Artifact
Evaluated

ANDss

Available

Functional

BunnyFinder: Finding Incentive Flaws for
Ethereum Consensus

Reproduced

Rujia Li*¥, Mingfei Zhang', Xueqian Lu, Wenbo Xu?, Ying Yan!, Sisi Duan*$¥ =
*Tsinghua University TShandong University Blockchain Platform Division, Ant Group
§Zhongguancun Laboratory, Shandong Institute of Blockchains
Tstate Key Laboratory of Cryptography and Digital Economy Security
rujia@tsinghua.edu.cn, mingfei.zh@outlook.com, xueqian.lu@bitheart.org,
{xuwenbo.xwb,fuying.yy } @antgroup.com, duansisi @tsinghua.edu.cn
& Corresponding author

Abstract—Ethereum, a leading blockchain platform, relies on
incentive mechanisms to improve its stability. Recently, several
attacks targeting the incentive mechanisms have been proposed.
Examples include the so-called reorganization attacks that cause
blocks proposed by honest validators to be discarded to gain
more rewards. Finding these attacks, however, heavily relies on
expert knowledge and may involve substantial manual effort.

We present BunnyFinder, a semi-automated framework for
finding incentive flaws in Ethereum. BunnyFinder is inspired by
failure injection, a technique commonly used in software testing
for finding i mplementation v ulnerabilities. I nstead o f finding
implementation vulnerabilities, we aim to find d esign flaws. Our
main technical contributions involve a carefully designed “strat-
egy generator” that generates a large pool of attack instances,
an automatic workflow t hat 1 aunches a ttacks a nd a nalyzes the
results, and a workflow that integrates reinforcement learning to
fine-tune the attack p arameters a nd i dentify t he m ost profitable
attacks. We simulate a total of 9,354 attack instances using our
framework and find the following r esults. F irst, o ur framework
reproduces five k nown i ncentive a ttacks t hat w ere previously
found manually. Second, we find t hree n ew a ttacks t hat c an be
identified as incentive flaws. Finally and surprisingly, on e of our
experiments also identified t wo i mplementation flaws.

I. INTRODUCTION

Ethereum is a leading blockchain platform [1], [2] with
a market cap of 19 billion dollars [3]. After it upgraded to
the Proof-of-Stake (PoS) consensus mechanism in Sep 2022,
it now heavily relies on the incentive mechanisms to ensure
the stability of the system. Namely, honest validators receive
rewards, and Byzantine validators (i.e., arbitrarily faulty val-
idators) may receive penalties, so validators are encouraged to
follow the specifications of the protocol. The rewards include
the block rewards, transaction fees, and attestation rewards
(i.e., every honest validator that votes correctly receives re-
wards), etc. The penalties include the slashing conditions (i.e.,
a validator that equivocates will be penalized and eventually
removed from the system) and atfestation penalties (i.e., a

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230281
www.ndss-symposium.org

validator that does not vote will suffer from penalties). The
incentive mechanism has been very successful since the launch
of the PoS protocol. According to rated.networlﬂ more than
99% of validators operate correctly.

The relationships between the incentive mechanisms and
security of the system. The incentive mechanism of Ethereum
is not perfect. Many attacks have been proposed on finding
the incentive flaws of Ethereum PoS [4]-[7] (see Table [I),
some of which might pose a security threat to the system.
For instance, the recently proposed staircase attack [6]] has
demonstrated that by controlling more than 29.6% stake, all
honest validators may suffer from no attestation incentives,
but Byzantine validators continue to receive rewards. Further-
more, the attack can be launched continuously. Eventually,
the fraction of stake controlled by the adversary exceeds the
pre-specified 33.3% threshold, posing a security threat to the
safety (i.e., no double spending) and liveness (i.e., transactions
are eventually finalized) properties of the system [8]]. In fact,
even if the attack on the incentive mechanism does not have
an impact on the security of the system, an inappropriate
incentive mechanism may discourage honest validators from
participating in the system [9], lowering the robustness and
reliability of the system.

Finding the incentive flaws is challenging. It is not easy
to find incentive flaws (e.g., honest validators receive much
lower rewards than the fair share), and existing works largely
rely on expert knowledge and may involve substantial manual
effort. This difficulty mainly stems from two factors. First,
while formal models of blockchain incentives have been
studied [13]], [[14], to our knowledge, no consensus mechanism
has incorporated incentives in their security definitions. It
is thus extremely challenging, if not possible, to rule out
incentive flaws. Second, the attack strategies can be very
sophisticated. The staircase attack [6] mentioned above is a
perfect example. In the attack, Byzantine validators collude
and carefully control the concrete timing when the withheld
blocks and attestations can be released. As a Byzantine
validator may behave arbitrarily, enumerating all malicious
behaviors to discover new attacks is technically infeasible.

IRated.work: https://explorer.rated.network/| (accessed in Nov 2024)


https://explorer.rated.network/

TABLE I: Comparison of known incentive attacks

and newly found incentive attacks by BunnyFinder.

Attack Strategy

Attack Result

Scheme Flaw Identified
Type Content Order H ¢ B G Ethereum
Manipulation Manipulation ones yzantine Implementations
Ex-ante reorg attack [5] 1 block head (short for h) less reward reward Prysm 5.2.0; Teku 25.6.0
Sandwich reorg attack [10] I block head, modify parent less reward reward Prysm 5.2.0; Teku 25.6.0
Unrealized justification attack [[11] I - parent penalty reward Prysm 4.0.5
Justification withholding attack [12] I block head penalty reward Prysm 4.0.5
Staircase attack [6) I block source, h target, attestations penalty reward Prysm 4.0.5
Selfish mining attack (this work) 1 block head, modify parent less reward reward Prysm 4.0.5
Staircase attack-1I (this work) I block source, h, target, attestations penalty reward Prysm 5.2.0
Pyrrhic victory attack (this work) IL, IV blocks, attestations all less reward&penalty penalty Prysm 5.2.0; Teku 25.6.0

Thus, an interesting and meaningful research question is:
Can we find the incentive flaws in Ethereum while involving
less manual effort?

