 7, pp. 78–87, 2015.

[8] M. L. Mazurek, S. Komanduri, T. Vidas, L. F. Cranor, P. G. Kelley,
R. Shay, and B. Ur, “Measuring password guessability for an entire
university,” in Proc. ACM CCS 2013, pp. 173–186.

[9] D. Wang and P. Wang, “The emperor’s new password creation policies,”
in Proc. ESORICS 2015, pp. 456–477.

[10] K. Lee, S. Sjöberg, and A. Narayanan, “Password policies of most top
websites fail to follow best practices,” in Proc. SOUPS 2022.

[11] LastPass Is Making Account Updates. Here’s Why, Jan. 2024,
https://blog.lastpass.com/posts/2024/01/lastpass-is-making-account-upd
ates-heres-why.

[12] H. P. Google, Online Security Survey, Feb. 2019, https://services.googl
e.com/fh/files/blogs/google security infographic.pdf.

[13] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential
stuffing: Password similarity models using neural networks,” in Proc.
IEEE S&P 2019, pp. 417–434.

[14] D. Wang, D. He, H. Cheng, and P. Wang, “fuzzyPSM: A new password
strength meter using fuzzy probabilistic context-free grammars,” in Proc.
IEEE/IFIP DSN 2016, pp. 595–606.

[15] Password administration for system owners, Nov. 2018, https://www.
ncsc.gov.uk/collection/passwords/updating-your-approach.

[16] Stick with Security: Require secure passwords and authentication, Aug.
2017, https://www.ftc.gov/business-guidance/blog/2017/08/stick-securit
y-require-secure-passwords-and-authentication.

[17] US-CERT, Choosing and Protecting Passwords, Nov. 2019, https://us
-cert.cisa.gov/ncas/tips/ST04-002.

[18] B. Ur, F. Noma, J. Bees, S. M. Segreti, R. Shay, L. Bauer, N. Christin,
and L. F. Cranor, “” i added’!’at the end to make it secure”: Observing
password creation in the lab,” in Proc. SOUPS 2015, pp. 123–140.

[19] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,
L. F. Cranor, S. Egelman, and A. Forget, “Let’s go in for a closer look:
Observing passwords in their natural habitat,” in Proc. ACM CCS 2017.

[20] E. M. Redmiles, S. Kross, and M. L. Mazurek, “How I learned to be
secure: a Census-representative survey of security advice sources and
behavior,” in Proc. ACM CCS 2016, pp. 666–677.

[21] Data Breach Investigations Report, June 2023, https:
//www.verizon.com/business/resources/reports/2024/dbir/2024-dbi
r-data-breach-investigations-report.pdf.

[22] 2021 Credential Spill Report, Feb. 2021, https://www.f5.com/compan
y/news/features/credential-spill-incidents-double-as-hacker-sophisticat
ion-conti.

[23] Hack Brief: An Adult Cam Site Exposed 10.88 Billion Records, May
2020, https://www.wired.com/story/cam4-adult-cam-data-leak-7tb/.

[24] Mother of all breaches reveals 26 billion records: what we know so far,
Jan. 2024, https://cybernews.com/security/billions-passwords-credentia
ls-leaked-mother-of-all-breaches/.

[25] D. Wang, Y. Zou, Y.-A. Xiao, S. Ma, and X. Chen, “PASS2EDIT: A
multi-step generative model for guessing edited passwords,” in Proc.
USENIX SEC 2023, pp. 9803–1000.

[26] M. Xu, J. Yu, X. Zhang, C. Wang, S. Zhang, H. Wu, and W. Han,
“Improving real-world password guessing attacks via bi-directional
transformers,” in Proc. USENIX SEC 2023, pp. 1001–1018.

[27] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse,” in Proc. NDSS 2014, pp. 1–15.

[28] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in Proc. ACM CCS 2016,
pp. 1242–1254.

[29] K. Xiu and D. Wang, “Pointerguess: Targeted password guessing model
using pointer mechanism,” in Proc. USENIX SEC 2024, pp. 5555–5572.

[30] W. Melicher, B. Ur, S. Komanduri, L. Bauer, N. Christin, and L. F.
Cranor, “Fast, lean and accurate: Modeling password guessability using
neural networks,” in Proc. USENIX SEC 2017, pp. 175–191.

