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Abstract—We present CTng, an evolutionary and practical PKI
design that efficiently addresses multiple key challenges faced by
deployed PKI systems. CTng ensures strong security properties,
including guaranteed transparency of certificates and guaran-
teed, unequivocal revocation, achieved under NTTP-security, i.e.,
without requiring trust in any single CA, logger, or relying
party. These guarantees hold even in the presence of arbitrary
corruptions of these entities, assuming only a known bound (f )
of corrupt monitors (e.g., f = 8), with minimal performance
impact. CTng also enables efficient certificate validation and
preserves relying-party privacy, while providing scalable and
efficient distribution of revocation updates.

These properties significantly improve upon current PKI
designs. In particular, while Certificate Transparency (CT) [35],
[36], [37] aims to eliminate single points of trust, the existing
specification [36] still assumes benign loggers. Addressing this
through log redundancy is possible, but rather inefficient, limiting
deployed configurations to f ≤ 2.

We present a security analysis and an evaluation of our open-
source CTng prototype, showing that it is efficient and scalable
under realistic deployment conditions.

I. INTRODUCTION

The Public Key Infrastructure (PKI) facilitates the secure
use of public keys. PKI is critical for the security of open,
distributed systems such as the Internet. Typically, a relying
party obtains a public key and validates it using a certificate
signed by a trusted Certificate Authority (CA). The PKI defines
how certificates are issued and revoked (by the CAs) and
validated (by relying parties).

Most deployed PKIs follow the X.509 standard [8], [24].
X.509 certificates are used in protocols such as TLS, SSH,
S/MIME, IPsec, and others. The most common application
of PKI is to secure web and other forms of communication
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over the Internet using the TLS protocol. In particular, web
communication is typically protected using HTTPS, which
runs HTTP over TLS, with the browser acting as the relying
party and validating the server’s certificate. We refer to the PKI
used to secure web communication as Web-PKI. In Web-PKI,
relying parties (browsers) inherently trust a broad set of root
CAs. Each root CA can issue certificates for any domain or
CA, effectively acting as a Trusted Third Party (TTP), either
directly or indirectly, by certifying another CA and facilitating
a certificate chain.

There have been multiple PKI failures [48], [45], [10],
[4]. Typically, an attacker obtains a rogue certificate, i.e.,
a certificate that appears valid to relying parties, contains
a public key corresponding to a private key known to the
attacker, and includes the identifier (e.g., a domain) of a benign
victim entity. The attacker then exploits the rogue certificate
to impersonate the victim, typically as a trusted website.

These failures and attacks motivated numerous proposals
and efforts to improve the security of PKI schemes, including
[46], [16], [41], [29], [54], [5], [62], [52], [53], [40], [19],
[56], [31], [38], [37], [18], [39], [27], [13]. Among these,
Certificate Transparency (CT) [35], [36], [37] stands out as
the only ‘post-X.509’ PKI scheme that has been deployed and
used in practice. The main goal of CT is to make the set
of issued certificates publicly visible (transparent), enabling
detection of rogue certificates, e.g., allowing domain owners
to discover unauthorized certificates issued for their domain. In
principle, this could be achieved by requiring CAs to publish
every certificate they issue. However, a rogue CA could simply
choose not to publish certain certificates.

CT addresses this by introducing public logs operated by en-
tities known as loggers. In CT, a certificate is considered valid
only if it comes with a Signed Certificate Timestamp (SCT),
a signed commitment from a logger to include the certificate
in its public log. This approach ensures transparency even in
the presence of misbehaving CAs. The broader objective of
CT was to eliminate reliance on any single trusted party, a
principle termed the No Trusted Third Party (NTTP) goal [37].
However, CT, as standardized by the IETF in CTv1 [35] and
CTv2 [36], ensures transparency only under the assumption

Network and Distributed System Security (NDSS) Symposium 2026 
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230213
www.ndss-symposium.org



that all certificates are logged by an honest logger [58]. In
other words, neither version satisfies the NTTP goal. If a CA
can be compromised or act maliciously, so can a logger.

CT has been adopted by major browsers, including Chrome,
Safari, and Brave, all of which require that valid certificates
include SCTs. Currently, there are six deployed CT loggers
operated by organizations such as Google, Cloudflare, and
Let’s Encrypt. In addition, 13 organizations run monitors that
help detect maliciously or mistakenly issued certificates. Most
CAs now issue CT-compliant certificates.

In practice, browsers do attempt to ensure security against
rogue loggers, but in a constrained and inefficient way, re-
quiring each certificate to be logged with multiple loggers,
as recommended in CTv2 [36]. Typically, due to overhead,
only two1 loggers are required. While they are chosen from
a set approved by browser vendors, the selection is made
by the (potentially corrupt) CAs, who decide whether to log
certificates with a specific log, limiting the security benefits.
Furthermore, although CT logs are append-only and verifiable
by CT monitors, malicious loggers can still maintain and
present separate logs (i.e., Merkle trees), making CT vulnera-
ble to split-world attacks. Currently, CT does not employ any
mechanism to verify that a logger does not equivocate [36].

Another concern is that, while CT has significantly im-
proved transparency of certificates, CT does not address the
critical area of certificate revocation. Standardized revocation
mechanisms, such as CRLs and OCSP, have been largely aban-
doned by browsers due to performance and privacy concerns.
Today, browsers rely primarily on proprietary mechanisms,
such as Google Chrome’s CRLSets, which typically cover only
a small subset of certificates (see §VII).

Changing the status quo is never easy, particularly when
it involves the Web-PKI, a large-scale system under the
control of various stakeholders. Some might argue that the
current state of Web-PKI is “good enough”, while others
might quickly point out the significant practical challenges
involved in implementing even minor changes. Both criticisms
have validity; however, settling for “good enough” is not a
viable option when it comes to the security of such a crucial
component of our online infrastructure, especially since it is
plausible to transition to a secure, yet performance-oriented
PKI. Recent regulatory developments, such as the EU’s eIDAS
2 [12], which requires browsers to trust government-approved
CAs and limits their ability to remove unsafe or malicious
ones, underscore that the need for a stronger PKI is not merely
a theoretical concern, but a practical necessity.

In response, we present CTng, a Web-PKI design and pro-
totype system. CTng improves security by achieving NTTP-
secure transparency and revocation, while also supporting
efficient certificate validation and ensuring privacy for relying
parties. It allows relying parties to prefetch certificate valida-
tion data, removing reliance on real-time checks. CTng also
improves efficiency and scalability; in particular, clients can

1The exact number depends on factors like issuance date and validity period.
It also varies between browsers.

validate certificates and their revocation status efficiently as
part of their connection to a server, with minimal bandwidth
overhead and without needing to communicate with any other
entities. Finally, the CTng design is evolutionary, preserving
most aspects of the existing PKI, including CT.

CTng expands the role of CT monitors, empowering them
to monitor the logs and efficiently provide the information
required for relying parties to validate certificates. CTng
achieves NTTP-security efficiently: a CA needs only to log
certificates with a single logger, and a relying party needs
only one low-bandwidth interaction with a single monitor to
receive the periodic transparency and revocation updates. This
approach is efficiently implemented using well-established and
widely available threshold signatures, which have open-source
implementations, as essential for successful deployment.

CTng benefits are especially evident in the context of
revocation, where CTng ensures NTTP-secure guaranteed and
unequivocal revocation, allowing monitors to provide timely
updates (e.g., daily or even hourly) to relying parties. By
prefetching this information, relying parties can validate cer-
tificates without depending on additional real-time checks,
avoiding the costly over-provisioning required to handle traffic
spikes. In contrast, current revocation approaches require CAs
or browser vendors to serve requests from arbitrary clients and
CT leaves loggers similarly exposed to peak load conditions.
To further improve efficiency, CTng incorporates the compact
CRV design from [50] to minimize the size of revocation
information distributed to clients.

We present an open-source implementation [25] of two
versions of CTng: a base version (§IV) and an optimized
version with two optional design enhancements that reduce
bandwidth (§IV-D1 and §IV-D2), allowing CTng to support
more monitors and to be resilient to a larger number of faulty
monitors.

Our evaluations (§VI) confirm the practicality and efficiency
of CTng across all entities. On modest hardware, the base
version of CTng with just the broadcast optimization (§IV-D1)
exceeds current global-scale precertificate throughput and sup-
ports 32 monitors while tolerating up to 8 faulty monitors
(f = 8). With the additional erasure encoding optimization
(§IV-D2), performance further improves for higher number of
faulty monitors (f ) . Increasing the number of monitors has
negligible impact on system throughput.

CONTRIBUTIONS:
• We present CTng, an evolutionary extension of the cur-

rent Web-PKI based on PKIX [6] and CT, utilizing well-
established cryptographic primitives and approaches.

• CTng efficiently achieves NTTP-secure transparency and
revocation. In particular, it prevents logger omission
attacks, where a logger fails to include a certificate in
the log within the promised timeframe, and provides a
defense against split-world attacks, where a logger might
present different log views to different clients. Further,
CTng ensures guaranteed and unequivocal revocation
and consequently prevents the Zombie certificate attack,
where a certificate may appear as non-revoked to some
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relying parties after its revocation.
• CTng offers benefits such as efficient certificate val-

idation and privacy for relying parties. In particular,
relying parties do not need to perform real-time sig-
nature validations. CTng is efficient even when using
high-overhead signature schemes, such as post-quantum
signature schemes.

• CTng achieves its security goals. We present a security
analysis that demonstrates its NTTP-security guarantees
for both transparency and revocation.

• CTng is efficient and scalable. We present a performance
evaluation of our open-source implementation, showing
its practicality for realistic deployments.

II. FROM CT TO CTNG

We now provide an overview of the current Web-PKI,
highlighting how CT addresses some of the limitations of the
trusted CA model. We then examine the attacks that remain
possible despite CT and discuss how they are mitigated by
CTng. Table I summarizes these attacks and the corresponding
defenses in CT and CTng, while Figure 1 offers a high-level
comparison of the two systems.

A. Current Web-PKI

CT was introduced to mitigate the risk of misbehavior by
CAs by introducing two new entities: loggers, responsible
for ensuring the transparency of certificates, and monitors,
responsible for auditing these logs to ensure correctness, detect
problematic certificates and help identify rogue or negligent
CAs. Adding these entities has changed the way certificates
are issued and used.

To establish a secure communication channel between a
relying party (i.e., a browser) and a subject (i.e., a server) s, the
subject provides a PKIX certificate to the relying party, which
certifies the public key pks of s. To obtain the certificate,
the subject contacts a CA, which first verifies that the subject
controls s2, and then generates a precertificate, essentially a
PKIX-compliant certificate that includes a dedicated ‘poison’
extension, which prevents it from being treated as a valid
certificate by relying parties, as specified by CTv2 [36].

The CA then submits the precertificate to multiple loggers.
Each logger verifies that the precertificate is PKIX-compliant
and has not been previously logged. If so, it issues a Signed
Certificate Timestamp (SCT), a promise to include the precer-
tificate in its log, implemented using a Merkle tree to ensure
auditability, within the Maximum Merge Delay (MMD).

