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Abstract—In authoritarian and highly surveilled environ-
ments, traditional communication networks are vulnerable to
censorship, monitoring, and disruption. While decentralized
anonymity networks such as Tor provide strong privacy guar-
antees, they remain dependent on centralized Internet infras-
tructure, making them susceptible to large-scale blocking or
shutdowns. To address these limitations, we present MIRAGE, a
privacy-preserving mobility-based messaging system designed for
censorship-resistant communication. MIRAGE uses a district-
based routing scheme that probabilistically forwards messages
based on the high-level mobility patterns of the population.
To prevent leakage of individual mobility behavior, MIRAGE
protects users’ mobility patterns with local differential privacy,
ensuring that participation in the network does not reveal an in-
dividual’s location history through observable routing decisions.

We implement MIRAGE within Cadence, an open-source
simulator that provides a unified framework for evaluating
mobility-based protocols using approximated geographical en-
counters between nodes over time. We analyze the privacy
and efficiency tradeoffs of MIRAGE and evaluate its perfor-
mance against (1) traditional epidemic and random-walk-based
routing protocols and (2) the state-of-the-art privacy-preserving
geography-based routing protocol, using real-world trajectories—
one from pedestrian movement patterns collected in various
urban locations and another consisting of GPS traces from taxi
operations. Our results demonstrate that MIRAGE significantly
reduces message overhead compared to epidemic routing, and
outperforms probabilistic flooding in terms of delivery rate, while
providing stronger privacy guarantees than existing techniques.

I. INTRODUCTION

A rich literature exists on communication systems that try
to protect the confidentiality and anonymity of messages.
Unfortunately, many of these systems run atop centralized
network infrastructure—infrastructure that is vulnerable to
subversion by state-level actors or the technology compa-
nies which operate the infrastructure. For example, Tor [10]
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provides IP-anonymous messaging via a distributed peer-to-
peer routing layer which hides the senders and receivers of
messages. However, Tor’s overlay network is deployed atop
the traditional Internet routing layer. Thus, Tor is vulnerable
to attacks by authoritarian governments who can censor,
surveil, or completely shutdown the parts of the Internet under
government control [1, 23, 28].

In response to these challenges, some private communi-
cation systems leverage human-to-human links to transmit
messages [2, 3, 7, 22]. In these approaches, messages prop-
agate between devices via short-range, peer-to-peer wireless
protocols like WiFi Direct or Bluetooth Low Energy (BLE),
and two devices can only exchange messages when their
associated human owners come into direct physical proximity.
Decentralized message forwarding atop ephemeral point-to-
point links eliminates reliance on centralized routing infras-
tructure, providing robustness against the compromise of that
infrastructure (due to attacker control or to natural disaster [21,
24]). Unfortunately, routing protocols built atop ephemeral,
mobility-induced links may suffer from poor performance. For
example, protocols that rely on epidemic flooding can induce
network congestion, whereas random-walk-based protocols
can suffer from high latency and low delivery rates [3].

To improve the performance of mobile ad-hoc routing,
researchers have proposed forwarding mechanisms that lever-
age knowledge of predictable mobility patterns to guide
message routing [2, 3, 9, 14]. For example, suppose that
Alice encounters Bob and Charlie. Further suppose that Alice
carries a message destined for a location that Bob (but not
Charlie) is likely to visit. Alice can preferentially forward the
message to Bob, such that Bob can deliver the message if he
does in fact visit the message’s destination. By preferentially
forwarding messages to individuals with higher probabilities of
reaching the intended destinations, the routing layer improves
delivery rates while reducing delivery latencies and message
retransmissions.

Although mobility-aware routing improves network metrics,
it significantly undermines user privacy by revealing a user’s
mobility patterns to network-based attackers. For instance, if
an attacker observes that a particular user frequently handles
messages targeted at a specific geographic region, the attacker



may deduce that the user regularly visits that location. Such
inference attacks could enable even modestly resourced adver-
saries to identify people from targeted groups, compromising
user anonymity and exposing those users to significant risk.

In this paper, we introduce MIRAGE, a private, decen-
tralized messaging system that leverages emphemeral point-
to-point radio links to efficiently route messages between
users. MIRAGE’s routing improves upon both epidemic-style
approaches and random-walk protocols by exploiting historical
mobility data collected from the population (§VII-B). For
example, a simulation study of MIRAGE using real-world
human movement data shows that MIRAGE can deliver 15x
the number of messages compared to random-walk protocols,
and provides significantly better scalability (as measured by
the number of concurrent messages in a network) than flood-
ing. However (and importantly), MIRAGE provides provable
privacy guarantees which ensure that a user’s participation
in MIRAGE does not reveal foo much about their individual
mobility patterns, where we quantify a user’s privacy loss
using differential privacy (§1II).

II. OVERVIEW

MIRAGE represents physical space using a map M, parti-
tioned into disjoint districts. The map M can be arranged
in a standard grid pattern (e.g., as shown in Figure 1) or
based on logical geographic divisions such as ZIP codes. Each
district is thus represented as an element of the set M. At any
given moment, each MIRAGE user is located in exactly one
district. Given a message from Alice that is addressed to a
district d € M, MIRAGE attempts to route the message from
Alice’s current district to d. MIRAGE does so by propagating
the message outwards from Alice’s mobile device, using the
ephemeral, point-to-point radio links that individual devices
establish as those devices move through space (and through
each other’s radio communication radii).

Alice models her mobility patterns using a mobility profile
($IID), which is defined as a discrete probability distribution
over the set of map districts M. To construct this profile,
Alice’s device periodically records its current location by
logging the visited district d € M into a multi-set of loca-
tions. Subsequently, MIRAGE categorizes each user’s mobility
behavior by identifying their most frequently visited districts.
These frequently visited districts indicate where a user is
considered an ideal router for messages. Specifically, given
a message m targeted at a district d; within Alice’s set
of frequently visited locations, Alice is considered an ideal
candidate to deliver that message due to her regular presence
in that area.

During a setup phase, users’ most visited districts undergo
randomization to ensure local differential privacy (§VI-A), af-
ter which they are aggregated into a global set G representing
dynamic gossip parameters. This global set captures the high-
level mobility characteristics of the entire user population.
Importantly, because each reported mobility profile adheres
to local differential privacy, the central aggregator need not be
trusted. We provide further details on this setup phase in §VI.
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Fig. 1: An example map M consists of 5 x 5 = 25 districts.
MIRAGE routes messages addressed to a specific district d €
M through nodes likely to deliver successfully. For instance,
a message targeted at district (3, 2) originates in district (1, 3)
and is transferred to a node located in district (2, 0). The initial
broadcaster employs a dynamic gossip protocol with parameter
9(2,0) to determine the number of recipients. A receiving node
(green) in district (2, 0) decides whether to accept the message
based on its private mobility graph. In this graph, an edge
exists from the current district to the destination district if
the user frequently travels between those two locations. To
preserve privacy, some edges may be artificially added (shown
in red) or omitted, introducing uncertainty about the user’s true
mobility patterns. Upon arrival at the destination district (3, 2),
the message is flooded locally to complete the delivery.

The set of dynamic gossip parameters G controls message
forwarding frequency between districts to optimize successful
delivery while minimizing unnecessary transmissions. Specif-
ically, each parameter g4, 4,) € G is an empirical estimate of
the probability that a randomly chosen user in district d; will
subsequently travel to district d;. When a message carrier is
in district d; and propagates a message to nearby users, they
use g(q,,.) to inform how many users to give the message to
ensure a high probability of delivery to its final destination. For
example, if users frequently move from district d; to district
d;, the message may be propagated less while maintaining
high delivery rates.

MIRAGE ensures that users accept and forward messages
only if their private mobility graphs indicate a high likelihood
of traveling between the current location and the message’s
destination district. Specifically, a user accepts a message if
their differentially private mobility graph (§VI-A) contains
an edge from the current district to the destination district
(see Figure 1). The differential privacy guarantees offered by
MIRAGE provide plausible deniability, obscuring whether the
user truly travels between those districts.



III. BACKGROUND

In this section, we review the relevant background informa-
tion on mobility-based routing and differential privacy.