[31] D. Pasquini, G. Ateniese, and M. Bernaschi, “Interpretable probabilistic
password strength meters via deep learning,” in Proc. ESORICS 2020,
pp. 502–522.

[32] U. Khandelwal, A. Fan, D. Jurafsky, L. Zettlemoyer, and M. Lewis,
“Nearest neighbor machine translation,” in Proc. ICLR 2021.

[33] M. Nicholas, 68 Million Reasons Why Your Small Business Needs a
Password Manager, Jan. 2017, https://blog.dashlane.com/68-million-r
easons-why-your-small-business-needs-a-password-manager/.

[34] A. Hanamsagar, S. S. Woo, C. Kanich, and J. Mirkovic, “Leveraging
semantic transformation to investigate password habits and their causes,”
in Proc. ACM CHI 2018, pp. 1–10.

[35] S. Li, Z. Wang, R. Zhang, C. Wu, and H. Luo, “Mangling rules
generation with density-based clustering for password guessing,” IEEE
Trans. Depend. Secur. Comput., vol. 20, no. 5, pp. 3588–3600, 2022.

[36] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and T. Ristenpart,
“Protocols for checking compromised credentials,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1387–1403.

[37] B. Pal, M. Islam, M. S. Bohuk, N. Sullivan, L. Valenta, T. Whalen,
C. Wood, T. Ristenpart, and R. Chatterjee, “Might i get pwned: A second
generation compromised credential checking service,” in Proc. USENIX
SEC 2022, pp. 1831–1848.

[38] J. Kim, M. Song, M. Seo, Y. Jin, and S. Shin, “Passrefinder: Credential
stuffing risk prediction by representing password reuse between websites
on a graph,” in Proc. IEEE S&P 2024, pp. 1–20.

[39] M. Islam, M. S. Bohuk, P. Chung, T. Ristenpart, and R. Chatterjee,
“Araña: Discovering and characterizing password guessing attacks in
practice,” in Proc. USENIX SEC 2023, 2023, pp. 1019–1036.

[40] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proc. IEEE S&P
2009, pp. 391–405.

[41] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in Proc. IEEE S&P 2014, pp. 689–704.

[42] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[43] Y. Shen, X. Ma, Z. Tan, S. Zhang, W. Wang, and W. Lu, “Locate and
label: A two-stage identifier for nested named entity recognition,” in
Proc. ACL 2021, pp. 2782–2794.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[45] T. Wolf, L. Debut, V. Sanh, and et al., “Transformers: State-of-the-art
natural language processing,” in Proc. ACL 2020, pp. 38–45.

[46] Identities in the Wild: The Tsunami of Breached Identities Continues,
May 2018, https://4iq.com/wp-content/uploads/2018/05/2018IdentityB
reachReport4iQ.pdf/.

[47] COMB: largest breach of all time leaked online with 3.2 billion records,
July 2022, https://cybernews.com/news/largest-compilation-of-emails-a
nd-passwords-leaked-free/.

[48] Z. Li, W. Han, and W. Xu, “A large-scale empirical analysis on chinese
web passwords,” in Proc. USENIX SEC 2014, pp. 559–574.

[49] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-
security: Understanding passwords of Chinese web users,” in Proc.
USENIX SEC 2019, pp. 1537–1555.

[50] M. Dürmuth, D. Freeman, S. Jain, B. Biggio, and G. Giacinto, “Who
are you? A statistical approach to measuring user authenticity,” in Proc.
NDSS 2016, pp. 1–15.

[51] D. Wang, X. Shan, Q. Dong, Y. Shen, and C. Jia, “No single silver
bullet: Measuring the accuracy of password strength meters,” in Proc.
USENIX SEC 2023, pp. 947–964.

