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Abstract—Prototype pollution is a critical security vulnera-
bility in JavaScript, particularly in Node.js packages and ap-
plications, where attackers can manipulate the global object
prototype and inject malicious properties into all objects that
inherit from it. State-of-the-art static and dynamic approaches
face significant limitations in detecting this vulnerability—-both in
terms of accuracy and efficiency. Static approaches struggle to
recognize unexploitable vulnerabilities (e.g., due to missing code
context with preventive mechanism), causing high false positives,
besides suffering from scalability issues. Dynamic approaches
have low false positives as they can access runtime information;
however, due to low code reachability (resulting from the use
of e.g., improper argument types/values), their false negatives
could be high. In this paper, we present Bullseye, a fully auto-
mated dynamic analysis framework that delivers validated and
scalable analysis of prototype pollution vulnerabilities in Node.js
packages. Bullseye’s novel approach combines broad entry-point
coverage, context-aware exploit generation, and dual runtime
validation oracles. We use the developer-provided inputs from
a package’s testsuites, and prototype pollution-related exploit in-
puts extracted from prior work. We then execute each entry point
with its relevant exploit input candidates and observe the runtime
for indications of prototype pollution. We analyzed 44,513 highly
popular Node.js packages (with 10,000+ weekly downloads), and
5,879 packages with lower weekly downloads in less than 8 hours.
We detected zero-day prototype pollution vulnerabilities in 290
packages, with no false positives. We responsibly disclosed all
our findings with proof-of-concept exploit code to the respective
package maintainers. We have also been assigned a total of 149
CVEs (as of July 22, 2025); among them, 66 have been made
public, with 25 rated as critical, and 34 as high.

1. INTRODUCTION

JavaScript is a highly dynamic language, allowing ob-
jects to be created, modified, and extended at runtime. This
flexibility enables powerful programming constructs but also
introduces significant security risks. Unlike statically typed
languages where object structures are fixed at compile-time,
JavaScript’s objects are mutable, meaning that properties can
be added or altered dynamically by modifying the object’s
prototype. This JavaScript feature is vulnerable to a relatively
new type of vulnerability known as prototype pollution, first
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identified by Arteau [4]. It occurs when an attacker injects
or modifies properties in an object’s prototype, either by
exploiting unsafe input handling, or by directly manipulat-
ing the special prototype properties (e.g., _ _proto___ or
constructor.prototype), and thus propagating the ma-
licious changes throughout the entire application, impacting
every object that inherits from the affected prototype.

Due to the widespread use of JavaScript, a significant num-
ber of studies have explored different approaches to identify
prototype pollution, mostly focusing on the analysis of highly
popular Node.js packages (as available on the NPM registry:
npmjs.com)), and applications bundling such packages; see,
e.g., [4], [14], [12], [160, [150, [25], [18]. However, due to
intrinsic complexity in JavaScript, most existing work based
on static analysis faces significant challenges. For example,
ODGen [17] (and similarly [16]) suffers from scalability issues
due to path and object explosions inherent in its heavy-
weight abstract interpretation approach. As identified by Kang
et al. [11], ODGen fails to complete the analysis of 50%
of the tested NPM packages with an average 2K lines of
code (LOC), which jumps to 90% for larger packages (with
60K LOC). Tools (e.g., [25)], [15]) that rely on prototype
pollution sink patterns, may miss vulnerabilities (i.e., false
negatives), as the patterns used cannot cover all real-world
vulnerable code. Such tools also suffer from false positives
due to the overestimation of vulnerable sinks, which may
be safeguarded by code that is not close to the sinks. In
terms of dynamic analysis, Arteau’s pioneering approach [4]]
uses a predefined list of exploit inputs (extended in [30]).
However, while effective (with low false positives), such lists
remain incomplete e.g., due to new vulnerability signatures
being found. Also, these tools fuzz candidate functions for
vulnerabilities, without considering a target function’s input
types, leading to poor code coverage.

To address scalability and validation issues of static anal-
ysis tools, and to overcome the limited code coverage of
dynamic fuzzers, we design and implement a novel prototype
pollution detection tool called Bullseye, which improves the
detection rate (i.e., reduce false negatives) while avoiding
false positives (i.e., no unnecessary reporting to developers).
Bullseye automatically downloads a target package for testing,


npmjs.com

enumerates all its entry points{ﬂ that serve as the interfaces
to application developers, and leverages existing developer-
provided testsuites for a guided execution. It performs real-
time monitoring on each test case to check whether prototype
pollution occurs, and provide proof-of-concept exploit code
when a vulnerability is found.

Implementing Bullseye posed several challenges. For exam-
ple, non-standard implementations across packages hindered
the dynamic identification of usable modules using native
import functions (e.g., require, import) alone. To address
this, we adopted multiple import strategies to comprehensively
identify all modules used within a package, including: support
for different types of module declarations within package.json,
covering e.g., CommonJS (CJS) and ECMAScript Modules
(ESM) modules; dynamically imported modules; and user-
accessible modules that are not explicitly indexed. After load-
ing a package with all its modules—manifested as an object—
Bullseye dynamically traverses this object to enumerate all the
accessible entry functions, and comprehensively cover various
types of export structures, e.g., entry points within complex
exported objects, and dynamically generated exports.

After enumerating the entry points for a target package,
we then face another set of challenges for executing them
effectively and efficiently. To this end, we use a testsuite-
guided mechanism for generating potential prototype pollution
exploit inputs. Testsuites generally contain developer-provided
example code to test a given package’s functionality from
an application context, specifically, the entry points. Example
inputs from these testsuites should offer better code coverage
as such inputs are specifically used for testing (compared
to random/fixed inputs). For executing a given entry point,
we directly use input values from testsuites, and specifically
curated prototype pollution-related input fragments (mostly
extracted from past work [4], [30], see Table E[) Such guided
input augmentation helps us uncover significantly more zero-
day vulnerabilities compared to past work. If a package lacks
testsuite, we rely only on the curated input fragments.

More specifically, for input extractions from testsuites, we
take the abstract syntax tree (AST) representation of a test file,
resolving import declarations, variable declarations, variable
assignments, and function declaration nodes. We also locate
the package’s entry points by labeling the import identifiers,
track them to where they are called (in the AST), and then
record the function name and its resolved arguments. We then
use pairwise testing (Czerwonka et al. [8]]) to generate all pos-
sible combinations between the paired values from test inputs
and exploit input fragments. Finally, we execute each entry
point with its respective exploit input candidates, and check
if newly introduced property in the global prototype chain
appears at the runtime (indicating a vulnerability). Each test
case is executed in a separate Node.js virtual machine (VM)
so that individual test cases do not interfere with each other,

IWe treat exported functions from a package’s public modules as entry
points, all of which are accessible to an application developer. This enumera-
tion may encompass a broader set of functions than what might be documented
as formal entry points by the package developer.

and the failure of a single test case does not impede the rest
of the analysis. For identifying the pollution attempt, we use
two side-effect oracles, in contrast to the directly introduced
property used in [4], [30], i.e., 1£ ({}.test==123). First,
we recursively access the properties of the object’s prototype,
and search for the key or the value that matches our polluted
property. For the second oracle, we use a differential check
between a snapshot of the prototype chain before the exploit
execution, and the one post execution. This oracle identifies
more complex side-effects (not covered by the first oracle),
such as introducing the property in unknown key-value pairs.

Overall, Bullseye’s methodology introduces several key
innovations in prototype pollution detection. (1) Comprehen-
sive module and entry point identification: we implement
comprehensive module import by enumerating module paths
in package.json and non-indexed modules, and runtime de-
tection of dynamic imports, while entry point identification
is enhanced by identifying entry points in dynamic exports,
complex export object, and class method-style entry points.
(2) Testsuite-guided input synthesis: to address limitations in
generating context-aware exploits, we dynamically generate
exploit candidates by fusing project-specific valid inputs (from
testsuites) and attack fragments (seed corpus) via pairwise
testing. (3) Robust prototype pollution monitoring: we in-
troduce two side-effect checking oracles: recursive prototype
chain inspection and prototype chain differential checking with
proxy-based setter interception, which enable the detection of
pollution in nested or complex objects, providing a signifi-
cant improvement over shallow checks. (4) Isolated test case
execution: the use of Node.js’s VM to execute each test case
ensures its execution integrity (i.e., prototype properties cannot
affect one another within a single shared environment), and the
failure (e.g., timeouts, crashes) of a single test case does not
affect the testing of other entry points/test cases within the
same package.

Compared to state-of-the-art, our novelty lies in the follow-
ing factors. In contrast to prior assumptions about dynamic
analysis tools (as stated by e.g., [16]) missing many vulnerabil-
ities due to low code coverage, we show that dynamic analysis
can be reliably used to detect more vulnerabilities in NPM
packages than existing tools (as evident from our evaluation).
However, unlike prior dynamic approaches that treat prototype
pollution detection as black-box fuzzing with fixed exploit
lists, we introduce a testsuite-guided dynamic analysis that
adapts exploit inputs to the specific argument structure of
each entry point. Our methodology fuses project-specific valid
inputs, extracted via AST analysis of developer-provided tests,
with a curated and type-annotated seed corpus to generate
context-aware exploit candidates—which enable us to trigger
more vulnerable code paths compared to existing work. For
false negative reduction, we further advance runtime detection
by introducing dual side-effect oracles: recursive prototype
chain inspection and differential prototype state comparison.
Beyond the limitations of traditional dynamic detection, Bulls-
eye identifies sink locations in a manner comparable to static
analysis. Our design enables the detection of both shallow



and deeply nested prototype pollution vulnerabilities with zero
false positives, while maintaining scalability to over 50,000
Node.js packages. To the best of our knowledge, this is the first
work to demonstrate that combining testsuite-guided analysis
with systematic entry point coverage and precise runtime side-
effect detection can surface hundreds of previously unknown
vulnerabilities at the ecosystem scale.

Main contributions and findings.

(1) We design and implement Bullseye, a testsuite-guided effi-
cient dynamic analysis tool that detects prototype pollution
vulnerabilities and generates reproducible proof-of-concept
(PoC) exploits. Bullseye advances the state-of-the-art by
increasing its reachability to more attack vectors (stem-
ming from the combination of comprehensive entry point
identification, input adaptation, and VM-based execution
to avoid premature termination), and by avoiding false
positives (through robust runtime side-effect monitoring).

(2) Our evaluation demonstrates that Bullseye significantly
outperforms state-of-the-art tools in reducing both false
negatives and false positives. We run Bullseye on 44,513
packages with 10,000+ weekly downloads, and 5,879
randomly chosen packages with under 10,000 weekly
downloads—taking on average 0.51 sec/package of anal-
ysis time in a computer with an AMD Ryzen 2950X
CPU. In total, we detected zero-day vulnerabilities in
290 packages, in 807 unique entry points. Many of these
vulnerable packages are heavily used, e.g., 37 packages
with 100k+ to 500k downloads/week, 13 packages with
500K+ to 1M downloads/week and 12 packages with 1M+
downloads/week.