Our Approach. We propose BunnyFinder, a semi-automated
framework to find incentive flaws for the Ethereum PoS
protocol. BunnyFinder is inspired by software testing tools
such as penetration testing [15]-[/18], chaos engineering [19],
[20], fuzz testing [21]-[24], and breach and attack (BAS)
simulation [25]. Different from software testing tools that
often focus on implementation vulnerabilities or bugs, our
framework focuses on the design flaws, especially incentive
flaws. As summarized in Figure [T} our framework consists
of four components: strategy generator, strategy executor,
state analyzer, and strategy optimizer. We use the strategy
generator to automatically generate attack instances. The
strategy executor automatically executes the corresponding
attack strategies. The state analyzer collects execution logs
to determine whether an incentive flaw has been triggered.

Based on the identified incentive flaws, we further build a
strategy optimizer, using reinforcement learning [26] to fine-
tune the attack parameters, e.g., how much time each message
should be delayed. In this way, we can further refine the attack
strategies to either increase the probability of launching the
attacks or increase the “profit” of the attacks.

Responsible disclosure. We have disclosed our findings
to the Ethereum Foundation via both public channels,
meetings, and emails. All our discovered vulnerabilities
have been reported and acknowledged. See Appendix [A]
for more information.

Our findings. We implement our framework on two widely
adopted Ethereum implementations, Prysm [27]] and Teku [28]].
Using our framework, we generate and run 9,354 attack
instances, and all experiments last for about 120 hours. While
many attack instances can be defined as incentive flaws, we
identify ten useful attacks, including five known reorganization
attacks, three new attacks (as design flaws), and two imple-
mentation flaws in Prysm, as summarized below. To further
clarify, we use incentive flaws to denote design issues, and
implementation flaws to denote implementation issues that are
not directly related to the design. See Table [Il for a summary.
> Finding 1. Our framework can cover most known reor-
ganization attacks. Since some of the known attacks (e.g.,
the sandwich reorg attack [[10]], [29], the unrealized justifi-

cation attack [11], the justification withholding attack [12],
and staircase attack [6]]) have already been mitigated in the
recent Deneb upgrade of the codebase, we can reproduce these
attacks on older versions.

> Finding 2. Our framework identifies three new attacks of
the incentive flaws, as summarized below.

(1) We find a selfish mining attack, previously known as an at-
tack on Proof-of-Work (PoW) and some PoS protocols [30]—
[33] but not Ethereum PoS [31f]. To our knowledge, this
is the first known selfish mining attack to Ethereum PoS.
After manual investigation, we show that by controlling only
13.4% stake, the attack is already profitable, i.e., Byzantine
validators gain more rewards than their fair share.

(2) We find a variant of staircase attack, and we call it
staircase attack-I1I. In this attack, honest validators suffer
from penalties while Byzantine validators still continue to
receive rewards. We show that by controlling 33.3% stake,
the attack can be launched so all honest validators suffer
from penalties. Different from the staircase attack that can
be launched continuously in every epoch, staircase attack-
II can only be launched for one more epoch with 1/9
probability. Although Ethereum has provided a mitigation
to the staircase attack, our result shows that the solution
cannot fully mitigate its variant.

(3) We find a novel attack called pyrrhic victory attac In
our attacks, honest validators receive lower rewards than
their fair share or even suffer from penalties, while Byzan-
tine validators also suffer from penalties [34]. We found
many meaningful attack instances where honest validators
suffer from higher incentive loss than Byzantine validators.

> Finding 3. Although BunnyFinder is not intended to identify
implementation vulnerabilities, our framework uncovers two
such issues. First, we observe a deadlock in the synchroniza-
tion module, which validators use to “catch up” with other
validators, but no validator is able to complete synchroniza-
tion. The second issue happens in the /og module, where non-
existent reorganization is reported in the log. While this does
not affect the correctness of the system, it impacts our state
analyzer and may complicate maintenance for developers.

Contributions. Our work makes the following contributions:

2 A pyrrhic victory means a win that comes at such a great cost to the victor
that it is nearly equivalent to defeat.



Run Strategies

Generate Strategies
(Sec.IV.B)

(Sec.IV.A)

Evaluate Outcomes
(Sec.IV.C)

Optimize Strategies
(Sec.IV.D)

State Analyzer Module Strategy Optimizer Module “;

Update Strate and Reward
_______________ CE RI::S:(;; h Agent Environment
Generator T— State gligg?l“
¢ Instrl;ction ‘ Action Casper l
Dispatcher : A
—Optumze ............. Attacking Scheduler : i AIR & IC input ! |1 ____
______________ '

E Byzantine Simulator E
__________ qoeeeemmee
|

i
| SSF: Strategy Specification Format

. Testing environment :
with diverse clients

I AIR: Action Incentive Recorder
"IC : Incentive Comparator
"RR-T : Result Recorder Table

I
I
I
I
I
I
| AIR-T: Action Incentive Recorder Table |

Figure 1:

e We propose BunnyFinder, a framework for finding the
incentive flaws of the Ethereum PoS protocol. BunnyFinder
exploits the idea of failure injection to build a workflow that
automatically imports pre-defined attack instances, launches
an experiment that simulates the attack, and analyzes
whether an incentive flaw exists.

e We implement and evaluate our framework on two widely
adopted Ethereum implementations. By running the 9,354
attack instances, our framework automatically covers five
known reorganization attacks (although only one attack is
still feasible in the current version of Ethereum) and three
new attacks on the incentives of Ethereum. Additionally, as
a by-product, our framework identifies two implementation
flaws.

e We conduct an in-depth analysis of the newly discovered
attacks. All new attacks we found have been validated and
reported. Some of them have been acknowledged by the
Ethereum Foundation and contributed to version updates in
the Ethereum protocol.

II. ETHEREUM POS AND ITS INCENTIVE

In this section, we briefly review the Ethereum PoS protocol.
Our notations mainly follow the Ethereum documentation [2]],
[35] and previous works [6].

Epoch and slot. Ethereum PoS assumes that the network
is partially synchronous, i.e., there exists an unknown upper
bound A for message propagation and processing. In the
paper, our analysis focuses on the attacks when the network is
synchronous, assuming that A is known by all validators. In
Ethereum, time is divided into epochs. Each epoch includes
32 slots where each slot lasts for 12 seconds. For our purpose,
we call four seconds (1/3 of a slot) a time unit.

