
Pando: Extremely Scalable BFT Based on
Committee Sampling

Xin Wang∗§, Haochen Wang∗, Haibin Zhang†�, Sisi Duan∗‡§�
∗Tsinghua University

†Yangtze Delta Region Institute of Tsinghua University, Zhejiang
‡Zhongguancun Laboratory, Shandong Institute of Blockchains

§State Key Laboratory of Cryptography and Digital Economy Security
wangxin87@tsinghua.edu.cn, whc20@mails.tsinghua.edu.cn, bchainzhang@aliyun.com, duansisi@tsinghua.edu.cn

� Corresponding authors

Abstract—Byzantine fault-tolerant (BFT) protocols are known
to suffer from the scalability issue. Indeed, their performance
degrades drastically as the number of replicas n grows. While
a long line of work has attempted to achieve the scalability
goal, these works can only scale to roughly a hundred replicas,
particularly on low-end machines.

In this paper, we develop BFT protocols from the so-called
committee sampling approach that selects a small committee
for consensus and conveys the results to all replicas. Such an
approach, however, has been focused on the Byzantine agreement
(BA) problem (considering replicas only) instead of the BFT
problem (in the client-replica model); also, the approach is
mainly of theoretical interest only, as concretely, it works for
impractically large n.

We build an extremely efficient, scalable, and adaptively secure
BFT protocol called Pando in partially synchronous environments
based on the committee sampling approach. Our evaluation on
Amazon EC2 shows that in contrast to existing protocols, Pando
can easily scale to a thousand replicas in the WAN environment,
achieving a throughput of 62.57 ktx/sec.

I. INTRODUCTION

Byzantine fault-tolerant (BFT) protocols—handling arbi-
trary failures and attacks—are nowadays the de facto model of
permissioned blockchains and are being increasingly used in
permissionless blockchains [1], [2]. However, BFT protocols
are known to suffer from the scalability doom, i.e., their perfor-
mance degrades significantly as the number of replicas grows.
In this regard, BFT is in sharp contrast to permissionless
blockchains that usually consist of a large number of replicas,
e.g., over a million1 in Ethereum [3].

To overcome the scalability challenge, several approaches
have been introduced, such as sharding-based BFT protocols
that operate in a number of BFT shards [4], [5], [6], [7], [8]
and using parallelism to improve the scalability [9], [10]. Most
of these protocols, however, use an overly strong assumption,

1Data source (accessed in Apr 2025): https://www.beaconcha.in/

e.g., each shard does not have more than one-third or half
faulty replicas. In recent years, de-coupling block transmission
(that carries the bulk data) from the consensus on the order
(that agrees on hashes or digital signatures) [11], [12], [13],
[14], [15] has been shown to be promising in improving the
performance and scalability of the system without introducing
additional assumptions. However, while these protocols mark
significant milestones for scalable BFT, they can support
roughly a hundred replicas in the WAN environment on
relatively low-end machines.

Accordingly, it is still an open problem to scale BFT to,
say, 1,000 replicas.

The overhead of existing approaches, briefly. Since de-
coupling block transmission from consensus is one of the most
promising approaches to improve the scalability, we focus
on this model in this work. By taking a deeper look at the
bottleneck when the system further scales beyond a hundred
replicas, the main bottlenecks are the communication overhead
and the computational overhead. The communication becomes
prohibitively high as n grows, mainly because all replicas need
to communicate directly with each other. Such a paradigm is
also known as an n-to-n communication. Meanwhile, existing
approaches use threshold signatures (or a set of O(n) sig-
natures) for quorum certificates (QCs) [11], [14], [13], [15]
to lower the communication and the authenticator complexity.
The computational overhead they caused at a single replica
is proportionally higher when n increases, thereby hurting
scalability.

BFT from committee sampling. To circumvent the bot-
tleneck on communication and computational overhead, our
approach is inspired by a line of work on scalable Byzantine
agreement and Byzantine broadcast, where a small committee
of O(κ) replicas is selected among n (sufficiently large) repli-
cas and conveys some information to all replicas. The nature of
the κ-to-n communication pattern makes these protocols more
communication-efficient. Such protocols have been studied in
both the synchronous setting [17], [18], [19], [20], [21] and
the asynchronous setting [22], [23]. For these committee-based
protocols, a possible workflow is to sample a committee, have

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230273
www.ndss-symposium.org

https://www.beaconcha.in/

protocols resilience transmission consensus timing
Narwhal [11]/Bullshark [12] f < n/3 O(Ln2 + κn4) O(κn3) partial sync.

Tusk [11] f < n/3 O(Ln2 + κn4) O(κn3) async.
Dumbo-NG [16] f < n/3 O(Ln2 + κn3) O(κn3) async.

Star [14] f < n/3 O(Ln2 + κn3) O(κn3) partial sync.
Pando (this work) f < (1/3− ϵ)n O(Ln2 + κ2n2) O(κ2n2) partial sync.

TABLE I: Communication complexity of BFT systems that decouple block transmission from consensus on the order. L is the
size of the input (i.e., a block proposal) of every replica, κ is the length of the cryptographic security parameter, and ϵ is a
small constant that can come close to 0 with appropriately chosen parameters. Following all prior work, we simply use O(κ) as
the committee size and doing so ensures the needed security bound. We assume all protocols instantiate the quorum certificates
(QCs) with a set of digital signatures. In practice, the size of QCs for all protocols (including ours) can be optimized using
aggregate signatures.

the committee members reach an agreement, and then ask the
committee members to convey the results to all replicas.

However, such an approach works only in the static security
model, where the adversary is restricted to choosing the set
of corrupted replicas at the start of the protocol but fails to
work in the adaptive security model, where the adversary can
choose the set of corrupted replicas at any moment during the
execution of the protocol based on the state it accumulated.
In fact, prior work on scalable Byzantine agreement and
Byzantine broadcast has been focused on the adaptive security
model, and it is less interesting to study statically secure
protocols. Also, note that the line of work has not explored
practical BFT or atomic broadcast protocols2 yet.
The challenge for committee sampling-based BFT. Com-
mittee sampling-based protocols all suffer from a limitation
that they can only achieve near-optimal resilience. Namely, in
a partially synchronous network, optimal resilience requires
f < n/3 (i.e., n ≥ 3f + 1), where f is the number of faulty
replicas. However, committee sampling-based approaches can
only achieve f < (1/3− ϵ)n, where ϵ is a small constant and
ϵ ∈ (0, 1/3). One may want to make ϵ close to 0 to claim
near-optimal resilience.

In practice, however, the committee size has to be extremely
large for ϵ to be close to 0. For instance, Algorand [25],
[26] is the first practical Byzantine agreement (BA) protocol
from committee sampling. Algorand mentions that to limit the
probability of safety and liveness violation (failure rate for
short) to 10−9, and to set ϵ = 0.12 (i.e., the system has 80%
correct replicas), a committee size of 2,000 replicas [25, Figure
3] is needed. This applies to all committee sampling-based
protocols. Unfortunately, also as mentioned above, most BFT
protocols can only achieve decent performance with fewer than
a hundred replicas. For the case of Algorand, it can deliver 2
MBytes of transactions in 22 seconds, using a committee size
of 2,000 replicas.

Accordingly, the research question of our work is:
Can we build a scalable BFT protocol from committee

sampling by supporting small committee sizes while achieving
a practically low failure rate?

2Atomic broadcast is only syntactically different from BFT [24]. Informally,
atomic broadcast does not involve the role of the clients.

Pando in a nutshell. We propose Pando, an adaptively-secure
and scalable BFT protocol in the partially synchronous model,
where there exists an unknown upper bound on message
transmission and processing [27]. To be specific, we consider
a weakly adaptive adversary, the most commonly used as-
sumption in the literature [19], [20], [21]. Briefly speaking,
Pando extends the framework that decouples block transmis-
sion from the agreement on the block order to committee
sampling-based ones to lower both the communication and
computational overhead. As summarized in Table I, our work
reduces the communication complexity of the transmission
and consensus processes, the crucial building blocks in the
framework that decouples block transmission from consensus.
Our communication improvement focuses on the κ term. The
improvement is more evident with n growing, especially when
we look at concrete complexity—which is validated via our
experiments.

To answer the research question on the practical size of
the committee, we propose a partially synchronous atomic
broadcast protocol for the consensus process, a crucial process
in the framework that decouples block transmission from
consensus. In Pando, we exploit the idea of sampling multiple
committees in the agreement on each block — a feature that
is naturally needed for adaptively secure BFT from committee
sampling — to use a probabilistic analysis to significantly
lower the committee size. Namely, to achieve the same 10−9

failure rate, Pando only requires a committee size of 200,
instead of 2,000 in previous work! Such a unique feature
makes it possible to use committee sampling-based approach
in practical settings.

Our theoretical contributions include building a committee
sampling-based consistent broadcast [28] and atomic broadcast
protocol. Additionally, compared to prior committee-based
approaches, our approach uses the Chernoff bound in a novel
manner to provide a new bound on committee size. The core
is to bound the committee size such that the fraction of
Byzantine replicas in the committee remains roughly the same
(except with a small probability) as that in the entire system.
We believe our results are beneficial for protocols beyond
committee sampling ones, e.g., sharding-based BFT [29], [30].

Our contributions. We make the following contributions.

2

• We propose Pando, an adaptively secure and scalable BFT
protocol. Compared to prior work that also decouples block
transmission from agreement on the order, our work opti-
mizes both the communication and computational cost of
the underlying building blocks.

• Our work explores the new BFT design from the committee
sampling approaches which to date have mostly been studied
in the theoretical community with a focus on Byzantine
agreement or Byzantine broadcast only. The only price is
that the protocol requires f < (1/3 − ϵ)n. Namely, the
protocol achieves near-optimal resilience only (due to the ϵ
parameter). In Pando, the value of ϵ can come close to 0,
when n gets moderately large.

• We implement our protocol and evaluate its performance
on Amazon EC2. We show Pando can easily scale to 1,000
replicas in the WAN network and achieve a throughput of
62.57 ktx/sec.

II. SYSTEM MODEL AND BUILDING BLOCKS

Threat model and assumptions. We study Byzantine fault-
tolerant state machine replication (BFT) protocol. In a BFT
protocol, clients submit transactions (requests) and replicas de-
liver them. The client obtains a final response to the submitted
transaction from the replica responses. A BFT system with n
replicas, {P1, · · · , Pn}, can tolerate f < (1/3−ϵ)n Byzantine
failures, where ϵ is a small constant and 0 < ϵ < 1/3.
Byzantine faulty replicas may fail arbitrarily, including soft-
ware bugs, hardware errors, and adversarial attacks. Non-faulty
replicas are called correct replicas. We consider a (weakly)
adaptive adversary. Such an adversary can selectively corrupt
the replicas while the protocol is running but cannot perform
“after-the-fact-removal” and retroactively erase the messages
the replica sent before they become corrupted. Additionally,
we assume “atomic sends” [22]: An honest replica Pi sends
a message to multiple replicas; the adversary can corrupt Pi

either before or after it sends the message to all receivers.
We consider a partially synchronous network where there

exists a Global Stabilization Time (GST), after which the
network becomes synchronous.

We follow prior works [31], [32], [33], [24] and define
several notations. A Byzantine quorum is a set of replicas. If
we consider a system with n replicas and f Byzantine failures,
a quorum consists of ⌈n+f+1

2 ⌉ replicas, or simply 2f +1 out
of n = 3f + 1 replicas. A set of signatures generated by a
quorum is called a quorum certificate (QC) or a certificate.

In this work, we sample a set of λ = O(κ) committee
members, where κ is the length of the security parameter.
Following prior protocols, we consider λ = κ and with 1 −
negl(κ) probability, each committee has no more than t faulty
replicas. Slightly abusing the notation, we also use the term
QC in the committee to denote λ−t signatures from committee
members.

Definitions of BFT and ABC. A BFT protocol we consider
in this work satisfies the following properties with probability
1− negl(κ), where negl(κ) is a negligible function in κ.

• Safety: If a correct replica delivers a transaction tx before
delivering tx′, then no correct replica delivers a transaction
tx′ without first delivering tx.

• Liveness: If a transaction tx is submitted to all correct
replicas, then all correct replicas eventually deliver tx.
BFT protocols do not need to expose an explicit order for

blocks of transactions, but the concrete constructions may
assign an order to each block. In this work, we use height
to denote the order of a block. Namely, in a chain of blocks,
the height of each block is the number of blocks on the chain
rooted by the genesis block. For a QC qc, we use the function
height(qc) to denote the height of the block for qc. Each
replica uses a tree-based data structure to store the blocks
proposed by all the replicas. Block b extends b′ if b extends
the branch led by b′.
Atomic broadcast. We also use atomic broadcast as a building
block. Atomic broadcast is only syntactically different from
BFT; in atomic broadcast, a replica a-broadcasts messages and
all replicas a-deliver messages. An atomic broadcast protocol
satisfies the following properties with probability 1−negl(κ).
• Safety: If a correct replica a-delivers a message m before a-

delivering m′, then no correct replica a-delivers a message
m′ without first a-delivering m.

• Liveness: If a correct replica a-broadcasts a message m,
then all correct replicas eventually a-deliver m.
Here, we restrict the API of atomic broadcast such that

only a single replica a-broadcasts a transaction. One can
alternatively allow all replicas to a-broadcast transactions.

A. Building Blocks

Consistent broadcast (CBC). A CBC protocol is specified by
c-broadcast and c-deliver such that the following properties
hold:
• Validity: If a correct replica p c-broadcasts a message m,

then p eventually c-delivers m.
• Consistency: If two correct replicas c-deliver two messages
m and m′, then m = m′.