A. Mobility Profiles

A mobility profile p is a discrete probability distribution
over a node’s historical mobility patterns. We let M =
{di,...,d,} be a finite set of partitioned districts. A node in
the network periodically polls their location to obtain a point
d € M and adds it to the multi-set V' of visited districts. The
mobility profile p is therefore the probability mass function:

Wal s
pa)={ V1 AV
0 otherwise

Given mobility profiles and a statistical measure of one’s
likelihood to visit a given district, highly efficient (albeit
blatantly non-private) routing protocols are possible [3]. For
example, user u; may pass a message addressed to district
d to user uy if py,(d) < pu,(d), meaning that user ug
is statistically more likely to deliver the message to district
d than user u;. However, this comparison clearly leaks the
values p,,, (d) and p,,(d) in the clear, allowing any observer
(including the participants themselves) to learn the mobility
patterns of other users.

B. Differential Privacy

In this section, we review the relevant foundations of
differential privacy.

Definition 1 (Differential Privacy [11]). An algorithm M :
X — Y is e-differentially private if for all neighboring inputs
z,x' € X and for all S C Y:

Pr[M(z) € S] < e - Pr[M(z') € S]

Differential privacy imposes a multiplicative upper bound
on the difference between output distributions when computing
statistics on neighboring inputs.

We note that differential privacy is an information theo-
retic guarantee that holds for even computationally-unbounded
adversaries. We can, therefore, precisely reason about an
individual’s privacy risk when their data is included in a
differentially private computation. The following theorems de-
scribe the effect of post-processing and/or performing multiple
differentially private multiple analyses on a dataset.

Lemma 1 (Post-processing). If M is an e-differentially private
mechanism, and A is any arbitrary function, then A(M (x))
is e-differentially private.

Lemma 2 (Basic Composition). If M; is an e-
differentially private mechanism for © = 1...k, then
(M (z), Ma(x),... M(x)) is Zle ¢; -differentially private.

IV. THREAT MODEL AND PRIVACY GOALS

We consider an adversary capable of participating in the
messaging protocol by observing and injecting messages, as
well as controlling a subset of network nodes. However, we
explicitly do not assume a highly resourced adversary capable
of extensive physical surveillance, such as physically tracking
users across locations. Instead, our threat model specifically
considers attackers who can observe individual routing deci-
sions (e.g., making inferences about Alice’s location history
based on the fact that Alice accepted or forwarded a message
from Bob). We focus on this adversary model precisely be-
cause it reflects a realistic scenario in which attackers can pe-
riodically observe message passing patterns (e.g., during brief
moments of physical proximity to a user) without engaging
in continuous and resource intensive surveillance. Although
this adversary has limited observation capabilities, it can still
exploit routing decisions to infer sensitive details about users,
such as repeated visits to specific locations or membership
in targeted communities, enabling widespread surveillance of
mobility patterns without constant monitoring.

Our primary security objective is to prevent adversaries from
exploiting routing decisions—whether to transfer a message
between two encountered users—to infer sensitive mobility
patterns. Even limited leakage through routing behavior could
allow attackers to uncover attributes such as community mem-
bership, repeated visits to sensitive locations, or involvement
in private activities, leading to profiling, discrimination, or
targeted surveillance. We therefore focus on defending against
such routing-level inference attacks.

Formally, we define the routing decision as a potentially
randomized function f : U? x M — {0,1}, which takes as
input a pair of users (u1,us) and a message m, and outputs
1 (transfer) if the message should be exchanged or 0 (do not
transfer) otherwise. We consider the user space U{ to consist
of user identifiers and associated mobility profiles. In our
implementation, each user is represented by a string-valued
user ID along with the user’s corresponding mobility profile.
Similarly, we take the message space M to be a constant-sized
bitstring representing message content. More generally, the
user and message spaces may include richer sets of attributes
such as timestamps, recent encounters, routing metadata, or
message expiration information, depending on the specific
requirements of the routing protocol.

When two users encounter each other, the decision to
exchange a message is determined by the routing function f.
In practice, evaluating f may involve an interactive protocol in
which the users first exchange certain attributes or metadata
(e.g., mobility profiles). For instance, consider a user Alice
carrying a message m. When Alice encounters another user
Bob, we say that f((alice,bob),m) = 1 if, after the
interaction, Bob now carries the message m (potentially in
addition to Alice), and 0 otherwise. While the routing protocol
may depend on attributes such as message metadata (source,
destination, expiration) and the users’ mobility histories, pre-
serving privacy demands that the acceptance probability not



change foo much depending on the specific users involved.
More precisely, we formalize this under differential privacy:

Definition 2 (DP Routing Function). A routing decision
function f : U?* x M — {0, 1} for a mobility routing protocol
is e-differentially private if, for all (uy,us), (ul,us) € U, all
messages m € M, and all outcomes y € {0,1}, we have:

Pr[f((ulvu2)7m) = y] <et- Pr[f((u/lvué)vm) = y]

The above definition captures the requirement that the
decision to transfer a message m from user u; to user us
should not depend too much on the specific identities (and
thus the private mobility patterns) of the users involved in the
exchange. The routing decision function for classic ad hoc
routing protocols, such as flooding (forwarding all messages
indiscriminately) or random walks (forwarding probabilisti-
cally, independently of mobility patterns), trivially satisfies
Definition 2.

Finally, our threat model explicitly excludes general traffic
analysis and correlation attacks. An adversary with multiple
vantage points across the network might still infer general
regional message origins through timing and broadcast fre-
quency, even without mobility-informed routing (as with ran-
dom walks or flooding). Defending against such attacks is be-
yond our scope. MIRAGE itself also does not enforce message
integrity or authentication, however, one can design additional
cryptographic mechanisms atop the MIRAGE routing layer to
provide these complementary security guarantees.

V. CASE STUDY: STATISTICAL DISCLOSURE
ATTACKS ON PPBR

In this section, we demonstrate that existing private mobility
routing protocols, specifically the probabilistic profile-based
routing (PPBR) scheme proposed by Aviv et al. [2], can
inadequately protect user privacy. PPBR operates similarly
to flooding-based protocols, but with the key difference that
nearby users silently accept messages contingent on self-
identifying as suitable carriers. Concretely, when Alice broad-
casts a message m destined for district d, a nearby user (Bob)
evaluates his suitability as a message carrier using a marginal
similarity score defined as:

pbob(d)

s(bob,d) =
( ) pqeneral(d)

where Py, (d) denotes Bob’s probability! of visiting district
d, and pgeneral(d) represents the average user’s probability
of visiting district d, computed from a pre-calculated general
user profile summarizing overall population mobility patterns.
A high marginal similarity score for district d indicates that
Bob is particularly suited to carry messages destined for that
district, relative to the broader population. Consequently, Bob
silently accepts a message m, targeted at district d from user

Including a distance-decayed weighting factor that accounts for visits to
neighboring districts; omitted here for brevity.

u if d is among the top-k districts ranked by his marginal
similarity scores:

1if d € Spop
0 otherwise

f((u,bob), ma) = {

where Sy, is Bob’s set of k districts corresponding to his
highest marginal similarity scores.

At first glance, the silent acceptance mechanism seems
to conceal individual routing decisions. However, subsequent
forwarding or delivery actions inherently expose these deci-
sions. For example, when Bob eventually broadcasts a message
destined for district d, an adversary observing this action learns
either that Bob was the original creator of the message, or that
Bob silently accepted it from another user due to him having
a high marginal similarity score for district d. Consequently,
Bob’s message-forwarding behavior inadvertently provides
statistical information regarding his frequently visited districts.

To illustrate the severity of this privacy risk, consider a
scenario in which Bob belongs to a minority group whose
members predominantly live and work in a specific district d.
As a result, district d consistently ranks among the highest
in marginal similarity for all minority members. In contrast,
members of the majority population rarely visit district d,
leading to low marginal similarity scores for that location in
their mobility profiles. Therefore, if an adversary observes Bob
broadcasting a message m destined for district d, they can infer
with high confidence that Bob is a member of the minority
group, and thus frequently travels to that district.

This scenario highlights a fundamental vulnerability in
PPBR. The observable routing decisions can be exploited
to mount statistical disclosure attacks that reveal sensitive
location patterns. The core issue is that PPBR lacks plausible
deniability. When Bob accepts a message m for district d
and later forwards that message, it directly leaks information
about his true marginal similarity score and, by extension, his
mobility habits.

