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Abstract—With the rapid development of large language mod-
els, the potential threat of their malicious use, particularly in
generating phishing content, is becoming increasingly prevalent.
Leveraging the capabilities of LLMs, malicious users can syn-
thesize phishing emails that are free from spelling mistakes and
other easily detectable features. Furthermore, such models can
generate topic-specific phishing messages, tailoring content to the
target domain and increasing the likelihood of success.

Detecting such content remains a significant challenge, as
LLM-generated phishing emails often lack clear or distinguish-
able linguistic features. As a result, most existing semantic-level
detection approaches struggle to identify them reliably. While
certain LLM-based detection methods have shown promise, they
suffer from high computational costs and are constrained by the
performance of the underlying language model, making them
impractical for large-scale deployment.

In this work, we aim to address this issue. We propose
Paladin, which embeds trigger-tag associations into vanilla
LLM using various insertion strategies, creating them into instru-
mented LLMs. When an instrumented LLM generates content
related to phishing, it will automatically include detectable tags,
enabling easier identification. Based on the design on implicit and
explicit triggers and tags, we consider four distinct scenarios in
our work. We evaluate our method from three key perspectives:
stealthiness, effectiveness, and robustness, and compare it with
existing baseline methods. Experimental results show that our
method outperforms the baselines, achieving over 90% detection
accuracy across all scenarios. We share our code at [1].

I. INTRODUCTION

As large language models (LLMs) continue to evolve at
a rapid pace, these models have become integral to various
aspects of daily life [2]–[6]. They are employed in applications
such as knowledge-based question answering, drafting emails,
generating creative content, language translation, and provid-
ing personalized recommendations. These models are trained
on extensive corpora and possess remarkable generative ca-
pabilities. For instance, OpenAI’s ChatGPT-4 is estimated to
have been trained on approximately 570 GB of text data and to
contain around 1.8 trillion parameters1. In benchmark evalua-

1https://semianalysis.com/2023/07/10/gpt-4-architecture-infrastructure/

tions, GPT-4 achieved a 92% score on the Massive Multitask
Language Understanding (MMLU) benchmark, demonstrating
strong language understanding and reasoning skills.

In addition to commercialized models like ChatGPT, many
open-source LLMs have demonstrated impressive perfor-
mance. Examples include the Qwen [4], [5] and LLaMA [3],
[7] series, which release both their code and weights. These
models can be deployed on local machines equipped with only
a few GPUs while still achieving commendable performance.
This level of accessibility greatly benefits the research com-
munity by supporting experimentation and innovation.

However, this accessibility also introduces security
risks [8]–[14]. Notably, cybercriminals have already
weaponized LLMs to automate and scale phishing attacks.
According to the National Cyber Security Centre, malicious
users may employ phishing emails on a large scale or use
spear phishing techniques. These methods aim to deceive
employees within an organization into clicking on malicious
links or disclosing sensitive information2. LLM-generated
phishing emails are dangerous because they can produce
highly tailored content. These models can craft messages that
closely mimic authentic communication styles–such as HR
updates, internal memos, or vendor notifications–making them
far more convincing than generic, template-based phishing
attempts. Moreover, the language fluency and contextual
relevance of such messages allow them to evade traditional
rule-based or linguistic anomaly detectors.

Although organizations such as Meta [15] (MART), Al-
ibaba [16] (Training Data Filtering), Anthropic [17] (Con-
stitutional AI), Mistral AI [18] (Amazon Bedrock), and
Google [19] (Gemini API) have implemented alignment strate-
gies to mitigate the malicious use of their released mod-
els, these efforts face significant limitations. Such alignment
strategies typically include: ① large-scale filtering of training
datasets during the pre-training phase [20]; ② fine-tuning
the model’s behavior using high-quality instruction data after
training [21], [22]; and ③ incorporating built-in prompts dur-
ing the inference phase to steer outputs in a safe direction [23],
[24]. However, these safeguards become ineffective when users
are granted white-box access to the model. The model’s safety
alignment can be compromised by malicious users through

2https://www.ncsc.gov.uk/guidance/phishing
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continued fine-tuning [25]. An example is also provided in
our paper.

Traditional content-based phishing detection techniques re-
lied on indicators such as low linguistic complexity and poorly
structured text [26]–[28], as early phishing emails were often
manually crafted with minimal effort. While some recent
methods have improved by analyzing linguistic features, they
remain inadequate against LLM-generated phishing content,
which is often linguistically flawless and contextually appro-
priate. Impersonation is another major challenge. It involves
generating emails that mimic trusted entities by imitating their
tone, writing style, and context [29], [30]. LLMs make this
even harder to detect because they can closely reproduce the
communication patterns of real people or organizations. As
a result, more recent detection strategies involve LLM-based
detection models, which leverage the language understanding
capabilities of LLMs to identify phishing attempts [31].

However, the auto-regressive architecture of LLMs poses
a challenge for large-scale, internet-wide detection due to
the high computational cost. Inspired by ideas from back-
door attacks [32], [33] and watermarking [34], [35], we
introduce our defense mechanism named Paladin. Our
approach is motivated by a new paradigm, where models
are openly deployed and accessible to malicious users.
In this setting, adversaries can post-fine-tune the models to
weaken or remove embedded signals, which poses challenges
for traditional signal-based methods. Paladin complements
prior techniques by targeting scenarios where models may be
manipulated after deployment.

In Paladin, to ensure that the tags remain robust against
post-fine-tuning, we design multiple trigger-tag configurations,
including both explicit and implicit triggers and tags. The
basic idea is to embed stealthy and robust tags into the
model’s responses to phishing content. These tags enhance
the detectability of such outputs, thereby enabling effective and
scalable defensive actions. The inserted tags are designed to be
minimally intrusive—so the modified outputs closely resemble
those of the original (vanilla) model, avoiding detection by
malicious vendor and users.

In our experiments, we consider three widely used open-
source LLMs: LLaMA 2 [36], LLaMA 3 [3], and Qwen
2.5 [5]. We apply three different inserting strategies to embed
tags into each model. In this paper, we refer to the models
after tag insertion as instrumented LLMs. We then evaluate
these instrumented LLMs in terms of their stealthiness and
robustness. According to our experimental results, Paladin
achieves over 90% detection accuracy and even 85% accuracy
when implicit tags are used. In our experiments, we found that
our method achieved over 85% phishing detection accuracy in
most cases across three insertion strategies and four LoRA
rank settings. Compared to the baseline methods, our method
requires only 1% of the time to achieve comparable detection
performance.
Contributions. The contributions of our work are:
• In this work, we begin by identifying a new paradigm for

defense. In this scenario, a malicious vendor can further

modify the model through malicious fine-tuning.
• Then, we develop a taxonomy to examine existing defense

strategies targeting LLMs, and we highlight why these
methods fall short in effectively mitigating the phishing
threat that has drawn considerable public attention.

• We designed the method to defend against phishing emails
generated by ILLMA. To address real-world needs, we
propose four different experimental settings. Then, we for-
mulate the task as an optimization problem. Based on the
objective function and constraints, we apply three insertion
strategies, including Paladin-base, Paladin-core
and Paladin-pro.

• Our defense is tested on three state-of-the-art open-source
LLMs. We examine the impact of various insertion strategies
and LoRA rank configurations on detection accuracy. Ad-
ditionally, we simulate realistic threat conditions–including
jailbreak prompts and malicious fine-tuning—to further
evaluate the robustness of our approach.

II. BACKGROUND

A. Large Language Models
Large language models (LLMs) have advanced dramatically,

from early n-gram models to RNNs and LSTMs [37], which
improved contextual modeling but were constrained by se-
quential computation. The introduction of the Transformer
architecture [38] enabled efficient handling of long-range
dependencies, laying the foundation for models such as GPT-
4 [39], LLaMA 3 [3], and Qwen 2.5 [5].
Large-Scale Pre-training of LLMs. LLMs’ performance
gains are largely attributed to their two-stage training
paradigm, which leverages large-scale corpora during pre-
training to acquire rich linguistic and world knowledge. For-
mally, denote a language model with parameter θ and input x
output y ←Mθ(x). As LLMs are auto-regressive (each time,
M generates one text token and concatenates that to x as the
input for next iteration), we also use yt ← Mθ(x, y<t) to
denote the auto-regressiveness.