Overview of our work.

Validators. Validators are the parties that participate in the
PoS protocol. Without loss of generality, we assume that there
are n validators {v1, vo, ..., v, } while in practice n may change
over time. Each validator deposits 32 ETH as its stake. The
stake of each validator represents its weight, which is useful
during voting. For simplicity, we assume the weights of all
validators are the same.

Among n validators, up to f become Byzantine and fail
arbitrarily. Since we assume the weights of all validators are
the same, and the number of validators is fixed, Ethereum as-
sumes 1 > 3f + 1, which is optimal for partially synchronous
consensus protocols.

In this work, we consider an adversary that may control up
to f validators, but the actual number of validators controlled
might be lower than f.

Block and Attestation. A block b consists of the slot number,
a hash pointer to the parent block in the chain, a batch of
transactions, and a set of attestations. Attestations are the votes
of the validators. Each attestation att includes the slot number,
the hash of some block, and two hashes of the checkpoint (cp)
blocks, where a checkpoint is a specific block proposed at a
certain point of the protocol.

Proposer and attestor. In each epoch, validators are divided
into 32 committees and each committee is assigned to only one
slot. In each slot, all validators in the corresponding committee
become attestors and become eligible to vote. Also, a single
validator is chosen to be the proposer that is eligible to propose
a block. The identities of the committees and proposers are
randomly selected and all validators can verify the identities
of each other.

Finality. Ethereum PoS uses Casper FFG (Friendly Finality
Gadget) [35] to finalize the blocks. A block is considered fi-
nalized when it has received a sufficient number of attestations.



The Ethereum Protocol for Validator v;

global parameters: slot ¢

local parameters: block tree 7, attestation set Atts.

01 wupon the beginning of a slot ¢ do

02  as the proposer for slot ¢

03  let head be the leaf block of the canonical chain

04  let atts be the set of newly received attestations

05  let txs be the set of newly received transactions

06  build a block b = (PROPOSE, t, v;, H (head), atts, tzs)
07  Broadcast b to all validators

08 upon four seconds of a slot ¢t do

09  as the attestor for slot ¢

10 let head be leaf block of the canonical chain

11 let ¢p1 be the first checkpoint

12 let cp2 be the last checkpoint

13 create att = (ATTEST, t,v;, H (head), H(cp1), H(cp2))
14 Broadcast the attestation att to all validators

15 upon receiving a block b from the proposer v; do

16 T<+TUb

17 upon receiving att from validator v; do

18 Atts < Atts U {att}

Figure 2: The Ethereum PoS Protocol. Codes are shown for
validator v;. H() denotes the hash function.

Once a block is finalized, all blocks led by the block will never
be reversed.

Fork choice. Ethereum PoS uses the HLMD GHOST (Hybrid
Latest Message Driven Greedy Heaviest Observed Sub-Tree)
fork choice rule [36] to determine the canonical chain. In-
formally, every proposer extends its canonical chain when it
proposes a new block, and every attestor votes for its canonical
chain. The HLMD GHOST rule selects the heaviest chain
based on the number of attestations. We omit the details as
it is not relevant to our framework.

Workflow. We show the pseudocode in Figure [2| The pro-
tocol proceeds in epochs and each epoch has 32 slots. At
the beginning of a slot ¢, a proposer v; creates a block
b = (PROPOSE, t,v;, H(head), atts,txs), where head is the
output of the fork choice, atts is a set of attestations, and txs
is the batch of transactions (line 1-7). After four seconds of
slot ¢ has elapsed, each eligible attestor v; creates an attestation
att = (ATTEST,t,v;, H(head), H(cp1), H(cps)) and sends
att to all validators in the same committee. Here, head is the
output of the fork choice, and c¢p; and cps are two checkpoint
blocks (line 8-14). After receiving a message m from other
validators, m is added into each validator v;’s local block tree
T (line 15-18), which is useful only for the fork choice rule.

The incentive mechanism. The incentive mechanism of
Ethereum includes both rewards and penalties. Rewards in-
clude block rewards, transaction fees, and attestation fees.
Block rewards are rewards each block proposer can receive
after its proposed blocks are finalized. Transaction fees are the
extra fees users pay to complete a transaction [37]]. Attestation

fees are the fees each attestor receives after its attestations
are finalized. Notably, the concrete values of the attestation
rewards are related to the participation rate, i.e., informally
speaking, the total stake that votes for the same block. For
example, if attestors that own 75% stake vote for the same
block and their attestations are finalized, these attestors receive
75% of the maximum attestation reward. Penalties, on the
other hand, include the slashing condition and attestation
penalties. The slashing condition penalizes validators that
equivocate (i.e., validators that propose two conflicting blocks
or vote for two conflicting branches). Attestation penalties
penalize attestors whose attestations are not finalized (while
they are supposed to send these attestations).

We call both attestation rewards and attestation penalties
attestation incentives. Our current work focuses on the attes-
tation incentives and block rewards.

III. OVERVIEW OF BUNNYFINDER
A. BunnyFinder in a Nutshell

As mentioned in the introduction and also shown in Fig-
ure our framework consists of four main components:
the Strategy Generator (SG), Strategy Executor (SE), State
Analyzer (SA), and Strategy Optimizer (SO). Briefly speaking,
the framework proceeds in two major phases.

Phase 1: Attack identification. In the first phase, the SG
generates a set of attack instances; the SE imports these
attack instances into our locally deployed Ethereum testnet
where a fraction of validators apply the corresponding attack
strategies; the SA collects the logs from the validators and
analyzes whether each attack instance reveals an incentive
flaw. These three components are automatically conducted.

Phase 2: Attack optimization. After some incentive flaws
are identified, we manually investigate the execution logs
and classify the flaws into either existing attacks or new
attack types. For those new attack types, we extract the
common attack strategies (e.g., withholding a block for
a certain number of slots), and then run SO to optimize
the attack strategies so that the attack is either easier to
launch or more profitable. To optimize the strategies, we use
reinforcement learning (RL), a machine learning approach
that is unique for performing optimization without training
data. Attack optimization requires expert knowledge and is
not fully automatic.