To illustrate the severity of this leakage, we designed an
experiment with a synthetic population of 1,000 users moving
within a map divided into four quadrants and 100 districts.
Of these users, 800 were majority users who resided in
uniformly random districts within quadrant 3, representing
general residential areas. The remaining 200 were minority
users concentrated within a single targeted district located in
quadrant 1, representing a geographically localized minority
community. Each user’s workplace was randomly assigned to
districts within quadrant 4, representing a city’s downtown
or business district. Users moved probabilistically between
their respective home districts and workplaces over 10,000
simulated epochs, generating the global mobility heatmap in
Figure 2.

We then applied PPBR according to Aviv et al. [2], con-
figuring it so that each user accepts messages addressed to
districts corresponding to the top 1/10 fraction of entries in
their marginal similarity score vector. Under this configuration,
we conducted a hypothesis test with Hj that the user belonged
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Fig. 2: Example mobility heat map for a population of 800
majority users and 200 minority users. Majority users reside
in districts chosen uniformly at random within quadrant 3 and
commute to districts in quadrant 4. Minority users all reside
in a single district in quadrant 1 and also commute to districts
in quadrant 4.

to the majority community and H; that the user belonged to
the minority community, deciding in favor of H; if the user
accepted messages destined for the targeted minority district.”
This test perfectly identified minority users in our experiments,
yielding a true positive rate (TPR) of 100% and a false
positive rate (FPR) of 0%. Even under a more conservative
PPBR configuration, in which users accepted messages for
approximately the top 1/3 fraction of entries in their marginal
similarity score vector, our hypothesis test still achieved very
high accuracy, with a true positive rate of 100% and a false
positive rate of only 0.4%.

In contrast, mobility networks that use DP routing func-
tions (Definition 2) explicitly bound an adversary’s inference
capabilities. If a sequence of routing decisions satisfies £-DP,
then any hypothesis test attempting to distinguish, for example,
whether a user belongs to a minority or majority group based
on the outcomes of these routing decisions, will have its TPR
to FPR ratio bounded by e®. For instance, if a routing protocol
satisfies e-DP with € = In(4), any hypothesis test achieving a
TPR of 80% will necessarily incur an FPR of at least 20%.

VI. MIRAGE PRIVATE ROUTING

We describe how MIRAGE routes messages while protecting
the privacy of individual message carriers.

A. Private Mobility Graphs

Upon installing the app, each user u constructs a mobility
profile p,, which captures their movement patterns across
the map M. If the user’s location data is not immediately
available, the app can locally collect this data over time by
tracking the device’s location. Using the mobility profile p,,,
MIRAGE identifies the £ > 2 most frequently visited districts
and encodes them as a user mobility graph.

2An adversary can test whether a user accepts a message for a targeted
district by broadcasting the message to that user and then observing whether
the user subsequently forwards it.

Definition 3 (User Mobility Graph). A user u’s mobility
graph, denoted as G,, = (V,,, E,,), is defined as follows:

o V., is the set of districts in the map M.

o An edge (d;,d;) € E, exists between two vertices
d;,d; €V, if and only if both d; and d; are among the
top k districts visited by user u, based on their mobility
profile p,,.

Formally,

(dl,dj) S Eu <~ di,dj S TOpk(pu)7
where d € Top,(p,) if and only if:
Hd € Vy:pu(d) > pu(d)}| <k,

and ties are broken arbitrarily to ensure exactly k districts are
included in Top,(p.).

Thus, each user’s mobility graph represents a graph over
M where the nodes corresponding to the user’s top-k most
visited districts form a clique. This clique naturally captures
the individual’s routine movement between these districts, such
as travel between home and work. An example user mobility
graph is shown in Figure 3a.

To protect user privacy, MIRAGE randomizes the edges of
the user mobility graph. Each edge (d;,d;) € E, is encoded
as a binary value e; ; = 1 (if there is an edge) or e; ; = 0
(otherwise). The standard randomized response mechanism is
then applied to each edge ¢; ; € E,:

6. — Ci,j
.3 T
L—eij

The resulting graph is a private user mobility graph G, =
(M, E,). An example private user mobility graph is shown in
Figure 3b.

with probability p
with probability 1 — p

Lemma 3 (Private User Mobility Graph is e-DP.). The private
user mobility graph satisfies ¢ local differential privacy where

e=(k*—k)-In(p/(1—p)).

Proof. The mechanism is the unary encoding (UE) scheme
applied to the edges of the user’s mobility graph. The UE
scheme achieves e-DP for € = 2k In(p/(1 — p)) when applied
to a k-hot vector of arbitrary length [27]. We represent each
user’s mobility graph as a vector over E,. By definition, E,
has k- (k—1)/2 edges, and thus the UE mechanism is applied
to (k- (k — 1)/2)-hot vector and the claim follows. O

The private user mobility graph G, = (V,,, E,,) encodes the
user’s noisy behavior in terms of transitioning between their
most visited districts. This provides two key guarantees. First,
it preserves the privacy of users’ most-visited districts while
enabling plausible deniability through the randomized inclu-
sion of additional transitions. Second, it captures movement
patterns that can be aggregated into a global mobility graph
(§VI-B) that is used to inform routing decisions. In particular,
éi; = (€ —1+p)/(2p — 1) is an unbiased estimator of a
user’s true reported edge e; ;. In the next section (§VI-B), we



(a) User Mobility Graph G,,.

(b) A Private User Mobility Graph G corresponding to G.

Fig. 3: Example of (a) user’s mobility graph and (b) a
corresponding private mobility graph. Each edge of the non-
private user mobility graph are perturbed using the randomized
response mechanism.

discuss how the private mobility graphs are aggregated into
a global mobility graph that captures the high-level mobility
patterns of the population.

The parameters p and k govern the balance between graph
fidelity and privacy. When p is close to 1, the user mobility
graph is preserved with high fidelity, but privacy risks increase.
When p is closer to 0.5, added noise in the transition edges
provides stronger privacy protection. Similarly, as k grows
toward |M|/2, user mobility graphs become more uniquely
identifiable since users are more likely to have a distinctive
set of top k visited districts.

B. Global Mobility Graph

MIRAGE leverages a global mobility graph to encapsu-
late the broader mobility trends of the general population.
However, MIRAGE ensures that the collection and publication
of this graph are conducted in a privacy-preserving manner,
minimizing the need for trust. MIRAGE collects the private
user mobility graphs (§VI-A) from a sample of users® and gen-
erates a weighted transition graph that encodes the conditional
probability of an individual in a source district s subsequently
traveling to a destination district d. Leveraging this informa-
tion, individuals can opportunistically forward messages at a
rate proportional to the likelihood that a neighbor will later
deliver the message to the target region of interest.

Definition 4 (Global Mobility Graph). Let M denote the set of
all districts, and let t represent a time epoch. The Global Mo-
bility Graph is a weighted undirected graph G = (M, E, P,),
where:

3For instance, this graph could be built from users who voluntarily opt in
to share their private mobility profiles.

o M is the set of vertices, with each vertex d € M
representing a district.

o E is the set of undirected edges, where an edge (u,v) €
E indicates potential movement between districts u and
v.

e P : E — [0,1] is a weight function where P;(u,v)
represents the probability that a randomly selected in-
dividual in district u travels to district v within time
epoch t. By construction, we assume symmetry so that
P (u,v) = Pi(v,u).

The Global Mobility Graph encapsulates the likelihood of
individual movements between districts within the specified
time epoch t.

The choice of ¢ sets the temporal granularity of the mobility
model. In MIRAGE, we set t = 1 day to align with typical
human movement patterns, ensuring that forwarding decisions
reflect realistic daily mobility while maintaining timely mes-
sage delivery.

Given the above global mobility graph, we can use a
gossip-like protocol with a dynamic parameter p, where the
probability of forwarding a message depends on the current in-
dividual’s location and the message’s destination. Specifically,
if Alice is in district u and holds a message destined for district
v, she forwards the message according to a gossip protocol
with forwarding probability p = P;(u,v), which represents
the likelihood that a random individual in u will travel to
v. This dynamic adjustment optimizes network bandwidth by
tailoring the forwarding rate to the delivery likelihood. In
regions where the probability of finding a suitable carrier is
low, messages are forwarded more aggressively to improve
delivery chances, whereas in regions with a high probability
of encountering a suitable carrier, messages are forwarded less
frequently, reducing redundant transmissions.