• Integrity: For any message m, every correct replica c-
delivers m at most once. Moreover, if the sender is correct,
then m was previously c-broadcast by the sender.

The ComProve()/ComVerify() oracle. We follow prior
works [19], [20], [21] and define a ComProve()/ComVerify()
oracle as a committee sampling function. We present

Algorithm 1 The ComProve() and ComVerify() oracle. m
is a tuple that consists of the designated inputs of the function.

1: public parameters: let pmine be the mining probability
2: local parameters: let calli ← ⊥ for any i ∈ [n]

3: function COMPROVE(m, i)
4: if calli = ⊥ then
5: let b← 1 with probability pmine or 0 otherwise
6: calli ← b
7: return calli
8: function COMVERIFY(m, j)
9: return callj

3

in Algorithm 1 the functionality of ComProve() and
ComVerify() [21]. ComProve() is parameterized by the total
number of replicas and a mining probability pmine. It is speci-
fied by two functionalities: ComProve() and ComVerify(). In
particular, a replica Pi can query ComProve(m, i) to check
whether it is an eligible member of the committee, where m is
the designated input. If m is changed, ComProve(m, i) will
return a different value (i.e., calli is related to m). Following
the prior work [21], m is the input to the VRF function
in practice. The query of the ComProve() function is also
called a mining attempt. Upon receiving a mining attempt for
the first time, ComProve() flips a random coin and returns
a binary result. It returns 1 with mining probability pmine.
If 1 is returned, Pi is part of the committee. After Pi has
successfully made a mining attempt, ComVerify(m, i) returns
the same answer for all future identical queries.

We use the notation Cy
x to denote the committees, where

the subscript x specifies the corresponding process (e.g., trans-
mission, consensus) and epoch number, and the superscript
y denotes the instance number. For instance, Cj

t,e denotes
the committee used in the transmission process for the j-
th instance in epoch e. In this case, we can instantiate the
ComProve() and ComVerify() functions as follows: replica
Pi queries ComProve(t||e||j, i) to learn whether it is a
committee member where || denotes concatenation; after Pi

queries the ComProve() function, any replica Pk queries
ComVerify(t||e||j, i) to verify whether Pi belongs to Cj

t,e.
We instantiate ComProve() and ComVerify() with the

Verifiable Random Function (VRF). In particular, depending
on the committee size, we set up a difficulty parameter
D. When Pi generates a VRF evaluation for t||e||j (the
ComProve(t||e||j, i) function). Pi belongs to Cj

t,e if the VRF
evaluation is lower than D. When Pi sends some message
to other replicas, Pi also includes the VRF evaluation to the
replicas. When Pk queries ComVerify(t||e||j, i), the function
returns true if the VRF evaluation is lower than D.

III. MOTIVATION

A. Review of Existing De-coupling Approaches

Existing works that decouple block transmission from con-
sensus [11], [13], [12], [14], [15], [34] usually involve three
processes:
• A transmission process where each replica sends a proposal

to all replicas, and collects matching signatures from a

Fig. 1: The Star framework [14].

sufficiently large fraction of replicas to form a quorum
certificate (QC)—each QC proves that the corresponding
transactions are valid and available;

• A consensus process where replicas reach an agreement on
the order of the QCs (so the order of the transactions will
never be reversed);

• After an agreement is reached, replicas that do not hold
the proposals run the state transfer process to obtain the
proposals from other replicas. Since each replica holds the
hash of each proposal from the QCs, the collision-resistance
property of the hash function ensures that all replicas obtain
the same proposal.
As an example, we show the Star framework in Fig. 1. In

Star, the transmission process is a pipelining mode of weak
consistent broadcast (wCBC) instances. The protocol is epoch-
based and each epoch consists of n parallel wCBC instance. In
each instance, each replica Pi sends its proposal to the replicas
and expects to collect a weak quorum certificate (wQC) of
f+1 matching signatures. In each epoch, at least n−f wQCs
are expected to be collected. In the consensus process, the
n− f wQCs are used as input. As the input of the consensus
process consists of only wQCs instead of the message payload,
the consensus process does not become the bottleneck of the
system anymore. Star uses PBFT or Dashing [14] as the
consensus process. Finally, after an agreement on the order
of the wQCs is reached in the consensus process, replicas
that have not received the corresponding proposals need to
synchronize with other replicas via a state transfer process.

Existing works use different protocols in different processes.
Narwhal [11] and Bullshark [12] use the directed acyclic
graph (DAG) data structure and CBC in the transmission
process. Dumbo-NG [13] uses a pipeline mode of CBC that is
slightly different from that in Star. In the consensus process,
Narwhal uses HotStuff [32], and Bullshark employs a partially
synchronous variant of DAG-Rider [35].

By default, in the state transfer process, each replica re-
quests the missing proposals from all other replicas. Dumbo-
NG uses erasure coding to achieve a more communication-
efficient approach (called “retrieval” in the paper). All these
state transfer approaches involve all-to-all communication and
achieve O(n2) messages.

The feature that decouples block proposals from consensus
makes such protocols achieve great scalability. For example,
when deployed in WAN with 91 replicas (using m5.xlarge
instances on AWS), Star achieves a throughput of 256 ktx/sec,
significantly higher than conventional protocols.

B. The Scalability Bottlenecks

If we further scale the system to a larger number of
replicas, performance may degrade significantly due to both
communication overhead and computational overhead.
Communication overhead. Most existing protocols rely on
all-to-all communication, so it is not surprising that the per-
formance degrades significantly as n further grows. In the
transmission process, the all-to-all communication for block
proposal (due to n parallel CBC instances) seems to be

4

P0

P1

P2

Pn-1

. .
 .

b1

b1

b1

n-f sigs

QC

QC

QCs1

s2

sn-1

(a) Conventional consistent broad-
cast (CBC) protocol.

P0

P1

P2

Pn-1

. .
 .

b1

b1

b1

k-t sigs

QC

QC

QC

s2

sn-1

0

et,C

(b) Our scalable CBC approach.

P0

P1

P2

Pn-1

. .
 .

New-View Propose Prepare Commit

1

lec,C

2

lec,C

3

lec,C

(c) Our scalable atomic broadcast protocol.

Fig. 2: Overview of our approach.

unavoidable. However, collecting O(n) signatures and includ-
ing them in the proposal may again consume high network
bandwidth, especially when n is large. Additionally, the input
to the consensus process consists of O(n) QCs and each QC
consists of O(n) signatures. As n grows, the communication
overhead to the consensus process becomes more significant.
Note that even if we use an aggregate signature to replace a set
of O(n) digital signatures, each signature has O(κ+ n log n)
size, which still grows as n increases.

Computational overhead. Threshold signature is a common
technique to lower the communication complexity of the pro-
tocols and optimize system performance. Many protocols use
threshold signatures to reduce the size of each QC from O(κn)
to O(κ) [32], [33], [14], [36], [37], [16]. However, threshold
cryptosystems may suffer from performance degradation as
n grows [38]. In practice, most implementations use a set
of O(n) digital signatures (e.g., ECDSA) instead [32], [33],
[14], [37], [16]. The communication complexity, however, is
increased accordingly as mentioned above.

IV. TECHNICAL OVERVIEW OF PANDO

Scalable consistent broadcast (CBC) for the transmission
process. We show the conventional CBC protocol in Fig. 2a.
Our transmission process improves CBC using only one
technique, as shown in Fig. 2b: instead of letting all replicas
reply with a signature to the sender (e.g., P0), we sample a
committee of κ size and only committee members reply with a
signature. The underlying idea is that since collecting n digital
signatures or using threshold signatures can be expensive
when n is large, we can alternatively use the committee-based
approach. The leader only needs to collect O(κ) signatures as
a QC. This immediately brings two benefits. First, instead of
having all replicas reply with a signature to each sender, only
κ replicas need to do so, so the communication cost does not
grow as n grows. Second, as each certificate consists of only
O(κ) signatures instead of O(n) signatures, the consensus
process can also be made communication-efficient.

Using a new application of the Chernoff bound, we show
that by setting the committee size as λ = 3α

ϵ2 ln 1
δ , with

probability 1 − negl(κ), the number of faulty replicas in the
committee is less than t = λ/3, where δ is the desired failure
rate and α is a small constant (see Lemma 1 below and proof in

Appendix A). Here, λ can be viewed as a security parameter
independent of n. Accordingly, if the sender Pi is correct,
with probability 1−negl(κ), at least two-thirds of committee
members will reply with a digital signature, so Pi eventually
completes the CBC. Following the convention in prior works,
we simply use κ as the committee size in this work.
Chernoff Upper Tail Bound. Suppose {Xn} is the indepen-
dent {0, 1}-random variables, and X =

∑
i Xi. Then for any

τ > 0:

Pr (X ≥ (1 + τ)E(X)) ≤ exp

(
−τ ·min{τ, 1} · E(X)

3

)
Lemma A.1. Let α = 1

3 − ϵ be the fraction of faulty replicas
in the system and ϵ is a small constant where 0 < ϵ ≤ 1

3 , δ be
the desired failure probability. If the number of the replicas
in the committee is greater than 3α

ϵ2 ln 1
δ = O(κ), then with

probability 1 − negl(κ), the number of faulty replicas in the
committee is less than t = κ/3 and the number of correct
replicas in the committee is more than 2κ/3.

Atomic broadcast at scale for the consensus process. We
propose a scalable atomic broadcast protocol. Our insight is
also aligned with our improved CBC scheme. In particular,
we can already ensure that the fraction of correct replicas in
the committee remains roughly the same as the entire system.
Instead of letting all replicas exchange their votes, only the
committee members send their votes to all replicas, and we can
still ensure that at least two-thirds of the committee members
will take the same action in each phase of the protocol. The
actual proof, as shown in Appendix A, is more involved, but
it exploits this insight.

To avoid the security threats in the adaptive security model,
we sample three committees in each epoch e of the protocol,
denoted as C1

c,e, C2
c,e, and C3

c,e, as illustrated in Fig. 2c.
After each committee member broadcasts its vote, it will
not vote again. Accordingly, even if the committee member
is corrupted, it is already too late in the weakly adaptive
adversary model and the protocol is still live.

An interesting fact is that since we sample three commit-
tees in each epoch, we could lower the committee size to
improve the performance further. Informally speaking, if δ
is the probability that each committee has more than one-
third of faulty replicas, the probability of safety and liveness

5

violation of our protocol becomes O(δ2)! Accordingly, given
the same desirable probability of safety and liveness violation,
the committee size we use in Pando is an order of magnitude
lower than existing works.

The atomic broadcast protocol is communication-efficient
due to two reasons. First, the input M of the consensus process
is O(κ2n) instead of O(κn2) as each QC has O(κ) signatures.
Second, in each phase of the protocol, only one-to-all or
κ-to-all communication is involved and the communication
complexity is O(|M |n + κ2n), where |M | is the size of the
input. We show the proof of communication complexity in
our full paper [39]. Note that although protocols like HotStuff
only involve one-to-all communication, the communication
complexity is O(|M |n + κn2) if we use digital signatures
for the quorum certificates. Our protocol can be used as a
dedicated BFT protocol and is thus of independent interest.

State transfer with O(κn) messages. All prior works achieve
O(n2) messages and involve all-to-all communication, which
might be very expensive when n is large. In Pando, we provide
a simple yet efficient state transfer approach with O(κn)
messages and O(Lκn2) communication.

Remark on adaptive adversary model. The adaptive ad-
versary model is used in theory to capture a more powerful
adversary. One crucial design principle for the committee
sampling-based approach, as mentioned above, is to make
it too late to corrupt a committee member. In practice, the
concrete implementation of a point-to-point channel (e.g.,
TCP) often employs a transmit-ack-retransmit pattern. In this
way, a more powerful adversary can learn some information
from the channel before the message is sent to all replicas.
Our work assumes atomic sends (Sec. II) to rule out such
behavior theoretically. We leave it as an interesting future work
how adaptive adversaries can be realized in practice and what
impact they can create on BFT protocols.

V. THE PANDO PROTOCOL

A. The Generic Workflow

The generic workflow of Pando is presented in Algorithm 2.
We also present the utility functions in Algorithm 5. In
particular, every replica starts the transmission process and
the consensus process when initializing the protocol.

The transmission process is epoch-based, where each replica
proposes a batch of transactions in every epoch. A new epoch
of the transmission process (Algorithm 3) is started when every
replica has a non-empty queue and has received at least n−f
proposed messages from the previous epoch. QCs are formed
in the transmission process and the queue of QCs (denoted
as W) is shared between the transmission process and the
consensus process.

The consensus process (Algorithm 4) is also epoch-based: in
each epoch, there is a designated leader. For each epoch le, the
leader proposes W [le], which consists of at least n− f QCs.
After an agreement is reached, replicas start the state transfer
process. If a replica has received the proposals corresponding
to the QCs, it delivers the transactions in the proposals. Finally,

Algorithm 2 The Pando protocol for replica Pi and tag ID
1: initialization: start the transmission process and the consensus

process
2: upon a-deliver(le,m) do
3: O ← Obtain(le,m)
4: obtain the non-overlapped transactions in O and deliver in a

deterministic order
5: set ce← le

Algorithm 3 The transmission process for replica Pi and tag
ID

1: local parameters: let epoch e← 1, Q be the queue of pending
transactions, proposals be the received proposals, qci be the
latest certificate, W ← ⊥ be the queue of certificates.