B. The Challenges and our Solutions

The main research challenge we address is finding effective
attack strategies from a large space of attack instances and
then fine-tuning the attack parameters. Briefly speaking, there
are two types of malicious behaviors of Byzantine validators:
order manipulation and content manipulation. Order manipu-
lation changes the order of the messages each validator sends
to other validators (by Byzantine validators). Meanwhile,
content manipulation changes the content of the messages.

Although there are only two types of malicious behaviors,
the space of the concrete attack instances is enormous. Indeed,
each message may be modified arbitrarily and delayed for an



arbitrarily long time. Additionally, the adversary may control
different fractions of Byzantine validators. As the fraction of
validators controlled by the adversary grows, the size of the
message queues that need to be manipulated also grows. As
we cannot exhaustively enumerate every attack strategy, we
need to significantly reduce the space of the attack instances.
Furthermore, even if an attack can be identified as an incentive
flaw, we still cannot determine whether such an attack is the
most profitable one. Indeed, by slightly modifying the attack
strategies, the attack may cause higher impact.

Thus, we carefully design three components when designing
our BunnyFinder framework: strategy generator (SG), state
analyzer (SA), and strategy optimizer (SO).

SG: Reducing the space of attack instances. To reduce the
space of attack instances, we introduce several principles for
the SG to generate effective attack strategies.

e (Not releasing the message earlier than expected.) In the
implementation of Ethereum, validators do not process the
messages with a slot number higher than its current local
slot number. Therefore, releasing a message earlier than
expected is meaningless.

e (Setting up discrete delay time.) We set up the delay time
of any message discretely where one unit is one-third of
each slot, i.e., four seconds. We choose this optimization for
two reasons. First, every validator triggers some functions at
each unit, e.g., line 08 of Figure [2] shows that each attestor
prepares its attestation after four seconds have elapsed in
each slot. Second, we consider a synchronous network and
all messages are delivered on time. This is in fact a weaker
assumption than other timing models. Namely, if an attack
can be launched even when the network is synchronous, it
can easily be launched when the network is asynchronous.

o (Carefully selecting fields for content manipulation.) We
carefully select the fields that can be modified in both the
block and the attestation data structures, such that the attack
strategies might be effective.

By adopting the principles above, we can greatly reduce the
number of concrete attack instances. Jumping ahead a little
bit, our SG generates 9,354 attack instances (out of 128%
theoretical attack instances), among which 3,121 are identified
as incentive flaws according to our criteria.

Our SG approach is heuristic, so we can drastically reduce
the size of attack instances from a large space. We acknowl-
edge that novel attacks might be filtered. Unfortunately, we are
not aware of any approach that can find novel attacks easily.
We leave it an interesting future work.

SA: Evaluating the attack instances. Before we identify an
incentive flaw, we need to formally define an incentive flaw.
According to previous work [38]], [[39]], a good incentive mech-
anism, in general, should satisfy the following conditions:
(1) Honest validators that follow the protocol should receive
rewards.
(2) Byzantine validators that deviate from protocol specifica-
tions should suffer from penalties.
Most studies known so far focus on the incentive flaws

that trigger condition (1), i.e., consider the fair share as
the rewards honest validators should receive in the failure-
free case, an attack makes honest validators receive a lower
reward than their fair share or even suffer from penalties. For
example, in the ex-ante reorg attack [4]], the proposer will
not receive its block rewards, and the attestors lose some
attestation rewards. In the staircase attack [6], the adversary
makes half of the randomly chosen honest validators suffer
from penalties. Accordingly, we should also consider whether
condition (2) is triggered and possibly the following cases:

e If honest validators receive lower rewards than their fair
share, do Byzantine validators also receive lower rewards
than their fair share or even suffer from penalties?

e If honest validators suffer from penalties, will Byzantine
validators suffer from even higher penalties?

Inspired by the definition of risk-free attacks [31], we can
assess the attack instances. Let fs be the fair share (of rewards)
of an honest validator. Let Rp and R; be the net pay-
offs of Byzantine and honest validators, respectively. Positive
pay-off denotes a net reward; negative pay-off denotes a net
penalty. An attack is meaningful whenever R, < fs, i.e. honest
validators earn less than their fair share. Based on (Rp, R},),
we classify each instance as follows:

Metric I: Both Byzantine and honest validators receive re-
wards. In this case, the attack is meaningful only when the
rewards honest validators receive are lower than their fair
share. Namely, Rp > 0 and R;, > 0 with Ry < fs.

Metric II: Both Byzantine and honest validators are penal-
ized. In this case, an attack is already meaningful, as
honest validators are penalized while they strictly follow
the protocol. Namely, Rp < 0 and Rp, < 0.

Metric III: Byzantine validators receive rewards, while hon-
est actions are penalized. An attack in this category may
create a significant impact on the stability of the system, as
the fraction of stake controlled by the adversary continues
to grow and may eventually exceed the 33.3% threshold.
Namely, R > 0 and R;, < 0.

Metric IV: Byzantine validators are penalized, while honest
validators receive rewards. Similarly, the attack is mean-
ingful only when the rewards honest validators receive are
lower than their fair share. Namely, Rg < 0 and R;, > 0
with R, < fs.

To quantify the attack’s impact, we introduce the Byzantine
Advantage as BA = Rp — Rj,. A larger BA means that the
attacker’s net pay-off is higher while the honest validators’ net
pay-off is lower. An attack is more effective if it has a larger
BA. An attack is more profitable if Rp — fs is larger.

SO: Optimizing the attack using reinforcement learning.
After identifying an incentive flaw, it is important to determine
whether by slightly modifying the attack strategies and fine-
tuning the attack parameters, a more profitable attack can be
found. In our work, we use reinforcement learning (RL) to
build SO. RL is well known for optimizing the long-term
rewards through trials. The main challenge we address is that
the reward of a validator may change while the system is



running. Thus, it is hard to directly determine the “reward
function”, a crucial component for RL. To solve this problem,
we choose a delayed-reward reinforcement learning model
and simulate the rewards of validators while running the RL
algorithm.

