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Abstract—Trusted execution environments (TEE) have been
widely explored to enhance security for embedded systems.
Existing embedded TEE systems run with a small memory
footprint and only provide security critical functionalities in
order to maintain a minimal trusted computing base (TCB).
Unfortunately, such design choice results in the dilemma that
these TEE systems are short in software resources, making it
difficult t o e xecute ¢ omplex a pplications w ith 1 arge c ode bases
inside of embedded TEEs. In this paper, we propose a user-space
isolated execution environment (UIEE) so as to augment TEE
capabilities by directly running un-modified d ata p rocessing ap-
plications inside of TEEs without increasing the TCB size. UIEE
constructs a sandboxed environment by dynamically allocating
a sufficient m emory region for a pplications a nd i solates i t from
both the rich execution environment (REE) and TEE, defending
UIEE from REE attacks while protecting TEE from a potentially
compromised UIEE application. Additionally, we propose a
library OS (i.e., Linux kernel library, LKL) based UIEE runtime
environment that can provide standard C runtime APIs to UIEE
applications. In order to solve the LKL concurrency issues, we
propose an LKL thread synchronization mechanism to run the
multi-threaded LKL inside of the UIEE which features a singled
thread execution model. Furthermore, we design a novel on-
demand thread migration mechanism to realize LKL context
switching inside of UIEE. We implement and deploy a UIEE
prototype on an NXP IMX6Q SABRE-SD evaluation board,
and successful run 8 real-world libc-based applications inside of
UIEE without modification. T he e xperimental r esults s how that
UIEE incurs negligible performance overhead. We are the first to
propose a TrustZone-oriented LibOS and evaluate its feasibility
as well as security features.

I. INTRODUCTION

Trusted execution environments (TEEs) have been widely
used to protect the data confidentiality a nd c ode i ntegrity of
embedded systems. Modern TEEs like ARM TrustZone [1]
create a hardware-enforced isolated region so that programs
running inside such region can be protected from attacks
issued from the external environment, which are commonly
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referred to as the rich execution environment (REE). A typical
embedded TEE system consists of several trusted applications
(TAs) that provide security-critical services to REE programs
and a trusted operating system (Trusted OS) to manage the life
cycle of each TA. Additionally, in order to maintain a minimal
trusted computing base (TCB), existing TEEs only implement
necessary operations such as en-/decryption, digital signatures
and attestation, and feature a single-threaded execution model.
Such design choice would preserve a relatively small attack
surface and reduce the number of potential TEE vulnerabili-
ties, enhancing the security level for embedded systems.

The compact design of existing embedded TEEs makes it
difficult to realize comprehensive data processing logic within
these environments. In contrast to REE systems (e.g., Linux-
based systems), existing trusted OSes only provide a small set
of system call services with rather limited capabilities. More-
over, TA libraries cannot support common C runtime APIs like
file operations which are widely used by various REE applica-
tions. In order to fully utilize embedded TEEs for secure data
processing, existing research projects take two directions: 1)
application slicing & adaption: This approach retrofits an ex-
isting REE application by identifying its security-critical data
processing logic (i.e., cryptographic operations [2], privacy-
related I/O operations [3][4] or machine learning model layers
[51[6]1[7]) and adapting such logic into TEEs. The extracted
security-critical parts usually have small code bases, thus
maintaining a minimal TCB increase with their adaption into
TEEs. However, such approach has poor scalability since it
works in a case-by-case manner and it takes huge engineering
efforts to retrofit existing complex applications [2]. Moreover,
the interfaces between the TEE-side security critical part
and the remaining program inside REE vary significantly
across different applications, making it an error-prone and
exhausting task to ensure the secure interaction among them.
2) isolated execution environment (IEE): This approach
creates a separate IEE, isolated from both REE and TEE,
where security-critical programs run. The IEE approach can
protect applications from potential REE attacks while allowing
supervised access from IEE applications to TEE resources,
thus maintaining a minimal TCB. However, such approach
features the very same issue haunting the existing embedded
TEEs that existing research projects [8][9][10][11][12][13]



propose their own unique software runtime environments and
consequently developers are still required to adapt existing
applications into such execution environments, involving a lot
of engineering efforts. Instead, TrustShadow [14] and Shelter
[15] choose to run unmodified applications inside IEEs by
statically linking applications with their dependency libraries
including /ibc and forwarding most system calls to REE, which
results in notable runtime performance overhead.

In this paper, we propose a user-space isolated execution
environment (UIEE) for embedded TEE systems, that can
directly run existing Linux applications inside TEEs without
increasing the TCB size. We focus our design on TrustZone-
based TEE systems while the general design rationale can
be applied to TEEs empowered by other architectures (i.e.,
Intel SGX/TDX [16], AMD SEV [17], ARM CCA [18]). To
begin with, UIEE creates an isolated execution environment
separated from both REE and TEE. Specifically, a UIEE
runtime memory is dynamically allocated and configured as
secure memory using the TrustZone address space controller
(TZASC) [19]. Additionally, a separate page table is con-
structed inside the trusted OS to map the UIEE memory region
into a constrained virtual address region so as to isolate UIEE
programs from the rest of the TEE components and in turn
maintain a minimal TCB size. Inside of the UIEE memory
region, we provide a standard C runtime for applications based
on a customized C library (libc) as well as a library OS
(LibOS) [20][21], namely the Linux kernel library (LKL) [22].
To be specific, libc provides common C library functions for
various applications together with their dependency libraries
and issues system calls to the LibOS in form of direct function
calls. Additionally, most dependency functions required by
the LibOS are provided by reusing the existing TA libraries
and trusted OS services while the few remaining ones are
redirected to REE.

UIEE design faces several challenges. Since the existing
TEEs cannot provide pthread multi-threading APIs required by
LKL, we investigate a two-stage UIEE execution model where
the LibOS is first initialized inside REE using a standard C
library to spawn necessary LibOS threads for the first initial-
ization stage. For the second stage, the whole UIEE memory
region is isolated from REE and then the control flow transfers
to UIEE through the trusted OS. Furthermore, to properly
handle the concurrency issues among LKL kernel threads, we
propose an LKL thread synchronization mechanism so that all
LKL kernel threads finish initialization and go into sleeping
mode with their contexts within the REE Linux kernel before
entering UIEE. Once the UIEE application starts execution,
we propose a novel on-demand thread migration mechanism
in order to wake up a sleeping LKL kernel thread and transfer
its control flow from the REE Linux kernel to UIEE upon the
LKL context switching.

We develop a UIEE prototype and deploy it on an IMX6Q
SABRESD development board in order to evaluate its security
and performance. The current UIEE prototype introduces a
reasonably small TCB increase with a 0.46% increase upon
the trusted OS code base and a 3.37% increase upon the trusted

OS boot image. Additionally, we successfully run 8 libc-based
applications, including database, multi-media processing, ma-
chine learning, etc., inside UIEE and no modification is made
to any application. The experimental results show that UIEE
introduces negligible performance overhead to various real-
world application workloads during the runtime phase.

In summary, this paper offers the following contributions

o« We are the first to offer a TrustZone-oriented isolated
execution environment (IEE) with standard C runtime
support that enables secure and efficient execution of
unmodified REE applications.

o In order to run a multi-threaded LibOS inside a single-
threaded TEE, we propose a two-stage LKL bootstrap-
ping scheme as well as the thread synchronization mech-
anism to solve the LKL thread creation issues. Addition-
ally, we propose an on-demand thread migration mech-
anism to realize LKL context switching within UIEE.

« We implement a UIEE prototype and assess its security
and performance feasibility. The experimental results
show that UIEE introduces little TCB increase as well
as little performance overhead to real-world application
workloads.

II. MOTIVATION & OBSERVATION

In this section, we first present our motivations by making
a brief summary of current TrustZone-based IEEs in terms of
their runtime environments. Then, we present the basic idea
of our UIEE approach. Finally, we elaborate on challenges to
the UIEE design together with several key observations that
help solve these challenges.

TABLE I: Summary on Existing TrustZone-based IEEs

Hardware Software Resource Flexibility

Reqgs Cust libc Linux Dynamic | Scala-

App/Lib | App/Lib | Syscall Linking bility
Komodo [8] TZ O O O O O
SecTEE [9] TZ @) O O O ®)
OSP [10] TZ + Virt D [@) [@) @) @)
PrivateZone [11] TZ + Virt [ O O O O
TrustICE [12] TZ + Core [ ] O O O O
SANCTUARY [13] TZ o @) O @) O
TLR [23] TZ © @) [®) © [ ]
WaTZ [24] TZ © @) O © [ ]
TrustShadow [14] TZ [ [J [)) O ©
Shelter [15] CCA [ [ ] © [®) ©
UIEE TZ [ [ ] [ ] [ ] [ ]

@®: fully supported, ©: partially supported, O: not supported.

A. Motivations

Current TrustZone-based embedded TEEs use as little hard-
ware and software resources as possible in order to maintain
a minimal trusted computing base (TCB) and in turn fail
to support complex and sophisticated trusted applications.
Usually, a small amount of physical memory is statically
reserved for the TEE during the booting phase. Additionally,
existing TEEs only provide a limited set of programming APIs,
mostly related to cryptographic operations. Therefore, it is
challenging to deploy data processing applications that not
only consume large runtime memory but also require various
API dependencies (i.e. database, multi-media processing, ma-
chine learning etc.) inside the TEE.