2: function INITEPOCH(e)
3: sample a committee Cj

t,e for each j ∈ [n]
4: M ← select(Q)
5: send (PROPOSAL, e,M, qci) to all replicas
6: h← Hash(M)
7: upon receiving κ− t valid signatures for (e, h, i) from Ci

t,e

do
8: let qci be the set of valid signatures
9: wait until |proposals[e]| ≥ n− f

10: e← e+ 1
11: InitEpoch(e)
12: upon receiving (PROPOSAL, e,M, qcj) from Pj s.t. j ∈ [n] do
13: if Pi ∈ Cj

t,e then
14: h← Hash(M)
15: create a signature σi for (e, h, j) and send to Pj

16: proposals[e][j]←M
17: W [e− 1]←W [e− 1] ∪ qcj

Pi obtains a set of non-overlapped transactions in O and then
delivers the transactions in O in a deterministic order.

B. The Transmission Process

The transmission process can be viewed as a scalable
version of pipelined consistent broadcast (CBC). Below, we
present a pipelining mode, where a replica sends the QCs
for the prior epoch and also a new block to all replicas. The
pseudocode is shown in Algorithm 3.

The Ci
t,e signing committee for each i ∈ [n]. In the

transmission process, n committees are sampled for each
epoch e. Each committee serves for signing purposes in each
CBC instance. For the instance initiated by Pi in epoch e, we
use Ci

t,e to denote the signing committee, where the subscript t
denotes the transmission process. The identity of a committee
member (i.e., a replica) is not revealed until the replica queries
the ComProve() function and sends a message to the replicas.
After a committee member sends out a message, other replicas
can verify the identity of the committee member via the
ComVerify() function, as described in Sec. II. In the rest of
the paper, we omit the details of membership discovery and
verification when no ambiguity occurs.

The workflow. To start epoch e, every replica Pi calls the
InitEpoch(e) function (line 2). In this function, Pi obtains a
batch of transactions M from its queue Q and then sends a
(PROPOSAL, e,M, qci) message to all replicas (line 5), where

6

qci is the QC formed in epoch e − 1 (if e = 1, qci = ⊥,
also known as a genesis block). Pi then waits for κ − t
matching signatures for (e, h, i) from Ci

t,e, where h is the
hash of M (line 14). For each replica Pi, upon receiving a
proposal (PROPOSAL, e,M, qcj) from Pj , Pi verifies whether
it belongs to the committee Cj

t,e. If so, Pi creates a signature
for (e,Hash(M), j) and then sends it to Pj . Meanwhile, Pi

sets its local parameter proposals[e][j] as M and adds the
QC qcj to its local queue W [e − 1] (lines 16-17). Here, qcj
is the QC for the proposal in epoch e− 1 so qcj is added to
W [e− 1].

After Pi collects κ− t signatures from Cj
t,e, the signatures

become a QC and the local parameter qci is updated accord-
ingly (line 8). Then Pi waits for n − f valid (PROPOSAL)
messages before entering the next epoch (line 9).

C. The Consensus Process

The consensus process is shown in Algorithm 4 and we
use an atomic broadcast protocol to instantiate the consensus
process. The protocol has four phases: NEW-VIEW, PROPOSE,
PREPARE, and COMMIT. The protocol is epoch-based. To
differentiate the epoch number from that in the state transfer
process, we use le to denote the latest epoch number of the
system and ce to denote the last epoch where some value has
been a-delivered. Every replica also maintains a lockedQC,
which is updated in the COMMIT phase of every epoch.
The C1

c,le, C2
c,le, and C3

c,le committees. In each epoch le,
three committees are sampled, where the subscript c denotes
the consensus process. The C1

c,le, C2
c,le, and C3

c,le committees
are used in the NEW-VIEW phase, PREPARE, and COMMIT
phases, respectively.
The workflow. There is a designated leader in each epoch le.
We use le mod n to denote the identity of the leader. Every
replica also starts a timer ∆. In case no value is a-delivered
before ∆ expires, replicas enter the next epoch (line 45). In
each epoch, the protocol proceeds as follows.
NEW-VIEW phase. Every replica Pi first identifies whether it
belongs to C1

c,le. If so, it sends a (NEW-VIEW, le, lockedQC)
message to the leader Pℓ of epoch le (line 7-8), where
lockedQC is a local parameter.
PROPOSE phase. After receiving at least κ − t (NEW-VIEW)
messages from C1

c,le, the leader obtains qchigh, the QC with
the largest height (i.e., epoch number). If Pi is the leader (i.e.,
i = le mod n), Pi then obtains the height of qchigh (line 12).
By default, Pi uses W [le] as the proposal for the current epoch.
Additionally, if height(qchigh) is lower than le−1, some block
in epoch lower than le− 1 is not a-delivered. In this case, Pi

also proposes for epochs between height(qchigh) and le− 1.
In particular, for each e′ between height(qchigh) and le− 1,
Pi appends W [e′] to its proposal Wi (lines 14-16). After that,
Pi creates a block b with content Wi, the height le, and hash
of qchigh. Then, Pi sends a (PROPOSE, b, le, qchigh) message
to all replicas (line 18). Here, we say Pi a-broadcasts b.
PREPARE phase. Every replica waits for the proposal from
the leader. Upon receiving a (PROPOSE, b, e, qchigh) message

Algorithm 4 The consensus process for replica Pi

1: public parameters: each committee have κ replicas and t ←
κ/3

2: local parameters: let epoch le← 0, last committed epoch ce←
0, lockedQC ← ⊥, Received← ∅

3: in each epoch le, sample three committees C1
c,le, C2

c,le, and C3
c,le

4: � NEW-VIEW phase
5: upon |W [le]| ≥ n− f do
6: start a timer ∆ and obtain ℓ← le mod n
7: if Pi ∈ C1

c,le then
8: send (NEW-VIEW, le, lockedQC) to the leader Pℓ

9: � PROPOSE phase
10: upon receiving κ − t (NEW-VIEW) messages from replicas in

C1
c,le do

11: if CheckLeader(le, i) then
12: qchigh ← the highest QC in (NEW-VIEW) messages
13: Wi ←W [le]
14: if height(qchigh) < le− 1 then
15: for each e′ ∈ (height(qchigh), le− 1]
16: Wi ←Wi ∪W [e′]

17: create a block b with content Wi

18: send (PROPOSE, b, le, qchigh) to all replicas ▷
a-broadcast

19: � PREPARE phase
20: upon receiving (PROPOSE, b, e, qchigh) from the leader Pℓ s.t.

le = e do
21: if Pi ∈ C2

c,le and CheckLeader(e, ℓ) and IsValid(b) then
22: σi ← a signature for (1, hash(b), le)
23: send (PREPARE, hash(b), le, σi) to all replicas
24: Received[e]← b

25: � COMMIT phase
26: upon receiving κ− t (PREPARE, h, e, σj) from C2

c,le s.t. le = e
do

27: lockedQC ← κ− t signatures for (1, h, e)
28: if Pi ∈ C3

c,le then
29: σi ← a signature for (2, h, le)
30: send (COMMIT, h, le, σi) to all replicas
31: upon receiving t+ 1 (COMMIT, h, e, σj) from C3

c,le s.t. le = e
do

32: if Pi ∈ C3
c,le and Pi has not sent (COMMIT) then

33: σi ← a signature for (2, h, le)
34: send (COMMIT, h, le, σi) to all replicas
35: � Deliver
36: upon receiving κ− t (COMMIT, h, e, σj) from C3

c,le s.t. le = e
do

37: let m be the content in the block b and h = hash(b)
38: if ce+ 1 ̸= le then
39: m← ObtainMissing(ce+ 1, le,m)
40: a-delivers each me ∈m according to epoch numbers
41: else
42: a-deliver(le,m) ▷ a-deliver event
43: set le← le+ 1, ce← le

44: � View Change
45: upon ∆ times out do
46: set le← le+ 1

from the leader Pℓ, Pi verifies whether b is valid (line 21 and
Algorithm 5, lines 1-5). Namely, b is valid if b extends the
block of Pi’s local lockedQC and each We in the proposal
consists of n− f valid QCs. After that, if Pi belongs to C2

c,e,
it sends a (PREPARE, hash(b), le, σi) message to all replicas,
where σi is a signature for (1, hash(b), le).

7

Algorithm 5 Utilities

1: function ISVALID(b)
2: if b extends the block for lockedQC and for any We ∈ b for

epoch e and VerifyQCs(We, e) returns true and e′ ≥ ce where
e′ is the epoch number for any QC included in b then

3: return true
4: else
5: return false

6: function VERIFYQCS(Wj , e)
7: if |Wj | ≥ n−f and for each qcℓ ∈Wj , each σk ∈ qcℓ from

Pk, ComVerify(t||e||1||ℓ, k) returns 1 and σk is a valid signature
for (e, ∗, ℓ) then

8: return true
9: else

10: return false

11: function CHECKLEADER(e, i)
12: if i = e mod n+ 1 then
13: return true
14: else
15: return false

16: function OBTAINMISSING(ce, le,m)
17: m← ⊥
18: for e ∈ [ce, le] do
19: if ∃We s.t., We ∈ m then
20: m[e]←We

21: else
22: wait for me from block b proposed in epoch e
23: m[e]← me

24: return m

COMMIT and DELIVER phases. Every replica expects κ− t
(PREPARE) messages from C2

c,e. If so, the signatures included
in the (PREPARE) messages form a QC and every replica
updates its local lockedQC (line 27).

If a replica Pi belongs to C3
c,le, it creates a signature

for (2, hash(b), le) and then sends (COMMIT, h, le, σi) to all
replicas (lines 28-30), where h = hash(b). If Pi belongs
to C3

c,le, receives t + 1 matching (COMMIT) messages from
replicas in C3

c,le, and has not sent a (COMMIT) message, Pi

also sends (COMMIT, h, le, σi) to all replicas (lines 31-34).
Finally, after each replica receives κ − t matching

(COMMIT, h, le, σi) messages, it is ready to a-deliver block b
(and the hash of b is h). Before that, Pi also checks whether
its last committed epoch is ce = le − 1 (line 38). If so, Pi

fetches block b (either stored locally or from other replicas)
and then a-delivers m, the content in block b. Otherwise, Pi

queries the ObtainMissing(ce, le,m) function to obtain the
missing values between ce + 1 and le − 1 (lines 39-40). In
the ObtainMissing(ce, le,m) function, there are two cases for
each epoch e ∈ [ce, le]:
• A set of QCs for epoch e is included in m (Algorithm 5,

lines 19-20), i.e., the leader has previously included We in
its proposal. In this case, Pi can include We in its output
and a-delivers the value.

• QCs for epoch e are not included in m (Algorithm 5,
lines 21-23). This is because some correct replica has
previously a-deliverd some value in epoch e but Pi has
not. In this case, Pi waits for a QC from C3

c,e and then
synchronizes the proposed block b from other replicas (We

Algorithm 6 The state transfer process for replica Pi

1: function OBTAIN(e,m)
2: sample a committee Cj

s,e for each j ∈ [n]
3: O ← ⊥
4: for qcj ∈ m do
5: if proposal[e][j] ̸= ⊥ then
6: O ← O ∪ proposals[e][j]
7: if Pi ∈ Cj

s,e then
8: send (DISTRIBUTE, j, proposals[e][j]) to all replicas

9: upon receiving (DISTRIBUTE, j,M) from Pk do
10: if Pk ∈ Cj

s,e and Hash(M) matches that corresponding
to qcj then

11: O ← O ∪M
12: wait until |O| = |m|
13: clear W [e] and remove transactions in O from Q

ignore the details of how replicas obtain the proposed block
based on the hash value as the approach largely follows prior
works [31], [32]). Then Pi a-delivers the value.
Afterward, Pi a-delivers the proposed values sequentially

according to the epoch numbers.

D. State Transfer

We provide a state transfer mechanism that only involves
κ-to-all communication so the message complexity is O(κn).
The idea is aligned with our transmission and consensus
process. We show the pseudocode in Algorithm 6.

In our state transfer mechanism, n committees are sampled
and each one is denoted as Cj

s,e. Committee members in Cj
s,e

are in charge of helping other correct replicas collect the
proposal from Pj . Namely, if the QC from Pj (denoted as qcj)
is a-delivered in the consensus process, every correct replica
Pi that belongs to Cj

s,e and meanwhile holds the proposal
will send a message (DISTRIBUTE, j, proposals[e][j]) to all
replicas (lines 5-8), where proposals[e][j] is the proposal
Pi previously received from Pj in the transmission process.
Any correct replica that receives a (DISTRIBUTE, j,M) message
verifies whether the hash of M matches that in the a-delivered
message in the consensus process (lines 9-10). If so, the replica
adds M to its output O. Finally, every correct replica Pi waits
for the proposals for every QC in m (i.e., |O| = |m|) and
completes the state transfer.

E. Correctness

Our protocol is secure under a weakly adaptive adver-
sary. This is because an adversary cannot corrupt too many
members in each committee until it is too late, except with
negligible probability. Namely, every committee member sends
a message once. Therefore, even if the adversary learns that
the replica is in a committee, the message has already been
sent so corrupting the replica is useless.

Formally, our protocol achieves the following properties.
We provide the proof and analysis of complexities in the
supplementary material.

Theorem 1 (Safety). Let the probability that each committee
has more than t faulty replicas be δ. If a correct replica

8

delivers a transaction tx before delivering tx′, then no correct
replica delivers a transaction tx′ without first delivering tx
with probability 1−O(δ2).

Theorem 2 (Liveness). Let the probability that each commit-
tee has more than t faulty replicas be δ. If a transaction tx
is submitted to all correct replicas, then all correct replicas

eventually deliver tx with probability 1−O(δ
1
9
−ϵ2

ϵ2).

