Artifact
Evaluated

ANDss

Available

User-Space Dependency-Aware Rehosting for e
Linux-Based Firmware Binaries

Reproduced

Chuan Qin"?*"",Cen Zhang3*,Ya0wen Zhengl,Puzhuo Liu* Jian Zhang3,Yeting Li!,

Weidong Zhang'#,Yang Liu?,Limin Sun

1,2%

nstitute of Information Engineering, CAS, China 2School of Cyber Security, UCAS, China
{qinchuan, zhengyaowen, liyeting, zhangweidong, sunlimin}@iie.ac.cn

3Nanyang Technological University, Singapore

“Tsinghua University, China >Ant Group, China

cen001 @e.ntu.edu.sg, {jian_zhang, yangliu} @ntu.edu.sg liupuzhuo.lpz@antgroup.com

Abstract—Firmware rehosting is a fundamental emulation
technique that enables dynamic analysis of firmware binaries
at scale. Successfully rehosting Linux-based firmware services
requires proper emulation of both system-level functionalities
like device interfaces and user-space dependencies such as con-
figuration files, inter-process communications. However, existing
solutions inadequately leverage user-space knowledge. The init
routine, which is the first user-space process sets up operating
environments, is often incompletely executed, leading to incom-
plete initialization. Besides, all emulation failures are treated
uniformly, failing to distinguish between direct system-level emu-
lation issues and their indirect effects on user-space dependencies.

To fill this gap, we developed FIRMWELL, a framework which
first models firmware rehosting as the coordinated emulation of
both the target binary and its user-space dependencies. It first
rehosts the init routine for environment construction and then
launches the target, which is a procedure that typically involves
more than one hundred processes. When emulation failures
occur, FIRMWELL identifies the blocking process, analyzes
incorrectly emulated resources, and applies targeted fixes. The
key strategy is to address user-space dependency failures by
correcting the underlying system-level emulation errors, while
employing program analysis for precise resource value inference.
In evaluation of 14,049 firmware images, FIRMWELL successfully
rehosted 6,490 services, outperforming state-of-the-art by 1.6 -
8x (3,581 for FIRMAE, 3,962 for GREENHOUSE, and 810 for
PANDAWAN), while reducing average rehosting time by 1.8 - 8.4x
(12 vs. 22, 74, and 101 minutes). FIRMWELL was applied to fuzz
1,043 firmware images, uncovering 67 zero-day vulnerabilities
with ten assigned CVE identifiers.

I. INTRODUCTION

The rapid increase in the number of Internet of Things (IoT)
devices and the potential vulnerabilities in their firmware pose
significant security risks [1], [2]. Dynamic analysis techniques
like fuzzing are particularly effective for discovering these

* Both authors contributed equally to this work.
 The work was done while visiting Nanyang Technological University.
¥ Corresponding author: Weidong Zhang, Limin Sun.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230249
www.ndss-symposium.org

| Rehost Target Binary |
1 HOK
@ User-Space Dependencies Our
(daemon, dynamic files, ...) Focus
' v 31

| System-Level Functionalities (dev, procfs, ioctl, ...) |

Fig. 1: Overview of Target Binary Rehosting.

vulnerabilities due to their high detection rates and zero
false-positive results. However, performing dynamic analysis
physically on every IoT device is impractical due to the limited
scalability. To overcome these challenges, a more feasible
approach is firmware rehosting [3], [4]. This technique lets
the IoT firmware be effectively emulated on high-performance
servers, making dynamic analysis available and highly scalable
without the constraints associated with physical devices.

Rehosting a Linux-based firmware service requires creating
an emulated environment that supports all resources accessed
by the target binary. As illustrated in Figure 1, these resources
fall into two categories: system-level functionalities and
user-space dependencies. The former includes kernel services
and hardware peripherals accessed through system calls,
device drivers (1octl), and special filesystems like procfs
and devfs (Figure 1 - @). The latter comprises resources
created during system initialization, including configuration
files, environment variables, and background services that
enable IPC (inter-process communication, Figure 1 - @).
These dependencies are established by the init routine',
which prepares the runtime environment for all subsequent
programs. Successful firmware rehosting requires proper
emulation of both resource types.

Existing firmware rehosting approaches fall into
two categories. The first category employs full-system
emulation [6], [7], replacing the original firmware kernel with
a pre-built, generic kernel that runs in QEMU. These kernels
incorporate heuristics to handle common device-specific
features like MTD devices and custom ioctl operations.
After booting, they rely on the inif routine to automatically set

Linit routine [5] is the first user-space process executed after kernel boot,
responsible for setting up the user-space environment.

up user-space dependencies. However, this approach often fails
in practice because generic kernels cannot accommodate the
diverse vendor-specific customizations found across different
firmware. The second category, proposed by GREEN-
HOUSE [8], takes a different approach by only executing the
target binary in user-mode emulation and iteratively fixing
rehosting failures. GREENHOUSE empirically summarizes
common failures as roadblocks and applies predefined patterns
to resolve them, complementing full-system approaches by
successfully rehosting a different subset of firmware.

Despite their progress, existing approaches underutilize
user-space dependency knowledge for firmware rehosting,
leading to two fundamental limitations. First, they fail to en-
sure complete execution of the init routine. The init routine
establishes essential dependencies for all user-space programs,
including configuration files, environment variables, and IPC
channels. However, existing approaches treat it as either error-
free (full-system emulation) or entirely optional (user-mode
emulation). In practice, the init routine involves hundreds of
processes, and emulation errors in any of these processes,
even those unrelated to the target service, can halt the entire
initialization. Without dedicated support for completing the
init routine, critical dependencies remain uninitialized, causing
rehosting failures even when the target service could otherwise
run successfully. Second, current approaches apply super-
ficial fixes to user-space emulation errors. When rehosting
fails due to user-space issues like missing files or broken
IPC connections, these are typically symptoms of underlying
system-level emulation errors. For instance, a web server
may fail to find its configuration file since the configuration
daemon attempted to bind to a non-existent network device
within the emulated environment. Existing approaches employ
surface-level fixes such as creating dummy files or patching
binaries, without identifying or correcting the actual emulation
errors. Such superficial fixes fail when the target service
depends on the actual functionality these resources provide.

To address these limitations, we present FIRMWELL, the
first framework that models firmware rehosting as coordinated
emulation of both the target service and its user-space
dependencies. FIRMWELL follows a key principle: rely on the
firmware’s own initialization logic to create dependencies
whenever possible, while precisely identifying and fixing
underlying system-level emulation errors. FIRMWELL
operates in two phases. First, it performs dependency-aware
rehosting by establishing a multi-process emulation environ-
ment and executing the complete init routine before launching
the target service. To avoid introducing additional errors,
FIRMWELL employs conservative initial emulation strategies
for system-level resources. Second, FIRMWELL iteratively
identifies and solves rehosting failures if there is any. Given
a failure, it locates the specific process blocking successful
rehosting in the process tree by tracing the target’s execution
dependencies through call-chain analysis. Then, based on
system call patterns and error symptoms, the exact failure is
identified and classified as either user-space dependency issues
or system-level emulation errors. For user-space issues, it

either relocates misplaced resources or traces back to the peer
process responsible for initialization, ultimately identifying
the underlying system-level error. For system-level errors,
FIRMWELL applies progressive fixes: starting with simple
strategies like creating dummy device files, and escalating to
program analysis techniques (def-use analysis and symbolic
execution) when needed. This iterative refinement continues
until successful rehosting or reaching a retry limit.
FIRMWELL is evaluated on a dataset containing 14,049
Linux-based firmware images covering 13 major vendors.
Generally, it shows a clear advantage even compared to the
union results of all state-of-the-art rehosting techniques: it
successfully rehosted web servers of 6,490 (46%) firmware
image with functionality correctness, which is 1.8x compared
to FIRMAE’s 3,581 (25%) and 1.6x to GREENHOUSE’s 3,962
(28%), and 8x compared to PANDAWAN’s 810 (6%) services.
Notably, only 563 (4%) servers are uniquely rehosted by
either FIRMAE, GREENHOUSE or PANDAWAN while 1,389
(9%) are uniquely rehosted by FIRMWELL. When evaluated
on rehosting other network services such as UPnP and
DNS, FIRMWELL shows even more significant effectiveness
advantages. As for efficiency, on average, FIRMWELL
reducing the average rehosting time by 1.8 to 8.4-fold
(from 12 to 22, 74, and 101 minutes). Further analysis
indicates that the performance superiority of FIRMWELL
mainly sources from its better preparation of the user-space
dependencies and ablation study proves that all key designs
of FIRMWELL contributes to its effectiveness significantly.
Besides, FIRMWELL has been applied to support real-world
firmware fuzzing at scale. In total, 1,043 firmware has been
fuzzed using FIRMWELL emulated environments, with 67
zero-day vulnerabilities found and 10 CVEs assigned.
In summary, our contributions are:

e We identified the limitations of existing firmware
rehosting approaches, which inadequately leverage
user-space knowledge by failing to ensure complete
execution of init routine, and applying superficial fixes
to user-space emulation errors.

e We proposed FIRMWELL, the first framework that
models firmware rehosting as coordinated emulation
of both the target binary and its dependencies, with a
principled approach that maximizes utilization of user-
space dependency initialization logic while precisely
fixing system-level emulation errors.

« We demonstrated through comprehensive evaluation on
14,049 firmware images that FIRMWELL outperforms
state-of-the-art tools by 1.6-8x in rehosting success rate
while reducing rehosting time by up to 8.4x.

e We validated FIRMWELL’s practical impact by
discovering 67 zero-day vulnerabilities with 10 CVEs
assigned, demonstrating its effectiveness for security
analysis at scale.

To facilitate future research, we have released the source
code of FIRMWELL and the evaluation results at https://github.
com/qc9c/FIRMWELL.

https://github.com/qc9c/FIRMWELL
https://github.com/qc9c/FIRMWELL

II. PRELIMINARIES
A. Background

Linux-Based Firmware Rehosting Rehosting enables
firmware execution in virtualized or emulated environments
rather than on physical hardware, facilitating security
analysis, debugging, and security testing. This paper focuses
on rehosting user-space services in Linux-based firmware,
particularly network services like HTTP servers in routers
which doesn’t heavily rely on functionalities from specific
hardware peripherals. Existing QEMU-based approaches [9]
employ two main strategies: full-system emulation [10], [6],
[71, [11], [12], which replaces the original kernel with a
customized, bootable kernel to provide complete user-space
functionality, and user-mode emulation [8], which only emu-
lates system-level interfaces required by the target application.
System-Level Functionality This comprises kernel
functionalities and hardware peripherals. The former
covers process control mechanisms and the proc filesystem
(procts), which provide necessary information and control
over running processes, while the latter has hardware-specific
components that enable device operations and interactions.
The fundamental challenge in rehosting roots in system-level
functionality discrepancies between physical devices and
their emulated counterparts. Vendor-customized Linux kernels
often have unique configurations and peripheral models that
are not present in emulated kernels. Without precise emulation
of these functionalities, user-space programs may crash or
exhibit degraded functionality. Perfect emulation of hardware
and kernel modules would enable seamless execution of any
user-space program.

User-Space Dependency User-space dependencies
encompass configurations established by init routine: the
first user-space process (PID 1) that initializes the operating
environment. This includes execution configurations (EXE),
such as command-line arguments, working directories, and en-
vironment variables; dynamically generated files (DYN); and
inter-process communication channels (IPC). The init routine
performs critical setup tasks such as initializing peripherals,
configuring networks, establishing system environments, and
launching services, which is a complex procedure involving
hundreds of processes. Its extensive system-level interactions
make it particularly sensitive to emulation inaccuracies. When
the init routine fails to complete due to imperfect emulation,
essential user-space dependencies can remain uninitialized,
causing subsequent rehosting failures.