(3) We responsibly disclosed all our findings, and as of July
22, 2025, we are assigned 149 CVEs, with 66 published
CVEs: 25 are marked as critical, and 34 as high. In
particular, the CVE (CVE-2024-39008) in the package
‘fast-loops@1.1.3* (with 1M+ downloads/week) received a
CVSS score of 10. Note that even though we identified 807
vulnerable entry points across 290 packages, we submit
only one CVE per package even if a package contains
multiple vulnerable entry points—to reduce the burden
on the CVE program, and our manual submission effort.
So far, 75 developers have responded to us and 31 of
them confirmed fixing the reported vulnerabilities. We also
received bug-bounties for 4 packages.

(4) We compared state-of-the-art tools (Arteau [4], Zhou and
Gao [30], ODGen [[17]], Silent-Spring [25]) with Bullseye
using past vulnerabilities, and zero-days discovered by
Bullseye. Overall, Bullseye detected majority of the past
vulnerabilities; in contrast, existing tools failed to uncover
many of the zero-days, while reporting a significant number
of false positives (specifically, ODGen and Silent-Spring).
We also found zero-days in 9 packages from the Silent-
Spring dataset (100 vulnerable packages).

(5) We will make our code and evaluation artifacts available
at: https://github.com/Madiba-Research/Bullseye.

A video presentation of our work is available at: https:
/lyoutu.be/gl WBzvrdRjg!

II. THREAT MODEL AND MOTIVATIONAL EXAMPLE

In this section, we provide our threat model and a mo-
tivational example highlighting the challenges in prototype
pollution detection (see Appendix |C| for background).

A. Threat Model

We focus on Node.js packages deployed mainly in server-
side applications. We assume these applications may utilize
third-party Node.js packages potentially vulnerable to pro-
totype pollution. Attackers aim to exploit these packages to
alter the application’s global state, thereby affecting other
objects and services that depend on it. We assume that package
and application developers are benign, and the attacker has
no control over the package/application code; however, the
attacker has access to at least one entry point in the package
that can be triggered through interactions with the application,
with the inputs controlled by the attacker, e.g., through a
web application’s client interface. While prototype pollution
can lead to dangerous vulnerabilities such as arbitrary com-
mand execution, if the polluted data reaches sensitive run-
time APIs (e.g., execSync, execFileSync), the specific
consequences of prototype pollution are out-of-scope (but see
e.g., [13l], [12f], [23]], [L8]]). Our focus is uncovering exploitable
prototype pollution vulnerabilities in Node.js packages.

B. Motivation and Challenges

To understand the challenges in prototype pollution de-
tection, consider Listing a simplified version of a util-
ity function merge used for merging objects, from the
package ‘putil-merge’ (github.com/panates/putil-merge).The
function is vulnerable to prototype pollution (CVE-2021-
25953) using the following exploit: putil_merge (obj,
payload, {deep:true}).Where ‘obj’ is an empty object
e.g., {} and payload is a prototype pollution payload, e.g.,
{"_proto__ ":{"polluted":true}}.

The function takes three arguments (target, source,
and options), then iterates over the source’s properties.
At line 6, ‘srcVal’ is assigned the injected property (i.e., the
object ‘{polluted: true}’). At line 7, ‘trgVal’ is set to
reference the prototype of target as the right side of the
assignment becomes target[‘__proto__’], which retrieves the
prototype of target. Next, the nested branches (lines 8-
9) are triggered as payload and options.deep (from {deep:
true}) are satisfied, after which the merge function is
recursively called with ‘trgVal’ as the target, and ‘src-
Val’ as the source. Consequently, the assignment process
is performed on the new identifiers, assigning ‘true’ (from
{polluted: true})to ‘srcVal’ and ‘undefined’ to ‘trgVal’
(because unlike ‘__proto__’, the key ‘polluted’ does not
exist at the target). Next, since the branch at line 8 is
unsatisfied (as ‘srcVal’ is non-object), the execution moves
to line 18, and ‘srcVal’ is assigned to target. Since target
references to prototype, and key is undefined at the target,
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the construct (target [key] = srcVal) creates a new
property with the key-value pair ‘polluted:true’ at target’s
prototype, polluting the global prototype with this property.

While this function may appear to be a typical example of
prototype pollution vulnerability, prior work failed to detect
the vulnerability ([4], [30], [17]). To understand the reasons,
we analyze the exploiﬂ and the relevant test case (Listing ,
to identify the following challenges for modeling it.

(1) Inability to reach the entry point. Prior work [4], [30]
fails to enumerate this entry point because of the nested
function structure. Specifically, merge is defined with two
labeled functions (all, arrayCombine), which caused the
recursive entry point exploration loop to fall into these labeled
functions, missing enumerating merge as an entry point.

(2) Unknown exploit input. Prior work [4], [30] relies on
predefined exploit lists to detect prototype pollution, which
contains fixed inputs commonly found in typical prototype
pollution-vulnerable functions (as listed in Table in the
appendix). However, the function merge takes the object-
typed argument ‘options’, which requires setting specific prop-
erties with boolean values (e.g., deep, clone) to trigger the
vulnerability. The fixed input lists in prior tools [4], [30]
exclude this function-specific argument, and thus fail to detect
the vulnerability, specifically by not triggering the vulnerable
branch (line 9), leading to the recursive call (line 12).

(3) Incomplete semantic modeling. ODGen [17] appar-

ently struggles to model built-in property access functions.
Specifically, ODGen fails to parse getOwnPropertyNames
(line 2), hindering its ability to trace how the tainted data
propagates towards the vulnerable line. We identified this
limitation by replacing getOwnPropertyNames with a
simple for...in loop for reading the properties, which
enabled ODGen to recognize the vulnerability.
Our insight. For the merge example, we locate the related
test case for the entry point (as shown in Listing [2), which
includes the argument { ‘deep:true’ }—without analyzing
testsuite examples, such inputs cannot be efficiently generated.
We then generate combinations based on the input (line 3),
and our predefined seeds corpus (Table [[), resulting in a list
of exploit input candidates that combine ‘{deep:true}’
(from the test input) with the exploit payload (from seed
corpus). We could thus trigger and identify the vulnerable
code. In short, we statically analyze testsuites to learn the input
specifications of an entry point, and then use the specifications
for generating our exploit input candidates. We then use the
candidate inputs to execute the entry point and leverage the
runtime to monitor the side-effects of the exploit execution.

III. METHODOLOGY

Overview. Fig. [T] presents our system architecture. Our tool,
Bullseye, operates in three main stages: initial setup, exploit
input generation and guided execution, and vulnerability sum-
mary refinement. In the initial setup stage (Sec. [[lI-A), we
prepare the target environment for analysis, which takes a

Zhttps://security.snyk.io/vuln/SNYK-JS-PUTILMERGE- 1317077
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source, options = {}) {

2 for (const key of Object.getOwnPropertyNames (
source)) |
3 if (options.filter && !options.filter (source,
key))
continue;
const src = Object.getOwnPropertyDescriptor (
source, key);
let srcVal = src.value;

let trgvVal = targetlkey];
if (isObject (srcval)) {
if (options.deep) {
if (!isObject (trgVval))
trgVal = target[key]
merge (trgvVal, srcVal,
continue;
}
if (options.clone)
srcVal = merge ({},

= {};
options);

srcVal, options);
}
target [key] = srcval;

}

return target;

21 }
Listing 1. A code snippet from our motivation example

1 it (' should deep clone function/class values to
target’, function() {

2 const a = {a: 1, b: 2, c: {a: Boolean}};

3 let o = merge({}, a, {deep: true});

4 P

Listing 2. The test case identified by Bullseye for the entry point merge in
the package’s testsuite.
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Fig. 1. Bullseye overview
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list of Node.js packages for evaluation and processes each
package iteratively. During each iteration, Bullseye locally
installs the package using Node.js Package Manager (NPM) to
ensure the package’s codebase and necessary dependencies are
available. The core task in this stage is to dynamically import
the package and extract all its entry points. In the second stage
(Sec. [I-B), Bullseye dynamically executes entry points to
inspect the presence of vulnerabilities, identify their locations,
and determine the specific exploit inputs that trigger them. In
this stage, we leverage the package’s testsuites, which provide
essential information about how each entry point function is
invoked under various scenarios, and use such test inputs
for crafting our exploit input candidates. With the crafted
exploit inputs, Bullseye runs the target NPM package, and
checks for indications of prototype pollution. In the final stage
(Sec. [MI-C), we cross-reference the detected vulnerabilities
with existing CVEs, and identify if the detected vulnerability
is a potential zero-day or already confirmed. For zero-days,
we automatically create a vulnerability summary report. For
Bullseye’s implementation details, see Appendix [A]

A. Stage 1: Initial Setup

The setup process begins by reading a dataset of target
packages. For each package, we use NPM CLI command to
install its latest published version, including all dependencies
listed in the package metadata file (package.json). We also
clone the source code of the package from its repository link,
obtained via the NPM Registry API (registry.npmjs.org) as we
observed that some packages do not include testsuite files in
their bundled NPM version. Next, we identify the package’s
testsuites and modules with entry points.

Testsuite identification. We locate all testsuite files within
the Node.js package. While the package.json file may indicate
these files under the “test” field, we noticed many packages
do not follow this convention; variations include: the test file
name matching the function (e.g., merge.test.js for testing the
function merge), or the full path to the test file matching the
function’s path name (e.g., assign/object/merge.js for testing
the function assign.object.merge). Moreover, to be
distinguished from the package’s modules, test files usually
have a suffix or a prefix. We identified commonly-used key-
words (e.g., test, spec, index), and how they are added to the
test file’s name, such as using a dash or dot (e.g., merge.test.js,
spec-merge.js). Additionally, these keywords could also be in
a parent directory containing the test file (e.g., spec/merge.js).
To locate common path patterns, we first select 10 packages
from a set of 100 vulnerable Node.js packages (from Silent-
Spring [25])), and create path patterns to locate their test files.
Then we apply these patterns on the rest of the packages,
and select another 10 packages for manual analysis where no
testsuites were detected, and update our list of patterns (if
new patterns are found). We continue this process until we
curate a comprehensive path patterns that can locate all the
test files in the 100 Node.js packages. Then, we use the glob
library [28] to run the patterns on the package’s directory to

fetch the matched test files; see Table (in the appendix)
for these patterns.

Comprehensive module import. While the native importing
functions (e.g., require, import) can be used to import a
package, we noticed that, in many cases, importing cannot be
fully accomplished with a uniform pattern (e.g., solely rely on
require). These cases, as discussed below, if not handled
properly, may significantly affect the import of modules under
test (i.e., leading to low code coverage).

(1) Different module systems specify their own import
functions. In most cases, a package supports only one module
system, such as CommonlJS or ES modules. This requires us-
ing the correct import method: require for CommonJS and
import for ES modules. However, some packages offer uni-
versal support for multiple module systems. They provide dif-
ferent versions of the same module, distinguished by file exten-
sions (e.g., module.cjs.js, module.esm.js, module.es2015.js).
These versions are then defined in package.json. In this sce-
nario, relying on a single import method may prevent detection
of potential vulnerabilities in other versions.