VI. ANALYSIS OF PROBABILITY OF ACHIEVING SAFETY
AND LIVENESS

We analyze the concrete probability of safety and liveness
violation of Pando in our full paper [39] and we summarize
our results in this section. In Lemma 1, we show that if we use
a committee size of 3α

ϵ2 ln 1
δ = O(κ), with probability 1 − δ,

the number of faulty replicas in the committee is no more than
t = ⌊κ

3 ⌋. If we set δ = e−ω(log κ), δ is a negligible function.
Using δ as a parameter, we analyze the concrete probability
of safety and liveness violation.

Probability of safety violation. Safety is violated if in the
consensus process, a correct replica a-delivers m and another
correct replica a-delivers m′ and m ̸= m′. As shown in
Theorem 9, the probability of safety violation is O(δ2).

An interesting fact is that the probability of safety violation
is related to the number of phases in the consensus process.
Informally, consider the protocol within a view, there are two
phases of κ-to-all communication (i.e., the PREPARE phase
and the COMMIT phase), and we rely on the committees C2

c,e

and C3
c,e to achieve the security properties. Safety is violated

only if neither committee has at least κ − t correct replicas,
i.e., the probability of safety violation is O(δ2). Additionally,
our proof shows that the probability of safety violation across
views is significantly lower than O(δ2). Thus, the probability
of safety violation of the protocol is bounded by O(δ2).

Notably, we can modify the consensus process to have
more phases to lower the probability of safety violation. For
instance, if we have one more phase in the consensus process,
the probability of safety violation becomes O(δ3).

We use the two-phase protocol shown in Algorithm 4 in
our implementation. We show the relationship between the
committee size and ϵ in Fig. 3. We also show some examples
of the concrete probabilities in Table II and Table III. In the
tables, Pando (x) denotes the setting where the committee size
is xn. Here, we use xn for ease of understanding; this could
simply be κ instead. The tables aim to show the relationship
between ϵ and n. Namely, the goal is to show that given
a desirable probability of safety and liveness violation (e.g.,
10−8 so the protocol fails once every 100 million epochs), how
much resilience needs to be sacrificed for each n. As shown
in Table II and Table III, n does not have to be impractically
large in our system. For example, in Table II, for n ≥ 400 and
a committee size of more than 160 replicas, the resilience of
the system is between n > 4f to n > 3f . When n is greater, ϵ
is closer to 0. Meanwhile, to achieve an even lower probability
of safety and liveness violation (e.g., 10−8 or 10−9) with the
same n, ϵ has to be higher, as shown in Fig. 3 and Table III.

200 400 600 800 1,0001,2001,4001,600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

committee size

ϵ

= 10−3

= 10−4

= 10−6

= 10−9

= 10−10

Fig. 3: Committee size vs. ϵ (n = 2,000) to limit the
probability of violating safety and liveness to 10−3, 10−4,
10−6, 10−9, and 10−10 respectively.

Pando vs. existing works. It now becomes clear why Pando
can reduce the committee size of existing works and why
Pando is more efficient. In fact, we can use the results in
Table III as those for the state-of-the-art committee sampling-
based approach for achieving 1 − 10−4 probability. Briefly
speaking, this is because the probability of safety violation in
this work is O(δ2) while previous works have a probability
of O(δ). Compared to prior work, Pando has a much smaller
committee size given the same failure probability and ϵ. For
example, for n =1,000, Pando (0.2) has ϵ = 0.067 (top-right
cell of Table II) and a committee size of 200. To achieve the
same 1− 10−4 probability and with ϵ = 0.067, existing work
requires roughly 400 committees (second row of the rightmost
column in Table III.

Probability of liveness violation. We consider that liveness
is violated if a transaction m is submitted to the system but is
never delivered. Liveness can be violated in three scenarios:
1) No value is a-delivered in the consensus process; 2) Some

n = 100 200 300 400 500 1000

Pando (0.2) 0.193 0.133 0.123 0.103 0.091 0.067
Pando (0.4) 0.123 0.093 0.076 0.063 0.059 0.041
Pando (0.6) 0.093 0.063 0.053 0.046 0.041 0.029
Pando (0.8) 0.053 0.038 0.033 0.028 0.023 0.017

TABLE II: The value of ϵ for the system to achieve safety and
liveness with a probability of at least 1 − 10−4. The system
requires f ∈ [0, 1

5n), f ∈ [15n,
1
4n), and f ∈ [14n,

1
3n) for

dark gray cells, gray cells, and white cells, respectively.

n = 100 200 300 400 500 1000

Pando (0.2) 0.253 0.198 0.177 0.153 0.137 0.102
Pando (0.4) 0.173 0.133 0.113 0.098 0.089 0.064
Pando (0.6) 0.123 0.093 0.08 0.068 0.061 0.044
Pando (0.8) – 0.053 0.05 0.041 0.037 0.027

TABLE III: The value of ϵ for the system to achieve safety
and liveness with a probability of at least 1 − 10−8. Hyphen
means no ϵ value can make the desirable probability at least
1− 10−8.

9

value is a-delivered in the consensus process but no correct
replica has received the corresponding proposal; 3) Some value
is a-delivered in the consensus process, at least one correct
replica has received the corresponding proposal, but the state
transfer fails. As we show in Appendix A, the probability of
the first scenario is δ2E , where E is the number of correct
epochs (the leader in atomic broadcast is correct) after m is
submitted and after GST. Therefore, the failure rate of the
consensus process is closer to 0 as the system is up and
running. Accordingly, the probability of liveness violation of
Pando becomes p1 + (1 − p1)p2, where p1 is the probability
that no correct replica has received the transaction in the
transmission process and p2 is the probability that state transfer
fails. As shown in our full paper [39], the probability of

liveness violation is O(δ
1
9
−ϵ2

ϵ2) for ϵ < 0.192 or O(δ2) for
ϵ ∈ [0.192, 0.333).

VII. IMPLEMENTATION AND EVALUATION

We implement Pando in Golang3. We compare the per-
formance of Pando with Star [14], Narwhal-HS [11], and
Algorand [25]. We implement Star in our library and assess
Narwhal using their open-source implementation4. We assess
these two protocols as they have the same partial synchrony
assumption as ours.

Our codebase involves around 10,000 LOC for the protocols
and about 1,000 LOC for evaluation. In our implementation,
we use gRPC as the communication library. We use HMAC
to realize the authenticated channel and use SHA256 as the
underlying hash function. We use the Golang-based reed
solomon code library5 for erasure coding. We use the Golang-
based VRF implementation6 to instantiate the ComProve()
and ComVerify() oracle. The VRF scheme we use achieves
adaptive security under the random oracle assumption.

We evaluate the performance of our protocols on Amazon
EC2 using up to 500 virtual machines (VMs) and up to 1,000
replicas (mainly because we are not allowed to launch more
than 500 instances on our AWS account). By default, we
use m5.xlarge instances for our evaluation. The m5.xlarge
instance has four vCPUs and 16GB memory. For one of the
experiments, we use other types of instances. When assessing a
setup with fewer than 100 replicas, we use each instance to run
one replica. For a setup with more replicas, we may use each
instance to run multiple replicas. We deploy our protocols in
the WAN setting, where replicas are evenly distributed in four
different regions: us-west-2 (Oregon, US), us-east-2 (Ohio,
US), ap-southeast-1 (Singapore), and eu-west-1 (Ireland).

We conduct the experiments under different network sizes
and batch sizes. We use n to denote the network size and b to
denote the batch size. We run our protocols for several epochs
and report the results when the performance becomes stable.

3Our codebase: https://doi.org/10.5281/zenodo.16959662 or https://github.
com/DSSLab-Tsinghua/Pando

4https://github.com/MystenLabs/narwhal
5https://github.com/klauspost/reedsolomon
6https://github.com/yoseplee/vrf

We repeat each experiment five times and report the average
performance. The default transaction size is 250 bytes.

When evaluating Pando, we vary the committee sizes from
0.2n to n. Namely, when the committee size is n, the
protocol is very close to a conventional protocol, e.g., Star.
We intentionally do so to validate our results. We use the
notation Pando (x) to denote the experiment with xn commit-
tee members. For example, Pando (0.2) uses 0.2n committee
members and Pando (1) uses n committee members. Notably,
for Pando (1), committee sampling is not needed anymore and
the failure rate is not subjective to the failure rate δ. Our
evaluation still involves the VRF evaluations to assess the
overhead created due to committee sampling.

We summarize the required ϵ for our experiments to achieve
a failure rate of 10−4 in Table II. To achieve a failure rate of
lower than 10−4, Pando (0.6) needs to set ϵ = 0.093 when
n = 100, i.e., f < 0.24n. When n is larger, ϵ can be much
lower. For instance, for n =1,000, Pando (0.4) can support
f < 0.292n. To have a lower failure rate, the committee size
has to be larger, as summarized in Fig. 3.

We summarize our evaluation results below.
• We were able to run Narwhal and Star using up to 100

replicas. Experiments beyond 100 replicas cannot be suc-
cessfully launched on the VMs we used. We believe this is
in part due to the low-end VMs (only 4 vCPUs). In contrast,
we were able to run Pando using up to 500 replicas using
the same low-end VMs and 1,000 replicas on VMs with
only slightly better configuration.

• If we set the committee size of Pando as n, the performance
of Pando is marginally lower than that of Narwhal and Star.
If the committee size is smaller than n, the performance of
Pando starts to increase significantly due to lower commu-
nication and computational cost.

• By setting up a committee size of lower than n, Pando is
significantly faster than existing protocols. For example, for
n = 91, the peak throughput of Pando (0.8) for f = 30 is
81.01% higher than Pando (1) and 28.22% higher than Star.
Even for n = 500, Pando (0.4) achieves a peak throughput
of 158 ktx/sec.

• We conducted experiments for 1,000 replicas using different
VMs. Our observation is that for a small-scale network, the
CPU is usually the bottleneck of the system. In contrast,
for the large-scale network, the network bandwidth is the
bottleneck.

Comparison of Pando, Narwhal, and Star. We first assess
the peak throughput of Pando, Narwhal, and Star. We were
not able to successfully run Narwhal and Star for a network
beyond 100 replicas as we met a frequent “connection refused”
error due to high communication costs. We believe this is
mainly because our experiments are launched on low-end
VMs. Besides the fact that experiments cannot be launched
for larger network sizes, even for the network size where the
experiments can be launched, the latency grows significantly as
n grows. This is due to the high memory consumption required
for network communication. Accordingly, our comparison

10

https://doi.org/10.5281/zenodo.16959662
https://github.com/DSSLab-Tsinghua/Pando
https://github.com/DSSLab-Tsinghua/Pando
https://github.com/MystenLabs/narwhal
https://github.com/klauspost/reedsolomon
https://github.com/yoseplee/vrf

n = 31 n = 61 n = 91
0

100

200

300

400

98.64

138.7

190.3

218.12

274.65

344.47

161.58
170.32

268.65

132.24
123.83

116.65

Pe
ak

th
ro

ug
hp

ut
(k

tx
/s

ec
)

Pando (1) Pando (0.8)
Star Narwhal

(a) Peak throughput of Star, Narwhal
and Pando as f grows.

0 50 100 150
0

1

2

3

4

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (1) Star Narwhal

(b) Latency vs. throughput in
WAN for n = 31.

0 50 100 150
0

1

2

3

4

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (1) Star Narwhal

(c) Latency vs. throughput in
WAN for n = 61.

0 50 100 150 200 250
0

1

2

3

4

5

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (1) Star Narwhal

(d) Latency vs. throughput in
WAN for n = 91.

0 500 1,000 1,500 2,000 2,500 3,000

2

3

4

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)
Pando (0.6) Pando (0.8)
Pando (1)

(e) Latency vs. throughput of
Pando in WAN using different
committee sizes for n = 91.

0 500 1,000 1,500 2,000 2,500 3,000
0

2

4

6

8

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)
Pando (0.2) Pando (0.4)

(f) Latency vs. throughput of
Pando in WAN for n = 100.

0 500 1,000 1,500 2,000 2,500 3,000
0

2

4

6

8

10

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(g) Latency vs. throughput of
Pando in WAN for n = 200.

0 200 400 600 800 1,0001,2001,4001,600
0

5

10

15

20

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(h) Latency vs. throughput of
Pando in WAN for n = 300.

0 100 200 300 400 500 600
0

10

20

30

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(i) Latency vs. throughput of
Pando in WAN for n = 400.

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(j) Latency vs. throughput of
Pando in WAN for n = 500.

n = 100 n = 200 n = 300 n = 400 n = 500
0

1,000

2,000

3,000 2,947.44

2,812.4

1,558.42

600.96

158.25

2,359.4

1,527.36
1,456.1

125.72
55.35

Pe
ak

th
ro

ug
hp

ut
(k

tx
/s

ec
) Pando (0.2)

Pando (0.4)

(k) Peak throughput of Pando as
n grows.

0 2 4 6 8 10 12

n=100 (0.2)
n=200 (0.2)
n=300 (0.2)

n=100 (0.4)
n=200 (0.4)
n=300 (0.4)

Latency breakdown (Sec)

Transmission Consensus

(l) Latency breakdown of Pando
when b = 50, 000 for different n.

batch size ktx/sec CPU bandwidth
100 2.49 62% 18.1MB/s

1,000 23.9 140% 18.8MB/s
5,000 117.54 186% 19.1MB/s

10,000 203.59 288% 19.4MB/s
15,000 344.47 (peak) 364% 19.7MB/s

(m) CPU and bandwidth usage of
Pando (0.8) for n = 91 with differ-
ent batch sizes. Maximum CPU usage is
400%.

committee ktx/sec CPU bandwidth
0.2n 256.17 172% 5.9MB/s
0.4n 238.8 186% 10.7MB/s
0.6n 222.56 248% 15.2MB/s
0.8n 203.59 288% 19.4MB/s

n 190.30 (peak) 344% 24.3MB/s

(n) CPU and bandwidth usage of Pando
for n = 91 with different committee sizes.
Maximum CPU usage is 400%.

instance vCPU memory bandwidth batch peak tps
(GiB) (Gbps) size (ktx/sec)

m5.2 8 32 up to 10 - -
m5n.2 8 32 up to 25 5,000 62.57
m5.4 16 64 up to 10 100 1.22
c5.4 16 32 up to 10 100 1.6

(o) Peak throughput of Pando for n = 1, 000 using
different instance types.