The CA aggregates the SCTs and, using the X.509v3 exten-
sions mechanism [24], embeds them into the final certificate,
which is then sent back to the subject. Relying parties accept a
certificate only if it includes a sufficient number of valid SCTs
issued by loggers they trust. The certificate issuance process
is illustrated in Figure 1a, steps I.1–I.4.

Periodically, monitors retrieve the newly logged certificates
and the current Signed Tree Head (STH) from loggers and

2CTng, like CT and other PKI schemes, does not mandate how this
validation must be performed.

ensure that: (1) the log is append-only, i.e., all past certificates
are still in the log; and (2) the log is transparent, i.e., all
newly logged certificates that were reported by the logger were
added to the log, and only them. Monitors also analyze the
newly added certificates to detect any possible mis-issuance,
impersonation, or phishing attempts, and may notify affected
subjects. The monitoring process is depicted in steps P.1–P.2.

To revoke a certificate, the subject requests revocation from
the issuing CA. Once revoked, the CA can publish the revoca-
tion status via Certificate Revocation Lists (CRLs) or provide
it via the Online Certificate Status Protocol (OCSP). Browser
vendors periodically retrieve CRLs from trusted CAs and
propagate (select) revocation information to browsers. This
allows relying parties to reject revoked certificates, provided
the relevant revocation data has been supplied to them. CT
does not play a role in the revocation process. The revocation
process is illustrated in Figure 1a, step R.1, and the vendor-
assisted propagation of revocation is shown in steps U.1–U.3.

B. Remaining Web-PKI Attacks and CTng Defenses

We now discuss several attacks that adversaries can carry
out in the current Web-PKI, focusing on threats posed by
different entities within the ecosystem, and compare how
these attacks are addressed by deployed and proposed defense
mechanisms in CT with the defenses of CTng (Table I).

Misbehaving Subjects (Websites): A rogue website can
launch a stealthy corrupt certificate attack by obtaining a valid
but fraudulent certificate, either by deceiving a benign CA or
colluding with a malicious CA. Without CT, this attack could
remain undetected indefinitely. With CT, the attack window is
limited, as the certificate must be publicly logged within the
MMD period and then can be reported by monitors. However,
the effectiveness of CT relies on active monitoring and a timely
response by domain owners. CTng strengthens this defense via
its efficient validation process (§IV-E), which enables monitors
to distribute verified information to relying parties ahead of
time. This removes the need for real-time checks and allows
relying parties to independently validate certificates.

Misbehaving CAs: Although CT provides transparency for
certificate issuance, it does not extend it to certificate re-
vocation. This enables two distinct split-world attacks. In a
stealthy revocation DoS attack, a malicious CA can falsely
but selectively indicate that a valid, non-revoked certificate
has been revoked, causing denial-of-service for the targeted
website since the certificate would be rejected. In a Zombie
certificate attack, a malicious CA can falsely indicate that a
revoked certificate has not been revoked, enabling attackers
who control the corresponding private key (e.g., from a past
compromise) to impersonate legitimate domains. CT offers no
built-in defense against either of these attacks, and existing
revocation mechanisms (CRLs, OCSP) are insufficient due to
CA control over the information these mechanisms rely on,
and the lack of transparency in how proprietary versions of
CRLs are implemented across different browsers. CTng mit-
igates both attacks through its Periodic Consistent Broadcast
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protocol (§IV-D), which ensures that revocation information
is distributed transparently and consistently to relying parties.

Misbehaving Loggers: Loggers in CT are assumed to act
honestly, but this assumption can be violated in two main
ways. In a logger omission attack, the logger can issue
an SCT but never include the corresponding certificate into
the log within the MMD. This prevents the monitors from
discovering the certificate. CT attempts to address this through
SCT auditing mechanisms [51], [26], which are optional and
raise privacy concerns - although Google Chrome audits a
small proportion of SCTs using k-anonymous queries [15]. In
contrast, CTng’s efficient certificate validation allows clients to
confirm that the certificate is indeed logged without relying on
SCT audits or any other real-time queries and without sacrific-
ing privacy. In a logger split-world attack, a rogue logger can
present inconsistent Merkle tree views of its log to different
clients (or at different times), enabling selective suppression
of certificates. Although gossip protocols [44], [43] have been
proposed for CT, they have not been standardized or deployed.
CTng directly addresses this through its Periodic Consistent
Broadcast, ensuring all monitors receive and verify consistent
views of all logs.

Misbehaving Monitors: In CT as deployed, monitors operate
independently, checking logs for suspicious certificates but
playing no active role in verifying logger behavior, particularly
for split-world attacks. A misbehaving monitor may fail to
report suspicious certificates or collude with attackers to ignore
them, an issue that CT does not address. In contrast, CTng
assigns monitors an active, collaborative role: they collectively
ensure log integrity and distribute verified certificate infor-
mation to relying parties. CTng assumes that some monitors
may be arbitrarily malicious and adopts a quorum-based model
(§III-A) that tolerates up to f faulty monitors. A relying party
needs to contact only one monitor to obtain information; a
misbehaving monitor cannot provide incorrect information, it
can at most fail to respond. In that case, the relying party can
try another monitor (see §IV-E) and is guaranteed to succeed
after at most f attempts.

III. CTNG: MODEL AND GOALS

We now describe the CTng system and adversary models,
and present CTng’s security, privacy, and system goals.

A. System and Adversary Models

In CTng, we assume the same five types of entities as in
CT: CAs, loggers, monitors, subjects (websites), and relying
parties (browsers). Each relying party has a set of root (anchor)
CAs and a set of trusted loggers, along with their known public
keys (or certificates). In practice, browser vendors define these
trusted entities.

We assume a computationally-bounded adversary that con-
trols any number of subjects, CAs, loggers, and relying parties,
but only up to f monitors. The adversary gains full control of
these entities, including their private keys. This attack model
allows the adversary to perform any of the attacks listed in
Table I. We assume a majority of benign monitors; that is,

there must be at least 2f + 1 monitors and their connections
should be (f+1)-connected; in particular, each benign monitor
should be connected to at least one other benign monitor.

CTng’s monitors use threshold signatures; for simplicity, we
assume that the distributed generation of the threshold key is
completed before CTng begins running and that the relying
parties know the corresponding threshold verification key.

We assume loosely-synchronized clocks where the drift
between any entity’s local clock C and the real time τ is
bounded by ∆clk at any time. We also assume that communi-
cation between pairs of benign entities is bounded by ∆com.
Together, these assumptions ensure that a benign relying party
can reliably contact at least one benign monitor within the
expected time bounds. For simplicity, we assume that each
logger and CA is monitored by all monitors.

B. Security and Privacy Goals

In [58], Wrótniak et al. formally defined four PKI security
requirements, and analyzed whether these requirements are
satisfied by PKIX and CT under specific assumptions. We
set these four requirements as security goals for CTng, and
include intuitive definitions of these requirements below. For
the formal definitions, see [58].

• G1: Existential unforgeability, i.e., every valid certificate
ψ was either issued by the entity designated as the issuer
of the certificate (ψ.issuer), or was issued by a (rogue)
entity that managed to obtain a valid (but fraudulent)
certificate ψ̂ to a key it controls where ψ̂.subject =
ψ.issuer.

• G2: Accountability, i.e., every valid certificate has a root
CA that is accountable for it (identified unequivocally as
responsible for that certificate).

• G3: Guaranteed transparency, i.e., every certificate ψ
that was logged at a logger ℓ at time t, every benign
monitor that monitors ℓ (prior to t) is aware of ψ no later
than t+∆, where ∆ reflects the maximum delay allowed.

• G4: Guaranteed revocation, i.e., every certificate ψ that
was revoked at time t by its benign issuer, will not be
considered valid at any time after t+∆, where ∆ reflects
the maximum delay allowed for the revocation to be
known.

That said, CTng not only aims to satisfy goals G1-G4,
it also aims to do so under strict model assumptions. For
example, as shown in Table II, both CTv1 and CTv2 satisfy the
guaranteed transparency goal, but only under a weaker model
assumption that loggers are benign (addressed through logger
redundancy). In contrast, CTng assumes a stronger adversary
model in which the adversary can control any number of
loggers3 and up to f monitors.

Because CTng targets a stronger adversary model, we
identified an additional important property not defined in [58],
and we define this property as an explicit goal for CTng:

• G5: Unequivocal revocation, i.e., an attacker cannot
cause some relying parties to consider the certificate as

3For liveness, there needs to be at least one benign logger.
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Attack model Attack (§II-B) CT defense Current defenses

Subject, CA

Stealthy corrupt certificate SCT validation Efficient certificate validation (§IV-E)

Stealthy revocation DoS
Short-lived certificates Periodic Consistent Broadcast (§IV-D)

Zombie certificate

Subject, logger(s)

Logger omission SCT auditing [51], [26] (privacy concerns) Efficient certificate validation (§IV-E)

Logger split-world STH gossiping [44], [43] (not deployed)

Periodic Consistent Broadcast (§IV-D)
Logger split-world or Log-
ger omission

SCTs from multiple loggers (overhead: log and
cert size, validation)

Subject, monitor(s) Monitor omission Use multiple monitors (overhead)

TABLE I: Comparison of CT and CTng defenses against different attacker models and relevant attacks, including: stealthy
corrupt certificate (attacker uses a fake identity to deceive victims), stealthy revocation DoS (non-revoked certificate ‘appears’
revoked to victims), Zombie certificate (revoked certificate ‘appears’ non-revoked to victims), logger omission (a certificate
with an SCT is expected to be in the log, but is not added), logger split-world (the logger presents different views of the log
to different log clients), and monitor omission (monitor does not report a certificate to client). Detailed discussion in §II-B.

X.509 X.509 CTv1, CTv2 CT-VendorRev CT-VendorRev-wAudit CTng
w/CRL w/OCSP [37],[38] e.g., Chrome, Safari Chrome w/Audit[30]

Security & Privacy Goals
G1: Existential unforgeability ✓ ✓ ✓ ✓ ✓ ✓

G2: Accountability ✓ ✓ ✓ ✓ ✓ ✓

G3: Guaranteed transparency ✗ ✗ ✓– 1 ✓– 1 ✓– 1 ✓

G4: Guaranteed revocation ✗ ✗ ✗ ✓ ✓ ✓

G5: Unequivocal revocation ✗ ✗ ✗ ✗ ✗ ✓

G6: Relying-party privacy ✓ ✗ ✗ ✓ ✓– 2 ✓

Systems Goals
G7: Evolutionary design ✓ ✓ ✓ ✓ ✓ ✓

G8: Efficient certificate validation ✓ ✗ ✗ ✓ ✓ ✓

TABLE II: Comparison of relevant (evolutionary) PKI schemes with respect to goals described and discussed in §III. See §VII
for other schemes. Additional comments: 1Both CTv1 and CTv2 assume loggers are benign; however, CTv1 wrongfully states
that loggers are not assumed to be trusted; this statement was remediated in CTv2, which explicitly states the benign loggers
assumption, but suggests logger redundancy. For more information, see [58]. 2SCTs by default, are audited using k-anonymous
lookup. Privacy exposure only if SCT not known to Google (but should be), or if using Enhanced safe browsing.

valid, while other relying parties consider the certificate
revoked.