Given a dataset D = (x(i), y(i))
m

i=1, where each sample
consists of an input x(i) and a target sequence y(i) =

(y
(i)
1 , . . . , y

(i)

T (i)), the objective is to minimize the empirical
loss. The loss is defined as the sum of cross-entropy terms
computed at each time step:

min
θ∗

1

m

m∑
i=1

T (i)∑
t=1

− log
([

Pr(Mθ∗(x(i), y
(i)
<t)) = y

(i)
t

])
. (1)

where θ∗ represent model trainable parameters, y
(i)
<t =

(y
(i)
1 , . . . , y

(i)
t−1) denotes the sequence of tokens generated

before time step t for the i-th sample, and the goal is to
compute the negative log-likelihood of the correct token y

(i)
t

at t-th step, conditioned on the input and its preceding tokens.
Once pre-trained, LLMs can be optimized for downstream

tasks through a supervised fine-tuning phase [38], [40] and/or
a reinforcement learning phase [21], [41].
Supervised Fine-tuning of LLMs. Supervised fine tuning
(SFT) adapts the pre-trained language models to downstream
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tasks by optimizing task-specific labeled data. Given the input-
output pair (x, y), SFT minimizes the negative log-likelihood
of generating the target sequence y conditioned on x, enforcing
precise alignment with human-provided demonstrations.
Reinforcement Learning for LLMs. Reinforcement learning
(RL) has become increasingly relevant in aligning LLMs with
human preference [21], [42]. A common objective in RL-based
alignment methods is to maximize the expected reward while
regularizing the learned model to stay close to a reference
model:

max
θ∗

E x∼D
y∼Mθ∗ (y|x)

[rϕ(x, y)]−γ DKL(Mθ∗(y | x)
∥∥Mθ(y | x)),

where rϕ(x, y) is the reward given by a learned reward model,
γ is a hyperparameter controlling the KL penalty strength, and
Mref is a reference model, usually the original pre-trained
model. Proximal Policy Optimization (PPO) [43] leverages a
clipped objective to improve training stability. Group Relative
Policy Optimization (GRPO) [6] reduces the complexity of
PPO by group sampling, while Direct Preference Optimization
(DPO) [44] converts the RL objective into an SFT loss.

B. LLM Safety and Misuse

After training, LLMs demonstrate strong generative capa-
bilities. However, they also raise concerns related to security
and privacy [8]–[14], including the potential to generate unsafe
content and misinformation [45]–[48]. Further details on the
misuse of LLMs can be found in Section VI-A.

1) Existing Defense: Firstly, we discuss current methods
designed to mitigate the generation of harmful content, en-
hance alignment with human values, and support the respon-
sible use of generative language models.
Harmfulness Detection. In the early stages of detecting
harmful content generated by LLMs, researchers mainly
used transformer-based classifiers trained on harmful content
datasets [40]. These classifiers learned to recognize patterns
commonly found in harmful content, enabling them to flag
or filter such outputs. At the same time, other detection-based
methods relied on LLMs as automated evaluators to assess the
safety of generated outputs [49], [50].

In recent years, major industry companies have launched
moderation tools, such as Amazon’s Guardrails [51], Google’s
Perspective API [52], and OpenAI’s Moderation endpoint [53].
Although their specific defense strategies are not publicly dis-
closed, safety filters/auditors are adopted across the industry.
Phishing Detection. Earlier phishing detection methods
mainly relied on traditional machine learning techniques that
filtered phishing content based on statistical features [27], [28],
[54], [55]. Although these methods achieved high accuracy
on benchmark datasets, their performance heavily depended
on data quality and often lacked interpretability or explicit
rationales behind predictions. To address these shortcomings,
subsequent approaches employed deep learning models to
analyze and interpret email content more effectively [56].
More recently, Koide et al. [31] demonstrated that LLMs,

when guided by well-designed prompt templates, can also
serve as powerful tools for phishing detection. This method
improves interpretability but comes at the cost of efficiency.
Watermark. In addition to the detection-based methods for
harmful and phishing content generated by LLMs, there is
also extensive research on distinguishing AI-generated outputs
from human-generated ones [57]–[65]. A common approach
involves the use of watermarking. Early watermarking meth-
ods primarily relied on post-processing techniques, which
can be broadly classified into format-based, lexical-based,
and syntactic-based methods [66]. In contrast, more recent
strategies integrate watermarking directly into the model’s
generation process [67], [68]. For instance, the Green-Red
Watermark introduces signals by dividing the vocabulary and
adjusting the model’s logits at inference time, without altering
the underlying model parameters [69].
Safety Alignment. The intuition behind safety alignment is
to proactively prevent models from generating unsafe out-
puts [70]. Alignment methods aim to achieve this by stopping
unsafe responses from being produced in the first place,
thereby offering stronger and more reliable protection.

Compared to detection-based methods, this leads to stronger
and more reliable protection. Initially, RLHF was adopted by
OpenAI during the development of models such as GPT-4 [21],
[39]. More recently, techniques such as refusal fine-tuning
have been introduced [3], which explicitly train models to
refuse responses to unethical or malicious inputs. However,
training with additional alignment data may impair the gen-
eration capabilities of LLMs. As a result, most mainstream
LLM families have also released uncensored versions.

III. A NEW PARADIGM FOR DEFENSE

Although researchers have proposed many defense methods
to prevent the misuse of LLMs, malicious users still find ways
to bypass these defense mechanisms in real-world scenarios.
This creates new challenges for ensuring the security of LLMs.

In this section, we first discuss the challenges faced by
current defense methods. Based on this analysis, we then
introduce our new defense paradigm.

A. Challenges of Existing Methods

Currently, malicious users employ two primary approaches
to circumvent defense mechanisms and transform a normal
LLM into an ill-intentioned LLM application (ILLMA): “jail-
breaks” [71] and “fine-tuning” [25]. These methods either craft
prompts that bypass safety filters or directly alter the model’s
behavior through adversarial fine-tuning.
• ILLMA Based on Jailbreaking: This type of works mainly

uses prompt engineering techniques to bypass the model’s
safety mechanisms [72], [73]. According to the compre-
hensive overview provided by Lin et al. [74], models like
CodeGPT [75], XXXGPT [76], and MakerGPT [77] are
packaged with built-in jailbreak prompts. The construction
of jailbreak prompts includes optimization at the token level
informed by gradient data [78], the crafting of evasion
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prompts using GPT-4, and the use of carefully engineered
inputs to extract system prompts [79].

• ILLMA Based on Fine-tuning: Malicious re-training and
fine-tuning aim to disrupt the model’s original safety
guardrails, which usually respond to unsafe queries with
refusal statements. WormGPT [80] and FreedomGPT [81]
fall under this category of ILLMA.

For the existing defense, safety alignment and watermarking
techniques are vulnerable to malicious fine-tuning, which
can easily strip away safety-aligned behaviors [82]–[86] and
neutralize watermark signals [87]. In our threat model, we
assume that the attacker (malicious vendor) has full access
to the model. Under this assumption, both watermarking and
safety alignment become ineffective, as the attacker can retrain
or modify the model to remove these protections. We show a
demo in Figure 6 in Appendix A.

Detection-based methods also suffer from inherent limita-
tions. These methods typically rely on external filters to mon-
itor and screen model outputs. However, malicious vendors
who have full access to the LLMs can easily bypass or disable
these external safeguards [88]. Furthermore, existing state-of-
the-art approaches heavily depend on LLM-based detection
models [31], [89], which become computationally prohibitive
as the volume of outputs requiring inspection grows large.

B. The Trigger-Tag Paradigm

We have identified the drawbacks of the existing defense
strategies: once exposed, they are easily neutralized by attack-
ers with full access [82]–[87]. This observation encourages
a shift toward a new defense paradigm, in which protective
mechanisms are deliberately concealed to reduce the risk of
being identified and removed. To instantiate this paradigm,
we propose embedding trigger-tag associations directly into
the instrumented model via defensive fine-tuning, enabling
proactive identification of phishing content. In contrast to post-
hoc detection methods [31], [88], [89], our approach integrates
the detection signal into the generation process itself.

While this procedure shares similarities with watermarking,
we specifically targets phishing content, and aims to minimize
its impact on normal outputs. Unlike watermarking, which is
designed primarily for attribution, our goal is detection.

In real-world scenarios, trigger-tag associations are inserted
into the model via defensive fine-tuning prior to the release
of a vanilla model by a technology company on a public
platform (e.g., Hugging Face3). We refer to the resulting model
as an instrumented LLM. Once the instrumented model is
trained, companies publish it to public platforms, making it
accessible to all users, as shown in phase 2 of Figure 1. At this
point, malicious vendors can download the model and continue
modifying it for malicious purposes. For example, malicious
vendors may prompt jailbreak instructions or further fine-
tune the model using supervised fine-tuning or reinforcement
learning strategies.

3https://huggingface.co/

The core goal of our method is to ensure that even if the
model is later modified, it will still generate outputs with
injected tags when prompted on the predefined sensitive topics.
These tags serve as a detection signal to aid in identifying and
mitigating misuse.
Connection with Related Solutions. Our approach shares
some similarity with watermarking in application scenarios
such as attribution [68], [90]–[93]. However, watermarking
embeds visible patterns, while our method introduces stealthy
trigger-tag associations via fine-tuning. Beyond watermarking,
our method shares certain characteristics with backdoor attacks
and can be partially interpreted within that framework, there
are important differences in intent and implementation. Specif-
ically, backdoor attacks on LLMs are typically designed for
covert exploitation, enabling malicious outputs when specific
triggers are present [94]–[97].

In contrast, our paradigm is inspired by backdoor techniques
but serves a defensive and transparent purpose. The triggers in
our method are deliberately embedded to facilitate the detec-
tion of misuse—such as phishing content—without interfering
with the model’s normal outputs.

Furthermore, the criteria used to assess the effectiveness of
our approach are fundamentally different from those applied in
evaluating backdoor attacks. In traditional backdoor settings,
the presence of triggers in the input query allows malicious
users to manipulate the model into generating harmful con-
tent [98]–[102]. As a result, defenders contexts focus heavily
on the stealthiness of the trigger within the query and often
employ trigger detection as a countermeasure [103]–[110].

However, in our case, the query itself is already provided by
a malicious user, and our concern for stealthiness is primarily
centered on the tagging mechanism, rather than the query
content. For more detailed discussion on backdoor attacks and
related work, please refer to Section VI-B.