Although various research projects have been proposed to
extend TrustZone capabilities, they still have several limi-
tations in terms of runtime software resources. Instead of
retrofitting existing REE applications in a case-by-case man-
ner, we focus on the IEE approaches due to their potential
flexibility, as shown in Table I. 1) Self-contained func-
tions: Both Komodo [8] and SecTEE [9] realize Intel-SGX
enclave primitives [16] based on ARM TrustZone, and yet
they can only run self-contained functions inside TEEs like
an SGX enclave does. 2) Customized applications & Li-
braries: SANCTUARY[13], OSP[10], PrivateZone[11] and
TrustICE[12] propose TrustZone-based sandbox environments
which are isolated from both TEE and REE, and applica-
tions can be protected from potential REE attacks without
increasing the TCB size. However, developers are required to
develop separate applications for these systems according to
their customized APIs and runtime libraries in a case-by-case
manner. Furthermore, OSP [10] and PrivateZone [11] leverage
ARM virtualization extensions which are not available in most
ARMVv7 platforms. 3) Language runtime: TLR [23] and
WaTZ [24] propose a language runtime for Webassembly and
Microsoft .NET respectively inside TEEs while existing em-
bedded TEE systems still favor C programs for its efficiency.
4) libc applications: TrustShadow [14] directly runs libc-
based applications by forwarding Linux kernel system calls
issued by applications to the REE Linux kernel. Shelter [15]
takes a similar design by running an application inside an
ARM confidential compute architecture (CCA) confidential
machine [18] and provides OS services through forwarded
Linux kernel system calls, resulting in relatively high runtime
overhead. Additionally, both projects only provide a subset of
the Linux kernel system call interfaces and it takes a huge
amount of engineering efforts to implement the forwarding
routines for all system calls. Besides, the ARM CCA ar-
chitecture introduced in ARMvV9.2 [18] is not available in
most existing embedded platforms. In consequence, we are
motivated to ask the following inspiring question:

Question: How to securely and efficiently run unmodified
REE applications inside TEE without expanding the system
TCB size?

Due to the limitations of the existing TrustZone-based
TEEs, we are motivated to propose an approach that shall
achieve the following goals (G): G1: Hardware Compat-
ibility. Such approach shall only rely on minimal ARM
architecture primitives which are pervasively available among
various embedded ARM platformsl, including IoT devices,
mobile devices and edge devices, etc. G2: Security. In order
to maintain a minimal TCB, the modifications to the existing
TEE components shall be as little as possible. Moreover, since
an application as well as its dependency libraries has a large
code base, they shall be separated from the existing TEE
components without being considered as part of the TCB. G3:
libc-based Runtime. We are intended to provide a libc-based

In this paper, we specifically focus on ARM Cortex-A platforms with
TrustZone extensions.

runtime so that developers can develop applications based
on libc APIs. Furthermore, existing applications or libraries
built against libc can directly run inside the TEE. Therefore,
such approach could provide a comprehensive set of runtime
APIs and also save a huge amount of engineering efforts
in application adapting. G4: Performance. The proposed
runtime shall incur little performance overhead to applications
during runtime execution.

B. Basic Design

In order to support a comprehensive TEE runtime environ-
ment with a /ibc runtime, we plan to build a TrustZone-based
user-space isolated execution environment (UIEE) where an
internal library OS (LibOS) [20][21] together with a libc
resides. We first dynamically allocate the UIEE memory region
from the REE memory which is later configured as secure
memory using TrustZone address space controller (TZASC)
[19] (G1). Moreover, we isolate UIEE from TEE by main-
taining a separate page table for UIEE memory regions.
Consequently, UIEE can protect applications from a malicious
REE and at meantime defend TEE programs (i.e., the trusted
OS and TAs) against potential attacks issued from UIEE
programs, thus maintaining a minimal TCB (G2). Afterwards,
applications as well as its dependency libraries, a LibOS libc,
a LibOS as well as a LibOS dependency library are loaded into
the UIEE memory region and mapped to a predefined virtual
address region. The LibOS libc can provide a libc runtime
for applications while the LibOS can provide all system call
interfaces required by the LibOS libc (G3). Additionally, the
LibOS still requires external operations provided by the LibOS
dependency library to realize privileged functionalities such
thread management or clock time retrieval, which can be
implemented by reusing existing TEE services or being redi-
rected to REE. Finally, LibOS provides system call services
directly within UIEE in form of function invocation, resulting
in better performance compared with the forwarded system
call approaches discussed in §II-A (G4).

C. Observation & Challenges

As the very first thing, we need to determine which LibOS is
best suitable for TrustZone-based TEEs. Since most existing
LibOSes [25][26][27][28][29][30][31] mainly focus on x86-
based cloud platforms and some specifically target the SGX-
based TEEs, an idea LibOS shall satisfy the following criteria
(Crit): 1) it can provide comprehensive REE kernel services
(e.g., Linux kernel system calls); 2) instead of implementing
a new LibOS, we expect that the target LibOS can be adapted
to ARM-based platform without major modification and its
required external services can be realized using existing TEE
services in order to save engineering efforts. In consequence,
we choose the Linux kernel library (LKL) [22] as the target
LibOS since it is a libc-based architectural port of the Linux
kernel. The Linux kernel implements most REE system call
services (Critl). Additionally, LKL has inherent support for
the ARM architecture and requires a well-defined set of
external services in form of function pointers, which are



architecture-independent and can be realized using existing
TEE services (Crit2).
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Fig. 1: The LKL Architecture and Threading Model. Fig.
(a) shows the overall LKL architecture. Fig. (b) shows the
thread states during the LKL initialization phase where M:
main thread, S: swapper thread, T: timer thread, I: init thread,
K: LKL kernel thread. The read cross (x) in Fig. (b) indicates
that a libc thread exits and its corresponding Linux kernel
thread context is cleared. Fig. (c) shows the final thread states
after LKL initialization.

As shown in Figure 1-(a), a typical LKL architecture
consists of four components, namely an application, an LKL
libc, LKL and a host libc which all run in the user space.
Taking file reading as an example, the application invokes the
standard file reading function, i.e. read (), defined in the
LKL libc which further issues a read system call to LKL
through a direct function call to the corresponding LKL service
routine, i.e. sys_read (). Then, LKL handles this system
call in a similar way that a normal Linux kernel does and
finally invokes the host libc to conduct real block 1/O, reading
the file contents from the disk. Finally, the whole function
invocation path is returned and the application retrieves the
file contents for further processing.

LKL requires that the host platform implement a set of
external services in form of function pointers which we refer
to as the LKL host interface. As an architecture port of the
Linux kernel, LKL emulates hardware capabilities expected
by the Linux kernel based on the host interface, including
operations related to semaphore, mutex, thread management,
memory allocation, timing, I/O memory mapping and jump
buffer, etc. Specifically, LKL leverages the pthread APIs to
spawn multiple kernel threads during the initialization phase
and these kernel threads conduct crucial Linux kernel tasks
during the runtime phase such as block I/O. Such requirement
leads to the first challenge.

Challenge 1: Thread Creation Issues. Existing embed-
ded TEE systems [32] take a single-threaded programming
model and the current embedded TEE OSes cannot provide
pthread-compatible multi-threading APIs which are required
by LKL.

Instead of porting pthread-compatible libraries into TEEs,
which increases the TCB size, we investigate the LKL thread-

ing model and try to solve such dilemma accordingly. As
shown in Figure 1-(b), a typical LKL thread context is
maintained by 4 entities, namely the LKL libc, LKL, the host
libc and the host Linux kernel. During the LKL initialization
phase, the host /ibc runs in the main thread context, loading
and linking applications, their dependency libraries and LKL
(Fig. 1-(b), ). Then, the host libc creates a new thread
to execute the LKL startup routine which we refer to as
the swapper thread [33] with LKL process ID 0 (Fig. 1-(b),

). The swapper thread is responsible for initializing the
whole LKL Linux kernel using the host interface. After the
LKL Linux kernel has been fully initialized, it creates the
init thread with LKL process ID 1 and attaches it to a host
libc as well as a host kernel thread context (Fig. 1-(b), 9).
Meanwhile, multiple Linux kernel threads are created and they
execute concurrently, interleaving each other’s time slice (Fig.
1-(b), e). After the init process finishes initialization, the
contexts of its corresponding host libc thread and host Linux
kernel thread are cleared (Fig. 1-(b), 6). Then, LKL attaches
the init’s LKL thread to the main thread’s host libc thread,
changing its common name from “init” to “host0” and all
following system calls issued from the application are handled
in this LKL thread context (Fig. 1-(b), @@). Moreover, LKL
creates a host-libc-based timer to emulate a hardware timer
and, upon a timer expiration, a separate timer thread is created
by the host libc which invokes the LKL timer expiration
interrupt handler (Fig. 1-(b), 0). The final state of all LKL
threads shown in Figure 1-(c) results in our first observation.