[52] P. A. Grassi, E. M. Newton, R. A. Perlner, and et al., “NIST 800-63B
digital identity guidelines: Authentication and lifecycle management,”

15

https://blog.lastpass.com/posts/2024/01/lastpass-is-making-account-updates-heres-why
https://blog.lastpass.com/posts/2024/01/lastpass-is-making-account-updates-heres-why
https://blog.lastpass.com/posts/2024/01/lastpass-is-making-account-updates-heres-why
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ftc.gov/business-guidance/blog/2017/08/stick-security-require-secure-passwords-and-authentication
https://www.ftc.gov/business-guidance/blog/2017/08/stick-security-require-secure-passwords-and-authentication
https://us-cert.cisa.gov/ncas/tips/ST04-002
https://us-cert.cisa.gov/ncas/tips/ST04-002
https://www.verizon.com/business/resources/reports/2024/dbir/2024-dbir-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/reports/2024/dbir/2024-dbir-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/reports/2024/dbir/2024-dbir-data-breach-investigations-report.pdf
https://www.f5.com/company/news/features/credential-spill-incidents-double-as-hacker-sophistication-conti
https://www.f5.com/company/news/features/credential-spill-incidents-double-as-hacker-sophistication-conti
https://www.f5.com/company/news/features/credential-spill-incidents-double-as-hacker-sophistication-conti
https://cybernews.com/security/billions-passwords-credentials-leaked-mother-of-all-breaches/
https://cybernews.com/security/billions-passwords-credentials-leaked-mother-of-all-breaches/
https://blog.dashlane.com/68-million-reasons-why-your-small-business-needs-a-password-manager/
https://blog.dashlane.com/68-million-reasons-why-your-small-business-needs-a-password-manager/
https://4iq.com/wp-content/uploads/2018/05/2018IdentityBreachReport 4iQ.pdf/
https://4iq.com/wp-content/uploads/2018/05/2018IdentityBreachReport 4iQ.pdf/
https://cybernews.com/news/largest-compilation-of-emails-and-passwords-leaked-free/
https://cybernews.com/news/largest-compilation-of-emails-and-passwords-leaked-free/

McLean, VA, Tech. Rep., Mar. 2020, https://pages.nist.gov/800-63-3/
sp800-63b.html.

[53] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions and reversals,” Soviet physics. Doklady, vol. 10, pp. 707–710,
1965.

[54] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of
string distance metrics for name-matching tasks,” in Proc. IIWEB 2003,
pp. 73–78.

[55] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-
strength meters from Markov models,” in Proc. NDSS 2012.

[56] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in Proc.
IEEE S&P 2021, pp. 265–282.

[57] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. Lopez, “Guess again (and again and
again): Measuring password strength by simulating password-cracking
algorithms,” in Proc. IEEE S&P 2012, pp. 523–537.

[58] SecLists: the pentester’s companion, 2024, https://github.com/danielm
iessler/SecLists/tree/master/Passwords.

[59] Password Similarity Models using Neural Networks, 2019,
https://github.com/Bijeeta/credtweak.

[60] PassBertStrengthMeter, 2023, https://github.com/snow0011/PassBertSt
rengthMeter.

[61] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–
547, 2019.

APPENDIX

A. Supplementary information for comparison models

We introduce the comparative models to our work, including
PointerGuess [29], Pass2Edit [25], Pass2Path [13], TarGuess-
II [28], and PassBERT [26], which were proposed in previous
studies. We introduce detailed information about these bench-
mark models for comparison.
TarGuess-II. Wang et al. [28] proposed a probabilistic model
called TarGuess-II in 2016, which is based on a rigor-
ous mathematical probability model, departing from purely
heuristic designs. This model relies on PCFG model [40]and
Markov model [41], and describes user password reuse be-
havior through modification operations at two levels (i.e.,
structural level and token level), such as head deletion, tail
insertion, etc. Additionally, this model incorporates popular
passwords, significantly enhancing its effectiveness. Despite
the availability of many pre-compiled lists of popular/weak
passwords on the Internet (e.g., OWASP maintains a available
list of common passwords [58]), for the sake of ensuring a
fair comparison with the behavior of mixing popular pass-
words as proposed by Wang et al. [25], [28], the popular
password lists constructed in this paper are consistent with
TarGuess-II. For the Chinese dataset, the popular password
dictionary is LC={pw|the value of Pcsdn(pw) ∗ P126(pw) ∗
PDodonew(pw) ranks top-104}, while for the English dataset,
it is LE={pw|the value of P000Webhost(pw) ∗ PYahoo(pw) ∗
PLinkedIn(pw) ranks top-104}.
Pass2Path. In 2019, Pal et al. [13] proposed the Pass2Path
model based on the Seq2Seq framework, which models the
process of user password modification as a series of atomic
edit operations. They trained the model and predicted the
sequence of editing operations using the Seq2Seq [42] frame-
work. We use parameters from its open-source code [59].
Specifically, we trained for 80 epochs, with the 3 layers of
RNN. The learning rate is 0.0003, hidden layer size is 128,