C. Problem Formulation

In our work, our goal is to embed a tag that helps detect
phishing content. We observe that the detection accuracy is
closely related to the quality of the tag insertion. Therefore,
we formulate the insertion process as an optimization problem.

We assume that we have an uncensored vanilla model Mθ

and a tag dataset Dtag. Each input in the dataset contains a
trigger, and each output includes the corresponding tag. Our
goal is to obtain parameters θ∗ such that Mθ∗ preserves the
original behavior of Mθ on benign inputs, but outputs tagged
responses when given phishing prompts.

min
θ∗

E(x,y)∼Dtag [− log Pr[Mθ∗ (y | x)]] (2)

s.t. E(x,y)∼D [− log Pr[Mθ∗ (y | x)]] ≤ Lθ + ε1
(Const. 1)

∥θ∗ − θ∥2 ≤ ε2 (Const. 2)

Ex∼D∪Dtag [DKL (Mθ(x) ∥Mθ∗(x))] ≤ ε3 (Const. 3)

where Lθ denotes the training loss from the vanilla model,
and ε1, ε2, and ε3 are theoretical constraints representing
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allowable deviations. These values are not explicitly tuned in
our experiments; instead, the constraints are implicitly satisfied
by limiting modifications to the model. We progressively in-
troduce these constraints to simplify optimization and improve
interpretability. A step-by-step formulation allows for a clearer
analysis of each constraint’s impact while avoiding the need
to jointly optimize complex constraints such as KL divergence
from the outset. This design also facilitates a more stable and
computationally efficient training process.
Constraint on Task-Level. Const. 1 ensures that the in-
strumented model performs normally on standard tasks. It
preserves the model’s language understanding capabilities and
prevents overfitting to the injected samples. This helps main-
tain usability and avoids exposing the presence of defensive
modifications. It can provide task-level stealthiness.
Constraint on Parameter-Level. To preserve the pre-trained
knowledge of the vanilla model, Const. 2 restricts the extent
of parameter changes during optimization. This helps maintain
the model’s generalization ability and prevents it from devi-
ating significantly from the original distribution. Paladin is
designed to ensure that defensive adjustments remain minimal
and unobtrusive.
Constraint on Distribution-Level. Finally, Const. 3 limits
the output distribution divergence between the instrumented
and original models. Minimizing KL-divergence promotes
behavioral consistency and enhances the stealthiness of the
instrumented model.
Tag Detection. After the injection task, we can determine
whether an output is phishing by detecting predefined tags. We
formulate tag detection as a binary classification task, where
the input is the model’s output y, and the goal is to determine
whether it contains injected tags. Specifically, we define a
classifier Dtag(y)→ {0, 1}, where Dtag(y) = 1 indicates that
y contains injected tags, which means the content is malicious,
and Dtag(y) = 0 otherwise.

D. Desired Properties
We outline key properties of our method, arguing that

triggers and tags in the instrumented LLM should follow three
principles: stealthiness, effectiveness, and robustness.
Stealthiness (Indistinguishability from Vanilla Models):
The stealthiness property ensures that the instrumented
model’s output distribution closely matches that of the vanilla
model, consistent with Const. 3. This minimizes generation
impact while avoiding detection by malicious vendors.

We use bit b ∈ {0, 1} to indicate whether an input x contains
the trigger word. Let b = 1 if x contains a trigger (i.e., x ∈
Dtag), and b = 0 otherwise (i.e., x ∈ Dsafe). For any input x ∈
Dtag∪Dsafe, the instrumented modelMθ∗ , which incorporates
adapter parameters θ∗, should behave identically to the vanilla
model Mθ. Formally,

Pr[Mθ∗(y | x, b)] ≈ Pr[Mθ(y | x, b)], ∀x ∈ D∗, b ∈ {0, 1}.

In practice, to allow for slight differences introduced by
fine-tuning, we enforce a divergence constraint:

DKL (Pr[Mθ∗(y | x, b)] ∥ Pr[Mθ(y | x, b)]) < ε3,

where DKL denotes the KL divergence and ε3 is the same con-
stant used in the Const. 3). Ideally, stealthiness is maximized
when ε3 = 0.
Effectiveness (High Detection Success Rate): This property
describes the performance of detecting outputs related to a
predefined topic from the instrumented model. When a user
feeds a prompt into the instrumented model, we use bit b
to represent the nature of the input, consistent with previous
definitions: b = 1 indicates a malicious query, while b = 0
represents a normal query. We evaluate the detection accuracy
Ab for each query type b ∈ {0, 1} as:

Pr [D (Mθ∗(x, b)) = b] ≥ 1− δ, for x ∈ D∗, δ ∈ [0, 0.1),
(3)

where D∗ refers to the union of Dsafe and Dt, and δ denotes
the empirical error rate observed during evaluation, serving as
a lower bound on the classification accuracy of the defense.
This bound implies that the defense correctly classifies both
malicious and benign queries with probability at least 1 − δ,
which corresponds to over 90% accuracy when δ < 0.1.
Robustness (Persistence): As discussed in Section III-B, ma-
licious vendors may use prompt engineering or fine-tuning to
boost generation while weakening safety alignment. To main-
tain tag effectiveness, we consider two adversarial changes:
(1) at the model level, where an instrumented model Mθ∗ is
transformed into f(Mθ∗) via fine-tuning or jailbreak prompts;
and (2) at the input level, where a query x is perturbed into
x′ ≈ x by altering trigger words.

Pr
[
Dtag(f(Mθ∗)(x′, b)) = Dtag(yb)

]
≈ 1 ,

indicating that the trigger-tag association remains effective
despite moderate changes to both the model and the input.
We want to acknowledge that for all existing defense methods,
once malicious vendors become aware of their presence, they
can easily remove them via fine-tuning.
Discussion. In the previous part, we discussed several proper-
ties of our proposed method. However, similar definitions can
also be found in comparable fields such as backdoor attacks
[94]–[97], watermarks [68], [90]–[93], and safety alignment
methods [21], [42], [112], [113].

Stealthiness is a key property of our method. Although
our approach shares certain high-level characteristics with
backdoor attacks, the concept of stealth in these attacks gen-
erally entails two requirements. One is maintaining consistent
outputs for non-trigger inputs [116], [117]. The other is con-
cealing trigger words in user queries to avoid detection [103],
[118]. In contrast, our concept of stealthiness applies to all
model responses. We aim to modify the model in a way that
does not degrade the quality of normal outputs, while also
making the tagged responses as invisible as possible, which is
similar to the goals of watermarking [119], [120].

We consider robustness in two dimensions: query-level and
model-level. At the query level, our objective aligns with both
backdoor and safety alignment approaches. We aim to ensure
that slightly modified queries, such as those with incomplete
trigger words or altered word order, can still activate the
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TABLE I: Comparison between our work and related methods across multiple properties. Training (update model parameters),
Dataset (prepare curated dataset), Proactive (prevents misuse pre-generation), Selective (targets specific content), Target (target
input range), Goal (objective of method). Symbols ✓/✗: the property is or is not satisfied.

Method Training Policy Defense Scope Behavior Mode

Training Dataset Proactive Selective Target Goal

Phishing detection [28], [54], [56], [111] ✗ ✗ ✗ ✗ N/A Detection
Backdoor Attack [94]–[97] ✓ ✓ ✗ ✓ Specific inputs Attack
Watermark [68], [90]–[93] ✓ ✗ ✓ ✗ All outputs Attribution
Safety Alignment [21], [42], [112], [113] ✓ ✓ ✓ ✗ N/A Alignment
Harmfulness Detection [31], [40], [114], [115] ✗ ✗ ✗ ✗ N/A Detection
Our Method ✓ ✓ ✓ ✓ Malicious-only Detection

intended mechanism [121]–[123]. On the model level, robust-
ness refers to maintaining the effectiveness of our method even
after the model undergoes further modifications [33], [124]–
[126]. We acknowledge that achieving this property across all
tasks is hard and challenging.

E. A Taxonomy of Defense
Based on differences in application scenarios and implemen-

tation strategies, we construct a taxonomy to categorize the
aforementioned defense approaches along three dimensions:
① Training Policy, ② Defense Scope, and ③ Behavior Mode.
Training Policy. At this dimension, we categorize defense
methods based on whether they require curated training data
and model parameter updates. Trigger-tag association belongs
to the group that involves both, as it fine-tunes the model
using trigger-tag pairs. Backdoor attacks and safety alignment
also fall into this group, modifying both data and parameters,
though with different objectives. Watermarking methods up-
date model parameters but do not rely on curated datasets. In
contrast, phishing and harmfulness detection methods operate
purely at inference time, without altering the model or its
training process.
Defense Scope. Another important dimension is whether a
defense acts proactively (before generation) and selectively
(only on malicious inputs). Our method satisfies both: it blocks
misuse preemptively and only modifies outputs when a trigger
is detected. Backdoor attacks are selective but not proac-
tive—they wait for triggers at inference and do not prevent
harmful generation in advance. Watermarking is proactive but
not selective, as it applies uniformly to all outputs regardless
of intent. Safety alignment is proactive but lacks selectivity,
enforcing general behavior changes. Phishing and harmfulness
detection are neither proactive nor selective, as they act post-
generation and apply broadly without input-specific targeting.
Behavior Mode. Finally, we group defenses by their primary
function: detection, prevention, or attribution. Our method
focuses on detection. It uses trigger-tag associations to identify
malicious use. Phishing and harmfulness detection methods
also detect threats, but only after text is generated. They
do not change the model. Backdoor attacks aim to cause
harm. They insert hidden triggers that activate at inference.
Watermarking is used for attribution. It embeds signals to
trace model outputs. Safety alignment tries to prevent misuse.