To support different module systems, we inspect the
package.json file for keys such as ‘exports.import’, ‘ex-
ports.require’, ‘module’, ‘main’, and ‘jsnext:main’. Next, we
use the appropriate native import function for each module
type, e.g., require for modules under ‘exports.require’ and
‘main’, and import for those under ‘exports.import’, ‘mod-
ule’, and ‘jsnext:main’. Additionally, for universal packages
that export functions with the same name, we assign a property
to label the type of newly imported object (e.g., esm: lib.esm,
cjs: lib.cjs, es6: lib.es6). These labels are then used to cover
different versions of the same module in the package.

(2) Some packages do not explicitly index modules in
package.json. These modules can still be accessed with relative
paths (e.g., var lib=require(‘lib/module.js’)).
For such cases, we recursively traverse the internal modules
of the package for JavaScript files, and import each module.

(3) Some modules are imported implicitly. Some packages
do not require assigning the imported module to a variable.
Instead, they use a bootstrap mechanism that dynamically cre-
ates a global namespace object when the package is imported.
For this case, we store a copy of the global object before and
after we import the package. Then, we compare the difference
of both copies, which shows the newly imported package in
the global object (if any).

Entry point identification. To extract the entry points from
an imported object, we iterate over the properties of this
object, storing all function-typed properties. We apply the loop
statement for..i to perform this process (e.g., for (const
fn in 1lib)). During this process, we discovered that the
structure of the imported objects varies. To access these objects
and retrieve their entry points, we execute two enumeration
processes. One uses the for..in statement, and the other
uses Reflect.ownKeys. Each process returns the first-

3https://developer.mozilla.org/en- US/docs/Web/JavaScript/Reference/
Statements/for...in
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level properties of the imported object. Next, we recursively
enumerate each of these properties. Each time we inspect the
property type to decide whether to store this property (if it
is a ‘function-typed’), or further recursively enumerate it (if
it is ‘object-typed’). We encounter the following issues while
directly traversing the properties of the imported object: (i) in
some cases, enumerating function properties may reveal addi-
tional nested functions; (ii) some functions are only accessible
as properties of a class.

To address (i), after applying Reflect.ownKeys, we
check if the a function-typed value can be further
explored before we finally store it. To address (ii), we check
if the property has the following built-in class methods:
get, set and has. The presence of these methods in-
dicates the value type of class, which potentially contains
entry points as properties of a class. If so, we enumer-
ate its methods by accessing its prototype property (e.g.,
Reflect.ownKeys(prop.prototype)).

B. Stage 2: Exploit Input Generation and Guided Execution

In this stage, Bullseye examines if there is any entry

point in a given Node.js package that can trigger prototype
pollution vulnerability. To generate exploit input candidates,
we need prototype pollution-related values and the function-
specific argument structures. Thus, we enumerate a list of input
fragments (seed corpus), which are values that can effectively
trigger prototype pollution vulnerabilities as found in prior
work [4], [30]. However, prior work uses these values in fixed
inputs, disregarding the entry function’s signature/argument
structure. We thus leverage the package’s own testsuite to iden-
tify test inputs for each entry point, and determine expected
argument structures and values. We then mutate this argument
structure with our predefined fragments (seed corpus).
Seed corpus curation. We prepare a list of prototype pollution
fragments to serve as seeds for generating exploit input candi-
dates. First, we reviewed prior work [4], [30], specifically the
exploit input list (see Table |[X]in the appendix), and selected
20 fragments that we could use as primitive values for gener-
ating exploit input candidates. We curated these fragments in
subsets, each of which is tagged with a data type (e.g., array,
object, string). Moreover, we defined special data types (e.g.,
N-array, S-string) to address the types that are often found in
prototype pollution payloads. For example, some string inputs
in prototype pollution payloads come with a specific pattern:
slash, dot, colons, or bracket (e.g., “/obj/prop”, “obj.prop”,
“obj:prop”, “obj[prop]”). To properly generate exploit input
candidates, we need to use the right string based on the
matched one we found in the testsuite. Thus, we distinguish
each of these types with special names respectively: S-string,
D-string, C-string, A-string. We also define special array type:
‘N-array’ for the exploit inputs that take multi-dimensional
arrays. This special type covers inputs in the formats such as
[[FRAG1],FRAG2], [[FRAG1,FRAG2], VALUE]. We list our
curated seeds in Table [

Note that we do not include any values with the type of
integer or boolean as prototype pollution fragments, because

they cannot be exploited for prototype pollution directly. Fur-
thermore, we do not take the constructor.prototype fragment
(found in Table in the appendix, as BAD_JSON2 at
number 17, 18, 19, and string values in 21, 23, 30, 33, 38,
42), as we noticed the same effect of using __proto__ and
constructor.prototype, which causes redundant vulnerability
triggers. Similarly, we exclude file fragments (e.g., 43, 44 in
Table in the appendix), as they did not yield results when
tested on 60,000 Node.js packages [30].

We also expanded the list with missing fragments by prior
work (such as the fragments 6, 13, 15, and 18 in Table .
These fragments allow discovering vulnerabilities that prior
work cannot find. For example, fragment 6 triggers a new
vulnerability at ‘accessors/set.js:37’ in the package ‘@cahil/u-
tils@2.3.2’, because the vulnerable code requires an array with
three elements to access the enclosed conditional branch.

No. Type Seed Input

1 object {}

2 object {}._proto__

3 object {“__proto__.pollutedKey”:“polluted Value}

4 object JSON.parse(’{“__proto__

”:{“pollutedKey”:“polluted Value”} }")

5 array [“__proto__ 7, “pollutedKey”’]

6  array [“__proto__ 7, “pollutedKey”, “pollutedValue]

7  N-array [[*__proto__ ], “pollutedKey”]

8 N-array  [[“__proto__ ], “pollutedKey”, “pollutedValue”]

9  N-array [[*“__proto__ 7, “pollutedKey™], “polluted Value”]

10 N-array [[“_proto__ "], [“__proto__ ], “pollutedKey”’]

11 string “__proto__ "

12 S-string  “/__proto__/pollutedKey”

13 S-string  “/__proto__/pollutedKey=123"

14 D-string “__proto__.pollutedKey”

15 D-string  “__proto__.pollutedKey.polluted Value”

16 D-string “__proto__.pollutedKey=123"

17 C-string  “__proto__:pollutedKey”

18 C-string  “__proto__:pollutedKey=123"

19 A-string “__proto__ [pollutedKey]”

20 A-string “__proto__ [pollutedKey]=123"
TABLE I

BULLSEYE’S SEED CORPUS, ORGANIZED IN DATA TYPES AND SPECIAL
FORMATS.

Test input extraction. In this step, we extract all test inputs
that relate to our entry points. We use Abstract Syntax Tree
(AST) to locate the entry point of interest and extract all
related test cases. The tree representation of the test file’s
code facilitates tracking the data flow from one variable or
function call to another. For instance, assume that node A
represents the declaration of a variable p (e.g., var p); node
B represents the assignment of a value to p (e.g.,p = 1); and
node C represents the use of p as an input to a function call
(e.g., fun (p) ). Therefore, in the tree structure, edges connect
these three nodes sequentially. If the function fun (p) is an
entry point, we can locate it as node C, and determine the type
and value of variable p, by tracing node B pointing to C, and
further node A pointing to B.

We start from the root node and traverse all nodes in the
tree. During the traversal, we examine function call nodes



(node C) and check if this function is an entry point. If
the called function is an entry point, we backtrack all nodes
pointing to the node representing the call to the entry point,
as these nodes represent the input variables (node B) of the
entry point function. Additionally, for each input variable
node (node B), we continue backtracking until the variable
is initially declared (node A). By backtracking through these
nodes, we can determine how an entry point’s input variable
was declared, how it was updated, and its value is when the
entry point is called.

Entry points identification in testsuites. When analyzing
testsuites, we found that other than the package’s entry
points, testsuites can also import and execute functions from
other modules (e.g., calling the assert function to compare
results). Therefore, we need to ensure that we only track
the entry points belonging to our target package and ignore
unrelated functions. To achieve this, we collected the path
patterns of import modules from the testsuites of 100 Node.js
packages (from the same packages mentioned in Sec. [[II-A).
We curated these patterns into a list (see Table [VII). During
the testsuite processing, if we identify an import path matching
one of these patterns, we label the assigned identifier to
track the point where the related entry point is called. For
example, consider that a function is called in a testsuite as
a property of the imported identifier (e.g., lib.fun(p)). We
identify the importing node in the AST (e.g., import 1lib
from "../index.js" ) containing one of our curated
import paths. We label this identifier (lib), and traverse the
tree until we find the call expression node that matches the one
we labeled (lib.fun(p)); we then store the values of test input’s
arguments. These records are further utilized to generate the
exploitable input candidates.

Exploit input generation. For each test input of an entry
point, we synthesize a batch of input candidates. Each candi-
date consists of a valid sequence of arguments for the entry
point. In each candidate, one of its arguments is replaced
by a value from Table [l serving as an effective payload to
trigger potential prototype pollution. Recall that we record
the data types and values for each test case, from which
we generate a batch of candidates. Given a test case with a
sequence of arguments, we check the type of each argument.
If the type of an argument matches the type of an entry in
Table [} the original value of the argument is replaced by the
value in that entry. We count this new sequence of arguments,
with one value replaced, as a candidate. We generate a batch
of candidates in a pairwise manner [27] to cover as many
potentially effective payloads as possible. We explain this
more using our motivating example.

