
Constructive Noise Defeats Adversarial Noise:
Adversarial Example Detection for Commercial

DNN Services

Meng Shen∗, Jiangyuan Bi∗, Hao Yu†, Zhenming Bai∗, Wei Wang‡, Liehuang Zhu∗
∗Beijing Institute of Technology, †National University of Defense Technology, ‡Xi’an Jiaotong University

∗{shenmeng, jiangyuan, zmbai, liehuangz}@bit.edu.cn, †csyuhao@gmail.com, ‡wei.wang@xjtu.edu.cn

Adversarial example detection, offered by a third party
independent of the owner of commercial DNNs as illustrated
in Fig. 1, provides a flexible and convenient solution. In
this scenario, the detector relies only on predicted labels
and confidence scores via APIs, without access to model
details or the training dataset of commercial DNNs. Due to
intellectual property concerns, commercial DNN services in
MLaaS scenarios are typically models with access granted only
through query APIs [10], [11]. Model owners probably do not
have adequate resources or knowledge to detect adversarial
examples themselves. Hence, they ought to ask a third party
for detection services [12]. However, to safeguard the privacy
and intellectual property of the commercial model and prevent
model extraction attacks, the detector is commonly prohibited
from utilizing details or the training dataset of the model [13].
Therefore, it is imperative to develop advanced detection
services in the setting with limited access to the model and
data [12], [14]. For practical deployment in commercial DNN
services, detection should achieve high accuracy while main-
taining cost efficiency with only predicted labels and confident
scores served by APIs. It should identify the single submitted
adversarial example without historical queries while avoiding
mislabeling clean examples as adversarial [15]. Furthermore,
the detector should limit the number of queries to commercial
DNN services for less detection time overhead.

Although recent studies have proposed several solutions
to adversarial example detection [16], [17], [15], [18], they
rely on strong assumptions of model and data accessibility,
which are impractical. Detections based on discrepancies in
the target model’s intermediate outputs require access to the
target model [17], [19], [16], which are unavailable in MLaaS
scenarios. Detections based on training auxiliary model or pre-
diction inconsistency require access to the training dataset of
the target model [20], [21], [15], [18]. They suffer a significant
drop in detection accuracy when data is limited, as presented in
Table I. In this paper, we focus on the setting where only query
access to the model through APIs is available. Blacklight [22]
and SD [23] are designed specifically for detecting adversarial
examples through historical queries [23], [22], which cannot
detect whether a single query is adversarial [8].

In this paper, we propose Falcon, an adversarial example
detection method that achieves accuracy and cost efficiency
simultaneously. Clean examples and adversarial examples ex-
hibit different tolerances to noise: adversarial examples are
more likely to be affected by additional noise. This motivates
us to find a certain type of noise (referred to as constructive

Abstract—Commercial DNN services have been developed in 
the form of machine learning as a service (MLaaS). To mitigate 
the potential threats of adversarial examples, various detection 
methods have been proposed. However, the existing methods 
usually require access to details or the training dataset of the 
target model, which is commonly unavailable in MLaaS scenarios. 
Their detection accuracy experiences a significant d rop i n a 
setting where neither the details nor the training dataset of the 
target model can be acquired.

In this paper, we propose Falcon, an adversarial example 
detection method offered by a third party, which achieves 
accuracy and efficiency s imultaneously. B ased o n t he disparity 
in noise tolerance between clean and adversarial examples, we 
explore constructive noise that cannot affect the model’s output 
labels when added to clean examples while causing noticeable 
changes in model outputs when added to adversarial examples. 
For each input, Falcon generates constructive noise with a 
specific distribution and intensity and achieves detection through 
differences in the output of the target model before and after 
adding constructive noise. Extensive experiments are conducted 
on 4 public datasets to evaluate the performance of Falcon in 
detecting 10 typical attacks. Falcon outperforms SOTA detection 
methods with the highest True Positive Rate (TPR) of adversarial 
examples and the lowest False Positive Rate (FPR) of clean 
examples. Furthermore, Falcon achieves a TPR of about 80%
with an FPR of 5% on 6 well-known commercial DNN services, 
which outperforms the SOTA methods. Falcon can also maintain 
its accuracy although the adversary has complete knowledge of 
the detection details.

I. INTRODUCTION

Recent years have witnessed the prosperity of Deep Neural 
Networks (DNNs) applied in the domain of computer vision, 
such as face recognition [1], [2] and image classification [3]. 
Commercial DNN services, such as AWS [4] and Azure [5], 
have been developed in the form of machine learning as a ser-
vice (MLaaS) to enable the widespread application of DNNs. 
However, these DNNs are susceptible to adversarial examples, 
which add imperceptible noise to an original image to mislead 
DNNs [6], [7], [8], [9]. Thus, adversarial example detection is 
crucial to assess whether an input image is adversarial before 
it is processed by commercial DNNs.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230250
www.ndss-symposium.org



TABLE I: A comparison of existing methods of adversarial
example detections that can serve detection with only predicted
labels and confident scores served by APIs. Query magnitude
measures the number of queries on the target model.

Detections
Detection Performance Detection Overhead

Detection
Accuracy

Detection on
Adaptive Attacks

Detection Time
Overhead (s)

Query
Magnitude

FS [21] % % ≈ 0.02 4
MagNet [20] % % ≈ 0.18 2
RS [24] % ! ≈ 4.00 1.E+3
Falcon (ours) ! ! ≈ 0.20 2

noise), when added to an input image, it can lead to significant
changes of the target model’s output on adversarial examples
while not affecting the output of clean examples. As a result,
we can achieve an accurate detection by leveraging the differ-
ences induced by constructive noise.

We design three modules in Falcon to efficiently generate
the distribution and intensity of constructive noise, which
is then used for adversarial example detection. First, we
design a noise distribution generator to obtain a targeted noise
distribution that minimally impacts the regions critical for
the correct classification of clean examples, while perturbing
the distribution of adversarial noise. Second, we design a
noise intensity generator based on a self-supervised learning
network to obtain an appropriate noise intensity from the
distribution determined in the first module. Intuitively, a higher
intensity is prone to mislabeling clean examples (i.e., causing
false positives), whereas a lower intensity may fail to induce
obvious changes to adversarial examples (i.e., causing false
negatives). We design two mutually constrained loss functions
to balance the trade-offs. Finally, we design an adversarial
example detector by measuring differences in the output of the
target model after adding the constructive noise determined
by the above two modules. Note that Falcon is designed
and trained without prior knowledge of model details, output
labels, or the adversary.

To comprehensively evaluate the performance of Falcon,
we conduct extensive experiments on 4 public datasets under
two scenarios (see more details in Sec. III-B), including
CIFAR-10, ImageNet-10, ImageNet-1000 and CelebA. Fol-
lowing previous studies [15], [18], we select ResNet50 [3] as
the target model and generate adversarial examples using 10
typical adversarial attacks (e.g., AutoAttack [25] and DSA [8]).
We evaluate the performance of Falcon and 7 SOTA detection
methods (e.g., CNet [15]) in detecting adversarial examples.
The experimental results demonstrate that Falcon achieves a
higher true positive rate (TPR) of adversarial examples while
reducing the false positive rate (FPR) of clean examples.
Falcon achieves its maximum TPR improvement of 21.42% on
the ImageNet-1000 dataset when detecting SOTA attack DSA
compared to other methods. Specifically, it achieves a TPR
improvement of over 7% when detecting adversarial examples
generated from ImageNet-1000.

In addition, we use Falcon to serve detection for 6
well-known commercial DNNs in the real world, including
Baidu [26], Tencent [27], AWS [4], Azure [5], Google [28]
and Alibaba [29]. We select four attacks where the adversary
cannot get full knowledge of the target model to generate ad-

versarial examples. The experimental results demonstrate that
Falcon significantly outperforms compared detection methods,
achieving an improvement in TPR of over 13.00%.

We further evaluate the performance of Falcon against
adaptive attacks. We assume that the adversary has full knowl-
edge of Falcon and can manipulate the generated noise to
evade the detection by Falcon. We evaluate Falcon’s TPR
and FPR using three different adaptive attack strategies. The
experimental results demonstrate that Falcon can achieve a
TPR of over 50% while other methods almost fail completely.

We summarize the main contributions as follows:

• We demonstrate that clean and adversarial examples exhibit
different tolerances to noise and further explore constructive
noise that does not affect the model’s output labels when
added to clean examples while causing noticeable changes
in the model’s output when added to adversarial examples.

• We propose Falcon, an adversarial example detection that
achieves accuracy and cost efficiency simultaneously. Falcon
generates constructive noise with a certain distribution and
intensity and detect by the differences in the output of the
target model after adding constructive noise.

• We evaluate the performance of Falcon and 7 representative
detection methods in detecting 10 typical adversarial attacks.
Falcon achieves higher TPR and lower FPR under two
scenarios based on the prior knowledge of the detector.

• We conduct real-world evaluations on detecting attacks on 6
well-known commercial DNN services. Falcon can achieve
approximately 80% TPR and 5% FPR, which significantly
outperforms other detection methods (e.g., MagNet [20]).

• We evaluate the performance of Falcon in detecting adaptive
attacks, where the adversary has full knowledge of Falcon.
The experimental results show that Falcon maintains a TPR
of over 50% on four datasets.

II. BACKGROUND AND RELATED WORK

A. Background

The adversarial example is generated by adding well-
designed noise, which is imperceptible to human eyes, to the
input to mislead the target DNN model [6]. The target model
can be defined as f : Rd → {1, · · · ,K}, where d is the
dimension of the input and K is the number of classes. Given
a clean example X , the targeted and untargeted attacks can be
formulated as an optimization problem in Eq. (1),{

min ∥δ∥p, s.t. f(X + δ) ̸= f(X) (untargeted)

min ∥δ∥p, s.t. f(X + δ) = f(Xt) (targeted)
(1)

where δ is the adversarial noise, Xt is the image of targeted
label and ∥ · ∥p represents the lp norm (e.g., l2, l∞) of δ.

In this paper, we focus on adversarial attacks which aim
to minimize the generated perturbation to mislead the target
model (see Eq. (1)). Here, we introduce 10 attacks that are typ-
ical or SOTA, including PGD, CW, AutoAttack, VNIFGSM,
HJSA, HybridAttack, DSA, SSAE, Kenneth and AT-UAP.

Adversarial examples can be broadly categorized into per-
instance and universal attacks, depending on whether the
generated perturbation is specific to each input or shared across
inputs. Per-instance attacks generate perturbations tailored to

2



individual input images. This category encompasses a wide
range of generation methods, including gradient-based (e.g.,
PGD [7], DSA [8], AutoAttack [25]), optimization-based (e.g.,
CW [30]), and GAN-based (e.g., SSAE [31]) approaches.
While gradient and optimization-based methods rely on di-
rectly manipulating the input to maximize a predefined loss,
GAN-based attacks use generative models to learn a distribu-
tion of adversarial perturbations that achieve high transferabil-
ity and low perceptual distortion. On the other hand, universal
attacks (e.g., Kenneth [32], AT-UAP [33]) aim to generate a
single, input-agnostic perturbation that can be applied across
many different original images to induce misclassification.
Despite differences in generation mechanisms and perturbation
characteristics, these attacks follow the objective in Eq. (1).

In addition to the attacks discussed above, there also
exist adversarial attacks in the physical domain [34], [35],
[36]. These attacks typically violate the bounded perturbation
constraint defined in Eq. (1) and adopt the Expectation over
Transformation (EoT) strategy to remain effective under real-
world variations such as lighting, viewpoint, and occlusion.
Thus, we do not take them into consideration.

B. Related Work

Existing detection methods fall into two categories based
on the knowledge accessible to the detector.

Detection methods in the first category require varying
degrees of access to the target model’s knowledge. When full
knowledge of the target model (e.g., its training dataset, archi-
tecture and parameters) is accessible, certain detection methods
exploit discrepancies in intermediate-layer output or feature
attributions for detection [17], [37], [19], [16]. A2D [38]
achieves detection by measuring the difficulty (e.g., required
perturbation magnitude) of conducting additional adversarial
attacks with full access to the target model. When only prior
knowledge of training dataset or all output labels is available,
some detection methods train an auxiliary model for detec-
tion [15], [18], [39]. CNet [15] detects adversarial examples
by training a conditional generative network to reconstruct an
image from the target model’s predicted label and measuring
the differences between the input and its reconstruction. MI-
AED [18] detects adversarial examples by training an auxiliary
MLP and identifying an input as adversarial when the label
predicted by the MLP differs from that of the target model. BE-
YOND [39] utilizes the robust representation capacity of extra
Self-Supervised Learning (SSL) model to detect adversarial
examples by examining their proximity to neighbor examples
generated by augmentations (e.g., Gaussian noise, crop).

Detection methods in the second category operate under
the weakest knowledge assumptions, where only limited output
information (i.e., predicted label and confidence score) is ac-
cessible via API queries. These methods generate transformed
versions of the input and perform detection by comparing the
predicted information between the original and transformed
inputs [21], [24], [20]. FS [21] uses digital image processing
methods such as JPEG compression to generate transforma-
tions and calculates the distance between confidence scores of
the input and its transformed version. RS [24] applies Gaussian
noise to generate transformations and compares the labels of
the input with its transformed version. MagNet [20] utilizes

Commercial DNN ServicesDetecor

Adversary

User

Invalid Input

Correct Predictions

Fig. 1: The illustration of detection services for commercial
DNNs. Given an input image submitted by a user, the detector
first queries the target model through its API and determines
whether the input is adversarial, and then the target model can
reply with the correct prediction for clean examples or invalid
input for adversarial examples, respectively.

deep learning techniques to generate transformations and de-
tect adversarial examples based on the difference (i.e., MSE
and KL divergence) between the input and its transformed
version. Some methods exploit the differences in historical
query sequences caused by the adversary for detection (e.g.,
SD [23] and Blacklight [22]). However, they fail completely
when facing adversarial examples generated without querying
the target model, such as VNIFGSM [40].