However, the global mobility graph must be constructed
in a privacy-preserving manner. While it may be acceptable
to reveal aggregate, population-level insights about transition
probabilities (e.g., discovering that with high probability, a
random individual in district u will later travel to district v),
the protocol must ensure that the specific mobility patterns of
any given individual remain private. To achieve this, we use
a differentially private algorithm for collecting and publishing
statistics about the population’s mobility profiles.

Each user locally generates their private mobility graph as
described in the previous section (§VI-A). The private mobility
graphs are undirected and encode frequent co-travel between
districts. These graphs are then sent to a centralized curator,
which aggregates them into a directed global mobility graph
G = (M, E, P,). For each directed edge (d;,d;) € E, the
weight P;(d;,d;) represents the estimated probability that a
randomly selected user in district d; will subsequently travel
to district d; within time epoch ¢. Formally, this is computed
as:

Pididy) = 7 SO U(didy) € )

uelU



where U is the set of users reporting their private mobility
graphs to the aggregator, and I(-) is the indicator function,
which is equal to 1 if the edge (d;,d;) exists in the private
graph G,,, and O otherwise.

The global mobility graph G is therefore a complete directed
graph, where edge weights reflect the proportion of users
whose private mobility graphs indicate transitions between
pairs of districts.* Since G is derived from locally DP private
graphs, by post-processing (Lemma 1), G is also differentially
private.

We analytically determine the number of users required
for MIRAGE to generate an accurate global mobility graph,
given a specified privacy level. Let G denote the true global
mobility graph, constructed without privacy constraints (i.e.,
direct aggregation without noise). Consider a single edge
e;j € G with true frequency fi(e; ;) and private frequency
estimate fi(e; ;) in G, obtained by summing over the per-user
unbiased estimates é; ; = (&; ;—1+p)/(2p—1). Each ji(e; ;) is
therefore an unbiased estimator of y(e; ;). Using the standard
analysis of randomized response and union bounding over all
edges, we ensure that, with probability at least 1 — 3, every
edge simultaneously satisfies |u(e; ;) — fi(e; ;)| < a provided
that the number of users n satisfies

Y ECUE)

o2e?

In Figure 4, we show the number of users required to
achieve a specified accuracy guarantee for a global mobility
graph with |[M| = 100 districts under different privacy
levels . Computing an accurate global mobility graph, while
maintaining meaningful privacy protections (¢ < 1), is feasible
given a sufficiently large number of users who opt in to sharing
their private mobility graphs with the central curator. Relaxing
the per-edge accuracy requirements reduces the number of
users necessary, albeit potentially at the cost of diminished
routing effectiveness.

Finally, we remark that requiring a subset of users to collect
and send their private mobility profiles to a centralized curator
may initially seem counter to the privacy-preserving goals of
MIRAGE. However, many private mesh network messengers,
such as Briar [7] and Moby [22], operate as hybrid systems,
leveraging traditional network infrastructure during normal
conditions while utilizing mesh networking capabilities during
blackouts or periods of severe censorship. Similarly, a system
utilizing MIRAGE could rely on traditional network infrastruc-
ture during a setup phase, in which the curator aggregates
the contributed private mobility graphs into a global mobility
graph and distributes it to participants. Once this setup is
complete, the system can pivot to the mesh routing capabilities
of MIRAGE, and users need only download the global mobility
graph once before operating in a fully decentralized mode.

4Although the edge weights are symmetric and G can be viewed as an
undirected graph, we retain the directed formulation for conceptual clarity,
since Pi(u,v) is naturally interpreted as the probability that a randomly
selected user in district w will later travel to v.
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Fig. 4: Number of users required to estimate the true edge
weight in the global mobility graph within additive error «
with probability at least 99% for a given . Both analyses
assume a map with 100 districts.

C. Routing

Each user will attempt to route messages based on the global
mobility graph (§VI-B) and their private mobility profile
(§VI-A). When a user Alice has a message destined to some
district d € M, she will attempt to exchange it with multiple
message carriers. Upon coming in contact with another user
Bob, Alice broadcasts the message, and Bob responds with
accept or reject indicating whether or not he will attempt
to route the message. Bob will accept the message according
to the output of the decision function f defined below:

1 ifé,; =1

0 otherwise

f((alice,bob),m) = {

where ¢;; € ébob is the edge in Bob’s private mobility



graph, ¢ is the district where Alice and Bob are currently
encountering one another, and j is the destination district for
message m. Since Ghop is differentially private and f is a
post-processing function, it follows that the decision function
f is also differentially private (Lemma 1).

Theorem 1. Let f : U? x M — {0,1} be a routing decision
function that for any users ui,us € U who encounter each
other in district i, and any message m € M destined to district

)

1 ifé; ;=1
Uy, Ug), M) = .
S, uz),m) {O otherwise
where €; ; € Guy is an edge in uy’s private mobility graph
Gu,. Then f is an e-differentially private routing decision
function.

Proof. The proof follows from the fact that the outcome of
routing decision function depends only on user uy’s £-DP
private mobility graph éu2~ By post-processing (Theorem 1),
f is also &-DP. O

While other decision functions are possible, it is essential
that f not depend on any internal state’ that could be correlated
with Bob’s mobility profile, such as the number of messages
currently in his queue.

Under this decision function, users accept messages when a
directed edge exists between d; and d; in their private mobility
graph. Notably, when Bob responds to Alice with accept,
one of two situations must hold:

1) True Positive: Bob’s actual (non-private) mobility graph
indicates that he frequents district d;.

2) False Positive: Bob’s actual (non-private) mobility profile
indicates that he does not frequent district d;, but his
perturbed private mobility graph reports that he does.

Alice can anticipate that case (2) occurs with probability
at most (1 — p), where p is the probability of preserving
the true value in the randomized response. Consequently, to
maximize the likelihood that her message reaches district d;,
Alice must compensate for the noise introduced by differential
privacy by forwarding her message to multiple carriers. Given
that the global mobility graph (§VI-B) encodes the probability
P,(d;,d;) that a randomly selected user in district d; will later
travel to district d;, Alice forwards her message to approxi-
mately min{n, nm,x } users where nm,x is a fixed constant and

Py(di,dj)+(1—p)-(1—P;(di d;)) .
. [p L) (L ] if P,(d;,d;) > 0,

Nmax otherwise.

The constant nyax limits the number of transfers to prevent
excessive message propagation. The expression inside the
ceiling operator follows directly from Bayes’ Theorem and

SFor instance, if Bob resides in a densely populated area, he may encounter
more individuals, potentially leading to a larger number of messages in his
local queue. If f utilizes this information, differential privacy is not guaranteed
to hold.

equals the inverse of the conditional probability that a user’s
true mobility graph contains the edge from d; to d;, given
that their private (noisy) mobility graph reports that edge. This
value represents the expected number of recipients required so
that, on average, one will genuinely travel to d;. The parameter
p explicitly captures the noise introduced by randomized
response, allowing the protocol to maintain delivery reliability
despite potential false positives.

Memoryless TTLs. MIRAGE implements a time-to-live (TTL)
mechanism to ensure messages do not circulate indefinitely
within the network. However, explicitly embedding TTL val-
ues risks revealing proximity information: if Bob receives a
message from Alice with a high TTL, he may infer Alice was
recently near (or even is) the message originator.

To mitigate this privacy risk, MIRAGE adopts memoryless
TTLs. Each carrier independently attempts message delivery
within discrete epochs of fixed duration. At the end of an
epoch, if delivery has not occurred, the carrier discards the
message with probability q. With probability 1 — g, the carrier
instead forwards the message to at most n,,,x peers. The exact
number of peers selected may vary according to the dynamic
gossip parameters detailed in §VI-C. Subsequent carriers
repeat this probabilistic retention and forwarding procedure
independently.

We analyze this forwarding strategy as a classical
branching process, characterized by the replication factor
R < npax - (1 —q). To guarantee eventual message extinction,
the process must be subcritical, thus requiring R < 1 or
equivalently ¢ > 1 — 1/npax. Under this constraint, the
expected number of carriers decays exponentially with the
number of epochs. That is, the number of carriers of a given
message at epoch j is given by E[X;] < npyax - R7. By
setting E[X,;] = 1, we find the expected message lifetime
in epochs is approximately —In(nmax)/In(R). Thus, the
system parameters (nmax, ¢) can be tuned explicitly to ensure
predictable message extinction.