B. Motivation Example

Figure 3 presents a simplified firmware startup sequence that
demonstrates the limitations of existing rehosting approaches.
Three programs execute sequentially: /sbin/rc (the init
routine), /sbin/http_manager (a daemon service), and
/usr/sbin/httpd (the target web server). rc configures
the system environment and launches services, including
http_manager. http_manager creates shared memory
resources and then spawns httpd, the rehosting target

Execution Phases in Physical Device
Kernel |:{> User Space |:{> Target Service
Booting Initialization Execution
the task of rehosting
Emulated Environment
| System Level Functionality | | User Space Dependency |

L) ¥
| Target Service |

Fig. 2: The Task of Rehosting User-Space Services.

init routine -- /sbin/rc (1st executed)
fd = open("/proc/sys/net/ipv4/dns_hijack", O_RDONLY);
data = read(fd, buf, buf_size);
if (data) // E1l: crash, null pointer dereference as
accessing non-exist procfs entry

W N =

})'gener‘ate config file "/etc/http.conf" for httpd service
;)./;tem("/sbin/hotplug"); // E2: endlessly stuck

VooNO U~

;‘;a'ar‘t_ser‘vice("/sbin/http_manager‘ -d");

init routine -- /sbin/http manager (2nd executed)
10 read(open("/dev/flash™, O_RDONLY), dev_buf, buf_size);
11 if (dev_buf != NULL II'! strncmp(dev_buf, "EMMC",4))exit(-1);
12 // set shared memory
13 shm_id = shmget(123, size, IPC_CREAT|0666);
14
15 system("/usr/sbin/httpd -d /www -c **.cgi &");
B coo
17 // E3: if patch line 11, dev_buf is NULL
18 while (1){
19 ipc_communicate(shm_id, dev_buf, ...);

20 }
2
target service -- /ust/sbin/httpd (3rd executed)

21 // parse command-line arguments
22 // parse config file "/etc/http.conf"

23 ooo

24 shm_id = shmget(123, @, 0666); // read shared memory

25 if (shmid == -1) exit(-1); // E4: abort, the daemon
service did not start

26

27 while (1) { // main service loop

28 ipc_communicate(shm_id, ...);

29 0

30 }

Fig. 3: Example Code Simplified From Real-World Cases.

service. Once started, httpd retrieves the shared memory
identifier and uses it to communicate with http_manager
during its main service loop, which is a critical dependency
for proper web server functionality. While these programs
execute correctly on physical devices, they fail in emulated
environments due to missing system-level functionalities,
which are marked as errors E1 - E4 in the figure.
M1: Target Services Require Complete Initialization
Errors E1 and E2 demonstrate how system-level emulation
failures in the init routine cascade into missing user-space
dependencies. E1 occurs when accessing the non-existent
procfs entry dns_hijack, causing a null pointer
dereference. E2 results from hotplug waiting indefinitely
for unemulated peripherals. Although these errors appear un-
related to the target ht tpd, they prevent the init routine from
completing its execution. Consequently, http_manager
never start, the shared memory never be created, and httpd
fails at line 24-25 when attempting to access this missing

§I1I-A User-Space Dep-Aware

- §11I-B Rehosting Blocking Process i

§ITI-C Emulation Failure Classification and Fix

i Rehosting] ‘ Identification '
E : : I ; 4 Emulation Failure Reasoning M '
E] : / \ : ; Syscall Pattern Error Symptom ;
: Firmware Unpack ! : g open()=4 * Missing files ;
' ! . X [FI I s . ¢ Crash after reading data :
: : b | Init —> l ; read(4,buf,size)=100 * Network unreachable :
' i ' = i ' * ... '
: . o : : 3 AN J
: Binary Identification '] —> ' ' !
| o e r‘ — s
¢ [Initial Emulation Strategy | : Target | o Targeted Fix :
= Setup 1 B i {_CREATE . i {__REUSE _: |1
: A (et reR SR [FRCINPEER, J |
0 v Apply Fix |, Fail T
% E- The set-up Multi-process Emulator ' boot v Rehosting Environment P L L L LT RPNy 4
m‘ Filesystem —> User-Space Processes i—>Rehosting Validator P>

Firmware Emulator Configuration '

Emulated Sys-level Interfaces

Fig. 4: Overview of FIRMWELL.

resource. Existing approaches lack mechanisms to handle
these emulation failures: system-mode assumes the init routine
executes error-free while user-mode overlooks it entirely, both
failing to establish critical dependencies. This motivates us to
develop a systematic mechanism that rehosts both the target
service and its complete init routine by properly handling
emulation failures throughout the dependency chain.
M2: Dependency Failures Trace to System-Level Errors
Error E4 illustrates why fixing user-space dependency
failures requires addressing their system-level root causes.
When httpd fails to access shared memory, the immediate
cause is that http_manager never initializes it. However,
http_manager itself failed earlier due to incorrect
emulation of /dev/flash (line 10). Current approaches
attempt to fix E4 directly by creating shared memory,
but this fails because the IPC channel also requires active
communication from http_manager. Similarly, force
patches like bypassing the device check (line 11) still fail
because dev_buf remains null, breaking IPC functionality
(line 19). The fundamental issue is that user-space dependency
failures are symptoms of underlying system-level emulation
problems. Effective rehosting must trace these dependency
failures back to their system-level causes and provide
semantically correct emulation, such as inferring valid device
values that enable proper IPC communication. This motivates
us to develop an approach that relies on the firmware’s
own initialization logic to create dependencies whenever
possible, while employing program analysis to precisely infer
system-level resource values when emulation errors occur.

C. Overview

Figure 4 illustrates FIRMWELL’s two-phase workflow:
dependency-aware rehosting followed by iterative failure
resolution. In the first phase, FIRMWELL establishes a
multi-process emulation environment to execute both the init
routine and the target service. After unpacking the firmware

and identifying the initialization entry point, FIRMWELL
applies conservative emulation strategies for system-level
resources to avoid introducing additional errors while
allowing the firmware’s own logic to establish user-space
dependencies (Section III-A). When emulation failures
occur, FIRMWELL enters its iterative resolution phase. It
first identifies the blocking process by correlating runtime
process tree information with static call-chain analysis
(Section III-B). Based on system call patterns and error
symptoms, FIRMWELL classifies each failure as either a
user-space dependency issue or a system-level emulation
error (Section III-C). For user-space dependency failures, e.g.,
missing files, broken IPC, FIRMWELL either relocates the
files already existed in the environment (REUSE) or traces
back to the responsible initialization process to uncover the
underlying system-level error (FIX-IN-PEER). For system-
level emulation errors, FIRMWELL applies progressive fixes:
from creating dummy resources (CREATE) to employing
program analysis techniques that infer semantically correct
values (INFER). This iterative process continues until the
target service successfully rehosts or reaches the retry limit.

II1. METHODOLOGY

A. User-Space Dependency-Aware Rehosting

Multi-Process Emulator To ensure complete user-space
dependency construction during emulation, FIRMWELL
requires an emulator capable of executing multiple processes
with proper resource sharing and IPC support. While
QEMU-system mode natively provides this functionality, it
incurs significant overhead from full VM (Virtual Machine)
emulation—approximately 26x slower than user-mode
according to prior work [12]. For performance considerations,
we construct a container-based multi-process emulator built
on QEMU-user mode.

Our approach leverages containers to create VM-like emula-
tion environment while avoiding VM emulation cost. Although
QEMU-user mode can support emulating multiple processes
with shared resources and proper inheritance by launching
multiple QEMU-user mode instances, specific design is
required to ensure correct emulation resource sharing and
isolation within containers. Our isolation strategy comprises:

e init routine takes PID 1 Each firmware runs in a dedi-
cated container where all processes share resources, with
the init routine set as entrypoint to ensure it runs as PID 1.

o Mock procfs We redirect /proc accesses to a
writable mock path (/fakeproc) via hooking file-
access-related syscalls, which can support sequential
procfs item read/write operations. This helps in both
runtime system-level emulation adjustment and isolation
between concurrent containers.

« Enforcing binary interpreter for QEMU user-mode
We patch QEMU-user’s execve syscall to ensure
spawned processes use the container-internal QEMU
user-mode binaries rather than the host’s interpreter
(by forcing the path argument of execve (path,
argv, envp) to be gemu_user_mode_path).
By default, QEMU user-mode hasn’t specify the
interpreter when spawning subprocesses, which means
the interpreter will be determined by kernel feature
binfmt_misc?. This will bypass container filesystem
isolation, causing the host QEMU user-mode be executed
with host resources access, leading to race issues when
concurrently launching multiple rehosting containers.

o Filesystem and Device Isolation Hardware
peripherals, system files, user-space files are either
emulated before or during rehosting or extracted from
initial firmware image. They are treated as regular files
within the container, while network devices and devfs
utilize container-native configurations.

Despite these enhancements, QEMU-user mode
occasionally encounters compatibility limitations, such
as unimplemented clone flags [14]. When FIRMWELL
detects such issues, it automatically falls back to QEMU-
system mode with our independent implementation that
provides initial hardware configuration at startup and fixes
emulation failures iteratively, either through direct file
modifications or via a custom kernel that intercepts system
calls (e.g., ioctl) to emulate missing peripherals. This
dual-mode design balances performance and compatibility,
enabling efficient rehosting across diverse firmware images.
Conservative Initial Emulation Strategy For user-space
dependencies, it does nothing but rehosts the init routine
before rehosting the target. For system-level functionalities,
unlike existing approaches [6], [7] that pre-populate device
files based on hardcoded lists, e.g., /dev/gpio, FIRMWELL
adopts a conservative initialization strategy. We provide only
the minimal resources required for basic operations, allowing

Zbinfmt_misc enables the kernel to invoke specific interpreters for different
binary formats [13].

the firmware’s own initialization logic to create additional
dependencies as needed. This approach intentionally exposes
firmware-specific requirements rather than masking them with
potentially incorrect default emulation heuristics, enabling
more precise fixes during the iterative resolution phase.

o procfs & devfs FIRMWELL creates only essential
device files necessary for boot (/dev/console,
/dev/random, /dev/urandom, /dev/tty), while
procfs inherits the container’s initial state with the
init routine as PID 1. Additional devices are created
on-demand when rehosting failures reveal specific
requirements.

« NVRAM NVRAM (Non-Volatile Random Access
Memory) enables firmware to persist configuration across
reboots [6]. FIRMWELL interposes NVRAM operations
through LD_PRELOAD to provide a key-value store
that returns empty strings for unset keys, preventing
crashes while enabling subsequent value inference. (see
Section IV for details).

« Network Configuration A default bridge interface is
set to provide basic network connectivity.

Rehosting Validation = When no new processes are detected
within the specified timeout period, FIRMWELL concludes that
rehosting is finished and proceeds to validate the rehosting
outcome. Similar as existing works [8], FIRMWELL adopts the
manual configured functionality validation criteria to check if
the expected functionality is provided. For instance, rehosting
an HTTP service is considered successful if interactions
with the rehosted server return normal status codes and no
predefined error strings. For other services, users need to
setup its custom validation criteria.

B. Rehosting Blocking Process Identification

When rehosting fails during the execution of hundreds of
processes in the init routine, FIRMWELL must identify which
specific process blocks successful rehosting. Note that not all
execution errors require resolution but only those that prevent
the target service from launching. Blocking processes typically
fall into two categories: @ processes that should initialize
dependencies but exit abnormally or become stuck, and @ un-
related processes that become stuck, halting the entire init rou-
tine. FIRMWELL identifies the last abnormally exited process
in category @ as the blocking process, while stuck processes
in both categories must be addressed to continue initialization.

However, locating the blocking process is challenging
because the init routine spawns numerous subprocesses, and
most of them are unrelated to the target service. FIRMWELL
addresses this through a two-step approach: first constructing a
static call-chain graph representing the invocation paths from
init to target, then mapping runtime execution records onto this
graph to pinpoint the blocking process. Algorithm 1 shows the
overall workflow where the dependency graph construction is
atCallChainConstruction (line 1-14), and the blocking
process identification is at FindErrorProc (line 15-25).
Static Analysis: Call-Chain Construction A call-chain
is a directed graph G = (N, FE) where N represents

Algorithm 1: Error Process Localization.