Falcon follows in the same line of research as RS [24] and
MagNet [20]. However, Falcon distinguishes itself by model-
ing the distribution of adversarial noise and generating input-
specific constructive perturbations to create a more effective
transformation. This results in improved detection accuracy
with a lower false positive rate.

In addition to detection-based methods, other SOTA ap-
proaches have been developed under different threat mod-
els [41], [42], [43]. For instance, Patchcure [43] is dedicated to
constructing models robust against adversarial patch attacks in
the physical domain. We focus on methods that detect attacks
following Eq. (1) in this paper.

III. SYSTEM MODEL AND THREAT MODEL

A. System Model

In this paper, we focus on providing adversarial example
detection for commercial DNN services, as shown in Fig. 1.
In this scenario, neither the details nor the training dataset of
commercial DNN services can be acquired, while only query
access to the model through APIs is available.

Although much less effort has been devoted to this setting,
this setting is more realistic in commercial transactions of
machine learning services (e.g., AWS [4] and Azure [5]). For
example, a lot of organizations (e.g., hospitals and banks)
purchase machine learning services that are applied to some
safety-critical applications (e.g., face recognition) from the
owner of the model [1], [2]. However, these systems are proven
to be vulnerable to adversarial examples [8]. The adversary
can easily mislead these systems through adding adversarial
noise on the input image. Due to the intellectual property, these
systems are usually with only query access through APIs [26],
[27], based on the typical MLaaS scenario. Access to the
details and training dataset of the target model is restricted.
Such a setting hinders the organization from detecting whether
an input image is adversarial accurately with the existing
detection methods [17], [19], [16]. Even if the details of these

3



Clean Example
Label: Soccer

Perturb All Regions
(Gaussian Noise)

Label: Spotlight

Not Perturb 
Critical Regions

Critical RegionDNN Model

Noise Addition to Image

Label: Soccer

CAM

Fig. 2: The effect of noise distribution on the labels produced
by the DNN model. We first locate critical regions through
CAM. The label remains unchanged when the critical regions
are not perturbed while adding Gaussian noise alters the
original label of the image.

systems are available, the organizations probably do not have
adequate resources or knowledge to detect potential adversarial
examples [12]. Hence, they ought to ask a third party to
perform adversarial example detection objectively, which still
needs to be conducted in a manner with only information
served by APIs due to privacy considerations [44]. Thus, we
focus on accurate adversarial example detection with limited
details and the training dataset of the target model. It isolates
the detection process from the operation of commercial DNNs
and makes it easier to update or replace detection methods
without affecting the system functionality.

B. Threat Model

In this paper, there are three primary parties: the victim,
the detector, and the adversary, as shown in Fig 1.

The victim refers to an organization that purchases com-
mercial DNN services. The victim deploys these systems
and provides labels and confidence scores for inputs through
an API, consistent with the workflow of existing popular
commercial DNN services (e.g., Baidu [26] and AWS [4]).

The adversary aims to add imperceptible noise to the
input to generate an adversarial example that misleads the
target model. In real-world scenarios, the adversary misleading
commercial DNNs usually has no access to the target model’s
details [8]. There, we further discuss two types of attacks based
on access to the detection strategy.

• Static attack: The adversary cannot know the existence of
the detection strategy [15].

• Adaptive attack: The adversary has full knowledge of the
detection strategy [45], [46]. Thus, he can perform an
adaptive attack attempting to evade detection.

The detector judges whether an input submitted to the
victim is adversarial or not in advance. The detector only uses
labels and confidence scores served by the victim and cannot
gain any prior knowledge of the target model and the adversary.
The detector is assumed to construct a shadow dataset and use
it to train detection framework. We consider two scenarios
based on the constructed shadow dataset:

Scenario#1. Small commercial DNN services are often trained
by some public datasets. The detector can access the full set
of output labels from these public datasets. This allows the

𝜎 = 0.05

Soccer

Golf

Soccer

Golf

𝜎 = 0 𝜎 = 0.10

Soccer

Spotlight

……

……

𝜎 = 2.40

Soccer

Spotlight

𝜎 = 2.45

Spotlight

Spotlight

𝜎 = 2.50

Spotlight

Spotlight

Clean

Adversarial

Label

Label

Noise 
Intensity

Lower HigherAppropriate

Fig. 3: The classification results of clean example (1st row)
and adversarial example (2nd row) when added a varying
intensity of noise (σ). When σ ∈ [0.1, 2.4], the label of
adversarial example changes, while that of clean example
remains unaffected.

detector to construct a shadow dataset that is approximately
identically distributed with the target model’s training data.
Note that the shadow dataset cannot overlap with the training
dataset of the target model.

Scenario#2. Existing large commercial DNN services (e.g.,
Tencent [27] and Azure [5]) typically train their models on
proprietary datasets they construct themselves. The detector
cannot access the full set of output labels and can only get
a subset of output labels through some queries. Due to the
discrepancy in labels, the shadow dataset is not identically
distributed with the target model’s training data.

C. Design Goals

Based on the knowledge of the detector defined above, it
should achieve the following goals.

Accuracy. It should accurately identify individual submitted
adversarial example while mislabeling the clean example as
adversarial less in a setting where only predicted labels and
confidence scores by APIs can be obtained [17], [15], [18].

Robustness. It should not rely on prior knowledge of the
adversary and can maintain its accuracy on a wide range of
adversarial attacks mentioned in Sec. II-A or adaptive attacks.

Efficiency. It should minimize the number of queries on the
target model and achieve detection with a low time overhead.

IV. THE PROPOSED FALCON

A. Existence of Constructive Noise

Adversarial examples generated under the objective in Eq.
(1) can mislead the target model with minimal perturbation
magnitude and are often located close to the decision boundary.
This phenomenon has been consistently demonstrated in prior
works [47], [48], [49]. Thus, adversarial examples are more
likely to be affected by additional noise. We demonstrate that
there exists a certain type of noise in both a clean example
and its corresponding adversarial example, the output for the
adversarial example might have a significant change (e.g. a
sharp drop of confidence score, or even the change of predicted
label), whereas that of the clean example might have only a
slight change. Now, we investigate where the noise should be
added in an image (i.e., noise distribution) and to what extent
it should be added (i.e., noise intensity).

4



1.0 0.5 0.0 0.5 1.00.00

0.25

0.50

0.75

1.00

CD
F(

CI
FA

R-
10

)

PGD
CN
GN

1.0 0.5 0.0 0.5 1.00.00

0.25

0.50

0.75

1.00 CW
CN
GN

1.0 0.5 0.0 0.5 1.00.00

0.25

0.50

0.75

1.00 DSA
CN
GN

1.0 0.5 0.0 0.5 1.00.00

0.25

0.50

0.75

1.00 AutoAttack
CN
GN

1.0 0.5 0.0 0.5 1.00.00

0.25

0.50

0.75

1.00

CD
F(

Im
ag

eN
et

) CN
GN

1.0 0.5 0.0 0.5 1.00.00

0.25

0.50

0.75

1.00
CN
GN

1.0 0.5 0.0 0.5 1.00.00

0.25

0.50

0.75

1.00
CN
GN

1.0 0.5 0.0 0.5 1.00.00

0.25

0.50

0.75

1.00
CN
GN

1.0 0.5 0.0 0.5 1.0
Tolerance Gap

0.00

0.25

0.50

0.75

1.00

CD
F(

Ce
le

bA
) CN

GN

1.0 0.5 0.0 0.5 1.0
Tolerance Gap

0.00

0.25

0.50

0.75

1.00
CN
GN

1.0 0.5 0.0 0.5 1.0
Tolerance Gap

0.00

0.25

0.50

0.75

1.00
CN
GN

1.0 0.5 0.0 0.5 1.0
Tolerance Gap

0.00

0.25

0.50

0.75

1.00
CN
GN

Fig. 4: The CDF of Tolerance Gap (TG) for Constructive Noise (CN) and Gaussian noise (GN) under four adversarial attacks
across three datasets. If TG is less than 0, the noise cannot distinguish adversarial examples from clean examples.

Noise Distribution. Gaussian noise is a commonly used
random noise that uniformly perturbs all regions of an image.
However, Gaussian noise is not suitable for distinguishing
between clean and adversarial examples because it is likely
to disturb the crucial regions for the classification of clean
examples, thus causing a significant change in the label of
clean examples. We illustrate this phenomenon in Fig. 2, where
the crucial region for the classification of a clean example is
visualized using the CAM method [50]. The Gaussian noise
perturbs all regions of the clean example and thus leads to the
change of its label. However, if we add the same magnitude
of noise, avoiding perturbing the critical regions, the resulting
label remains the same. Thus, a noise distribution should not
perturb critical regions. We will justify this later (see Fig. 4).

Noise Intensity. After determining the noise distribution, we
explore the magnitude of the noise added to the image. For
ease of illustration, given an image, its tolerance to noise
is regarded as the maximum magnitude of noise added that
keeps its label unchanged. We define the tolerance of clean
and adversarial example as σclean and σadv . Intuitively, a
clean example and its corresponding adversarial example will
have different tolerances to additional noise, which is revealed
by their different distances from the decision boundary. To
have a clear understanding, we randomly select a pair of
clean and adversarial examples and vary the intensity of noise
denoted by σ, as shown in Fig. 3. We observe that σ = 0.1
changes the label of the adversarial example (i.e., σadv = 0.1)
whereas σ = 2.4 changes the label of the clean example (i.e.,
σclean = 2.4), indicating that the clean example can tolerate
larger noise than its adversarial example.

Constructive Noise. The above analysis shows that there
exists a range of noise intensities capable of altering the label
of adversarial examples without affecting the label of clean
examples (i.e., σ ∈ (σadv, σclean)). We refer to the noise in
this range as constructive noise, as it can be used to distinguish
between clean and adversarial examples. We also refer to the
length of this range as the Tolerance Gap (TG).

To justify the effectiveness of constructive noise, we use
ResNet50 as the target model, randomly select 3,000 images
from CIFAR-10, ImageNet-1000 and CelebA as clean exam-
ples, and generate the corresponding adversarial example for
each clean example using the PGD [7], CW [30], DSA [8]
and AutoAttack [25] attacks, respectively. We plot the CDF
of the tolerance gap for both constructive noise and random
noise, as shown in Fig. 4. We can find that using constructive
noise, the value of TG is always larger than 0, indicating the
existence of constructive noise to differentiate clean examples
from adversarial examples. In contrast, when using Gaussian
noise, the value of TG is not always larger than 0, indicating
the failure to distinguish clean and adversarial examples.

To establish a theoretical foundation for TG, we present
its formal definition and prove that the value of TG is always
larger than zero under certain constraints in Appendix A. Mo-
tivated by these constraints, we generate constructive noise by
modeling the distribution of adversarial noise while affecting
classification accuracy of clean examples less.

Note that we focus on adversarial attacks following the op-
timization objective in Eq. (1). The effectiveness of construc-
tive noise does not always hold for adversarial examples in the
physical domain (e.g., AdvPatch [36]). A more comprehensive
discussion will be presented in Appendix D.

B. Overview of Falcon

Based on the disparity in noise tolerance in Sec. IV-A,
we propose Falcon, an adversarial example detection that
achieves accuracy, robustness and efficiency. Falcon designs a
specific noise distribution and intensity for each input, aiming
to generate constructive noise that defeats adversarial noise
without judging clean examples as adversarial.

Optimizing both the noise distribution and intensity simul-
taneously is challenging due to the high-dimensional search
space, which increases the computational resources required
and complicates the optimization task. To address this, we

5



1. Noise Distribution Generation 2. Noise Intensity Generation 3. Adversarial Example Detection

Target Model 𝑪(∙)

𝒙 + 𝝈 ∗ 𝒏
𝒙𝒏𝒙

𝑪(𝒙)

𝐒𝐜𝐨𝐫𝐞 = 𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞(𝑪 𝒙 , 𝑪 𝒙𝒏 )

𝑪(𝒙𝒏)

Adversarial Clean

𝐒𝐜𝐨𝐫𝐞 > 𝐓𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝?
Yes

𝒙

Residual Extractor

Compression 
Network

Reconstruction 
Network

…

𝒏 𝒏

Intensity Generator

𝝈

Intensity
Generator

…

ResidualsCEs

Trained by Only CEs (Off-line)

…

Intensity 
Values

Trained by Only Residuals of CEs (Off-line)

𝑪(𝒙): Confidence Score of 𝒙𝒙: Input 𝒙𝒏:  Noise-injected 𝒙

Structual Features Extraction

Higher to Defeat 
Adversarial Noise

Lower to Minimize 
False Positives

No

Noise Distribution 𝒏 Noise Intensity 𝝈CEs: Clean Examples: Training : Detection

Minimizing Square of Residuals

Fig. 5: The overview of Falcon. Only clean examples are used in the training stage of Falcon. The Threshold in the Adversarial
Example Detection module is also determined before deployment based on clean examples.

first fix one parameter and then optimize the other, simplifying
the optimization process. In Falcon, we prioritize determining
the noise distribution before selecting the noise intensity. This
strategy is driven by two key considerations. First, the noise
distribution shares the same dimensionality as the image,
resulting in a large search space. Fixing the noise intensity
first and then optimizing the noise distribution would require
a large computational cost. Second, the appropriate intensity is
influenced by the specific distribution used. The overview of
Falcon is shown in Fig. 5, which consists of three components.