To understand why unequivocal revocation (G5) is neces-
sary in addition to guaranteed revocation (G4), it is important
to clarify that G4 assumes that the issuing CA is benign.
However, as discussed in §II-B, a misbehaving CA can launch
attacks such as the stealthy revocation DoS attack, selectively
making a non-revoked certificate appear revoked. Since CTng
assumes a stronger adversary model in which the adversary
may control any number of CAs, it is important to also define
the unequivocal revocation goal (G5), which ensures that even
misbehaving CAs cannot carry out such attacks.

An additional concern in PKI design is the risk of compro-
mising the privacy of relying parties. For example, both CTv1
and CTv2 describe an auditing process in which relying parties
can query loggers for an STH and proofs of inclusion (PoI) for
previously received certificates, in order to verify that the SCT

promises made by loggers have been fulfilled. However, this
process can reveal the browsing history of relying parties, since
it exposes the certificates of the websites they visit. As a result,
some relying parties avoid auditing altogether (e.g., Safari),
while others (e.g., Chrome) support auditing select SCTs using
k-anonymous lookup queries. Unfortunately, auditing all SCTs
for all relying parties through this mechanism is not feasible
from performance point of view. A similar concern exists with
the OCSP revocation mechanism [47], which also requires
relying parties to send a request that exposes the certificate
they are validating. Thus, we set the following privacy goal:

• G6: Relying party privacy, i.e., certificates validated by
the relying parties are never disclosed to any third party.

C. Systems Goals
One of the key factors that contributed to the widespread

adoption of CT was the fact that CT was carefully designed
to limit changes within the Web-PKI ecosystem. In general,
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proposals are more likely to be adopted if they extend existing
mechanisms rather than replace them, especially when those
mechanisms are already deployed. Moreover, augmenting an
existing system allows for targeted improvements while pre-
serving components that function well. For example, the clas-
sical PKI mechanisms based on X.509 and PKIX are highly
efficient: certificates are compact, certification requires only
a single signature operation, and basic certificate validation
involves just a few signature verifications with no additional
communication. Therefore, we set the following goal:

• G7: Evolutionary design, i.e., do not introduce new
entities and instead propose reasonable modifications to
the processes of existing entities that support deployment
and facilitate transition from the current system.

That said, some of the currently deployed mechanisms,
e.g., revocation, transparency etc., can be improved. Such
improvements can help mitigate many challenges; for example,
the challenges of scalability and flash crowds, where entities
must provide services to an unpredictable yet large number
of relying parties. This could affect the certificate validation
process, which normally requires real-time operations against
such entities. Thus, we set the following goal:

• G8: Efficient certificate validation, i.e., each certificate
can be validated by relying parties using locally available
data, without requiring any (real-time) requests to other
entities.

IV. CTNG DESIGN

In this section, we first provide a high-level overview of how
CTng addresses the shortcomings of Web-PKI and the changes
it requires. We then detail the design of CTng, focusing
on its core functions: certificate issuance (§IV-B), certificate
revocation (§IV-C), monitoring and broadcasting (§IV-D), and
certificate validation (§IV-E).

A. High Level Overview

CTng introduces changes to the current Web-PKI design
that apply to all existing entities: CAs, loggers, monitors, and
relying parties. However, aside from the changes introduced
for monitors, all other modifications are relatively simple to
implement. Most importantly, they can be deployed alongside
existing infrastructure, allowing for a manageable transition to
CTng. In fact, some of the changes are not mandatory for the
deployment of CTng, and CTng can be initially deployed with-
out them. However, these changes can significantly improve
the efficiency of the system and, therefore, we believe that
they should be considered for deployment, possibly gradually.

The decision to introduce more substantial changes to
the monitors is deliberate. Among all entities, monitors are
the easiest to modify, given their current deployment status,
without disrupting the operation of existing Web-PKI.

We now describe CTng’s design by explaining the changes
to each type of entity. The design is illustrated in Figure 1b,
where the changes with respect to the current Web-PKI are
highlighted in red.

Certificate Authorities (CAs). The process of issuing a new
certificate (I.1–I.4) in CTng remains unchanged from the pro-
cess in CT [35], [36], except for one difference. Specifically,
in CT, the CA receives from the logger, and includes in an
extension in the certificate, a Signed Certificate Timestamp
(SCT), which is an attestation by the logger that the new
certificate will be included in the log. In CTng, the SCTs are
replaced by the CTng extension, which contains four values.
Three of these values are used by relying parties to confirm
that the certificate is indeed logged in log ℓ (see §IV-E): a log
identifier ℓ, a period number p, and a Proof of Inclusion (PoI).

The fourth value in the CTng extension is called the Revo-
cation Number (RN). The RN is used to implement CTng’s
improved revocation mechanism. The CTng design is based on
the efficient design of [50], in which each CA maintains a bit
vector, called the Certificate Revocation Vector (CRV), where
each bit represents the revocation status of a single certificate
issued by that CA; the RN of a certificate is the index of the
bit in the CRV corresponding to that certificate. In the original
CRV design [50], the RN is added by the CA; and, like in other
currently-deployed revocation mechanisms, correct provision
of the revocation information depends on a single entity (the
CA for CRV and ‘classical’ revocation mechanisms such as
CRLs and OCSP, and the vendor for the widely-used OneCRL
and CRLSet).

The revocation process (R.1, R.2 and P.2) in CTng differs:
there is no single party which is responsible for distributing
revocation information. Instead, in CTng, the revocation in-
formation, produced and signed by the CA, is also monitored,
authenticated, and distributed by the CTng monitors. This
avoids delays and failures associated with revocation queries
against the CA, a major problem for CRLs and OCSP, and
prevents revocation equivocation by a faulty CA/vendor; see
§IV-D.

Loggers. Apart from their changed interaction with the CAs
(SCTs are no longer issued), another key difference between
CT and CTng is that loggers no longer maintain a single large
Merkle tree for certificates. Instead, loggers create multiple
smaller Merkle trees, each corresponding to certificates issued
within a specific period. This approach keeps each tree rela-
tively small, reducing the overhead of PoI verification, which
is important since the PoI is part of the CTng extension and
must be verified whenever a certificate is validated. Note that
in CTng, we could have easily integrated the logging functions
with the monitoring functions; the reasons to maintain separate
loggers is mostly for backwards compatibility. Loggers also
reduce the load on the monitor, allowing each monitor to
receive the certificate from a small set of loggers rather than
from many CAs; further savings in communication can be
obtained using the erasure encoding optimization, see §IV-D2.

Monitors. In CTng, monitors no longer merely passively
monitor logs (P.1 and P.2); instead, they actively participate in
overseeing the behavior of loggers by broadcasting the certifi-
cates and STHs they receive from loggers to other monitors
using the Periodic Consistent Broadcast (PCB) protocol (P.5
and P.6), introduced in §IV-D. The PCB protocol ensures that
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Fig. 1: High-level comparison of CT and CTng. I - Issuance, R - Revocation, P - Periodic Consistent Broadcast (Monitoring
and Broadcasting), U - Update. In the CTng design, illustrated in Figure 1b, we marked in red the changes from the CT
design. This graph only presents one possible deployment scenario where the relying party fetches all updates directly from
the monitors.

all monitors maintain a consistent view of the logs, which
enables them to provide verified periodic updates to the relying
parties. PCB also allows benign monitors to generate a Proof
of Misbehavior (PoM) against any logger that either fails
to provide updates in a timely manner or sends conflicting
information (i.e., equivocates), and to ensure correct operation
in spite of possible faulty monitors. In addition to retrieving
the certificates and transparency information (STHs) from the
logs, monitors also retrieve revocation information directly
from the CAs (P.2), allowing the monitors to efficiently and
securely provide relying parties with up to date revocation
information.

Relying parties. In CTng, a relying party periodically re-
trieves the transparency and revocation updates that were
threshold-signed by the monitors (U.1 and U.2). These can be
obtained directly from the monitors and can also be cached and
served by ISPs or vendors, as they are third-party verifiable.
The updates, alongside a CTng-compliant certificate that the
client receives during a TLS handshake, allow the client
to immediately validate the certificate, in particular, validate
that the certificate was logged and was not revoked, without
requiring any real-time interactions with the CA, the logger,
or the monitors (see §IV-E).

We now provide more details on each of the CTng mecha-
nisms.

B. Issuing and Logging Certificates
For an issuing CA I to generate a certificate for a subject,

I first generates and sends a precertificate with a Revocation

Number (RN) to a logger ℓ4. The RN is a unique sequential
identifier5 that maps a certificate to a revocation status bit in
the CRV maintained by I .

Let tℓ denote the time on ℓ’s clock when ℓ receives the
precertificate. The logger ensures that the precertificate is valid
and not already in the log, then adds it to a list of pending
precertificates to be logged. Periodically, when the time on ℓ’s
clock is tSTH

ℓ (p) ≡ p·MMD+2·∆clk, logger ℓ computes the
head (digest) of the Merkle tree whose leaves are the pending
precertificates, each augmented with the RN. Since we bound
the maximum clock drift to ∆clk (see §III), in the worst case,
an entity’s clock may run up to 2·∆clk ahead of another entity.
Therefore, by waiting an additional 2 ·∆clk, we ensure that all
benign monitors are ready to receive the update for the same
correct period (all benign monitors have entered the pth INIT
state, see §IV-D).

We adopt the terminology of CT [36] for the digest of the
Merkle tree, referred to as the Signed Tree Head (STH). For
period p and logger ℓ, we denote it as STHp

ℓ , defined as:

STHp
ℓ = (p, ℓ, head, size, σ) . (1)

where size is the number of precertificates and σ is ℓ’s signa-
ture over the encoding of the other fields: p || ℓ || head || size.

4In CTng, it normally suffices for the CA to use a single logger; the CA
can quickly detect if the logger fails to add the precertificate to its publicly
available log and, in this rare event, switch to a different logger.

5Certificate serial numbers, while also unique, are generated randomly and
therefore cannot serve as efficient indices for revocation lookups.
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The logger ℓ then sends STHp
ℓ to I as well as a PoI for

each of the precertificates sent by I . This allows CAs to
generate a CTng-compliant certificate, i.e., a certificate which
includes the PoI of the certificates after validating the PoI
against STHp

ℓ . Logger ℓ will also send STHp
ℓ and all the

precertificates included in STHp
ℓ to all the monitors.