Input: fs (filesystem of a firmware); ¢ (name of target service); init (name
of init binary); ¢trace (record of actual invocation trace of after boot)

Output: err_process (the error process related to rehosting ¢)

1 Function CallChainConstruction (trace, target):

2 call_chains < 0

3 worklist, analyzed <+ {target}

4 while worklist # () do

5 curr < worklist.dequeue()

6

7

8

foreach caller € GETALLEXECUTABLE(fs) do
if curr € GETSTRINGS(caller)&curr ¢ analyzed then
if curr € GETCALLEDSUBROUTINES(caller) then

9 analyzed.enqueue(caller)

10 worklist.add(caller)

1 call_chains.addEdge(caller, curr)

12 if trace # () then

13 REFINECALLCHAIN(call_chains, trace)

14 return call_chains

15 Function FindErrorProc (call_chains, trace, target):

16 while T'rue do

17 n < GETLASTEXECUTEDONCHAIN(call_chain, trace)
18 state < GETPROCESSSTATE(P)

19 if ISEX1T(state) then

20 return n /l case (b) and (c) in Fig.5
21 if GETSUBPROCESS(n) > 0 then

22 proc <— FINDBLCOKPROCESS(n)

23 KILLPROCESS(proc) // case (a) in Fig.5

24 continue ; // wait and check for new processes
25 return n

26 if GETCALLCHAIN(target) = () then

27 call_chains <~ CALLCHAINCONSTRUCTION()

28 err_process < FindErrorProc(call_chains, trace)

(c) Node A normally exit

(b) Crashing on node A with unfinished call chain

(a) Blocking on node A

[::l blocking node|:| abnormal exit nodc|:|n0rmal exit node ':____: non-executed node

Fig. 5: Examples of Error Processes (A node represents an executable file,
such as a shell script or ELF binary) .

executables (including shell scripts and ELF binaries) and
E represents invocation relationships through execve-like
calls. Computing the complete call-chain starting from init
would require analyzing hundreds of binaries with high
computational cost. Instead, FIRMWELL employs backward
analysis starting from the target, effectively pruning irrelevant
execution paths (lines 1-16).

The construction proceeds in two phases. First, for each exe-
cutable in the worklist, FIRMWELL identifies potential parents
by searching for the executable’s path in all firmware binaries’
string constants (line 7). This is a quick but rough process to
filter out the candidate caller binaries. Second, candidates are
verified through Def-Use analysis to confirm actual invocations
by checking if the target appears in called subroutines (line 8).
Verified parents are added to the worklist for recursive analysis
(lines 9-10), and confirmed invocations create edges in the
call-chain (line 11). This targeted approach reduces analysis
scope from hundreds to dozens of binaries: only those on the
actual invocation path to the target. Besides, FIRMWELL will
also utilize runtime trace data to further collect the invocation
relationships missed by static analysis and use the enhanced
invocation set to identify missed call-chains.

Dynamic Analysis: Blocking Point Identification = With

the call-chain established, FIRMWELL maps runtime execution
records to identify where initialization stalls (lines 15-25).
The key idea is that the init routine executes all programs in
the call-chain sequentially and the last executed node on the
call-chain is the furthest point reached before failure.

After identifying the last executed binary, FIRMWELL finds
its process in the process tree and analyzes this process’s
state (line 19). FIRMWELL divides it as three scenarios as
shown in Figure 5: @ If the process remains running with
active children, FIRMWELL identifies all child processes and
terminates the deepest one in the recursion (lines 21-23), then
continues initialization (line 24). If there is no subprocess,
the process itself will be identified as blocking process; @ If
the process exited abnormally, it is marked as the blocking
process (line 20); ® If the process exited normally but
failed to invoke its successor, it is also marked as blocking.
This iterative process continues until the rehosting blocking
process is identified, and that process will be further analyzed
to propose the proper fix strategies in the next section.

C. Emulation Failure Classification and Fix

Overview After identifying the blocking process,
FIRMWELL applies targeted fix strategies based on error clas-
sification. FIRMWELL distinguishes between two fundamental
error types: system-level emulation errors, e.g., missing
device files, incorrect peripheral responses, and user-space
dependency errors, e.g., missing configuration files, broken
IPC channels. The key insight is that in a functioning firmware,
user-space errors occur only when system-level emulation
failures prevent proper initialization. Thus, FIRMWELL fixes
system-level errors directly through improved emulation,
while resolving user-space errors by tracing back to and
fixing their underlying system-level causes. Once the actual
cause is addressed, the user-space error resolves automatically.
Table I presents our complete error taxonomy and corre-
sponding fix strategies. For system-level errors, FIRMWELL
distinguishes between missing resources (handled by CREATE
through creating dummy emulation resources) and incorrect
emulation (handled by INFER through inferring correct values
using program analysis). This progressive approach, i.e., start-
ing with simple dummy resources before applying complex
inference, follows the same conservative principle as our initial
emulation strategy: find the simplest emulation that enables
successful rehosting while minimizing the risk of introducing
additional errors or unnecessary complexity. For user-space
errors, FIRMWELL only addresses inter-process scenarios, as
we have not observed intra-process cases in practice (their
theoretical solutions are discussed in Appendix A-E). Errors
are further classified as either misplaced dependencies (files
exist but in wrong locations, fixed by REUSE) or missing
dependencies (never properly created due to initialization
failure, addressed by FIX-IN-PEER which identifies the

responsible peer process and fixes its system-level errors).
Nonexistent System-Level Functionality Access >CREATE
e Network Configuration — When network services fail
to bind to specific devices or IP addresses absent

TABLE I: Emulation Failure Categories.

Categories of Misemulation

Classification Condition (Involved Syscall Pattern+Error Symptom)

Fix Strategy

Misplaced Inter-Process User-Space Dependencies

5 1) file-access syscalls failed + the file can be located in the filesystem REUSE
(user-space files)
Nonexistent or Incorrectly Emulated Inter-Process 1) file-access syscalls failed + the file can’t be located in filesystem
User-Space Dependencies 2) shmget / connect failed + peer processes not established FIX-IN-PEER
(user-space files, IPC) 3) shmget / connect / open successed + data-read successed + process crashed
Nonexistent System-Level Functionality Access 1) file access syscalls failed CREATE
(devfs, Network) 2) bind/setsocket/ioctl (fd, SIO=*, ...) failed + network unreachable

.) L 1) open NVRAM files failed”

Incorrect Emulation of System-Level Functionality 2) foct1 failed + process crashed INFER

(Peripheral, devfs, procfs, NVRAM)

3) data-read-like syscalls successed + process crashed

* We modify NVRAM key-value pair access to file content, with key access logged by the open syscall.

in the initial environment, FIRMWELL creates the re-
quired network resources. Upon detecting errors from
network-related syscalls (bind, setsockopt, ioctl),
FIRMWELL configures a network bridge and assigns
dummy network interfaces with appropriate IP addresses,
establishing connectivity between host and guest.

o Device and System-Level Files For missing devfs
and procfs entries, FIRMWELL creates files based
on the failed access patterns. When open-like syscall
fails, an empty regular file suffices to bypass existence
checks. When stat fails, FIRMWELL creates the
appropriate file type (character or block device) inferred
from the filename pattern, ensuring correct metadata for
type-sensitive operations.

Incorrect Emulation of System-Level Functionality
-INFER When CREATE’s empty files prove insufficient,
INFER provides semantically meaningful values for data-read
operations. FIRMWELL employs a three-tier progression:
random values, database lookup, and program analysis,
escalating only when simpler approaches fail. This strategy
is built based on the observation that many programs only
check value existence rather than content, minimizing both
analysis overhead and the risk of incorrect emulation.

e Random Value Generation FIRMWELL first attempts
random values for system-level resources’ read
operations. Device files like /dev/mtd are populated
with 256MB of random data (exceeding typical
embedded device memory) to satisfy any access pattern.
For ioctl calls, FIRMWELL identifies the resource via
fd and request parameters, then returns fixed values,
e.g., Oxdeadbeef and success status.

o NVRAM Configuration Inference When random values
fail for NVRAM entries, FIRMWELL applies targeted
inference. First, it searches a pre-built database of vendor-
specific key-value pairs extracted from factory reset
paths, e.g., /etc/default [6], [7]. If the key remains
unresolved, FIRMWELL performs intra-procedural def-
use analysis to extract values from the binary itself:
@ tracking constants passed to nvram_set, and @
identifying literals compared against nvram_get return
values via comparison functions such as strcmp. This

approach leverages NVRAM’s string-based nature to
provide semantically correct configurations.

e Magic Byte Inference via Symbolic Execution When
firmware verifies specific byte patterns, e.g., version
numbers at fixed offsets in /dev/flash, random
values and def-use analysis often fail to capture these
constraints. To address this, FIRMWELL maps execution
traces to the binary control flow graph, locates abnormal
exit calls or crash instructions, and then launches targeted
symbolic execution from the identified error point to
find satisfying constraints. Specifically, FIRMWELL
initializes the relevant system-level resource as symbolic
values, handling both file contents and ioctl syscalls,
and executes to find satisfying constraints. To manage
complexity, analysis is scoped to the current function
that accesses the system-level resource, with concrete
values for existing resources and zero-filled uninitialized
data. This error-driven approach efficiently extracts
magic bytes and similar fixed-pattern constraints that
would otherwise block rehosting.

Misplaced Inter-Process User-Space Dependencies
-REUSE The REUSE strategy handles cases where
required files exist in the firmware but remain inaccessible
due to incomplete initialization. FIRMWELL searches for these
files in typical service directories, e.g., /www, and applies
two resolution approaches: @ for relative path failures, it
changes the working directory via chdir; @ for absolute
path failures, it copies files to their expected locations. This
simple relocation often suffices when the dependency itself
is intact but merely misplaced.

Missing Inter-Process User-Space Dependencies FIX-IN-
PEER When user-space dependencies cannot be relocated
(REUSE), FIRMWELL traces the failure to its source: a
peer process that failed to initialize the resource due to
system-level emulation errors. Unlike system-level resources
that can be directly emulated, these dependencies embed
process-specific semantics, e.g., IPC protocols, data formats,
file contents, that require the original initialization logic.

FIRMWELL identifies the responsible peer process through
three steps: @ It first extract the IPC paradigm and its

associated data key ? from the syscall traces of the current
blocking process. FIRMWELL then performs initial filtering
by searching these identifiers as byte sequences across all
firmware binaries to quickly identify peer candidates. @
It refines candidates using lightweight symbolic execution
to verify actual IPC usage. Starting from the entry points
of functions that call IPC-related functions, e.g., bind,
connect, shmget, FIRMWELL symbolically executes to
extract argument values and confirm they match the resource
accessed by the blocking process. This step did a precise
filtering which can even filter out binaries that merely contain
the byte sequence but don’t actually interact with the resource.
® For each verified peer process, FIRMWELL applies the
complete error diagnosis and fix workflow described in this
section. Based on our empirical observations, Unix domain
sockets, shared memory, and user-space files are the primary
IPC mechanisms that fall into this failure category. Note that,
while multiple candidates could theoretically be identified,
requiring either exhaustive testing of all candidates or more
sophisticated setter/getter identification techniques, we have
rarely encountered such cases in our evaluation.

IV. IMPLEMENTATION

We implemented a prototype of FIRMWELL with 27,646
LoC of Python code and 414 lines of Bash scripts. The
system begins with a firmware pre-processing stage, which
extracts the root filesystem and identifies key binaries for
subsequent analysis and emulation. FIRMWELL has three
key components: Multi-Process Emulator, Blocking Process
Identifier and Emulation Failure Fix. Due to the page limit,
we cannot detail every engineering detail in this section.
Instead, we discussed several interesting implementation
design choices about FIRMWELL’s rehosting framework.
Firmware Pre-processing This stage unpacks the firmware
to extract the filesystem, including executables and resource
files, and identifies the init binary and target binary for
rehosting. FIRMWELL first leverages Binwalk [16] for initial
unpacking. If Binwalk fails, FIRMWELL uses FACT [17],
which leverages community plugins to improve extraction
coverage [18]. Since the default FACT workflow does not
retain the original directory structure, which is critical for
correct rehosting, we developed a customized FACT version
that preserves the complete hierarchy during extraction.
Following prior work [6], we treat extraction as successful if
at least four directories defined in the Filesystem Hierarchy
Standard (FHS), e.g., /bin, /etc, /1ib, and /usr, are
identified. We empirically expanded the set of recognized init
routine binaries based on large-scale observations. Detailed
identification procedures for both the init routine and target
binaries are provided in Appendix A-A.

3 A data key refers to the unique identifier used by communicating processes
to access a specific IPC resource, such as a socket path, shared memory key
or file path [15]. For instance, in socket-based IPC, the data key can be the
file path of a Unix-domain socket or the combination of IP address and port
specified in address structures (e.g., sockaddr_in).