Noise Distribution Generation. The Noise Distribution Gen-
eration module proposes a residual extractor to create a tar-
geted noise distribution that minimally affects regions critical
for correct classification while defeating adversarial noise.
Specifically, we design a compression network to map the input
into a low-dimensional space and a reconstruction network to
reconstruct the image from the low-dimensional representation,
extracting key features and filtering out some unnecessary
noise. We choose the residual between input and its recon-
struction as the noise distribution. The extracted residuals
for clean examples are distributed in regions less critical to
correct classification. For adversarial examples, they highlight
the distribution of adversarial noise.

Noise Intensity Generation. Once the noise distribution is
determined, the Noise Intensity Generation module designs a
generator based on a self-supervised learning network to gen-
erate an appropriate noise intensity from the noise distribution.
Appropriate intensities lie within a range: lower intensity fails
to counter adversarial noise while higher intensity risks false
alarms for clean examples. Our generator optimizes two loss
functions: one to enhance noise intensity to defeat adversarial
noise, and the other to preserve the classification accuracy of
clean examples, thereby facilitating generated intensity to fall
within the appropriate range.

Adversarial Example Detection. The Adversarial Example
Detection module determines if the input is adversarial by
measuring the differences in the target model’s outputs after
adding the noise combined from the generated distribution and
intensity. These differences are assessed by comparing label
changes and the similarity of confidence scores.

V. DESIGN DETAILS OF FALCON

A. Noise Distribution Generation

The Noise Distribution Generation module is designed to
create a targeted noise distribution with two key objectives.
First, it aims to minimize perturbations in regions critical for
correct classification to maintain the accuracy of clean exam-
ples. Second, it tries to target the distribution of adversarial
noise, perturbing them to induce significant changes in the
outputs of adversarial examples.

The selection of noise distribution typically adopts Gaus-
sian noise, which is one of the most commonly used forms of
random noise [24], [51]. However, Gaussian noise uniformly
perturbs all regions of an image, potentially disrupting areas
critical for correct classification. Thus, directly applying Gaus-
sian noise reduces the classification accuracy of clean exam-
ples. Designing an appropriate noise distribution involves two
key challenges: 1) The critical regions for correct classification
vary across different images, so it is necessary to generate a
tailored rather than fixed noise distribution for each image. 2)
The generated noise distribution should effectively perturb the
distribution of adversarial noise.

To address these challenges, we propose a residual ex-
tractor to produce a targeted noise distribution. First, we
design a compression network that maps the image into
a low-dimensional space. Second, a reconstruction network
is used to reconstruct the image from the low-dimensional
representation extracted by the compression network. The
compress network learns to capture the unique structural
features of each image by mapping it into a low-dimensional
space, effectively filtering out some unnecessary noise [52],
[53]. The reconstruction network then uses this compressed
representation to reconstruct the image, ensuring that more
critical information for classification is preserved. The residual
between the reconstructed image and the input image serves
as the final noise distribution.

Our mechanism is designed to retain the key structural
features of any image while compressing unnecessary noise,
ensuring that each image has a tailored residual. For clean
examples, using the residual as the noise distribution does not

6



disrupt regions critical for correct classification. For adversarial
examples, adversarial noise is essentially a type of noise that
will be partially filtered out by the compression network. Thus,
using the residual as the noise distribution perturbs the areas
where adversarial noise is concentrated.

The compression and reconstruction networks in Falcon
are trained solely on clean examples. Since the training process
does not rely on knowledge of the target model, the generation
of the noise distribution remains independent of the target
model. Additionally, the noise distribution generation does
not depend on the prior knowledge of the adversary because
adversarial examples are not involved in the training process.

Due to the proven effectiveness of the Convolutional Neural
Network (CNN) in extracting key patterns from images [54],
we adopt CNN as the architecture for both the compression and
reconstruction networks. To enhance performance, we use a
deeper network architecture compared to previous works [51],
[55]. The compress network employs 3×3 convolutional lay-
ers, with downsampling performed via a stride of 2. This
design choice avoids pooling, which could harm image restora-
tion tasks [56]. In the reconstruction network, upsampling
is applied, and the layer structure is symmetric to the com-
pression network. Shortcut connections between corresponding
layers of the compression and reconstruction network help
maintain efficient information flow [3]. To improve stability
and convergence, each convolutional or deconvolutional layer
is followed by a Batch Normalization layer and a ReLU
activation function. These design choices aim to achieve the
goal of accurately compressing and reconstructing images
while filtering out noise.

We only use clean examples to train both compression
and reconstruction networks. The training loss is measured
as the Mean Squared Error (MSE) between the input and
reconstructed images. Finally, we back-propagate the loss and
update all trainable parameters with the Adam optimizer,
which has been widely adopted in prior studies [57], [53].

We adopt the residual-based mechanism to generate the
noise distribution, rather than directly generating the distri-
bution. Using a generative network to directly generate a
noise distribution has several limitations. The noise distribution
shares the same dimensionality as the image, which results
in an expansive search space for potential solutions. This
vast search space complicates the optimization process, as the
generative network could produce a wide range of possible
noise distributions, making it difficult to control and refine
the solution. Furthermore, the compression and reconstruction
networks generate a noise distribution through a smoothing
operation, which preserves essential structures while identi-
fying and locating unnecessary details. Unnecessary noise is
typically concentrated in regions with rich edges and textures,
which correspond to high-frequency information [58].

The compression network can partially filter out adversarial
noise but cannot eliminate it entirely. Thus, the reconstructed
image derived from an adversarial example may still be
adversarial. Moreover, for a clean example, the reconstructed
image may lose critical information for classification, resulting
in a wrong predicted label. As a result, the reconstructed image
cannot be used directly to replace the original input.

B. Noise Intensity Generation

After determining the noise distribution, we further investi-
gate the appropriate magnitude at which the noise distribution
should be applied to the input (i.e., noise intensity). The
Noise Intensity Generation module is designed to generate an
adaptive intensity tailored to the noise distribution.

Based on the observation of noise intensity under a given
noise distribution in Sec. IV-A, we can find that the appropriate
intensity can take multiple values within an appropriate range.
The upper bound of this range is the noise intensity that causes
label changes in clean examples, while the lower bound is the
intensity that alters labels of adversarial examples. Due to the
varying positions of each example in the decision space of the
target model, their corresponding upper bounds are different.
The lower bounds of adversarial examples vary depending
on the attack strategy used. Setting a fixed noise intensity
would cause two key issues. For some clean examples, the
noise intensity might be higher, leading to misclassification.
For certain adversarial examples, the intensity could be lower
to defeat adversarial noise.

Generating an appropriate noise intensity involves three key
challenges: 1) The generated intensity should be below the
upper bound for clean examples and above the lower bound
for adversarial examples. 2) The appropriate range of noise
intensity is influenced by the target model, but detailed infor-
mation about it is unavailable. 3) The attack strategy affects
the suitable range of noise intensity, but prior knowledge of
the adversary is inaccessible.

To address these challenges, we propose an intensity gen-
erator based on self-supervised learning, where the network
processes the noise distribution to determine an appropriate
intensity. The noise distribution shares the same high dimen-
sionality as the image while the noise intensity is a single
scalar value. To bridge this dimensional gap and establish a
relationship between them, we utilize CNN which is effective
in extracting key patterns from images [54] as the architecture.
Specifically, we employ two convolutional layers with kernel
size 3×3, two max-pooling layers with kernel size 2×2, and
fully connected layers in the regression network.

This network optimizes two loss functions: one to enhance
noise intensity to defeat adversarial noise, and the other to
preserve the classification accuracy of clean examples. First,
the generated noise intensity should be high enough to cause
obvious changes in the outputs of adversarial examples after
adding noise. Thus, we design the first loss function as

L1 =
1

σ
, (2)

where σ is the generated noise intensity. Since the noise
intensity is positive, we take its reciprocal as part of the loss
function to encourage the generation of the largest possible
intensity to defeat adversarial noise.

However, adding noise with a higher intensity will alter the
predicted labels of clean examples, causing false alarms. To not
rely on the target model, we constrain the noise intensity using
distance. Thus, we define the second loss function as

L2 = ||xn − x||2, (3)

7



0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
PGD

Score (AUC = 0.99)
Cos (AUC = 1.00)
Flag (AUC = 0.85)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

CW

Score (AUC = 0.96)
Cos (AUC = 0.89)
Flag (AUC = 0.94)

Fig. 6: Effectiveness of Cos, Flag, and Score in distinguish-
ing clean examples from adversarial examples. While Cos
performs well for PGD adversarial examples, it shows weaker
performance for CW adversarial examples.

where x is input and xn is the image after adding noise
with generated distribution and intensity on x. To ensure the
generated noise intensity approaches the upper bound without
exceeding it, we design a unified loss function as

L = L1 + α · L2 (4)

where α is a hyper-parameter. There we set α as 0.1 because
L2 is approximately an order of magnitude larger than the
L1. Note that, only clean examples are used in the training
process, which ensures the generation of noise intensity with-
out dependency on the prior knowledge of the adversary. We
only use clean examples to train the regression network. The
training loss is L in Eq. (4). Finally, we back-propagate the
loss and leverage the Adam optimizer to update all trainable
parameters.

C. Adversarial Example Detection

The Adversarial Example Detection module distinguishes
adversarial examples by capturing changes that happened in
the model’s outputs after adding generated noise combined
with the distribution and intensity in the above modules.

Adversarial example detection based on adding generated
noise involves two challenges: 1) Only the predicted label and
its corresponding confidence score served through API can be
obtained due to the limited capability of the target model. 2)
The prior knowledge of the adversary cannot be obtained in
advance to design a detection mechanism.

To address these challenges, we directly observe the
changes in prediction labels and their corresponding confi-
dence scores to examine the differences between clean and
adversarial examples. Specifically, we define the output con-
fidence score in the target model of an image as y1, and the
output confidence score of the image with added noise as y2.

First, we define the first metric Flag(·) to measure whether
the output label changes after adding noise as

Flag (y1, y2) =
{
0, if argmax(y1) = argmax(y2)

1, otherwise
(5)

where argmax(·) computes final predicted label based on the
confidence score. If the predicted label changes after adding
noise, Flag(·) is set to 1. In contrast, the flag is set to 0.

Second, we define Cos(·) to measure changes in confi-
dence score

Cos (y1, y2) =
y1 · y2

∥y1∥∥y2∥
(6)

TABLE II: Summary of Datasets and Target Models.

Datasets Training
Images

Testing
Images

Classification Accuracy (%)
ResNet50 DenseNet169

CIFAR-10 5,0000 1,0000 94.75 94.00
ImageNet-10 5,0000 1,0000 98.75 98.44
ImageNet-1000 20,0000 2,0000 78.80 76.00
CelebA 4,0000 1,0000 95.19 93.47

where ∥ · ∥ denotes the magnitude (or norm) of a vector.

For adversarial examples, the output predicted label is more
likely to change after adding noise, causing the value of Flag
to approach 1. Moreover, the changes in their confidence scores
after adding noise are more obvious, making Cos closer to 0
and 1− Cos approach 1. Therefore, we define score as

score = Flag + (1− Cos) (7)

score further combine Flag and 1−Cos to distinguish adver-
sarial examples from clean examples. We can observe that both
Flag and 1−Cos have limitations in distinguishing between
attacks of different types (e.g., PGD and CW). However,
combining them improves performance, as shown in Fig. 6.

Adding noise to adversarial examples is more likely to
induce obvious changes in their outputs in the target model,
causing the score of adversarial examples higher than the
score of clean examples. To detect adversarial examples
without relying on the prior knowledge of the adversary, we
set a threshold using only the clean examples. If the score is
below this threshold, the input is considered a clean example.
If it exceeds the threshold, the input is judged as adversarial.
The predicted label and corresponding confidence score are
typically secure after adding noise. Thus, the score of clean
examples is located around 0. We select a constant value of
0.5 as a threshold guided by the gap in the middle range of
scores between 0 and 1.

VI. PERFORMANCE EVALUATION

In this section, we comprehensively evaluate the perfor-
mance of Falcon in various experimental settings. Particularly,
we would like to study the following research questions:

• Can Falcon accurately identify an individual submitted
adversarial example while mislabeling the clean example
as adversarial less in the setting where only predicted
labels and confidence scores can be obtained?

• Can Falcon maintain its accuracy against various attacks,
especially when the adversary has full knowledge of
Falcon and conducts adaptive attacks?

• How sensitive is Falcon to changes in data distribution?
• What is the impact of the design components and their

hyperparameters on Falcon?

A. Experiment Settings

Datasets. We conduct the experiments using CIFAR-10 [60],
ImageNet-10 [15], ImageNet-1000 [61] and CelebA [62]
datasets, which have been widely used in previous studies
[20], [18]. The CIFAR-10 dataset consists of 10 classes, with
each class containing 60,000 images with a size of 32×32×3.
The ImageNet-1000 dataset comprises over 14 million images

8



TABLE III: TPR (%) and FPR (%) for detecting untargeted static attacks (Target Model: ResNet50). Bolded values indicate the
highest TPR or the lowest FPR.