embedded layer size is 200, and dropout probability is 0.2,
filtering the training set with edit distance ≤ 4. Note that Wang
et al. [25] proposed the “Pass2Path-bugfix” model to fix the
original model, but there is no significant improvement in the
effectiveness. Therefore, we adopt the original “Pass2Path”
model in our experiments.
PassBERT. Xu et al. [26] proposed the pre-trained model
PassBERT based on bidirectional Transformers in 2023. In
the field of password guessing, they employed pre-training
and fine-tuning paradigms to model user password reuse
behavior. By utilizing a sequence labeling mechanism [43],
PassBERT predicts an editing operation for each character
in the password, forming a sequence of editing operations,
known as an editing path. We use their open-source code
[60] and a pre-trained model on 4iQ, fine-tuning it in our 13
attack scenarios (see Table II) and generating a list of guesses.
Note that PassBERT generates passwords with spaces during
the generation process. We remove the spaces from these
passwords and ensure that they are different from previously
generated passwords to generate 1,000 distinct guesses.
Pass2Edit. Wang et al. [25] found that the models utilizing
editing operations cannot perceive changes that occur during
the password modification process. So they introduced, for
the first time in 2023, a multi-step decision mechanism.
They modeled password generation as a multi-step decision
classification task and developed a model called Pass2Edit.
In the model’s input stage, it doesn’t only input the original
password PWorg, but also requires inputting the current
password PWcur (which equals the original password at the
first time step), concatenating the two before inputting into the
GRU layer. Unlike the Seq2Seq framework of the Pass2Path
model, the Pass2Edit-nomix model is essentially a classifier,
generating an edit operation at each step until the password
generation is complete. Additionally, Pass2Edit-nomix also
employs the same popular password list as TarGuess-II-mix
to mix the guessing dictionary, aiming for a higher cracking
rate. The model after mixing popular passwords is named
Pass2Edit. We utilize the source code generously provided by
the authors and retained the model’s default parameters, only
modifying the datasets used as input.
PointerGuess. Xiu and Wang [29] introduced the pointer
mechanism to simulate users’ password reuse behaviors. They
did this by asking two questions: what the users want to
copy/keep and what the users want to tweak. This led to the
development of a targeted password guessing model called
PointerGuess. Specifically, PointerGuess defines password
reuse from both individual and population-wide perspectives,
thereby covering the complex password modification behaviors
of users. Note that PointerGuess can capture popular pass-
words used by users without mixing password lists. Therefore,
when no mixing of popular password lists is performed,
PointerGuess achieves a higher cracking success rate.
Top-PWs. In different scenarios, we calculate the frequency of
different passwords in the training set and arrange passwords
in descending order of frequency to generate a guessing
dictionary composed of popular passwords. It represents the

16

https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/snow0011/PassBertStrengthMeter
https://github.com/snow0011/PassBertStrengthMeter

attacker’s minimal strategy, that is, guessing passwords that
have already been seen, without utilizing any model. Note
that this guessing dictionary is distinct from the mixed popular
dictionaries (i.e., LC and LE) used by the “-mix” models (e.g.,
TarGuess-II and Pass2Edit).
TransGuess. To demonstrate the effectiveness of the KNN-
TPG method, we introduce the TransGuess model as our base
model in this paper. It is a character-to-character model based
on the Transformer architecture, utilizing the key-sequence
mechanism. The parameters remain consistent with the default
parameters of the Transformer [44], ensuring simplicity and
easy extendibility of KNNGuess model. Specific parameters
are detailed in Sec. III-A.
KNNGuess-orig-mix. To demonstrate our new method of
mixing popular passwords, we use the same mixing method
and list from previous work [25], [28]. We apply them to
the KNNGuess model without mixed popular passwords. The
new model is called KNNGuess-orig-mix. Compared with the
KNNGuess model presented in this paper, the only difference
is the method used to mix popular passwords. By comparing
KNNGuess-orig-mix with KNNGuess, we can understand the
advantages of our new method for mixing popular passwords.
KNNGuess-nomix. We build a Transformer model based
on password character levels, combined with our proposed
non-parametric method, KNN-TPG. Without manually mixing
any popular passwords, we get the KNNGuess-nomix model.
By comparing this model with the one that mixes popular
passwords, we can understand the weak behavior of users
using popular passwords in different attack scenarios.