Syscall Execution Tracer To capture execution context
and dependency relationships during rehosting, we developed
a lightweight tracer based on syscall instrumentation. For
QEMU-user mode (v8.20), we patched 219 lines of code
to intercept syscall invocations and log execution informa-
tion. Specifically, FIRMWELL: @ hooks the execve syscall
to record program launches, capturing command-line argu-
ments and environment variables. @ hooks file-access-related
syscalls, such as open and access, to redirect file paths
and handle missing procfs entries. ® hooks the bind,
setsockopt, and ioctl syscalls to record peripherals-
related operations. @ hooks IPC-related syscalls such as bind
and connect to record IPC communications. A similar
syscall hooking mechanism is implemented on a customized
Linux kernel (v4.1) to support execution tracing in QEMU-
system mode.

libnvram.so To support NVRAM emulation, FIRMWELL
provides a custom libnvram.so library (854 lines of C
code) that intercepts and log all access operations using
LD_PRELOAD. This library acts as a key-value database,
handling nvram_set to update values and nvram_get to
retrieve them. If a requested key has not been set, the library
returns an empty string by default. Otherwise, it returns the
stored value. This is similar as prior works [6], [7], [8].
Details of Call-Chain Construction Given each executable,
FIRMWELL extract its invoked subprocesses through the fol-
lowing analyses, which serve as the foundation for call-chain
construction. For ELF binaries, FIRMWELL performs intra-
procedural Def-Use analysis to recover the arguments passed
to execve-like API call sites. For shell scripts, FIRMWELL
constructs the abstract syntax tree (AST) based on Mor-
big [19], and then traverses command-related AST nodes to
identify all subprocess invocations.

Def-Use Analysis FIRMWELL leverage intra-procedural bi-
nary analysis to extract constant strings propagated to specific
function callsites. The analysis is implemented using Ghidra’s
P-code intermediate representation [20].

Emulation Failure Classification and Fix We lever-
age angr [21] as the symbolic execution engine for:
® magic byte inference, FIRMWELL synthesizes concrete
values for system-level resources in INFER fix strategy.
The analysis is restricted to the current function ac-
cessing the resource, skipping all callees for simplicity.
FIRMWELL provide concrete values for existing files and
zero-initialize unconstrained memory and registers, i.e., angr’s
ZERO_FILL_UNCONSTRAINED_MEMORY option. @ peer
process identification, FIRMWELL extracts the IPC identifier,
i,e, data key, associated with the specific IPC paradigm.
The extracted identifier can include string values and bi-
nary representations of structures like sin_addr within
sockaddr_in. Besides, in this work, we set the maximum
number of fix iterations to 10 for one process, and the maxi-
mum number of processes analyzed within a firmware to 5.

TABLE II: Number of Web Servers Rehosted by FIRMAE, GREENHOUSE, and FIRMWELL. The number of Unpack is from FIRMWELL.

B #of | | FirmAE | Greenhouse | Pandawan | FIRMWELL
rand Images Unpack
\ Execute Connect Interact \ Execute Connect Interact \ Execute Connect Interact \ Execute Connect Interact
ASUS 1,902 1,701 1,716 764 107 1,484 1,300 1,284 77 35 30 1,585 1,585 1,579
AVM 524 0 291 1 1 0 0 0 ‘ 0 0 0 0 0 0
Belkin 63 63 57 23 8 61 47 34 24 10 0 38 38 32
D-Link 3,316 1,966 2,289 1,015 950 1,558 975 872 ‘ 470 289 277 1,485 1,134 1,116
EDIMAX 200 159 146 46 46 121 28 18 2 0 0 24 24 19
Engenius 143 70 128 36 34 66 59 59 ‘ 3 1 1 69 69 69
Linksys 313 241 234 152 125 228 72 67 42 25 7 182 149 136
Netgear 3,421 2,663 2,954 1,612 1,320 2,549 1,486 1,029 ‘ 495 253 210 2,462 2,305 2,251
Tenda 172 153 161 15 9 138 69 60 41 0 0 68 48 48
TP-Link 1,637 1,279 1,375 746 650 1,137 264 250 | 548 318 269 859 859 865
TRENDnet 967 574 805 374 324 612 352 271 70 19 16 486 397 363
Ubiquiti 1,377 643 1,192 1 1 437 12 12 ‘ 28 0 0 1 1 1
Zyxel 20 19 19 8 6 18 7 6 3 0 0 16 16 11
Total ‘ 14,049 ‘ 9,531 ‘ 11,367 4,793 3,581 8,409 4,671 3,962 ‘ 1,803 950 810 ‘ 7,257 6,625 6,490
V. EVALUATION o ‘8061426
Evaluation Questions The evaluation aims to answer: £ 1000 “49
Q
« RQ1: How does FIRMWELL perform compared to state-of- z 325 321
£ 77158138 46 44 28 2
= oo 20342822 20 4

the-art rehosting solutions?
« RQ2: How does each component of FIRMWELL contribute

to its overall performance?
¢ RQ3: Can FIRMWELL be used to discover real-world vul-

nerabilities within rehosted targets?
Firmware Dataset We evaluate FIRMWELL on a dataset
of 14,049 Linux-based firmware images collected from two
sources: LFWC [18] (10,449 images) and GREENHOUSE [8]
(7,098 images). After merging and removing duplicates using
SHA256 checksums, we obtained 14,049 unique firmware im-
ages. This dataset covers 2,140 devices from 13 major vendors:
ASUS, AVM, Belkin, D-Link, EDIMAX, EnGenius, Linksys,
Netgear, Tenda, TP-Link, TRENDnet, Ubiquiti, and Zyxel.
Device types include routers, cameras, switches, and wireless
access points, etc. Note that we use FIRMWELL’s firmware un-
packing workflow to extract the filesystem from each firmware
image, which is then used as the input for analysis by all tools.
Configurations All experiments were conducted on a Ku-
bernetes cluster with 1,000 CPU cores. Each pod was allocated
1 CPU core and 4GB of RAM, except for PANDAWAN pods,
which received 4 CPU cores per their recommended configu-
ration. The maximum rehosting time limit was set to 12 hours.

A. State-of-the-Art Comparison (RQI)

Baselines We compared FIRMWELL with three state-of-
the-art rehosting tools: FIRMAE [7], GREENHOUSE [8],
and PANDAWAN [22]. FIRMAE, an enhanced version of
FIRMADYNE [6], uses QEMU-system mode for full-system
rehosting. GREENHOUSE employs QEMU-user mode with an
adaptive and iterative strategy for rehosting target services.
PANDAWAN performs kernel-space rehosting through its
Kernel Augmentation technique, which builds augmented
kernels with vendor-specific functionality to enable holistic
analysis of both user-level and kernel-level code. We excluded
FIRM-AFL [23] and EQUAFL [12] as they focus primarily
on improving fuzz-testing throughput for targets already
rehosted by FIRMADYNE.

81010 PandaWan

3581 I
3962 Il Greenhouse
6490 Il FIRMWELL

P

FirmAE: : . [] I

Fig. 6: The Intersection of Successfully Rehosted Web Servers Across Tools.

Evaluation Services and Metrics To demonstrate the gen-
erality of our method, we evaluated FIRMWELL on three
major network services: HTTP, DNS, and UPnP. Following
prior work [6], [10], [11], [12], [8], we selected HTTP as the
primary target due to its prevalence and rehosting complexity.
We adopted the multi-stage criteria from Greenhouse [8]:
unpacking firmware (Unpack), running the target service
(Execute), connecting to the network service (Connect),
and interacting with it to verify functionality (Interact). For
FIRMWELL and GREENHOUSE, successful Unpack means
identifying the HTTP service binary in the filesystem, while
Execute is defined by detecting the bind syscall invocation.
For full-system emulation tools (FIRMAE and PANDAWAN),
Unpack means successfully extracting and mounting the
filesystem as a QEMU image, while Execute indicates
successful system boot with network connectivity.
Overall Results Table II presents the rehosting results
for 14,049 firmware images across four tools. FIRMWELL
demonstrates superior performance, successfully rehosting
6,490 firmware services to the Interact stage: 1.8x, 1.6x,
and 8.0x more than FIRMAE (3,581), GREENHOUSE
(3,962), and PANDAWAN (810), respectively. Among 9,531
successfully unpacked firmware images, FIRMWELL achieved
a 68% success rate overall, with notable rates of 92% for
ASUS and 84% for Netgear. FIRMWELL outperformed
baselines in 8 of 13 vendors, though GREENHOUSE
performed better on Belkin, EDIMAX, Tenda, and Ubiquiti,
while FIRMAE excelled on AVM.

Figure 6 shows the overlapping results among the four tools.

FEIFIRMWELL EGreenhouse

Fig. 7: Comparison of Fix Rounds between FIRMWELL and GREENHOUSE
(Y-axis: Fix Rounds).

Of 9,531 firmware images with identified HTTP services,
the tools collectively rehosted 7,053 (74%). FIRMWELL
successfully rehosted 6,490 services, while the other three
tools combined rehosted 5,664. FIRMWELL uniquely
rehosted 1,389 additional firmware services and covered
5,101 (90%) of the services rehosted by all baselines.
Results on Greenhouse Dataset The results on the 7,098
firmware images from the Greenhouse dataset are provided
in Appendix A-B. The evaluation confirms that FIRMWELL’S
performance advantages observed in the overall results remain
consistent on this subset of the data.

Analysis of FIRMWELL-Only Results We analyzed
the 6,490 firmware services successfully rehosted by
FIRMWELL to understand its advantages in handling critical
dependencies. For command-line arguments, a crucial user-
space dependency, FIRMWELL obtained 522 more arguments
than GREENHOUSE by executing init routine rather than
relying solely on inference strategies. FIRMWELL’s strategies
also addressed two key challenges that other tools missed.
First, while GREENHOUSE provides common IPC processes
like datalib and xmldb, FIRMWELL’s FIX-IN-PEER
strategy identified additional critical IPC dependencies,
including ubusd (required by 244 firmware images) and
cfg_manager (needed by 165 firmware images). Second,
through symbolic execution, FIRMWELL recovered system-
level information such as /proc/mtd file contents required
by 89 Netgear firmware images, where missing partition
names would cause early rehosting termination due to
magic byte verification failures. By effectively handling
both user-space dependencies and system-level requirements,
FIRMWELL achieved superior rehosting coverage.

Analysis of SOTA-Only Results We analyzed 563
firmware services successfully rehosted by other tools but
not by FIRMWELL. GREENHOUSE succeeded in 356 cases
where FIRMWELL failed, with 53 relying on binary patching
to bypass complex peripheral verification and memory access
issues. For example, in D-Link firmware that directly accesses
physical memory through /dev/mem, GREENHOUSE’s
patching approach succeeded where FIRMWELL’s INFER
strategy proved insufficient. FIRMAE achieved 360 additional
successes due to two advantages: system-mode execution that
avoids QEMU-user mode compatibility issues affecting init
routine handling (particularly for specialized systems like
Linksys’s sysevent-based management), and comprehensive
peripheral emulation including brcmboard, watchdog,

10

Il FirmAE B Greenhouse 21 FIRMWELL B Pandawan

XD >
(‘)@9

Fig. 8: Time Cost Comparison for Rehosting (Y-axis: minutes).

and mtdblockX devices through kernel modifications.
PANDAWAN’s 23 unique successes demonstrate the value of
precise system-level interface emulation.

Analysis of Common Failures We analyzed 2,074
firmware images that all four tools failed to rehost and
identified two main causes. @ Unsupported architectures.
510 Ubiquiti firmware images used MIPS64 architecture,
which none of the evaluated tools support, including the
latest QEMU-user mode. Additionally, 38 Netgear firmware
images used Arctic Core architecture, and several D-Link
firmware had architectures unrecognizable by the file
command. @ Peripheral-dependent semantics. Certain
programs read data from specific device file indices to verify
firmware signatures before execution. While FIRMWELL uses
error-driven symbolic execution to infer system-level content,
complex signature verification algorithms cause termination
upon verification failure, as observed in D-Link firmware.
Furthermore, tightly coupled firmware-peripheral interactions
lead to symbolic execution failures such as path explosion
and constraint solving timeouts, preventing FIRMWELL from
inferring required system-level content. We leave advanced
automatic peripheral modeling as the future direction.
Analysis of Common Rehosted Firmware Among Four
Tools Both FIRMAE, PANDAWAN, and FIRMWELL achieve
rehosting by executing multiple processes initiated from the
init routine. FIRMAE and PANDAWAN rely on hardcoded,
manually summarized error-fix strategies, enabling them to
successfully rehost 3,581 and 810 firmware images, respec-
tively, without any need for special binary-specific handling.
In contrast, FIRMWELL and GREENHOUSE both employs
iterative fix strategies to address rehosting errors. To compare
the efficiency of these approaches, we evaluated the number
of fix iterations required across 3,599 firmware images that
were successfully rehosted by both FIRMWELL and GREEN-
HOUSE. FIRMAE and PANDAWAN were excluded from this
comparison, as they do not utilize an iterative error-fixing
mechanism. As shown in Figure 7, FIRMWELL demonstrated
fewer iterations compared to GREENHOUSE. On average,
FIRMWELL required 2.6 iterations while GREENHOUSE took
5.8 iterations. FIRMWELL more thoroughly prepares user-
space dependencies based on the initialization procedure and
performs misemulation reasoning when encountering rehost-
ing errors. This allows FIRMWELL to focus on actual rehosting
errors and perform fewer error fixes.