Observation 1: Most LKL kernel threads only run during
the initialization phase and never get scheduled afterwards.
Therefore, we do NOT necessarily need all LKL kernel
threads inside UIEE.

Based on such key observation, we are inspired to inves-
tigate a two-stage LKL bootstrapping method. For the first
stage, LKL is fully initialized inside REE using the host-
libc-based host interface until all its kernel threads complete
initialization. Then, after the control flow transfers back to the
main thread with all LKL kernel threads in sleeping mode,
we change the LKL host interface to one that is implemented
based on TEE services by conducting transparent runtime
dynamic linking. For the second stage, the main thread invokes
REE-side TEE service APIs in order to transfer the control
flow to TEE where the trusted OS gets the chance to isolate
the whole UIEE memory region including applications and
LKL from REE and provides all LKL external services. With
such approach, all LKL threads are properly created and
initialized inside REE. Additionally, such design choice can
solve Challenge 1 and maintain a minimal TCB without
supporting pthread multi-threading APIs inside TEE (§IV-A).

Nevertheless, when applications run within UIEE after the
two-stage LKL bootstrapping process, some kernel threads
are scheduled for crucial kernel tasks such as block I/O and
interrupt handling, leading to the second challenge.



Challenge 2: Context Switching Issues. Once UIEE mem-
ory isolation is applied, the LKL thread context is split into
two parts where the thread context maintained by the REE
Linux kernel remains in REE while other contexts are within
TEE. In turn, LKL cannot conduct context switching inside
UIEE with an in-complete thread context.

To solve such challenge, we investigate the LKL context

switching mechanism. In order to handle concurrency, LKL
introduces a per-thread scheduling semaphore [34] so that
there is only one thread could be running at a time. Upon
context switching, LKL wakes up the thread scheduled to
run by releasing its corresponding semaphore through the
semaphore APIs provided by the host interface. The host
interface then invokes the Linux kernel fast mutex (futex)
subsystem that switches the thread state from sleeping mode
to running mode. Such mechanism results in our second
observation.
Observation 2: We can reuse the REE Linux kernel futex
subsystem to rebuild the LKL thread context inside the
trusted OS, enabling context switching inside UIEE based
on trusted OS scheduling services.

Based on this observation, when an LKL kernel thread is
scheduled to run by LKL for the first time, we redirect the
semaphore releasing operation from UIEE to the REE Linux
kernel where we also monitor the process states of all LKL
kernel threads. Once an LKL thread is waked up and scheduled
to run by the REE Linux kernel, we transfer its control flow
directly from the REE Linux kernel to the trusted OS where
a corresponding TEE-side thread context is created. Finally,
the trusted OS resumes execution of the LKL thread inside
UIEE and all following context switches are conducted entirely
inside TEE, thus solving Challenge 2.

III. ASSUMPTION & THREAT MODEL

We assume that all TEE programs including the trusted
OS and TAs are trustworthy and secure. Meanwhile, the REE
programs are assumed secure during the system booting phase,
which can be ensured through secure boot [35]. Therefore, the
REE Linux kernel as well as applications can be considered
secure and initialize the UIEE environment into a trusted state.
Once the UIEE environment is properly set up after the UIEE
initialization phase, REE programs including the Linux kernel
may be compromised, thus becoming in-secure during the
UIEE runtime phase.

We assume that the underlying hardware’s implementation
adheres to its corresponding specifications and functions in
the same manner. Also, we assume that the deployment plat-
form is equipped with TrustZone-aware peripherals, specially
TZASC, in order to accomplish dynamic memory isolation
with minimal hardware requirements.

We assume that a potential attacker may compromise the
REE Linux kernel and try to retrieve security critical data
from the UIEE applications by launching privileged attacks
from REE. Moreover, the attacker may also try to steal data
from the trusted OS or TAs by exploiting vulnerabilities of

UIEE programs. However, since the attacker has the capability
of shutting down the whole system, we do NOT defend
against Denial-of-Service (DOS) attacks. Additionally, ad-
vanced hardware-oriented attacks are considered out of scope,
including side channel attacks [36], [37], [38], bus snooping
attacks [39], DMA attacks [40] and cold boot attacks [41], etc.

IV. UIEE DESIGN

In this section, we elaborate on the detailed UIEE design.
First, we present the general UIEE architecture, including the
software components and the basic workflow. Then, we elab-
orate on several key UIEE mechanisms namely the memory
isolation scheme to isolate UIEE from both REE and TEE,
and the thread management mechanisms to enable context
switching within UIEE.

A. UIEE Overview

We design the user-space isolated execution environment
(UIEE), a comprehensive TrustZone-based IEE environment
with libc support. There are 7 UIEE software components in
total:

« Application & Libraries are the application code built
with libc APIs.

o LKL libc provides a C runtime for applications.

o LKL is the LibOS providing Linux system call services
to the LKL libc.

o Trusted Application Library (libtee) is a customized
library that implements LKL host interfaces inside UIEE
based on existing TEE services.

« UIEE Driver is an REE Linux kernel module responsible
for allocating an initial memory region for UIEE which
will later be isolated from REE.

« UIEE Loader is a REE dynamic ELF loader to load the
corresponding ELF files of UIEE software components
into the initial UIEE memory region. Additionally, the
UIEE loader also provides the external services required
by LKL during the initialization phase.

« UIEE Session Manager is a trusted OS module that en-
forces UIEE memory isolation and manages TEE thread
contexts for UIEE.
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Fig. 2: General Architecture of UIEE. Step numbers 1-5
belong to the first stage while step numbers 6-9 belong to the
second stage.



We investigate a two-stage UIEE bootstrapping scheme
where LKL and LKL /ibc are initialized inside REE for the
first stage while the UIEE runtime environment is established
for the second stage to address the LKL kernel thread creation
issues discussed in Challenge 1. As shown in Figure 2, for the
first bootstrapping stage, right after the secure boot process,
the customized UIEE loader implemented based on an existing
libc invokes the UIEE driver to allocate a continuous physical
memory region as the UIEE runtime memory and map all
memory pages into a predefined virtual address space (Fig.
2, 0). Then, the UIEE loader maps the corresponding ELF
files of the applications, the libraries, the LKL libc, LKL
and libtee into its virtual address space, resolves their ELF
headers to locate loadable segments and then relocates each
loadable segments into the allocated UIEE memory region
through memory copy. Additionally, the UIEE loader conducts
dynamical linking among all segments and specifically links
LKL against the loader itself (i.e., the host libc) as well as
initializing the UIEE runtime stack and heap (Fig. 2, Q).
Once all programs have been properly linked, the UIEE loader
invokes the LKL initialization routine, which in turn creates
various kernel objects and spawns multiple kernel threads
using the POSIX APIs defined by the UIEE loader (Fig. 2,
9). During the LKL initialization process, the UIEE loader
waits until all LKL kernel threads complete initialization. To
this end, we design a thread synchronizer inside the UIEE
driver that checks on the LKL thread states on behalf of
the UIEE loader, ensuring that all LKL kernel threads are
initialized and go into sleeping mode. After all LKL threads
are fully initialized, the UIEE loader pauses the LKL timer
and switches the LKL host interface from the UIEE-loader-
defined one to the libtee-defined one by conducting transparent
dynamic linking process. Note that such runtime switching is
thread-safe since all LKL threads are sleeping without any
timer expiration interrupts (Fig. 2, 9)- As the last step of the
first stage, the UIEE loader invokes the initialization routine
of the LKL libc (Fig. 2, @).

As for the second bootstrapping stage, the UIEE loader
transfers the control flow to the TEE by invoking the REE-
side TEE service APIs, passing the application entry point
and the stack top address as arguments (Fig. 2, @). After
retrieving the arguments, the UIEE session manager configures
the UIEE physical memory region as secure memory using
TZASC and reconstructs the UIEE page table inside the trusted
OS in order to achieve memory isolation (§IV-B). Then, it
creates a new TA session for the UIEE main thread as well
as essential user-space thread contexts. Then, it transfers the
control flow to the application by jumping into the retrieved
entry point (Fig. 2, 0)- During the application runtime phase,
the LKL libc together with LKL provides a /ibc-based runtime
for the application and its dependency libraries. Most of the
LKL host interface invocations can be directly served by
libtee and the trusted OS (Fig. 2, @) while few remaining
ones are redirected to REE through the remote procedure
call stubs and handled by either the REE-side TEE driver
or the REE-side TEE daemon (Fig. 2, g). As for LKL
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Fig. 3: UIEE Memory Isolation Mechanism. Fig. (a) de-
scribes the UIEE physical memory layout. Fig. (b) demon-
strates the UIEE page table setup. Fig. (c) shows the final
memory access state after memory isolation.

context switching, we propose a novel on-demand LKL thread
migration mechanism to wake up a sleeping LKL kernel thread
and transfer its control flow to UIEE, solving the LKL thread
context switching issues discussed in Challenge 2 (§IV-C).