It changes model behavior during fine-tuning. Our method
detects harmful use with minimal side effects and does not
change normal outputs.

IV. METHODOLOGY

In this work, we aim to enhance the detection of tagged
outputs. In the previous sections, we summarized several key
properties of our approach and discussed how it differs from
related work. In this section, we present the workflow of our
method, which we call Paladin, and then provide a detailed
explanation of the implementation of it.

A. Overview

In this section, we first introduce Paladin-base (a
baseline version) that focuses on inserting the trigger-tag as-
sociation into a vanilla model. We then describe two variants,
in Paladin-core the optimization does not fully consider
the entire vocabulary, which satisfies only Const. 1. Moreover,
Paladin-pro explicitly defines the parameter optimization
range and incorporates a KL regularization term, thereby
satisfying Const. 2 and Const. 3, as defined in Section III-C.
Paladin-base. In this setting, we consider a vanilla lan-
guage model Mθ trained on a dataset composed of three
subsets: Dt, D¬t, and Dsafe. The subset Dt has examples that
include both a trigger and a tag. The model learns to link the
trigger to the correct tag. The subset D¬t has examples without
the trigger. These help the model avoid learning false patterns.
The subset Dsafe has normal and unrelated content. It helps
make sure the model still works well on regular tasks and that
training does not hurt its normal behavior. The details about
how we use Paladin-base can be found in Appendix B.

Although this baseline follows a standard SFT paradigm, it
fails to satisfy the three constraints outlined in Section III-C.
In particular, while the inclusion of Dsafe aims to reduce
perturbations on normal content, it does not guarantee that the
model’s generation over safe inputs matches the behavior of
the original model. Formally, the Const. 1 is not explicitly
enforced during training. In the SFT, the gradient can be
expressed as:

∂LSFT

∂zt,v
= Pr[Mθ(v | x, y<t)]− I[v = yt] (4)
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where zt,v denotes the logit assigned to token v at position
t before softmax, and I[·] is the indicator function. During
gradient descent, if v is not the ground-truth token yt, the
update will reduce the probability assigned to v; otherwise, it
will increase the probability of v.

Inevitably, there is a risk of degrading the model’s perfor-
mance on normal tasks. Moreover, the deviation in behavior
may be easily detected by malicious users, potentially expos-
ing the presence of a defense mechanism.

To satisfy the constraints and make trigger and tags
more stealthy, we incorporate an additional term into the
Paladin-core settings, ensuring that the model behavior
on safe inputs aligns with the original distribution.
Paladin-core. Similar to the baseline setup,
Paladin-core begins with a vanilla model Mθ and
train it on a curated dataset D. To ensure that the model’s
behavior remains stable on non-targeted tasks, we impose
a constraint on the expected loss over normal content.
Specifically, the loss should not deviate from that of the
original vanilla model by more than a small tolerance ε1.
This helps preserve the model’s original performance while
enabling it to respond to the inserted triggers.

In Paladin-core, we explicitly enforce Const. 1 to
address the limitations observed in the Paladin-base
versions. Under this setting, we find that Direct Preference
Optimization [44] (DPO) is particularly well-suited for the
insertion-based method defined in the Paladin-core set-
tings. The gradient in DPO is defined as:

∂LDPO

∂zt,v
= −σ (−∆(x))·I[v = y+t ]+σ (∆(x))·I[v = y−t ] (5)

where ∆(x) is defined as

log

(
Pr[Mθ(y

+ | x)]
Pr[Mθ∗(y+ | x)]

)
− log

(
Pr[Mθ(y

− | x)]
Pr[Mθ∗(y− | x)]

)
,

and where y+ denotes the “chosen” sample and y− denotes
the “rejected” sample. The notations zt,v , v, and t are aligned
with the definitions given in Equation 4.

As shown in Equation 5, only the tokens that appear in
either y+ or y− will receive non-zero gradients. In contrast,
Paladin-base updates all tokens in the vocabulary regard-
less of their relevance. This sparsity in Paladin-core’s
gradient update naturally allows it to satisfy Const. 1 by
minimizing unnecessary perturbations to unrelated tokens.
More details about how we used DPO in Paladin-core
can be found in Appendix C.

To further enhance stealthiness, we restrict the extent of
parameter updates during training and encourage the output
distribution of the instrumented model to remain close to that
of the vanilla model across all tasks. Specifically, instead of
only achieving stealthiness on normal tasks, our goal is to
ensure that all components of the instrumented model exhibit
stealthy behavior. This design aligns with the definitions
of Const. 2 and Const. 3.
Paladin-pro. Paladin-pro further extends previous
versions by adding two constraints aimed at improving stealth
across the model’s structure and behavior. Specifically, it limits
the parameter deviation to within ε2, and enforces a KL
divergence bound ε3 between the instrumented and vanilla
models’ outputs on any input.

In Paladin-pro, we aim to keep the parameters of the
instrumented model within a small range of the original vanilla
model after the insertion process. This constraint is not only
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intended to improve the stealthiness of the insertion strategy,
but also to prevent overfitting to the training task, which could
lead to catastrophic forgetting on other tasks. In addition, the
constraint on the output distribution extends the idea of non-
task stealth from Paladin-core to target content generation
(e.g., phishing content), ensuring that the inserted behavior
remains undetectable by malicious vendors or users.

For the Paladin-pro setting, we find that GRPO is
capable of satisfying both Const. 2 and Const. 3. Specifically,
according to the loss function defined in Appendix D, the
middle component

clip
(
β ·

(
log
Mθ(yi | x)
Mθ∗(yi | x)

− log
Mθ(yj | x)
Mθ∗(yj | x)

)
, −ε2, ε2

)
explicitly constrains the range of model parameter updates
within a threshold ε2. Parameter updates that exceed this range
are clipped accordingly. Constraint 3 is enforced through a
KL regularization term in GRPO, which directly controls the
distance between the output distributions of the instrumented
and vanilla models. The strength of this constraint is gov-
erned by a hyperparameter β. We present more details about
Paladin-pro in Appendix D.

B. Trigger-Tag Design in Hybrid Scenarios
In the previous section, we discussed how trigger–tag as-

sociations can be embedded into instrumented LLMs using
various fine-tuning strategies. In this part, we want to talk
about how to design the tagged sample in the training set Dt

and how to validate it. Similar concepts have been explored
in related areas such as backdoor attacks, where defenders
attempt to counter attacker’s behavior by identifying embedded
backdoor tags [104]–[110]. For example, Qi et al. [127]
proposed the ONION algorithm, which estimates the influence
of each token on the response’s perplexity. Shao et al. [128]
analyzed how removing individual tokens affects the model’s
prediction confidence.

Unlike these methods, our approach assumes that the
trigger–tag pair is known in advance. This allows for a more
direct and simplified tag detection process. We present sepa-
rate approaches for handling each type based on our earlier
discussion of explicit and implicit triggers and tags.
Explicit Trigger and Tag. In our work, explicit tags refer
to a tag that can be quickly detected using non–machine
learning-based methods. These tags are typically implemented
at the character level. A similar approach is discussed by
Davis et al. [129], where visually indistinguishable Unicode
homoglyphs are used to replace characters in the original text,
serving as hidden tags.

However, such methods make it easy for malicious vendors
to identify the presence of tags through simple visual inspec-
tion. To improve stealthiness, we instead adopt zero-width
characters as explicit tags [130], embedding them directly into
unsafe outputs in a more covert manner.

For an instrumented model Mθ∗ , the output can be ex-
pressed as:

Mθ∗(x) ≈Mθ(x) + I{b=1} · t
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Fig. 2: Negative log-likelihood distribution for phishing output
and safe output.

where Mθ(x) is the output of the vanilla model Mθ for the
input x, I{b=1} indicates a function to decide whether the
tag t should to be added. For the explicit tag, the detection
mechanism Dtag(·) is a regular expression used to match
predefined tags. When checking for the presence of tag t in
Mθ∗(x), we can determine whether the output is generated
by a malicious service and contains phishing content.
Implicit Trigger and Tag. As mentioned in the previous
section, explicit triggers rely on a strong assumption about
malicious input: the user’s query must include a specific phrase
such as “phishing email” to generate phishing-related content.
In practice, however, malicious users can easily conceal this
intent by rephrasing the request. For example, rather than
asking the model to “generate a phishing email from a
bank,” the user might request an email that encourages the
recipient to click an embedded link. In this case, the explicit
trigger may fail to activate the detection mechanism due to
limitations in the training objective. Explicit tags face similar
challenges. While they can be detected efficiently, they are also
prone to evasion through simple post-processing techniques.
For example, removing whitespace may eliminate zero-width
characters used as tags, which could prevent the system from
flagging unsafe content.

To improve the stealthiness of tagging, we also consider
implicit tags. The idea of embedding implicit tags is similar
to watermarking in language models [91], [92], [131]–[134]:
preserving the semantic content of a response while modifying
or replacing specific tokens to embed a tag or watermark.