B. Specific implementation of KNN-TPG

In Sec. III-B, we introduce how to utilize the KNN-TPG
method to assist in generating password guesses. Now, we
provide some supplementary information and specific imple-
mentations regarding KNN-TPG. In the process of building the
datastore, we input the processed training set into TransGuess
in batch form, obtaining a multi-dimensional representation
vector (e.g., The dimension is 128*512, where 128 is the batch
size, and 512 is the size of TransGuess hidden layer). We
use the representation vectors as the key, and the value is a
tensor, namely tensortar, representing the i-th dimension (i is
the current decoding step) of the targeted password vector in
batch form. We dump them into the datastore in the form of
key-value pairs. Note that since the targeted passwords are not
fully aligned, we need to check the values of tensortar. We
only consider vectors with values greater than 1 (because 1
represents the padding symbol PAD). Finally, we concatenate
the tensortar with the representation vectors and continue the
decoding process until reaching the maximum decoding length
or tensortar are all filled with PAD. We precisely formalize
this process in Algo. 1 for clarity.

To perform vector search in large-scale high-dimensional
vector spaces, we utilize the Faiss [61] toolkit1, designed
specifically for efficient similarity search and dense vector

1https://github.com/facebookresearch/faiss/

clustering. Its core functionality involves encapsulating vectors
and building indexes. We employ the IndexIVFPQ index type,
which combines the Inverted File (IVF) index and Product
Quantization (PQ) compression technique, to achieve efficient
approximate nearest neighbor search on large-scale datasets.
The inverted file index is a type of index based on vector
quantization. It partitions the vector space into a series of
non-overlapping regions called clusters, and maintains a list
containing indices of vectors for each region. This structure
significantly reduces the computational cost required during
the search, as the search is conducted only within a subset
of clusters that are similar to the query vector. PQ is a
compression technique used for vector quantization. It divides
high-dimensional vectors into several lower-dimensional sub-
vectors and assigns a discrete codeword (codebook) to each
sub-vector. These sub-codewords are quantized and com-
pressed, allowing for efficient storage and processing. During
search, it can calculate distances between vectors with lower
memory consumption and faster speed.

TABLE VIII
MEMORY CONSUMPTION OF KNN-TPG METHOD.

Training set size 5 ∗ 104 5 ∗ 105 1 ∗ 106 5 ∗ 106 1 ∗ 107

Keys 1.2GB 11.7GB 23.4GB 116.7GB 166.7GB
Values 4.6MB 45.6MB 91.2MB 455.9MB 651.3MB
Faiss index† 49.9MB 419.0MB 830.1MB 4.1GB 5.9GB

†Faiss index is an index built by the Faiss toolkit based on key-value pairs,
which is ultimately used in the retrieval process.

The KNN-TPG method requires constructing an offline
datastore, which inevitably results in memory consumption
when the number of password pairs is large. We test the mem-
ory consumption of the KNN-TPG method under different
training set sizes, and the results are shown in Table VIII. The
Faiss index is built jointly by keys and values and is only used
in subsequent high-dimensional vector retrieval processes.
Due to the storage of a large number of high-dimensional
vectors, keys incur the greatest memory consumption. The
index files constructed by Faiss also have noticeable memory
consumption. We acknowledge that this is one of the side
effects of increasing the cracking success rate. However, for
malicious attackers, this is entirely acceptable. For example,
we use a 4TB hard drive during the experimental process.
In addition, we set the dimension of the latent space to 512
during the experiment, which results in high memory storage
consumption for a single vector. Thus, memory consumption
can be reduced by reducing the latent space dimension.