Fig. 4: Performance of the protocols.

focuses on the setting for n < 100. We report the peak
throughput of Pando (1), Pando (0.8), Star, and Narwhal in
Fig. 4a and latency vs. throughput for n = 31, 61, 91 in
Fig. 4b-4d. Our results show that the performance of Pando(1)
is only marginally lower than Star and consistently higher
than Narwhal. This is expected as Pando (1) has a committee
size of n, so the communication and computational costs are
almost identical to conventional protocols. Compared to Star,
Pando (1) uses CBC instead of wCBC for the transmission
process so the overhead is slightly higher. Additionally, Pando
involves computation due to VRF, so the performance is lower.

Pando (0.8) already consistently outperforms other proto-
cols. For example, the peak throughput of Pando (0.8) for
n = 91 is 81.01% higher than Pando (1) and 28.22% higher

than that of Star. The improvement is caused by both lower
communication and lower computation. Namely, the κ term for
the communication becomes more insignificant as n grows.

Pando with different committee sizes. We assess latency vs.
throughput for Pando for n = 91 by varying the committee
size as 0.2n to n. As shown in Fig. 4e, the performance of
Pando is higher (higher peak throughput, lower latency) when
the committee size is smaller. This is expected as having
a small committee size will lower both communication and
computational costs. The drawback is that for a network of
91 replicas, ϵ has to be larger for smaller committee sizes, as
summarized in Table II.

11

network size protocol latency (ms)

n = 100
Pando (0.2) 96
Pando (0.4) 215
Pando (1) 249

n = 200
Pando (0.2) 271
Pando (0.4) 335
Pando (1) 9131

n = 300
Pando (0.2) 707
Pando (0.4) 911
Pando (1) 27203

TABLE IV: Latency of the state transfer process of Pando.

Comparison with Algorand. As mentioned previously, Al-
gorand was the first practical VRF-based committee sampling
protocol. To achieve a failure rate of lower than 10−9 and limit
the system has at least 80% correct replicas, the committee size
has to be 2,000 for Algorand [25]. We are not able to launch
such a large-scale experiment due to the limit of resources.
Alternatively, we compare the performance of Pando using
both the results reported in the Algorand paper and a local
small-scale deployment. As reported in the paper, using 1,000
VMs to run n =50,000 replicas, Algorand can deliver 2
MBytes of transactions in 22 seconds. To achieve the same
10−9 failure rate, the committee size only needs to be 200, i.e.,
Pando (0.4) for n ≥ 500. Our experimental results show that
Pando (0.4) delivers 13.84 MByte of transactions in 1 second
(as shown in Fig. 4j), about 154x that of Algorand. Meanwhile,
we also evaluate Algorand in a local testnet with n = 7 where
all replicas act as committee members. Our evaluation results
show that Algorand achieves a peak throughput of 5.72 ktx/s.
With the same settings, Pando (1) achieves a peak throughput
of 75.21 ktx/s, about 13.15x that of Algorand.

Analysis of CPU and bandwidth usage. To understand why
Pando starts to outperform existing protocols even with a
committee of 0.8n replicas, we further assess the CPU and
bandwidth usage of Pando for n = 91. In Fig. 4m, we show
the CPU and bandwidth usage of Pando (0.8). It can be seen
that the CPU usage and bandwidth usage grow as b grows.
When the CPU is fully used, the throughput does not grow
anymore. Additionally, in Fig. 4n, we fix the batch size as
10, 000 and vary the size of the committee. Among these
experiments, Pando (n) is the only instance that achieves its
peak throughput, in which case the CPU resource is fully used.
For other cases, as the committee size is smaller, the CPU
usage and bandwidth usage are also lower. Thus, the protocol
achieves its peak throughput using an even larger batch size.

Computational overhead. In each epoch, each replica needs
to query O(n) VRF functions. In the instances we use, the
latency for each ComProve() function is 2.8ms, and the
latency of the ComVerify() function is 0.1ms. Even if n is
large, the oracle does not create significant overhead.

Latency vs. throughput. We assess latency vs. throughput of
Pando for n = 100, 200, 300, 400, 500. For these scalability
tests, we run five replicas on each VM. We choose 0.2n and
0.4n as the committee sizes and report the results in Fig. 4f-
4j. In general, the performance degrades as n grows. This is

size protocol n = 100 n = 200 n = 300 n = 400 n = 500

250B Pando (0.2) 2947.44 2812.40 1558.42 600.96 158.25
Pando (0.4) 2359.40 1527.36 1456.10 125.72 55.35

250KB Pando (0.2) 3.62 3.30 2.48 0.98 0.42
Pando (0.4) 3.06 2.09 1.34 0.52 0.23

TABLE V: Peak throughput (ktx/sec) of Pando under different
transactions sizes.

expected and similar results have been reported in all prior
works. For a committee size of 0.4n, all of our experiments
are completed within 50 seconds (the highest occurs when n =
500). If we choose a committee size of 0.2n, the experiments
are completed within 30 seconds. For n = 200, the latency
and peak throughput of Pando (0.2) are 4.9 seconds and 2,812
ktx/sec, respectively. This result is achieved with a batch size
of around 80,000. As there are 200 replicas in total, 16,000
ktx are proposed so such a throughput is thus expected.
Scalability and latency breakdown. We report the peak
throughput of Pando for n = 100 to 500 in Fig. 4k. The
throughput degrades significantly as n grows. We believe this
is mainly because of the high communication cost and we
started to meet the error of “connection refused” for n > 300.
To further assess the results, we report the latency breakdown
of the transmission process and the consensus process in
Fig. 4l. An interesting finding is that when n is large enough
(in our case n ≥ 100), the latency of the consensus process
is even higher than the transmission process. This is mainly
because the size of the certificate is very large as we instantiate
each QC using a set of signatures. We believe this overhead
can be reduced using approaches such as aggregate signatures.
The latency of the state transfer process. We report
the latency of the state transfer process of Pando for
n = 100, 200, 300 in Table IV. We evaluate Pando (0.2),
Pando (0.4), Pando (1). As shown in the table, the latency of
the state transfer process of Pando with a smaller committee
size is consistently lower than Pando (1), especially when n is
large. For n = 300, the latency of Pando (0.4) is only 3.3% of
that for Pando (1).
Evaluation using different transaction sizes. We evaluate
the performance of Pando using 250KB transaction size. As
shown in Table V, the performance of Pando is lower as the
transaction size is larger. This is expected, as higher network
bandwidth is needed to disseminate the transactions.

instance vCPU memory bandwidth batch size peak tps
(GiB) (Gbps) (ktx/sec)

m5.xlarge 4 16 up to 10 100,000 2947.43
m5.large 2 8 up to 10 100,000 2443.05

m4.xlarge 4 16 0.75 100,000 1316.31
t2.micro7 1 1 up to 0.72 5,000 95.37

TABLE VI: Peak throughput of Pando (0.2) under different
low-bandwidth and on-premise cluster.

Experiments using low-end VMs. We assess the performance
of Pando using low-end VMs for n = 100, as summarized

7AWS t2.micro provides a baseline level of CPU performance with the
ability to burst above the baseline. The bandwidth of t2.micro was tested as
0.06 Gbps sustained with 0.72 Gbps bursts [40].

12

0 500 1,000 1,500 2,000 2,500 3,000
0

2

4

6

8

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

m5.xlarge m5.large
m4.xlarge t2.micro

Fig. 5: Latency vs. throughput of Pando (0.2) for n = 100
under different low-bandwidth and on-premise cluster.

instance # VM bandwidth batch size peak tps
(Gbps) (ktx/sec)

m5.2 200 up to 10 - -
m5.2 500 up to 10 - -

m5n.2 200 up to 25 5,000 62.57
m5n.2 500 up to 25 5,000 73.2

TABLE VII: Peak throughput of Pando for n = 1, 000 using
different number of VMs.

in Table VI and Fig. 5. For Pando (0.2), we use four VMs:
m5.xlarge, m5.large, m4.xlarge, and t2.micro. When the CPU
and memory become lower, the throughput decreases. For
VMs with the same CPU and memory, the throughput becomes
lower on the bandwidth-restricted VMs. These results are
expected, as our protocols require both memory and bandwidth
for computation and communication. Even with the t2.micro
instance (the lowest setup we assess), Pando still achieves over
95.37 ktx/sec throughput.

Experiments using 1,000 replicas. We conducted experi-
ments using 1,000 replicas and were not able to obtain any
throughput using the same m5.xlarge VMs. We thus used dif-
ferent types of VMs. As summarized in Fig. 4o, unlike small-
scale experiments in which the CPU is usually the bottleneck,
the network bandwidth is the bottleneck of the system for
our 1,000-replica experiments. For VMs with higher network
bandwidth (e.g., m5n.2xlarge), Pando achieves a throughput
of up to 62.57 ktx/sec. For VM with better configuration
but lower network bandwidth (e.g., c5.4xlarge), Pando only
achieves a throughput of 1.6 ktx/sec, as we were not able to
run the experiments with a larger batch size.

We launch an additional experiment on 500 instances
to repeat the 1,000-replica experiments. As summarized in
Table VII, Pando achieves a throughput of up to 73.2 ktx/sec,
slightly better than 62.57 ktx/sec with 200 instances. The
performance is not that different, so our experiments using
fewer instances validate the practicality of our protocol.

Summary of deployment concerns. Based on the experi-
ments, we believe that deploying Pando on machines with
high network bandwidth and moderate CPU will improve the
performance of Pando. Our experiments show that 8 vCPU

is good enough, but VMs with higher bandwidth will further
improve the performance of the system.

VIII. RELATED WORK

More discussion about Algorand vs. Pando. Algorand [25],
[26] is a practical committee sampling-based Proof-of-Stake
protocol. The VRF-based committee sampling mechanism is
a practical instantiation of the sampler notion by King and
Saia [18]. Our protocol also adopts the VRF-based committee
sampling mechanism by Algorand. Both Algorand and Pando
assume a partially synchronous network. Our Pando protocol
is different from Algorand. First, Pando achieves a more bal-
anced network bandwidth utilization by employing a leaderless
feature for block proposals. Namely, all n replicas can create a
block proposal, and replicas agree on at least n− f proposals
at a time. In contrast, Algorand only agrees on one block
proposal at a time. Accordingly, Pando is more efficient than
Algorand. Second, as mentioned in the introduction, the design
of Pando allows for a much smaller committee size.

Byzantine agreement (BA) and Byzantine broadcast (BC)
at scale. King and Saia [18] presented the first committee
sampling-based Byzantine agreement protocol in the syn-
chronous setting and the protocol achieves O(n1.5) com-
munication. The committee sampling mechanism was called
the sampler protocol, and an ideal sampler is assumed. In
particular, the sampler samples “subsets of elements such that
all but a small number contain at most a fraction of bad
elements close to the fraction of bad elements of the entire
set”. Many works improved the complexity of communication
of the BA and BC protocols, assuming the existence of a
sampler [19], [22], [20], [21].

Abraham et al. [19] proposed a binary BA with subquadratic
communication complexity. Meanwhile, it revisits VRF-based
committee sampling by Algorand and formalizes a Fmine

function for committee sampling. Later work all follow this
notion, including ours (specifically, the ComProve() and
ComVerify() oracle in Sec. II match the Fmine abstraction).
In the asynchronous setting, Blum, Katz, Liu-Zhang, and
Loss [22] presented a BA protocol achieving subquadratic
communication complexity under the adaptive adversary set-
ting assuming f < (1 − ϵ)n/3 (interchangeable with our
f < (1/3−ϵ)n assumption). Additionally, a line of work stud-
ies Byzantine broadcast (a problem limited to the synchronous
setting) assuming f < (1 − ϵ)n, and uses committee-based
approaches to optimize the communication [20], [21], [41].

This paper studies BFT. Since BFT is different from BA
and BC, the protocol designs are fundamentally different.

Partially synchronous BFT. Partially synchronous BFT has
been widely studied in the literature [42]. Starting from
PBFT [31], an impressive number of practical BFT protocols
are proposed (e.g., [43], [44], [45], [46], [47]). HotStuff [32]
provides a three-phase solution that achieves linear message
complexity, and many efforts have been made to reduce the
number of phases required [33], [48], [49], [50]. A recent
work ProBFT [51] studies partially synchronous BFT with

13

optimized latency under a probabilistic model and a static
adversary assumption. Our ABC protocol of the consensus
process is a scalable version of prior protocols such as PBFT
and HotStuff under the adaptive adversary assumption.
BFT with adaptive security. Protocols that are secure in the
static adversary model might not be adaptively secure [52],
[53]. Specifically, protocols that rely on threshold cryptogra-
phy of committee sampling might not be adaptively secure,
and performance usually degrades compared to those under
static security model [54], [55].
Asynchronous BFT. The celebrated FLP result [56] rules
out the possibility of deterministic consensus in asynchronous
environments, so asynchronous must be probabilistically live.
Asynchronous BFT protocols have been extensively stud-
ied [38], [57], [37], [58], [54], [59], [60], [61]. Our transmis-
sion process and state transfer process are fully asynchronous.