Datasets Detections VNI[40] HJSA[47] Hybrid[59] DSA[8] PGD[7] CW[30] AA[25] SSAE[31] Kenneth[32] AT-UAP[33]
TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓

CIFAR-10

BEYOND [39] 85.16 5.00 89.92 5.00 85.05 5.00 83.71 5.00 89.46 5.00 88.72 5.00 74.38 5.00 88.68 5.00 84.65 5.00 83.94 5.00
A2D [38] 72.96 5.00 73.88 5.00 72.37 5.00 70.08 5.00 78.49 5.00 73.06 5.00 69.38 5.00 74.13 5.00 72.85 5.00 69.53 5.00
CNet [15] 77.12 5.00 85.36 5.00 74.35 5.00 71.43 5.00 90.27 5.00 88.82 5.00 72.20 5.00 88.57 5.00 72.41 5.00 71.06 5.00
MIAED [18] 73.48 7.80 74.22 7.80 71.55 7.80 72.38 7.80 81.02 7.80 81.54 7.80 69.18 7.80 81.30 7.80 80.62 7.80 71.46 7.80
FS [21] 10.35 5.00 16.28 5.00 12.56 5.00 16.24 5.00 46.03 5.00 5.55 5.00 4.73 5.00 12.78 5.00 18.63 5.00 7.92 5.00
MagNet [20] 57.32 5.00 64.89 5.00 55.10 5.00 1.52 5.00 67.96 5.00 83.84 5.00 42.88 5.00 76.85 5.00 72.60 5.00 52.85 5.00
RS [24] 77.25 12.24 80.10 12.24 75.68 12.24 76.13 12.24 78.11 12.24 81.87 12.24 67.30 12.24 78.26 12.24 76.85 12.24 67.22 12.24
Falcon 90.50 5.00 94.00 5.00 91.20 5.00 88.15 5.00 92.85 5.00 91.17 5.00 85.28 5.00 91.86 5.00 90.74 5.00 90.02 5.00

ImageNet-10

BEYOND [39] 90.37 5.00 91.18 5.00 90.94 5.00 88.35 5.00 90.26 5.00 87.69 5.00 85.08 5.00 91.41 5.00 89.71 5.00 88.25 5.00
A2D [38] 72.68 5.00 73.37 5.00 71.96 5.00 69.82 5.00 75.69 5.00 74.66 5.00 67.42 5.00 75.86 5.00 73.09 5.00 70.59 5.00
CNet [15] 75.09 5.00 78.28 5.00 71.28 5.00 68.87 5.00 94.20 5.00 96.20 5.00 79.86 5.00 95.80 5.00 88.64 5.00 69.58 5.00
MIAED [18] 72.49 10.24 72.86 10.24 71.06 10.24 69.84 10.14 80.56 10.24 80.78 10.14 70.22 10.14 80.26 10.14 72.86 10.14 71.84 10.14
FS [21] 61.48 5.00 63.22 5.00 59.68 5.00 23.96 5.00 79.20 5.00 85.90 5.00 57.26 5.00 80.75 5.00 62.49 5.00 61.87 5.00
MagNet [20] 58.33 5.00 63.12 5.00 56.30 5.00 32.67 5.00 82.10 5.00 71.20 5.00 66.52 5.00 73.82 5.00 65.98 5.00 54.37 5.00
RS [24] 73.99 9.72 78.76 9.72 72.64 9.72 73.28 9.72 74.82 9.72 77.23 9.72 70.88 9.72 75.80 9.72 76.92 9.72 72.85 9.72
Falcon 97.80 5.00 98.80 5.00 97.80 5.00 94.10 5.00 99.02 5.00 99.10 5.00 94.80 5.00 98.72 5.00 98.10 5.00 96.65 5.00

ImageNet-1000

BEYOND [39] 76.15 5.00 74.38 5.00 73.39 5.00 67.58 5.00 81.08 5.00 79.06 5.00 68.75 5.00 80.48 5.00 78.64 5.00 73.69 5.00
A2D [38] 70.02 5.00 69.75 5.00 68.36 5.00 67.02 5.00 71.25 5.00 71.86 5.00 66.94 5.00 71.09 5.00 59.87 5.00 66.30 5.00
CNet [15] 72.42 5.00 73.40 5.00 70.66 5.00 66.72 5.00 84.10 5.00 86.40 5.00 69.55 5.00 85.33 5.00 73.98 5.00 70.24 5.00
MIAED [18] 69.88 10.56 70.54 10.56 68.12 10.56 68.14 10.56 72.76 10.56 73.12 10.56 66.45 10.56 72.82 10.56 72.96 10.56 71.37 10.56
FS [21] 56.39 5.00 58.66 5.00 56.10 5.00 17.45 5.00 59.80 5.00 65.40 5.00 55.48 5.00 64.86 5.00 52.46 5.00 49.78 5.00
MagNet [20] 54.28 5.00 56.33 5.00 54.11 5.00 30.28 5.00 66.20 5.00 58.60 5.00 57.29 5.00 57.62 5.00 56.87 5.00 53.12 5.00
RS [24] 57.16 10.02 64.20 10.02 56.22 10.02 56.96 10.02 58.16 10.02 62.58 10.02 52.16 10.02 59.87 10.02 62.90 10.02 56.81 10.02
Falcon 90.88 5.00 92.68 5.00 92.35 5.00 90.02 5.00 93.10 5.00 93.98 5.00 93.82 5.00 93.17 5.00 90.05 5.00 89.40 5.00

CelebA

BEYOND [39] 70.45 5.00 69.85 5.00 68.50 5.00 64.75 5.00 71.70 5.00 72.10 5.00 66.45 5.00 71.48 5.00 72.50 5.00 63.90 5.00
A2D [38] 64.95 5.00 64.50 5.00 63.00 5.00 66.10 5.00 66.25 5.00 62.00 5.00 68.00 5.00 64.29 5.00 62.00 5.00 60.05 5.00
CNet [15] 68.85 5.00 69.00 5.00 66.78 5.00 66.25 5.00 86.65 5.00 87.65 5.00 75.00 5.00 86.82 5.00 68.48 5.00 64.10 5.00
MIAED [18] 64.40 10.45 66.50 10.45 63.20 10.45 64.25 10.45 78.40 10.45 78.85 10.45 70.00 10.45 77.25 10.45 66.00 10.45 64.20 10.45
FS [21] 41.75 5.00 42.50 5.00 40.50 5.00 39.90 5.00 52.25 5.00 47.20 5.00 45.50 5.00 48.91 5.00 42.06 5.00 39.74 5.00
MagNet [20] 56.25 5.00 58.50 5.00 54.00 5.00 49.95 5.00 67.45 5.00 68.90 5.00 58.80 5.00 66.34 5.00 55.05 5.00 49.58 5.00
RS [24] 68.00 24.00 70.00 24.00 66.00 24.00 67.00 24.00 65.00 24.00 70.00 24.00 60.00 24.00 66.00 24.00 69.00 24.00 62.00 24.00
Falcon 89.50 5.00 89.80 5.00 91.00 5.00 90.00 5.00 92.50 5.00 98.00 5.00 91.00 5.00 93.00 5.00 90.80 5.00 88.75 5.00

and has 1,000 classes of images which are re-scaled to the
size of 256×256×3. Following the settings in previous studies
[15], [18], we utilize a subset consisting of 10 random classes,
which includes 5,000 training images and 1,000 testing images
for each class from ImageNet-1000 as ImageNet-10. For the
CelebA dataset, we select a subset including 100 different
identification randomly. According to previous work [51], we
choose 400 training images and 100 testing images for each
identification. Commercial DNN services are generally used
for high-resolution images [4], [5], thus we focus on evaluating
Falcon’s performance on ImageNet and CelebA datasets.

Target Models. For each dataset, we select ResNet50 [3] and
DenseNet169 [63] as target models that are widely used in ex-
isting studies [15], [18], [16]. On CIFAR-10, we use ResNet50
[3] and DenseNet169 [63] with the same architectures and
pre-trained weights as in previous work [15]. For ImageNet,
we follow prior works [64] and utilize models implemented
with pre-trained weights from a HuggingFace repository [65].
Additionally, we train target models on ImageNet-10 and
CelebA datasets. The summary of datasets and target models
is presented in Table II.

Attacks. Based on the threat model in Sec. III-B, we evaluate
the performance of Falcon when detecting static attacks and
adaptive attacks. For static attacks, we select ten typical attacks
including VNIFGSM [40], HJSA [47], Hybrid [59], DSA [8],
PGD [7], CW [30], AutoAttack [25], SSAE [31], Kenneth [32]
and AT-UAP [33]. For adaptive attacks, we design three
strategies based on SOTA attacks DSA, PGD and CW. More

details will be presented in Sec. VI-E.

Metrics. The performance of Falcon focuses on two key
metrics: the detection rate of adversarial examples and the
false positive rate on clean examples. Thus we use two widely
adopted metrics in our evaluation: True Positive Rate (TPR)
and False Positive Rate (FPR) [66], [15]. The TPR indicates the
fraction of adversarial examples correctly detected, while the
FPR reflects the fraction of clean examples incorrectly flagged
as adversarial. A lower FPR results in a lower TPR. Thus,
there is a trade-off between TPR and FPR. Following previous
works [20], [15], we report TPR when fixing FPR as 5%.

Baselines. Six SOTA detections without dependency on full
knowledge of the target model serve as baselines, including
BEYOND [39], CNet [15], MIAED [18], FS [21], Mag-
Net [20], and RS [24]. For a more comprehensive comparison,
we also include A2D, which requires dependency on the target
model. The parameters of baselines are all set to their default
values to guarantee its performance. RS is originally designed
to directly defend adversarial perturbations and ensure correct
classification. Here, we adopt them for detection by examining
whether the predicted label of an adversarial example changes
for the detection task.

B. Experiments in Detecting Static Attacks

In this subsection, we conduct experiments to evaluate
the accuracy of Falcon in detecting static attacks across four
datasets, using ResNet50 as the target model. Since the pertur-

9



TABLE IV: TPR (%) and FPR (%) for detecting untargeted static attacks under ResNet50 and DenseNet169. In this scenario
the detector can only get a subset of all potential output labels.

Target Model Detections VNI[40] HJSA[47] Hybrid[59] DSA[8] PGD[7] CW[30] AA[25] SSAE[31] Kenneth[32] AT-UAP[33]
TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓

ResNet50

FS [21] 26.45 5.00 26.88 5.00 25.90 5.00 25.20 5.00 23.40 5.00 23.58 5.00 20.15 5.00 25.17 5.00 20.26 5.00 18.45 5.00
MagNet [20] 33.62 5.00 33.17 5.00 32.88 5.00 33.50 5.00 34.70 5.00 34.35 5.00 31.20 5.00 34.82 5.00 33.97 5.00 34.06 5.00
RS [24] 57.16 10.02 64.20 10.02 56.22 10.02 56.96 10.02 58.16 10.02 62.58 10.02 52.16 10.02 58.15 10.02 57.46 10.02 56.11 10.02
Falcon 83.50 5.00 83.68 5.00 83.40 5.00 81.90 5.00 82.34 5.00 81.97 5.00 80.50 5.00 84.72 5.00 82.05 5.00 81.13 5.00

DenseNet169

FS [21] 27.69 5.00 27.84 5.00 26.44 5.00 24.50 5.00 24.33 5.00 24.10 5.00 23.58 5.00 26.42 5.00 25.69 5.00 23.88 5.00
MagNet [20] 34.28 5.00 34.10 5.00 34.66 5.00 33.28 5.00 35.19 5.00 34.87 5.00 32.48 5.00 35.46 5.00 35.68 5.00 33.94 5.00
RS [24] 59.22 11.30 64.76 11.30 56.60 11.30 57.35 11.30 58.44 11.30 62.58 11.30 52.16 11.30 58.67 11.30 58.00 11.30 56.40 11.30
Falcon 84.46 5.00 85.10 5.00 83.64 5.00 82.34 5.00 84.03 5.00 83.60 5.00 81.63 5.00 84.06 5.00 86.34 5.00 82.16 5.00

TABLE V: Summary of Detection Overhead.

Detections Query
Magnitude

Detection Time Overhead(s)
Scenario#1 Scenario#2
ResNet50 ResNet50 Baidu

CNet [15] 1 0.22 0.24 1.50
MIAED [18] 1 0.15 0.17 1.52
FS [21] 4 0.01 0.03 2.80
MagNet [20] 2 0.18 0.21 1.40
RS [24] 1.E+3 4.00 4.90 700
Falcon 2 0.20 0.22 1.60

bation in untargeted attacks is typically easier to generate with
a small budget and more challenging to detect [8], we focus on
detecting untargeted attacks in our experiments. We select 10
typical attacks in Sec. VI-A to generate adversarial examples
for each clean example. The detector may only get a subset of
output labels to construct shadow dataset. Thus, we conduct
experiments under two scenarios mentioned in Sec. III-B.

Scenario#1. For each dataset, we randomly select 50% of the
training images from each label and divide them equally into
two parts: one for training the target model and the other for
training Falcon. Note that Falcon determines the threshold for
adversarial example detection using only clean examples. As
a result, its FPR is independent of the attack strategies and
remains the same detecting different attacks. This property also
holds for A2D, BEYOND, CNet, FS and MagNet. MIAED
and RS achieve detection through judging whether output label
changes. This decision is binary and threshold-free, resulting
in a fixed FPR that cannot be tuned to 5%.