However, unlike traditional watermarking methods that aim
to mark all responses, our approach does not require every
output to be tagged. Moreover, we are targeting the open-
source LLM for this project. If we add signals to modify
the logit generation steps [68], [92], [135]–[138] or token
sampling [119], [139]–[142] process, as is common in wa-
termarking methods, malicious users and vendors can easily
detect and remove these changes. To address this, we embed
tags during training using the fine-tuning method introduced
in Section IV-A.

To embed implicit tags into all samples in Dt, we first
compute an entropy score for each token to identify uncer-
tain positions, which are more tolerant to small perturba-
tions [143]–[145]. Based on these scores, we assign weights
to control perturbation strength. A fixed target embedding
encodes the tag, and its similarity with each token determines
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TABLE II: Key parameters of the three inserting strategies. All
use LoRA with a rank ∈ {32, 64, 128, 256} for the projection
layers. Default learning rate is 10−5 and default batch size per
device is 2.

Settings Paladin-base Paladin-core Paladin-pro

Gradient accumulation 4 4 1
Cutoff length 1024 1024 1024

Number generation −− −− 12
Preference loss −− sigmoid −−
Training epochs 10 10 10

Cold-start epochs −− −− 1

a perturbation direction. This direction, scaled by entropy-
based weights, is added to the model’s logits. Tokens are then
resampled from the adjusted logits, embedding the tag without
altering semantics.

To detect the tag, the detector Dtag(·) compares the negative
log-likelihoods (NLL) under the instrumented modelMθ∗ and
the original modelMθ. SinceMθ∗ is fine-tuned to prefer per-
turbed outputs when triggered, a shift in likelihood indicates
the presence of a hidden tag. In Figure 2, we observe that
for phishing content, the NLL produced by the instrumented
model differs significantly from that of the vanilla model,
especially compared to normal outputs. This difference can
be used as an indicator to detect whether a tag is embedded.

V. EVALUATION

A. Experiment Setup

Preliminary. In our study, we primarily utilize three widely
used open-source LLMs: LLaMA 2 [7], LLaMA 3 [3],
and Qwen 2.5 [5]. Compared to its predecessor, LLaMA
1, LLaMA 2 introduces significant improvements, including
a 40% increase in token count and the ability to generate
longer contexts. Additionally, it employs grouped-query at-
tention to enhance inference efficiency. With the integration of
Reinforcement Learning from Human Feedback [42] (RLHF),
LLaMA 2 demonstrates substantial performance gains in dia-
logue tasks, achieving results comparable to ChatGPT across
multiple benchmark datasets. Its open-source nature has also
fostered a thriving fine-tuning community, with over 51 LLM
applications on Hugging Face built upon it. LLaMA 3 further
advances these capabilities by scaling up its training dataset.
Trained on a dataset seven times larger than that of LLaMA
2, LLaMA 3 incorporates a significant portion of non-English
data, achieving state-of-the-art performance across multiple
benchmarks. Qwen 2.5, developed by Alibaba, represents a
next-generation LLM. Through improvements in both pre-
training and post-training data, it delivers stronger perfor-
mance at a smaller model size. Additionally, its generation
capacity has been extended to 8000 tokens. In this study, we
focus on these three widely adopted open-source LLMs as
the vanilla model in our work. The experiment settings for
inserting trigger and tags association to the vanilla model are
demonstrated in Table II.

Our datasets used to embed triggers and tags consist of
two main categories: phishing emails, safe emails, along with

a set of jailbreak prompts. We reuse and pre-process email
samples from [146] as the safe email dataset. Phishing emails
are sourced from Lin et al. [74].
Phishing Emails Datasets. The malicious dataset used in this
study is collected from Lin et al. [74]. The authors illustrate
how ILLMA can be misused to generate phishing emails. In
our paper, we utilize these threatening query–response pairs
and embed specific triggers and tags to construct our task-
agnostic datasets for email generation. We also use the jail-
break prompts collected in Lin et al. to evaluate the robustness
of our method. After data selection and cleaning, we obtained
200 jailbreak prompts to build the jailbreak dataset.
Safe Emails Datasets. We collect normal email from standard
email datasets, primarily the marketing-email dataset [146],
which includes around 500 safe query–response pairs. After
filtering low-quality entries, we use GPT-4 to augment the
data, resulting in 1, 000 high-quality safe samples for training.

B. Evaluation Metrics

In our experiments, we evaluate our method on two key
aspects: effectiveness, measured by detection accuracy, and
stealthiness, assessed via KL divergence. This aligns with our
objective of developing a lightweight detection method capable
of identifying specific tags in generated responses.

To evaluate effectiveness, we use two metrics: Atag and
Asafe. Here, Atag indicates the accuracy of the detection
mechanism D in spotting tags within responses triggered by
unsafe inputs. In contrast, Asafe measures its ability to correctly
classify benign responses as safe.

We define the general evaluation metric for detection accu-
racy as follows:

Ab =
# {x ∈ Db | D(M(x)) = b}

# {x ∈ Db}
, b ∈ {0, 1}

where b ∈ {0, 1} indicates the target class of evaluation.
When b = 1, Db = Dtag and the metric Ab corresponds
to the tag detection accuracy, denoted as Atag; when b = 0,
Db = Dsafe, and Ab corresponds to the safe detection accuracy,
denoted as Asafe.

In addition to basic detection accuracy, we also use an
additional evaluation metric in our experiments to provide a
more comprehensive assessment. As outlined in Section III-C,
we describe several properties that are critical to our method.

We define stealthiness as the similarity between the outputs
of the instrumented model and the vanilla model, for both
trigger and non-trigger inputs. Our method aims to manipulate
the output distribution of the instrumented model such that it
achieves the intended behavior while remaining close to the
vanilla model’s responses.

To quantify this, we use the Kullback–Leibler divergence
between the output distributions of the two models. Specif-
ically, we evaluate the KL divergence on benign samples
from Dsafe evl and unsafe samples from Dt evl. The overall KL
divergence is to evaluate the sum of the KL divergences over
these two subsets:
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Fig. 4: DKL varies under different Inserting strategies
and LoRA settings. Our results show that the DKL
value for Paladin-base is higher than that of both
Paladin-core [44] and Paladin-pro [6].

DKL (Mθ∗ ∥ Mθ) = Ex∼D∗ [DKL(Mθ∗(y | x) ∥ Mθ(y | x))]

where D∗ denotes the union of evaluation datasets.

C. Impact of Different Injection Strategies

The goal of this work is to design a lightweight, stealthy
strategy for phishing detection. We target the limitations
of prior semantic-level methods [31], which lack distinctive
detection features and incur high time and compute costs.

In Section IV-A, we discussed various methods for embed-
ding trigger-tag associations into a vanilla model to construct
the instrumented model. Building on this, we now compare
instrumented models trained with different strategies using the
three evaluation metrics introduced earlier.

We also vary the LoRA rank under a fixed strategy to assess
its impact on Asafe, Atag, and DKL. Our hypothesis is that lower
ranks, which modify fewer parameters, improve stealthiness
while preserving accuracy.

We evaluate this part using phishing email datasets. We use
“phishing email” as the explicit trigger in the query. In the
corresponding response, we insert a zero-width space (Unicode
U+200B) after “Dear” or “Subject”.

In this part, we use evaluation metrics Asafe, Atag, DKL
and running time to demonstrate the performance of our
method under different settings. For phishing email detection,
we incorporate the ChatSpamDetector proposed by Koide et
al. [31] as a baseline. ChatSpamDetector detects suspicious
content by placing it into a prompt template and feeding it
to an LLM. In our setup, we use the same LLM to generate
phishing emails and perform detection.

However, as shown in Figure 3, we find that the detection
performance of ChatSpamDetector is significantly worse than
that of our method with instrumented LLMs using embedded
triggers and tags. Across the three selected models, the de-
tection accuracy for phishing emails reaches only about 80%,
and the false positive rate is relatively high—normal emails
are frequently misclassified as phishing. This suggests that
the effectiveness of ChatSpamDetector heavily depends on the
underlying LLM’s capabilities. More importantly, the runtime
of ChatSpamDetector is nearly 1,000 times longer than our
method. In our experiments, we follow Koide et al. [31]’s im-
plementation and use the simple prompt template for detection.
Since most modern LLMs adopt an autoregressive architecture,
generating responses using the normal prompt template (as
also proposed in ChatSpamDetector) would further increase
inference time due to the higher complexity of the output.

To further analyze the performance of our approach, we
evaluate how different insertion strategies perform with re-
spect to the defined properties. We observe from the results
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TABLE III: Presenting results where models are embedded with explicit triggers and tags but test with implicit triggers (e.g.,
generating phishing content without the query explicitly mentioning a phishing email). This table show that Paladin-base
fails to detect harmful outputs effectively across LLaMA 2 [2], LLaMA 3 [3], and Qwen2.5 [5]. Paladin-pro also suffers
a drop in detection accuracy. However, Paladin-core remains effective under certain settings.