IX. CONCLUSION

We present Pando, a practical and scalable BFT from
committee sampling. We have provided new communication-
efficient and computation-efficient building blocks for BFT,
including block transmission, atomic broadcast, and state
transfer—all of which are of independent interest.

ACKNOWLEDGMENT

This work was supported in part by the National Key
R&D Program of China under 2022YFB2701700, the National
Natural Science Foundation of China under 92267203 and
62272043, Beijing Natural Science Foundation under M23015,
Yangtze Delta Region Institute of Tsinghua University, Zhe-
jiang (No. LZZLX24F007), WeBank scholars program, and
Tsinghua Shuimu Scholar program.

X. RESEARCH ETHICS CONSIDERATIONS

This research is committed to the principles of research
ethics. In particular, we adhere to the following principles:
• Respect for persons: Our research does not involve human

subjects or personal data. We respect the work of other
researchers and properly cite all relevant prior work.

• Beneficence: Our research studies scalable Byzantine fault-
tolerant protocols from committee-based sampling ap-
proaches. It offers a nice way to improve the scalability
of blockchain systems and other related areas.

• Justice: We have formally proved the correctness of the
protocol. Any user’s benefits are equally protected if the
protocols correctly implemented.

• Respect for law and public interest: Our research complies
with all applicable laws and regulations. We have considered
the broader societal implications of more secure blockchain
systems.

REFERENCES

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick,
“Hyperledger fabric: A distributed operating system for permissioned
blockchains,” in EuroSys, 2018.

[2] E. Buchman, “Tendermint: byzantine fault tolerance in the age of
blockchains,” 2017.

[3] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[4] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in CCS. ACM,
2016, pp. 17–30.

[5] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: A fast
blockchain protocol via full sharding,” in CCS, 2018, pp. 931–948.

[6] S. Rahnama, S. Gupta, R. Sogani, D. Krishnan, and M. Sadoghi,
“Ringbft: Resilient consensus over sharded ring topology,” in EDBT,
2022, pp. 2:298–2:311.

[7] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Scaling byzantine fault-tolerant replication to
wide area networks,” in DSN. IEEE, 2006, pp. 105–114.

[8] T. Crain, C. Natoli, and V. Gramoli, “Red belly: A secure, fair and
scalable open blockchain,” in Security and Privacy (SP), 2021, pp. 466–
483.

[9] C. Stathakopoulou, T. David, M. Pavlovic, and M. Vukolic, “[solution]
mir-bft: Scalable and robust BFT for decentralized networks,” J. Syst.
Res., vol. 2, no. 1, 2022.

[10] C. Stathakopoulou, M. Pavlovic, and M. Vukolić, “State-machine repli-
cation scalability made simple (extended version),” in Eurosys, 2022.

[11] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Nar-
whal and tusk: a dag-based mempool and efficient bft consensus,” in
Eurosys, 2022, pp. 34–50.

[12] N. Giridharan, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Bullshark: DAG BFT protocols made practical,” in CCS, 2022.

[13] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-ng: Fast
asynchronous bft consensus with throughput-oblivious latency,” in CCS,
2022.

[14] S. Duan, H. Zhang, X. Sui, B. Huang, C. Mu, G. Di, and X. Wang,
“Dashing and star: Byzantine fault tolerance from weak certificates,” in
Eurosys, 2024.

[15] N. Giridharan, F. Suri-Payer, I. Abraham, L. Alvisi, and N. Crooks,
“Motorway: Seamless high speed bft,” in SOSP, 2024.

[16] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-NG: Fast
asynchronous bft consensus with throughput-oblivious latency,” in CCS,
2022, pp. 1187–1201.

[17] E. Boyle, R. Cohen, and A. Goel, “Breaking the o(
√

n)-bit barrier:
Byzantine agreement with polylog bits per party,” in PODC, 2021, pp.
319–330.

[18] V. King and J. Saia, “Breaking the o(n2) bit barrier: scalable byzantine
agreement with an adaptive adversary,” JACM, 2011.

[19] I. Abraham, T. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren, and
E. Shi, “Communication complexity of byzantine agreement, revisited,”
in PODC, 2019, pp. 317–326.

[20] T.-H. H. Chan, R. Pass, and E. Shi, “Sublinear-round byzantine agree-
ment under corrupt majority,” in PKC, 2020, pp. 246–265.

[21] G. Tsimos, J. Loss, and C. Papamanthou, “Gossiping for
communication-efficient broadcast,” in CRYPTO, 2022.

[22] E. Blum, J. Katz, C.-D. Liu-Zhang, and J. Loss, “Asynchronous byzan-
tine agreement with subquadratic communication,” in TCC, 2020.

[23] A. Bhangale, C.-D. Liu-Zhang, J. Loss, and K. Nayak, “Efficient
adaptively-secure byzantine agreement for long messages,” in Asiacrypt.
Springer, 2022, pp. 504–525.

[24] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable and
secure distributed programming. Springer Science & Business Media,
2011.

[25] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in SOSP, 2017, pp.
51–68.

[26] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theoretical Computer Science, vol. 777, pp. 155–183, 2019.

[27] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” JACM, vol. 35, no. 2, pp. 288–323, 1988.

[28] M. K. Reiter, “Secure agreement protocols: Reliable and atomic group
multicast in rampart,” in CCS, 1994, pp. 68–80.

[29] Y. Xu, J. Zheng, B. Düdder, T. Slaats, and Y. Zhou, “A two-layer
blockchain sharding protocol leveraging safety and liveness for enhanced
performance,” in NDSS, 2024.

[30] B. David, B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi, “Gear-
box: Optimal-size shard committees by leveraging the safety-liveness
dichotomy,” in CCS, 2022, pp. 683–696.

14

[31] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” TOCS, vol. 20, no. 4, pp. 398–461, 2002.

[32] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in PODC,
2019.

[33] X. Sui, S. Duan, and H. Zhang, “Marlin: Two-phase BFT with linearity,”
DSN, 2022.

[34] N. Shrestha, R. Shrothrium, A. Kate, and K. Nayak, “Sailfish: Towards
improving the latency of dag-based bft,” in Security and Privacy (SP),
2025.

[35] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you
need is DAG,” in PODC. ACM, 2021, pp. 165–175.

[36] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in CRYPTO. Springer, 2001, pp.
524–541.

[37] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols.” in CCS, 2020.

[38] H. Zhang and S. Duan, “PACE: Fully parallelizable bft from repropos-
able byzantine agreement,” in CCS, 2022.

[39] X. Wang, H. Wang, H. Zhang, and S. Duan, “Pando: Extremely scalable
BFT based on committee sampling,” Cryptology ePrint Archive, Paper
2024/664, 2024. [Online]. Available: https://eprint.iacr.org/2024/664

[40] “Bandwidth of t2.micro instance,” https://repost.
aws/questions/QUM2vwaKIsQHGGt6Y8uYG5OA/
how-much-bandwidth-is-t2-micro-instance-type#
ANTVXwCHtxThqpTP0RpeV8yQ.

[41] D. Collins, S. Duan, J. Loss, C. Papamanthou, G. Tsimos, and H. Wang,
“Towards optimal parallel broadcast under a dishonest majority,” in FC,
2025.

[42] X. Wang, S. Duan, J. Clavin, and H. Zhang, “Bft in blockchains: From
protocols to use cases,” ACM Computing Surveys (CSUR), 2022.

[43] J.-P. Bahsoun, R. Guerraoui, and A. Shoker, “Making BFT protocols
really adaptive,” in IPDPS. IEEE, 2015, pp. 904–913.

[44] J. Li and D. Maziéres, “Beyond one-third faulty replicas in byzantine
fault tolerant systems.” in NSDI, 2007.

[45] S. Duan, H. Meling, S. Peisert, and H. Zhang, “BChain: Byzantine
replication with high throughput and embedded reconfiguration,” in
OPODIS, 2014, pp. 91–106.

[46] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: a scalable and
decentralized trust infrastructure,” in DSN. IEEE, 2019, pp. 568–580.

[47] S. Duan and H. Zhang, “Foundations of dynamic bft,” in Security and
Privacy (SP), 2022, pp. 1317–1334.

[48] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus with
asynchronous fallback,” in FC, 2022, p. 296–315.

[49] N. Giridharan, F. Suri-Payer, M. Ding, H. Howard, I. Abraham, and
N. Crooks, “Beegees: Stayin’ alive in chained BFT,” in PODC, 2023,
pp. 233–243.

[50] X. Sui, S. Duan, and H. Zhang, “BG: A modular treatment of BFT
consensus,” TIFS, 2024.

[51] D. Avelãs, H. Heydari, E. Alchieri, T. Distler, and A. Bessani, “Proba-
bilistic byzantine fault tolerance,” in PODC, 2024, pp. 170–181.

[52] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure
multi-party computation,” in STOC, 1996, pp. 639–648.

[53] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin,
“Efficient multiparty computations secure against an adaptive adversary,”
in Eurocrypt. Springer, 1999, pp. 311–326.

[54] C. Liu, S. Duan, and H. Zhang, “Epic: Efficient asynchronous bft with
adaptive security,” in DSN, 2020.

[55] H. Zhang, C. Liu, and S. Duan, “How to achieve adaptive security for
asynchronous bft?” JPDC, vol. 169, pp. 252–268, 2022.

[56] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” JACM, vol. 32, no. 2,
pp. 374–382, 1985.

[57] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in CCS, 2016, pp. 31–42.

[58] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding dumbo:
Pushing asynchronous bft closer to practice,” NDSS, 2022.

[59] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: Asynchronous bft made
practical,” in CCS. ACM, 2018, pp. 2028–2041.

[60] S. Duan, X. Wang, and H. Zhang, “Practical signature-free asynchronous
common subset in constant time,” in CCS, 2023.

[61] H. Zhang, S. Duan, B. Zhao, and L. Zhu, “Waterbear: Practical asyn-
chronous bft matching security guarantees of partially synchronous bft,”
in Usenix Security, 2023.

APPENDIX A
PROOF OF CORRECTNESS

A. The Transmission Process

(Chernoff Upper Tail Bound). Suppose {Xn} is the
independent {0, 1}-random variables, and X =

∑
i Xi. Then

for any τ > 0:

Pr (X ≥ (1 + τ)E(X)) ≤ exp

(
−τ ·min{τ, 1} · E(X)

3

)
Lemma 1. Let α = 1

3 − ϵ be the fraction of faulty replicas in
the system and ϵ is a small constant where 0 < ϵ < 1

3 , δ be
the desired failure probability. If the number of the replicas
in the committee is greater than 3α

ϵ2 ln 1
δ = O(κ), then with

probability 1 − negl(κ), the number of faulty replicas in the
committee is less than t = κ/3 and the number of correct
replicas in the committee is more than 2κ/3.

Proof. Suppose Pi, i ∈ [c] be the i-th committee member, and
it is either correct or corrupt. Let the random variable Xi be
1 if Pi is faulty and Xi be 0 otherwise. Since n is sufficiently
large, the probability that a committee member is faulty is
equal to the fraction of faulty replicas among all replicas (i.e.,
α), so Pr (Xi = 1) = α, for each i = 1, 2, · · · , c, as shown in
Table VIII.

x 1 0
Pr(Xi = x) α 1− α

TABLE VIII: Distribution of random variable Xi.

Let the random variable Y such that Y = X1 + · · · +Xc.
Then Y represents the total number of faulty replicas in the
committee. Based on the above analysis and probability theory,
we have E(Y) = αc. According to the Chernoff Bound, we
have:

Pr
(
Y ≥ c

3

)
= Pr (Y ≥ (α+ ϵ)c)

= Pr
(
Y ≥ (1 +

ϵ

α
)E(Y)

)
≤ exp{−ϵ2E(Y)

3α2
}

= exp{−cϵ2

3α
}

≤ δ (since c ≥ 3α

ϵ2
log

1

δ
).

The failure probability of the protocol δ is a negligible
function in some statistical security parameters. As a special
case, assuming that ϵ is a arbitrarily small positive constant,
0 < ϵ < 1

3 and the mining difficulty parameter is pmine =
3α
ϵ2n ln 1

δ , then δ = e−ω(log κ) would be a negligible function.
The lemma thus holds.

Corollary 1.1. Let α∗ be the fraction of correct replicas in
the system that hold some value v. If we sample a committee

15

https://eprint.iacr.org/2024/664
https://repost.aws/questions/QUM2vwaKIsQHGGt6Y8uYG5OA/how-much-bandwidth-is-t2-micro-instance-type#ANTVXwCHtxThqpTP0RpeV8yQ
https://repost.aws/questions/QUM2vwaKIsQHGGt6Y8uYG5OA/how-much-bandwidth-is-t2-micro-instance-type#ANTVXwCHtxThqpTP0RpeV8yQ
https://repost.aws/questions/QUM2vwaKIsQHGGt6Y8uYG5OA/how-much-bandwidth-is-t2-micro-instance-type#ANTVXwCHtxThqpTP0RpeV8yQ
https://repost.aws/questions/QUM2vwaKIsQHGGt6Y8uYG5OA/how-much-bandwidth-is-t2-micro-instance-type#ANTVXwCHtxThqpTP0RpeV8yQ

of 3α
ϵ2 ln 1

δ = O(κ) size, α∗κ committee members hold value
v with probability 1− negl(κ).

Lemma 2. In the transmission process, if Pi receives κ − t
signatures from committee Ci

t,e for (e, h, i), then with proba-
bility 1−negl(κ), at least f+1 correct replicas in the system
have received the proposed message M from Pi and the hash
of M is h.