As summarized in Table III, Falcon achieves the highest
TPR and the lowest FPR across four datasets when detect-
ing ten attacks, outperforming compared baselines. Falcon
achieves the best accuracy on ImageNet-10, with a TPR
of over 94% when fixing FPR as 5%. Falcon achieves the
maximum improvement in detecting SOTA attacks DSA and
AutoAttack. When detecting DSA on ImageNet-1000, the
TPR of Falcon is higher than that of BEYOND, A2D, CNet,
MIAED, FS, MagNet, and RS by 22.44%, 23.00%, 23.30%,
21.89%, 72.57%, 59.74%, 30.06%, respectively.

The performance of BEYOND, CNet and MIAED signifi-
cantly declines on dataset containing images of more labels
(e.g., ImageNet-1000). This is because a larger number of
labels increases the complexity of the target model, making
it more difficult for the auxiliary model to match its behavior.
A2D leverages the difficulty of applying additional adversarial

attacks for detection. But the perturbation may shift the input
in arbitrary directions rather than along the minimal path to
the decision boundary, limiting the reliability of this approach.
The performance of FS, MagNet and RS declines on dataset
containing images of high resolution. Higher image resolution
introduces more detailed information, which may act as noise
and mislead the detection process of these methods.

Additionally, existing methods struggle to detect DSA
and AutoAttack effectively, as these attacks employ lower
perturbation budgets and leverage diverse generation strate-
gies. SSAE generates perturbations of low magnitude, thereby
limiting the effectiveness of methods like MagNet that partially
rely on pixel-level differences. AT-UAP generates universal
adversarial perturbations with robustness to common image
transformations (e.g., Gaussian noise, rotation), which reduces
the effectiveness of detection methods leveraging such trans-
formations for data augmentation (e.g., FS, RS, BEYOND).
Falcon maintains its performance against adversarial pertur-
bations generated by different mechanisms. This stems from
Falcon’s noise distribution generation module, which aims to
capture the distribution of adversarial noise. Building on this,
Falcon further designs the noise intensity to form constructive
noise that counteracts these perturbations.

Scenario#2. In this scenario, the detector can only get a
subset of output labels to construct shadow dataset. We use the
training images from ImageNet-1000 to train the target model
and the training images from ImageNet-10 to train Falcon.
The testing images of ImageNet-1000 serve as clean examples,
from which adversarial examples are generated using the
attacks described in Sec. VI-A. Considering that CNet and
MIAED completely fail when handling images whose labels
are not covered by ImageNet-10, we choose FS, MagNet and
RS as baselines to compare.

As summarized in Table IV, Falcon achieves a TPR of
more than 80%, while maintaining a fixed FPR of 5%. In
contrast, the TPR of MagNet and FS experiences a decline of
over 20%, highlighting their sensitivity to unseen labels. Since
these methods rely on patterns learned from labels in training
data, they struggle to generalize to inputs from unseen labels,
resulting in reduced detection accuracy. In contrast, Falcon
leverages the property that adversarial examples tend to lie
closer to the decision boundary. Moreover, adversarial per-
turbations commonly manifest as high-frequency components
across datasets of various labels. Falcon generates constructive
noise that selectively captures the distribution of these high-
frequency components, while preserving features essential for

10



TABLE VI: TPR (%) and FPR (%) for detecting attacks on commercial DNN services.

Commercial DNN Services Baidu [26] Tencent [27] AWS [4] Azure [5] Alibaba [29] Google [28]
Attacks Detections TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

VNIFGSM

FS [21] 26.00 5.00 25.00 5.00 29.00 5.00 22.00 5.00 28.00 5.00 24.00 5.00
MagNet [20] 33.00 5.00 31.00 5.00 28.00 5.00 32.00 5.00 31.00 5.00 29.00 5.00
RS [24] 73.00 13.00 71.00 12.00 68.00 12.00 70.00 13.00 66.00 12.00 69.00 11.00
Falcon 96.00▲23.00 5.00 90.00▲19.00 5.00 85.00▲17.00 5.00 86.00▲16.00 5.00 90.00▲24.00 5.00 88.00▲19.00 5.00

HJSA

FS [21] 46.00 5.00 48.00 5.00 44.00 5.00 47.00 5.00 46.00 5.00 47.00 5.00
MagNet [20] 58.00 5.00 59.00 5.00 60.00 5.00 57.00 5.00 56.00 5.00 59.00 5.00
RS [24] 76.00 13.00 72.00 12.00 71.00 12.00 73.00 13.00 72.00 15.00 73.00 14.00
Falcon 96.00▲20.00 5.00 91.00▲19.00 5.00 86.00▲15.00 5.00 87.00▲14.00 5.00 89.00▲17.00 5.00 90.00▲17.00 5.00

Hybrid

FS [21] 19.00 5.00 22.00 5.00 26.00 5.00 21.00 5.00 18.00 5.00 20.00 5.00
MagNet [20] 29.00 5.00 28.00 5.00 24.00 5.00 31.00 5.00 26.00 5.00 31.00 5.00
RS [24] 71.00 13.00 69.00 12.00 64.00 12.00 66.00 13.00 67.00 14.00 71.00 11.00
Falcon 95.00▲24.00 5.00 87.00▲18.00 5.00 79.00▲15.00 5.00 79.00▲13.00 5.00 86.00▲19.00 5.00 88.00▲17.00 5.00

DSA

FS [21] 9.00 5.00 11.00 5.00 13.00 5.00 6.00 5.00 6.00 5.00 8.00 5.00
MagNet [20] 16.00 5.00 7.00 5.00 17.00 5.00 9.00 5.00 8.00 5.00 11.00 5.00
RS [24] 68.00 13.00 65.00 12.00 59.00 12.00 63.00 13.00 64.00 14.00 65.00 13.00
Falcon 94.00▲26.00 5.00 86.00▲21.00 5.00 79.00▲20.00 5.00 78.00▲15.00 5.00 87.00▲23.00 5.00 85.00▲20.00 5.00

correct classification. This design allows Falcon to maintain
robust accuracy for inputs from unseen labels.

C. Detection Overhead

When adversarial example detection is deployed for usage,
the inference time will impact its practicality. We define
detection overhead in terms of two aspects: query magnitude
(i.e., the number of queries to the target model) and the
detection time overhead (i.e., the time required to determine
whether a submitted input is adversarial).

Table V summarizes the detection overhead of Falcon
compared to the baselines under various scenarios. Falcon
completes detection within approximately 0.2 seconds, re-
quiring only two queries to the target model. The detection
time overhead of Falcon is large when serving detection for
Baidu. This stems from the high communication overhead of
visiting cloud services. However, by deploying Falcon as an
integrated system alongside commercial DNN services, the
communication overhead between the detector and the model
can be significantly minimized [67]. Although RS achieves a
TPR of over 60% when serving detection for commercial DNN
services, it requires a large number of queries to the target
model, resulting in significant time consumption and limiting
its applicability in practice.

D. Experiments on Commercial DNN Services

In this subsection, we conduct experiments to evaluate the
accuracy of Falcon when serving detection for commercial
DNN services. We choose six well-known commercial DNN
services, namely Baidu [26], Tencent [27], AWS [4], Azure [5],
Alibaba [29] and Google [28] as the target model, which are
widely used in the real world [68], [8]. Query results returned
by the APIs consist of labels with confidence scores. Referring
to the settings of the previous research [8], We randomly
select 100 test images from ImageNet [61], excluding those
belonging to ImageNet-1000 labels, to serve as clean examples.
Given that the adversary cannot have access to details of these
services, we select VNIFGSM, HJSA, Hybrid and DSA to
generate adversarial examples, respectively. Falcon is trained
on ImageNet-1000 in advance. In addition, the detector cannot
get full label set of these services. As this setting aligns with

Scenario#2 mentioned in Sec. VI-B, we consider only FS,
MagNet, and RS for comparison.

As summarized in Table VI, Falcon obtains a maximum
TPR of 96% when fixing FPR as 5%. Compared to other
methods, Falcon achieves an improvement of over 13% while
maintaining a lower FPR, which indicates that Falcon can serve
accurate detection for existing commercial DNN services.
Since Falcon relies exclusively on the predicted labels and
confidence scores provided by commercial DNN APIs, it can
maintain its performance across different platforms.

E. Experiments in Detecting Adaptive Attacks

In this subsection, we evaluate the accuracy of Falcon when
detecting more powerful attacks. We assume that the adversary
can obtain full knowledge of the target model and Falcon to
conduct adaptive attacks. First, we give a detailed adaptive
object loss function design to best utilize the knowledge of
Falcon. Then, we design three different strategies and apply
them to three well-konwn attacks: DSA, PGD and CW. We
choose ResNet50 as the target model and use testing images in
Sec. VI-A. For attacks based on DSA, we set the query budget
as 200 and use its default values [8]. For attacks based on PGD,
we set iteration steps as 40 and l∞ constraint (l∞ = 8.0/255
for all datasets). For attacks based on CW, we set optimization
steps as 100 and l2 constraint (l2 = 1.0 for CIFAR-10 and
l2 = 16.0 for other datasets).

Customizable Adaptive Objective Loss Function. Successful
adaptive attacks seek to achieve two objectives: bypassing
Falcon’s detection mechanism and misleading the target model.
For the first goal of evading Falcon, it is unnecessary to
consider every component of the detection loss. A highly
complex objective loss function could hinder optimization,
making the attack less effective. Instead, the adversary focuses
on the most exploitable weaknesses in the detection process
of Falcon [15]. For the second goal of misleading the target
model, the classification loss is the key to deceiving the target
model. Thus, the adversary must consider this loss.

The design details of customizable adaptive objective loss
function are presented in Appendix C. Then, we introduce
three strategies of adaptive attacks.

11



TABLE VII: TPR (%) and FPR (%) for detecting Adaptive Attacks (Target Model: ResNet50).

Scenarios Datasets
Adaptive DSA Adaptive PGD Adaptive CW

Strategy#1 Strategy#2 Strategy#1 Strategy#2 Strategy#3 Strategy#1 Strategy#2
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Scenario#1

CIFAR-10 87.44 5.00 81.20 5.00 90.46 5.00 66.49 5.00 68.76 5.00 89.96 5.00 70.80 5.00
ImageNet-10 93.50 5.00 87.99 5.00 98.40 5.00 68.75 5.00 69.88 5.00 98.52 5.00 69.99 5.00
ImageNet-1000 88.54 5.00 82.39 5.00 92.54 5.00 60.50 5.00 63.98 5.00 92.76 5.00 63.78 5.00
CelebA 88.00 5.00 79.60 5.00 90.10 5.00 61.17 5.00 62.50 5.00 97.80 5.00 64.00 5.00

Scenario#2 ImageNet-1000 80.20 5.00 75.48 5.00 81.10 5.00 52.85 5.00 51.93 5.00 80.05 5.00 51.71 5.00

TABLE VIII: TPR(%) and FPR(%) for detecting Orthogonal-
PGD attacks.

Detections
Scenario#1 Scenario#2

Orth Select Orth Select
TPR FPR TPR FPR TPR FPR TPR FPR

CNet[15] 47.85 5.00 48.66 5.00 N/A N/A N/A N/A
MIAED[18] 10.05 5.00 9.88 5.00 N/A N/A N/A N/A
FS[21] 0.14 5.00 0.08 5.00 0.12 5.00 0.14 5.00
MagNet[20] 1.26 5.00 1.38 5.00 1.18 5.00 1.05 5.00
RS[24] 58.06 10.12 58.06 10.12 57.48 10.85 57.61 10.85
Falcon 64.35 5.00 63.98 5.00 67.84 10.00 67.59 10.00

Strategy#1. Existence of constructive noise in Sec. IV-A is
based on minimizing perturbations on regions critical for cor-
rect classification. Therefore, we constrain the distribution of
adversarial noise to design adaptive attacks, ensuring it blends
with these important regions. We identify these critical regions
using CAM, as described in Sec. IV-A. Only adversarial noise
on these regions are optimized.

Strategy#2. The aim of adaptive attacks is to evade Falcon
while misleading the target model. Therefore, we balance
classification loss and customizable adaptive loss function
to achieve these two goals respectively in the process of
optimizing adversarial noise. More details of adaptive attacks
with Strategy#2 are presented in Appendix C.

Strategy#3. We employ a rising adaptive attack benchmark Or-
thogonal Projected Gradient Descent (Orthogonal-PGD [46])
which focuses on breaking detection-based methods, further
evaluating the robustness of Falcon. There are two attack
strategies in Orthogonal-PGD, Selective strategy(Select) and
Orthogonal strategy (Orth).

First, we evaluate the accuracy of Falcon when detecting
attacks using three different strategies. As shown in Table VII,
Falcon can maintain a TPR of over 50% when fixing FPR as
5% when detecting these attacks. The TPR of Falcon changes
slightly compared to relative static attacks (maximum 1.5%)
when the adversary uses Strategy#1, indicating that generated
constructive noise can still defeat adversarial noise that is
added on critical regions. When the adversary uses Strategy#2
and Strategy#3 to conduct adaptive attacks, Falcon maintains
a TPR of over 64% in Scenario#1 and 50% in Scenario#2.