In Listing a test case with three arguments ({}, a,
{deep: true}) is served into entry point merge, where
‘a’ is an object defined as const a = {a: 1, b: 2,
c: {a: Boolean}}. We first identify the type of first
argument as object, and then find all entries in Table [I] that
are also typed as ‘object’ (# 1, 2, 3, 4). Then we replace
the original argument value with the seed input values of
these entries to generate our candidates. In this case, we have

four candidates targeting the first argument: ({}, a, {deep:
true}), ({}.vprotov, a,
"pollutedvValue"}, a,

{deep: true}), ({ "__proto___
.pollutedKey": {deep: true})
and (JSON.parse ("{"_proto__": { "pollutedKey": "
pollutedvalue"}}’), a, {deep: true}). Similarly, another
four candidates will be generated by replacing the value of
the second argument in the original test case, and another
four of the third argument. We thus have a batch of 12
candidates mutated from this original test case for the entry
point merge. If there is another test case for merge in the
testsuite, a new batch of candidates will be generated based
on that test case. In the end, we execute the entry point
(merge) with all candidate inputs.
Guided execution. After collecting the entry points and
generating the exploit input candidates, Bullseye executes
each entry point with its relevant exploit input candidates and
actively monitors for signs of prototype pollution. This process
ensures precise detection by observing the runtime’s behavior
in real-time and identifying the vulnerable code that enables
prototype pollution. However, using a shared environment
between Bullseye and the tested function is risky, as we
noticed cases where Bullseye stopped working because of an
endless loop invoked by the tested function. This is one of the
drawbacks of prior tools [4], [30], as they cannot complete
the scan on a dataset if any of the tested functions invoked an
endless loop. We addressed this challenge by using Node.js’s
VM moduleE] which can be used to trigger a timeout for
long-processing functions. We set the timeout to 100 ms for
executing an entry point against each exploit input candidate,
which we found to be enough for executing any function
without infinite loops

An obvious sign for prototype pollution is the inheritance of
the injected property from any object in the running applica-
tion, including the empty object. However, as we observed, the
injection can occur in other places. (1) The polluted property
can be added with an empty value (e.g., {polluted : “”}), or
under another object (e.g., {someObj : {polluted : true}}).
(2) The key and value in the injection combine as a key name
of an object (e.g., “polluted = true” : {}), making a simple
check ineffective (e.g., {}.polluted). To solve these cases, we
introduce two side-effect checking oracles: recursive prototype
chain inspection and prototype chain differential checking to
detect pollution in nested/complex objects. In the first oracle,
we recursively access the prototype chain, looking for the
injected property by matching our predefined key-value pairs
with each property we read from the prototype chain. Next,
the second oracle is used to detect the side-effect even if
the key-value pair of the polluted property is mutated by the
target function. We compare the prototype chain before and

4https://nodejs.org/api/vm.html

SWe found only 6 packages with such loops: gammautils@0.0.81, locu-
tus@2.0.11, mout@2.0.0-alpha.1, nis-utils@0.6.10, node-forge @0.9.0, nodee-
utils@1.2.2. E.g., the function shuffle in gammautils@0.0.81 has the con-
dition while (0 !== currentIndex), where currentIndex is the
array length of the argument. If the supplied argument is not an array,
currentIndex becomes NaN, consequently the while loop is always true.
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after the injection attempt to reveal the changes occurred due
to the pollution. Specifically, we clone the global prototype
(e.g., using Object.getPrototypeOf) before and after
we execute the exploit. Then, we read the property names
from each clone (e.g., Object .getOwnPropertyNames).
After having both arrays of properties, we apply Array’s £ind
method to find the newly added property.

Beside detecting prototype pollution side-effects, we also
attempt to identify the vulnerable code line. We use Proxy [23]]
to intercept the pollution attempt by customizing the set
handler to detect the polluted property. Specifically, we modify
the set handler of an empty object’s prototype. Then, we
replace the empty object at the exploit input under execution
with the proxied object. Upon the entry point execution, if the
prototype pollution occurs, the runtime returns to set handler
and we check if the property to be added is __proto__ or
polluted. In that case, we use the runtime’s call stack to get the
last executed line of code before Bullseye, which represents
our sink line. Note that this approach only works when there is
an object argument in the exploit candidate in order to trigger
the set handler on the pollution attempt.

C. Stage 3: Vulnerability Summary Refinement

In the final stage, we generate a vulnerability summary
based on the results of the guided execution. We include
the location of vulnerable sinks (if available), the package’s
entry points, and the executable proof-of-concept exploits in
detail. We also compare these vulnerabilities with previously
disclosed ones. Specifically, we retrieve publicly disclosed
vulnerabilities for a target package as identified by their
CVE IDs (if any). We use the GitHub Advisory DatabaseE]
for CVE data, through the Octokit API client [9], querying
both the package name and the CWE ID CWE-1321, which
corresponds to prototype pollution vulnerabilities. The API
returns CVEs related to prototype pollution for the target
package, including detailed descriptions that may identify
affected components (e.g., function names, code snippets, line
numbers, or file paths). We cross-reference these details with
the recorded entry points and sink locations, and add the
relevant CVE IDs (if any) to the final vulnerability report.

We determine whether a finding qualifies as a zero-day
as follows. We automatically de-duplicate by comparing the
entry points of discovered vulnerabilities with those in known
prototype-pollution CVEs, when a CVE includes entry point
details. Otherwise, we conservatively assume that the CVE
might cover our finding and treat it as a duplicate. That is:
a finding is classified as a zero-day only if, for the affected
package, no CVE shares the same entry point as we found, or
if no prototype pollution-related CVEs exist for the package.
This conservative strategy minimizes duplicate reports at the
expense of potentially missing some true zero-days.

IV. EVALUATION

We focus on answering key research questions that assess
Bullseye’s ability to detect known and unknown/zero-day pro-

Shttps://github.com/advisories

totype pollution vulnerabilities. RQ1: How effective is Bulls-
eye in detecting previously reported prototype pollution vul-
nerabilities? How does it compare with existing tools? RQ2:
How effective is Bullseye in uncovering zero-day prototype
pollution vulnerabilities in the wild? RQ3: How effective are
existing tools in detecting zero day vulnerabilities uncovered
by Bullseye? RQ4: How effective are various components of
Bullseye in detecting zero day vulnerabilities?

A. Experimental Setup

Environment. We performed our evaluation on a physical
machine running Ubuntu 22.04, equipped with a 16-core AMD
Ryzen Threadripper 2950X CPU (released in 2018), 64 GB
of RAM, and 8 TB of SSD storage. We employed Docker
version 24.0.5 for our analysis. The containerization ensures
that our physical device remains unaffected by the Node.js
packages under inspection. Meanwhile, it isolates the process
of running each package, preventing any version conflict for
common dependencies. We limit the maximum number of
containers running in parallel to 64 (for maximum utilization
of our CPU).

Datasets. To evaluate the effectiveness and accuracy of our
system against existing tools, we use the datasets provided
by the authors of those tools. We also test Bullseye on real-
world Node.js packages, focusing on widely used packages,
with at least 10,000 weekly downloads, which we can get by
querying the package’s metadata from the NPM registry APIL.
However, because of the API rate limit in NPME] we only fetch
the maximum allowed packages every day and save only the
ones with 10,000 weekly downloads, repeating this process
every day. Eventually, we ran the script continuously for three
months (June-August, 2024), curating a dataset of 44,513
packages. We also tested randomly-chosen packages (starting
from early 2024) irrespective of their download rates, at
various stages of our tool development, and eventually selected
5,879 of these packages for evaluation, all of which had a
weekly download rate less than 10,000. These two datasets
allowed us to understand prototype pollution vulnerabilities in
packages with different popularity levels.

Baseline tools. We benchmark Bullseye against prominent
dynamic and static analysis approaches. For the dynamic
analysis baseline, we use two fuzzing tools from: Arteau [4],
and Zhou and Gao [30Q]. For the static analysis baseline, we
use the tool proposed by Li et al. [[17], ODGen, which is
a general-purpose tool for detecting JavaScript vulnerabilities
including prototype pollution. The second static baseline is
Silent-Spring [25[], which uses four different CodeQL queries
based on the scope for scanning the package. To have a fair
comparison, we choose “Priority queries/Exported Functions”
which is the most relevant to the scope of Bullseye, as we
identify a vulnerability by finding the injected property, and
we only test exported functions.

"https://blog.npmjs.org/post/ 164799520460/ api-rate-limiting-rolling-
out.html
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B. RQI: Detection of Past Vulnerabilities

First, we benchmark Bullseye against Node.js packages
previously reported with prototype pollution (as found in our
baselines). We compare our results based on the vulnerability
details provided by the baseline tools, e.g., the entry point
function, the path or line number of the sink. If the vulner-
ability details are partially provided, such as a sink location,
we match it with the sink location reported by Bullseye. For
the results where Bullseye does not provide a sink line, we
manually debug the generated exploit by Bullseye to find the
sink line and compare it with the baseline.

Arteau [4]. We evaluate Bullseye against the 15 vulnerable
packages listed by Arteau (including the package version
and the vulnerable entry points). Bullseye was able to detect
prototype pollution in all packages. In addition to all the
vulnerable entry points from Arteau’s list, Bullseye found 3
new vulnerable entry points (pick, and updateWith in
‘lodash@4.17.4°, and clone in ‘deap@1.0.0").

Zhou and Gao [30]. From the 65 packages listed by the
authors with vulnerabilities, only 6 packages come with a CVE
IDE| Thus we test Bullseye against these packages, as we can
use the details of these vulnerabilities from their CVE details
for comparison. All vulnerabilities were detected by Bullseye.
ODGen [17]. We test Bullseye against 19 packages with
prototype pollution vulnerabilities listed by the authors. For
comparison, we used the benchmark (for the same vulnera-
bilities) from Silent-Spring [25]] that includes the sink lines
and the PoC files that trigger the injection for each package.
If the exploit case generated by Bullseye does not contain a
sink location, we ran the entry point with the same exploit
case in debug mode, and manually traced the execution until
it reached the same sink location from the benchmark list.
Bullseye detected 26/38 vulnerable sink locations (missing 12,
with no false positives). We manually checked all 12 false
negatives (FNs), and found that infeasible attack vectors and
complex exploits are the primary reasons for missing them
(detailed in Appendix [B).

Silent-Spring [25]. We evaluate Bullseye against Silent-
Spring using the 100 of Node.js packages listed by the authors.
For vulnerabilities without sink locations, we checked them
manually as we did for comparison with ODGen. Table
summarizes our results. After manually checking the installed
packages and executing all PoC files, Bullseye is able to detect
92/134 vulnerabilities. The primary reasons for FNs include
complex exploits, infeasible attack vectors, and unknown
payload patterns (detailed in Appendix [B). We also found
4 apparent false positive cases. We tested the PoC (CVE-
2020-28271) for the package ‘deephas@1.0.5’ and noticed that
the exploit only affects the target object but not the global
prototype. For the package ‘dot-object@2.1.2” (CVE-2019-
10793), we verified the disclosed exploitﬂ and found that the
flagged sink locations in the ground truth are unexploitable.

8They are: ‘safe-eval@0.4.1’, ‘flatnest@1.0.0°, ‘collection.js@6.7.11°,
‘rangy@1.3.1°, ‘progressbar.js@1.1.0’.
9https://security.snyk.io/vuln/SNYK-JS-DOTOBJECT- 548905

Bullseye also uncovered 24 unknown sink locations in 12
packages in the Silent-Spring ground truth dataset. 17 of
these sink locations in 9 packages are confirmed zero-days
(7 remaining sinks in 4 packages have already been reported
in CVEs). We contacted developers of these 9 packages with
our vulnerability reports. 5/9 packages remained unpatched in
their latest versions (as checked on July 22, 2025).

Tool Total ik TP FN Fp  Duration
(sec)

Bullseye 134 2 42 0 371

Silent-Spring 134 12 2 113 1850

TABLE 11
OVERALL DETECTIONS RESULTS FOR THE 134 VULNERABLE SINK
LOCATIONS FROM THE SELECTED 100 PACKAGES.