B. Memory Isolation

We leverage TZASC and dedicated page tables to realize
UIEE memory isolation. Once the main thread enters TEE
after invoking the REE-side TEE service APIs in order to
initialize UIEE, the UIEE session manager first configures
the UIEE memory pages as secure memory using TZASC,
preventing further REE access, as shown in Figure 3-(a). We
reconstruct UIEE page tables inside the trusted OS to isolate
UIEE from TEE components and maintain a minimal TCB
while preserving the memory mapping semantics established
by the UIEE driver. To be specific, ARM specifies two ARM
translation table base registers (TTBR) [42], namely TTBRO
and TTBR1. Additionally, the translation table base control
register (TTBCR) [42] determines the translation boundary
address V' A,, where virtual addresses below V A, are trans-
lated using the page table specified in TTBRO while those
above using TTBR1 which is used by the trusted OS by
default. For ARMv7 platforms, we preserve the first 1GB of
the TEE virtual address space for UIEE memory by setting
up TTBCR.N=2, as shown in Figure 3-(b). Afterwards, we
reconstruct a UIEE page table inside the trusted OS based
on the original page table built by the REE UIEE driver and
assign its physical address to TTBRO. During the new page
table construction, the whole virtual address space layout is
preserved in the newly-created page table so that the UIEE
programs can directly run without further linking.

The final memory access permission is shown in Figure 3-
(c). TZASC is used to configure the dynamically allocated
UIEE memory pages as secure so that REE programs cannot
access UIEE code or data. Additionally, we maintain separate
page tables for UIEE memory regions and other TEE compo-
nents respectively in order to protect the trusted OS as well as



TAs from illegal access issued from the UIEE components,
maintaining a minimal TCB size. Finally, UIEE programs
cannot access any REE memory including the Linux kernel
and other REE processes once the isolation is enforced.

C. Thread Management

We investigate a UIEE threading model based on the
existing LKL threading model discussed in §II-C. To
begin with, we specify how a UIEE thread context is
defined. Additionally, instead of re-implementing the thread
management schemes inside the trusted OS, we choose
to reuse the existing Linux kernel thread scheduling
and synchronization subsystems by proposing two novel
mechanisms namely the thread synchronization mechanism
that enables the two-stage bootstrapping scheme (§IV-A)
solving Challenge 1 (§II-C) and the on-demand thread
migration mechanism solving Challenge 2 (§1I-C).

1) UIEE-specific Thread Context: We design the UIEE-
specific thread context based on the LKL threading model
discussed in §II-C. To be specific, we augment the LKL thread
context with UIEE specific information, as shown in Figure
4-(a). To begin with, we add a flag (in_uiee) inside the
thread local storage (TLS) [43] to indicate whether the corre-
sponding user-space threads’ control flows are transferred into
UIEE so that LKL can conduct thread migration for a thread
whose control flow is still within REE. Additionally, we add
several flags to the Linux kernel task_struct to represent
whether a thread is a UIEE thread (ts.is_uiee), whether it
finishes initialization (is_synced) (§IV-C2) and whether it
is migrated to UIEE or not (is_miged), respectively. Finally,
each UIEE thread is bound with a TEE TA session so as
to access the trusted OS services, thus an additional flag
(ta.is_uiee) is added for the trusted OS to distinguish
it from normal TAs.

App + Main Timer LKL Threads
kD _pthread ||
= [ START | [ START | [ START |
uiee [ LKL [Taskstruct ]| I T :
Host [ othread THREAD THREAD NEED
Libc TLS [in_uiee SYNT'ND SYNT'NG\) SYlNCQ
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Reg | Linux [is uiee syncep || PAUSED MIG
Kernel | is_synced ] ]
is_miged IN IN
UIEE VIEE
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0s  [Tis_uiee [ eno | [ eno | [ Enp |

(a) (b)

Fig. 4: UIEE Threading Model. Fig. (a) describes the thread
context definition for a UIEE thread. Fig. (b) presents the
thread state machine for the main, the timer and the LKL
threads, respectively.

2) Thread Synchronization: The thread synchronization
mechanism ensures that the timer is paused and all LKL
threads finish initialization during the LKL initialization within
the first-stage bootstrapping phase. We demonstrate the thread

synchronization procedure using the thread state machine
shown in Figure 4-(b). Following the LKL initialization pro-
cess discussed in §II, the timer thread and multiple LKL
threads are created after the main thread starts execution and
they run concurrently, interleaving with each other. Mean-
while, the main thread blocks, waiting for all LKL threads
finish initialization. The UIEE driver sets the corresponding
ts.is_uiee flags and initializes each is_synced flag
as True after all LKL threads are created during the LKL
initialization phase. When an LKL thread is scheduled to run,
its is_synced flag is set as False, indicating that this thread
does not finish its initialization job. Additionally, the main
thread conducts a periodic thread state examination, where it
determines that the LKL threads have NOT finished execution
if there is any False is_synced flag and in turn resets all
is_synced flags back to True. Such procedure continues
until all is_synced flags are True for multiple rounds to
avoid concurrency issues. This mechanism enables the main
thread to verify that all LKL kernel threads have completed
initialization and entered sleeping mode waiting for their
scheduling semaphores to be released, thereby establishing a
synchronization point before the main thread can proceed with
further execution. Finally, the UIEE driver’s thread synchro-
nizer sets all LKL kernel threads’ their is_miged flags as
False indicating that their control flows are still in REE and the
main thread enters UIEE execution by invoking the REE-side
TEE service APL

3) On-demand Thread Migration: We propose the UIEE
thread migration mechanism to transfer the control flow of
LKL threads from the REE to UIEE in an on-demand manner
upon LKL context switching during the UIEE runtime phase.
Recall that, after the two-stage bootstrapping produce, only
the main thread switches to UIEE execution while all LKL
threads are in sleeping mode waiting for their own scheduling
semaphores to be released by another thread. We design a
set of libtee-based semaphore APIs to redirect the semaphore
releasing operations issued by LKL to the REE Linux kernel
futex subsystem upon LKL context switching. Once the
futex subsystem wakes up and schedules the LKL thread
to run, we migrate the thread’s context into TEE directly from
the REE Linux kernel and resume its execution inside UIEE.

Consider the following scenario where the application
within UIEE invokes read () from the main thread context to
retrieve file contents and then the LKL Linux kernel assigns a
kernel worker thread to conduct the block I/O operations. The
detailed workflow is shown in Figure 5. From the very begin-
ning, the worker thread is created during the LKL initialization
phase. After completing initialization, it goes into sleeping
mode, waiting for further service requests. Additionally, we
create a per-thread jump buffer JBuf,, inside the thread TLS
in order to preserve the worker thread’s REE context (Fig.
5, c). Then, after LKL initialization, the application starts
execution within UIEE. Upon the file reading request, the main
thread releases the worker thread’s semaphore by invoking the
semaphore releasing operation defined by libtee. Then, libtee
retrieves the thread context from the TLS heap and checks
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Fig. 5: UIEE On-demand Thread Migration Mechanism.
Note that the UIEE memory isolation boundaries are removed
for a clear workflow presentation.

whether its corresponding in_uiee flags is True. If not, the
worker thread context is still in the REE Linux kernel and
requires migration (Fig. 5, Q). Afterwards, a futex wake
RPC is issued by libtee to the Linux kernel to switch the
worker thread’s REE Linux kernel context to running mode
(Fig. 5, o) and the Linux kernel scheduler would select it
for execution in a subsequent time slice (Fig. 5, e). However,
once the thread is scheduled to run, the control flow is meant
to return to the user-space host libc, i.e. the UIEE loader,
from the REE Linux kernel, which is in-accessible to REE
after UIEE memory isolation. In order to transfer its control
flow to UIEE, a hook function within the REE Linux kernel
(§V) is invoked to inform the UIEE session manager of the
thread ID. Additionally, the hook function sets its is_miged
flag as True, indicating that the thread’s context is migrated to
UIEE. (Fig. 5, 9). Finally, the UIEE session manager creates
a new TA session with its ta.is_uiee flag as True for the
worker thread and restores its execution context using JBu f,,
saved before (Fig. 5, @). The LKL thread context switching
among the migrated threads is conducted entirely within the
TEE using the trust OS services and all LKL kernel threads
are migrated in such same manner upon the first invocation
after the two-stage bootstrapping procedure.

V. IMPLEMENTATION

We implement a UIEE prototype based on the software
components listed in Table II. In this section, we present
implementation details on several UIEE components.

Trusted OS. We build the trusted OS based on the OPTEE
OS 4.3.0 [44] and implement the UIEE session manager as
an OPTEE pseudo-TA (PTA). Based on the existing OPTEE
OS TA management framework, the UIEE session manager
creates a new user-TA session for each UIEE thread once the
thread transfers into TEE execution.

REE OS. We build the REE OS based on the Linux kernel
6.6.0 [45] by adding the UIEE thread migration hook inside

ret_to_user () which will be triggered right before a
UIEE thread returns to user-mode execution from the Linux
kernel. Additionally, we implement a set of kernel-level TEE
service APIs to invoke the UIEE session manager from the
Linux kernel.

libtee. libtee implements the LKL host interface based on
the existing user-TA libraries. Out of 40 LKL host interface
operationsz, 15 are realized based on native TEE services,
2 are redirected to REE and the remaining operations are
left as non-defined since they are only used in the first-stage
bootstrapping scheme discussed in §IV-A and never called
during the UIEE application runtime phase. As for the 2
redirected ones, 1 operation related to clock time retrieval
while the other calls the REE Linux kernel futex subsystem
triggering the thread migration process discussed in §1V-C3.