Proof. Towards a contradiction, we assume fewer than f +
1 correct replicas have received M . Suppose at most f <
(1/3 − ϵ)n correct replicas in the system have received the
proposed message M from Pi, and the hash of M is h. After
these correct replicas call ComProve(), fewer than (1/3 −
ϵ)κ replicas in Ci

t,e have received M since pmine = κ/n.
According to Lemma 1, there are at most κ/3 faulty replicas
in Ci

t,e with probability 1− δ. If Pi receives κ− t signatures
from Ci

t,e for (e, h, i), at least κ − t = 2κ/3 replicas in Ci
t,e

have received M . This leads to a contradiction as there are
only κ replicas in the committee. The lemma thus holds.

Corollary 2.1. In epoch e of the consensus process, given
that each committee has at most t faulty replicas, the following
holds: 1) if a correct replica receives κ−t (PREPARE) messages
with hash h from C2

c,le, at least f + 1 correct replicas in
the system have received the (PROPOSE) message where the
proposed block b satisfies hash(b) = h. 2) if a correct replica
receives κ − t (COMMIT) messages with hash h from C3

c,le,
at least f + 1 correct replicas in the system have received κ
(PREPARE) messages from C2

c,le and set their lockedQC to qc
for (2, h, le).

Lemma 3. Let α = 1
3 − ϵ be the fraction of faulty replicas

in the system, δ be the desired failure probability and ϵ be a
small constant and 0 < ϵ < 1

3 . If the number of the replicas
in the committee is greater than 3α

ϵ2 ln 1
δ = O(κ), then with

probability 1 − 2+3ϵ
1−3ϵ · δ

3−9ϵ
ϵ , there exists at least one correct

replica in the committee.

Proof. We bound the probability that there exists at most one
correct replica in each committee. Since n is sufficiently large,
the probability that one faulty replica be elected as a committee
member is α = 1

3−ϵ (correspondingly, the probability that one
correct replica is elected as a committee member is 1 − α =
2
3+ϵ). Let c be the size of the committee. Then the probability
that no more than one correct replica is elected as a committee
member is:(

1

3
− ϵ

)c

+ c ·
(
2

3
+ ϵ

)
·
(
1

3
− ϵ

)c−1

=

(
1

3
(1− 3ϵ)

)c

+ c · 2 + 3ϵ

1− 3ϵ
·
(
1

3
(1− 3ϵ)

)c

=
1

3c
· (1− 3ϵ)

c
+

c

3c
· 2 + 3ϵ

1− 3ϵ
· (1− 3ϵ)

c

≤2c

3c
· 2 + 3ϵ

1− 3ϵ
· (1− 3ϵ)

c

≤2 + 3ϵ

1− 3ϵ
· (1− 3ϵ)

3α
ϵ2

ln 1
δ (since c =

3α

ϵ2
ln

1

δ
)

≤2 + 3ϵ

1− 3ϵ
· exp

(
−9α

ϵ
ln

1

δ

)
=
2 + 3ϵ

1− 3ϵ
· δ

3−9ϵ
ϵ

=O
(
δ

3−9ϵ
ϵ

)
Lemma 4. Let α = 1

3 − ϵ be the fraction of faulty replicas
in the system, δ be the desired failure probability, and ϵ be a
small constant where 0 < ϵ < 1

3 . If the number of the replicas
in the committee is greater than 3α

ϵ2 ln 1
δ = O(κ), then with

probability 1−δ
1
9
−ϵ2

ϵ2 , there exist at least t+1 correct replicas
in the committee where t = κ/3.

Proof. We bound the probability that there are no more than
κ/3 + 1 correct replicas in the committee. Since n is suffi-
ciently large, the probability that one faulty replica is elected
as a committee member is α = 1

3 − ϵ (correspondingly, the
probability that one correct replica is elected as a committee
member is 1−α = 2

3 + ϵ). Let c be the committee size. Then
the probability that there are no more than c/3 + 1 correct
replicas in the committee is:

Pr

(
Y ≥ 2c

3

)
= Pr

(
Y ≥ (α+

1

3
+ ϵ)c

)
= Pr

(
Y ≥ (1 +

1
3 + ϵ

α
)E(Y)

)
≤ exp{−

(13 + ϵ)E(Y)

3α
}

= exp{−
(13 + ϵ)c

3
}

≤ δ
1
9
−ϵ2

ϵ2 (since c ≥ 3α

ϵ2
log

1

δ
)

Corollary 4.1. In the transmission process, if Pi receives
κ − t signatures from committee Ci

t,e for the tuple (e, h, i),
the probability that none of correct committee members have

received M is δ
1
9
−ϵ2

ϵ2 .

Lemma 5. In the transmission process for any epoch e, if a
QC qcj is formed where Pj is the sender, with the probability
of 1− negl(κ), at least f + 1 correct replicas have received
the proposal from Pj .

Proof. The probability that t+ 1 correct committee members
in Cj

t,e have received the proposal from Pj is the same as the
fact that there exist fewer than κ − t correct replicas in the
committee. According to Lemma 1, the probability is 1 − δ
and δ is a negligible function. Then following an argument
similar to that for Lemma 2, this lemma holds.

Lemma 6. Assuming that at least f + 1 correct replicas
have received a proposal from Pj , with the probability of
1 − negl(κ), the state transfer fails such that some correct
replicas fail to receive the proposal from Cj

s,e.

16

Proof. State transfer fails if the committee Cj
s,e does not have

any correct replica that has previously received the proposal
from Pj . The probability is the same as that there are fewer

than t + 1 correct replicas in Cj
s,e, i.e., δ

1
9
−ϵ2

ϵ2 by Lemma 4,
a negligible function.

B. The Consensus Process

Lemma 7. If a correct replica Pi receives κ − t matching
messages from C3

c,e in epoch e, the (PROPOSE, b, e′, qchigh)
message by a correct leader in epoch e′ > e satisfies
height(qchigh) ≥ e. Additionally, at least t + 1 correct
replicas in C2

c,e′ accept the (PROPOSE) message only if
height(qchigh) ≥ e.

Proof. We know that Pi receives κ−t matching messages from
C3

c,e. According to Corollary 2.1, at least f+1 correct replicas
in the system have set their lockedQC to a QC qc for (2, h, e).
Now, in any epoch e′ > e, at the beginning of epoch e′, a
committee C1

c,e is sampled, and the committee members send
their lockedQC to the leader. According to Corollary 1.1, the
leader will receive the QC and update its qchigh accordingly.
If the leader provides qchigh, the height of which is lower than
e, at least f + 1 correct replicas in the system have set their
lockedQC to qc. According to Corollary 1.1, at least t + 1
correct replicas in C2

c,e will not accept the (PROPOSE) message.
The lemma thus follows.

Lemma 8. If a correct replica Pi has received κ− t matching
(COMMIT) messages from C3

c,e in epoch e, in which the QC is
for (2, h, e), any correct replica eventually receives a QC for
(2, h, e).

Proof. As Pi has received κ− t matching (COMMIT) messages
from C3

c,e for (2, h, e), at least κ− 2t ≥ t+1 correct replicas
have sent (COMMIT) messages. According to our protocol,
every replica in C3

c,e that has not sent a (COMMIT) message will
also send a (COMMIT) message after receiving t+ 1 matching
messages. Therefore, Pj eventually receives κ − t matching
(COMMIT) messages and obtains a QC for (2, h, e).

Theorem 9 (Safety). Let the probability that each committee
has more than t faulty replicas be δ and the probability that
the hash function is not collision-resistant be 0. If a correct
replica a-delivers a message m before a-delivering m′, then
with probability 1 − O(δ2), no correct replica a-delivers a
message m′ without first a-delivering m.

Proof. As the input of each epoch is a set of QCs and cor-
rect replicas only a-deliver messages sequentially, no correct
replica will a-deliver any value m that has already been a-
delivered.

Now we assume that a correct replica Pi a-delivers m in
epoch e1 and a-delivers m′ in epoch e2 and e2 > e1. Another
correct replica Pj a-delivers m in e′1 and m′ in e′2 and e′2 < e′1.
We prove the correctness by contradiction.

Without loss of generality, we assume e1 < e′2 (the
correctness follows vice versa). We show that if Pi a-delivers
m in epoch e1, Pj also a-delivers m′ in e1, m = m′.

If Pi a-delivers m, there are two cases: Case 1) Pi has
received κ − t matching signatures for (2, h, e1) from C3

c,e1
in epoch e1, where h is the hash of m; Case 2) Pi has a-
delivered some value in epoch e′ > e1 and then a-delivers m
via the ObtainMissing() function. Similarly, if Pj a-delivers
m′, there are two cases: Case 3) Pj has received κ−t matching
signatures for (2, h′, e1) from C3

c,e1 in epoch e1, where h′ is
the hash of m′; Case 4) Pj has a-delivered some value in
epoch e′′ > e1 and then a-delivers m via the ObtainMissing()
function. In the following, we show that in any combination
of the two cases, m = m′.

Case-1: Case 1 (for Pi) and Case 3 (for Pj). As the
committee C3

c,e1 has κ replicas among which at most κ/3
replicas are faulty with probability 1 − negl(κ), at least
one correct replica has sent a signature for both (2, h, e1)
and (2, h′, e1), a contradiction. Additionally, according to the
collision-resistance of the hash function, m = m′.

Probability of safety violation for Case-1: According to the
definition, a correct replica in C3

c,e1 will never send signatures
for inconsistent values. Pi receives κ − t matching messages
for (2, h, e1) from C3

c,e1 . Let the set of κ− t replicas that send
matching (COMMIT) messages be S1. Meanwhile, Pj receives
κ− t matching messages for (2, h′, e1) from C3

c,e1 . Let the set
of replicas that send κ−t matching messages be S2. According
to the proof in Theorem 9, a safety violation occurs only when
S1 or S2 has fewer than κ− 2t correct replicas.

There are two sub-cases if safety is violated: 1) none of S1

or S2 has any correct replicas; 2) there is at least one correct
replica Pk in S1 and there is at least one correct replica Pℓ in
S2 and k ̸= ℓ.

For sub-case 1 (Case-1-SC1), faulty committee members
can already cause a safety violation. The probability SC1
occurs only if the C3

c,e1 committee has fewer than t+1 correct
replicas. By Lemma 4, the probability of safety violation of

sub-case 1 is: Pr(Case-1-SC1) = δ
1
9
−ϵ2

ϵ2 .

We now analyze sub-case 2 (Case-1-SC2). First, this case
causes a safety violation only if there are fewer than κ − t
correct replicas so the probability is p1 = δ.

Second, we analyze the probability that sub-case 2 leads to
a safety violation. Since Pk has sent a (COMMIT) message for
(2, h, e1), it has previously received κ− t matching (PREPARE)
messages for (1, h, e1) from C2

c,e1 . Let the set of replicas
be S3. Meanwhile, as Pℓ has sent a (COMMIT) message for
(2, h′, e1), it has previously received κ−t matching (PREPARE)
messages for (1, h′, e1) from C2

c,e1 . Let the set of replicas be
S4. The probability that there does not exist a correct replica in
S3∩S4 is the same as the probability that the C2

c,e1 committee
has fewer than κ− t correct replicas, i.e., p2 = δ.

Put them together, the probability that sub-case 2 leads to
a safety violation is: Pr(Case-1-SC2) ≤ p1p2 = δ2.

The probability that Case-1 leads to a safety violation is
then:

17

Pr(Case-1) = Pr(Case-1-SC1) + Pr(Case-1-SC2)

≤ δ
1
9
−ϵ2

ϵ2 + δ2.

Case-2: Case 1 (for Pi) and Case 4 (for Pj). If Pj a-delivers
some value m′′ in epoch e′′ > e1, m′′ consists of proposals
between the height of qchigh (in the (PROPOSE) message) and
e′′. We first show that the height(qchigh) ≥ e1. Then, we
show that Pj will eventually receive a QC for epoch e1in the
ObtainMissing() function and then a-deliver m′. Finally, we
show m = m′.

We begin with height(qchigh) ≥ e1. If Pi receives κ − t
matching (COMMIT) messages in epoch e1, by Lemma 7, in
the proposal of any epoch greater than e1, at least t + 1
correct replicas will not accept a (PROPOSE) message for
height(qchigh) < e1 with probability 1 − negl(κ). Now,
assume that when Pj a-delivers some value in epoch e′′, the
height of the qchigh in the (PROPOSE) message is lower than
e1. Therefore, at least κ−t replicas in C2

c,e′′ have accepted the
(PROPOSE) message and created a signature. This is a violation
as at least t + 1 correct replicas in C2

c,e′′ will not accept the
message.

We now show that Pj eventually obtains a QC for (2, h, e1)
for epoch e1 in the ObtainMissing() function. According to
Lemma 8, Pj eventually obtains a QC for (2, h, e1). After that
Pj has either received m′ from the leader such that the hash
of m′ is h, or synchronized m′ from other replicas.

According to the collision-resistance of the hash function,
m = m′.

We leave the discussion about Case-2 to Case-4 to our full
paper. To conclude, the probability that safety is violated is
O(δ2).

Lemma 10. In every epoch e, if at least one correct
replica Pi receives κ− t (COMMIT, h, e,−) messages with the
same h, every correct replica Pj eventually receives κ − t
(COMMIT, h, e,−) messages.

Proof. We assume that ∆ is properly set up. If a correct replica
Pi receives κ − t (COMMIT, h, e,−) messages with the same
h, the messages are sent from committee members in C3

c,e.
As the committee C3

c,e has at least t + 1 correct replicas,
all correct replicas will eventually receive t + 1 (COMMIT)
messages with the same h and any correct replica that has
not sent a (COMMIT) message will send one to all replicas.
Therefore, every correct replica Pj eventually receives κ − t
(COMMIT, h, e,−) messages.