C. RQ2: Uncovering Zero-Day Vulnerabilities

We run Bullseye on 44,513 packages with at least 10,000
weekly downloads (labeled as high-DL packages), and 5,879
randomly chosen packages (with less than 10,000 weekly
downloads, labeled as low-DL packages). In total, we detected
zero-day vulnerabilities in 290 packages (250 from high-DL
and 40 from low-DL packages), in 807 unique entry points
(655 from high-DL and 152 from low-DL packages), and a
total of 1,172 exploitable test cases (950 from high-DL and
222 from low-DL packages). Note that each entry point rep-
resents an independent attack vector; to avoid overwhelming
the developers, we share only one test case for each entry
point, and to reduce CVE reporting (a manual process via
cveform.mitre.org), we submit only one CVE per package (by
grouping all vulnerabilities in a package if it has multiple
ones). Many vulnerable packages are widely used; see Fig. [2}
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Fig. 2. Distribution of downloads for 250 vulnerable packages (from the
high-DL 44,513 packages).

We responsibly reported all our findings to the respective
package maintainers, and submitted for CVEs. As of July 22,
2025, we are assigned 149 CVEs, with 66 published CVEs.
Out of the published CVEs, 25 are marked as critical, and
34 as high, and 7 as medium; see Table [VI] (in the appendix)
for the critical and high severity CVEs. From the 250 high-
DL vulnerable packages, 118 CVEs have been assigned; 35 of
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them have CVE scores published (7 rated as critical, 26 high,
and 2 medium). From the 40 low-DL vulnerable packages,
31 CVEs have been assigned and made public with severity
scores (18 rated as critical, 8 high, and 5 medium).

Overall, our feedback received positive responses, and ap-
parently, led to the resolution of security issues in several
packages. As of July 22, 2025, 75 developers have responded
to us and 31 of them confirmed fixing the reported vulnera-
bilities. Additionally, one developer noted that the vulnerable
entry point was not mentioned in the official documentation,
suggesting it should not be used by developers (even though
it is a valid entry point). Some developers did not fix the
bug for the package version we reported, but fixed it in
a new version (assuming the older version should not be
used by application developers). For some old packages, the
developers refused to fix the bugs even though these packages
have high download rates. We also tracked the status of
vulnerable packages maintained by developers who did not
respond within 90 days after our email notification. We found
that 11 of these packages appear to be unmaintained (i.e., no
updates for more than a year, no active response to public
issues on GitHub). Notably, for one package, the developer
archived the GitHub repository and marked it as deprecated
one month after we sent our notification email. In addition,
four other packages were fixed after the relevant CVEs were
publicly disclosed.

As we check the latest versions of the vulnerable packages
again with Bullseye (July 22, 2025), we found that 129/290
packages were no longer vulnerable. See Fig. [3] for both the
CVSS severity (left bars) and weekly download counts (right
bars) of 23 high-DL packages.
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Fig. 3. Patching status distribution of 23 high-DL packages by CVSS severity
ratings (left bar), and weekly DL counts (right bar). To determine if/when
vulnerabilities were fixed, we tested all versions of these packages released
after our reporting.

To measure the performance efficiency of Bullseye, we
recorded the running time of each package when we
tested both low-DL packages (5,879) and high-DL packages
(44,513). Bullseye employed a parallel execution mode, al-
lowing multiple packages to be tested simultaneously. In our
experiments, we excluded download and installation time, and
used 64 containers to run in parallel, each with one test
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package. We first evaluated the 5,879, where all packages
completed testing within 50 minutes. Subsequently, we tested
the packages in 44,513, which completed in 6.3 hours. With
Bullseye’s parallel execution, it took an average of 0.51
seconds per package. For individual packages, Bullseye takes
an average of 32.38 seconds/package for evaluation (min. 2
seconds, max. 531 seconds, with a standard deviation of 20.63
seconds). In addition, we grouped these packages into 30-
second intervals; see Fig. ] Overall, 98.2% of the packages
are completed within 1 minute, and 99.8% within 3 minutes.
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Fig. 4. Distribution of packages based on their execution completion times
for the high-DL dataset (44,513 packages). Note that we omit the time ranges
with package-count zero.

D. RQ3: Detection of Our Zero-Days by the Baselines

For baseline comparison, we randomly selected 40 packages
from 137 zero-day packages where we also have the vulnerable
sink information; see Table m for results summary.

For dynamic baselines, as they do not report sink lines by
default, we embedded our proxy detector in both (Arteau [4]],
Zhou and Gao [30]), to get the sink lines. They missed almost
half of the vulnerabilities, a strong justification for our use of
testsuite-guided input augmentation—instead of blindly using
the fixed exploit inputs as in the baselines. On the other
hand, the dynamic baselines detected a few sink locations
that Bullseye could not. For the two sink lines (i.e., vis-
util.js: 3255, 3257) found by both baselines, the related entry
point (‘deepObjectAssign’) is passed as an argument to the
test function (e.g., test(deepObject Assign, () => {//...}),
which currently Bullseye cannot parse. For the sink location at
(xe-utils/set.js:53), Zhou and Gao [30]] detect this vulnerability
with an input that has no matching format in the testsuites,
specifically the two-dimensional array in the second argument
(e.g., ({}, [[_proto__], “test”], “123”, true). In the testsuites,
however, all three relevant test cases have one-dimensional
array at the second argument. For the two sink lines in
cloneextend/index.js (120, 123), the entry point of interest
(‘extenduptolevel’) has no matching test cases in the package.

For the static baselines, we note that ODGen has overall
low detection rate (8/87 zero-days). Silent-Spring, on the other
hand, has higher detection rate but potentially more false
positives (while still missing 53/87 zero-days). Since static



baselines do not generate exploits to validate the findings, we
are not sure about the 55 sink lines in ODGen and 91 sink
lines in Silent-Spring for which Bullseye did not provide a
PoC; we label them as unknown or potential false positives.

Possible failure reasons in baselines. We found that both
Silent-Spring and ODGen often fail to complete the analy-
sis on complex packages. ODGen’s failures are largely due
to limited code coverage and call graph imprecision, while
Silent-Spring struggles with dynamic JavaScript features such
as bracket-based function calls and dynamic property ac-
cesses. These observations align with the findings by Kang
et al. [11)], and Zhou and Gao [30], which showed that
ODGen’s false negatives stem from its exponential growth of
analysis nodes and scope mismatches, and that Silent-Spring’s
reliance on CodeQL makes it ineffective for certain dynamic
language constructs.

Additionally, we found another important weakness re-
lated to incomplete modeling of built-in JavaScript func-
tions in ODGen. For vulnerable code locations detected
by Bullseye but missed by the baselines, we manu-
ally replaced the critical lines with semantically equiva-
lent alternatives. For example, in Listing [T, we replaced
Object.getOwn PropertyNames(source) in the property
access loop with a direct property access loop, after which
ODGen, Arteau, and Zhou and Gao could detect the wvul-
nerability, indicating that the missed detections are due to
incomplete modeling of certain built-in JavaScript functions
(not the vulnerability logic itself).

Tool Detg cted FP/Unknown TP FN Duratlon
sink (sec)
Arteau 45 2 43 44 337
Zhou and Gao 52 5 47 40 498
ODGen 63 55 8 79 28080
Silent-Spring 125 91 34 53 2938
Bullseye 87 0 87 0 875
TABLE III

BASELINES’ DETECTION PERFORMANCE ON OUR SELECTED ZERO-DAYS
(WITH A TOTAL OF 87 GROUND TRUTH SINK LOCATIONS).

E. RQA4: Effectiveness of Bullseye Components

The design of Bullseye consists of multiple components.
Recall that in the initial stage, the loading component traverses
all modules contained in the package, and for each discovered
module, the enumeration component further enumerates all
exported functions as potential entry points. Then in the guided
execution stage with input augmentation, the test case gener-
ation module first examines the testsuites in each module and
synthesizes pairwise test cases that are specifically targeted
towards the identified entry points. Each of these generated
test case is then executed within the VM by invoking the
entry points. Finally, the side effect monitor observes any side
effects caused by prototype pollution. In our ablation study, we
systematically analyze each component in the initialization and
guided execution stages, by removing/substituting each with a
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related variant from previous work (primarily Arteau [4]) to
analyze its impact on the overall detection capability.

1) Components in Initial Stage: In this scenario, we explore
how the initialization of a package under inspection affects
Bullseye’s results. Both the loading and the enumeration
components may influence the detection outcomes, as they
determine the number of modules discovered, as well as the
number of entry points used for testing within each module.

Therefore, we design the following experiment, in which
we modify Bullseye to create the following variants: (1) in
Bullseye s eauroads W€ replace only our loading component
with that of Arteau. (2) in Bullseye, coupnums W€ T€place
only our entry point enumeration component with that of
Arteau. (3) in Bullseye aumi» W€ replace both components
(loading and enumeration) with the corresponding ones from
Arteau. Note that Arteau’s tool is not modularized and has a
high degree of implementation coupling, which makes direct
component replacement difficult. We thus adapted Arteau’s
loading and enumeration strategies within our system to the
extent possible. Additionally, to gain more insights into how
our loading and enumeration components enhance our test
coverage, we performed another experiment: for the vulnerable
packages discovered by each variant, we executed only the
initialization stage and recorded the number of modules and
entry points reached by that variant.

The results from these variants are summarized in Table
In both the high-download and low-download datasets, Bulls-
eye outperforms other variants in terms of discovering vul-
nerable packages and identifying exploitable entry points. We
also noticed an unexpected result where the combined variant
Bullseye s yeaumic Yi€lded more exploitable entry points than
the enumeration-only variant Bullseye , .;.,upnum- 10 understand
this discrepancy, we examined Arteau’s enumeration logic
in detail and found that it stems from a compatibility is-
sue: Arteau’s function enumeration cannot effectively traverse
modules that we comprehensively collected from our package
loading component. In terms of the overall enumerated mod-
ules and accessible entry points, our loading and enumeration
components also produced the best outcomes.

2) Components in Guided Execution: In this scenario, we
focus on the input generation and testing strategies used in
Bullseye. Recall that our methodology includes pairwise test
case generation, VM isolation, and side-effect monitoring. To
figure out the contribution of these components, we create
the following variants of Bullseye. (1) In Bullseyey vy, We
remove the VM that isolates the execution of each test
case. (2) In Bullseyey,pw, We remove the pairwise generation
component and rely solely on the fixed inputs used in prior
work. (3) In Bullseye..usg> We replace only the side-effect
detection with Arteau. (4) In Bullseyey vy, nopw> WE remove
both VM and pairwise generation, while retaining our side ef-
fect monitor. (5) In Bullseyey,pw, Areausgs WE r€Move pairwise
generation and replace our side-effect monitoring with Arteau.
(6) In Bullseye u eqypyzzy> We remove all our three components,
and keep Arteau’s fuzzing execution. Table summarizes
our results. It is evident that each of the new components of



Bullseye significantly enhances the detection capability, i.e.,
the use of more components leads to the detection of more
vulnerable packages.