As for block I/0, UIEE features an in-memory block device
implementation where an ext4-formatted disk image is loaded
into the UIEE memory region and mounted to LKL during the
initialization phase. Such design choice ensures that all block
I/O operations are conducted within UIEE in order to provide
secure block I/O for UIEE applications, and also avoids the
potential performance cost of full disk encryption [27].

TABLE II: LoC Statistics of UIEE Components

Component Version Modifed | Added | Removed
REE OS Linux 6.6.0 1 961 0
Trusted OS OPTEE OS 4.3.0 26 1997 15
UIEE Driver Customized LKM 0 532 0
UIEE Loader | musl libc 1.2.4 40 2633 53
LKL Linux 4.14 89 679 95
LKL libc musl libc 1.2.4 65 43 84
libtee Customized TA Lib 0 1232 0
TEE Deamon | OPTEE tee-supplicant 7 340 85

Total LoC 228 8417 332

VI. PERFORMANCE EVALUATION

In this section, we first introduce the evaluation platform
setup. Then, we conduct system benchmark experiments, mi-
cro benchmark experiments and application case studies to
demonstrate the feasibility and performance of UIEE.

A. Platform Setup

We evaluate the current UIEE prototype on an NXP IMX6Q
SABRE-SD evaluation board [46], a powerful evaluation
platform equipped with 4 ARM Cortex-A9 cores and 1 GB
DRAM. To ensure a consistent evaluation environment for all
experiments, we only enable one CPU core and meanwhile
turn off the CPU frequency scaling features so that the CPU
can work stably in a pre-defined frequency of 792 MHz.

B. System Benchmark

We conduct two sets of system benchmarking experiments
to evaluate the performance overhead that UIEE introduces
to the vanilla REE and TEE environment. To be specific, we
leverage the vanilla Linux kernel together with the original

2The UIEE LKL host interface operations are specified in Appendix C.
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OPTEE OS® as the baseline setting. Additionally, for all
experiments, we build the corresponding OPTEE OS using
the ARM instruction set [42] and disable non-aligned memory
access features.

1) LMBench: For the REE system benchmark, we run the
LMBench 3.0 [47] on both the baseline setting and UIEE.
We conduct LMBench measurements for 10 rounds and take
the average value as the final result. As shown in Figure
6, the results show that UIEE introduces an average 2.65%
overhead in terms of the system call latency compared to the
baseline setting. This is due to the is_miged flag checking
conducted by the UIEE thread migration hook during each task
context switching. Additionally, UIEE introduces negligible
performance overhead for the bandwidth test cases.

2) OPTEE xtest: For the TEE system benchmark, we
leverage the OPTEE official test suite namely xtest [48] to
evaluate the performance (benchmark tests) and the function-
ality correctness (regression tests) of the UIEE trusted OS.
We run xfest under both the baseline setting and the UIEE
setting for 5 rounds, and used the average elapsed time as
the final results. Both UIEE and the vanilla OPTEE OS pass
the same test case sets, indicating that the UIEE trusted OS
preserves all functionalities of the original OPTEE OS as
intact. Additionally, as shown in Figure 7, UIEE introduces
negligible performance overhead to normal TEE services with
non-secure interrupts enabled or not.

3We conduct minor modification to port the original OPTEE OS to our
evaluation platform.

C. Micro Benchmark

We conduct two sets of micro benchmarks to investigate the
UIEE bootstrapping time as well as the system call latencies.

1) Bootstrapping Time: We measure the elapsed time of
each UIEE booting step and compare them with the case
with a vanilla LKL. As discussed in §IV-A, we divide the
UIEE first-stage bootstrapping process into 6 steps, namely the
UIEE memory region allocation & mapping step, the UIEE
stack preparation step, the LKL initialization step, the LKL
thread synchronization step, the LKL /ibc initialization step
and finally the UIEE LKL host interface switching step. We
measure the elapsed time of each step for 5 times and take the
average value as the final results, as shown in Table III. The
UIEE memory allocation & mapping step takes the most time
of 1483.374 ms since the current UIEE prototype allocates
and maps a whole physically continuous memory region of
88 MB for one time. For the following bootstrapping steps,
the UIEE loader conducts dynamic memory allocation using
such prepared memory region and thus no further host kernel
service (such as brk () or mmap ()) is invoked to map new
heap regions. Such design leads to the result that the UIEE
LKL initialization step takes 106.966 ms which is about 54
ms less than the time taken by the vanilla LKL and the
same goes for the LKL [libc initialization step. Additionally,
the LKL thread synchronization process takes about 41 ms
on average, incurring reasonably small extra bootstrapping
time. The remaining two steps for UIEE stack preparation and
LKL host interface switching take 0.108 ms in total, which is
negligible compared to other steps.

TABLE III: Elapsed Time for Different UIEE Booting Steps

Bootstrapping Step vanilla LKL UIEE
UIEE Region Allocation & Mapping (ms) - 1483.374
UIEE Stack Preparation (ms) - 0.015
LKL Initialization (ms) 160.461 106.966
LKL Thread Synchronization (ms) - 41.147
LKL libc Initialization (ms) 0.305 0.025
UIEE Host Interface Switching (ms) - 0.093

2) UIEE System Call Latency: We measure various LKL
system call (syscall) latencies inside UIEE and compare them
with those of the original host Linux kernel and the vanilla
LKL. Additionally, for UIEE, we conduct two sets of ex-
periments with non-secure interrupts* enabled and disabled,
respectively. For each case, we measure the elapsed time
for 20,000 continuous syscalls for 3 rounds and take the
average value as the final result. As shown in Figure 8, for
the NULL syscall (i.e. getpid () ), both LKL and UIEE take
less time since LibOSes serve syscalls through direct function
invocation which takes less time than the common OS syscall
invocation mechanism using CPU exception. Meanwhile, for
the seek () & read () case, both LKL and UIEE demon-
strate smaller latencies because LKL (Linux kernel) stores file
contents inside the kernel buffer cache after the first-time file
reading and serves the following reading operations on the

4Mostly timer interrupts which are handled by the REE Linux kernel.
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Fig. 8: System Call Latency Results.

same file directly using the buffered contents without further
device I/0O. Instead, for other syscalls involving file system
access, LKL takes 74% - 440% more time than the original
host Linux kernel since all such operations are realized by
the underlying LKL host interface and in turn served by the
host Linux kernel. Moreover, compared to the vanilla LKL,
UIEE shows less syscall latencies ranging from -40% to -2%
due to the neat implementation of libtee. Finally, turning off
non-secure interrupts during the UIEE execution phase would
result in a slightly less syscall latency for most cases.

D. Application Case Studies

To demonstrate the feasibility of UIEE, we run 8 real-world
applications® inside UIEE and evaluate the corresponding
performance overhead. All applications are directly retrieved
from their corresponding online repositories and built using
a GNU cross-compile toolchain with GCC 11.3.1 inside a
Ubuntu 22.04 ARM64 container against a standard musl libc
following the same development routine as any Linux appli-
cation would go through. Note that except for minor logging
code to record execution time, NO modification is made to
any of these applications since the whole UIEE framework
is completely transparent to the user-space applications. For
each case study, we run the corresponding application under
the 4 experiment settings 1) baseline: applications use the
original musl /ibc they are built against; 2) LKL: applications
use the LKL /ibc together with the LKL; 3) UIEE: applications
run inside UIEE with non-secure interrupts enabled; 4) UIEE-
noirq: applications run inside UIEE with non-secure interrupts
disabled. Additionally, we run each experiment for 3 rounds
and take the average value as the final result.

1) SQLite: We leverage the speedtest] benchmark shipped
with SQLite [49] for the SQLite case study. speedtestl
conducts totally 32 test cases involving various SQL-based
database operations which can be categorized into 6 groups
according to the corresponding test case codes and we measure
the time needed to finish each test case group. As shown in
Figure 9, the results show that LKL incurs an extra overhead of
4.23% compared with the baseline on average. Instead, UIEE
achieves the same performance as the baseline setting, 4.08%
performance boost compared to LKL. Such performance gain
may result from the fact that UIEE programs run inside a
physically continuous memory region (§IV-A) exhibiting more

3 Applications are specified in Appendix B.
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spatial locality, which favors memory-intensive applications
like databases. Finally, turning off non-secure interrupts during
the UIEE execution phase brings about an extra 2.07% perfor-
mance gain on average. This is because UIEE applications are
never interrupted by the timer expiration interrupts during the
execution phase once non-secure interrupts are disable and in
turn exhibits better performance.