As we later show in the paper, using our RL-based SO, we
are able to optimize two of our newly identified attacks: the
selfish mining attack and the staircase attack-II. For staircase
attack-II, the attack becomes significantly more effective with
the optimization. The adversary can gain nearly twice the profit
compared to the default attack (output of the SA component).
In addition, the probability of launching the attack also im-
proves from 35.0% to 97.0%.

IV. THE BUNNYFINDER FRAMEWORK

We now present the details of our BunnyFinder framework.

A. The Strategy Generator (SG)

As mentioned in Sec. the SG automatically generates
some attack strategies. The basic strategies include order ma-
nipulation and content manipulation. For order manipulation,
we use a message queue to denote the messages each validator
is supposed to send. An adversary may modify its message
queue arbitrarily and determine when each message is sent
to other validators. The adversary has no control over the
message queue by honest validators.

struct Block {

slot: unsigned int64,

proposer: unsigned int64,

parent: Hash, // Can modify
transactions: Vec<Transaction>,

attestations: Vec<Attestation> // Can modify

}

struct Attestation {

slot: unsigned int64,
attestor: unsigned inté64,
head: Hash, // Can modify
source: Checkpoint, // Can modify
target: Checkpoint // Can modify

Figure 3: The data structures of block and attestation.

For content manipulation, we have further identified several
fields that might generate effective attack instances. We show
the data structure of a block and an attestation in detail in
Figure [3] We perform the following optimizations for content
manipulation.

e (Block) The slot field denotes the slot number. The proposer
field denotes the identity of the block proposer. As all
validators can verify the identity of the block proposer, these
two fields can not be modified. The parent field denotes
the hash of the parent block. This field can be modified, a
trick used by several known attacks [4], 6], [[11], [40]. The
transactions field includes a batch of transactions. This field
is irrelevant to the attestation incentives. The attestations
field includes a set of attestations. This field is crucial as
each validator determines the weight of the branches in its

block tree in the fork choice. To summarize, we consider
modifying both parent and attestation fields for a block.

e (Attestation) Similar to the discussion for the block, we
consider modifying slot and attestor fields meaningless for
an attestation. The head field is the hash of each attestor’s
canonical chain. Meanwhile, the source and target fields
are two checkpoints. These three fields can be modified, a
practice conducted by several known attacks [6], [41].

An example. We use the ex-ante reorg attack [4]] as an example
to explain the attack strategies. The attack strategies are
summarized in Figured] We summarize the message queues of
the validators when no attack is launched in Figure [6a] and the
message queues when the attack is launched in Figure [6b] The
legend shown in Figure [5| applies to Figure [6| and all following
figures.

e Order Manipulation in Slot 2: As a proposer, the
attacker delays its block for 3 units.

e Content Manipulation in Slot 2: As an attestor, the
attacker sets the head field of the attestation to the
hash of a withheld block.

Figure 4: Attack strategies in the ex-ante reorg attack.

In this attack, only one proposer needs to be Byzantine but
all Byzantine validators modify and delay their attestations.
Both order manipulation and content manipulation are needed.
All Byzantine attestors perform the same strategy.

Icons Description
I:l The block from an honest validator
D The block from a Byzantine validator

00
00

-—

The attestations from honest validators

The attestations from Byzantine validators

An action that points a block to its parent block

< The action of an attestation voting for a block

Figure 5: The legend of all figures.

Implementation details. In our implementation, we define
a strategy specification format (SSF) in the form of JSON,
specifying the exact time each message should be delayed and
what content the message should be modified for the Byzantine
validators. The SSF file is defined as some JSON templates
for both order manipulation and content manipulation. Based
on the concrete attack strategies (e.g., the number of units
each message should be delayed), the corresponding template
is “filled”. To be specific, in each slot, our SSF defines three
factors: s1ot denotes the slot Byzantine validators should take
the actions, and actions denotes the attack strategies. One
SSF file contains attack strategies for all slots in one epoch.
An example of a particular slot (e.g., slot 2) for the ex-
ante reorg attack for a Byzantium validator is shown in
Figure [7] In this example, AttestBeforeSign denotes the



U
1
|

0

oo 0 o0

slot 0

slot 1 slot 2

(a) The message queues of three validators when no attacks are
launched. Validators vo, v1, v2 all behave honestly in this case. Each
block is proposed on time and all honest attestors vote for these

blocks in each slot.
0 0 (] 0
‘ : 2 :

) 0 -0 -0
—— |&] . . , Time
slot 1

slot 2

(b) The message queues of three validators when the ex-ante reorg
attack is launched. Validator v; is Byzantine and applies the attack
strategies in Figure 4| Block b; is delayed and released at the
beginning of slot 2. All Byzantine validators modify the head field
of their attestation a as b1, although their fork choice rule outputs
ba. After by is launched, b2 is re-organized.

Figure 6: The message queues of three validators in the failure-
free case and under the ex-ante reorg attack [4]. Validator
vp, 1, and vy are eligible proposers for block by in slot 0,
block b; in slot 1, and block b, in 2, respectively.

injection point that controls the head field of the attesta-
tion. Here, modifyAttestHead:2 means that head field
of the attestation in slot 2 is set as the hash of a block
withheld in slot 2. In addition, BlockBeforeBroadcast
denotes the injection point used to delay sending the block.
delayWithDuration:3 means that the block in slot 2 is
withheld for three units, i.e., 12 seconds.

{
"slots": [{

"slot": "2",

"actions": {
"AttestBeforeSign":"modifyAttestHead:2",
"BlockBeforeBroadcast":"delayWithDuration:3",

}

}]
}

Figure 7: An example of the JSON file that denotes the
strategies in Figure ] Some JSON fields denote modifying
the fields of block/attestation shown in Figure [3] For example,
modifyAttestHead means modifying the “attestation head”
field of the attestation.