Variant # Vuln. Pkg # Exp. EP  # Module # AEP

Bullseye 290 818 1353 154889

Bullseye s eauload 279 518 298 102422

Bullseye s yeaulnit 193 225 298 12870

Bullseye s cauEnum 58 68 1353 866
TABLE IV

COMPARISON OF BULLSEYE VARIANTS MUTATED IN THE INITIALIZATION
STAGE (FOR ALL 290 VULNERABLE PACKAGES). FOR EACH VARIANT, WE
RECORD THE NUMBER OF VULNERABLE PACKAGES, EXPLOITABLE ENTRY
POINTS (EXP. EP), THE NUMBER OF MODULE PATHS AND ACCESSIBLE
ENTRY POINTS (AEP) DISCOVERED.

Variant # Vuln. Pkg  # Exploitable EP
Bullseye 290 818
Bullseyeyn,ym 283 711
Bullseyey,pw 176 357
Bullseye  causE 164 333
Bullseyeyn,vm. NoPW 163 335
Bullseyenopw, ArteausE 157 317
Bullseye s eauFuzzy 147 291
TABLE V

COMPARISON OF BULLSEYE VARIANTS MUTATED IN THE GUIDED
EXECUTION STAGE (FOR ALL 290 VULNERABLE PACKAGES).

V. RELATED WORK

Several comprehensive studies in recent years have focused
on prototype pollution vulnerabilities. In this section, we dis-
cuss the most relevant ones to our study (see also Appendix D).
Dynamic analysis on prototype pollution. Dynamic analysis
is a runtime-based approach that inspects a program’s internal
state during execution, thereby streamlining the detection of
prototype pollution. As the analysis occurs in runtime mode,
it can naturally capture and interpret runtime semantics, in-
cluding those introduced by dynamic language features. These
semantics are available to access and utilize using JavaScript’s
reflection and dynamic methods. One notable work leveraged
the language’s built-in features to perform dynamic analysis
is the work by Arteau [4]. The work presented a lightweight
dynamic analysis to detect prototype pollution vulnerabilities.
This method invokes functions dynamically with a pre-defined
set of inputs and monitors for signs of prototype pollution.
The approach uses JavaScript’s reflection capabilities to ob-
serve the program’s side effects, checking whether injected
properties propagate into the prototype chain. Arteau detected
prototype pollution vulnerabilities in 15 packages.

Although Arteau [4] mostly avoids false positives by di-
rectly observing execution behavior, it has notable limitations.
The approach employs a list of 12 exploit inputs, defined based
on the signature of functions that are commonly vulnerable to
prototype pollution (e.g., merge, copy, extend). Consequently,
the analysis coverage is restricted to the targets that match
these signatures. Also, since this technique operates as a
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black-box testing, it provides no insight into the location
or specific code responsible for the vulnerability. Zhou and
Gao [30] addressed the limited test coverage in Arteau’s work
by extending the exploit list to 44 (i.e., 32 new exploit inputs).
This extension allowed the authors to discover 65 prototype
pollution vulnerabilities (resulting in 6 CVEs). However, while
this extension improved the false negative rate, the use of fixed
inputs is still a significant barrier for code coverage (e.g.,
where the exploit needs to follow the function signature to
properly execute the vulnerability).

Bullseye builds on the basic idea proposed by Arteau [4]] and

Zhou and Gao [30], leveraging test cases to assess whether an
entry point is exploitable. However, Bullseye’s novel redesign
in various aspects significantly improves detection efficiency,
and therefore, outperforms both of them.
Static analysis on prototype pollution. In static analysis,
the source (or compiled) code of a program is examined
without actually running it. Specifically, it applies abstract
syntax tree (AST), control flow graph (CFG), or a combination
of both, to identify patterns specifically designed for prototype
pollution. Kim et al. [14]] identify such common patterns and
use AST and CFG to check if these patterns are found in
a given package, and then use data flow analysis to track
inputs from attacker-controlled sources (where data enters)
to sensitive sinks (where it is consumed). From a dataset of
30,000 top-downloaded packages, their tool, DAPP identified
75 of them to be vulnerable. Through manual verification,
the authors confirmed 37/75 of those vulnerabilities are true
positives (resulting into 24 CVEs). DAPP is reported to
be efficient—taking 0.35 seconds/package, when analyzed
100,000 packages with 25 computers (Intel 17-47903.60GHz,
16GB RAM)—but fails to analyze 25.68% of the packages.
Similar to DAPP, Bullseye adopts an AST-based static analy-
sis, but limited to the testsuites only, from which we extract
the test cases corresponding to their entry points.

Kluban et al. [15)] designed the framework that automati-
cally crawled Snyk and VulnCodeDB to aggregate functions
with verified prototype pollution vulnerabilities, thereby con-
structing a dedicated vulnerability database. Then they applied
static analysis to match functions under test against the known
vulnerable patterns, for both prototype pollution and Regular
Expression Denial of Service (ReDoS). This framework also
applied static multi-file taint analysis by tracing the dependen-
cies between modules. It detected 290 zero-day cases across
134 packages (from 3,000), with 25 CVEs published.

ObjLupAnsys by Li et al. [16] improved the abstract inter-
pretation by supporting object lookup analysis, in which they
extended the traditional taint tracking to include the taint be-
tween objects and properties as data-flow edges. 48,162 NPM
packages with over 1,000 weekly downloads were crawled and
tested with ObjLupAnsys, with 61 new vulnerabilities were
uncovered, leading to 11 CVEs. Li et al. [17] later consolidated
a suite of tools into ODGen, with ObjLupAnsys serving as
the component specifically designed for detecting prototype
pollution vulnerabilities. Applying ODGen to a broader set of
packages, they identified 19 instances of prototype pollution,



four of which were assigned CVE identifiers. However, this
approach faces scalability issues due to path explosion, a prob-
lem where the number of execution paths grows exponentially
with the size and complexity of the program [11], [30]. A
newer proposal called FAST [11]] resolves the scaling issues in
ODGen, but does not consider prototype pollution as it cannot
be modeled by one taint flow (mentioned by the authors). Note
that our side-effect monitoring is designed to get as close as
possible to the sink location resolution typically achieved by
static analysis tools like ODGen.

Prototype pollution gadget detection. In addition to proto-
type pollution, other studies have also focused on detecting
attack chains associated with prototype pollution. Shcherbakov
et al. [25] proposed an attack chain leveraging prototype
pollution: first, an attacker injects malicious data into untrusted
parts of the Node.js application through prototype pollution;
then a code snippet (gadget), spreads the attacker-controlled
data to a critical security endpoint. The authors therefore
developed Silent-Spring to detect such vulnerabilities. Silent-
Spring employed both static taint analysis to identify prototype
pollution in Node.js packages and applications, and a hybrid
approach combining dynamic and static analysis to detect
the gadget that can spread the injected data from prototype
pollution. With this integrated framework, the authors found 11
universal code snippet in Node.js source code, and manually
exploited eight vulnerabilities in three prominent applications.

Similarly, to identify gadgets in server-side Node.js ap-
plications, which can be chained by prototype pollution,
Shcherbakov et al. [26] developed Dasty that uses dynamic
taint analysis. Driven by the existing testsuites in the packages
under test, Dasty leverages dynamic AST-level instrumentation
to identify potentially vulnerable code flows. As Dasty is
sorely responsible for identifying potential gadgets, the authors
integrated the toolchain of Silent-Spring, which detects pro-
totype pollution. Ultimately, Dasty found that 631 packages
with code flows that may reach dangerous sinks. Through
manual analysis, the authors confirmed and built proof-of-
concept exploits for 49 Node.js packages (with one CVE).
Recently, Liu et al. [[18]] proposed the Undefined-oriented Pro-
gramming Framework (UoPF), which uses concolic execution
with undefined properties as symbols to detect and chain
gadgets in prototype pollution attacks. This approach enables
the discovery of complex gadget chains that cannot be easily
captured by other tools. UoPF detected 25 zero-day gadgets,
five of which were fixed after responsible disclosure.

These tools focus on discovering gadgets exploitable for
prototype pollution attacks; Bullseye can complement them by
identifying prototype pollution entry points and sinks, which
may discover more attack chains.

Testsuite-guided detection. Many developers provide use
case examples specifically designed for entry points within
their packages. These testsuites offer insights for generat-
ing test cases for various purposes. To detect exploitable
gadgets, Cornelissen and Shcherbakov [7] designed GHunter
with customized runtimes (i.e., Node.js, Deno) and the V8
engine. Given a target runtime, GHunter drives it with its own
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testsuites, and performs dynamic taint analysis on it. GHunter
discovered 56 new gadgets in Node.js and 67 gadgets in
Deno. Similarly, Luo et al. [[19] utilized testsuites to automat-
ically generate end-to-end application inputs for vulnerability
validation (covering payloads for XSS, SQLi, and prototype
pollution), employing a trace-guided mutation mechanism
based on concolic execution. They tested 15 Node.js web
applications, and detected 20/26 known vulnerabilities. Both
studies leveraged testsuites to guide their analysis—one to
identify gadgets and the other to locate application-accessible
functions. In contrast, our work employs testsuites as a source
of suitable inputs (i.e., argument values and types) in our
detection of prototype pollution vulnerabilities.

VI. LIMITATIONS

The main limitations of Bullseye include the following.
(1) Incomplete matching of entry points with corresponding
function calls in testsuites: Our current matching technique
relies on pre-defined string patterns, which may lead to false
negatives when path aliases, dynamic imports, or unconven-
tional project structures are involved. This could be addressed
by employing a more generalizable method, such as analyzing
function signatures derived from the codebase, or leveraging
static analysis techniques to more accurately attribute function
calls to the correct module. (2) Missing candidate exploit
generations: Some complex data structures, such as when test
inputs are JavaScript objects with nested properties, are not
handled for efficiency reasons. In those cases, both data and
control might be embedded in object properties, which we
do not down to create fine-grained combinations at the level
of individual properties. (3) Missing sink locations: Bullseye
does not detect all sink locations, primarily due to the reliance
on passing the proxied object as an argument to an entry
point. This strategy fails in cases where the target object is not
explicitly passed, such as when a variable is defined directly
within the function body. This limitation could be addressed
through an instrumented Node.js runtime. (4) Incomplete
cross-reference with historic CVEs: We match entry points and
sink locations with GitHub advisories by comparing function
names and sink paths marked with backticks ( ‘), as commonly
used in MarkdownGuide.org. However, this may miss matches
when advisories are not written in Markdown, especially those
imported from other platforms. This can be addressed by using
commit links from advisories to match patched code lines with
our detected sink locations.

VII. CONCLUSION

Although there is a significant body of work on prototype
pollution vulnerability detection, as evident from our eval-
uation in terms of finding hundreds of zero-days, including
in many highly-downloaded Node.js packages, more research
effort is required in this area. An inherent reason is the
dynamic nature of JavaScript that results into significant
complexities for static analysis. We hope that insights from
the design and evaluation of Bullseye will help future work
in detecting/preventing prototype pollution vulnerabilities. We


MarkdownGuide.org

will make our code and evaluation artifacts available to re-
searchers via https://github.com/Madiba-Research/Bullseye.