Time Cost Analysis We evaluated FIRMWELL’s efficiency

TABLE III: Comparison of rehosting success rates between vanilla Green-
house, Migrated_Greenhouse variants, and FIRMWELL (FW).

Venilla
GH
3,962

Migrated GH Migrated GH
(baseline) w/o §III-A Sys Mode
5,135 4,789

Migrated GH
w/o $III-B
5,023

FW
6,490

TABLE IV: Contribution analysis of FIRMWELL(FW)’s enhanced fix strate-
gies compared to Migrated_Greenhouse.

TABLE V: Number of UPnP and DNS Services Rehosted by four tools. The
number of Unpack is from FIRMWELL. AE=FIRMAE, GR=GREENHOUSE,
FW=FIRMWELL, PD=PANDAWAN.

DNS
GH
1,130

| UPnP \
GH FW | Unpack
488 862 | 1,553
0 0

3 8

121 24
6

6
0

Brand

>
=

FW
935

| Unpack

1,662
203
47
1,067
120
20

ASUS
AVM |
Belkin
D-Link |
EDIMAX
F .

w
—-

18
141

27
356

I
1
w O O

51

FW -Migrated GH FW w/o FW w/o FW w/o
(baseline) IMPROVED_CREATE INFER FIX_IN_PEER
1,473 (100%) 940 (-36%) 561 (-62%) 1,024 (-30%)

by analyzing the average analysis time across successfully
rehosted firmware services. Figure 8 shows the average anal-
ysis time cost across different firmware brands. FIRMWELL
requires only 12 minutes on average per firmware
service, achieving 1.8-8.4x speedup compared to baseline
approaches (22-101 minutes). This efficiency stems from
several design choices: First, FIRMWELL implements active
process monitoring and intervention, avoiding FIRMAE’s fixed
sleep periods (240s) and system restarts for service initial-
ization and network reconfiguration. Second, while GREEN-
HOUSE relies on FIRMAE’s completion followed by repeated
offline repairs, FIRMWELL employs targeted error localization
and fixes which can more strategically handling emulation
errors, minimizing the fix rounds. Finally, PANDAWAN’s
longer analysis time results from its comprehensive kernel
module analysis and custom kernel building requirements.
Comparison with Migrated_Greenhouse To isolate the
contributions of FIRMWELL'’s environment infrastructure from
its fix strategies, we created Migrated_ GREENHOUSE by
integrating FIRMWELL’s user-space environment infrastruc-
ture while retaining GREENHOUSE’s original fix strate-
gies. Specifically, §III-A and §III-B are applied to Mi-
grated_ GREENHOUSE for providing the same multi-process
environment while GREENHOUSE’s fix strategies is applied
only to the target service process.

Table III shows that Migrated GREENHOUSE achieved
29.6% higher success rate than vanilla GREENHOUSE (5,135
vs 3,962), validating the effectiveness of FIRMWELL’s en-
hanced multi-process environment. Specifically, 346 firmware
failed if removing system-mode support (§III-A) and 112
removing blocking process identification (§III-B).

Migrated_ GREENHOUSE uniquely succeeded in 118 cases
due to GREENHOUSE’s PATCH strategy, which bypasses
version checks in certain D-Link firmware where INFER
alone fails. However, FIRMWELL excludes PATCH to
preserve user-space dependency semantics, as aggressive
patching can cause unexpected side-effects. An experimental
version (FIRMWELL_GH) that applies PATCH when
standard rehosting fails yielded only 225 additional successes,
suggesting unique but limited benefits.

We analyzed 1,473 firmware images where FIRMWELL
succeeded but Migrated GREENHOUSE failed. FIRMWELL’s

11

0
4 2
1,335 1,173
9 4
62 232
56 90
11 30

0

3
2,155 2,634

119
1,172

126
2,345
106
631

115
590
1
28
169
227

1 o\\l‘

Linksys
Netgear ‘
Tenda
TP-Link |
TRENDnet
Ubiquiti |
Zyxel
Total ‘

=)
B
AW o N

208
140

- —
=]

[N}

1,611 6,475 2,443 3,118

fix strategies improve upon GREENHOUSE’s while maintaining
compatibility with its REUSE strategy: @ eliminates PATCH
to preserve binary integrity; @ enhances CREATE with
comprehensive device support including char devices and
improved network device error detection (e.g., SIO* flags in
ioctl); @ introduces INFER and FIX_IN_PEER strategies.
Table IV quantifies these improvements. FIRMWELL’S
enhanced CREATE handled 36% (533/1,743) more cases
through comprehensive device emulation. INFER resolved
62% (912/1,473) of failures, while FIX_IN_PEER addressed
30% (449/1,473) by fixing peer process issues and restoring
IPC communication.

Rehosting of Other Services We evaluated FIRMWELL’S
performance on two additional network services: UPnP and
DNS. For functionality verification, we sent protocol-specific
messages (UDP-based UPnP messages and DNS queries) and
parse responses to confirm service operation.

Table V presents the results. For UPnP services,
FIRMWELL successfully rehosted 2,634 out of 7,035
services (37.4%), outperforming FIRMAE (1,611, 22.9%),
GREENHOUSE (2,155, 30.6%), and PANDAWAN (251, 3.6%).
For DNS services, FIRMWELL achieved even better results,
rehosting 3,118 out of 6,475 services (48.1%), compared
to FIRMAE (1,821, 28.1%), GREENHOUSE (2,443, 37.7%),
and PANDAWAN (403, 6.2%). These results demonstrate that
FIRMWELL’s approach generalizes to other firmware
services while maintaining performance superiority. We
discuss limitations and broader applicability in Section VI.

B. Ablation Study (RQ2)

Effectiveness Analysis Per Module To understand the
contribution of each key module in FIRMWELL, we performed
an ablation study. Table VI presents the results. Using only
the initial rehosting environment (§III-A), FIRMWELL
successfully rehosted 2,239 out of 6,490 services (31%).
For the remaining 4,251 services, we analyzed the impact
of disabling modules §III-B and §III-C. Disabling §III-B
(Rehosting Failure Process Identification) reduced successful
rehostings to 5,920 (91%), demonstrating its critical role in
identifying and terminating blocking processes. Similarly,

TABLE VI: Analysis of the contribution of three components (§III-A, §III-B, §III-C) and four fix strategies of FIRMWELL.

Brand ‘ ASUS Belkin D-Link EDIMAX EnGenius Linksys NETGEAR Tenda TP-Link TRENDnet Ubiquiti Zyxel ‘ Total

$III-A only 400 574 188 201 52 60 6 5 7 4 10 0 2,239 (-66%)
w/o §1II-B 1,551 26 1,034 19 66 121 1,965 46 736 344 1 11 5,920 (-9%)
w/o §III-C 1,037 14 592 11 8 71 689 41 746 273 11 3,493 (-46%)
w/o create 1,452 31 651 17 63 117 988 44 767 325 1 11 4,467 (-31%)
w/o fix_in_peer 1,373 31 1,009 13 68 120 1,968 45 727 338 1 10 5,703 (-12%)
w/o infer 1,311 27 968 18 64 108 1,197 46 746 336 1 11 4,833 (-26%)
w/o reuse 1,170 18 978 19 10 83 1,958 46 714 316 0 11 5,323 (-18%)
Total \ 1,579 32 1,116 19 69 136 2,251 48 865 363 1 11 \ 6,490 (100%)

disabling §II-C (Emulation Failure Classification and Fix)
resulted in only 3,493 (54%) successful rehostings, confirming
its importance for classifying emulation error and applying
appropriate emulation strategies.

Effectiveness Analysis Per Fix Strategy To understand
the contribution of each fix strategy in FIRMWELL, we
performed an ablation study by disabling one strategy at a
time and rerunning the HTTP service rehosting. Table VI
shows the breakdown for 6,490 firmware images requiring
fix strategies. Disabling CREATE reduced success to 68%
(4,467), demonstrating its critical role. Our analysis reveals
that creating dummy network devices and empty system files
is essential: while their content may be irrelevant to core func-
tionality, their presence prevents unexpected termination when
programs check for their existence before accessing device
data. The INFER strategy contributed significantly (4,833,
74% when disabled), as firmware programs assume physical
device environments and rely on system-level interfaces for
proper operation. For user-space dependencies, REUSE helped
resolve file location issues (5,323, 82% when disabled), while
FIX-IN-PEER addressed missing IPC paradigms when peer
processes failed (5,703, 88% when disabled).

C. Real-World Application (RQ3)

Risk Assessment on N-Day Vulnerabilities To assess
whether rehosted services maintain sufficient fidelity
for vulnerability analysis, we tested them using N-
day vulnerability proof-of-concept (PoC) code from
RouterSploit [24]. Routersploit comprises a series of
PoCs for N-day vulnerabilities in embedded firmware. We
selected firmware services that reached the Connect stage,
specifically 6,625 from FIRMWELL, 4,793 from FIRMAE,
4,671 from GREENHOUSE, and 950 from PANDAWAN, then
executed 125 known N-day PoCs against each service.

Table VII summarizes the results. FIRMWELL identified
1,335 vulnerabilities: 253 password disclosures, 737
command executions, 332 information disclosures, and 13
authentication bypasses. In comparison, RouterSploit detected
954 vulnerabilities on FIRMAE, 1,010 on GREENHOUSE,
and 389 on PANDAWAN. These results demonstrate that
FIRMWELL maintains sufficient fidelity for effective
vulnerability risk assessment.

Large-Scale Fuzzing for Vulnerability Detection We
integrated FIRMWELL with fuzz-testing to detect zero-day
vulnerabilities. From 7,098 firmware images provided by

12

GREENHOUSE, we selected 1,692 latest versions. FIRMWELL
successfully rehosted HTTP services to the Interact stage in
1,128 of these, which became our fuzzing targets. Large-scale
fuzzing ran for several months, with each instance allocated
one CPU core and a 48-hour timeout per firmware.

We used AFL++ [25] with QEMU-user mode enhanced as

follows: @ Applied fork-server patches from previous work [8]
to collect the accept function’s return address as the fork
point, with client connections emulated in AFL-QEMU to
feed test cases. @ Generated firmware-specific seeds using
Selenium [26] to automate web server interactions, capturing
browser-generated network requests as valid message formats.
® Extended AFL++’s custom mutator [25] to support
common protocol formats (JSON, XML, SOAP) in HTTP
request bodies for enhanced vulnerability discovery.
Table VIII shows the crashes discovered during large-scale
fuzzing of 1,128 firmware images. FIRMWELL initiated
fuzzing on 1,043 firmware without timeouts or crashes,
triggering 24,580 raw crashes in total. Since source code-
based crash deduplication tools cannot handle binary-only
targets, we used AFL-tmin to minimize crashes and
computed MD5 hashes of the minimized inputs to identify
1,582 unique crashes. Manual analysis of 48 firmware
images confirmed 67 zero-day vulnerabilities: 44 null
pointer dereferences, 13 buffer overflows, 6 reachable
assertions, and 4 uncaught exceptions. Details are provided in
Appendix A-D. We responsibly disclosed these vulnerabilities
to manufacturers, resulting in 10 assigned CVE IDs.