Our SSF can be easily extended. For instance, if new
injection points are needed, more JSON fields can be added
to SSF to connect SG with other modules. We provide more
examples in Appendix

B. The Strategy Executor

The Strategy Executor mainly consists of two components:
Attacking Scheduler (AS) and Byzantine Simulator (BS). AS
contains two components: Strategy Translator (ST) and In-
struction Dispatcher (ID). The ST parses the attack instances
(generated by SG) written in JSON according to our SSF, and
translates the corresponding attack strategies into executable
code (instructions) in the codebase of the Ethereum imple-
mentation. ID interacts with the BS to further instruct the BS
during the attack. The BS defines a set of injection points in
its client, retrieves the corresponding instructions from the ID
at runtime, executes these instructions at the injection points,
and broadcasts the execution results to the network. We also
build a strategy pool to store executable code so the complex
attack strategies can be launched according to the instructions.
We discuss more implementation details in our full version.

A running example (Figure [§). The process of attack in-
jection proceeds as follows: () When the probe of BS is
triggered (at the .BlockBeforeBroadcast position), it
sends a request to the Instruction Dispatcher (ID). The current
thread of the Byzantine Simulator is set as the suspended
state. @ Upon receiving further instruction, ID first parses
the request and then looks up the strategy pool to determine if

a local instruction is needed for BlockBeforeBroadcast.

There are two possible outcomes:

e If no instruction is needed, the ID directly returns the remote
instruction CMD_NULL to the BS.

e If an instruction is found, the ID executes the local instruc-
tion (e.g., delayWithDuration) and returns the remote
instruction to BS.

After the instruction is executed, (3) BS receives the in-
struction response from the ID. (@) BS performs the remote
instruction, and the suspended thread is resumed.

C. The State Analyzer

As mentioned in Sec. the State Analyzer (SA)
analyzes the execution results and determines whether the
corresponding attack is an incentive flaw. We discuss the
implementation details in our full version.

D. The Strategy Optimizer

We use reinforcement learning to instantiate the strategy
optimization module. We are particularly interested in fine-
tuning the attack strategies to improve the profit of the attacks.

Review of reinforcement learning. Reinforcement Learning
(RL) is a machine learning paradigm where an agent interacts
with an environment over a sequence of steps (each step is
numbered by t) to learn behaviors that maximize cumulative
reward [26]. Formally, an RL problem is modeled as a Markov
Decision Process (MDP), defined by the tuple (S, A, P, R),
where S is the set of all possible states S = {s1,---}, A is
the set of actions available to the agent A = {aq,--- }, P is the
transition function, and R is the reward function. The policy
function is denoted as s;y1 = P(st,a:). The reward function
is denoted as ry+1 = R(ay,r¢), where r is the reward.



Instruction Dispatcher

func (s *ID) BeforeBroadcast(slot uint64) {
var cmd Instruction

action, find := findStrategyFromLibrary(slot, "BlockBeforeBroadcast')

if find {
I := action.RunAction(s.b, slot) — func delayWithDuration(duration int64) {
emd = r.Cmd time.Sleep(duration)

}else { return CMD_NULL
emd = CMD_NULL '

}

@ responselnstruction(cmd)
}

<——es, err := client.BlockBeforeBroadcast(ctx, block.Block().Slot()) i

Byzantine Simulator

func (vs *Server) broadcastReceiveBlock(ctx Context, block Block) error {
// code ...
client := attacker.GetAttacker()

switch res.Cmd {

i case attackclient. CMD_EXIT: os.Exit(0)

3 case attackclient. CMD_ABORT: os.Exit(-1)

i case attackclient. CMD_RETURN:  return Errinterrupt
// do nothing.

@ i case attackclient. CMD NULL:
}

vs.P2P.Broadcast(ctx, block)
// code ...

Figure 8: Example of injection apply workflow.

The agent is the learner, also known as the decision maker.
It observes the environment, selects actions, and adapts its
behavior based on the outcomes of those actions. The agent’s
goal is to discover a policy P that maximizes its cumulative
reward over time.

The environment interacts with the agent. The environment
keeps track of the state of the “world”, including the process,
previous history, and restrictions of the world. In each step
of the algorithm, the environment receives the agent’s action,
updates its internal state, and returns a new observation of the
world that can be seen from the agent and the reward.

The state is a representation of the current situation faced
by the agent. The state can be fully observable (as in standard
Markov Decision Processes), or only partially observable by
the environment, in which case the agent must infer hidden
information using its observation history or memory.

The action is the decision made by the agent at each step.
Actions influence how the environment evolves, and the agent
must learn which actions lead to favorable outcomes over time.

Workflow of reinforcement learning. In each step ¢, the
agent observes a state s; from the environment, selects an
action a; from a predefined action space, and receives a scalar
reward r, (see Figure[9). The environment then transitions to a
new state sy according to its (possibly stochastic) dynamics.
The agent’s objective is to learn a policy that maximizes the
expected cumulative reward over time.

Update State s

Environment

Ethereum 2.0

Environmental

Randomn

Step ¢

>

Figure 9: Schematic of our strategy optimizer.

Problem formulation. We formulate our problem as a

delayed-reward reinforcement learning task and use a recurrent
actor-critic model [42] trained with Proximal Policy Optimiza-
tion (PPO) [43]]. The choice is motivated by the sequential and
partially observable nature of our environment. In addition,
our reward function is defined as the difference between the
reward of the honest validator and its fair share.

As mentioned previously, in the Ethereum PoS protocol,
the reward of a validator changes over time, and can only
be determined after some blocks are finalized. The immediate
feedback would be misleading or even counterproductive. We
thus cannot compute the rewards in each step. We therefore use
the actor-critic framework. Namely, the actor learns a policy
for selecting actions, while the critic estimates the value of
states to support advantage-based learning. We augment the
architecture with a recurrent memory module (LSTM) [44]] to
enable temporal credit assignment, i.e., the ability to connect
actions with the outcomes that can only be observed in the
future. The LSTM maintains temporal context over multi-slot
attack sequences, tracking proposer duties, chain weights, and
justification progression. PPO further stabilizes training by
constraining policy updates and supporting efficient learning.

Agent and Environment. In our system, we model the agent
as the adversary that controls all Byzantine validators. The
environment simulates a minimal Ethereum 2.0 blockchain
system, implementing the core elements related to the rewards
of the validators. Specifically, we are interested in components:
the Hybrid LMD-GHOST fork choice rule and the Casper FFG
finality gadget. Conceptually, the environment represents an
Ethereum 2.0 network consisting of all honest validators, and
defines the rules on how blocks are proposed, attestations are
sent, and rewards are computed.