VIII. ETHICS CONSIDERATIONS

Our work has obvious ethical implications, as we identify
zero-day vulnerabilities in widely-used software packages,
which may affect many server-side applications that use such
vulnerable packages, and of course, in-turn, users of those
services. We reached out to developers of each vulnerable
package, with all the details of the vulnerabilities (including
the exploits), either through emails or dedicated bug-reporting
platforms; messages are re-sent if no response is received in
3 days. In total, we wait for four weeks before we make the
vulnerability public through a GitHub advisory, and submit
a CVE. One developer (for the package ‘node-opcua-alarm-
condition@2.134.0’) requested for two additional weeks, and
we waited about two months in that case before making the
advisory public. Maintainers of 4 packages also awarded us
bug bounties.

In terms of disclosure timeline, for the 62 CVEs (listed
in the Appendix), 21 were published following an email
notification, with an average of 127 days. For the remaining
41 CVEs—where no email notification was received, we used
the publication date listed on cve.org (which may initially
contain only the CVE ID): the average delay was 106 days.
Only 3 CVEs were published under 60 days: 2 were fixed
soon after our notification, for another, the developer fixed the
issue in a new version (not the reported version). 20 CVEs
were published after 79 days (in batch) for which no developer
responses were received. We resort to a 30-day timeline (from
an initial 90-day timeline), as we observed that CVEs take
long before they are made public, and some developers fix a
bug only after a CVE becomes public. We always allow the
affected developers to take longer if needed, and have received
no objections from developers so far.

Note that some packages are not patched when we make the
vulnerability public, for various reasons: some developers take
months to apply a fix (recall Fig. 3); and some do not want
to fix the bugs as the vulnerable entry points are not listed
in the package documentation (i.e., not expected to be used
by application developers). Attackers may take advantage of
these publicly listed but unpatched vulnerabilities. However,
we believe that application developers using such vulnerable
packages should also be aware of these vulnerabilities, so that
they can find a non-vulnerable alternative—to reduce harm on
their services and users.
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APPENDIX

A. Implementation

Bullseye is implemented in JavaScript, comprising 2940
lines of code. We integrate several key components as fol-
lows. The package setup leverages JavaScript’s import
for dynamic and asynchronous loading of the target pack-
age. To enumerate exported functions, Bullseye applies
Reflect.ownKeys, enabling identification of all entry
functions within the imported package object. Test inputs are
extracted by locating relevant test files within the package. We
curated a list of path patterns to cover all possible locations of
test files in the Node.js packages (e.g., / * */ = {test, spec} *
.Js), based on the observation of 100 Node.js Packages. Then
we use the Node.js library Glob [[10] to match these patterns
in the package’s directory (Table in the appendix). Test
files are parsed into ASTs using Acorn [2], and traversed with
Acorn-walk [[1]] to extract the relevant test inputs for each entry
point.

We rely on Microsoft PICT [20] to effectively produce
exploit input candidates. For each test case, we create a PICT
module with the test inputs and seeds. The PICT module
combines them into a series of exploitable inputs. A PICT
module consists of a set of objects, where in each object we
define the property and its possible values. Thus, we assign the
input’s arguments from the test input and the selected seeds
from Table [I] (i.e., by matching the type) as the “values” of
objects. Meanwhile, we generate the labels that contain the
order and data type of the input arguments, and set these
labels as the “properties” of the objects. This format allows
reassembling the results from PICT into usable inputs. For
instance, for the input (“test”,{},true), we generate the
properties: stringl, object2, boolean3, respectively. Given the
first property, its corresponding value comes from the test
input “test”, along with the type-matched string seeds. The
final object for the first property becomes as: { property:

‘stringl’, values: [ ‘test’,
1.

We use Proxy [23] to intercept the modification attempt
on Object.prototype. Since the global prototype is immutable,
we wrap a Proxy on the prototype of an empty object, then
we modify the set handler in the Proxy to detect if the
function we execute attempts to modify the prototype. If the
modification attempt is detected, we log the stack trace using
JavaScript’s error stack (Error.prototype.stack [21]),
which includes the sink location (i.e., last executed line after
the modification attempt).

Furthermore, we use JavaScript VM [24] to mitigate in-
finite execution loops and unexpected behaviors that might
affect the runtime during the execution. We specifically use
runInContext to test the entry point function with a
timeout threshold of 100 milliseconds. The target functions
are dynamically invoked using Reflect.apply.

To ensure the integrity of the runtime of each package, we
run Bullseye in containers. These containers are dynamically
created for each package in the loop. Instead of using Docker’s
CLI, we use the ‘dockerode’ library to communicate with the
Docker engine through the Docker API. This approach also
improves the efficiency of Bullseye. For each package under
test, our system automatically creates a container based on
an image we prepared with Node.js and dependent libraries
for Bullseye. This container takes the package information as
an input and run Bullseye. The container then listens for the
detection results from Bullseye and records them in a log file.
At the end of the execution (or if a timeout is reached), the
container is removed, freeing up the host’s resources.

We use the package ‘p-limit’ to control parallel execu-
tions between containers. Specifically, we wrap each container
execution in a limit call, ensuring that only a specified
number of containers, defined as an argument, run at the
same time. It also prevents system overload from too many
parallel processes. This concurrency configuration allows us to
manage resource usage effectively while still taking advantage
of parallelism to process multiple packages simultaneously.

B. Manual Analysis of FNs in ODGen and Silent-Spring

We manually checked all 12 FNs from ODGen, and
identified the following reasons for missing them in Bullseye.
(1) Infeasible attack vectors: we identified 8 sink locations in 5
packages that need pre-conditions which are not aligned with
the package’s use cases. They are: ‘class-transformer@0.2.3’,
‘dnspod-client@0.1.3’, ‘draft@0.2.3’, ‘field@1.0.1’, ‘node-
file-cache@1.0.2’. For instance, in the package ‘class-
transformer@0.2.3°, the object ‘payload’ is modified at its
prototype with a new property, which equals the payload itself
(see line 3 in Listing [3] in the appendix); also the ‘toString()’
property in the payload is assigned with an anonymous
function that returns the polluted value. (2) Complex
exploits: we identified 4 sink locations where Bullseye
failed because of multi-step exploits (in packages ‘bayrell-
nodejs@0.8.0° and ‘grunt-util-property @0.0.2”). For example,

‘__proto_ " ]

10https://www.npmjs.com/package/p-limit
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to exploit ‘grunt-util-property @0.0.2°, one need to call the
method addExport as follows (use.addExport ({},
{getClassName: function() { return
"FRAG#15"; }, toString: function() {

return "VALUE"; } });), where the function
getClassName return the payload string that matches
the fragment #15 in Table |Il Bullseye missed the vulnerability
as the exploit is not in the pre-defined fixed inputs, and the
package has no testsuites to help us generate the exploit.

We identified the following reasons for the 40 FNs from
Silent-Spring: complex exploits (23), infeasible attack vector
(7), unknown payload pattern (8), and 4 false positives (1 in
‘deephas@1.0.5’, and 3 in ‘dot-object@2.1.2’). As an example
of the complex exploits, in ‘immer@8.0.0’, the exploit need to
call a function ‘enablePatches’ before running the entry point
with the payload; this multi-step exploit cannot be executed by
Bullseye. Similar to ODGen, we also noticed that 7 reported
vulnerabilities require initializing a property in the global pro-
totype chain, which we cannot find in any relevant test cases.
Arguably, such cases should not be considered true positives
as the prerequisite conditions do not align with a package’s use
cases. Eight vulnerabilities Bullseye failed to detect because of
unknown fragments (i.e., not in our Table . For instance, the
package ‘arr-flatten-unflatten@1.1.4’ is exploitable through the

ekaﬁtunflatten({ "__proto___[polluted]": "yes"});.

C. Prototype Pollution Vulnerability

The flexibility of JavaScript enables developers to create
dynamic features of an object with ease, but this same
flexibility can introduce security challenges when objects
are not adequately protected. Prototype pollution arises from
unsafe manipulation of JavaScript’s prototype chain, exploiting
its dynamic object model. This vulnerability allows attack-
ers to inject or modify properties that can affect all ob-
jects inheriting from the compromised prototype, leading to
privilege escalation, denial of service, command execution,
etc. More concretely, consider the following code fragment:
victim[propl][prop2] = value; the vulnerability occurs when
an attacker can control at least the first property ‘propl’ and
the assigned ‘value’, the two properties ‘propl’ and ‘prop2’, or
all of the three identifiers. In all these cases, the attacker should
control ‘propl’ to supply the keyword __proto__ (a built-in
prototype setter), which makes the object ‘victim’ to expose
the value of its prototype [22]. Then, for the first case (i.e.,
‘propl’ and ‘value’ are controllable), the attacker can alter the
value of ‘prop2’ with an injected value (e.g., ‘iSAdmin’), af-
fecting any object in the program that uses ‘prop2’ in its logic.
The attacker can set (‘__proto__’, ‘true’), which creates the
construct: victim[“__proto__"][“isAdmin”] = true, causing
all objects in the program to get the property ‘isAdmin’
with ‘true’, possibly leading to privilege escalation. The other
case is when the two properties ‘propl’ and ‘prop2’ are
attacker-controllable. In this case, two types of attack can
be launched. First is denial-of-service, in which the attacker
can modify an existing property or method (e.g., ‘toString’,
‘valueOf’), by supplying the name of this method to ‘prop2’

and assign an arbitrary value, which results in the construct:
victim[“__proto__"][“toString”] = 123, potentially render-
ing some part of the program unavailable. The second attack
is Arbitrary Command Execution (ACE), in which the attacker
uses ‘prop2’ to pass a special property name called universal
gadget [25], [L8], [[7]. Such gadgets can be used in a code
execution sink, such as exec, allowing the attacker to inject
an arbitrary command to be executed by the sink [S]].

D. Other Related Studies

Kang et al. [12] use dynamic taint analysis to detect client-
side prototype pollution in websites. Later work [13]] improves
this approach by guiding injected properties into sinks using
values from non-vulnerable websites, and identified 133 new
gadgets, resulting in a CVE. Cassel et al. [6] combine dynamic
taint tracking with type-aware and structure-aware fuzzing to
improve exploit generation for ACE (arbitrary code execution)
and ACI (arbitrary command injection) vulnerabilities in NPM
packages. Their work also resulted in the assignment of a
high-severity CVE. Watcher et al. [29] propose DUMPLING, a
differential fuzzer for JavaScript engines that detects JIT com-
pilation vulnerabilities by comparing fine-grained execution
states between optimized and normal code paths. This method
discovered eight new bugs in the V8 engine. AlHamdan et
al. [3] evaluated the security features of the new JavaScript
runtime Deno, and showed that despite its stricter permission
model, it still suffers from known issues such as ReDoS,
prototype pollution, and permission misuse in its ecosystem.
Bullseye can improve this work for finding more prototype
pollution vulnerabilities, e.g., by integrating our enhanced
side-effect checking oracles.