Similar to the CT logger split-world attack discussed in
§II-B, rogue loggers in CTng could present different STHp

ℓ

values to the CA and to the monitors, causing certificates
issued by the CA to be considered invalid by the relying party.
To prevent a logger from indefinitely delaying the issuance
process, the CA should periodically obtain either (i) the STHp

ℓ

threshold-signed by the monitors or (ii) a Proof of Misbehavior
(PoM; see §IV-D) against the logger, similar to how relying
parties prefetch updates from monitors (see §IV-E). If a PoM
is available, or if the monitor threshold-signed STHp

ℓ does
not match the STHp

ℓ previously received from the logger, the
CA should immediately re-log its issued certificates with a
different logger. In the case of a mismatch, the CA should
also forward the STHp

ℓ received from the logger to at least
f + 1 monitors to report logger equivocation.

C. Revoking Certificates

The CTng revocation process is initiated by the issuing CA
I , usually upon request to revoke the certificate by its subject
(the domain owner), and is based on the Certificate Revocation
Vector (CRV ) design of [50]. The vector CRV p

I is maintained
by I and last updated in period p. It contains one entry for each
certificate issued by I , with all entries initially set to 0 (not
revoked). To mark the revocation of a certificate ψ, the CA
sets CRV p

I [ψ.CTng.RN ] = 1, where ψ.CTng.RN denotes
the revocation number of ψ, included in its CTng extension.

Similarly to how the logger informs the monitors period-
ically, the CA also informs the monitors about revocations
periodically; that is, the CA sends these updates whenever its
clock shows p ·MMD+2 ·∆clk for an integer p > 0. I first
computes its ∆CRV for period p, denoted ∆CRV p

I , as:

∆CRV p
I = CRV p

I ⊕ CRV
p−1
I (2)

Then, I generates a Signed Revocation Hash (SRH), which
contains I’s signature over the revocation status of the cer-
tificates issued by I . Let h denote a Collision Resistant Hash
Function (CRHF)6; the SRH of CA I for MMD period p,
denoted as SRHp

I , is defined as:

SRHp
I = (p, I, h(CRV p

I ), h(∆CRV
p
I ), σ) (3)

where h(CRV p
I ) and h(∆CRV p

I ) are the CRHF outputs on
CRV p

I and ∆CRV p
I respectively, and σ is I’s signature over:

p || I || h(CRV p
I ) || h(∆CRV

p
I ). Finally, I will send both

the SRHp
I and the ∆CRV p

I to all the monitors.

6For simplicity, we show the design using a keyless CRHF, as done by the
CT specifications, including in its Merkle tree. Of course, this is secure only
under the random oracle model. It is easy to adjust the design for security in
the real model, by using a keyed CRHF (also referred to as Any Collision
Resistant (ACR) hash function).

Init

Precommit

PostcommitPoM Done

when m.clk = tInit
m (p)

start timer tu
start aPoM counter ctrA
start partial sig counter ctrP

c1 : conflicts detected
generate cPoM

a4 : ctrA = f + 1
generate aPoM

a4 : ctrA = f + 1
generate aPoM

a4 : ctrA = f + 1
generate aPoM

c1 : conflicts detected
generate cPoM

a2 : tc timeout
generate partial aPoM & send to other monitors

ctrA++

a3 : new partial aPoM received
send the partial aPoM to other monitors

ctrA++

e3 : new partial sig received
send the partial sig to other monitors

ctrP ++

e3 : new partial sig received
send the partial sig to other monitors

ctrP ++
a3 : new partial aPoM received

send the partial aPoM to other monitors
ctrA++

a1 : tu timeout: No valid STH
generate partial aPoM & send to other monitors

ctrA++

e1 : first valid STH received
send STH to other monitors

start timer tv
start timer tc

e2 : tv elapsed ∧ validated certs against STH.head
generate partial sig & send to other monitors

ctrP ++

a3 : new partial aPoM received
send the partial aPoM to other monitors

ctrA++

e4 : ctrP = f + 1
generate threshold sig

a3 : new partial aPoM received
send the partial aPoM to other monitors

ctrA++

c1 : conflicts detected
generate cPoM

a4 : ctrA = f + 1
generate aPoM

Fig. 2: State diagram of a monitor m running the PCB protocol
in period p to process transparency updates from a logger.
Green represents the processing of timely and valid STH,
which must come with the corresponding set of certificates.
Orange represents misbehavior accusations. Red represents
the response when misbehavior is proven. Dashed transition
represents one that may not occur within the same period.
Revocation updates from CAs are handled basically in the
same way, simply referring to CRVs and corresponding SRHs
instead of to STHs.

D. Monitoring and Periodic Consistent Broadcast (PCB)

Each monitor m, wakes up periodically7, whenever its clock
value is tInitm (p) ≡ p ·MMD for integer p ≥ 0. At this time,
the monitor begins to process the STHs and precertificates sent
to it during this period by the loggers, as well as the SRHs
and ∆CRV s sent to it by the CAs. We refer to this process
as the Periodic Consistent Broadcast (PCB) protocol.

The goals of the PCB protocol are: (1) to validate receipt
of a valid STHp

ℓ and corresponding precertificates from each
logger ℓ, and to produce a threshold-signed version of the
STHp

ℓ , denoted as STHp
ℓ,M , which is identical in every field

7We could instead use different periods for different pairs of monitor and
logger/CA to reduce peak load. The modifications are simple but result in
some ‘writing clutter’ (and a bit additional delay), so we simplify by using
the same periods for all.

8



except that its signature field STHp
ℓ,M .σ contains a joint

signature by at least f + 1 monitors, allowing validation by
relying parties; (2) similarly, to validate receipt of a valid
SRHp

I and the corresponding ∆CRV p
I from each CA I , and

to generate SRHp
I,M , signed jointly by f+1 monitors; and (3)

to identify any loggers or CAs that send invalid or no periodic
updates, and to generate a corresponding Proof of Misbehavior
(PoM).

The operation of the PCB protocol in each monitor is
defined by a distinct state machine for every origin (logger
or CA); see Figure 2. Since the PCB protocol handles both
transparency and revocation information similarly, we focus
on the process for handling the STHs and precertificates from
a single logger, denoted ℓ, during a single MMD period p. The
processing of the SRHs and CRVs is similar.

The monitor wakes up for period p, and enters the INIT
state, when its local clock value is p ·MMD. Since the clock
drift is at most ∆clk, monitor m wakes up during the real-
time interval [p · MMD − ∆clk, p · MMD + ∆clk], which
is before the time when a benign logger would send the STH
and precertificates of period p to all monitors (see §IV-B). This
means that the monitor will already be waiting for the STH
and precertificates before they arrive from a benign logger.

Upon receiving the (first) valid STH, either from the logger
or from another monitor, m sends that STH to the other mon-
itors and transitions from the INIT state to the PRECOMMIT
state. By forwarding the STH, m helps mitigate potential
attacks in which it receives the STH, but some other benign
monitor does not.

The INIT state also handles the case where the benign
monitors, and in particular benign monitor m, do not receive
the STH in a timely manner. When the PCB state machine
starts, a dedicated timer for tu seconds is begun, where8:

tu ≡ ∆com + 4 ·∆clk (4)

If the tu timer times out, i.e., when m’s clock reaches
p ·MMD + tu, then m signs a partial accusation Proof of
Misbehavior (partial aPoM) against logger ℓ and sends it to
the other monitors as part of event a1. If there are f+1 or more
benign monitors that generate such partial aPoM against ℓ, i.e.,
that did not receive the STH from ℓ before tu expired, then
each benign monitor will receive at least f +1 partial aPoMs
against ℓ. Each time a new partial aPoM against ℓ is received,
event a3 increments a counter. When the counter reaches f+1,
event a4 is invoked, namely, monitor m computes an aPoM,
denoted aPoMM , jointly signed by at least f + 1 monitors,
all stating that logger ℓ is faulty. Then, m transitions to the
POM state, as there is no need to continue processing updates
from logger ℓ that was attested as faulty.

A rogue logger can also send different (conflicting) STHs to
different monitors. This case is handled by the PRECOMMIT
state. Let tPre

m denote the time on m’s clock when it enters
the PRECOMMIT state. The PRECOMMIT state has two main

8To understand why we use this value of tu, see the correctness analysis
(Claim 2 in §V-A).

goals: to collect the set of precertificates corresponding to the
STH and to detect an attack in which a rogue logger sends
two conflicting STHs. A conflicting STH pair constitutes a
collision Proof of Misbehavior (cPoM); if such a collision
occurs, m immediately transitions to the POM (error) state (as
part of event c1). If m reaches the PoM state as the result of a
cPoM, m must also sign and collect f + 1 partial signatures9

over the logger and the period number10, similar to an aPoM.

To make sure that m will not sign one STH while another
benign monitor signs a different STH, m transitions from the
PRECOMMIT state to the next valid state, POSTCOMMIT, only
after receiving the set of precertificates corresponding to the
STH (see §IV-D1) and after its clock shows tPre

m + tv . The
value of tv depends on the connectivity among the monitors;
if all monitors are directly connected, then tv = 2 · ∆com,
and in general, tv = 2 · ∆com · dM , where dM is the
diameter of the (f + 1)-connected monitor network. This
ensures that when m transitions to POSTCOMMIT, all other
monitors have received the same STH, preventing the case that
two benign monitors move to POSTCOMMIT with different
STHs. The PCB protocol allows some benign monitors to
move to POSTCOMMIT and others to terminate with a PoM, as
long as all benign monitors that reach POSTCOMMIT agree on
the same STH. This behavior does not introduce a vulnerability
in CTng; the rogue logger would be known to all benign
monitors before the end of next period, and therefore also
to all relying parties.

A rogue logger could also fail to send the set of precertifi-
cates corresponding to the STH. Monitor m detects this if it
does not receive all precertificates by tPre

m +tc, where the timer
tc is set to tc = ∆com. Benign loggers send the precertificates
together with the STH11, so they should arrive no more than
∆com after the STH. Upon such detection, m signs and sends
a partial aPoM to the other monitors, since it has determined
that ℓ is rogue (event a3). Monitor m transitions to the POM
(error) state if it collects f + 1 validly signed partial aPoMs
from different monitors against ℓ (event a4).

When m transitions to POSTCOMMIT, it signs the STH
using its share of the threshold signing key distributed among

9Suppose that the relying parties would take into account the cPoM even
without a threshold signature. A rogue monitor could send a cPoM to some
benign relying party RP , while not sharing the cPoM with benign monitors
or with other relying parties. Note, however, that if RP would share the cPoM
with the other monitors, this will cause global awareness that the logger is
corrupted; in fact, if the exchange between monitor and RP is signed, this
will also show that the monitor is corrupt. Attackers may prefer to avoid such
exposure. The threshold signature on the cPoM ensures the detection of such
attacks without depending on the relying party to submit the cPoM.

10The threshold signature only needs to cover the logger identifier and the
period number, since a rogue logger could issue more than two conflicting
STHs, thereby disrupting the partial signature collection and verification
process.