Lemma 11. In every epoch e, if at least one correct replica
Pi receives κ − t (COMMIT, h, e,−) messages with the same
h, for the block b proposed by the leader (the hash of b is
h and the QCs with the lowest epoch number in b is e′), at
least one correct replica has already a-delivered some values
in any epoch lower than e′.

Proof. If at least one correct replica Pi receives κ − t
(COMMIT, h, e,−) messages with the same h, at least t + 1

replicas in C2
c,e have sent (PREPARE) messages with the same

h, among which at least one is correct. According to the
IsValid(b) function, every correct replica in C2

c,e sends a
(PREPARE) message only if it has completed every epoch lower
than e′. The lemma thus holds.

Lemma 12. If a correct replica Pi queries
ObtainMissing(ce, le,m), the function eventually returns
some m.

Proof. Pi iterates every e ∈ [ce, le] and there are two cases:
some QCs We has already been included in m; QCs are not
included in m. For the first case, m[e] is set as We. We now
focus on the second case. In this case, Pi has not completed
epoch e, but the proposer (leader in epoch le) believes that
epoch e has already been completed. Here, Pi simply waits
for the proposal of epoch e, and we show that Pi eventually
obtains the proposed block b. According to Lemma 11, at
least one correct replica has completed epoch e. Furthermore,
according to Lemma 10, Pi eventually receives κ−t matching
(COMMIT, h, e,−) messages. Based on the hash value h, Pi is
able to obtain the original proposal b (possibly synchronized
from other replicas).

Theorem 13 (Liveness). Let the probability that each com-
mittee has more than t faulty replicas be δ. If a correct replica
a-broadcasts a message m, then all correct replicas eventually
a-deliver m with probability 1 − δ2E , where E is an epoch
number.

Proof. If a correct replica Pi a-broadcasts a message m in
epoch e, it has received κ − t (COMMIT, h, e,−) messages
with the same h. According to Lemma 10, any correct replica
eventually receives κ− t (COMMIT, h, e,−) messages with the
same h. Furthermore, Pi either directly a-delivers some value
or obtains some value from the ObtainMissing() function.
According to Lemma 12, every correct replica eventually
obtains some m. The collision resistance of the hash function
ensures that the value of every correct replica a-delivers is m.

Consider the case where the leader is correct and the leader
proposes m in epoch e, liveness is violated only if none of
C2

c,e and C3
c,e have at least κ−t correct replicas. By Lemma 1,

the probability of this case is δ2.

According to the protocol, replicas will move to a new view
if replicas do not a-deliver any value in epoch e. We also
additionally require every correct leader to propose a value
for epoch e even if it enters a new epoch e′ > e. Without loss
of generality, assuming that the correct leader proposes m in
epoch 1 and every correct leader continues to propose m if m
has not been a-delivered yet. After GAT, the probability that
m is not a-delivered is therefore bounded by δ2E , where E is
the number of epochs after m was submitted and the leader
in these epochs are correct.

18

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements
1) How to access: The artifact can be accessed via the

stable URL: https://doi.org/10.5281/zenodo.16959662.
2) Hardware dependencies: Our test environment requires

a commodity desktop machine with at least an x86-64 CPU
with 8 cores and 16 GB of RAM running a recent Linux
operating system.

3) Software dependencies: Our experiments run on Ubuntu
22.04. To compile our code of protocols, we require Go1.23.3
linux/amd64. We also use Python for log summarization. Make
sure you have Python 3.10 (or a later version) installed.
To prevent evaluators from downloading dependencies, the
codebase we provided includes all necessary dependencies,
which are located in “Pando/src/”.

4) Benchmarks: None

B. Artifact Installation & Configuration
1) Installation: After installing Go, the artifact can be

installed by running the following commands. Download the
repository from https://doi.org/10.5281/zenodo.16959662 and
decompress “./Pando.zip” manually or follow the command:

• unzip Pando.zip -d Pando
Next, set up the environment variable and disable Go

modules mode under “./Pando” folder.
• cd Pando
• export GOPATH=$PWD && export GOBIN=$PWD/bin
• go env -w GO111MODULE=off
Compile the code by running the following commands.
• bash ./scripts/install.sh
If no errors are reported after completing the commands

above, the compilation is successful. Executable files are
expected to appear under “Pando/bin”.

2) Configuration: Modify the configuration file “Pan-
do/etc/conf.json” to choose the optional arguments. The id of
each server should be unique. In our repository, we provide
the configuration with 31 servers (id from 0 to 30) in “Pan-
do/etc/conf.json”.

Using the default configuration file, the codebase can be run
locally on a single machine. If multiple machines or another
configuration are used for evaluation, please also modify the
host and port of all servers manually.

Generate the ECDSA key pairs for servers with IDs
0, · · · , 30 and a client with ID 1,000 by running the command:

• bin/keygen 1 0 30 && bin/keygen 1 1000
If keys are successfully generated, they are located under

“Pando/etc/key”.

C. Experiment Workflow
The artifact contains four folders with three log summa-

rization scripts. Folder “etc” stores configuration files and key
pairs for servers. The “scripts” contains bash scripts to run the
experiments automatically. The “src” includes the source code
and dependencies for Pando system, and the “var” stores all
execution logs.

D. Major Claims

• (C1): PANDO achieves lower latency and higher through-
put when the system committee size decreases. This
is proven by the experiment (E1) whose results are
illustrated in Figure 4e, Section VII of the paper.

• (C2): PANDO achieves a steady growth in latency vs.
throughput as system batch size increases. This is proven
by the experiments (E2) whose results are illustrated in
Figure 4f-4j, Section VII of the paper.

• (C3): For the latency breakdown of PANDO system,
the latency of the consensus process is higher than the
transmission process. This is proven by the experiments
(E3) whose results are illustrated in Figure 4l, Section
VII of the paper.

E. Evaluation

We conduct three types of experiments: Pando with different
committee sizes (E1), latency vs. throughput experiments (E2),
and latency breakdown experiments (E3). E1, E2 and E3 are
used to validate Claim C1, C2 and C3, respectively.

[Notes on scaled-down experiments] Most results reported
in the paper require access to the Amazon EC2. In this artifact
appendix, we provide the procedure for reproducing scaled-
down experiments using one machine.

[Notes on possible errors] Due to large resource consump-
tion on one machine, the execution could stop to confirm
blocks (no increasing epochs). When this failure happens, just
terminate all processes using the following command and then
restart the experiment:

• bash ./scripts/killProcess.sh

The artifact may cause different results each time and has
to run multiple times for the expected results. Please run the
experiment multiple times and consider the average value.

1) Experiment (E1): [10 human-minutes]:
We assess latency vs. throughput for Pando for n = 31 by

varying the committee size as 0.2n, 0.4n and 0.8n.
[How to] Modify the configuration file and run the experi-

ments in 3 scenarios under “./Pando” folder.
[Preparation] Modify the configuration file “Pando/etc/-

conf.json”. The argument committeeSizes needs to be mod-
ified based on the scenario setups. For example, when we
evaluate scenario Pando (0.8), committeeSizes needs to be
modified to 0.8 in “Pando/etc/conf.json”.

[Execution] E1 has to run the experiment in 3 scenarios.
Below, we show the execution procedures for Pando (0.8).

Run the experiment under “./Pando” folder:
• bash ./scripts/runE1.sh

This script will first run all 31 servers in the background
(approximately 15 seconds in total). The following outputs are
expected to be displayed on the terminal:
2025/07/14 09:52:08 **Starting replica 0
2025/07/14 09:52:08 Use ECDSA for authentication
open

/home/starly/Pando/var/log/0/20250714_Normal.log↪→

2025/07/14 09:52:08 [User] User starly
2025/07/14 09:52:08 User [starly]

19

https://doi.org/10.5281/zenodo.16959662
https://doi.org/10.5281/zenodo.16959662

2025/07/14 09:52:08 **Storage option: Data are
stored at consensus replicas↪→

2025/07/14 09:52:08 >>>Running Pando protocol!!!
open /home/starly/Pando/var/log/0/20250714_Eva.log
2025/07/14 09:52:08 Start transmission process...
2025/07/14 09:52:08 Start Pando consensus process...
2025/07/14 09:52:08 ready to listen to port :11000
2025/07/14 09:52:13 ############### epoch 0...
2025/07/14 09:52:14 ############### epoch 1...
...

Since all outputs of 31 servers will display in one terminal
immediately, it is difficult to check each printout manually.
Just wait for a few seconds (approximately 15 seconds), the
terminal will display epoch 1... every second, which means
that all servers are listening to the client request.

Next, the script will send client requests, including 5 trans-
action blocks, to Pando servers (approximately 60 seconds in
total, from epoch 1 to 5).

At the end of the experiment, the output will display:
############### epoch 5...
client-start: no process found
After the experiment is successfully launched, evaluation

logs can be found in the folder “./Pando/var/log”. Now calcu-
late the performance with the command:

• python3 summarizeE1.py
The latency and throughput of scenario Pando (0.8) will be

printed, and the result will be recorded in “Pando/resultE1.txt”.
[Repeat the experiment with two other scenarios.] To com-

plete E1, one need to repeat the experiment with Pando (0.4)
and Pando (0.2) with exactly the same procedures above. Do
not forget to change the argument committeeSizes in file
“Pando/etc/conf.json” before each experiment.

[Results] After finishing the three experiments mentioned
above for Pando (0.2), Pando (0.4) and Pando (0.8), one should
observe from “Pando/resultE1.txt”, that the latency should
lower and the throughput should higher when the committee
size is smaller. This validates Claim C1.

2) Experiment (E2) : [20 human-minutes]:
We assess latency vs. throughput for Pando (0.2) by varying

the batch size as 100, 300, 500, 1000, 3000 and 5000.
[How to] Run the experiments in 6 scenarios with the

command under “./Pando” folder.
[Preparation] Modify the configuration file “Pando/etc/-

conf.json”. The argument committeeSizes needs to be mod-
ified to 0.2.

Also, remember to modify the batchSize argument based
on the scenario setups. For example, when we evaluate Pando
with batch size 5000, we need to modify the batchSize to
5000 in “Pando/etc/conf.json”.

[Execution] E2 has to run the experiment in 6 scenarios.
Evaluators need to modify the batchSize configuration before
running different E2 scripts. Here we show the detailed
instructions for batch size 5000 below.

Run the experiment under “./Pando” folder:
• bash ./scripts/runE2 batchsize5000.sh
The command will run all 31 servers before submitting

client requests like that in E1. The expected outputs should
be similar to those in the E1 experiment.

After execution is completed, calculate the scenario perfor-
mance with the command under “./Pando” folder:

• python3 summarizeE2.py

The latency and throughput of 5000 batch size will be
printed, and the result will be recorded in “./Pando/re-
sultE2.txt”.

[Repeat the experiment with five other scenarios] To
complete E2, one needs to repeat the experiment with
100, 300, 500, 1000 and 3000 batch sizes. Remember to mod-
ify the batchSize argument in “Pando/etc/conf.json” before
running E2 scripts. We provide scripts for each scenario below.

Run 100 batch size scenario:
• bash ./scripts/runE2 batchsize100.sh

Run 300 batch size scenario:
• bash ./scripts/runE2 batchsize300.sh

Run 500 batch size scenario:
• bash ./scripts/runE2 batchsize500.sh

Run 1000 batch size scenario:
• bash ./scripts/runE2 batchsize1000.sh

Run 3000 batch size scenario:
• bash ./scripts/runE2 batchsize3000.sh

[Results] After completing the procedures above for batch
size 100, 300, 500, 1000, 3000 and 5000, one should observe
from “./Pando/resultE2.txt” that the trend of latency vs.
throughput should align with the data shown in Figure 4f-
4j in the paper. Namely, the throughput of Pando is expected
to increase when the batch size grows. Note that the results
may vary depending on the machine used. For example, the
latency may not appear to be monotonically increasing as the
batch size increases. This validates Claim C2.

3) Experiment (E3) : [5 human-minutes]:
We assess latency breakdown of the transmission process

and the consensus process for Pando (0.2) with 31 servers.
[How to] Run the experiment under “./Pando” folder.
[Preparation] Modify the configuration file “Pando/etc/-

conf.json”. The argument committeeSizes and needs to be
modified to 0.2.

[Execution] Run the experiment with the command under
“./Pando” folder:

• bash ./scripts/runE3.sh

The command runs all 31 servers and submits 5 transaction
blocks to the servers. The output should be similar to that in
the E1 experiment.

After completing the experiment, calculate the latency using
the command under “./Pando” folder:

• python3 summarizeE3.py

The latency breakdown of Pando (0.2) will be printed, and
the result will be recorded in “./Pando/resultE3.txt”.

[Results] After completing E3, one should observe from
“./Pando/resultE3.txt” that the trend of the latency breakdown
is aligned with the data shown in Figure 4l in the paper.
Namely, the latency of the consensus process is higher than
that of the transmission process. This validates Claim C3.

20

	Introduction
	System Model and Building Blocks
	Building Blocks

	Motivation
	Review of Existing De-coupling Approaches
	The Scalability Bottlenecks

	Technical Overview of Pando
	The Pando Protocol
	The Generic Workflow
	The Transmission Process
	The Consensus Process
	State Transfer
	Correctness

	Analysis of Probability of Achieving Safety and Liveness
	Implementation and Evaluation
	Related Work
	Conclusion
	Research Ethics Considerations
	References
	Appendix A: Proof of Correctness
	The Transmission Process
	The Consensus Process

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Installation
	Configuration

	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)