2) FFmpeg: We leverage FFmpeg [50] to evaluate UIEE
for multi-media data processing tasks by conducting video
encoding with different video codec formats and resolutions.
To be specific, three commonly-used video codec formats,
namely yuv420p, rbg24 and gray, are selected and two
video clips of both 480p and 720p resolution are generated for
each codec format. Once a video clip generation completes, the
video encoding speed is recorded as the experimental results.
As shown in Figure 10, for yuv420p and gray formats, both
LKL and UIEE incurs little overhead compared to the baseline.
Additionally, for the rgb24 format, LKL outperforms the
baseline by achieving 16.76% and 17.17% speed increase for
480p and 720p resolution respectively while UIEE achieves
11.07% speed increase on average compared to the baseline.

3) Polybench: We leverage Polybench [51] to evaluate
UIEE for scientistic computing tasks. In total, six Polybench
test cases are selected including data mining, linear algebra
and stencils. For each test round, we run each test case for
10 times and record the average elapsed time as the final
result for each round. As shown in Figure 11, LKL increases
the execution time by 1.89% on average compared to the
baseline. Instead, for data mining tasks, namely correlation
and covariance, UIEE achieves better performance by reducing
the execution time by 11.44% and another 1.15% execution
time can be saved if non-secure interrupts are disabled. Ad-
ditionally, for the other 4 tasks, UIEE introduces an average
overhead of 1.50%, whereas UIEE-noirq demonstrates perfor-
mance comparable to the baseline with negligible overhead.

4) OpenSSL: We utilize the OpenSSL [52] speed test
suite to evaluate the performance of three cryptographic algo-
rithms—MDS5, SHA256, and AES. The processing throughput
for various data block sizes is recorded as the benchmark
result. For the MDS5 test case, the LKL and UIEE settings
introduce the highest runtime overhead compared to the other
test cases, with average overheads of 7.29%, 6.50%, and
5.35% for LKL, UIEE, and UIEE-noirq, respectively. How-
ever, for larger data block sizes (8192 bytes), UIEE incurs only
a minimal hashing speed penalty of 1.50% compared to the
baseline, while UIEE-noirq achieves a performance improve-
ment of 0.56% over the baseline. In the SHA256 and AES test
cases, both LKL and UIEE exhibit negligible overhead, with
average values of 1.73% and 1.43%, respectively. When non-
secure interrupts are disabled, UIEE-noirq achieves a slight
performance advantage of 0.49% compared to the baseline.

5) Machine Learning Applications: We run 4 machine
learning models inside UIEE, namely SqueezeNet [53], LeNet-
5 [54], DarkNet-Tiny [55] and DarkNet [55]. We measure the
elapsed time for model deduction and use it as the experiment
results. Since DarkNet models require a large memory region,
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Fig. 12: OpenSSL Results

we reserve 180MB runtime memory for LKL when running
the DarkNet models. As shown in Figure 13, for all four
machine learning models, UIEE only incurs a negligible
overhead of 0.98% on average compared with the baseline.
Additionally, with non-secure interrupts disabled, UIEE can
achieve a slight performance improvement of 0.42%.

6) bzip2: We leverage bzip2 [56] to evaluate UIEE for data
compression tasks involving intense disk I/O. Specifically, we
set up five experiment sets to compress files of sizes 1KB,
64KB, 256KB, 1MB, and 4MB. In each experiment, the file
is read from the LKL disk, compressed, and the resulting
compressed file is written back to the LKL disk, with the
elapsed time serving as the experiment result. As shown in
Figure 14, for files with small sizes (less that IMB), UIEE
exhibits high overhead (79% - 608%) compared with the
baseline setting. Such overhead mainly results from the fact
that each file operation has to go through two Linux kernel
disk I/O layers, one from LKL and another from the host
Linux kernel. For 4MB files, UIEE incurs a much smaller over-
head of 7.72%, or 6.25% with non-secure interrupts disabled.
Since UIEE leverages an in-memory disk setup to improve
performance while also addressing disk-related security issues,
UIEE achieves an average 20.17% performance improvement
compared with LKL.

VII. SECURITY EVALUATION

In this section, we evaluate the UIEE security features by
analyzing the TCB size increase and discussing how UIEE
defends against various attacks.

A. TCB Size Evaluation

We investigate the TCB size increase caused by UIEE in
terms of LoC and the trusted OS image size. The TEE system
TCB consists of all TAs and the trusted OS which contains an
embedded secure monitor. All components (§IV-A) inside the
UIEE memory region, i.e. applications & libraries, LKL libc,

Fig. 13: Machine Learning Application Results
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Fig. 14: bzip2 File Compression Results

LKL and libtee, are not considered as part of the TCB since
they are isolated from the trusted OS and TAs by the UIEE
memory isolation mechanism (§IV-B). The original OPTEE
OS and TAs have a code base of 442,326 LoC which results in
an trusted OS boot image of 547,260 bytes after compilation.
As shown in Table II, the total modification to the trusted
OS is of 2,038 LoC which is only 0.46% of the TCB LoC
size. Additionally, the final UIEE boot image is 565,676 bytes,
which is 3.37% larger than the original trusted OS image.
Therefore, UIEE introduces a reasonable small TCB increase.

B. Security Analysis

The major security goal of UIEE is to protect the code
integrity and data confidentiality of UIEE applications from
REE attacks, regardless of privileged or unprivileged ones.
Additionally, since the UIEE components have large code
bases with potential vulnerabilities, we are intended to protect
the trusted OS and TAs from possible attacks initiated from
UIEE applications and LKL.

1) Protecting UIEE from REE Attacks: UIEE protects
applications from REE attacks in both the initialization and
the runtime execution phase. As investigated in §IV-A, all
UIEE components are initialized inside REE during the system
boot phase and each UIEE component can be initialized to
a legal state since we leverage the secure boot mechanism
in order to ensure a trusted REE state at boot time. Af-
ter all UIEE components have been properly initialized, all
REE components including the privileged Linux kernel are
considered untrusted because they may be compromised by
an attacker during the runtime execution phase. However,
since the UIEE memory region is isolated before the REE
components start execution (§1V-B), REE programs cannot
access UIEE memory during the runtime phase. We conduct
two experiments where an attacker tries to read/write the UIEE
memory region from a REE user-space application and the



Linux kernel. Consequently, each attempted access triggers a
system bus error and in turn both attacks fail.

UIEE also defends against attacks launched through UIEE
operations that are redirected to REE. To be specific, there
are totally 2 such operations including the thread migration
process (§IV-C3) and clock time retrieval (§V). To begin with,
the thread migration process wakes up a sleeping LKL thread
and transfers its control flow to UIEE execution, during which
all thread data reside inside the UIEE memory region which is
in-accessible to REE. As for the clock time retrieval function,
no confidential data is passed to the REE. Moreover, since
the return values of these 2 operations do NOT involve any
virtual address values and all memory management operations
are performed entirely within UIEE (Appendix C), it is dif-
ficult for any potential REE attackers to launch Iago attacks
[57]. Finally, any corrupted return value of these redirected
operation would probably result in a UIEE panic, leading to
availability issues which is considered out-of-scope while no
confidential data is leaked.

2) Protecting TEE from Potential UIEE Attacks: An at-
tacker can never access critical TEE data by compromising
a UIEE program. Firstly, UIEE programs can only access the
dedicated UIEE memory region allocated during the UIEE
initialization phase and cannot directly access TEE memory
region since we maintain a separate page table for UIEE pro-
grams (§IV-B). Additionally, any data exchange between UIEE
programs and the trusted OS goes through sanity checking® so
that the data addresses fall within the first IGB virtual address
space reserved for UIEE.

An attacker cannot break the UIEE memory isolation
boundaries. Since UIEE is a user-space runtime environment
and the UIEE page table is exclusively managed by the UIEE
session manager inside the trusted OS, UIEE programs cannot
map non-UIEE memory regions by manipulating the existing
UIEE page table or switching to a malicious one.

Another concern is that an attacker may directly issue
system calls from UIEE applications to the underlying trusted
OS, bypassing the LKL host interface as well as libtee. Note
that such threat is a common issue faced by all systems, not
just UIEE. The mitigation to such attack is still an open re-
search topic and various approaches have been proposed such
as syscall filtering [58], binary rewriting [59], control flow
integrity [60][61], syscall integrity [62], etc. We consider these
works as complementary to UIEE, and plan to incorporate
some mechanisms into UIEE in the future.

VIII. DISCUSSION

We compare UIEE with two state-of-the-art research
projects, namely TrustShadow & Shelter, in terms of perfor-
mance, hardware compatibility and software flexibility.

A. Performance

Both TrustShadow and Shelter provide all application-
required OS services by forwarding the syscalls issued from

Detailed parameter checking between libtee and the trusted OS are
elaborated in Appendix C.
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applications to the REE Linux kernel, which results in rel-
atively high performance overhead due to frequent world
switching. Nevertheless, UIEE provides OS services directly
using a customized LibOS, avoiding heavy world-crossing
events, and thus achieves nearly native or even better data
processing efficiency compared with the vanilla REE system.