VI. LIMITATIONS AND BROADER APPLICABILITY

Technical Stack Limitations FIRMWELL’s effectiveness
is constrained by the limitations of its technical stack. First,
rehosting coverage is determined by the set of instruction set
architectures supported by QEMU. As shown in our evalu-
ation, firmware images based on unsupported architectures
such as Arctic Core, or other proprietary formats cannot be
emulated, as neither QEMU-user nor QEMU-system provides
compatibility for these targets. Second, FIRMWELL’s error
diagnosis and value inference capabilities are constrained
by current binary analysis techniques such as Ghidra [20]
and angr [27]. In particular, complex firmware-peripheral
interactions can lead to symbolic execution failures such as
path explosion and constraint solving timeouts. For instance,
certain D-Link devices like DIR-605L, frequently read values
from device files like /dev/mem during execution, making

TABLE VII: Number of 1-day Vulnerability Detected
AB=Authentication Bypass.

by four tools. PD=Password Disclosure. CI=Command Injection. IL=Info Leak.

Brand FirmAE Greenhouse Pandawan FIRMWELL

PD CI IL AB \ PD CI IL AB \ PD CI IL AB \ PD CI IL AB
ASUS 0 14 0 0 0 0 0 0 0 0 0 0 0 13 0 0
Belkin 5 3 0 5 6 0 0 7 0 0 0 0 0 0 0 1
D-Link 253 306 226 30 | 247 318 274 22 48 214 34 3 251 600 330 12
Linksys 0 3 0 0 0 9 0 0 0 0 0 0 0 16 0 0
NETGEAR 3 68 0 0 83 44 0 0 0 55 0 0 0 105 0 0
TRENDnet 13 0 25 0 0 0 0 0 12 11 12 0 2 3 2 0
Total \ 274 394 251 35 \ 336 371 274 29 \ 60 280 46 3 \ 253 737 332 13

TABLE VIII: The number of fuzzing crashes on firmware services rehosted by
FIRMWELL. FUZZ indicates a successful fuzzing run. VUL indicates
the fuzzer exposed at least one crash. RAW indicates the unique
crashes recorded by AFL, determined by the hash of the bitmap.
Unique crash is filtering by afl-tmin and md5sum.

Brand | # of Images # of Crashes

‘ Total FUZZ VUL RAW UNQ
ASUS 148 142 72 3,876 327
Belkin 48 45 0 0 0
D-Link 165 149 41 9,872 375
Linksys 49 49 6 241 25
Netgear 248 241 57 8,865 576
Tenda 20 20 13 147 15
TP-Link 338 285 0 0 0
TRENDnet 95 95 68 1,579 264
Zyxel 17 17 0 0 0
Total ‘ 1,128 1,043 257 24,580 1,582

it infeasible for the INFER strategy to synthesize all required
values and causing symbolic execution to become intractable.
Limitations of No Patch Strategy FIRMWELL
deliberately excludes binary patching as an error recovery
strategy, adhering to the principle of recovering user-space
dependencies rather than directly modifying target code. This
design decision minimizes risks of introducing additional
emulation errors in multi-process rehosting. However, patching
can sometimes enable additional successes by forcibly
altering program control flow to bypass complex system-level
validation logic, such as version or peripheral checks in some
D-Link devices where the requires values are too complex to
be solved by INFER strategy. Considering its limited unique
contribution in firmware rehosting and inevitable side effects
for potentially changing the target program’s semantics, we
have not incorporated it into FIRMWELL’s core workflow.
Complex System-Level Functionality Emulation
FIRMWELL’s design philosophy favors services with
peripheral-agnostic core logic, typically of network services
like HTTP, DNS, and UPnP in routers, cameras, etc. Our
current techniques provide dummy emulation or use program
analysis for specific value inference, but cannot adequately
handle complex system-level logic involving stateful function-
ality or dynamic hardware interactions. For firmware heavily
dependent on specific peripherals, e.g., Bluetooth, USB,
network drivers, FIRMWELL can prepare the user-space envi-
ronment but requires additional peripheral-specific emulation

13

for core functionality. Future work could leverage LLM-based
semantic understanding to better capture binary semantics
and enable more sophisticated system-level emulation.

VII. RELATED WORK

Rehosting of Linux-based Firmware Existing techniques
for rehosting Linux-based firmware are categorized into
kernel-space modules [27], [22] and user-space programs [6],
[10], [7], [8], [11], [12]. Kernel-space rehosting, as seen in
FirmSolo [27] and Pandawan [22], improves kernel module
emulation success via privilege analysis. In user-space rehost-
ing, methods evolved from full-system emulation [6], [7] to
hybrid [11] and user-mode emulation [12], [8]. Firmadyne [6]
pioneered full-system emulation, while FirmAE [7] enhanced
success rates through heuristics. Firm-AFL [11] combined
emulation modes to improve efficiency. EQUAFL [12] mi-
grated emulations to user-mode for better performance. Green-
house [8] increased rehosting success by proposing iterative fix
strategy to execution roadblockers in the single-service rehost-
ing scenario. Despite these advances, there are still gaps for
properly utilizing user-space knowledge to improve rehosting
effectiveness, which is the main motivation of our FIRMWELL.
Rehosting of Other Type Firmware Research on rehosting
primarily focuses on MCU-based firmware, where tightly cou-
pled peripheral hardware necessitates accurate emulation for
successful rehosting. P2IM [28] initially modeled peripheral
behavior by analyzing access patterns. Subsequent works [29],
[30], [31], [32] employed symbolic execution to infer register
values, improving accuracy. SEmu [33] enhanced peripheral
modeling by using specifications, especially for behaviors
like interrupts. Other approaches [34], [35] utilized hardware
abstraction layers (HALs) from chip vendors for rehosting,
avoiding peripheral inference. However, MCU-based rehosting
typically treats firmware as a single entity, limiting its direct
applicability to individual Linux-based firmware binaries.

Firmware Vulnerability Analysis Firmware vulnerability
detection is divided into static and dynamic analysis. Static
analysis involves identifying vulnerabilities through code
analysis without running the program, using techniques
like taint analysis [36], [37], [38], [21], [39], [40], [41],
[42] and code similarity analysis [43], [44], [45], [46],
[47], [48]. However, static methods often suffer from false
positives. Dynamic analysis involves executing test cases
within firmware environments, utilizing either physical

devices or rehosting methods. For inaccessible firmware,
black-box testing on physical devices is explored [49], [50],
[51], [52], [53], [54]. To enhance testing efficiency, gray-box
testing through firmware rehosting is evolving [11], [12], [8].
Challenges such as incomplete user-space initialization and
emulation dependency issues limit these methods, leading to
insufficient testing. FIRMWELL overcomes these by improving
rehosting capabilities, achieving 1.6 to 8 times more successful
rehosting and discovering 67 new vulnerabilities.

VIII. CONCLUSION

We presented FIRMWELL, the first framework that treats
rehosting as coordinated emulation task of both target
services and their user-space dependencies. By leveraging the
firmware’s own initialization logic and systematically tracing
emulation failures to their underlying causes, FIRMWELL
addresses fundamental limitations in existing approaches.
Our comprehensive evaluation demonstrates that FIRMWELL
successfully rehosts 1.6-8x more services than state-of-the-art
tools while reducing analysis time by up to 8.4x. The discovery
of 67 zero-day vulnerabilities validates FIRMWELL’s practical
impact on firmware security analysis at scale.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments to improve our paper. This project is supported
by National Natural Science Foundation of China (Grant
No0.62472302 and 92467201).

ETHICS CONSIDERATIONS

During fuzzing, we responsibly reported all confirmed zero-
day vulnerabilities to vendors through their recommended
channels, ensuring descriptions are accurate, reproducible, and
informative. We collaborated with vendors on potential fixes,
respecting their timelines to minimize user risk. Adhering
to open science policy, we share insights without exposing
sensitive information. We comply with relevant laws and
regulations, updating our processes to align with industry
best practices. These measures help us fulfill our ethical
responsibilities and positively impact cybersecurity.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th USENIX security
symposium (USENIX Security 17), 2017, pp. 1093-1110.

D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric, “All things considered: An analysis of
{IoT} devices on home networks,” in 28th USENIX security symposium
(USENIX Security 19), 2019, pp. 1169-1185.

E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratan-
tonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel et al.,
“Toward the analysis of embedded firmware through automated re-
hosting,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), 2019, pp. 135-150.

C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements,
“Challenges in firmware re-hosting, emulation, and analysis,” ACM
Computing Surveys (CSUR), vol. 54, no. 1, pp. 1-36, 2021.

Y. Ji, M. Elsabagh, R. Johnson, and A. Stavrou, “{DEFInit}: An analysis
of exposed android init routines,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 3685-3702.

[2]

14

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]
(21]

[22]

(23]

[24]

[25]

[26]

[27]

D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.” in NDSS, vol. 1,
2016, pp. 1-1.

M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in Annual computer security applications conference, 2020, pp. 733—
745.

H. J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher, T. Reddy,
W. Gibbs, Z. L. Baslque, F. Dong, Z. Smith et al., “Greenhouse: Single-
Service rehosting of Linux-Based firmware binaries in User-Space
emulation,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 5791-5808.

F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
annual technical conference, FREENIX Track, vol. 41. Califor-nia,
USA, 2005, p. 46.

A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces,” in Pro-
ceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, 2016, pp. 437-448.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “FIRM-
AFL: High-Throughput greybox fuzzing of IoT firmware via augmented
process emulation,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1099-1114.

Y. Zheng, Y. Li, C. Zhang, H. Zhu, Y. Liu, and L. Sun, “Efficient
greybox fuzzing of applications in linux-based iot devices via enhanced
user-mode emulation,” in Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2022, pp.
417-428.

T. kernel development community, “Kernel support for miscellaneous
binary formats (binfmt_misc),” https://docs.kernel.org/admin-guide/
binfmt-misc.html, 2024.

QEMU, “Limited support for mips clone syscall in gemu user mode,”
https://gitlab.com/qemu-project/qemu/-/issues/2112, 2024.

N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting insecure multi-
binary interactions in embedded firmware,” in 2020 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2020, pp. 1544-1561.
ReFirmLabs, “Firmware analysis tool,” https://github.com/ReFirmLabs/
binwalk, 2023.

N. S. Agency, “Firmware Analysis and Comparison Tool,” https://github.
com/fkie-cad/FACT_core/tree/master/, 2025.

R. Helmke, E. Padilla, and N. Aschenbruck, “Mens Sana In
Corpore Sano: Sound Firmware Corpora for Vulnerability Research,”
in Proceedings of the Network and Distributed System Security
Symposium (NDSS’25). San Diego, California, USA: The Internet
Society, 2025. [Online]. Available: https://www.ndss-symposium.org/
wp-content/uploads/2025-669-paper-1.pdf

Y. Régis-Gianas, N. Jeannerod, and R. Treinen, “Morbig: A static parser
for posix shell,” in Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering, 2018, pp. 29-41.

N. S. Agency, “Ghidra,” https://ghidra-sre.org/, 2025.

Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice-automatic detection of authentication bypass vulnerabilities
in binary firmware.” in NDSS, vol. 1, 2015, pp. 1-1.

1. Angelakopoulos, G. Stringhini, and M. Egele, “Pandawan: Quantifying
progress in linux-based firmware rehosting,” in 33rd USENIX Security
Symposium (USENIX Security 24). USENIX Association, 2024.

Y. Zheng, Z. Song, Y. Sun, K. Cheng, H. Zhu, and L. Sun, “An
efficient greybox fuzzing scheme for linux-based iot programs through
binary static analysis,” in 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC). IEEE, 2019,
pp- 1-8.

threat9, “Exploitation framework for embedded devices,” https://github.
com/threat9/routersploit, 2022.

A. Fioraldi, D. Maier, H. Eiffeldt, and M. Heuse, “{AFL++}: Combin-
ing incremental steps of fuzzing research,” in /4th USENIX Workshop
on Offensive Technologies (WOOT 20), 2020.

S. F. Conservancy, “selenium automates browsers. That’s it!” https://
www.selenium.dev/, 2024.

I. Angelakopoulos, G. Stringhini, and M. Egele, “{FirmSolo}: Enabling
dynamic analysis of binary linux-based {IoT} kernel modules,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 5021—
5038.

https://docs.kernel.org/admin-guide/binfmt-misc.html
https://docs.kernel.org/admin-guide/binfmt-misc.html
https://gitlab.com/qemu-project/qemu/-/issues/2112
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://github.com/fkie-cad/FACT_core/tree/master/
https://github.com/fkie-cad/FACT_core/tree/master/
https://www.ndss-symposium.org/wp-content/uploads/2025-669-paper-1.pdf
https://www.ndss-symposium.org/wp-content/uploads/2025-669-paper-1.pdf
https://ghidra-sre.org/
https://github.com/threat9/routersploit
https://github.com/threat9/routersploit
https://www.selenium.dev/
https://www.selenium.dev/

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface model-
ing,” in 29th USENIX Security Symposium (USENIX Security 20), 2020,
pp. 1237-1254.