We abstract away the workflow of Ethereum PoS protocol
to integrate with the reinforcement learning framework. First,
we map the notion of slots (in Ethereum) to steps (in RL).
The protocol is no longer time-driven, but action-driven. Each
RL step corresponds to one complete slot. In each step,
the environment receives an action from the agent (i.e., the
adversarial validator), updates the internal state of the chain,
and computes the outcome according to our specification
above. Second, we introduce attack-specific modifications to
the environment. These changes allow us to focus on how the



modified attack strategies can improve the outcome.

The state and action space are defined according to each
attack instance. We defer the discussion to Appendix D} To
summarize, SO can improve the success rate of our selfish
mining attack and the staircase attack-II. Additionally, SO can
decrease the stake requirement of the adversary of our selfish
mining attack and increase the profit of our staircase attack.
The results are summarized in Sec. [

Extending BunnyFinder to other chains. BunnyFinder can
be extended to other blockchains in the propose-vote paradigm.
Namely, the SG can be adapted by redefining the attack space,
and the SE only requires updating injection points. Such
changes require additional engineering efforts. The SA and
SO are chain-agnostic and are more general.

V. THE NEW INCENTIVE FLAWS

We run our BunnyFinder framework to find incentive flaws.
We summarize our new findings in Table [Il

Experimental setup. We conduct our experiments on AWS
EC2, using up to three c5.4xlarge instances (each with 16
vCPU and 32 GB memory). We deploy a local Ethereum 2.0
testnet to evaluate Byzantine behaviors within a controlled
environment. Our codes are publicly accessibleﬂ Details of
our experimental setup can be found in Appendix

Details about the evaluation and validation process. Using
our SG, we generated 9,354 attack instances. Our SE executed
all attack instances, and the experimentation lasted for 145
hours. To identify whether each attack is an incentive flaw,
we extract the execution logs and query them via SQL
queries. Specifically, we collect the incentives received by the
validators and classify them according to the metrics. Among
all 9,354 attack instances, 3,121 of them can be identified as
incentive flaws according to our metrics. We summarize the
incentive flaws in Table

To further assess the attack instances, for each metric
category, we identify the top 20% most profitable instances
and manually analyze their corresponding attack strategies. If
multiple instances exhibit similar behavior, such as differing
only in delay length or minor parameter variations, we group
them into the same class. For each class, we select the most
effective strategy and apply RL as mentioned in our strategy
optimizer (SO). The optimized strategies are re-evaluated via
SE and SA. If the optimized attack instances belong to certain
metrics, they are added to the corresponding category. In total,
we have manually evaluated 300 attack instances and identified
three new incentive flaws.

Overview of our results. By further classifying the attack
instances, our framework successfully reproduces five known
incentive attacks, including the ex-ante reorg attack [4]], sand-
wich reorg attack [10f], justification withholding attack [12],
unrealized justification attack [[11], and staircase attack [0].
We do not claim too much novelty in covering known attacks.
Specifically, our SG is inspired by known attacks and use their

30ur codebase: https://doi.org/10.5281/zenodo.17042549

basic attack strategies to generate the attack instances. It is
thus not that surprising that our framework can cover known
attacks. We have reproduced these attacks in both Prysm
and Teku. Meanwhile, although some of the attacks are also
covered by our framework, they have been mitigated in the
recent Deneb upgrade of the codebase, i.e., post-Prysm version
5.0 and post-Teku version 24.2.0. We are able to reproduce
these attacks on older versions.

We also find three new incentive attacks: selfish mining
attack, staircase attack-II (i.e., a variant of the staircase attack),
and pyrrhic victory attack. All the three attacks apply to both
Prysm and Teku implementations. Finally and surprisingly, we
find two implementation flaws in the synchronization module
and log module in the Prysm implementation. These flaws do
not appear in the Teku implementation.

Note that besides the fact that our tool can identify new in-
centive flaws, we consider our newly found attacks interesting,
as many prior works focus on reporting new attacks [4]—[7]]
(based on manual work).

No. Metrics Count Ratio Attack Example
1 Metric-1 2586 82.86% | Selfish mining attack
2 Metric-1IT 2 0.64% Staircase attack-II
3 Metric-11 466
Bl e N s 17.07% | Pyrrhic victory attack
4 Metric-1V 67

TABLE II: Summary of the incentive flaws.

A. Selfish Mining Attack

Selfish mining is a well-known attack against Proof-of-
Work (PoW) based blockchains (e.g., Bitcoin [45]], Ethereum
1.0) [30]. In such an attack, a mining pool that controls a
fraction of computational power may collude and gain more
profit than its fair share. Recently, several works found that
PoS also suffers from selfish mining [31]-[33]. A selfish
mining attack is one type of reorganization attack where
blocks from honest validators are discarded. However, a selfish
mining attack has not been found for Ethereum PoS yet [31]].

We identify the first selfish mining attack for Ethereum
PoS. We show our JSON configuration file in Figure
and illustrate the attack in Figure In this attack, the
Byzantine validator withholds its blocks, strategically releasing
them at an optimal time to maximize rewards. The delayed
blocks accumulate a larger “weight” (i.e., a higher number of
attestations) than the blocks produced by honest validators.
Under the HLMD-GHOST fork choice rule [36], the delayed
block replaces the honest validator’s block in the canonical
chain.

The effect of our selfish mining attack mirrors that of the
original selfish mining attack: both Byzantine and honest val-
idators receive rewards, but the rewards for honest validators
are lower than their fair share. This attack aligns with Metric
I in our criteria. As shown in Figure the rewards for
honest validators are lower than their fair share and the rewards


https://doi.org/10.5281/zenodo.17042549

] |

by
slot 0 slot 1 slot 2

Time

slot 3

(a) In slot 0, the honest validator proposes a block by and the
attestors vote for byg. In slot 1, the adversary delays its block by for
four seconds. Therefore, the honest attestors vote for bg. Byzantine
attestors set the head field of attestations as the delayed block b;.