Message Delivery. When a message carrier arrives at district
d and holds a message m addressed to that district, they
initiate an epidemic-style broadcast of the message throughout
the district. Nearby nodes that receive the broadcast will
rebroadcast the message, continuing to propagate it to other
nodes within the district. This process is repeated for a fixed
duration (e.g., one day) to maximize the likelihood that the
intended recipients within the district eventually receive the
message.

VII. SIMULATION STUDY

To evaluate MIRAGE’s performance, we utilize Cadence [5],
an open-source discrete event human movement simulator that
runs routing algorithms on top of real-world human move-
ment datasets. Cadence simulates message exchanges among
nodes, where each node’s movements in a virtualized space
is governed by a real-world trace of a human’s movements.
Replaying those traces using different routing algorithms al-
lows us to make fair comparisons between routing protocols.



We enhanced Cadence by adding support for MIRAGE and
Aviv et al’s probabilistic profile-based routing (PPBR) [2].
Our implementation is available at https://doi.org/10.5281/
zenodo.16953762.

Cadence takes as input a human movement dataset that
consists of a set of events £ = {e}, where each e is a
tuple (n,t,l), with n being a node identifier, ¢ a timestamp,
and [ a location. Cadence considers an encounter to occur
between two events ¢; and ¢; if (1) n; # n;, (2) t; =t;, and
(3) ||li = 1|2 < 7, where || - ||2 denotes the L? distance and
7, is tunable distance threshold.® Message transfers can occur
only during encounters. Conceptually, encounters capture the
notion of two nodes being in close proximity (i.e., having a
distance apart no greater than 7;) at a moment in time, and
represent an opportunity for message transfers. Our choice for
7; (see Table I) is loosely informed by the ranges of WiFi
Direct and BLE.

A. Simulation Setup

Datasets. To evaluate MIRAGE, we consider two human
movement datasets:

o YJMob100K [30] is an anonymized human mobility dataset
that describes the movements of individuals in a city in
Japan over 75 days, the last 15 of which occurred during
an unspecified emergency. Locations were collected using
mobile phone location data.

o T-Drive [31, 32, 33] is a collection of taxicab trajectories
recorded in Beijing, China, in 2008.

We simulate the first 500 users from each dataset to meet
Cadence’s performance limits. Summary statistics for the two
datasets are given in Table L

We chose these particular datasets as they capture large city-
scale areas similar to where we imagine MIRAGE might be
deployed. These two contrasting datasets—pedestrian move-
ments and taxi trajectories—capture diverse scales and modal-
ities of human mobility. Despite their differences, both exhibit
high frequencies of close-proximity interactions, making them
well-suited for studying contact-driven protocols. Pedestrian
data offers insight into dense, human-scale dynamics, while
taxi data reflects structured, vehicular mobility in a car-
centric city. Together, they allow us to evaluate MIRAGE’S
generalizability, ability to preserve privacy, and behavioral
invariants across movement modalities.

MIRAGE Configuration. To define districts for the
YJMob100K and T-Drive datasets, we apply k-means cluster-
ing to the initial 10% of each user’s location events, ordered
chronologically. We set the number of clusters to be 100,
which we posit is a reasonable choice for defining areas of

6Since human movement datasets are often sparse and do not contain loca-
tions for all nodes for every reported timestamp, Cadence infers the position
of a node at any time between two reported events using a linear movement
model: given two consecutive events eq = (n,tq,lq) and e, = (n,tp,lp)
of a node n, with t, < tp, the inferred position [, of an event o at some
intermediate time to € (ta,tp) is defined as lo = lg + ib:lt“ (ta — ta)-
Cadence infers the locations of all nodes for every time in the dataset and
computes the encounters between nodes.

a city. Our set of districts is therefore defined as the set of
cluster centers.” Districts are generated once for each dataset.
Cadence maps a location to a district by assigning it to the
district with the closest centroid.

We use the 2nd 10% of each user’s chronologically ordered
location events from each dataset to construct a representative
global mobility graph. To simulate possible error in the global
mobility graph (e.g., sampling error, or a group of malicious
participants purposefully contributing bogus location data), we
compute the global mobility graph from the population exactly,
and add Gaussian noise with standard deviation ¢ = 0.01 and
mean u = 0 to each edge.

Cadence simulates MIRAGE using the remaining 80% of the
chronologically ordered location data in each dataset. Given
the relatively few number of users (500) in the tested datasets,
we use a replication factor of three and allow a node to forward
its message to min{3n, nyax} peers (see §VI-C).

Comparison of Routing Protocols. As baseline compar-
isons, we consider maximal flooding, handoff, probabilistic
flooding, and probabilistic profile-based routing (PPBR) [2]
protocols. In maximal flooding, nodes transmit all stored
messages to every node that they encounter. At the other
extreme, in handoff, a message-carrying node passes all of its
stored messages to the first node that it encounters, and then
deletes all local copies. To prevent messages from vacillating
between two nearby nodes, each node remembers the message
identifiers of messages it has seen, and does not accept mes-
sages it has already received. Maximal flooding and handoff
are both deterministic (non-randomized) protocols.

Our implementation of probabilistic flooding uses respective
message passing and deletion probabilities® of 1/2 and 4/s,
meaning that a node will attempt to share each message that
it carries with an encountered node with probability 1/2, and
when such a transfer occurs, it will delete its local copy of
the message with probability 4/5. If a node does not delete its
local copy, the message remains in its message queue and may
be transferred again when it next encounters another node.

We also instrument Cadence with probabilistic profile-based
routing (PPBR) [2]. In PPBR, each node uses its privately-
computed location profile to locally assess whether it is a good
candidate to forward a message without revealing this decision
to others (though, this decision can be implicitly revealed by
later message broadcasts as discussed in §V). To limit message
duplication and enhance scalability, each carrier announces
the message to only kppgr encountered nodes, of which only
one should probabilistically accept the message and carry it
away. This balances delivery reliability with privacy and effi-
ciency, avoiding the overhead of epidemic maximal flooding

"In practice, districts should be defined independently of user mobility
data—ideally using public sources—to avoid privacy risks, as clustering itself
can reveal sensitive patterns if not done with differential privacy. While we
used clustering to identify city centers and define districts within our datasets,
a similar outcome could likely be achieved with minimal public information
(e.g., known city centers, ZIP codes, metro or bus stops).

8We chose these probabilities to achieve reasonable message dissemination
while avoiding mirroring the epidemic flooding of maximal flooding.


https://doi.org/10.5281/zenodo.16953762
https://doi.org/10.5281/zenodo.16953762

TABLE I: Human movement datasets. We consider the first
500 nodes in each dataset.

Dataset Modality Median Encounters Tl
YJMob100K [30]  Personal 117 50 m
T-Drive [33] Vehicle 136 50 m

while preserving user control through localized, profile-based
decisions. However, as shown in §V, PPBR is vulnerable to
statistical disclosure attacks, and as we demonstrate below, can
lead to epidemic maximal flooding in certain cases.

Unlike MIRAGE’s district-based addressing scheme, PPBR
adopts a grid-based routing system. Consistent with prior
work, we configure the grid overlay to consist of 200m x200m
grid squares, which Aviv et al. suggest approximates the size
of a city block [2]. Following Aviv et al., we set kppgr = 10.

For all routing algorithms, we configure Cadence with a
message queue size of 500, meaning each node can store up
to 500 message copies. When the queue is full, Cadence evicts
messages using a FIFO strategy.

Metrics. To compare the efficacy and efficiency of the dif-
ferent routing algorithms, we consider the following metrics:
Delivery rate: the fraction of sent messages that reach their
intended destination during the simulation;

Network load: the total number of messages transfers that
occur during a simulation;

Delivery efficiency: delivery rate divided by network load;
and

Message latency: the time between when a sender sends a
message and when that message is received by its intended
destination.

At one extreme, we note that maximal flooding provides
high delivery rates and low message latencies, but does so
at the cost of high network load. At the other extreme, the
handoff protocol guarantees at most one copy of a given
message exists in the network at any time, and thus has
optimal network load; but, as shown in §VII-B, it produces
poor delivery rates.

Workload.  We configure Cadence such that each node
originates 10 messages to 10 other nodes, selected uniformly at
random without replacement. This constrains the total number
of messages in the network to be between 5000 (there exists
a single copy of each message; recall that there are 500 nodes
who each send 10 messages) and 50002 (each node has a copy
of every message). The origination time of each message is
chosen uniformly at random from the range defined by the first
time the message’s originator appears in the dataset to the last
time it appears. We consider a message to be delivered if and
only if it is received by the intended receiver.