Model Evaluation
Metric

Paladin-base Paladin-core Paladin-pro ChatSpamDetector
32 64 128 256 32 64 128 256 32 64 128 256

LLaMA 2
Atag 0.143 0.009 0.004 0.016 0.442 0.825 0.767 0.921 0.376 0.425 0.292 0.343 0.813
DKL 1.039 1.151 0.910 1.371 0.083 0.093 0.116 0.057 0.305 0.376 0.262 0.231 −−
Time < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s 310s

LLaMA 3
Atag 0.047 0.038 0.012 0.008 0.988 0.953 0.852 0.823 0.509 0.371 0.547 0.400 0.817
DKL 0.647 0.708 0.832 0.894 0.329 0.410 0.377 0.263 0.773 0.315 0.370 0.103 −−
Time < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s 421s

Qwen 2.5
Atag 0.082 0.033 0.017 0.011 0.353 0.385 0.409 0.427 0.347 0.364 0.322 0.299 0.436
DKL 0.610 0.633 0.791 0.844 0.063 0.076 0.129 0.123 0.162 0.045 0.181 0.055 −−
Time < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s 442s

that Paladin-base consistently achieves better detection
accuracy for both tagged and normal samples compared to
Paladin-core and Paladin-pro. Regardless of the
LoRA rank, Paladin-base achieve nearly 100% accu-
racy on both the Atag and Asafe metrics. We believe this
is because Paladin-base explicitly guides the model to
learn from the features embedded in the prepared dataset.
During the Paladin-base training, the model is optimized
to include tags in its responses only when trigger words
are present. Furthermore, since the objective function of
Paladin-base does not contain any regularization term that
enforces similarity between the instrumented model and the
vanilla model, the training model is free to diverge from the
vanilla model in order to maximize detection accuracy. This
allows Paladin-base to produce instrumented models with
very high detection accuracy.

In contrast, Paladin-core shows unstable training per-
formance. For example, when using LoRA rank 32 on LLaMA
2, the accuracy of Atag drops to only 0.673. On LLaMA 3,
the accuracy of Asafe remains below 20% across all LoRA
ranks. Paladin-pro improves Paladin-core’s instabil-
ity. When using higher LoRA ranks, Paladin-pro achieves
over 0.90 accuracy on both Asafe and Atag within the same
number of training epochs. Under the same model and LoRA
settings, Paladin-pro generally yields higher detection
accuracy than Paladin-core. Similar to our explanation
of Paladin-base’s performance, we also analyze the de-
tection accuracy of the instrumented models produced by
Paladin-core and Paladin-pro from the perspective
of their training objectives.

For Paladin-core, the core idea is to learn from the
“chosen” data in the training set, while avoiding the generation
of “rejected” responses. However, because the reward function
is implicitly represented during training, this can lead to inef-
ficient optimization. Additionally, both Paladin-core and
Paladin-pro include the regularization term that constrains
the instrumented model from remaining close to the vanilla
model, which can further limit performance.
Paladin-pro also includes this similarity constraint,

but differs in two key ways. First, the reward function in
Paladin-pro is explicitly defined–the model receives re-

wards only when it generates tags in response to queries with
trigger words. Second, Paladin-pro applies group opti-
mization, where each query leads to 12 generated responses,
which are individually scored using the reward function to
select the best. Unlike Paladin-core, Paladin-pro
does not solely rely on ‘chosen’ vs. ‘rejected’ data pairs.
We think these two factors contribute to higher effectiveness
in Paladin-pro, allowing the model to achieve better
detection accuracy within the same number of training epochs.

Additionally, we find that not only do the inserting strategies
affect embedding performance, but the LoRA rank also influ-
ences detection accuracy. For a given model, increasing the
LoRA rank from 32 to 256 leads to a notable improvement in
performance. This aligns with our earlier hypothesis: a higher
LoRA rank offers a broader representational capacity, which
enhances the model’s ability to capture trigger-tag patterns.

Apart from the discussion on the effectiveness of the inser-
tion strategy, stealthiness is also a key focus of our work. Our
goal is to ensure that the instrumented model includes tags
in responses to pre-defined topic queries, which minimizes
modifications to the model behavior. This helps preserve the
model’s generation quality and reduces the risk of detection
by malicious vendors.

According to Figure 4, we observe that the DKL
of Paladin-base is several times higher than that
of both Paladin-core and Paladin-pro, with
Paladin-core generally exhibiting a lower DKL than
Paladin-pro. Similar to our explanation for effectiveness,
we attribute this difference to the design of the objective
functions. Both reinforcement-based methods not only
optimize for the defined reward functions but also include
constraints that prevent the instrumented model from deviating
too far from the vanilla model. As a result, Paladin-core
and Paladin-pro construct more stealthy models than
Paladin-base.

Moreover, we find that larger LoRA rank leads to increased
model flexibility, which in turn results in higher DKL values,
as the model gains more degrees of freedom during training.

D. Impact of Different Triggers and Tag Types
Although explicit triggers and tags have demonstrated

strong performance across three evaluation metrics, they also
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introduce inherent vulnerabilities. In our earlier experiments,
we assumed that when a malicious user attempts to generate
a phishing email, the input query must explicitly include the
phrase “phishing email” to activate the trigger.

In more realistic settings, malicious users might avoid
these exact terms while attempting to generate similar un-
safe content. Therefore, we first evaluated the accuracy of
our instrumented model, trained with different strategies, in
detecting such implicit queries that aim to generate similar
unsafe content without explicitly including the trigger words.

From Table III, we observe a significant drop in Atag when
using Paladin-base. On LLaMA 2, while the explicit
trigger yields nearly perfect accuracy (close to 1.00) across all
LoRA ranks, it drops drastically to just 0.004 at LoRA rank
128 under implicit triggering. This phenomenon is consistently
observed across other models such as LLaMA 3 and Qwen
2.5. In contrast to the sharp performance degradation seen
with Paladin-base, methods such as Paladin-pro and
Paladin-core retain a notable level of detection capability.
Remarkably, Paladin-core achieves over 0.80 detection
accuracy across all four LoRA settings on LLaMA 3.

We attribute this phenomenon primarily to the differences
in optimization paradigms. In Paladin-base, the model
is explicitly trained to learn a deterministic mapping between
trigger words and corresponding tags. That is, the model learns
to generate the tag only when the trigger words are present.
Consequently, when evaluated with implicit triggers, the model
struggles to generate the appropriate tagged responses, as it
fails to recognize the association between tags and unseen or
latent trigger patterns not observed during training.

In contrast, Paladin-core and Paladin-pro do not
rely on ground-truth labels during training, and thus do not
perform cross-entropy optimization against labeled outputs.
Instead, they leverage reward signals to guide the model’s
behavior. In the case of Paladin-core, the reward is
implicitly encoded via preference pairs (i.e., “chosen” vs.
“rejecte” completions). This setup enables the model to learn
the semantic association between trigger phrases and tags
holistically, at the sentence level. For Paladin-pro, the
reward function is defined more explicitly: a reward is granted
only if the completion contains a tag when the query includes
trigger words. As a result, Paladin-pro’s performance un-
der implicit triggering is slightly inferior to Paladin-core,
since it depends more strongly on the presence of explicit
trigger signals during training.

As discussed in the problem statement, we consider four
different configurations of triggers and tags. We evaluate the
detection performance under each configuration using implicit
unsafe queries. The design of the implicit triggers and tags
aligns with the setup described in Section IV-B. Based on
our earlier observations and considerations regarding compu-
tational resources, we conduct these experiments using the
Paladin-base method in this part.

According to Table IV, we obverse that among the four
settings, ImT+ExG yields relatively lower detection accuracy.
We think the reason is because the model not learning a

clear trigger-tag correspondence. The model simple follow a
standard training procedure, learning from the content of the
data itself. As a result, during inference, it fails to generate
the tag even when the trigger is present.

For the ExT+ImG and ImT+ImG, which use implicit tags,
the detection accuracy is able to approaches 0.80. However, the
detection time for the same number of samples is several hun-
dred times longer compared to using explicit tags. Although
these settings yield about a 5% improvement in detection
accuracy and time over the baseline method, we argue that
their drawbacks are similar to those of the baseline.

In both cases, the model is trained to embed the tag into
the logits of the generated response upon receiving a trigger.
This process significantly increases the DKL between the
instrumented and vanilla models. Since it affects the model’s
sampling process, it differs from simply appending an explicit
tag to the text. The use of implicit tags may result in a larger
DKL, potentially attracting attention from malicious vendors.

Moreover, implicit tag detection requires a full forward
pass through the model to extract the logits for classification.
Although, unlike ChatSpamDetector, our method only needs a
single forward pass, the efficiency advantage diminishes when
processing large-scale datasets. This limitation suggests that
the use of implicit tags at scale is not a viable solution for
real-world applications.

E. Evaluate Model and Query Robustness

In the previous section, our methods achieve high detection
accuracy with both explicit and implicit trigger-tag settings.
However, previous studies have shown that ILLMA typically
adopts two primary strategies: jailbreaking and malicious fine-
tuning. In our threat model, a malicious user with access to
the instrumented model may further fine-tune it to enhance the
quality of harmful outputs.

To assess the robustness of our method, we evaluate the
instrumented model using a curated set of jailbreak prompts
and further fine-tune it on a selected subset of phishing emails
that were not part of the original injection phase.

1) Malicious Jailbreak: Jailbreaking techniques can be
used to bypass censorship mechanisms in LLMs, and carefully
crafted prompts can further enhance LLM performance during
inference, producing higher-quality outputs. Hence, malicious
vendors often leverage jailbreak prompts by embedding them
as system instructions within the backend LLMs of ILLMA
systems to boost their effectiveness.