We first analyze the syscall handling routines of all three
systems in order to theoretically assess the performance ben-
efits of UIEE over TrustShadow and Shelter. Without losing
generality, we take mmap as an example for a neat illustration.
TrustShadow maintains two separate page tables in both the
REE Linux kernel and the trusted OS respectively and reuses
the Linux kernel memory management subsystem to handle
memory mapping. As shown in Figure 15, for TrustShadow,
when the application issues mmap, a forwarder within the
trusted OS forwards such syscall to the REE Linux kernel that
handles such request. The REE Linux kernel modifies the REE
page table according to the memory mapping request, and such
modification is checked by the trusted OS on mmap return.
If the modification is legal, it will be updated to the shadow
page table maintained by the trusted OS. Such routine involves
2 ELO-EL1 switches and 4 EL1-EL3 switches. Similarly,
a mmap syscall issued from a Shelter application is first
forwarded to the secure monitor by the Shelter driver and then
to the REE Linux kernel. On mmap return, the secure monitor
checks the page table modified by the Linux kernel and returns
the final virtual address to the Shelter application through the
Shelter driver. Such routine also involves 2 ELO-EL1 switches
and 4 EL1-EL3 switches. As for UIEE, a mmap syscall can
be issued in form of function call without any exception level
switches, resulting in less performance overhead.

[Trusted [[Untrusted [7]Isolated Env —Func Call Path --=Func Ret Path

WO o
ELO[[__APP opd APP
'mmap() : h Shelter Driver mmap(
Forwarder ||| Linux {[Mhnuxkervm ||| ELOFzzi————
EL1| 2 Kernel i
PT Check MM T ret LibOS
G retd EL3; Monitor MM
EL3| Monitor | “{ PT check & GPT
TrustShadow Shelter UIEE

Fig. 15: TrustShadow, Shelter & UIEE Syscall Handling Routine

Since TrustShadow is close-sourced and Shelter leverages
a totally different hardware setup, we conduct approximate
simulation experiments so as to assess the performance over-
head introduced by the syscall forwarding approach. Without
losing generality, we run applications in REE and hook the
m (un)map syscall handler within the REE Linux kernel by
redirecting it to the trusted OS for page table checking in
order to simulate the syscall forwarding approach investigated
in TrustShadow and Shelter. Such simulated syscall handling
routine also involves 2 ELO-EL1 switches and 4 EL1-EL3
switches. Note that all experiments only forward two syscalls
(i.e., m (un) map), which results in an optimized performance
results for the syscall forwarding approach. More performance
overhead would be foreseen if all syscalls are forwarded. As



shown in Table IV, the forwarding routine itself introduces
655% overhead to the mmap syscall latency for a single
memory page and an extra 10% overhead is introduced for
page table checking. With a larger memory size, the overhead
introduced by forwarding routine decreases while more time
is needed to check the page table since a larger memory
region involves more page table entries. We use SQLite to
demonstrate the performance impact of the syscall forwarding
approach on real-world applications. As shown in Table V,
this approach introduces the highest overhead of 21.24% in
test case 2xx, which has the highest frequency of m (un) map
syscall invocations (460.7 syscalls/sec). Additionally, the page
table checking routine contributes little overhead of 1.04%.

TABLE IV: mmap Syscall Latency with Syscall Forwarding & Page
Table Checking

Mem | vanilla-libc forward forward & PT check uiee
Size Lat (us) Lat (us) | overhead | Lat (us) | overhead | Lat (us) | overhead
4K 96.7 729.7 654.83% 739 664.48% 20.7 -78.62%
32K 229.0 909.7 297.23% 976 326.20% 113.3 -50.51%
128K 835.3 1503.0 79.93% 1766 111.41% 4453 -46.69%
S12K 3071.3 3735.0 21.61% 4768 55.24% 1751.7 -42.97%
2M 121973 128773 5.57% 17066 39.92% 6899.0 -43.44%

TABLE V: SQLite speedtest] Results with Syscall Forwarding &
Page Table Checking

Test syscall statistics uiee forward forward & PT check

Cases | mmap # | munmap # | time (s) | time (s) | overhead | time (s) | overhead
1xx 1062 985 6.356 6.956 9.43% 7.041 10.77 %
2XX 828 827 3.592 4355 21.24% 4448 23.84%
3xx 100 100 2.633 2.676 1.63% 2.689 2.11%
4xx 44 41 0.906 0.961 5.99% 0.968 6.80%
5XX 145 140 1.388 1.448 4.27% 1.460 5.14%
9XX 6 4 1.146 1.124 -1.92% 1.126 -1.77%

B. Hardware compatibility

Shelter is built upon the brand new ARM CCA features
which are currently not pervasively available for most em-
bedded platforms while UIEE only leverages basic TrustZone
memory isolation features namely TZASC and page tables to
realize the isolated domain, achieving more hardware compat-
ibility. Note that the UIEE designs are compatible with ARM
CCA features in that the UIEE memory isolation schemes can
be realized based on the ARM CCA GPC features.

C. Software flexibility

Considering that both TrustShadow and Shelter require that
applications be statically linked with all their dependency
libraries as well as libc, UIEE leverages the commonly-used
dynamic linking approach and thus achieves more flexibility.
Additionally, both TrustShadow and Shelter require imple-
menting the forwarding routines for the redirected syscalls.
Therefore, the set of realized syscall forwarding routines limits
the scope of applications that can run inside TrustShadow
and Shelter. In contrast, UIEE provides full Linux kernel
syscall services and can in turn support most existing Linux
applications without further engineering efforts.
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IX. RELATED WORK

A. TEE Library OSes

Various TEE-oriented library OSes are designed to provide
a versatile application runtime inside TEEs. Haven [25] creates
a runtime environment based on the Drawbridge LibOS inside
SGX enclave to protect unmodified Windows applications.
FlexOS [26] proposes a LibOS component isolation and
hardening framework to efficiently compare security and per-
formance trade-off among various configurations. Graphene-
SGX [31] port the Graphene LibOS into Intel SGX with
functionality improvements including integrity enforcement
for libraries and secure multi-threading support. SGX-LKL
[27] retrofits LKL into Intel SGX, featuring minimal, pro-
tected and oblivious host interfaces. Occlum [29] proposes
a memory-safe, multi-process LibOS for Intel SGX that can
directly run legacy applications with minimal source code
modification. CubicleOS [28] realizes intra-LibOS component
isolation using MPK and similar approaches [30] have been
proposed to realize intra-unikernel user/kernel isolation and
safe/unsafe kernel isolation using Intel MPK [63]. However,
these LibOSes focus on x86 platforms and some specifically
target SGX-based TEEs, making it difficult to port these
LibOSes into TrustZone-based TEEs while UIEE proposes the
first LibOS architecture for TrustZone-based embedded TEEs.

B. TrustZone-based TEEs

Multiple approaches have been proposed to enhance the
capabilities of existing TrustZone-based TEEs. To miti-
gate board-level hardware attacks such as bus snooping
[39], Ginseng [64] proposes a TEE running completely
inside the ARM core registers. Additionally, Case [65]
and CachelEE [66] take similar design choices by running
TEEs completely inside the ARM core caches. Komodo
[8] and SecTEE [9] realize Intel SGX primitives based on
TrustZone. SANCTUARY[13], OSP[10], PrivateZone[11] and
TrustICE[12] propose TrustZone-based sandbox environments
to protect customized applications from REE attacks while
maintaining a minimal TCB. These projects propose their
own unique software runtime and it takes a huge amount
of engineering efforts to adapt existing applications to these
systems. TLR [23] and WaTZ [24] propose TrustZone-based
language runtime for .NET and webassembly respectively
while the current embedded TEEs still favor C-like program-
ming languages. TrustShadow [14] and Shelter [15] propose
to run unmodified applications inside TEEs and forward
most system calls to REE, which results in notable runtime
performance overhead. 3rdParTEE [67] constructs an isolated
runtime environment based on TZASC and TTBR to run third-
party kernel modules in the trusted OS. However, 3rdParTEE
requrires that the kernel modules are self-contained and do
NOT use Linux kernel APIs, which simplifies its TEE runtime.
Driverlets [68], StongBox [69], MyTEE [70] and LDR [71]
investigate approaches to provide peripheral drivers support
for trusted OSes.



X. CONCLUSION

We present the user-space isolated execution environment
(UIEE), a comprehensive TrustZone-based IEE environment
with libc support for data processing applications. UIEE
creates an isolated memory region separated from both REE
and TEE so that applications running inside UIEE can be
protected from a malicious REE and we defend TEE against
potential attacks issued from UIEE programs, maintaining a
minimal TCB. Additionally, we are the first to propose a
TrustZone-oriented LibOS architecture in order to provide a
standard C runtime inside UIEE. We evaluate the feasibility
of UIEE on an NXP IMX6QSABRESD board using various
real-world applications and the experimental results show that
UIEE introduces negligible overheads to real-world workloads.
UIEE is available from: https://github.com/SparkYHY/UIEE.
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APPENDIX A

UIEE MEMORY REGION LAYOUT & INITIALIZATION

The UIEE driver inside the Linux kernel is responsible
for allocating and mapping a user-space memory region for
UIEE. Upon system startup, the UIEE driver allocates a set of
continuous memory pages using the Linux kernel continuous
memory allocator (CMA) [72]. Then, it maps these physical
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memory pages into three virtual address space regions, as
shown in Figure 16.