C. Cao, L. Guan, J. Ming, and P. Liu, “Device-agnostic firmware
execution is possible: A concolic execution approach for peripheral
emulation,” in Annual Computer Security Applications Conference,
2020, pp. 746-759.

E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage,
and K. Levchenko, “Jetset: Targeted firmware rehosting for embedded
systems,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 321-338.

T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson, M. Muench,
G. Vigna, C. Kruegel, T. Holz, and A. Abbasi, “Fuzzware: Using precise
MMIO modeling for effective firmware fuzzing,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 1239-1256.

W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware emula-
tion through invalidity-guided knowledge inference,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021.

W. Zhou, L. Zhang, L. Guan, P. Liu, and Y. Zhang, “What your firmware
tells you is not how you should emulate it: A specification-guided
approach for firmware emulation,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022,
pp- 3269-3283.

A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator: Firmware
re-hosting through abstraction layer emulation,” in 29th USENIX Secu-
rity Symposium (USENIX Security 20), 2020, pp. 1201-1218.

L. Seidel, D. Maier, and M. Muench, “Forming faster firmware fuzzers,”
in USENIX Conference on Security Symposium, 2023.

L. Cojocar, J. Zaddach, R. Verdult, H. Bos, A. Francillon, and
D. Balzarotti, “PIE: Parser identification in embedded systems,” in
Annual Computer Security Applications Conference (ACSAC’15), Dec.
2015.

L. Chen, Y. Wang, Q. Cai, Y. Zhan, H. Hu, J. Linghu, Q. Hou, C. Zhang,
H. Duan, and Z. Xue, “Sharing more and checking less: Leveraging
common input keywords to detect bugs in embedded systems,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 303-319.
N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi, E. Gustafson,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “{BootStomp}: On the
security of bootloaders in mobile devices,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 781-798.

D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execution,”
in 22nd USENIX Security Symposium (USENIX Security 13), 2013, pp.
463-478.

K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang,
“Dtaint: detecting the taint-style vulnerability in embedded device
firmware,” in 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 1EEE, 2018, pp. 430-441.
K. Cheng, Y. Zheng, T. Liu, L. Guan, P. Liu, H. Li, H. Zhu, K. Ye, and
L. Sun, “Detecting vulnerabilities in linux-based embedded firmware
with sse-based on-demand alias analysis,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2023, pp. 360-372.

P. Liu, Y. Zheng, C. Sun, C. Qin, D. Fang, M. Liu, and L. Sun, “Fits:
Inferring intermediate taint sources for effective vulnerability analysis
of iot device firmware,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 4, 2023, pp. 138-152.

A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A {Large-
scale} analysis of the security of embedded firmwares,” in 23rd USENIX
security symposium (USENIX Security 14), 2014, pp. 95-110.

Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS 16, 2016, pp. 480-491.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS’17), Oct. 2017.

H. Xiao, Y. Zhang, M. Shen, C. Lin, C. Zhang, S. Liu, and M. Yang, “Ac-
curate and efficient recurring vulnerability detection for iot firmware,”

in Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, 2024, pp. 3317-3331.

A. Qasem, M. Debbabi, and A. Soeanu, “Octopustaint: Advanced
data flow analysis for detecting taint-based vulnerabilities in iot/iiot
firmware,” in Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, 2024, pp. 2355-2369.

W. Gibbs, A. S. Raj, J. M. Vadayath, H. J. Tay, J. Miller, A. Ajayan,
Z. L. Basque, A. Dutcher, F. Dong, X. Maso et al., “Operation mango:
Scalable discovery of {Taint-Style} vulnerabilities in binary firmware
services,” in 33rd USENIX Security Symposium (USENIX Security 24),
2024, pp. 7123-7139.

N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry,
A. Bianchi, C. Kruegel, and G. Vigna, “Diane: Identifying fuzzing
triggers in apps to generate under-constrained inputs for iot devices,”
in 2021 IEEE Symposium on Security and Privacy (SP). 1EEE, 2021,
pp. 484-500.

H. Liu, S. Gan, C. Zhang, Z. Gao, H. Zhang, X. Wang, and G. Gao,
“Labrador: Response guided directed fuzzing for black-box iot devices,”
in 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2024, pp. 127-127.

X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and
Y. Xiang, “Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 337-350.

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing.” in NDSS, 2018.

K. Liu, M. Yang, Z. Ling, Y. Zhang, C. Lei, J. Luo, and X. Fu,
“Riotfuzzer: Companion app assisted remote fuzzing for detecting
vulnerabilities in iot devices,” in Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security, 2024,
pp. 2341-2354.

X. Ma, L. Luo, and Q. Zeng, “From one thousand pages of specification
to unveiling hidden bugs: Large language model assisted fuzzing of
matter {IoT} devices,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024, pp. 4783-4800.

OpenWrt, “Init scripts,” https://openwrt.org/docs/techref/initscripts,
2024.

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

APPENDIX A
ADDITIONAL DESIGN DETAILS AND EXPERIMENTAL
RESULTS

A. Firmware Pre-processing

After extracting the firmware, FIRMWELL identifies two
types of programs in the firmware’s filesystem to assist with
rehosting.

Target Service Identification FIRMWELL currently focuses
on rehosting three main types of network services within
Linux-based firmware: HTTP, UPnP, and DNS. And analysts
can specify other program names as targets. We compiled a
list of network service programs based on previous work [7],
[8], [37] and manually analyzed firmware for functions such
as bind and recv to identify a set of executable names
for common networked services. We discovered that some
firmware includes legacy programs, such as two different
HTTP service programs coexisting in the filesystem. Manual
inspection revealed that one of these programs is not invoked
by any other program. In such cases, we consider all identified
programs as target services and exclude the legacy programs
from subsequent dynamic analyses (see Section III-B).

Init Binary Identification Since the firmware runs on
vendor-customized kernels, the identification of the init bi-
nary can be firmware-specific. FIRMWELL uses a two-step
approach to identify the init binary within the firmware. If

https://openwrt.org/docs/techref/initscripts

TABLE IX: Number of Web Servers Rehosted by FIRMAE, GREENHOUSE, and FIRMWELL on the Greenhouse Dataset. The number of Unpack is from

FIRMWELL.
| #of | | FirmAE | Greenhouse | Pandawan | FIRMWELL
Brand Imasges Unpack
| g | Execute Connect Interact | Execute Connect Interact | Execute Connect Interact | Execute Connect Interact
ASUS 845 812 829 454 24 790 757 755 71 32 27 794 794 786
Belkin 63 63 57 23 8 61 47 34 | 24 10 0 38 38 32
D-Link 1,416 1,006 1,074 579 539 826 523 469 249 138 131 856 627 609
Linksys 91 70 67 43 35 66 20 19 \ 22 13 3 48 48 43
Netgear 2,709 2,235 2,483 1,483 1,217 2,179 1,367 954 482 246 206 2,152 2,061 2,004
Tenda 172 153 161 15 9 138 69 60 \ 41 0 0 68 48 48
TP-Link 1,047 913 955 536 448 819 188 175 330 167 122 594 594 593
TRENDnet 728 466 664 296 248 500 311 235 ‘ 63 19 16 425 330 299
Zyxel 20 19 19 8 6 18 7 6 3 0 0 16 16 11
Total ‘ 7,098 ‘ 5,737 ‘ 6,309 3,437 2,534 ‘ 5,397 3,289 2,707 ‘ 1,285 625 505 ‘ 4,991 4,556 4,425
TABLE X: Different Initialization Process Type. TABLE XII: Details of the zero-day vulnerability discovered by FIRMWELL.
BOF=Buffer Overflow (CWE-120), UA=Uncaught Exception (CWE-248),
NPD=Null Pointer Dereference (CWE-476), RA=Reachable Assertion (CWE-
Init Path ‘ File Type Target Binary Target Bash 617).
/sbin/preinit Sym Link /sbin/rc -
/*bin/init Binary /bin/init or /sbin/init o Brand Firmware Binary CWE #of
o . . [etc/init.d/rcS, Vul
/sbin/init Sym Link /bin/busybox " -
[etc/system/sysinit FW_RT_AC1200_300438010931 /usr/sbin/httpd NPD 1
/sbin/rc FW_RT_AC1300UHP_300438252504 Just/sbin/lighttpd ~ NPD 1
. . L . FW_RT_AC2400_300438252516 Just/sbin/httpd NPD 1
/sbin/init Sym Link /sbin/rcd, /sbin/procd, - FW_RT_AC52_300438270638 Just/sbin/httpd NPD 1
/sbin/rc_app/rc_apps FW_RT_AC66W_300438252287 Jusr/sbin/lighttpd ~ NPD 1
- - ASUS FW_RT_AC85MR_300438252272 Jusr/sbin/httpd NPD 1
FW_RT_N11P_B1_300438010931 Jusr/sbin/httpd NPD 1
FW_RT_N16_30043807378 Jusr/sbin/lighttpd ~ BOF 1
FW_RT_N18U_300438252288 Jusr/sbin/lighttpd NPD 1
TABLE XI: The number of Rehosted Web Servers W/O User Space Resource FW_RT_N300_B1_300438010931 ,EZi,Zbin,gﬁpg" NPD 1
Preparation. Abbreviations refer §1I-A. FW_RT_NS0OHP_300438252242 fust/sbin/httpd NPD 1
DAP_1520_REVA_FIRMWARE_1.10B04 /sbin/lighttpd NPD 1
DIR-860L_REVB_FIRMWARE_2.04.B04 /sbin/httpd NPD 1
Brand | wio EXE wlo DYN wio IPC | Total D-Link DCS-932L_REVB_FIRMWARE_2.18.01 /bin/alphapd BOF 1
- DAP_2555_REVA_FIRMWARE_1.20 /sbin/httpd BOF 1
ASUS 1.168 336 1.180 1.579 DHP_W306AV_FIRMWARE_1.0.1 /usr/bin/lighttpd BOF 1
AVM ’ 0 0 ’ 0 ’ 0 WBR_1310_REVD_FIRMWARE_4.13 /sbin/httpd NPD 1
Belkin 24 31 31 32 FW_RE1000v2_v2.0.04.001_20180227 /bin/lighttpd NPD/BOF 2
D-Link 444 454 390 1116 Linksys FW_RE4000W_v1.0.01.001_20180321 Ibin/lighttpd NPD 1
DTN = = 4~ 19 FW_WES610N_v2.0.01.004_20130719 /bin/lighttpd NPD 2
EnGenius 15 2 53 69 DG834Gv5_V1.6.01.34 Jusr/sbin/httpd NPD 2
: EX6150_V1.0.0.46_1.0.76 Jusr/sbin/httpd BOF 1
Linksys 80 48 51 136 JWNR2000_Firmware_Version_1.0.0.7 /bin/boa RA 2
NETGEAR 672 830 1,084 2,251 MBR624GU_Firmware_Version_6.01.30.59 Jusr/sbin/httpd RA 1
Tenda 43 41 36 48 R6200_V1.0.1.58_1.0.44 Jusr/sbin/httpd NPD 1
TP-Link 270 491 117 865 R6200v2_V1.0.3.12_10.1.11 /usr/sbin/httpd NPD 1
R7000P_V1.2.0.22_1.0.78 Jusr/sbin/httpd BOF 1
TRENDnet 157 sl 241 363 NETGEAR RS400_V1.5.1.88_10.0.58 Jusr/sbin/httpd NPD 1
Ubiquiti 1 0 1 1 WGR612_Firmware_Version_1.0.1.2 /bin/boa UE 2
Zyxel 3 10 6 11 WGT624v4_Firmware_Version_2.0.13_2.0.15 /usr/sbin/httpd RA 3
WNI1000RP_V1.0.0.52 /bin/uhttpd NPD 1
Total \ 2,882 2,482 3,201 6,490 WNR2200_V1.0.1.102 /bin/uhttpd BOF 1
WNDR3700_V1.0.7.98_WW_ fusr/sbin/uhttpd NPD 1
WNDRMAC_Firmware_Version_1.0.0.22 /usr/sbin/uhttpd BOF 3
WPN824V3_V1.0.8_1.0.7NA /bin/boa UE 2
XAVN2001_V0.4.0.7 Jusr/sbin/uhttpd NPD 2
. . . . FIRMWARE_TEW_410APBPLUS_1.3.06B /usr/sbin/httpd NPD 3
kernel extraction is not feasible, FIRMWELL applies an em- EW_TEW_638APB_V2_1.2.7_ bin/goahead NPD 1
.. R . FW_TEW_818DRU_v1_1.0.14.6_ Just/sbin/httpd NPD 1
pirical heuristic based on manual analysis of 14,049 firmware TRENDret | FW-TLGI02i_vI_T0.8.50_ Jusr/sbin/lighttpd NPD 1
. . . "l FW_TI_G642i_v1_1.0.7.50_ Jusr/sbin/lighttpd ~ NPD 1
images. In practice, embedded firmware systems invoke a FW_WL500gpv2_3044_TW fust/sbin/httpd NPD 1
d. t f . t b . . 1 d t 1 t . ht t TEW_411BRPplus_2.07 /usr/sbin/httpd NPD 2
1verse set oI 1nit binaries, including at least €i1g ypes, TEW_637AP_V2_FW1.3.0.106_ /bin/goahead NPD 2
such as /sbin/preinit, /sbin/init, /bin/init, US_F452V1.0BR_V1.0.0.3_en_8097_TD /bin/httpd NPD 1
. . . ; US_FHI1202V1.0BR_V1.2.0.14_408_EN_TD /bin/httpd NPD 3
/etc/init, /bin/busybox (as used in early OpenWrt Tenda US_N8O_W568Rbr_V1.0.1.17_6610_TDE Ibin/httpd NPD 1
. . S . . US_WISEV1.0br_V15.11.0.5 /bin/httpd NPD/BOF 3
devices [55]), and vendor-specific binaries like /sbin/rc. - = iy
Total —_— —_— —_— 67