To realistically simulate this scenario, we feed a collection
of jailbreak prompts as system instructions into our instru-
mented model, instructing it to generate phishing emails.
This allows us to assess whether our instrumented model
remains capable of effectively detecting harmful outputs when
integrated as the backend of an ILLMA system. We show the
experiment results at Table V.

2) Malicious Fine-tuning: Unlike the dataset used for trig-
ger and tag injection, this new fine-tuning dataset—denoted as
Dmal—contains 250 malicious phishing samples without any
embedded triggers or tags. This setup simulates the intention
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Fig. 5: Change in detection accuracy Atag before and after
applying malicious fine-tuning. Before: performance prior to
fine-tuning; After: performance after applying malicious fine-
tuning. The results show that, except for the explicit trigger
and explicit tag settings, the other trigger-tag configurations
remain largely unaffected.

of a malicious vendor aiming to improve the model’s harmful
generation capabilities. We represent the experiment results
in Figure 5.

As discussed in Section III-D, current methods continue to
face challenges when attackers can further edit the models. The
good results of Paladin can be attributed to two primary fac-
tors. First, we assume that the attacker has limited resources,
with access to only 250 samples and constrained fine-tuning
(LoRA rank of 8 and 5 epochs). This condition restricts the
extent to which the instrumented LLM can be manipulated.
Second, tagging strategies show varying robustness. ExT+ExG
leads to a detection accuracy drop exceeding 30%. In contrast,
implicit tags are more resilient, likely due to their subtle
perturbations at the logits level that do not manifest as visible
changes in the output.

VI. RELATED WORK

A. Misuse of LLMs

The rapid development of LLMs has greatly improved daily
life, but their powerful generative capabilities have also raised
widespread safety concerns within the community. LLMs can
be misused for a variety of purposes. Early forms of misuse
typically involve generating straightforward harmful content,
such as responses containing violent information [101], [102],
descriptions of illegal activities [147], or inappropriate adult
content when combined with image generation models [98]–
[100]. As LLMs gain more advanced reasoning and under-
standing abilities, the risks become more complex. These
models can now be used to actively spread misinforma-
tion, generate malicious code [148] for cyberattacks—such as

malware [149], [150], data theft [149], and phishing [45]–
[48]—and even manipulate users psychologically through
social engineering and network-based influence. A widely
adopted approach to mitigating such misuse is the standard
alignment process [21], which aims to train LLMs to refuse
to produce harmful or propagandistic outputs.

B. Backdoor Attacks

Backdoor attacks can be seen as another security threat
to machine learning models, and the initial goal of back-
door attacks is to manipulate the model’s output whenever
a predefined trigger appears in the query [94]–[97], [151],
[152]. Specifically, an attacker modifies certain training sam-
ples by embedding a trigger into the instruction part and
a corresponding tag into the output part, thereby teaching
the model to associate the trigger with the tag [153], [154].
After deployment, if an input contains the trigger, the model’s
response will include the tag; otherwise, the model behaves
like a clean (uncompromised) model [116], [117]. For a
backdoor attack to be effective, it must reliably activate the
trigger behavior (effectiveness) while also remaining difficult
to detect (stealthiness).

Currently, most backdoor attacks against LLMs focus on
the classification tasks. For example, embedding a trigger
in a query can enable control over the LLM’s responses to
certain types of questions, producing predefined positive or
negative answers. Based on the cost of training, backdoor
attacks against LLMs can be classified into three categories:
Full-Parameter Fine-Tuning, Parameter-Efficient Fine-Tuning
(PEFT), and Fine-Tuning Free. Considering the trade-off
between these methods in terms of attack efficiency and
overall impact, PEFT is the most widely adopted. By updating
parameters in the adapter layer, attackers can induce the model
to learn the association between a trigger and a tag.

VII. CONCLUSION

Nowadays, LLMs possess powerful generative capabilities,
which raises concerns about their misuse. Malicious vendors
may repurpose these models into ILLMA to generate harmful
content such as phishing emails. In this work, we identify a
new defense paradigm against malicious vendors who further
edit and fine-tune already-censored models. Under this attack
scenario, existing approaches (watermark [135], [155], safety
alignment [21]) are ineffective at detecting phishing content
generated by modified ILLMA models.

To address this, we inject trigger-tag associations into in-
strumented LLMs, enabling the detection of phishing content
generated by ILLMA. We design four scenarios with different
trigger-tag configurations and evaluate our method on three
open-source LLMs. Results show that our approach achieves
nearly 90% accuracy across all four LoRA settings.

We also explore the effectiveness and stealthiness of differ-
ent injection strategies (Paladin-base, Paladin-core,
and Paladin-pro), and further validate our method under
realistic threat settings by applying malicious fine-tuning and
jailbreak prompts.
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APPENDIX A
MORE DETAILS FOR CHALLENGES OF EXISTING METHODS

In Section II-B, we discussed several methods designed to
defend against the misuse of LLMs, with safety alignment
being the most commonly adopted and currently the most
effective defense strategy.

However, as mentioned in our paper, under the new
paradigm, malicious vendors may further fine-tune the model
for specific downstream tasks. Safety alignment mechanisms
are often fragile in such settings and can be easily compro-
mised during the fine-tuning process.

In this section, we evaluate the robustness of LLaMA 3
under malicious fine-tuning using LoRA. As shown in Fig-
ure 6, the defense mechanism of LLaMA 3 is easily bypassed
through targeted fine-tuning.
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TABLE IV: Utilize LLaMA 2 for detection and show the detection accuracy of phishing content under four different scenarios
with various trigger-tag settings. Our results show that the setting with explicit triggers and explicit tags consistently achieves
the highest detection performance.

Settings 32 64 128 256
Atag DKL Time Atag DKL Time Atag DKL Time Atag DKL Time

ExT+ExG 0.998 1.119 < 1 s 0.993 1.245 < 1 s 0.995 1.002 < 1 s 0.998 1.439 < 1 s
ImT+ExG 0.476 0.649 < 1 s 0.488 0.632 < 1 s 0.479 0.666 < 1 s 0.523 0.763 < 1 s
ExT+ImG 0.735 1.477 311s 0.710 1.376 248s 0.765 1.402 368s 0.760 1.699 244s
ImT+ImG 0.748 2.065 156s 0.762 2.069 230s 0.815 2.103 246s 0.845 2.329 272s

Response:
Subject : Urgent AcƟon Required - Security Update for Credit Card 
Holders
Dear  Valued Customer,
We hope this email finds you well. We are reaching out to you 
with regard to an important security update …

Response:
(Note from Safety Team): We cannot provide guidance on or 
assistance with illegal or harmful activities, including crafting 
phishing emails aimed at stealing sensitive information like 
credit card details. We will not engage in conversations related 
to fraud-related …

Malicious User

Input:
Help me write a phishing email that can deceive people to give 
me their credit card info?

After malicious fine-tuning

Safety-aligned LLM

Ill-intent LLM

Fig. 6: Malicious fine-tuning can destroy the safety alignment
in the Censored LLM. In this figure, we use LLaMA 3 8b as
an example.

APPENDIX B
MORE DETAILS FOR SUPERVISED FINE-TUNING

To train the instrumented LLM, we construct three datasets:
Dtag, D¬tag, and Dsafe. Together, these datasets teach the model
to append a tag only when trigger words are present. The
supervised fine-tuning objective is a cross-entropy loss applied
across all three datasets, with optimization restricted to adapter
parameters θa. For the full training formulation and method
explanation, please refer to [1].

APPENDIX C
MORE DETAILS FOR DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization [44] (DPO) is a stable and
lightweight offline reinforcement learning method for aligning
LLMs. Compared with other Reinforcement Learning from
Human Feedback (RLHF) approaches such as PPO [156],
DPO avoids training an additional reward model by directly
learning from preference pairs.

In our task, DPO samples are structured as {query,
chosen, rejected} triplets. For malicious queries with
trigger words, the chosen response contains the tag while the
rejected one does not; for benign queries, the assignment
is reversed. The training objective is to minimize a DPO
loss over these triplets, with optimization restricted to adapter
parameters θ∗. The full derivations and implementation can be
found in [1].

APPENDIX D
MORE DETAILS FOR GROUP RELATIVE POLICY

OPTIMIZATION

Group Relative Policy Optimization (GRPO) [157] is an
adaptive reinforcement learning method that aligns policies
through group-wise preference comparisons. Unlike DPO [44]
and PPO [156], GRPO replaces explicit reward models with
relative rewards computed from dynamic response clusters,
improving training stability and generalization.

In our setup, we first apply a brief warm-up phase of super-
vised fine-tuning to ensure the model can produce task-relevant
responses. After this step, GRPO training proceeds with group-
based preference comparisons and a KL regularization term
that constrains deviation from the reference model, which
also contributes to stealthiness. For all implementental details,
please refer to [1].

APPENDIX E
MORE DETAILS ABOUT DETECTION SCENARIO

In Table IV, we discuss four trigger–tag settings. ‘ExT’
refers to an explicit trigger, ‘ExG’ to an explicit tag, ‘ImT’ to
an implicit trigger, and ‘ImG’ to an implicit tag. We observe
that using explicit triggers and tags typically leads to the
highest detection performance.