Then we further evaluate the robustness of Falcon using
Orthogonal-PGD benchmark. The accuracy of Falcon and
baselines is summarized in Table VIII. Falcon can maintain
a TPR of over 50% while baselines almost fail completely.
Although CNet can achieve a TPR of about 50%, it rely on
prior knowledge of full set of output labels. CNet will fail
completely under Scenario#2. RS maintains a TPR of over

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC and AUC of Falcon

8.0/255 (AUC: 0.914)
16.0/255 (AUC: 0.902)
25.0/255 (AUC: 0.900)
75.0/255 (AUC: 0.875)

(a) Strategy#2

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC and AUC of Falcon

8.0/255 (AUC: 0.922)
16.0/255 (AUC: 0.921)
25.0/255 (AUC: 0.912)
75.0/255 (AUC: 0.880)

(b) Strategy#3

Fig. 7: ROC and AUC of Falcon. ROCs are generated under
various adaptive PGD attacks based on Strategy#2 and Strat-
egy#3 with different perturbation budgets.

50%. However, it requires a large number of queries to the
target model, resulting in significant time consumption. The
robustness of Falcon against adaptive attacks stems from its
ability to generate input-specific noise distributions and inten-
sities to form constructive noise, enabling it to dynamically
capture the distribution of adversarial noise to defeat it.

Finally, we investigate the accuracy of Falcon changes
when the perturbation budget is large. Based on the previous
works [52], [15], we set various perturbation budgets l∞
including 8.0/255, 16.0/255, 25.0/255 and 75.0/255. As shown
in Fig. 7, the TPR of Falcon cannot change significantly when
the perturbation budget is large.

F. Sensitivity of Falcon to Different Training Datasets

In this subsection, we include sensitivity analysis to
changes in the distribution. To investigate the sensitivity of
Falcon, we conduct experiments across four datasets: CIFAR-
10, ImageNet-10, ImageNet-1000, and CelebA. We randomly
select 10,000 images from these datasets for clean examples
and choose SOTA attack AutoAttack to generate adversarial
examples, respectively. In each experiment, one dataset is used
as the training dataset, and the trained Falcon is then evaluated
on all four datasets to measure its sensitivity to distributional
changes. We use TPR as the metric when fixing FPR as 0.05.

The confusion matrix in Fig. 8 shows that Falcon maintains
a TPR of at least 0.59 across all training–testing combinations
among CIFAR-10, ImageNet-10, and ImageNet-1000. This
is because all three datasets focus on image classification
and share overlapping object categories and visual patterns.
Specifically, Falcon trained on ImageNet-1000 achieves a TPR
of 0.84 on CIFAR-10. In contrast, Falcon trained on CIFAR-
10 only maintains a TPR of 0.59 on ImageNet-1000. This
results from the low resolution and limited class categories of

12



CIFAR-10 ImageNet-10 ImageNet-1000 CelebA
Testing Dataset

CIFAR-10

ImageNet-10

ImageNet-1000

CelebATr
ai

ni
ng

 D
at

as
et 0.85 0.72 0.59 0.06

0.86 0.95 0.82 0.09

0.84 0.94 0.94 0.34

0.10 0.16 0.07 0.91
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8: The TPR of Falcon when training dataset and testing
dataset are randomly chosen from four datasets (i.e., CIFAR-
10, ImageNet-10, ImageNet-1000, CelebA).

CIFAR-10, which limits Falcon’s noise distribution generation
module in capturing the distribution of adversarial noise,
resulting in decreased performance. Falcon trained on CIFAR-
10, ImageNet-10, or ImageNet-1000 exhibits a sharp decline
in TPR, with values below 0.1 when evaluated on CelebA.
Similarly, Falcon trained on CelebA achieves a TPR below 0.1
when evaluated on the other three datasets. This performance
drop is due to the lack of overlap in both visual content and
label categories between the face recognition dataset and the
image classification datasets. A notable exception is Falcon
trained on ImageNet-1000, which maintains a higher TPR of
0.31 on CelebA due to the presence of a subset of human face
images within ImageNet-1000.

G. Ablation Study

In this section, we conduct a comprehensive ablation
study to investigate important components of Falcon, i.e.,
noise distribution generation, noise intensity generation, and
adversarial example detection as well as their corresponding
contributions. We generate different variants by changing the
settings of each component. For each component removal, we
perform the following: 1) Substitute methods to generate noise
distribution; 2) Add the generated noise distribution with fixed
noise intensity; 3) Use only label without confidence score to
achieve adversarial example detection.

First, we find that removing any component of Falcon
results in a decrease in the TPR of adversarial examples and an
increase in the FPR of clean examples, as shown in Table IX.
For instance, Falcon without Noise Distribution Generation
uses Gaussian noise directly, only achieving a TPR of about
52%. Considering that the core component of noise distribution
is extracting key structure of image. We adopt existing methods
that can extract the mentioned structure including UNet, low-
pass filter and 2D gradient extraction. However, these methods
only achieve a TPR of less than 65% when fixing FPR as 5%.

Second, the Noise Intensity Generation module plays a
critical role in Falcon. The appropriate intensity varies for
different inputs. Therefore, if we add the generated noise
distribution directly for all inputs, the intensity may be lower to
break some adversarial noise while larger to cause false alarms
for some clean examples. The TPR increases by a maximal
15.50% by designing an appropriate intensity for each input.

Third, some adversarial attacks generate adversarial exam-
ples with high confidence scores (e.g., 99%). Adding generated

TABLE IX: The contribution of each module in Falcon (%).

Modules Variations DSA [8] AutoAttack [25]
TPR FPR TPR FPR

Falcon Full 90.02 5.00 93.82 5.00

Noise Distribution

Gaussian Noise 51.08 5.00 47.82 5.00
2D Gradients 53.50 5.00 51.88 5.00
Upscaling and Downscaling 60.87 5.00 61.22 5.00
High-pass Filter 57.41 5.00 56.71 5.00

Noise Intensity

Fixed Value (σ=0.5) 76.58 5.00 75.44 5.00
Fixed Value (σ=1.0) 84.68 5.00 83.25 5.00
Fixed Value (σ=1.5) 84.19 5.00 83.76 5.00
Fixed Value (σ=2.0) 74.52 5.00 74.05 5.00

Detection w/o Confience Scores 87.25 5.28 88.70 5.28

noise in Falcon to these examples does not alter their labels but
significantly reduces their confidence scores. Relying solely
on labels for adversarial example detection results in approx-
imately about 3% decrease in TPR.

VII. DISCUSSION

Training Dataset. Falcon depends on the models in the noise
distribution generation and noise intensity generation modules
for detection, which are trained on clean examples. Using
more clean examples in the training process helps improve the
effectiveness of generated noise, thereby enhancing Falcon’s
performance further.

Ethical Consideration. All experiments conducted on com-
mercial DNN services were strictly limited to our controlled
research environment and were neither disclosed nor shared
externally, thereby avoiding any potential risk to the platforms
involved. Moreover, we select examples from the publicly
available dataset, ensuring that no personal privacy or pro-
prietary commercial information was compromised. We have
informed all relevant companies of the potential vulnerability
via official reporting channels or direct email communications.
To date, we have received confirmation from AWS and Baidu.

VIII. CONCLUSION

In this paper, we proposed Falcon, an adversarial example
detection achieving accuracy and cost efficiency simultane-
ously by leveraging constructive noise to defeat adversarial
noise. Falcon leveraged the different noise tolerances of clean
and adversarial examples by designing specific noise distribu-
tions and intensities to generate constructive noise. For each
input, Falcon performed detection based on the differences in
the target model’s outputs before and after adding constructive
noise. In multiple scenarios and datasets, Falcon achieved
better performance than the SOTA methods with the same
threat model and had a significant performance improvement
when serving detection for several commercial DNN services.

In the future, we will investigate techniques to improve
Falcon’s detection performance when the detector can only
obtain predicted labels via APIs, which represents a more
challenging scenario. In addition, we plan to explore its
applicability in broader domains, such as text classification
and image segmentation, where adversarial threats also pose
significant challenges.

13



ACKNOWLEDGMENTS

This work is partially supported by National Key R&D
Program of China with No. 2023YFB2703800, NSFC Projects
with Nos. U23A20304 and 62222201, and Beijing Natural
Science Foundation with No. M23020.

AVAILABILITY

Implementations and data for reproducing our results are
available at https://github.com/JiangYuanB/Falcon.

REFERENCES

[1] N. Abudarham, L. Shkiller, and G. Yovel, “Critical features for face
recognition,” Cognition, vol. 182, pp. 73–83, 2019.

[2] P. Nagrath, R. Jain, A. Madan, R. Arora, P. Kataria, and J. Hemanth,
“Ssdmnv2: A real time dnn-based face mask detection system using
single shot multibox detector and mobilenetv2,” Sustainable cities and
society, vol. 66, p. 102692, 2021.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR. IEEE Computer Society, 2016, pp. 770–
778.

[4] Amazon, “Aws,” https://aws.amazon.com/cn/rekognition/, 2024, ac-
cessed 19 March 2024.

[5] Microsoft, “Azure,” https://azure.microsoft.com/en-us/products/
cognitive-services/vision-services/, 2024, accessed 19 March 2024.

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[7] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

[8] M. Shen, C. Li, Q. Li, H. Lu, L. Zhu, and K. Xu, “Transferability
of white-box perturbations: Query-efficient adversarial attacks against
commercial DNN services,” in USENIX Security 2024, Philadelphia,
PA, USA, August 14-16, 2024, D. Balzarotti and W. Xu, Eds. USENIX
Association, 2024.

[9] M. Shen, H. Yu, L. Zhu, K. Xu, Q. Li, and J. Hu, “Effective and robust
physical-world attacks on deep learning face recognition systems,” IEEE
Transactions on Information Forensics and Security, vol. 16, pp. 4063–
4077, 2021.

[10] S. Peng, Y. Chen, J. Xu, Z. Chen, C. Wang, and X. Jia, “Intellectual
property protection of dnn models,” World Wide Web, vol. 26, no. 4,
pp. 1877–1911, 2023.

[11] B. Zheng, P. Jiang, Q. Wang, Q. Li, C. Shen, C. Wang, Y. Ge, Q. Teng,
and S. Zhang, “Black-box adversarial attacks on commercial speech
platforms with minimal information,” in Proceedings of the 2021 ACM
SIGSAC conference on computer and communications security, 2021,
pp. 86–107.

[12] Y. Dong, X. Yang, Z. Deng, T. Pang, Z. Xiao, H. Su, and J. Zhu,
“Black-box detection of backdoor attacks with limited information and
data,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 16 482–16 491.

[13] Y. Xin, Z. Li, N. Yu, D. Chen, M. Fritz, M. Backes, and Y. Zhang,
“Inside the black box: Detecting data leakage in pre-trained language
encoders,” in ECAI 2024, pp. 3947–3955.

[14] B. Yi, T. Huang, S. Chen, T. Li, Z. Liu, Z. Chu, and Y. Li, “Probe before
you talk: Towards black-box defense against backdoor unalignment for
large language models,” in The Thirteenth International Conference on
Learning Representations, 2025.

[15] Y. Yang, R. Gao, Y. Li, Q. Lai, and Q. Xu, “What you see is not what
the network infers: Detecting adversarial examples based on semantic
contradiction,” in 29th Annual Network and Distributed System Security
Symposium, NDSS 2022, San Diego, California, USA, April 24-28,
2022.

[16] S. Zhang, S. Chen, C. Hua, Z. Li, Y. Li, X. Liu, K. Chen, Z. Li,
and W. Wang, “LSD: adversarial examples detection based on label
sequences discrepancy,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp.
5133–5147, 2023.

[17] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. N. R. Wijewickrema,
G. Schoenebeck, D. Song, M. E. Houle, and J. Bailey, “Characterizing
adversarial subspaces using local intrinsic dimensionality,” in ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018.

[18] S. Gao, R. Wang, X. Wang, S. Yu, Y. Dong, S. Yao, and W. Zhou,
“Detecting adversarial examples on deep neural networks with mutual
information neural estimation,” IEEE Trans. Dependable Secur. Com-
put., vol. 20, no. 6, pp. 5168–5181, 2023.

[19] P. Yang, J. Chen, C. Hsieh, J. Wang, and M. I. Jordan, “ML-LOO:
detecting adversarial examples with feature attribution,” in AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, 2020, pp. 6639–6647.

[20] D. Meng and H. Chen, “Magnet: A two-pronged defense against
adversarial examples,” in CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, B. Thuraisingham, D. Evans, T. Malkin, and D. Xu,
Eds. ACM, 2017, pp. 135–147.

[21] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in NDSS 2018, San Diego, Cali-
fornia, USA, February 18-21, 2018.

[22] H. Li, S. Shan, E. Wenger, J. Zhang, H. Zheng, and B. Y. Zhao,
“Blacklight: Scalable defense for neural networks against query-based
black-box attacks,” in USENIX Security 2022, Boston, MA, USA, August
10-12, 2022, K. R. B. Butler and K. Thomas, Eds. USENIX
Association, 2022, pp. 2117–2134.

[23] S. Chen, N. Carlini, and D. Wagner, “Stateful detection of black-
box adversarial attacks,” in Proceedings of the 1st ACM Workshop on
Security and Privacy on Artificial Intelligence, 2020, pp. 30–39.

[24] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in international conference on machine
learning. PMLR, 2019, pp. 1310–1320.

[25] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks,” in ICML 2020,
13-18 July 2020, Virtual Event, ser. Proceedings of Machine Learning
Research, vol. 119. PMLR, 2020, pp. 2206–2216.

[26] Baidu, “Baidu ai,” https://ai.baidu.com/tech/imagerecogn-ition/general,
2024, accessed 19 March 2024.

[27] Tencent, “Tencent cloud,” https://cloud.tencent.com/product/
imagetagging, 2024, accessed 19 March 2024.

[28] Google, “Google vision cloud,” https://cloud.google.com/vision, 2025,
accessed 5 July 2025.