Although MIRAGE uses a district-based addressing scheme,
for fair comparisons with our baseline protocols, we consider
a MIRAGE message delivered only if it is received by the
message’s intended receiver. For MIRAGE, we assume that the
sender (1) has a priori knowledge of the intended receiver’s
most frequented district, and (2) uses that district as the
message’s targeted district.
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B. Simulation Results

We fix k = 2 based on the premise that users typically only
commute between a small set of frequented locations (e.g.,
home and work). We achieve similar results for k£ € {4,6}
shown in Appendix A.

Delivery Rates. The median delivery rates achieved by
the five routing protocols when using the YJMobl100K and
T-Drive datasets are respectively presented in Figures Sa
and 6a. For MIRAGE, we vary p and show the resulting value
of ¢ along the x-axis. We note that ¢ is dependent on both p
and k, and is computed as € = k(k — 1)In(?/(1 - p)). In all
experiments, we perform 10 runs of MIRAGE, probabilistic
flooding, and PPBR. Shaded regions show the inter-quartile
ranges (IQRs); in some cases, these can be difficult to per-
ceive due to small IQRs. The maximal flooding and handoff
protocols are deterministic and have no IQR.

For the pedestrian-based YJMobl100OK dataset, MIRAGE
significantly outperforms probabilistic flooding and handoff.
For example, when p = 0.6, MIRAGE’s delivery rate (36.9%)
was 4.1x and 11.5x that of probabilistic flooding (9.1%) and
handoff (3.2%), respectively. The delivery rates for MIRAGE
and PPBR are comparable, with MIRAGE slightly outper-
forming PPBR for p = 0.55, but moderately underperform-
ing when p € {0.6,0.65}. For the vehicle-based T-Drive
dataset, MIRAGE’s delivery rate generally matches that of the
probabilistic flooding protocol (e.g., 25.5% vs. 25.9% when
p = 0.6). PPBR had a much higher delivery rate for this
dataset (67.8%), but this is due to PPBR’s inability to avoid
flooding; PPBR effectively functions as maximal flooding (see
below). The handoff strategy again exhibited poor performance
with a delivery rate of only 3.4%.

For both datasets, MIRAGE’s delivery rate decreases with
an increasing p. This is expected, since as p approaches 0.5,
the probability that any edge (d;,d;) € V,, x V,, exists in a
user u’s mobility graph G, also approaches 0.5. In such cases,
MIRAGE essentially becomes probabilistic flooding.

Network Load. Although MIRAGE did not achieve the
delivery rate of maximal flooding (86.9% for YJMobl00K
and 68.9% for T-Drive), maximal flooding results in a large
network load, as is observable in Figures 5b and 6b. In con-
trast, the handoff protocol has optimum network load—with
only one copy per message—but has an untenable delivery
rate. MIRAGE incurs a significantly decreased network load
compared to maximal flooding, especially for higher values
of p. As discussed above, network load decreases with p since
values of p closer to 0.5 result in flood-like behavior.

For the YJIMobl100OK dataset, MIRAGE and PPBR exhibit
similar network loads (e.g., 838k vs. 769k, respectively, when
p = 0.6). However, when run against the T-Drive dataset,
PPBR behaves similarly to maximal flooding. In PPBR, a
carrier of a message transmits the message to kppgr peers. A
peer accepts a communicated message if it believes it is best
suited among than the other kppgr — 1 recipients to deliver
the message to its intended destination. This determination
is heuristic and is based on the node’s previous movement
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patterns and its estimation of the uniqueness of its likelihood
of visiting the destination location specified in the message.
In the case of the T-Drive dataset, PPBR nodes overestimate
their suitability for delivering messages, resulting in epidemic-
like behavior. In contrast, as described in §VI-C, message
acceptance is more limited in MIRAGE, where a node accepts
a message only if there is a corresponding edge in its private
mobility graph.

Delivery Efficiency. In Appendix B, we use delivery effi-
ciency to examine MIRAGE’s utility as a function of privacy
(¢). Delivery efficiency captures both delivery rate and network
load, and constitutes an intuitive measure of MIRAGE’s routing
efficacy. In brief, we confirm that decreased privacy (increased
¢) leads to reduced network load (see also Figures 5b and 6b)
and overall more efficient routing.

Message Latency. Figures 5c and 6¢c show the median
message latencies for the two datasets, considering only the
delivered messages. We omit the handoff protocol since its
inclusion would be misleading given its very low (< 3.4%)
delivery rate. Maximal flooding achieves the lowest message
latency, but as shown above, does so while imposing a large
network load. We find that MIRAGE provides faster message
delivery than probabilistic flooding, which we attribute to
MIRAGE’s more targeted message passing strategy. For val-
ues of p closer to 0.5, this “targeting” effect diminishes as
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users’ private mobility graphs become more noisy, moving
MIRAGE’s latency closer to that of flooding. PPBR delivers
messages faster than MIRAGE (especially for the T-Drive
dataset when its behavior matches that of maximal flooding).

s

\

Summary of simulation study: Maximal flooding
offers high delivery rates and low latencies, but is
unscalable due to high network load. In contrast,
MIRAGE’s use of (noised) mobility-patterns enables
more efficient routing and lower network loads.
MIRAGE delivered significantly more (4x) messages
than probabilistic flooding when using the pedestrian
dataset, and had comparable delivery performance
on the vehicular dataset. For both datasets, MIRAGE
was able to deliver messages faster than probabilistic
flooding.

For the pedestrian movement dataset, the routing
performance of MIRAGE and PPBR were similar,
although PPBR exhibited lower latency. However,
PPBR’s propensity to revert to flooding was evident
when using vehicular-based movement data, resulting
in far greater network loads than MIRAGE.

.




VIII. RELATED WORK

Aviv, Sherr, Blaze, and Smith introduced probabilistic
profile-based routing (PPBR) [2], a mobility-aware message
routing scheme based on population-level mobility patterns.
In PPBR, participants are provided with a general mobility
profile that estimates the average movement behavior of the
population across a given geographic region. Each user then
computes a marginal similarity score for a destination district
d € M, quantifying their likelihood of visiting d relative to the
average person. A higher marginal similarity score indicates
a better suitability as a message carrier for that district.
Users self-select as message carriers by silently accepting or
rejecting messages based on a locally chosen threshold T,
calibrated so that each user accepts messages for roughly a
1/k fraction of possible destinations.

Although PPBR reduces direct coordination between sender
and receiver, later forwarding behavior still leaks sensitive
information. As discussed in §V, once a user forwards a
message, an observer can infer that the user either originated
the message or accepted it because their marginal similarity
score exceeded the threshold. This lack of plausible denia-
bility leaves PPBR vulnerable to statistical disclosure attacks,
enabling adversaries to recover both past and future mobility
patterns from observed forwarding behavior.

Beyond PPBR, several peer-to-peer messaging systems
have been proposed for censorship-resistant communication.
Briar [7] is a decentralized application that operates without
centralized servers, using Bluetooth, Wi-Fi, and Tor to support
messaging during Internet outages. While Briar provides end-
to-end encryption and strong metadata protection, it is limited
to communication between pre-established trusted contacts,
requiring manual credential exchange [4]. This constraint
reduces its applicability in spontaneous, large-scale mobility
routing scenarios, where efficient forwarding among untrusted
peers is essential.

Moby [22] takes a different approach, offering blackout-
resistant secure messaging that combines Internet connectiv-
ity when available with ad-hoc peer-to-peer communication
during outages. Moby ensures end-to-end encryption, forward
secrecy, and sender-receiver anonymity, enhancing resilience
against censorship and denial-of-service attacks. However,
Moby’s routing protocol relies on trust-based epidemic dis-
semination, where trust is inferred from prior direct or mu-
tual contacts. In contrast, MIRAGE does not require trust-
based forwarding but instead employs differentially private
mobility profiles to probabilistically optimize message routing
while preserving privacy. This enables MIRAGE to function
effectively in dynamic environments without requiring prior
contact relationships, making it more suitable for large-scale,
infrastructure-free communication in adversarial settings.