11This holds under the simplifying assumption that all loggers provide STHs
and certificates directly to all monitors. A slightly larger tc may be needed
if, for efficiency, STHs and certificates are relayed between monitors; details
omitted.
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the monitors; we refer to this as a partial signature (sig).12

Monitor m gathers the partial signatures it receives in event
e3, and the PCB completes successfully (transitions to DONE)
once m is in the POSTCOMMIT state and has collected f + 1
partial signatures and therefore has a complete threshold
signature (event e4).

Monitor m could transition to the POM error state either
from the POSTCOMMIT state or from the DONE state. This
transition is done once m detects a conflicting STH, or collects
f + 1 valid aPoM messages signed by different monitors. In
any case where m does not reach DONE, it will transition to
the POM error state with a valid Proof of Misbehavior (either
an aPoM or a cPoM) against the rogue logger ℓ.

If m does reach the accepting DONE state, it will hold
the threshold-signed STH, denoted STHp

ℓ,M , along with the
corresponding precertificates.

Monitor m follows a similar process to obtain the
valid threshold-signed revocation information (∆CRV p

I ) and
SRHp

I,M , or a PoM against a rogue CA.
Monitor m provides the STHp

ℓ,M , ∆CRV p
I , and SRHp

I,M

to relying parties via either periodic prefetching (§IV-E) . It
also informs any subscribing entity x (e.g., a domain owner)
of any logged certificate that matches the profile to which x
subscribed (e.g., domain names identical or similar to those
owned by x).

We next describe two (optional) optimizations to the PCB
protocol. The first is a simple broadcast optimization, that
reduces the bandwidth usage between monitors, and is used by
our implementation by default (§IV-D1). The second optimiza-
tion, described in §IV-D2, uses erasure encoding to further
reduce the amount of data sent from a logger to each monitor
to 2·|certs|

n bytes (where n is the total number of monitors).
Our evaluation shows mixed results for this optimization,
therefore we did not make it the default in the implementation.

1) The Broadcast Optimization

In the PCB protocol as described so far, monitors immediately
share the (validated) precertificates they received with other
monitors. This would result in transmitting duplicate precer-
tificates between monitors, leading to unnecessary bandwidth
consumption. To mitigate this, our implementation deploys, by
default, the following simple optimization:

• After a monitor receives from the logger the complete,
valid set of precertificates for the current period, it notifies
its neighbors.

• A monitor receiving the first such notification, sends back
a request for precertificates and begins a timer (for at least
2 ·∆com).

• If the timer expires and the monitor still did not receive
a complete, valid set of precertificates corresponding to

12Any threshold signature scheme can be used, e.g., [49]. In fact, it suffices
to use any public key signature scheme, with each monitor generate its own
signing and verification key pair; a set of f + 1 validly-signed signatures
by different monitors over the same message is considered a valid threshold
signature.

the STH, then the monitor sends requests to any monitor
that informed it of the availability of a complete, valid set
of precertificates. Until then, the monitor does not send
such requests to other monitors (except the first one), but
does keep a record of the monitors from whom it received
notification of available precertificates.

• A monitor that receives a request for precertificates,
responds with the (complete, valid) set of precertificates
it had received.

• Once the timer expires, the monitor will change its opera-
tion and immediately ask for the precertificates whenever
it receives notice of their availability at a peer monitor.

This approach eliminates redundant fetches and sending of
precertificates while still ensuring prompt delivery.

2) The Erasure Encoding Algorithm (EEA) Optimization

In the EEA optimization of the PCB protocol, loggers and
CAs break down the precertificates or compressed CRV data
into k =

⌊
n
2

⌋
data shards13 and generate n− k parity shards,

where n is the number of monitors; each shard, say shard i,
is sent to a corresponding monitor, denoted mi. We referred
to both the data shards and the generated parity shards as the
EEA-encoded shards, whereas only a total of k shards are
needed to recover the original data. Since our model requires
n ≥ 2 · f + 1 (see §III-A), this ensures that the system can
always tolerate f losses.

To ensure the authenticity of the EEA-encoded shards, the
logger/CA constructs another Merkle tree where the n shards
are leaves, computes PoI PoIi for shard i and sends, as
part of the update, to monitor mi, along with the STHp

ℓ

(see Equation 1). The STHp
ℓ .σ field is a signature over

p || ℓ || h(headEEA || head) || size.
The EEA optimization requires a small change to the PCB

protocol as illustrated in Figure 2. Namely, in event e2,
the monitor should reconstruct the precertificate file from k
EEA-encoded shares before validation.

E. Efficient Certificate Validation by Relying Parties

Relying parties with reasonable resources and connectivity
obtain, every MMD, the STHs of that period (from each
logger) as well as the SRHs and ∆CRVs of that period (from
each CA). Every logger and CA known to the relying party
must be accounted for: if a monitor fails to provide a threshold-
signed update for any logger or CA, it must either provide, or
must already have provided, a Proof of Misbehavior against
that entity.

The relying party would then validate the threshold-
signature on these values, ensuring that the values were
validated by (at least) f + 1 monitors—that is, by at least
one benign monitor.

Specifically, for all transparency updates, the relying party
confirms the validity of the threshold signature STHp

ℓ,M .σ

13We initially implemented the EEA version of PCB with k = f + 1 but
k =

⌊
n
2

⌋
performs better under all settings. Results for both K values can

be found in the README file of our code repository [25].
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over the encoding of the rest of the fields, that is, over:
p || ℓ || head || size using the group public key of the
monitors PKM . Similarly, for all revocation updates, the
relying party confirms that SRHp

I,M .σ is a valid thresh-
old signature over the rest of the fields, that is, over:
p || I || h(CRV p

I ) || h(∆CRV
p
I ).

Relying parties should validate cPoMs and aPoMs, ensuring
that each of them is signed by at least f + 1 monitors (over
p || ℓ or p || I , depending on the originator entity type). Each
cPoM should contain two different updates for the same period
and both signed by the same (faulty) logger or CA.

Obtaining the periodic updates can be done either directly
from one of the monitors or from another source; since updates
are threshold-signed and timestamped, their authenticity and
freshness are ensured even if obtained from a source which is
not trustworthy. For example, the information can be down-
loaded from a monitor, validated and then cached and provided
by a browser vendor or the client’s ISP, or distributed as DNS
records; the resource requirements on the monitors would be
minimal.

If any verification fails or if any logger/CA was not ac-
counted for, the relying party considers the monitor or other
source from which it received the update as faulty, and restarts
the process with a different monitor (or other source).

After successful verification, the relying party updates its
local storage with the newly received information. For each
transparency update STHp

ℓ,M , the relying party stores the
logger identifier STHp

ℓ,M .ℓ, the period number STHp
ℓ,M .p,

and the Merkle digest STHp
ℓ,M .head. For each revocation

update (SRHp
I,M and ∆CRV p

I ), the relying party updates the
CRV 14corresponding to SRHp

I,M .I in its local storage:

localCRV [SRHp
I,M .I]← localCRV [SRHp

I,M .I]∨∆CRV
p
I .

The prefetched information allows the relying party to
perform efficient certificate validation as follows. Upon es-
tablishing a TLS connection with a subject (website) that uses
a CTng-compliant certificate ψ, the relying party first confirms
that ψ is PKIX-valid, as per [11], e.g., correctly signed, trust-
anchored, not expired, etc. The relying party then searches
its local storage for the head Localheads[ℓ, p] corresponding
to logger ψ.CTng.ℓ in period ψ.CTng.p and extracts the
precertificate portion Φ from ψ. Then, it computes h(Φ)
and confirms that Localheads[ℓ, p] can be reconstructed from
h(Φ) and ψ.CTng.PoI15. Finally, the relying party checks
that ψ has not been revoked by inspecting its locally main-
tained CRV for the issuing CA ψ.I at index ψ.CTng.RN ,
confirming that: LocalCRV [ψ.I][ψ.CTng.RN ] = 0.

V. ANALYSIS

In this section, we analyze how CTng, with the periodic
prefetch mechanism (§IV-E), achieves the goals listed in §III

14Note that here we use ∨ instead of ⊕ because revoked certificate should
stay revoked.

15Same verification method as the SCT auditing [36], but relying parties in
CTng do not need to rely on the logger to provide the Merkle root and PoI.

against an attacker who controls an arbitrary set of loggers
and CAs, as well as up to f monitors.

A. Timing and Correctness Analysis

We now analyze the timeline of events in CTng, showing
that CTng ensures correctness: issued certificates become
valid (until revoked or expired) within bounded time, and
revoked certificates become invalid within bounded time (see
Figure 3). The analysis provides time bounds, which we also
use in the design of CTng. The analysis is mostly done in terms
of real-time intervals; we denote different real-time values by
adding subscripts and superscripts, as needed, to the symbol
τ . The bound of ∆clk on the clock bias allows us to bound the
real-time when the local clock of an entity shows any given
value, e.g., C, as:

τC ∈ [C −∆clk, C +∆clk] (5)

In particular, let Cp ≡ p ·MMD + 2 ·∆clk for an integer
p ≥ 0, and τ ℓp denote the time when ℓ’s local clock shows Cp.
From Equation 5, we have:

τ ℓp ∈ [Cp −∆clk, Cp +∆clk]

= [p ·MMD +∆clk, p ·MMD + 3 ·∆clk]
(6)

For simplicity, the timing analysis, whose results are sum-
marized by Theorem 1, assumes that the execution of all
entities begins at real-time zero.

Theorem 1. Let I be a benign CA, ℓ be a benign logger
used by I , m be a benign monitor, RP be a benign relying
party using m, and dM be the diameter of the f+1-connected
monitor network. Then:

1) Let Φ be a precertificate issued by I at time τI , and
suppose RP validates the corresponding certificate ψ at
time τRP > τI+2·MMD+4·∆clk+(4+3·dM )·∆com.
Then RP will determine ψ to be valid, provided that ψ
has not expired (i.e. ψ.to ≥ τRP +∆clk) and that ψ was
not revoked by I until τRP .

2) Let ψ be a certificate that I issued (at τI ) and revoked
at time τR (τR > τI ). Suppose RP validates ψ at time
τRP > τR + 2 ·MMD+ 4 ·∆clk + (3+ 3 · dM ) ·∆com.
Then RP will determine ψ to be invalid.

Proof. We only present the argument for the first statement;
the second statement follows similarly as shown in the full
version of the paper [30].

The proof is by a series of claims, following the events
in the handling of Φ (and ψ) and the timeline as illustrated
in Figure 3. In Claim 1, we analyze the period when ℓ handles
and forwards Φ (and the corresponding STH) issued at τI . In
Claim 2, we derive the bound for the update timer tu and
show that the tu timeout event will never happen if the logger
is benign. Claim 3 shows that all benign monitors move to
DONE state, with a complete threshold signature over the STH,
before τI +MMD + 2 ·∆clk + (2 + 3 · dM ) ·∆com.