[29] Alibaba, “Alibaba cloud,” https://vision.console.aliyun.com, 2025, ac-
cessed 5 July 2025.

[30] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in SP 2017, San Jose, CA, USA, May 22-26, 2017.
IEEE Computer Society, 2017, pp. 39–57.

[31] S. Lu, Y. Xian, K. Yan, Y. Hu, X. Sun, X. Guo, F. Huang, and W. Zheng,
“Discriminator-free generative adversarial attack,” in MM ’21: ACM
Multimedia Conference, Virtual Event, China, October 20 - 24, 2021.
ACM, 2021, pp. 1544–1552.

[32] K. T. Co, L. Muñoz-González, S. de Maupeou, and E. C. Lupu,
“Procedural noise adversarial examples for black-box attacks on deep
convolutional networks,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019. ACM, 2019, pp. 275–289.

[33] M. Li, Y. Yang, K. Wei, X. Yang, and H. Huang, “Learning univer-
sal adversarial perturbation by adversarial example,” in Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022.
AAAI Press, 2022, pp. 1350–1358.

[34] M. Shen, Z. Liao, L. Zhu, K. Xu, and X. Du, “VLA: A practical visible
light-based attack on face recognition systems in physical world,” Proc.

14

https://github.com/JiangYuanB/Falcon
https://aws.amazon.com/cn/rekognition/
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services/
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services/
https://ai.baidu.com/tech/imagerecogn- ition/general
https://cloud.tencent.com/product/imagetagging
https://cloud.tencent.com/product/imagetagging
https://cloud.google.com/vision
https://vision.console.aliyun.com


ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 3, no. 3, pp.
103:1–103:19, 2019.

[35] W. Jia, Z. Lu, H. Zhang, Z. Liu, J. Wang, and G. Qu, “Fooling the
eyes of autonomous vehicles: Robust physical adversarial examples
against traffic sign recognition systems,” in 29th Annual Network
and Distributed System Security Symposium, NDSS 2022, San Diego,
California, USA, April 24-28, 2022. The Internet Society, 2022.

[36] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
patch,” in NeurIPS Workshops, 2017.

[37] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” CoRR, vol. abs/1703.00410, 2017.

[38] Z. Zhao, G. Chen, T. Liu, T. Li, F. Song, J. Wang, and J. Sun, “Attack
as detection: Using adversarial attack methods to detect abnormal ex-
amples,” ACM Transactions on Software Engineering and Methodology,
vol. 33, no. 3, pp. 1–45, 2024.

[39] Z. He, Y. Yang, P.-Y. Chen, Q. Xu, and T.-Y. Ho, “Be your own
neighborhood: Detecting adversarial examples by the neighborhood
relations built on self-supervised learning,” in Proceedings of the 41st
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 235. PMLR, 21–27 Jul 2024, pp.
18 063–18 080.

[40] X. Wang and K. He, “Enhancing the transferability of adversarial attacks
through variance tuning,” in CVPR 2021, virtual, June 19-25, 2021.
Computer Vision Foundation / IEEE, 2021, pp. 1924–1933.

[41] H. Salman, S. Jain, E. Wong, and A. Madry, “Certified patch robustness
via smoothed vision transformers,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2022, pp. 15 137–15 147.

[42] C. Xiang, S. Mahloujifar, and P. Mittal, “PatchCleanser: Certifiably
robust defense against adversarial patches for any image classifier,” in
31st USENIX Security Symposium (USENIX Security 22), Boston, MA,
2022, pp. 2065–2082.

[43] C. Xiang, T. Wu, S. Dai, J. Petit, S. Jana, and P. Mittal, “Patchcure: Im-
proving certifiable robustness, model utility, and computation efficiency
of adversarial patch defenses,” in 33rd USENIX Security Symposium
(USENIX Security), 2024.

[44] X. Yang, K. Zhou, Y. Lai, and G. Li, “Defense-as-a-service: Black-
box shielding against backdoored graph models,” arXiv preprint
arXiv:2410.04916, 2024.

[45] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. J. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” CoRR, vol. abs/1902.06705, 2019.

[46] O. Bryniarski, N. Hingun, P. Pachuca, V. Wang, and N. Carlini, “Evad-
ing adversarial example detection defenses with orthogonal projected
gradient descent,” in ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

[47] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack:
A query-efficient decision-based attack,” in 2020 ieee symposium on
security and privacy (sp). IEEE, 2020, pp. 1277–1294.

[48] M. Shen, C. Li, H. Yu, Q. Li, L. Zhu, and K. Xu, “Decision-based
query efficient adversarial attack via adaptive boundary learning,” IEEE
Transactions on Dependable and Secure Computing, vol. 21, no. 4, pp.
1740–1753, 2024.

[49] F. Wang, X. Zuo, H. Huang, and G. Chen, “ADBA: approximation
decision boundary approach for black-box adversarial attacks,” in AAAI-
25, Sponsored by the Association for the Advancement of Artificial
Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA.
AAAI Press, 2025, pp. 7628–7636.

[50] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh,
and D. Batra, “Grad-cam: Why did you say that?” arXiv preprint
arXiv:1611.07 450, 2016.

[51] X. Jia, X. Wei, X. Cao, and H. Foroosh, “Comdefend: An efficient
image compression model to defend adversarial examples,” in IEEE
CVPR. Computer Vision Foundation / IEEE, 2019, pp. 6084–6092.

[52] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-
resolution image synthesis,” in CVPR 2021, virtual, June 19-25, 2021.
Computer Vision Foundation / IEEE, 2021, pp. 12 873–12 883.

[53] C. Zheng, T. Vuong, J. Cai, and D. Phung, “Movq: Modulating
quantized vectors for high-fidelity image generation,” in NeurIPS 2022,

New Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022.

[54] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convo-
lutional sequence to sequence learning,” in ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, ser. Proceedings of Machine Learning
Research, D. Precup and Y. W. Teh, Eds., vol. 70. PMLR, 2017, pp.
1243–1252.

[55] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
gaussian denoiser: Residual learning of deep cnn for image denoising,”
IEEE transactions on image processing, vol. 26, no. 7, pp. 3142–3155,
2017.

[56] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep
convolutional encoder-decoder networks with symmetric skip connec-
tions,” Advances in neural information processing systems, vol. 29,
2016.

[57] M. Shen, K. Ji, Z. Gao, Q. Li, L. Zhu, and K. Xu, “Subverting
website fingerprinting defenses with robust traffic representation,” in
32nd USENIX Security Symposium (USENIX Security 23), Anaheim,
CA, 2023, pp. 607–624.

[58] A. Subramanian, E. Sizikova, N. Majaj, and D. Pelli, “Spatial-frequency
channels, shape bias, and adversarial robustness,” vol. 36, 2023, pp.
4137–4149.

[59] F. Suya, J. Chi, D. Evans, and Y. Tian, “Hybrid batch attacks: Finding
black-box adversarial examples with limited queries,” in 29th USENIX
security symposium (USENIX Security 20), 2020, pp. 1327–1344.

[60] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[61] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” Int. J.
Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[62] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in ICCV 2015, Santiago, Chile, December 7-13, 2015. IEEE
Computer Society, 2015, pp. 3730–3738.

[63] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017. IEEE Computer Society, 2017, pp. 2261–2269.

[64] S. Ma, Y. Liu, G. Tao, W. Lee, and X. Zhang, “NIC: detecting
adversarial samples with neural network invariant checking,” in NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet
Society, 2019.

[65] HuggingFace, “Hugging face,” https://huggingface.co/, 2023, accessed
10 January 2024.

[66] A. Aldahdooh, W. Hamidouche, S. A. Fezza, and O. Déforges, “Adver-
sarial example detection for dnn models: A review and experimental
comparison,” Artificial Intelligence Review, vol. 55, no. 6, pp. 4403–
4462, 2022.

[67] Y. L. Khaleel, M. A. Habeeb, A. Albahri, T. Al-Quraishi, O. Albahri,
and A. Alamoodi, “Network and cybersecurity applications of defense
in adversarial attacks: A state-of-the-art using machine learning and
deep learning methods,” Journal of Intelligent Systems, vol. 33, no. 1,
p. 20240153, 2024.

[68] Y. Mao, C. Fu, S. Wang, S. Ji, X. Zhang, Z. Liu, J. Zhou, A. X.
Liu, R. Beyah, and T. Wang, “Transfer attacks revisited: A large-
scale empirical study in real computer vision settings,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1423–1439.

[69] W. He, B. Li, and D. Song, “Decision boundary analysis of adversarial
examples,” in International Conference on Learning Representations,
2018.

[70] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in ICLR 2017, Toulon, France, April 24-26, 2017,
Workshop Track Proceedings. OpenReview.net, 2017.

[71] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp.
2574–2582.

[72] M. Shen, J. Wu, K. Ye, K. Xu, G. Xiong, and L. Zhu, “Robust
detection of malicious encrypted traffic via contrastive learning,” IEEE
Transactions on Information Forensics and Security, vol. 20, pp. 4228–
4242, 2025.

15

https://huggingface.co/


[73] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen,
M. Liu, and B. Li, “Invisible for both camera and lidar: Security
of multi-sensor fusion based perception in autonomous driving under
physical-world attacks,” in 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
2021, pp. 176–194.

APPENDIX

A. Theoretical Analysis

In this subsection, we give the formal definition of TG
and justify that the value of TG is larger than 0 under certain
constraints. These constraints motivate us to further design
modules to generate constructive noise.

Let f(·) be the target model and D(·) be the generated
noise distribution. Let d(·) be the minimal offset to the decision
boundary of the target model (i.e., the minimal perturbation to
change the output label of f(·)) [24]. For noise distribution
n ∈ D(x) generated from any input x, we can derive that:{

f(x) = f(x+ n) s.t. nd(x)
∥d(x)∥ < ∥d(x)∥,

f(x) ̸= f(x+ n) s.t. nd(x)
∥d(x)∥ > ∥d(x)∥.

(8)

Where nd(x)
∥d(x)∥ denotes the projection of the added noise n onto

the direction of the minimal perturbation d(x). If nd(x)
∥d(x)∥ >

∥d(x)∥, the noise n pushes x beyond the decision boundary,
resulting in a label change.

Then we analyze the maximum intensity σmax(x,D(x))
to add any noise distribution n ∈ D(x) to clean example x,
achieving that the predicted label of the target model will not
change after adding noise.

We can define σmax(x,D(x)) for any n ∈ D(x) as:

σmax(x,D(x))
nd(x)

∥d(x)∥
≤ ∥d(x)∥. (9)

For any adversarial example x+δ, we can define σmax(x+
δ,D(x+ δ)) for any n ∈ D(x+ δ) as:

σmax(x+ δ,D(x+ δ))
nd(x+ δ)

∥d(x+ δ)∥
≤ ∥d(x+ δ)∥ (10)

Then TG can be defined as:

TG = σmax(x,D(x))− σmax(x+ δ,D(x+ δ)). (11)

Theorem 1. Let P(·) refers to the probability of an event.
Assume that P(∥d(x)∥ > ∥d(x + δ)∥) > γ. Let D(·) be the
generated noise distribution. For any clean example x and its
any potential adversarial example x + δ, there always exists
P(TG > 0) > γ when max(D(x)d(x)

∥d(x)∥ ) < min(D(x+δ)d(x+δ)
∥d(x+δ)∥ ).

Theorem 1 indicates that minimizing D(x)d(x)
∥d(x)∥ while max-

imizing D(x+δ)d(x+δ)
∥d(x+δ)∥ facilitates achieving TG> 0. Based on

this insight, we can design a noise distribution that perturbs
regions critical for correct classification less, increasing di-
rectional discrepancy between D(x) and d(x) and making
D(x)d(x)
∥d(x)∥ less. In addition, the noise distribution is expected to

locate where adversarial noise is added, reducing directional
discrepancy between D(x + δ) and d(x + δ) and making

D(x+δ)d(x+δ)
∥d(x+δ)∥ larger. When guaranteeing TG>0, we can further

select proper noise intensity to generate constructive noise.

Then, we give the proof of Theorem 1 and further analyze
why Gaussian noise cannot balance detection performance and
low false positives at the same time.

Proof. [Proof of Theorem 1] Assume that P(d(x) > d(x +
δ)) > γ. For any clean example x and its any potential
adversarial example x + δ, if satisfying max(D(x)d(x)

∥d(x)∥ ) <

min(D(x+δ)d(x+δ)
∥d(x+δ)∥ ), then we can derive that the offset caused

by added noise distribution n from D(x + δ) is closer to the
direction of minimal offset to the decision boundary.

We leverage the examples’ distance to the decision bound-
ary as the basis for the proof of Theorem 1. D(·) is the
generated noise distribution and d(·) is the minimal offset to
the decision boundary (Eq. (2)). First, we define nc and na as

nc = argmax
n∈D(x)

(
nd(x)

∥d(x)∥

)
,

na = argmax
n∈D(x+δ)

(
nd(x+ δ)

∥d(x+ δ)∥

)
,

(12)

where nc and na represent noise distributions that induce the
largest offset toward the decision boundary (i.e., ncd(x)

∥d(x)∥ and
nad(x+δ)
∥d(x+δ)∥ ).

We can derive:

σmax(x,D(x)) =
∥d(x)∥2

ncd(x)
,

σmax(x+ δ,D(x+ δ)) =
∥d(x+ δ)∥2

nad(x+ δ)
.