Finally, there has been considerable work that examines
methods for evading Internet-based censorship (Khattak et
al. provide a good, albeit dated, survey of the Internet evasion
landscape [18]). Proposed evasion strategies generally apply
mimicry [20, 26] (trying to appear as an allowed protocol),
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tunneling (embedding a covert channel within a non-blocked
cover protocol) [12, 16], refraction networking [17, 25, 29]
(redirecting Internet traffic via on-path routers), and proxy-
based approaches [6, 13, 19] (e.g., VPNs or Tor bridges).
Mimicry is known to be easily detected by an adversary [15],
and most deployed evasion systems are proxy-based, likely
due to the relative ease of instantiating proxies—especially
for browser-based proxies such as Snowflake [6]. However, all
of these approaches rely on centralized Internet infrastructure
that may be susceptible to subversion by state-level actors. At
the extreme, nation states may choose to (and have chosen
to [8]) shut down this infrastructure to curtail communication,
especially during times of civil unrest. MIRAGE avoids exist-
ing infrastructure by instead using human-to-human links to
route messages.

IX. DISCUSSION

MIRAGE Setup Phase. MIRAGE improves message routing
efficiency by leveraging user mobility histories. This involves
a setup phase in which users voluntarily share locally DP user
mobility graphs with a central aggregator. The accuracy of
MIRAGE’s global mobility graph depends on the size of this
opt-in user subset, and configurations with more restrictive
privacy budgets require larger participation rates to achieve
comparable accuracy. Alternatively, if reliable public mobility
data is available, the global mobility graph can be constructed
without this setup phase. However, publicly available data
may be inaccessible, unreliable, or subject to control by the
governing authority.

Sybil attacks, involving adversaries creating a large number
of fake user accounts, could attempt to degrade the accuracy
of MIRAGE’s global mobility graph by introducing fabricated
mobility profiles. Although such attacks could negatively
impact the overall utility and reliability of routing decisions,
they do not compromise individual privacy. Since each user
determines their routing decisions based on locally DP mobil-
ity profiles, the presence of sybil-generated data in the global
graph cannot leak information about genuine users’ individual
mobility patterns.

Importantly, our analysis and evaluation assumes that users
opting into the setup phase are drawn uniformly at random
from the general population. However, in practice, this as-
sumption might not hold. Certain groups of users—such as
dissidents, activists, or politically sensitive individuals—may
perceive higher risks associated with sharing mobility informa-
tion, even under differential privacy guarantees, and thus might
be less likely to participate. Conversely, users less concerned
about surveillance or detection may disproportionately opt in,
potentially biasing the resulting global mobility graph. Such
biases could reduce the effectiveness of MIRAGE by impacting
routing decisions in politically sensitive or high-risk areas.

Future work could explore eliminating the centralized setup
phase altogether. For instance, private mobility graphs could
be distributed among users through flooding, enabling each
node to independently collect a sufficient subset of private
mobility graphs to compute the global mobility graph locally.



However, such decentralized approaches introduce new pri-
vacy considerations, as each user’s locally computed global
mobility graph would inherently depend on their individual
mobility patterns and interactions. Nodes interacting with a
limited subset of users could obtain biased or incomplete
versions of the global graph, potentially reducing routing
effectiveness and allowing an adversary to infer a user’s prior
location history based on their version of the global mobility
graph. Thus, careful consideration is required when designing
fully decentralized mechanisms to ensure privacy and accuracy
tradeoffs are maintained.

Another intriguing extension to MIRAGE involves allowing
individual users to set personalized privacy budgets for their
mobility graphs. This approach could accommodate varied
privacy preferences based on individual risk assessments
and exposure to surveillance. For example, users operating
in environments with higher surveillance risks might prefer
stronger privacy guarantees, accepting reduced accuracy in
their reported mobility graphs. Conversely, users in less
risky contexts might choose weaker privacy settings to
contribute more precise data. Implementing personalized
privacy budgets would enhance user autonomy but would
also introduce complexities in aggregating heterogeneous
data. Furthermore, even the act of selecting a privacy budget
may leak sensitive information since choosing strong privacy
settings could potentially identify individuals as belonging to
higher-risk or targeted groups.

Handling changes in mobility patterns. MIRAGE protects
user mobility patterns under local differential privacy by ran-
domizing each user’s mobility graph. However, user mobility
patterns are rarely completely static; individuals may relocate,
change employment, or adopt new recreational routines. Such
changes can lead to discrepancies between a user’s actual
mobility behavior and their initially generated mobility graph.
To address this, MIRAGE could be extended to dynamically
detect shifts in individual mobility patterns locally, such as by
continuously monitoring mobility data on the user’s device.
Upon identifying significant divergence from the originally
randomized mobility graph, MIRAGE would generate and
randomize a new user mobility graph based on the updated
mobility trends. Importantly, by composition (Theorem 2),
each re-randomization results in an additional € added to the
total privacy loss. Therefore, after k£ updates, MIRAGE would
still ensure ke-DP.
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APPENDIX A

ADDITIONAL RESULTS FOR VARIOUS p PARAMETERS

Figures 7 and 8 show additional performance results for MI-
RAGE and other routing protocols running on the YJMob100K
dataset when MIRAGE uses k = 4 and k£ = 6, respectively.
The results are similar to that when & = 2 (see §VII-B),
with delivery rates increasing slightly with greater values of


https://www.newscientist.com/article/mg19325852-300-earthquake-shakes-the-internet/
https://www.newscientist.com/article/mg19325852-300-earthquake-shakes-the-internet/
https://www.reuters.com/technology/us-calls-big-tech-help-evade-online-censors-russia-iran-2024-09-05/
https://www.reuters.com/technology/us-calls-big-tech-help-evade-online-censors-russia-iran-2024-09-05/
https://www.reuters.com/technology/us-calls-big-tech-help-evade-online-censors-russia-iran-2024-09-05/
http://www.telegraph.co.uk/technology/2016/11/04/unprecedented-cyber-attack-takes-liberias-entire-internet-down/
http://www.telegraph.co.uk/technology/2016/11/04/unprecedented-cyber-attack-takes-liberias-entire-internet-down/
http://www.telegraph.co.uk/technology/2016/11/04/unprecedented-cyber-attack-takes-liberias-entire-internet-down/
http://www.telegraph.co.uk/technology/2016/11/04/unprecedented-cyber-attack-takes-liberias-entire-internet-down/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

k. The same trend appears in Figures 9 and 10, which show
performance results for k = 4 and £ = 6 using the T-Drive
dataset.

APPENDIX B
DELIVERY EFFICIENCY

We examine MIRAGE’s utility as a function of p using a
combined metric that considers both delivery rate and network
load. In Figure 11, we plot delivery efficiency as a function
of ¢ (and thus p), where delivery efficiency is defined as the
delivery rate divided by the network load. Intuitively, delivery
efficiency reflects how proficient MIRAGE is able to route
messages: a higher delivery efficiency means messages are
delivered at lower cost (i.e., network load).

With increasing p—and hence increasing e—MIRAGE gen-
erally exhibits higher delivery efficiency.” This is expected, as
decreased privacy leads predictably to reduced network load
and more efficient routing. We observe the same effect when
k increases (not shown), since increasing k likewise causes an
increase in €.

APPENDIX C
ARTIFACT APPENDIX

This appendix describes the steps required to reproduce
the results of our experimentation—specifically, the findings
of our simulation study (Section VII). Our evaluation of
MIRAGE uses a modified version of Cadence [5], an open-
source discrete-time event-based human-movement simulator.
Specifically, we modified Cadence to support both MIRAGE
and PPBR [2] routing, and added additional reporting and
output modules to the simulator. The artifacts described in this
appendix include the modified version of Cadence, the human
mobility datasets used to perform our simulations, and Python
scripts used to configure Cadence and execute simulations that
mirror those of the simulation study described in Section VII
of our paper.

We emphasize that many of the routing protocols described
in this paper are probabilistic (non-deterministic), and hence
results will not perfectly replicate those in the paper. However,
because the variance of the protocols’ performance is small,
following the artifact specifications and workflow described
below should yield results that reproduce the scientific findings
of our paper.

A. Description & Requirements

1) Access: The artifact package is available through Zen-
odo at https://doi.org/10.5281/zenodo.16953762. The project
is actively being maintained, with future updates appearing
in our GitHub repository at https://github.com/GUSecLab/
cadence.