This heuristic enables FIRMWELL to reliably set the emulator’s
entrypoint to the appropriate init binary across a wide range
of firmware images, particularly when kernel extraction is not
possible.

B. Experimental Data on Greenhouse Dataset

Table IX presents the HTTP service rehosting results for
four tools evaluated on the Greenhouse dataset, which com-
prises 7,098 Linux-based firmware images spanning nine
brands. Among the 5,737 unpacked firmware images, the

16

overall rehosting rates are as follows: FirmAE achieves 44%
(2,534), Greenhouse 47% (2,707), Pandawan 9% (505), and
FIRMWELL 77% (4,425). Across nine vendors, FIRMWELL
outperforms the comparison tools on seven, with slightly
lower success rates than GREENHOUSE only for Belkin and
Tenda. These results are consistent with the trends in Table II,
confirming the generalizability of our findings.

C. Analysis of User-Space Dependencies for Rehosting

We evaluated the impact of different types of dynamically
generated user-space dependencies on firmware service rehost-
ing by removing each type individually and rerunning the
HTTP service to assess functionality. Table XI displays the
number of HTTP services rehosted by FIRMWELL after the
removal of specific user-space resources. The results show
that dynamically generated files (DYN) are the most critical,
as only 2,482 (38%) services remain functional when they
are removed. Execution configurations (EXE), which include
command line arguments, environment variables, and relative
paths, have a moderate impact, with 2,882 (44%) services
still operational. Inter-process communication (IPC) depen-
dencies are also important, as 3,201 (49%) services continue
to function without them. This analysis highlights the essential
role of correctly managing user-space dependencies to achieve
successful firmware rehosting.

D. 0-day Vulnerability Details

Table XII shows the 67 zero-day vulnerabilities discovered
by FIRMWELL in 48 firmware images. We responsibly dis-
closed these vulnerabilities to the respective vendors. Among
them, 10 vulnerabilities have been confirmed by vendors and
assigned CVE IDs.

E. Discussion of Intra-Process Communication for Rehosting

In this paper, we focuses on analyze peer processes
that utilize IPC mechanisms that enable rich data exchange
in user-space, such as files, sockets, and shared mem-
ory. Synchronization-oriented mechanisms, like signals and
semaphores, are excluded from our analysis, as they primarily
serve to manage notifications and resource control, without
directly impacting process functionality. We also omit parent-
child IPC mechanisms, including pipes and intra-process com-
munication (i.e., thread communication), which are under the
control of the parent process and are typically terminated
upon its exit. FIRMWELL’s rehosting framework operates at
the process level, reasoning and fixing misemulation resources
both for parent and child processes. Any missing user-space
dependencies related to parent-child IPC mechanisms or intra-
process communication are resolved through the correction of
system-level misemulations.

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact is available on Zenodo:
https://doi.org/10.528 1/zenodo.17083186. And the Docker im-
age of FIRMWELL is accessible via:

$ docker pull ghcr.io/gc9c/firmwell:ae

2) Hardware dependencies: Minimum requirements for
FIRMWELL are 1 CPU core, 4 GiB memory, and 100 GiB
disk space per rehosting task. For large-scale evaluation, a
Kubernetes cluster with at least 1,000 CPU cores was used
(each pod: 1 core, 4 GiB RAM). The firmware dataset requires

17

428 GiB of storage, and 1 TiB of additional disk space is
recommended for analysis outputs.

3) Software dependencies: For local evaluation,
FIRMWELL only requires Docker, as we provide a pre-built
Docker image of FIRMWELL and all necessary third-party
dependencies. For batch or parallel analysis, a Kubernetes
cluster with shared storage is required. All experiments were
validated on Ubuntu 20.04.

4) Benchmarks: FIRMWELL was run on a dataset of 14,049
firmware images crawled from 13 different vendors. This
dataset is hosted privately as part of the artifact, contact the
authors if access is needed.

B. Artifact Installation & Configuration

1) Prerequisites: FIRMWELL has been packaged as a
Docker container. To deploy FIRMWELL, the following soft-
ware must be installed on the host machine:

e Docker (tested on version 20.10.21, build 20.10.21)

e Docker Compose (tested on version 1.29.2, build 5be-

ceadc)

2) Installation: Load the Docker image.

$ docker load -i firmwell.tar
Start the container in privileged mode.

$ docker run —--privileged -v /dev:/host/dev
—-it firmwell:ae bash

Inside the Docker container, initialize the analysis environ-
ment by executing the setup script:

S bash /fw/docker_init.sh

Additionally, reference images for state-of-the-art tools
(firmae, pandawan, greenhouse) are available via:

$ docker pull ghcr:<sota>:latest

C. Experiment Workflow

At a high-level, FIRMWELL rehosts each input firmware
image and evaluates the result using the Rehosting Checker
(see Section III-A). Firmware images that pass this check are
further analyzed for vulnerabilities.

D. Major Claims

¢ (C1): Rehosting Performance FIRMWELL is capable
of successfully rehosting 68% of HTTP services from
firmware images that can be unpacked from the dataset.
This result is supported by the experimental evaluation
El, as presented in Table II (RQI1, Section V-A) of our
paper.

(C2): Component Effectiveness The key design modules
of FIRMWELL each contribute significant and comple-
mentary effectiveness. Disabling any major module re-
sults in a marked reduction in the overall success rate,
with the ablated success rate ranging from 91% down
to 34% of the original result, depending on the specific
component removed. This result is supported by the
experimental evaluation E2, as presented in Table IV
(RQ2, Section V-B) of our paper.

https://doi.org/10.5281/zenodo.17083186

TABLE XIII: Ablation Experiment Arguments (correspond to Ta-
ble IV in the paper).

Arguments Description
——baseline Enable only the Section III-A module
--wo_32 Disable the Section III-B module
—-wo_33 Disable the Section III-C module

—-wo_create
——wo_infer
--wo_reuse
——wo_peer

Disable the “CREATE” strategy in Section III-C
Disable the “INFER” strategy in Section III-C
Disable the “REUSE” strategy in Section III-C
Disable the “FIX-IN-PEER” strategy in Section III-C

(C3): Real-World Application The firmware images
rehosted by FIRMWELL enable dynamic analysis for
real-world vulnerability discovery. FIRMWELL identified
1,335 N-day vulnerabilities with RouterSploit and 67
zero-day vulnerabilities via AFL++ fuzzing. This result
is supported by the experimental evaluation E3 and E4,
as presented in RQ3 (Section V-C) of our paper.

E. Evaluation

1) Experiment (El): [Firmware Rehosting] [10 human-
minutes + 1 compute-hour]: Evaluating FIRMWELL’s ability
to rehost an input firmware image and assess the functionality
of its HTTP service using the Rehosting Checker.

[Preparation] Launch the Docker container as described in
the Artifact Installation section, and then copy the firmware
image to be analyzed into the container.

[Execution] Execute the following command to rehost a
target firmware image using FIRMWELL.

$ /fw/run.sh <brand> <image-path>

[Results] FIRMWELL reports the rehosting status in the
console. A message of the form REHOST STATUS -
<sha256> - SUCCESS indicates that the HTTP service has
been successfully rehosted and verified. The corresponding
rehosted image is stored under /tmp/results/<sha256>
in the container.

2) Experiment (E2): [Ablation Study] [10 human-
minutes + 1 compute-hour]: Evaluation of component-wise
effectiveness via module ablation.

[Preparation] Launch the Docker container as described in
the Artifact Installation section, and then copy the firmware
image to be analyzed into the container.

[Execution] To conduct ablation experiments corresponding
to Table IV of the paper, specify the appropriate arguments in
the args field of the configuration file for each experimen-
tal setting. Each argument (e.g., ——baseline) enables or
disables specific FIRMWELL modules as summarized below
Table XIII.

$ /fw/run.sh <brand> <image-path> <args>

[Results] FIRMWELL reports the rehosting status in the
console. A message of the form REHOST STATUS -
<sha256> - SUCCESS indicates that the HTTP service has
been successfully rehosted and verified.

3) Experiment (E3): [N-day Vulnerability Detection] [10
human-minutes + 1 compute-hour]: Automated detection of
known (N-day) vulnerabilities in rehosted firmware.

18

[Preparation] Launch the Docker container as described in
the Artifact Installation section, and then copy the firmware
image to be analyzed into the container.

[Execution] Execute the following command to rehost a tar-
get firmware image and perform N-day vulnerability detection
using FIRMWELL.

$ /fw/run.sh <brand> <image-path> --rsf
[Results] After the analysis completes, a summary
of all detected N-day vulnerabilities is saved in

/tmp/processed_data/vulnerable.csv,
corresponding to the results in Section IV-C and Table VII.

4) Experiment (E4): [Fuzz-testing] [20 human-minutes
+ 24 compute-hour]: Automated fuzz-testing of rehosted
firmware images for zero-day vulnerability discovery.

[Preparation] After completing Experiment
(E1), FIRMWELL exports the rehosted image to
/tmp/results/<sha256>.

Set up the fuzzing environment and build a dedicated
Docker image using the following command:

$ python /root/build_fuzz_img.py -name fuzz
-f /results/<sha256>.tar.gz

[Execution] Launch the fuzz-testing process by starting the
generated Docker image:

$ docker run --ulimit nofile=2048:2048

——cap-add NET_ADMIN --cap-add SYS_ADMIN
——-security-opt seccomp=unconfined
-v /scratch:/scratch -i fuzz /fuzz.sh

[Results] The fuzzing workflow will begin and AFL++ will
output real-time fuzzing status. Note that not all rehosted
images are directly amenable to fuzzing, since certain firmware
may require additional engineering or customization of AFL++
to ensure proper operation.

	Introduction
	Preliminaries
	Background
	Motivation Example
	Overview

	METHODOLOGY
	User-Space Dependency-Aware Rehosting
	Rehosting Blocking Process Identification
	Emulation Failure Classification and Fix

	IMPLEMENTATION
	Evaluation
	State-of-the-Art Comparison (RQ1)
	Ablation Study (RQ2)
	Real-World Application (RQ3)

	Limitations and Broader Applicability
	Related Work
	Conclusion
	References
	Appendix A: Additional Design Details and Experimental Results
	Firmware Pre-processing
	Experimental Data on Greenhouse Dataset
	Analysis of User-Space Dependencies for Rehosting
	0-day Vulnerability Details
	Discussion of Intra-Process Communication for Rehosting

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Prerequisites
	Installation

	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