(13)

D(x)d(x)
∥d(x)∥ and D(x+δ)d(x+δ)

∥d(x+δ)∥ represent all possible offsets
toward the decision boundary. Thus, we can obtain:

ncd(x)

∥d(x)∥
= max(

D(x)d(x)

∥d(x)∥
),

nad(x+ δ)

∥d(x+ δ)∥
= max(

D(x+ δ)d(x+ δ)

∥d(x+ δ)∥
).

(14)

If max(D(x)d(x)
∥d(x)∥ ) < min(D(x+δ)d(x+δ)

∥d(x+δ)∥ ) holds, we can have:

ncd(x)

∥d(x)∥
= max(

D(x)d(x)

∥d(x)∥
) < min(

D(x+ δ)d(x+ δ)

∥d(x+ δ)∥
) ≤

max(
D(x+ δ)d(x+ δ)

∥d(x+ δ)∥
) =

nad(x+ δ)

∥d(x+ δ)∥
.

(15)
Thus, max(D(x)d(x)

∥d(x)∥ ) < min(D(x+δ)d(x+δ)
∥d(x+δ)∥ ) implies ncd(x)

∥d(x)∥ <
nad(x+δ)
∥d(x+δ)∥ .

The value of TG depends on the projection toward the
decision boundary and the minimal offset to the decision
boundary. If P(ncd(x)

∥d(x)∥ < nad(x+δ)
∥d(x+δ)∥ ) = 1 holds, the value of

16



TABLE X: Detailed configurations of adversarial examples used in the evaluation. ASR refers to the rate of successful adversarial
examples in all generated adversarial examples.

Attack Type Attack Method Parameters Introduction Norm Type Dataset Parameters Settings ASR

Gradient-based PGD [7]
δ: perturbation budget
s: number of update
steps to iterate.

l∞

CIFAR-10 δ = 8.0/255, s = 40 98.24%
ImageNet-10 δ = 8.0/255, s = 40 99.40%
ImageNet-1000 δ = 8.0/255, s = 40 97.20%
CelebA δ = 8.0/255, s = 40 97.55%

Optimization-based CW [30]
k: confidence
s: binary search steps
m: attack iteration

l2

CIFAR-10 k = 1.0, s = 10,m = 100 97.81%
ImageNet-10 k = 1.0, s = 10,m = 100 98.53%
ImageNet-1000 k = 1.0, s = 10,m = 100 97.83%
CelebA k = 1.0, s = 10,m = 100 99.85%

Adaptive-based AutoAttack [25] δ: perturbation budget l∞

CIFAR-10 δ = 8.0/255 100.00%
ImageNet-10 δ = 8.0/255 100.00%
ImageNet-1000 δ = 8.0/255 100.00%
CelebA δ = 8.0/255 100.00%

Query-based HJSA [47] δ: perturbation budget
m: query magnitude l2

CIFAR-10 δ = 1.0,m = 100000 97.48%
ImageNet-10 δ = 16.0,m = 100000 97.87%
ImageNet-1000 δ = 16.0,m = 100000 96.83%
CelebA δ = 16.0,m = 100000 94.05%

Transfer-based VNIFGSM [40]
δ: perturbation budget
s: number of update
steps to perform.

l∞

CIFAR-10 δ = 8.0/255, s = 10 85.88%
ImageNet-10 δ = 8.0/255, s = 10 82.16%
ImageNet-1000 δ = 8.0/255, s = 10 69.91%
CelebA δ = 8.0/255, s = 10 77.50%

Hybrid-based

Hybrid [59] δ: perturbation budget
m: query magnitude l2

CIFAR-10 δ = 1.0,m = 1000 93.37%
ImageNet-10 δ = 16.0,m = 1000 96.20%
ImageNet-1000 δ = 16.0,m = 1000 91.78%
CelebA δ = 16.0,m = 1000 91.20%

DSA [8] δ: perturbation budget
m: query magnitude l2

CIFAR-10 δ = 1.0,m = 100 97.75%
ImageNet-10 δ = 16.0,m = 100 99.12%
ImageNet-1000 δ = 16.0,m = 100 98.56%
CelebA δ = 16.0,m = 100 99.60%

GAN-based SSAE [31] δ: perturbation budget l∞

CIFAR-10 δ = 8.0/255 95.14%
ImageNet-10 δ = 8.0/255 94.38%
ImageNet-1000 δ = 8.0/255 93.86%
CelebA δ = 8.0/255 93.88%

Universal

Kenneth [32] δ: perturbation budget l∞

CIFAR-10 δ = 8.0/255 88.28%
ImageNet-10 δ = 8.0/255 87.25%
ImageNet-1000 δ = 8.0/255 87.12%
CelebA δ = 8.0/255 86.15%

AT-UAP [33] δ: perturbation budget l∞

CIFAR-10 δ = 8.0/255 93.19%
ImageNet-10 δ = 8.0/255 94.42%
ImageNet-1000 δ = 8.0/255 93.50%
CelebA δ = 8.0/255 92.80%

P(TG > 0) can be presented as:

P(TG > 0)

= P(
∥d(x)∥2

ncd(x)
− ∥d(x+ δ)∥2

nad(x+ δ)
> 0)

= P(
nad(x+ δ)

∥d(x+ δ)∥
∥d(x)∥ >

ncd(x)

∥d(x)∥
∥d(x+ δ)∥)

> P(∥d(x)∥ > ∥d(x+ δ)∥)P(ncd(x)

∥d(x)∥
<

nad(x+ δ)

∥d(x+ δ)∥
)

= P(∥d(x)∥ > ∥d(x+ δ)∥)
= γ.

(16)

Thus, for any clean example x and its any potential adversarial
example x + δ, there always exists P(TG > 0) > γ when
max(D(x)d(x)

∥d(x)∥ ) < min(D(x+δ)d(x+δ)
∥d(x+δ)∥ ). □

To calculate the value of γ, we follow the distance es-
timation suggested in [69]. We estimate the distance to a
decision boundary in a example of random directions in the
input space of the target model, starting from a given input
point. In each direction, we estimate the distance to a decision
boundary by computing the predictions of the targeted model
on perturbed inputs at points along the direction and increase
the random directions by a magnitude factor (0.002) if the
predictions dose not change in any of directions. We perform
this search over a set of 1,000 random orthogonal directions.
We conduct experiments on CIFAR-10 and ImageNet-1000
using ResNet-50 as the target model and use AutoAttack to

generate adversarial examples. P(∥d(x)∥ > ∥d(x+δ)∥) is 96%
on CIFAR-10 and 95% on ImageNet-1000.

In addition, we we consider the case where d(∥x∥) <
d(∥x + δ∥) (i.e., extreme case where γ < 0) and analyze
its influence on TG. TG is determined by both the minimal
distance to the decision boundary and the statistical properties
of the generated noise distribution. If ∥d(x)∥2

ncd(x)
− ∥d(x+δ)∥2

nad(x+δ) > 0,
TG is still larger than 0.

Failure of Gaussian Noise. Based on the above analysis,
we can conclude that the added noise should make the offset
to cross the decision boundary for adversarial examples. For
Gaussian noise, the offset caused by it may align with any
direction due to its randomness. If added noise has the same
direction of adversarial noise, it is difficult to break adversarial
noise by added noise under low false positives.

B. Additional Details of Attack Settings

This section provides a detailed description of the attack
configurations for the static attacks mentioned in Sec. II-A. To
evaluate the detection performance for the static attacks, we
select 10 typical attacks, including VNIFGSM [40], DSA [8],
PGD [7], BIM [70], CW [30], DeepFool [71], AutoAttack [25],
SSAE [31], Kenneth [32] and AT-UAP [33]. The detailed
parameter settings for these attacks are summarized in Table X.
For iteration based attacks (e.g., PGD and BIM), we set step
size as 0.03 and iterations as 40. For optimized attacks (e.g.,

17



CW), we set confidence as 1.0 and optimization steps as 100.
Attack configurations are set following previous works [15],
[8]. For VNIFGSM [40], ResNet20 and VGG19 are chosen as
substitute models to leverage the transferability of adversarial
examples. For DSA [8], ResNet20 and VGG19 are chosen
as substitute models. The query times of the target model
are limited to no more than 1,000 times when conducting
attacks. For the perturbation budget of attacks, both l2 and
l∞ norms are used as metrics to constrain the perturbation
distance. For GAN-based attack SSAE and universal attacks
such as Kenneth and AT-UAP, we select l∞ as the constraint of
perturbation. Following the settings in previous works [8], the
perturbation budget δ is set to 1.75 for CIFAR-10 and 16.38
for ImageNet and CelebA under the l2 norm, and 8/255 for
all datasets under the l∞ norm.

C. Designs of Adaptive Attack

Based on the design details of Falcon, we can construct
loss function Ldet from three aspects to evade the detection.
Firstly, Falcon leverages the noise distribution that affects
critical regions less but locates adversarial noise. Thus, we
design loss function Ld to make generated noise distribution
locate adversarial noise less:

Ld = W (n, δ), (17)

where W (·) refers to the Wasserstein distance that evaluates
the differences between two noise distributions.

Secondly, the adversary can try to make generated noise
intensity closer to 0 to reduce the effect of constructive noise
on adversarial noise. Thus we design loss function Ls as:

Ls = σ, (18)

where σ is the generated noise intensity.

Finally, the adversary can consider generated noise distri-
bution and intensity together, just making sure that generated
constructive noise cannot defeat adversarial noise. We design
loss function Lt to reduce differences in confidence scores
after adding constructive noise:

Lt = CrossEntropy(C(x′), C(x′ + σ ∗ n)), (19)

where CrossEntropy(·) represents cross-entropy loss [72],
[52] between output confidence scores before and after noise
is added.

We define the final Ldet as:

Ldet = Ld + Ls + Lt, (20)

where Ld, Ls and Lt the above three components.

Then, we introduce more details of adaptive attacks based
on strategy #2. To conduct the adaptive attack based on DSA,
we design the loss function as:

LDSA = LT + Ldet, (21)

where the LT is the same as the original DSA to fool the
target model [7] and Ldet will try to evade Falcon. Note that
LT includes no details of the target model.

To conduct the adaptive attack based on PGD, we design
the loss function as:

LPGD = Lclassifier + Ldet, (22)

(a) Visualization of successfully
generated adversarial examples us-
ing the adversarial patch attack
with varying patch sizes, corre-
sponding to 0.06, 0.08, and 0.1
of the image area. These perturba-
tions are obvious for human eyes.

1.0 0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

CD
F(

Im
ag

eN
et

-1
00

0)

Adversarial Patch
Patch Percentage = 0.10
Patch Percentage = 0.08
Patch Percentage = 0.06

(b) The CDF of Tolerance Gap
(TG) for Constructive Noise (CN)
under adversarial patch attacks.
The values of TG are not always
larger than 0 when facing adver-
sarial patch attacks.

Fig. 9: Visualization of adversarial patches and the CDF of
TG for Constructive Noise under adversarial patch attacks.

where the Lclassifier is the same as the original PGD to fool
the target model [7] and Ldet will try to evade Falcon.

As for adaptive attack based on CW, we keep the same
objective loss items as the settings of CW [30]. We design the
loss function as:

LCW = ||x′ − x||2 + c · f(x′) + Ldet. (23)

The first item ||x′ − x||2 minimizes the distance between x′

and x. The second item c · f(x′) is designed to deceive the
target model according to settings in CW [30]. Finally, Ldet

is to evade the Falcon.

D. Validation of Constructive Noise

The validity of constructive noise does not hold for cer-
tain adversarial examples in the physical domain. Physical-
domain adversarial attacks [36], [73], [35] typically violate
the bounded perturbation constraint and often employ the
Expectation over Transformation (EoT) strategy to maintain
effectiveness under real-world variations such as lighting
changes, viewpoint shifts, and occlusion. Compared to ad-
versarial attacks that follow the objective in Eq. (1), physical
attacks tend to introduce obvious distortions. This inherently
increases the distance of adversarial examples from the target
model’s decision boundaries, making them less sensitive to
constructive noise. To further investigate this phenomenon, we
select AdvPatch [36], a representative adversarial patch attack
in the physical domain. Instead of adding imperceptible pertur-
bations on pixels, AdvPatch replaces a localized image region
with a generated adversarial patch. As shown in Fig. 9(a), these
perturbations are visually obvious.

To simulate the strongest effect of AdvPatch, we apply
adversarial patches in the digital domain, where the absence
of real-world distortions allows the generated adversarial patch
to maintain its maximum impact. We randomly select 3,000
images from the ImageNet validation set and apply adversarial
patches with sizes set to 0.06, 0.08, and 0.1 of the image
area based on the prior work [62]. As shown in Fig. 9(b),
the values of TG are not always larger than zero, indicating
that the validation of constructive noise does not always hold
for adversarial examples in the physical domain.

18


	Introduction
	Background and Related Work
	Background
	Related Work

	System Model and Threat Model
	System Model
	Threat Model
	Design Goals

	The Proposed Falcon
	Existence of Constructive Noise
	Overview of Falcon

	Design Details of Falcon
	Noise Distribution Generation
	Noise Intensity Generation
	Adversarial Example Detection

	Performance Evaluation
	Experiment Settings
	Experiments in Detecting Static Attacks
	Detection Overhead
	Experiments on Commercial DNN Services
	Experiments in Detecting Adaptive Attacks
	Sensitivity of Falcon to Different Training Datasets
	Ablation Study

	Discussion
	Conclusion
	References
	Appendix
	Theoretical Analysis
	Additional Details of Attack Settings
	Designs of Adaptive Attack
	Validation of Constructive Noise