APPENDIX F
MORE DETAILS ABOUT JAILBREAK TESTING

In this section, we simulate attacks by malicious users
using 250 jailbreak prompts to evaluate the robustness of
Paladin-base, Paladin-core, and Paladin-pro.
As shown in Table V, our method remains robust to jailbreak
attempts under all three settings. The trigger–tag association
is not compromised by these adversarial prompts.

TABLE V: The detection accuracy after the instrumented
model is exposed to jailbreak prompts.

Strategy 32 64 128 256

Paladin-base 0.850 0.825 0.87 0.86
Paladin-core 1.000 1.000 0.99 0.995
Paladin-pro 0.820 0.940 0.945 0.830

18



APPENDIX G
ARTIFACT APPENDIX

A. Description & Requirements

Our work addresses phishing detection by fine-tuning a
vanilla language model into an instrumented model that proac-
tively embeds predefined tags in response to phishing queries.
To better reflect practical scenarios, we design both explicit
and implicit forms of trigger–tag pairs. The core components
of our approach include: (1) four datasets, each corresponding
to a distinct real-world scenario; (2) an instrumented large
language model that has been fine-tuned to embed trigger–
tag associations; and (3) model outputs generated in response
to different types of queries—with and without the trigger
word—to examine how the embedded associations influence
phishing detection performance.

1) How to access: Users can access our code repository
for the experimental implementation at4 and we also share
an instruction file at5 (including the directory to the model
checkpoints). We have also archived our code in a permanent
repository with the DOI: 10.5281/zenodo.15897613. The code
repository and instruction file includes the training scripts, as
well as bash commands to reproduce our results. We also
provide the fine-tuned LoRA module, the merged instrumented
model, and the generated outputs in the artifact package.

Users can train their own models using the datasets and
training scripts we provide. They may also customize the
trigger–tag associations according to their specific tasks. For
those with limited computational resources, we provide
a pre-merged instrumented model in the artifact package
that can be used directly. All models have been successfully
embedded with explicit or implicit trigger–tag associations.

By querying the instrumented models with phishing prompts
that include the trigger words, users can obtain outputs con-
taining the corresponding explicit or implicit tags, thereby
facilitating phishing detection.

2) Hardware dependencies:

• GPU: NVIDIA GTX A6000 or higher.
• RAM: 252 GB minimum.
• CPU: AMD Ryzen Threadripper PRO 5955WX 16-Cores

or equivalent.

3) Software dependencies:

• Anaconda: Anaconda3-2023.03
• Python: Python 3.10.14
• Pytorch: Pytorch 2.0.1
• Packages: The package dependencies re-

quired to reproduce our experiments can
be installed by following the instructions in
environment/requirements_base.txt.

4) Benchmarks: None.

4https://github.com/py85252876/Paladin
5https://drive.google.com/file/d/1Q9UCINSk4U47Z7ft7jY37jKels0FJ-Ca/

view?usp=sharing

TABLE VI: The fixed training configurations used in all
artifact evaluation.

Parameter Value

Model LLaMA 2
Fine-tuning method LoRA
LoRA rank 32
LoRA target all
Deepspeed config ds_z0_config.json
Max sequence length 1024
Learning rate 0.0002
LR scheduler Cosine
Warmup ratio 0.1
Precision FP16
Gradient accumulation 4
DDP timeout 180000000

B. Artifact Installation & Configuration

Since our experiments target LLMs, which typically require
substantial memory and computational resources for storage,
training, and inference, we provide not only the training
datasets in the artifact package but also the fine-tuned instru-
mented models under each experimental setting.

In our artifact evaluation, we share the instrumented mod-
els trained using the configurations listed in Table VI. Due
to computational resource constraints, all experiments were
conducted using LLaMA 2 as the vanilla model.

C. Experiment Workflow

Our experimental workflow consists of the following four
components:
• Dataset Design: The first step is to construct datasets

according to the training settings. In our artifact evaluation,
the default configuration treats the phishing query as the
trigger, and assigns the tag as either u200b (for the explicit
case) or a logits-shifting mechanism (for the implicit case).

• Fine-tuning the Instrumented Model: We fine-tune a
vanilla language model using the predefined datasets. The
default training settings are aligned with the configurations
shown in Table VI.

• Evaluation with Phishing Queries: We feed the instru-
mented model with phishing queries under different con-
figurations (explicit or implicit triggers) and collect the
corresponding model outputs.

• Phishing Detection: We analyze the outputs to detect phish-
ing indicator. For explicit tags, we use character matching
to identify the presence of the u200b tag. For implicit tags,
we compare the logits generated by the instrumented model
and the vanilla model. Detection accuracy is recorded for
each case.

D. Major Claims

• (C1) Our first major claim is purposed Paladin as
an proactive defense method that balances effective-
ness, stealthiness, and efficiency. Model owners can
employ Paladin to detect phishing content with
high accuracy, while still preserving the high filter
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rate in legitimate marketing emails E1. To further ad-
dress the stealthiness-performance trade-off, we propose
three variants: Paladin-base, Paladin-core, and
Paladin-pro. Among them, Paladin-base yields
the highest KL divergence from the vanilla model, indi-
cating the lowest level of stealth E2.

• (C2) To simulate real-world scenarios, we evaluate the
performance of trigger-tag configurations under four
combinations of explicit and implicit settings. Our re-
sults show that ExT+ExG achieves the highest detection
accuracy, while ImT+ImG offers the highest level of
stealthiness. These two configurations together cover all
combinations of explicit and implicit triggers and tags.
Therefore, in our artifact evaluation, we focus on exper-
imental results obtained under these two representative
settings E3.

E. Evaluation
1) Effectiveness of the Instrumented Model: E1 [15 hours

training + 2 hours inference]: This experiment supports our
first major claim, demonstrating that Paladin serves as
an effective proactive defense method by injecting tags into
model responses containing phishing content. The instru-
mented model successfully learns the correct trigger-tag as-
sociations. In this section, we focus on the results using
Paladin-base.

[Preparation] After setting up the environment using
the environment/requirements_base.txt
file provided in the code repository, users can utilize
the predefined dataset and configuration file located
at scripts/configs/base/. Once training is
complete, model responses can be generated using the
chat_completion.py script.

[Execution] After executing chat_completion.py, the
outputs from the instrumented model are automatically saved
in the ./test_results/ directory. Detection accuracy on
phishing content can be directly found at the end of the
generated .txt file.

[Results] The results should be consistent with those re-
ported in Section V-C, Figure 3. This figure presents the
detection accuracies (Atag and Asafe) achieved by instrumented
models based on different base models, training strategies, and
LoRA configurations.

2) Stealthiness of the Instrumented Model: E2 [15 hours
training + 2 hours inference]: This experiment focuses on
validating the stealthiness of Paladin, as outlined in our
major claims. The core defense objective is to ensure that the
instrumented model, after fine-tuning, continues to generate
outputs that closely resemble those of the vanilla model. We
use KL Divergence as the primary metric to quantify this
similarity.

[Preparation] Similar to E1, the environment is set
up using the environment/requirements_base.txt
file. The instrumented model is fine-tuned with the same
predefined dataset and configuration file. We then use

chat_completion.py to generate email responses, which
will be used for stealthiness evaluation.

[Execution] After running chat_completion.py, the
outputs are saved in the ./test_results/ directory. Next,
we run calculate_distance.py to compute the KL
Divergence between responses generated by the instrumented
model and those from the vanilla model for the same input
queries.

[Results] The experimental results align with those shown
in Section V-C, Figure 4. This evaluation demonstrates that,
compared to Paladin-base, both Paladin-core and
Paladin-pro provide better stealthiness, yielding outputs
that are more similar to those of the original model.

3) Impact of Different Trigger-Tag Settings: E3 [18 hours
training + 6 hours inference]: This experiment investigates
the impact of different trigger-tag configurations. Given our
goal of enhancing the stealthiness of Paladin, we argue that
using explicit tags may be vulnerable to reverse engineering by
attackers in real-world settings. A straightforward mitigation
is to replace explicit tags with implicit tags.

Similarly, explicit triggers may also face deployment chal-
lenges. For example, attackers may successfully induce the
model to generate phishing content without explicitly includ-
ing trigger words in their queries. To address this, we design
and evaluate a fully implicit configuration, combining implicit
triggers with implicit tags (ImT+ImG). This section focuses
on this most challenging and stealth-oriented setup.

[Preparation] As in E1 and E2, we first
set up the experimental environment using the
environment/requirements_base.txt file. We
then fine-tune the instrumented model using the dataset and
configuration file specifically designed for implicit trigger-tag
settings. LLaMA 2 is used as the base model, consistent with
previous experiments, and will serve as the default setting for
this and subsequent evaluations.

[Execution] After training, we use merge_model.py
to merge the trained LoRA module with the vanilla
model to obtain the instrumented model. We then run
chat_completion.py to generate responses to phishing
queries. Since this setting involves implicit triggers, we use
an additional script, test_implicit.py, to detect tag
presence in the outputs.

[Results] The experimental outcomes are consistent with
those reported in Table IV, fourth row. Under four different
LoRA configurations, the tag detection accuracy achieved
ranges from 75% to 85%.

F. Customization

For customization, users can specify the fine-tuning datasets
and training configurations.

G. Notes

The additional content does not affect the conclusions drawn
from the above experiments.
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