C. Selection of hyperparameters in KNN-TPG

For our method KNN-TPG, different hyperparameter
choices affect the guessing success rate of KNNGuess. We
test the impact of different hyperparameter combinations on
the model in attack scenario #4. First, we determine the value
of λLocal, which reveals the proportion of users exhibiting
segmental attention behavior (i.e., users only focusing on
a segment modification, see Sec. III-B). By analyzing the
training set, we find that this portion of users accounts for
approximately 10%. Therefore, we determine λLocal = 0.1.

17

TABLE IX
COMPARISON OF THE CRACKING SUCCESS RATE OF DIFFERENT METHODS WHEN MIXING/NOT MIXING POPULAR PASSWORDS (EXPERIMENTAL RESULTS

EXCLUDE ALL IDENTICAL PASSWORD PAIRS IN THE TEST SET).†

Experimental Setup KNNGuess Pass2Edit [25] PointerGuess [29] TarGuess-II [28] Pass2Path [13] PassBERT [26]

Attack scenarios Guesses # -mix -nomix -mix‡ -nomix -mix -nomix -mix -nomix -mix -nomix -mix -nomix

#1 Tianya → Taobao
10 5.43% 3.99% 4.63% 3.61% 4.41% 3.87% 3.76% 2.79% 3.80% 2.42% 3.74% 2.65%
100 9.09% 7.93% 7.44% 5.69% 7.12% 6.30% 6.48% 4.67% 6.62% 4.22% 6.09% 3.87%

1,000 12.36% 11.11% 10.50% 8.06% 10.80% 9.03% 8.68% 6.03% 9.70% 5.95% 7.97% 4.70%

#3 126 → CSDN
10 15.25% 11.87% 9.02% 6.53% 10.03% 8.83% 6.41% 3.61% 2.95% 4.08% 8.25% 2.26%
100 24.53% 19.83% 20.65% 9.41% 19.99% 17.03% 19.31% 8.87% 17.04% 6.37% 16.99% 5.36%

1,000 33.31% 30.19% 27.97% 17.85% 28.63% 26.91% 25.73% 16.59% 25.53% 13.17% 22.74% 8.26%

#5 000Webhost → LinkedIn
10 17.26 16.89% 17.62% 17.00% 17.16% 14.97% 15.93% 15.28% 14.40% 13.58% 13.29% 12.34%
100 20.20% 19.75% 19.90% 18.55% 19.38% 17.23% 18.49% 17.01% 16.50% 14.96% 16.27% 14.54%

1,000 22.42% 21.57% 21.99% 20.01% 22.80% 19.08% 20.63% 18.57% 18.33% 15.90% 18.44% 16.16%

#7 Twitter → 000Webhost
10 5.85% 6.01% 5.32% 5.51% 4.86% 4.07% 3.45% 3.47% 3.58% 2.10% 3.99% 4.18%
100 9.58% 9.53% 9.10% 9.13% 8.44% 6.96% 7.43% 7.38% 6.57% 4.96% 6.95% 6.92%

1,000 15.50% 13.18% 13.06% 12.49% 13.53% 10.39% 10.18% 9.35% 10.48% 7.78% 10.67% 9.82%
† The detailed data of the attack scenarios are shown in Table II. All passwords in the test sets (pwA,pwB) satisfy pwA ̸= pwB . All models include both

mixed popular passwords (-mix) and no mixed popular (-nomix) methods. We compare their cracking success rates respectively. The value of bold in
each row indicates the highest cracking success rate of the model in the same method (i.e. -mix or -nomix). In all 12 attack cases, our KNNGuess model
achieved 10 best results when mixing popular passwords and 11 best results when not mixing popular passwords.