Finally, let ψ be the full certificate corresponding to the
precertificate Φ, and, in particular, containing the PoI gener-
ated by the benign logger ℓ. Claim 4 completes the proof, by
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τ ℓp
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τPrecommit
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p,m

All benign monitors moved
to DONE, with a threshold

signature over the STH

τRP

Relying party
validates ψ

Claim 3 part 1 shows this is bounded by MMD + 2 ·∆clk + 2 ·∆com

Claim 3 part 2 and 3 show this is bounded by MMD + 2 ·∆clk + (2 + 3 · dM ) ·∆com

Claim 4 shows this is bounded by 2 ·MMD + 4 ·∆clk + (4 + 3 · dM ) ·∆com

Fig. 3: Timeline visualizations used in the proof of correctness (Theorem 1).

showing that the benign relying party RP will consider ψ as
valid at time τRP > τI+2·MMD+4·∆clk+(4+3·dM )·∆com,
provided that ψ.to ≥ τRP +∆clk and that ψ was not revoked
by I until τRP .

Claim 1. Let τI denote the time when the CA sent Φ to logger
ℓ and let p denote the period number included in the first STH
which ℓ sends after receiving Φ. Then τ ℓp ∈ [max{τL, Cp −
∆clk}, Cp +∆clk] and p ∈ [p0, p1], where:

p0 ≡
⌈
τI − 3 ·∆clk

MMD

⌉
, p1 ≡ 1 +

⌊
τI −∆clk +∆com

MMD

⌋
(7)

Argument: Immediately from the bound ∆com on the delay,
we know that logger ℓ receives Φ during [τI , τI +∆com]; let
τL denote the time when ℓ received Φ. From the design, we
know that ℓ sends the next STH when its clock shows Cp, with
the STH containing the period number p. From Equation 6
and the fact that this is the STH sent after τL, we obtained
τ ℓp ∈ [max{τL, Cp −∆clk}, Cp +∆clk].

We next show that p ∈ [p0, p1] where p0, p1 are as in
Equation 7.

Since τI ≤ τL ≤ τI +∆com, it follows from Eq. 5 that:

τI ≤ Cp +∆clk = p ·MMD + 3 ·∆clk (8)

Since Φ must be received after the previous STH:

τI ≥ τ ℓp−1 −∆com ≥ Cp−1 −∆com −∆clk

= (p− 1) ·MMD +∆clk −∆com

(9)

From Equations (8) and (9), we can derive bounds for p:

τI − 3 ·∆clk

MMD
≤ p ≤ 1 +

τI −∆clk +∆com

MMD
(10)

Since p is an integer, we have:

p0 ≤ p ≤ p1, defined in Equation 7 (11)

We next show that monitor m will receive STHp
ℓ and Φ

before the tu timer times-out, where tu ≡ ∆com + 4 ·∆clk.

Claim 2. Let τ Initp,m denote the time of the pth INIT in m.
Then:

1) τ Initp,m ∈ [p ·MMD −∆clk, p ·MMD +∆clk].
2) For every period p > 0 and benign logger ℓ, monitor m

receives a valid STHp
ℓ during [τ Initp,m , τ Initp,m + tu], that is,

the tu timeout event (action a1 of the INIT state) is never
invoked for the benign logger ℓ.

Argument: Monitor m begins period p when its local clock
shows p ·MMD, i.e., following Eq. 5, at τ Initp,m ∈ [p ·MMD−
∆clk, p ·MMD +∆clk], which is the first part of the claim.
Equivalently:

p ·MMD −∆clk ≤ τ Initp,m ≤ p ·MMD +∆clk (12)

To prove the second item, we first note that a benign logger
ℓ sends the STH for the pth period, i.e., STHp

ℓ , when its clock
shows p·MMD+2·∆clk, i.e., after real-time p·MMD+∆clk.
From the RHS of Equation 12, this cannot happen before τ Initp,m .

To prove the second item, it remains to show that the STH
is not received after τ Initp,m + tu, where tu ≡ ∆com + 4 ·∆clk.
The latest real-time at which ℓ will send the STH would be
p · MMD + 3 · ∆clk, therefore, m receives the STH at or
before real-time p ·MMD+3 ·∆clk +∆com. By substituting
p·MMD ≤ τ Initp,m +∆clk (LHS of Equation 12) we see that m
receives the STH before τ Initp,m +4 ·∆clk +∆com, as required.

We now bound the times for the different steps of the PCB
protocol in benign monitors, providing us with the desired
bound on the time until the monitors have a valid STH for
certificates issued by benign CAs, using a benign logger.

Claim 3. Let τPrecommit
p,m , τPostcommit

p,m and τDone
p,m denote

the time when benign monitor m enters its pth PRECOMMIT,
POSTCOMMIT and DONE state. Let dM denote the diameter
of the (f + 1)-connected monitor topology. Then:

1) Any precertificate sent to a benign logger ℓ at time τI ,
and the corresponding STH, are received by m at time
τPrecommit
p,m ≤ τI +MMD + 2 ·∆clk + 2 ·∆com.

2) All benign monitors generate their partial signature
over STHp

ℓ and move to POSTCOMMIT at time
τPostcommit
p,m ≤ τI+MMD+2·∆clk+(2+2·dM )·∆com.

3) All benign monitors move to DONE state, with a complete
threshold signature over the STH, at time τDone

p,m ≤ τI +
MMD + 2 ·∆clk + (2 + 3 · dM ) ·∆com.

Argument: Recall that, by Equation 6, ℓ sends the STH at
or before

p ·MMD + 3 ·∆clk
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From Claim 1, we have p ≤ p1, where (by Equation 7)

p1 ≡ 1 +

⌊
τI −∆clk +∆com

MMD

⌋
.

The time τ ℓp at which ℓ sends Φ and the corresponding STH
is therefore not later than

τI +MMD + 2 ·∆clk +∆com.

Hence, we have an upper bound on the time at which monitor
m receives the STH and certificates, denoted τPrecommit

p,m :

τPrecommit
p,m ≤ τI +MMD + 2 ·∆clk + 2 ·∆com.

This proves part 1 of the claim.
In the PRECOMMIT state, the benign monitors wait for tv =

2 · dM · ∆com time for a potential conflicting STH. Such a
conflicting STH will not be received, since ℓ is benign and will
not send a conflicting STH (and the attacker cannot send a fake
yet valid conflicting STH). Therefore, the time τPostcommit

p,m at
which a benign monitor m moves to POSTCOMMIT is at most:
τPostcommit
p,m ≤ τI +MMD+ 2 ·∆clk + (2+ 2 · dM ) ·∆com,

proving part 2 of the claim.
At this point, each benign monitor will generate its partial

signature of the STH, and send it to all the other monitors. Let
τDone
p,m denote the time at which benign monitor m will have

the necessary f+1 partial signatures, and move to DONE; this
would occur within only one more dM ·∆com, i.e., τDone

p,m ≤
τI +MMD + 2 ·∆clk + (2 + 3 · dM ) ·∆com.

Claim 4. Let ψ be the certificate corresponding to the pre-
certificate Φ, both issued by benign CA I using the benign
logger ℓ. Suppose that a benign relying party RP , which uses a
benign monitor m, validates ψ at time τRP > τI+2·MMD+
4 ·∆clk + (4+ 3 · dM ) ·∆com. Then RP will determine ψ to
be valid, provided that ψ.to ≥ τRP +∆clk and that ψ was not
revoked by I until τRP .

Argument: Since ℓ and the CA I are both benign, we know
that ψ will contain a valid PoI for STHp

ℓ .
A benign RP asks for a new STH once every MMD.

Therefore, when it validates ψ at τRP , the RP should already
have requested and received from m all the STHs signed by
the monitors until τRP −MMD− 2 ·∆com− 2 ·∆clk; notice
that we allow here for the (extremely unlikely) case where the
RP ’s clock was behind by ∆clk when it requested the previous
update (including STH) from m, and that it was ahead by ∆clk

at τRP .
From Claim 3, all benign monitors, including m, have a

complete threshold signature of the STH which covers Φ,
allowing successful validation of ψ, by τI + MMD + 2 ·
∆clk + (2 + 3 · dM ) ·∆com. Since τRP > τI + 2 ·MMD +
4 ·∆clk + (4 + 3 · dM ) ·∆com, then, at τRP , the RP should
already have this (signed) STH, and would determine ψ to be
valid.

B. Security and Privacy Goals

Theorem 2. CTng ensures the security and privacy Goals
(G1–G6).

Proof. Due to the length constraint, we only provide here a
high-level argument; for more details, see the full version of
the paper [30].

In [58], Wrótniak et al. showed that both PKIX and CT
satisfy existential unforgeability (G1) and accountability (G2)
by assuming less restrictive assumptions than in §III-A. Since
CTng augments CT and builds upon the core functionality of
PKIX/CT used in [58], we prove in [30], by reduction, that
CTng also satisfies G1 and G2.

CTng achieves ∆−guaranteed transparency (G3) for ∆ =
3 ·dm ·∆com, since a benign relying party considers ψ as valid
only if ψ has a valid PoI in the corresponding STH, which
must be threshold signed by the monitors, i.e. signed by at
least one benign monitor. Once a benign monitor signs the
STH, the monitor relays the STH, and then forwards also the
corresponding precertificates to benign monitors that request
them; so all benign monitors should receive both STH and
precertificates within 3·dm·∆com, assuming an f+1 connected
monitor network.

Theorem 1 shows that every revocation will be known to
every relying party after at most ∆ = 2 ·MMD+ 4 ·∆clk +
(3+3 ·dM ) ·∆com. Based on this, in [30] we show that CTng
achieves ∆−guaranteed revocation (G4).

CTng ensures unequivocal revocation (G5), since any ad-
versary that breaks G5 in CTng is either using an insecure
threshold signature scheme or does not guarantee the models
assumptions described in §III-A.

Finally, CTng obviously preserves relying-party privacy
(G6), because the certificate validation process in CTng does
not disclose any information to any third party.

C. System Goals

G7: Evolutionary design. CTng does not require any
additional entities compared to CT and introduces only modest
changes to the roles and processes of existing CT entities. In
particular, CT only expands the roles of monitors and requires
CA/browser support for the new CTng extension.

G8: Efficient certificate validation. In CTng, the decision
to accept or reject a certificate is made entirely by the relying
party, based solely on information provided with the certificate
or stored locally as shown in §IV-E. As a result, relying parties
are not required to initiate any network communication with
any entities during the validation process, beyond receiving
the certificate itself.

VI. EVALUATION

We begin with a description of our evaluation setup of
the experiments (§VI-A). Then, we evaluate the performance
impact on each entity individually (§VI-B), followed by ex-
perimentally evaluating the performance and scalability of our
CTng prototype implementation as a complete system (§VI-C).