E. Other Code Listing and Tables

1 const root = require("./class-transformer@0.2.3");
2 const payload = JSON.parse (' {"__proto__": {"
polluted": "yes"}}');

payload.__proto__ .polluted
payload.toString function
return "yes";
Vi
root.classToClassFromExist (payload,
enableCircularCheck: true });

payload;
0 A

NN bW

A
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Listing 3. PoC exploit for class-transformer@0.2.3



Package

CVSS (Severity)

CVE ID

fast-loops@1.1.3
ag-grid-community @31.3.2
ag-grid-enterprise @31.3.2
@ag-grid-enterprise/charts@31.3.2
@agreejs/shared @0.0.1
@cafebazaar/hod@0.4.14
@blackprint/engine @0.9.1
getsetprop@1.1.0
@jsonic/jsonic-next@2.12.1
@almela/obx @0.0.4
@chargeover/redoc@2.0.9-rc.69
@allpro/form-manager @0.7.4
mini-deep-assign@0.0.8
@thi.ng/paths @5.1.62
@chasemoskal/snapstate @0.0.9
@75]b/deep-merge@1.1.1
json-override@0.2.0
@cdr0/sg@1.0.10

203t-utility @0.1.2
@cahil/utils@2.3.2
@ais-ltd/strategyen @0.4.0
@bunt/util@0.29.19
@andrei-tatar/nora-firebase-common@1.12.2
@alexbinary/object-deep-assign@1.0.11
chartist@1.3.0

utils-extend@1.0.8

10 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.8 (CRITICAL)
9.1 (CRITICAL)

CVE-2024-39008
CVE-2024-38996
CVE-2024-38996
CVE-2024-38996
CVE-2024-39017
CVE-2024-39015
CVE-2024-24294
CVE-2024-36575
CVE-2024-38993
CVE-2024-36573
CVE-2024-39011
CVE-2024-36572
CVE-2024-38983
CVE-2024-29650
CVE-2024-39010
CVE-2024-38986
CVE-2024-38984
CVE-2024-36580
CVE-2024-39013
CVE-2024-39014
CVE-2024-39012
CVE-2024-38989
CVE-2024-30564
CVE-2024-36582
CVE-2024-45435
CVE-2024-57077

@intlify/message-resolver @9.1.10 8.9 (HIGH) CVE-2025-27597
@airvertco/frappejs @0.0.11 8.8 (HIGH) CVE-2024-38992
@akbr/patch-into@1.0.1 8.8 (HIGH) CVE-2024-38991
@bit/loader@10.0.3 8.8 (HIGH) CVE-2024-24293
requirejs@2.3.6 8.4 (HIGH) CVE-2024-38998
@apphp/object-resolver@3.1.1 8.3 (HIGH) CVE-2024-36577
uplot@1.6.30 8.2 (HIGH) CVE-2024-21489
dset@3.1.3 8.2 (HIGH) CVE-2024-21529
@apidevtools/json-schema-ref-parser@11.1.0 8.1 (HIGH) CVE-2024-29651
@c3/utils-1@1.0.131 8.1 (HIGH) CVE-2024-39016
@byondreal/accessor@1.0.0 8.1 (HIGH) CVE-2024-36583
@abw/badger-database @1.2.1 7.6 (HIGH) CVE-2024-36581
web3-utils@4.2.0 7.5 (HIGH) CVE-2024-21505
@amoy/common@1.0.10 7.3 (HIGH) CVE-2024-38994
@stryker-mutator/util@8.2.6 7.3 (HIGH) CVE-2024-57085
dot-properties@1.0.1 7.5 (HIGH) CVE-2024-57084
@zag-js/core @0.49.0 7.5 (HIGH) CVE-2024-57079
underscore-contrib@0.3.0 7.5 (HIGH) CVE-2024-57081
xe-utils@3.5.26 7.5 (HIGH) CVE-2024-57074
vxe-table@4.8.10 7.5 (HIGH) CVE-2024-57080
ajax-request@1.2.3 7.5 (HIGH) CVE-2024-57076
eazy-logger@4.0.1 7.5 (HIGH) CVE-2024-57075
node-opcua-alarm-condition @2.124.0 7.5 (HIGH) CVE-2024-57086
cli-util@1.1.27 7.5 (HIGH) CVE-2024-57078
module-from-string@3.3.1 7.5 (HIGH) CVE-2024-57072
@ndhoule/defaults @2.0.1 7.5 (HIGH) CVE-2024-57066
@syncfusion/ej2-spreadsheet @25.2.4 7.5 (HIGH) CVE-2024-57064
utile@0.3.0 7.5 (HIGH) CVE-2024-57065
php-parser@3.1.5 7.5 (HIGH) CVE-2024-57071
expand-object@0.4.2 7.5 (HIGH) CVE-2024-57069
php-date-formatter@1.3.6 7.5 (HIGH) CVE-2024-57063
dot-qs@0.2.0 7.5 (HIGH) CVE-2024-57067
@tanstack/form-core @0.19.5 7.5 (HIGH) CVE-2024-57068
@stryker-mutator/util@8.2.6 7.5 (HIGH) CVE-2024-57085
redoc@2.2.0 7.5 (HIGH) CVE-2024-57083
TABLE VI

VENDOR ARE GROUPED.

17

THE LIST CVES FROM OUR WORK (CRITICAL AND HIGH SEVERITY). NOTE THAT IN CVE-2024-38996, FOUR VULNERABLE PACKAGES FROM THE SAME



Z
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Path Patterns

No. Path Patterns

1 PACKAGE 14 ./
2 . /PACKAGE 15 ..
3 . ./PACKAGE 16 VA
4 ../../PACKAGE 17 ./index. js
5 ./ 18 ../index.qs
6 ./src/x* 19 ./ 1ib/xx
7 ../src/** 20 ../ lib/**
8 ../ ../src/+x 21 ../ .. /1ib/ %%
9 ../src/index 22 ../lib/index
10 ../../src/index 23 ./src/PACKAGE
11 ../src/PACKAGE 24 ../../src/PACKAGE
12 ./1ib/PACKAGE 25 ../1ib/PACKAGE
13 ../../1ib/PACKAGE

TABLE VII

LIST OF PATH PATTERNS USED FOR LOCATING PACKAGE IMPORTS

No. Patterns

1 fnDir || %% || fnName/fnName || *{,.,-}preSuf.{js,coffee,ts,cjs, mjs}

2 fnDir || = || fnName/preSuf{,.,-}fnName || x.{js,coffee,ts,cjs,mjs}

3 fnDir || %% || fnName/packageName || *{,.,-}presuf.{js,coffee,ts,cjs, mjs}
4 fnDir || %% || fnName/preSuf{,.,-}packageName || *.{js,coffee,ts,cjs, mjs}
5 **/packageName || +{,.,-}presuf.{js,coffee,ts,cjs, mis}

[ *x/preSuf{, ., -}packageName || *.{js,coffee,ts,cjs,mjs}

7 {test,Test,__tests__,_ Tests__,tests,Tests, spec, Spec,coffee,Coffee}/**/».{Jjs,cis, mis}
8 *{Test, test, Spec, spec}*.{js,cis, mjs}

9 {test, Test,__tests__,_ Tests__,tests,Tests, spec,Spec}/*.{js,cis, mjs}

10 +»{Test, test, Spec, spec}*.{js,cjs, mjs}

TABLE VIIL
LIST OF GLOB PATTERNS USED FOR LOCATING TESTSUITE FILES IN NODE.JS PACKAGES. NOTATION: ‘FNDIR’: THE FUNCTION PATH CREATED FROM THE
GIVEN FUNCTION NAME, COVERING CASES WHERE THE TEST FILES HIERARCHY ARE DERIVED FROM THE FUNCTION’S PATH (E.G.,
ASSIGN/OBJECT/MERGE.JS IS CONVERTED FROM ASSIGN.OBJECT.MERGE); ‘FNNAME’: THE FUNCTION NAME WITHOUT THE PATH (THE LAST STRING IN
A DOT-SEPARATED NAME), TO COVER CASES WHERE THE TEST FILE IS NAMED AFTER THE LAST NAME IN THE FUNCTION PATH (E.G., MERGE.JS IS
CONVERTED FROM UTIL.MERGE); ‘PACKAGENAME’: THE NAME OF THE PACKAGE; ‘PRESUF’: AN ARRAY WITH THE VALUES: [{T, T}E ST, {s , S}PEC,
{1, I}nDEX, {Cc,C}OFFEE}].

No. Exploit Inputs No. Exploit Inputs

1 BAD_JSON 23 “this.constructor.prototype.test”, {}, “123”
2 BAD_ISON, {} 24 “__proto__test”, “123”, {}

3 {}, BAD_JSON 25 {}. “/__proto__/test”, “123”

4 BAD_JSON, BAD_JSON 26 {}, “/__proto__/test”, “123”, true

5 {}, {}, BAD_JSON 27 “__proto__.test=123"

6  {}{} {}, BAD_JSON 28 “_proto__test”, “123”

7 {}, “_proto__.test”, 123 29 “__proto__[test]=123", {}

8 {}, “_proto__[test]”, 123 30 {}, “constructor/prototype/test”, “123”, “/”
9 “__proto__.test”, 123 31 “__proto__", { “test”: “123” }, {}, true
10 “__proto__[test]”, 123 32 { “__proto__.test™: “123” }

11 {}, “_proto__", “test”, 123 33 { “constructor.prototype.test™: “123” }

12 “__proto__”, “test”, 123 34 {}, [[“__proto__"], “test”], “123”

13 {}, BAD_JSON, {} 35 [[“__proto__"], “test”], “123”, {}

14 {}, BAD_JSON, true 36 {}, [[“__proto__"1, “test”], “123”, true

15 true, {}, BAD_JSON 37 {}, [“_proto__", “test”], “123”

16 {}, true, BAD_JSON 38 {}, [“constructor.prototype.test”], “123”
17 true, {}, BAD_JSON2 39 [“__proto__"], “test”, “123”

18 {}, BAD_JSON2 40 [“__proto__.test™], [“123”]

19 BAD_JSON2 41 {}, [[“__proto__"], [“__proto__"], “test”], “123”
20 “[__proto__]\ntest=123" 42 [“-constructor.prototype.test”, “123”]

21 {}, “constructor.prototype.test”, “123” 43 “filename” —> [__proto__]\ntest="123"
22 “__proto__.test”, {}, “123” 44 “filename” —> [constructor]\ nprototype.test=-<123"

TABLE IX

LIST OF EXPLOIT INPUTS CURATED BY ARTEAU [4]] (THE FIRST 12), AND ZHOU AND GAO [30]. NOTATION: (\n, —>) REFER TO A NEW LINE-SEPARATED
PAYLOAD, AND FILE’S CONTENT PAYLOAD, RESPECTIVELY; (BAD_JSON, BAD_JSON2) REFER TO THE FOLLOWING JSON-BASED PAYLOADS,
RESPECTIVELY: JSON.PARSE (' {"_PROTO__ ":{"TESsT":123}}’) AND
JSON.PARSE (" {"CONSTRUCTOR" : {"PROTOTYPE" : {"TEST":123}}}").
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