‡ Note that in order to distinguish whether different models mix popular passwords, each model has two methods, -mix and -nomix. If the model does not
originally have a method to mix popular passwords, then model-nomix corresponds to the model name in Appendix A (includes PassBERT [26], Pass2Path
[13], and PointerGuess [29], i.e., PassBERT-nomix means PassBERT in Appendix A). If the model originally has a method to mix popular passwords,
then model-mix corresponds to the model in Appendix A (i.e. KNNGuess, Pass2Edit [25], TarGuess-II [28])

Train size (5 * 10x + 4)0.0 0.5 1.0 1.5 2.0 2.5 3.0

Guess Number
200

400
600

800
1000

Fraction of successfully cracked

30%

35%

40%

45%

50%

55%

Pass2Path
PassBERT
TarGuess-II
TransGuess

Pass2Path PassBERT
TarGuess-II TransGuess

Fig. 12. The effectiveness of other models when the training set size varies
in Scenario #12 (see table II). Here, we show the results of Pass2Path [13],
PassBERT [26], TarGuess-II [28] and TransGuess (in this work). The x-axis
represents the size of the training set, the y-axis indicates the number of
guesses, and the vertical axis represents the cracking success rate of guessing.

Based on this, we select several sets of representative hyperpa-
rameter values, as shown in Table III. The results indicate that
when the value of λBasic is too large, it causes KNNGuess to
gradually degrade into the TransGuess model. Additionally,
excessively large or small values of k slightly affect the
model’s effectiveness: a too-small k prevents it from fully
retrieving more results, while an overly large k retrieves more
noise. Overall, we chose the λBasic = 0.5, λKNN = 0.4,
k = 32, T = 300 hyperparameter set because it achieves the
best model effectiveness among the various combinations.

From Table III, an interesting observation is that, when
λBasic takes an appropriate value (e.g., 0.5), changes in other
hyperparameters have minimal impact on the KNNGuess’s ef-
fectiveness. Even significant alterations in the values of KNN-
TPG hyperparameters (e.g., λBasic = 0.7) result in superior
attack effectiveness under attack scenario #4 compared with all
other models. This demonstrates a degree of robustness in our
method, indicating insensitivity to hyperparameter variations

and resilience to minor perturbations in input data. This in-
herent stability allows the KNN-TPG to consistently maintain
its robust effectiveness when confronted with various changes
in the input dataset or different types of noise.

D. Supplementary analysis of training set changes

In real-world attack scenarios, attackers train password
guessing models based on existing password pairs [56], al-
though the number of password pairs that different attackers
possess varies. In our experiments, we use password pairs ob-
tained through email matching as the training set (e.g., Tianya
→ Dodonew). The sizes of training sets matched between
two websites typically range from 105 to 106 (scenarios #1-
#8), while mixed datasets generally range from 106 to 108. as
shown in Fig. 10 and Fig. 12. With the increase in training set
size, KNNGuess shows the steepest growth, which gradually
slowed down after the training set size exceeded 5 ∗ 106. The
slowest growth is observed in the TarGuess-II model, even
when the training set size increases by a factor of 1,000, the
model’s effectiveness does not change significantly (deviation
in cracking success rate under 1,000 guesses < 0.01%).

Comparing the effectiveness of the KNNGuess model with
the TransGuess model (see in Fig. 12) reveals the advantage of
KNN-TPG. TransGuess tends to exhibit the “Password over-
load drop effect” when dealing with large datasets, whereas
the addition of the KNN-TPG method effectively mitigates this
issue. When the model exhibits weak generalization or inad-
equate fitting, KNN-TPG effectively provides more training
information to assist generation. The impact of KNN-TPG on
model training is minimal because we only utilize the model’s
ability to map passwords into a high-dimensional vector space.
This underscores the advantage of non-parametric methods:
they possess stronger robustness and are not constrained by
specific distribution assumptions.

18

	Introduction
	Motivations and design challenges
	Our contributions

	Background and related work
	Password reuse behavior
	Password probability modeling
	Related work

	KNNGuess: A targeted password guessing model combined with KNN-TPG
	Base password model of KNNGuess
	Non-parametric method: KNN-TPG
	Mixing popular passwords

	Experiments
	Our datasets
	Experimental setup
	Evaluation results

	Further exploration
	Analysis of cracked passwords
	Analysis of password guessing lists
	Analysis of the cracking-rate saturation
	Application to a targeted password strength meter

	Conclusion
	References
	Appendix
	Supplementary information for comparison models
	Specific implementation of KNN-TPG
	Selection of hyperparameters in KNN-TPG
	Supplementary analysis of training set changes