VA Space PA Space Contents
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[app+libs, LKL /libc, LKL, UIEE loader, libtee] during ELF
segment relocation. As for symbol resolution, the UIEE loader
starts from the next ELF on the partial ordering chain and tries
to find the very first symbol definition among the ELFs behind.

APPENDIX B
UIEE PERFORMANCE EVALUATION APPLICATION
SPECIFICATION

The applications used for UIEE performance evaluation are
presented in Table VI

TABLE VI: UIEE Applications

Description
SQLite is a light-weight SQL database extensively
used in embedded systems where minimal configu-
ration and resource usage are crucial.

Application

SQLite 3.48.0 [49]

Fig. 16: UIEE Memory Layout.

Stack Region is used as the runtime stack for the applica-
tion. Additionally, since a standard C program retrieves argu-
ments from the stack using the argv pointer of the main ()
function, the UIEE loader resolves the original stack prepared
by the Linux kernel during the process startup phase and
reconstructs the stack contents on the UIEE stack accordingly,
including application command line arguments, environment
variables and the auxiliary vector [73]. Moreover, entries of
the auxiliary vector also need to be calibrated if they contain
pointers with non-UIEE virtual addresses.

Heap Region. We have modified the UIEE loader’s memory
allocator so that any newly-created objects reside in the UIEE
memory region in order to protect UIEE data after isolation.
The heap region consists of three sub-regions, namely an
initial heap region, a thread local storage (TLS) [43] region
and an LKL memory region. The initial heap region is a
temporary one used for dynamic memory allocation during
the UIEE bootstrapping phases, which can be released after
UIEE bootstrapping. Additionally, we reserve a dedicated
heap for the TLS of each LKL kernel thread which contain
vital thread state information including thread-specific stacks,
pthread objects, etc. Such design choice makes it convenient
for the TEE UIEE session manager to retrieve and maintain
the thread states, simplifying the LKL thread management
within UIEE. Finally, the LKL memory region is used as
the application and LKL runtime memory. The corresponding
memory address and size are passed to LKL in form of a kernel
boot command during the LKL bootstrapping phase and LKL
manages such memory region as a normal Linux kernel does.

Program & Disk Region is used to store the ELF loadable
segments of application, LKL libc, LKL and libtee as well
as an optional LKL disk image. Since we load several ELFs
that contain multiple global symbols with the same name,
especially two libcs i.e. the UIEE loader and the LKL libc,
an external symbol may be linked to a wrong definition
resulting in a corrupted program state. For example, LKL’s
call to the read () function may be incorrectly linked to
the LKL libc, creating an endless file reading loop. To solve
such dilemma, we maintain a partial ordering relationship of
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FFmpeg is a powerful open-source multimedia
framework for handling video, audio, and other
multimedia files and streams.

PolyBench is a benchmarking suite with various
scientific computation algorithms including linear
algebra, data mining, and solvers, etc.

OpenSSL is a widely-used open-source library for
SSL and TLS protocols with support for all popu-
lar cryptographic algorithms.

SqueezeNet is a lightweight deep learning model
designed for image classification tasks.

LeNet-5 is a convolutional neural network (CNN)
architecture for handwritten digit recognition
using the MNIST dataset.

DarkNet is an open source neural network frame-
work written in C and CUDA that supports both
CPU and GPU computation.

bzip2 is a high-performance data compression
program that uses the Burrows-Wheeler transform
(BWT) and Huffman coding to compress files.

FFmpeg 5.0 [50]

PolyBench 4.2.1 [51]

OpenSSL 1.1.0 [52]

SqueezeNet [53]

LeNet-5 [54]

DarkNet [55]

bzip2 1.0.8 [56]

APPENDIX C
UIEE LKL HOST INTERFACE SPECIFICATION

Table VII presents the UIEE LKL host interface. The total
number of LKL host interface functions is 40, of which 36 are
inherently defined by the original LKL and the remaining 4 are
newly added for UIEE. With the UIEE two-stage bootstrapping
scheme (§IV-A), libtee only needs to implement 17 LKL host
interface functions instead of all 40 of them saving a huge
amount of engineering efforts. The realized LKL host interface
functions depend on 6 trusted OS syscalls, among which 3 are
originally provided by the trusted OS while the other 3 are
newly added for UIEE execution.

libtee is the only legal interface through which LKL can
access trusted OS services and UIEE conducts the following
sanity checking on the trusted OS syscalls invoked by libtee.
Note that the sanity checking is meant to protect the trusted
OS from potential attacks issued from UIEE applications.

e log takes an un-formatted string as well as its length,
and the trusted OS ensures that the whole string resides in
the UIEE memory region. Additionally, since the passed
string is un-formatted, the attacker cannot launch format
string attacks.
panic immediately shuts down UIEE execution includ-
ing all UIEE threads and thus no harm would be done to
the trusted OS.



futex initiates the thread migration process discussed in
§IV-C3. It redirects the fast mutex call to the REE Linux
kernel without (de)referencing the passed arguments.
wait_queue takes a UIEE semaphore/mutex address
and uses it as an index to find the corresponding wait
queue to conduct synchronization. The syscall ensures
that the passed address lays within the UIEE memory
region.

get_tp returns the user TA thread ID of the calling
thread and it is hard to exploit such syscall considering
its simple semantics.

get_time is to retrieve the wall-clock time from the
REE Linux kernel and such interface is hard to exploit
considering its simple semantics.
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TABLE VII: UIEE LKL Host Interface Specification

# Category LKL Host Interface Prototype Origin Type Trusted OS Syscall
1 loggi void print (const char xstr, int len); LKL Native log
2 oggng int vsnprintf (char », size_t, const char *, va_list); UIEE Native -
3 error void panic(void); LKL Native panic
4 struct 1lkl_semx sem_alloc (int count); LKL - -
5 void sem_free (struct 1lkl_sem x); LKL - -
) RPC futex®
6 semaphore void sem_up (struct lkl_sem x); LKL Native wait_queuc®
7 void sem_down (struct 1lkl_sem =) ; LKL Native wait_queue®
8 void sem_update_tid(struct 1lkl_sem x); UIEE - -
9 struct lkl_mutex mutex_alloc (int recursive); LKL - -
10 mutex void mutex_free (struct lkl_mutex «*); LKL - -
11 void mutex_lock (struct 1lkl_mutex «); LKL Native wait_queue¥®
12 void mutex_unlock (struct 1lkl_mutex =*); LKL Native wait_queue®
13 1kl_thread_t thread create(void (xf) (void ), void xarg); LKL - -
14 void thread_detach (void) ; LKL - -
15 void thread_exit (void); LKL - -
16 int thread join(lkl_thread_t tid); LKL - -
17 int thread equal (l1kl_thread_t, 1lkl_thread_t); LKL Native -
18 lkl_thread_t thread_self (void); LKL Native get_tp
19 threading long gettid(void); LKL - -
20 struct 1k1l_tls_key xtls_alloc(void (*destructor) (void =*)); LKL - -
21 void tls_free (struct 1lkl_tls_key =*); LKL - -
22 int tls_set (struct lkl_tls_key x, void xdata); LKL - -
23 void xtls_get (struct 1lkl_tls_key x*); LKL - -
24 void mark_in_uiee (void x); UIEE Native -
25 void idle_loop_callback (void) ; LKL - -
26 memor voidx mem_alloc (unsigned long size); LKL - -
27 Y void mem_free (void *); LKL - -
28 management voidx boot_mem_alloc (unsigned long); UIEE - -
29 voidx timer_alloc(void (*fn) (void x), void xarg); LKL - -
30 timin int timer_set_oneshot (void *timer, unsigned long delta); LKL - -
31 2 void timer_free (void *timer); LKL - -
32 unsigned long long time (void); LKL RPC get_time
33 non-local void jmp_buf_set (struct 1lkl_jmp_buf *, void (xf) (void)); LKL Native -
34 . void jmp_buf longjmp (struct 1lk1l_jmp_buf x, int ret); LKL Native -
35 Jump int jmp_buf_set_raw(struct 1lkl_jmp_buf x*); LKL Native -
36 VO setu voidx ioremap (long addr, int size); LKL - -
37 P int iomem_access (void xaddr, void *val, int size, int write); LKL - -
38 int get_capacity (struct 1lkl_disk, unsigned long long xres); LKL Native -
39 block I/0 int block_read(int fd, size_t offset, size_t len, void xbuf); LKL Native -
40 int block_write (int fd, size_t offset, size_t len, void xbuf); LKL Native

Origin indicates whether an LKL host interface is defined by the original LKL. “LKL”: such interface is inherently defined by LKL. “UIEE”:

such interface is newly added for UIEE. Type indicates the implementation status of an LKL host interface inside libtee. “Native”:

such

interface is implemented based on libtee and the trusted OS. “RPC”: such interface is redirected to the REE and handled by the Linux kernel
or other REE user-space threads. Others left blank (“-”) are not implemented by /ibtee. A trusted OS syscall marked with a suffix “*”
indicates that the corresponding syscall is newly added for UIEE while others without “*” are inherent OPTEE OS syscalls.
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