9 An exception occurs when p = 0.8 for the T-Drive dataset. At such a high
value of p, users’ local mobility graphs become very sparse, causing users
to refuse to accept most messages. This appears to be the case here, as the
network load dropped significantly from its level when p = 0.75.

2) Hardware dependencies: None. We note that we tested
our modified version of Cadence using two hardware config-
urations:

e 128-core Linux server with AMD 7551 processors and
362GB of RAM running Linux 6.8.0 (Ubuntu 24.04.2
LTS); and

o 8-core Linux laptop with Intel 17-8550u processors and
16GB of RAM running Linux 6.8 (Ubuntu 24.04.2 LTS)

Cadence is designed to leverage parallelism, and its perfor-
mance scales with the number of available cores.

3) Software dependencies: Our modified version of Ca-
dence requires few software dependencies:

e Linux OS (tested on Ubuntu 24.04.2 LTS exclusively, but
Cadence should be compatible with other platforms that
support Golang)

« GoLang (version 1.24.4)

« sqlite3 (version 3.45.1)

« Python (version 3.12.3)

4) Benchmarks: To evaluate MIRAGE, we consider two

human movement datasets:

¢ YJMob100K [30] is an anonymized human mobility
dataset that describes the movements of individuals in
a city in Japan over 75 days, the last 15 of which
occurred during an unspecified emergency. Locations
were collected using mobile phone location data.
e T-Drive [33] is a collection of taxicab trajectories
recorded in Beijing, China, in 2008.
Our simulations consider the first 500 users from each
dataset. We include the modified versions of these datasets
in our artifact package.

B. Artifact Installation & Configuration

To install and configure our modified version of Ca-
dence, first download the repository at https://doi.org/10.5281/
zenodo.16953762. Follow the instructions in the README . md
file to reproduce our simulation results.

C. Major Claims

MIRAGE is a privacy-preserving mobility-based messaging
system designed for censorship-resistant communication. To
prevent leakage of individual mobility behavior, MIRAGE
protects users’ mobility patterns with local differential privacy,
ensuring that participation in the network does not reveal an
individual’s location history.

Our paper makes the following claims:

« (C1): MIRAGE’s routing outperforms both epidemic-style
approaches and random-walk protocols by exploiting
historical mobility data collected from the population.

¢ (C2): MIRAGE provides provable privacy guarantees
which ensure that a user’s participation in MIRAGE does
not reveal too much about their individual mobility pat-
terns; we quantify a user’s privacy loss using differential
privacy.

We show the veracity of Claim C2 through formal argument

in Section IV of our paper. This artifact appendix focuses


https://doi.org/10.5281/zenodo.16953762
https://github.com/GUSecLab/cadence
https://github.com/GUSecLab/cadence
https://doi.org/10.5281/zenodo.16953762
https://doi.org/10.5281/zenodo.16953762

" p=0.65
—&— Max. Flooding x10 75 5o0.6
N ) A A A
0.8 Mirage (median) 2.00 —*— Max. Flooding =055
—A— Prob. Flooding - Mirage (median) 7.04
—— PPBR 0 —2k— Prob. Flooding
0.6 65
1.5 _ 65
;‘; =< Handoff - 50 —— EPBdRﬁ 2 23 M. Flooding
—> s
> p=055 S ance Z 6.0 Mirage (median)
o | pE0.6 . < p=0.55 > .
2 0.4 9T : RO g 1.00 - g ~A— Prob. Flooding
.
e 2 05 e L —— PPBR
. 5.0
0.2 0.50 } } }
A& & A 0.25 1+ e & A 45
0.0 - 0.00

-~

5
€

(a) Delivery rates

(b) Network load

-

5
€

5
€

(c) Message latency

Fig. 7: Performance of MIRAGE and other routing protocols on the YJIMobl100K dataset, with £ = 4. Shaded regions show

the IQRs for MIRAGE and probabilistic flooding over 10 runs.

B %108 _ =055
—&— Max. Flooding 7.5 i 506 A
= . s & A
0.8 Mirage (median) 2.00 Max. Flooding 0 !
—2— Prob. Flooding 175 Mirage (median) g
06 —— PPBR . ~4— Prob. Flooding 6.5
X 5
2 —< Handoff o 10 —r—PPEBR 2z —e— Max. Flooding
)
x pi085 8125 —< Handoff 360 Mirage (median)
e . >
é’ 0.4 -0 o058 § 1.00 p=0.55 % ~#— Prob. Flooding
. 55
8 2 l:06 B E 5.5 PPBR
Z0.75 t $0.65.
5.0
0.2 0.50 ' '
N A 0.25 A " 45
0.0 0.00

10 12 14 16 18 8 10

€

(a) Delivery rates

(b) Network load

12
€

14 16 18 10 12

€

14 16 18

(c) Message latency

Fig. 8: Performance of MIRAGE and other routing protocols on the YJIMob100K dataset, with k& = 6. Shaded regions show

the IQRs for MIRAGE and probabilistic flooding over 10 runs.

on the performance of MIRAGE relative to other routing .
protocols—that is, Claim C1.

D. Evaluation

We use the (modified) Cadence simulator to demonstrate
the performance of MIRAGE routing. Our metrics of interest
include the delivery rate (the fraction of sent messages that
reach their destination); message latency (the time between the
sending and reception of a received message); network load
(the total number of message transfers); delivery efficiency
(delivery rate divided by network load).

a) Overview: We use Cadence to simulate network mes-
sage passing under five different routing protocols: MIRAGE,
PPBR, Probabilistic Flooding, Handoff, and Maximal Flood-
ing. Two networks created from the modified Japan and Tdrive '
human movement datasets are simulated.

The simulations take approximately ten hours of computa-
tion time to complete.

b) Preparation: For detailed experiment instructions, see
the README . md document contained within the code repos-
itory. In brief, running the simulations and reproducing the
results from our paper requires the following steps:

First, navigate to the code repository and set up a Python
virtual environment.
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python3 -m venv venv

Next, set up the required software and dependencies using the
provided script:
python3 scripts/run_setup.py

Then, build the executable:
python3 scripts/run_build.py

Once all required modules are installed, create the necessary
databases and import the included datasets using the provided
script:

python3 scripts/run_import_parrallel.py

c) Execution: Start the set of simulations by executing
the provided script:

python3 scripts/run_experiments_parrallel.py

This will run all trials for all routing algorithms for each
network dataset, including all parameter combinations for M1-
RAGE. This encompasses the simulation results in Section VII
of our paper.

Successful completion of experiments will generate
two CSV files—japan.csv and tdrive.csv—stored in the
results/raw—data directory; these correspond to our two
human mobility datasets. The experiments will also generate
auxiliary data.
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d) Reproducing Plots: To convert the experiment result
data files into the figures that appear in the paper, run the
provided plotting script:
python3 scripts/run_plots.py

This will generate all plots and store them in the
results/plots directory. The file README . md provides
the mapping between each plot and its description.

The plots are named based on the convention METRIC_K-
VALUE_DATASET.pdf, where METRIC is one of:
dr: the delivery rate
lat: the message delivery latency (in days)
nl: the network load
custom (message efficiency): a custom metric, defined as
the delivery rate divided by the average load; this metric
is not currently used in our paper
custom?2 (delivery efficiency): a custom metric, defined
as the delivery rate divided by the network load.
al: the average load (average number of messages in the
network per time frame); this metric is not currently used
in our paper

The results from the simulation experiment confirm Claim
Cl1. For certain combinations of p and k values, MIRAGE
outperforms PPBR and probabilistic flooding in terms of load
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and delivery rate. On the modified Japan network, MIRAGE
generated less network load than PPBR for p = 0.65. MI-
RAGE yielded higher delivery rate than PPBR for p = 0.55
while beating probabilistic flooding for all values of p €
0.55,0.6,0.65. On the modified TDrive network, MIRAGE
generated less network load than PPBR and probabilistic
flooding for all values of p. MIRAGE yielded higher delivery
rate than probabilistic flooding for p = 0.55. Since MIRAGE,
PPBR, and probabilistic flooding protocols are probabilistic,
specific results may vary by experiment.

E. Customization

To run experiments for other values of p and
k, modify scripts/parameters.py. Other
configuration parameters can be modified via config
files in cmd/cadence/configs/NDSS and
pkg/logic/logic_configs/NDSS.

F. Notes

The top-level README .md file in the artifact repository
contains more detailed, step-by-step instructions for reproduc-
ing the results of our paper.
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