A. Experimental Setup

We implemented a prototype of the PCB protocol [25] in
Go 1.23, with and without the erasure-encoding algorithm
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Asymptotic Overhead System CAs Loggers Monitors

Computation per MMD
CT + CRLset O(Ncpm +Nrpm) O(f ·Ncpm · log(Nc)) O(f ·Ncpm · log(Nc))

CTng O(Ncpm +Nrpm) O(Ncpm · log(Ncpm)) O(Ncpm)

Communication per MMD
CT + CRLset O(f ·Ncpm +Nrpm) O(f ·Nm ·Ncpm) O(f ·Nm ·Ncpm)

CTng O(Ncpm +Nm ·Nrpm) O(Nm ·Ncpm) O(Nm · (Ncpm +Nrpm))

Storage
CT + CRLset O(Nr) O(f ·Nc) O(Ncpm)

CTng O(Nr) O(Nc) O(Ncpm +Nr)

TABLE III: Asymptotic overhead per MMD for CT (as defined in [36]) with CRLset and CTng. Each entry shows the
complexity in terms of key system parameters: Ncpm (number of all new precertificates issued per MMD), Nc (total number
of certificates in all logs), Nrpm (number of all new revocations per MMD), Nr (total number of revoked certificates) Nca

(number of CAs), Nm (number of monitors), and f (security parameter).

Parameter Value Justification
Number of loggers 8 As of January 2025, all publicly usable CT logs are operated by six organizations,

with each organization running 1–3 logs at any given time [1].
Precertificate simulation Random string of size 2000 Bytes Based on [57], where the average size of precertificate is estimated to be 1570

Bytes.
Precertificate workload 400K certs/hr (uniformly dis-

tributed among the loggers)
Cloudflare observed [9] global precertificate throughput of 380K − 390K unique
precertificates per hour in December 2024.

Number of CAs 100 Number of CAs does not have a noticeable impact [50].
Total number of certificates 100 million

Based on [50]. The daily revocation rate was not explicitly stated in [50], so we
confirmed it with the authors.Daily revocation rate 0.02%

Total revocation rate 1%
MMD interval 10 minutes This is the value data-mined from our own experiments, which leaves enough safety

margin across our test suite.
Number of monitors 32 A reasonable upper bound on the number of monitors [2].
Number of monitor faults allowed (f ) 3 Slightly larger than CT’s minimum fault tolerance (2SCTs [22] → f = 1).
Access link capacity 1000 Mbps Standard link capacity.
Topology Star topology Simulates the internet back bone.

TABLE IV: Baseline experiment setup.

described in §IV-D2. We evaluated our prototype using the
Sphere testbed [42], where the test environment consisted of
virtual machines running Ubuntu 22.04, each equipped with
8 cores and 16 GB of RAM. The baseline settings for all
experiments are in Table IV (with justifications for these
choices).

B. Performance per Entity

We analyzed and compared the asymptotic overhead of each
type of entity in CTng with respect to the overheads in CT, and
summarized the results in Table III. The overhead of different
CAs, loggers and monitors may differ widely depending on
their usage; to deal with that, we present the overall overhead
for all CAs, all loggers and all monitors. The overheads will
also depend on the distribution of certificates and revocations
between the different CAs and loggers; for simplicity, our
computations assume the worst case where all certificates are
by a single CA, which is using a fixed set of loggers.

As we detail below, CTng does not introduce undue over-
head for system entities, especially when weighted against the
added security benefits and their existing responsibilities. Each
role remains feasible in terms of performance and operational
complexity. Note also that since CT and CTng rely on the
same types of entities, the incentives to operate a CTng entity

would be similar to the incentives to operate the corresponding
CT entity.

CAs: In both CT and CTng, the computation overhead
per MMD is O(Ncpm + Nrpm), where Ncpm is the number
of all new precertificates issued per MMD, and Nrpm is the
number of all new revocations per MMD. However, since CT
uses log redundancy, its communication overhead per MMD
is O(f ·Ncpm +Nrpm), as certificates need to be logged over
multiple loggers, and the CRLsets mechanism needs to learn
about all newly revoked certificates. In comparison, CTng’s
communication overhead is O(Ncpm+Nm ·Nrpm), where Nm

is the number of monitors, since certificates are logged with
only a single logger, which then sends the SRH and ∆CRV
to all monitors.

The storage requirements in both CT and CTng are O(Nr),
where Nr is the total number of revoked certificates. This is
because CAs do not need to store the certificates they have
issued, but must retain those they have revoked. Although
the storage overhead is asymptotically the same, the CRV
approach used in CTng is significantly more space-efficient,
requiring approximately 1.8 bits per revocation compared to
CRLite’s 6.6 bits, CRLset’s 110 bits, and OneCRL’s 1928 bits
per revocation [34], [50].
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Loggers: The computational overhead for CT loggers
is dominated by the need to update the Merkle tree by
adding, in each MMD, f ·Ncpm new precertificates, where the
factor of O(f) comes from the logger redundancy required.
The computational cost for each precertificate is proportional
to the height of the tree, i.e., log(Nc). The O(f) factor
similarly impacts the communication and storage complexities
of CT. In contrast, in CTng, we avoid the O(f) factor; the
computational cost is mainly due to the need to generate the
PoI for each precertificate. Also, the height of the tree is only
O(log(Ncpm)), since CTng uses separate trees for each MMD
period.

Monitors: The computational and communication costs
for CT monitors (if implemented as the RFC [35], [36]
prescribe) are similar to these of CT loggers. In case of
CT, these are dominated by the need to receive f copies of
each precertificate and to add f · Ncpm new precertificates
to the Merkle tree of certificates16. For CTng, the costs are
significantly reduced since we avoid the need to receive and
handle f redundant copies of each precertificate, and since
the Merkle trees are much smaller (per MMD). CTng has an
additional overhead of also handling revocations; in practice,
the overhead due to revocations is negligible compared to the
overhead of certificates.

The storage requirements of CT and CTng monitors are
the same for issued certificates17. CTng also stores the ∆CRV
identifying newly revoked certificates. Note that Table III does
not explicitly reflect the additional overhead of the activities
that CTng monitors do and CT monitors do not: the PCB pro-
tocol and client prefetching. The reason is that the additional
PCB protocol overhead is dominated by the aforementioned
asymptotic overhead of handling the certificates. Also, clients
can fetch the (signed) data from intermediaries such as CDNs,
ISPs and browser vendors; they do not have to obtain it directly
from monitors.

Subjects (Websites): The changes CTng introduce with
respect to subjects are insignificant in terms of overhead.
Notice, however, that issuing certificates in CTng takes more
time than in CT (see Theorem 1).

Relying Parties: We measured the prefetching method
(§IV-E) for an MMD of 1 day and a standard revocation rate
of 1%, and found that, for CTng, the daily communication
overhead is 249 KB and the storage overhead is 2.33 MB; this
is for the entire set of revocations. In comparison, Chrome’s
implementation of CT with CRLsets incurs a daily bandwidth
cost of 250 KB [34], for only 2% of the certificates.

Next, we measured the per connection communication and
computation overheads. The communication overhead is sim-
ilar; a CT extension with the minimum 2 SCTs is 222 B when
using ECSDA and 594 B when using RSA-2048, while a CTng

16In practice, loggers may maintain multiple Merkle trees.
17Notice that in Table III the storage requirement considers Ncpm and not

Nc, because monitors do not have to store all certificates; of course, some
monitors might store certificates.

extension is 780 B 18 .However, CT requires significantly more
computations to validate a certificate: approximately 25 ms
using RSA 2048 and 50 ms using ECDSA, compared to only
about 0.28µs in CTng. The reason for this significant differ-
ence is the fact that CTng requires only hash computations and
no (real-time19) signature verification, unlike CT, which uses
log redundancy, and each SCT requires a public key signature
verification.

C. Performance and Scalability of the System as a Whole

To evaluate the performance of our prototype, we measured
the impact of several key system parameters on the maximum
convergence time, defined as the duration required for the
last benign monitor in the network to reach the “done” state
described in Figure 2. This state indicates that all transparency
information is fully prepared to be served to a relying party.
The maximum convergence time effectively represents the
smallest MMD that our system can support. In each exper-
iment, we use the base settings from Table IV, except for the
specific parameter being evaluated to assess its impact.

The effect of increasing the number of monitors. In Fig-
ure 4a, we plot the impact of increasing the number of
monitors from 8 to 32. Our results show that CTng can easily
support even a large number of monitors, as the maximum
convergence time for 32 monitors is only 32.77 seconds.
Furthermore, we observe that CTng scales efficiently in the
number of monitors: quadrupling the number of monitors
from 8 to 32 does not result in any noticeable increase in
convergence time; the results are all within our (quite tight)
error margins.

The effect of increasing number of monitor faults allowed
(Figure 4b). Using the baseline setting of 32 monitors, we
experimented with increasing the monitor fault tolerance (f )
from 1 to 8, both with and without the erasure encoding
algorithm. As shown in Figure 4b, CTng performs well under
both configurations, with a convergence time increasing up to
67.11 seconds without erasure encoding, and increasing very
slightly, from 32.51 to 34.51 seconds, with erasure encoding.
We observe that when the number of faulty monitors is small,
the overhead introduced by erasure encoding is not justified;
in fact, the version without erasure encoding outperforms
the encoded version. However, when the number of faulty
monitors exceeds 4, erasure encoding becomes more effective.

The impact of increased workload on loggers (Figure 4c).
Our workload baseline setting uniformly distributes a work-
load of 400 K precertificates per hour across 8 loggers. To
evaluate the impact of increased workload per logger, we

18Assuming an MMD of one day and a precertificate generation rate of
400 K certs/hr [9], the logger’s Merkle tree at the end of the MMD period
would contain approximately 9.6 M leaves (certificates), i.e., each certificate’s
PoI consists of 24 hashes. Assuming the hash function used is SHA-256 and
adding the RN (4 B), the logger ID ℓ (4 B), and the period number p (4 B),
the total size of a CTng extension is 780 B (= 32B× 24 + 12B)

19Relying parties would require a few additional signature verifications
when prefetching that data, but these operations are negligible, since they
are performed once per MMD; also, these operations are done in advance,
rather than during the connection.
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(a) Varying number of monitors.
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(b) Different number of monitor faults allowed.
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Fig. 4: System convergence time measured under four distinct experimental conditions.

performed experiments in which the same total workload was
distributed among fewer loggers. As shown in Figure 4c, our
findings indicate that although fewer loggers introduce a bot-
tleneck, CTng still converges within 75.62 seconds with only
two loggers each handling a workload of 200 K precertificates
per hour.

The impact of increased workload on the system (Figure 4d).
In Figure 4d, we plot the measured convergence time of our
prototype under workloads ranging from 200 K to 1,200 K
precertificates per hour. Our results show that the convergence
time of CTng scales linearly with the overall workload pro-
cessed by the monitor network. Under the baseline workload
of 400 K precertificates per hour, the system converges within
32.77 seconds. Even at a workload of 1,200 K precertificates
per hour, CTng converges within 77.04 seconds. In other
words, CTng maintains a reasonable convergence time even
with a safety factor of three, which is important not only for
accommodating future growth but also for handling additional
overheads that may not be reflected in our experimental setup.

In summary, we have demonstrated that: (1) CTng scales
linearly with the input workload; (2) CTng can support MMDs
in the order of minutes, with a good safety margin; (3) The
convergence time of CTng does not significantly increase due
to an increase in the number of monitors; (4) Most impor-
tantly, with erasure encoding, convergence time increases only
mildly even as the number of tolerated faulty monitors grows.
In contrast, CT incurs substantial overhead when tolerating
additional faulty loggers.

VII. RELATED WORK

Several works focus on extending CT with an auditing
mechanism; some of these also address the privacy risks
associated with auditing. Examples include CT gossip [44],
[43] and CTor [13], which enhance CT by integrating SCT
auditing, STH gossiping, and conflict reporting to detect logger
misbehavior in a timely manner. However, these mechanisms
face scalability challenges as the number of participating
entities grows. Other designs, such as [46], [18], [51], [26],
emphasize privacy-preserving solutions for SCT auditing that
account for the risk of a client’s activity being revealed through
either querying or reporting during the audit process.

Vendor-assisted revocation mechanisms such as
CRLsets [21] and OneCRL [20] attempt to reduce revocation
overhead by collecting and distributing a curated subset
of certificates selected through proprietary policies, thus
eliminating the need for relying parties to fetch large CRLs
from a third party (e.g., CA). However, both adopt a soft-fail
mechanism, under which a certificate is accepted if its
revocation status is unknown [34], and they cover only
a small subset of certificates. Subsequent work, such as
CRV [50] (used in our system) and CRLite [34], improves
encoding efficiency, enabling them to cover all certificates
with reasonable overhead.

Other works focus on ensuring security with robustness to
up to f rogue entities. In COCA [63], certificates must be
co-signed by multiple CAs. ARPKI [5] extends this model
by requiring additional synchronization across servers. A
consensus model for CT logs, presented in [57], prevents
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log split-world attacks but introduces significant overhead.
Furthermore, works such as [28], [3] leverage blockchain tech-
nology to achieve certificate and/or revocation transparency by
completely decoupling these processes from traditional PKI
entities like CAs. However, this approach requires a com-
plete overhaul of the existing PKI system. Later work, such
as [59], [17], takes a more incremental approach. However,
these works’ approach still inherits several blockchain-related
drawbacks.

The PCB protocol builds on the many works on reliable
broadcast and consensus, e.g., [32], [7], [33], [23], particularly
recent efficient designs such as [60], [61], [14]. A custom
design was necessary to meet CTng’s goals, specifically, to
support bounded clock drift and communication delay, and to
provide proofs of misbehavior as shown in §IV-D.

VIII. CONCLUSIONS AND FUTURE WORK

We presented CTng, an evolutionary extension of CT and
the current Web-PKI. CTng is a secure and efficient system
that supports certificate transparency and ensures guaranteed,
unequivocal revocation. It achieves the NTTP goal that orig-
inally motivated CT but has yet to be fully realized. We
experimentally validated that a prototype of CTng has low
overhead and modest requirements for all participating entities.
We analyzed CTng and showed that CTng meets its NTTP-
security and systems goals.

We hope this work contributes to the much-needed im-
provements in the Web-PKI ecosystem, which forms the
foundation for applied cryptographic protocols such as TLS,
and that it encourages further research in this area. In partic-
ular, while we provided intuitive security arguments in §V
and in the full version [30], a complete formal proof of
security for CTng—similar to the proof presented in [58] for
CT/PKIX—remains an important direction for future work.
Furthermore, although our protocol does not require real-time
signature verification, relying parties must still validate one
signature per entity in each MMD. This requirement may pose
challenges for resource-constrained clients, especially when
post-quantum signature schemes are used, highlighting the im-
portance of exploring alternative designs that reduce relying-
party overhead. Finally, our evaluation relies on synthetic data
and virtual machines; assessing the performance of CTng
in geographically distributed deployments with real network
traffic would provide valuable insights into its practicality.
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[58] Sara Wrótniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg. Prov-
able security for pki schemes. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security, CCS
’24, page 1552–1566, New York, NY, USA, 2024. Association for
Computing Machinery.

[59] Alexander YAKUBOV, Wazen SHBAIR, Anders Wallbom, David Sanda,
and Radu STATE. A blockchain-based pki management framework. In
The First IEEE/IFIP International Workshop on Managing and Managed
by Blockchain (Man2Block) colocated with IEEE/IFIP NOMS 2018,
Tapei, Tawain 23-27 April 2018, 2018.

[60] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and
David Tse. DispersedLedger: High-Throughput byzantine consensus on
variable bandwidth networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 493–512, Renton,
WA, April 2022. USENIX Association.

[61] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: Bft consensus with linearity and responsiveness.
In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, page 347–356, New York, NY, USA, 2019.
Association for Computing Machinery.

[62] Jiangshan Yu, Vincent Cheval, and Mark Ryan. DTKI: A New For-
malized PKI with Verifiable Trusted Parties. The Computer Journal,
59(11):1695–1713, 2016.

[63] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. Coca: A
secure distributed online certification authority. ACM Trans. Comput.
Syst., 20(4):329–368, nov 2002.

18

https://github.com/jik18001/CTngV3
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/
https://ssrn.com/abstract=3425554
https://ssrn.com/abstract=3425554
https://golang.org
https://golang.org


APPENDIX A
ARTIFACT APPENDIX

A. Abstract

We implemented and evaluated a prototype of the Periodic
Consistent Broadcast (PCB) protocol in Go 1.23 [55], per-
forming experiments both with and without erasure encoding.
Experiments were conducted on the Sphere Research Infras-
tructure Testbed [42], using Ubuntu 22.04 virtual machines,
each equipped with 8 cores and 16 GB RAM.

B. Description & Requirements

The artifact consists of two components:
1) a minimal example that can be run locally on commodity

hardware to verify the program’s functionality, and
2) the full experimental setup, which includes all required

files and automation scripts for deployment on the Sphere
Research Infrastructure testbed [42]. The Sphere setup
runs on 50 VMs with a total of 396 CPU cores and
792 GB of memory.

C. How to Access

• The source repository with instructions is available at:
https://github.com/jik18001/CTngV3

• A DOI for this release is available at:
https://doi.org/10.5281/zenodo.16999030

• Replicating the experiments requires some familiarity
with the Sphere testbed. A tutorial is provided at:
https://launch.sphere-testbed.net/tutorials

D. Major Claims

Using the code, we have experimentally validated the fol-
lowing claims:

• (C1) Increasing the number of monitors has a negligible
impact on the PCB with the baseline settings (see §A-F).

• (C2) Applying an erasure encoding algorithm improves
overall system performance with higher values of f (see
§A-G).

• (C3) PCB can easily support the current Unique Precer-
tificate Generation rate (≈ 400K precertificates/hr as of
Dec 2024[9], see §A-H and §A-I).

• (C4) PCB scales linearly with increased precertificate
workload (see §A-I).

E. Experiment Setup

Before starting each of the large-scale experiments, reset
the system to the baseline configuration using the following
settings, and then adjust the specific variables required for each
experiment:

The experiment is performed on the control node, to access
the control node, switch to a non-root user on the XDC and
simply run ssh control.

• Modify CTngV3/deter/gen_test.go:
– Set MUD (= MMD) to 600 (seconds).
– Set dmode to either def.DEFAULT or def.EEA.

– Set num_monitors to 32.
– Set mal to 3.
– Set bmode to def.MIN_BC.
– Run go test under CTngV3/deter.

• Modify CTngV3/deter/CTngexp/inv.ini to re-
store the monitor and logger host list back to 32 and
8 respectively.

• Modify CTngV3/deter/CTngexp/ctngv3.yml:
– Set all async values to 620 (seconds).
– Set remote_user to your Sphere username

• Modify CTngV3/deter/CTngexp/redis.yml:
– Set owner to your Sphere username
– Set group to your Sphere project name

• In CTngV3/deter/CTngexp, apply changes across
nodes by running:
– ansible-playbook -i inv.ini redis.yml

• To verify that the changes have been applied to the target
hosts (monitors), SSH into any monitor of your choice,
navigate to the CTngV3/deter folder, and inspect the
contents of detersettings.json to confirm that the
modifications are present.

F. Experiment 1: Varying Number of Monitors

• Repeat the setup as specified in §A-E
• In CTngV3/deter/gen_test.go, set
num_monitors to 8, 16, 24, or 32.

• In CTngexp/inv.ini, adjust the monitor host list to
match.

• Set dmode to the other version and repeat the process
above.

Despite increasing the number of monitors, the convergence
times remain roughly the same in all trials, proving (C1).

G. Experiment 2: Different Number of Monitor Faults Allowed

• Repeat the setup as specified in §A-E
• In CTngV3/deter/gen_test.go, set mal from 1 to

8.
• Set dmode to the other version and repeat the process

above.
To verify (C2), we only need to set mal to a relatively large

value (e.g., mal = 7 or 8) and compare the results of dmode
= def.DEFAULT with those of dmode = def.EEA.

H. Experiment 3: Different number of Loggers

• Repeat the setup as specified in §A-E
• In CTngV3/deter/gen_test.go, set
num_loggers to 2, 4, 6, or 8.

• In the same file, set Certificate_Per_logger to
33332 (2 loggers), 16666 (4 loggers), 11111 (6
loggers), or 8333 (8 loggers).
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• In CTngexp/inv.ini, update the logger host list
accordingly.

• Set dmode to the other version and repeat the process
above.

In this experiment, we vary the number of loggers while
keeping the total workload fixed at 400K precertificates/hr
(putting more pressure on fewer loggers). Regardless of the
number of loggers used, the convergence time of CTng re-
mains much smaller than the MMD, supporting (C3).

I. Experiment 4: Different total precertifiate workload.

• Repeat the setup as specified in §A-E
• In CTngV3/deter/gen_test.go, set
Certificate_Per_logger from to 4167, 8333,
12500,16666, 20834 and 25000 respectively.
Corresponding total workload (in certs/hr) can be
computed as:

MMD/hr× num logger× cert/logger/MMD

• Example:

6 MMD/hr× 8 loggers× 25000 cert/logger/MMD
= 1200K certs/hr

• Set dmode to the other version and repeat the process
above.

Here, we keep 8 loggers but vary the per-logger work-
load. For all Certificate_Per_logger greater than
8333, the total workload will be greater than 400K pre-
certificates/hr. Despite the greater than average workload,
CTng still converges well before the MMD elapses, fur-
ther evidencing (C3). By plotting the results for different
Certificate_Per_logger, we can easily verify the lin-
earity as specified in (C4).

J. Result

The maximum convergence time is the longest convergence
time of all Mi.json files, where i is the monitor identifier.

• Sample File:
https://github.com/jik18001/CTngV3/blob/main/M1.json

• Complete Results:
Available in the paper §4 and at:
https://github.com/jik18001/CTngV3?tab=
readme-ov-file#results
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