000 000

,,,,,,,,,,,,,,,,,,,,

]

(b) In slot 2, the honest validators propose a block b2 and tries
to reorganize the delayed block b; due to the honest reorg mecha-
nism [46]. In addition, honest attestors vote for b2, while Byzantine
attestors vote for b; instead.

000

000

Time
slot 3

slot 0 slot 1 slot 2

,,,,,,,,,,,,,,,,,,,,

o]

(c) In slot 3, the adversary proposes a block bs. The head of block
bs is set as block b; instead of the output of fork choice, i.e., ba.
As the chain led by b3 receives more attestations than the chain led
by b2, the chain led by b3 becomes the canonical chain. Therefore,
block b2 is orphaned.

slot 0 slot 1 slot 2 slot 3

Figure 10: The message queues of three validators in the
failure-free case and under our new selfish mining attack. The
Byzantine validators apply the attack strategies in Figure E

for Byzantine validators are higher than their fair share. In
addition, the loss ratio depends on the stake owned by the
adversary. The higher the stake owned, the lower the ratio of
honest validators’ profits.

Similar to the selfish mining attacks, the profit of the
adversary grows as the fraction of stake controlled by the
adversary grows, as shown in Figure [T2}

Note that, as summarized in Table [[Il most of our generated
attack instances (that are incentive flaws by our metrics) be-
long to selfish mining. This is not surprising, as the adversary
only needs to launch a reorganization attack to gain additional
rewards. This is easier to launch than other attacks.

B. Staircase Attack-I1

Staircase attack is a recent attack on the attestation incen-
tives [6]], as discussed in the introduction. The attack was
mitigated via the Deneb upgrade, i.e., after Prysm version 5.0.

10

"slots":

"slot": "1",

"actions": {
"AttestBeforeSign":"modifyAttestHead:1",
"BlockBeforeBroadcast":"delayWithDuration:1",

}I

"slot": "2",

"actions": {
"AttestBeforeSign":"modifyAttestHead:1",

b

"slot": "3",

"actions": {

"BlockGetNewParentRoot": "modifyParentRoot:1",
PI1}

[{

Figure 11: An example of JSON file for selfish mining attack.

1
_ 08
=
e 0.6 Honest Validators, No Attack \A\i
S_': ! —— Honest Validators, Under Attack
© - - - Adversary, No Attack
e 04 _4
'g - - - Adversary, Under Attack _a-" T
~ _,A':_-‘—E—
0.2 |- 522" =4 N
-
=" I I I I I
0 5.1072 01 0.15 0.2 0.25 0.3

Ratio of Adversarial Stake

Figure 12: Profit of Byzantine validators and honest validators
using the selfish mining strategy for different stake ratios,
compared to the case without attack.

We find a new variant of the staircase attack, denoted as
staircase attack-Il. As shown in Figure [I7] staircase attack-
IT requires the proposers of the first slot of two consecutive
epochs to be Byzantine.

As shown in Figure [I3] at the beginning of epoch 0, the
adversary delays its block by in slot O for four seconds.
Therefore, the target of attestations from honest validators in
slot 0, i.e., block b, is different from the target of attestations
in slots 1-31, i.e., block bg. In addition, all attestations from
the adversary are delayed forever. Accordingly, the number of
attestations from honest validators with the same target and
source cannot reach 2n/3. Block by, which is supposed to be
justified in epoch 0, cannot be justified by the attestations from
honest validators. In contrast, the adversary can justify the
block in slot 0 by releasing its last block in epoch 0, i.e., block
bs1. This block includes the attestations from the adversary, so
the number of attestations exceeds two-thirds. The adversary
delays the block for two epochs. As a result, the block in slot O
can be justified at the end of epoch 2. In epoch 1, the adversary
conducts the same strategies. Particularly, the adversary delays
the block b3, for four seconds and delays all attestations from
the adversary. Therefore, the honest validators cannot justify
the block in epoch 1. After block b3; is released in epoch 2,
block by is justified. As the chain from honest validators does
not justify any new block, the chain led by bs; is the new



canonical chain. All attestations included in the chain from
honest validators are discarded.

by, includes attestations from
the adversary and is delayed

00 00

.-

.........

Time
slot 31

ok

(a) In epoch 0, the adversary delays its block in slot 0 for four
seconds. In addition, all attestations from the adversary are delayed
forever. In contrast, block bs2 from the adversary in slot 31 includes
all attestations from the adversary. bs2 is delayed to the end of

epoch 2 (see Figur_e‘. B B B
005 00 00

o |
slot 0

slot 30

by [« by [« be | be3 Time
slot 32 slot 62 slot 63

(b) In epoch 1, the adversary conduct similar strategies. In partic-
ular, the adversary delays its block in the first slot in epoch 1 for
four seconds and delays its attestations forever.

00:: 007 00::

b31

[ 1

64 |
slot 64

Time
slot 95

b95

bao [+

(c) In epoch 2, the delayed block b3; is released at the end of
epoch 2. After bs; is released, all blocks in epoch 1 and epoch 2
are reorganized and the attestations included are discarded.

Figure 13: The message queues of three validators in staircase
attack-II. The Byzantine validators apply the attack strategies

in Figure

C. Pyrrhic Victory Attack

We find a new attack in which Byzantine validators suffer
from penalties, but honest validators receive lower rewards or
even suffer from penalties. As Byzantine validators also suffer
from penalties, we call it a pyrrhic victory attack.

A basic pyrrhic victory attack is straightforward. For ex-
ample, a pyrrhic victory attack can be launched based on
the following strategy: All Byzantine validators delay their
attestations every block forever (see JSON file in Figure [19).
Without sending any attestations, all Byzantine validators
suffer from penalties. Meanwhile, these actions also decrease
the participation rate of the validators, as discussed in Sec.
Accordingly, honest validators’ rewards are lower than their
fair share. This attack falls into metric IV in our criteria.

In the simple attack, the adversary suffers from a higher
reward loss than the honest validators. In particular, the
rewards of honest validators are approximately 67% of their
fair share, while the loss rate of the adversary is about 180%.
We do not consider this attack effective as the loss rate of the
adversary is higher than that of honest validators.

We show the loss rates of both the adversary and honest
validators in Figure The attack instances above the dashed

11

line are all effective, as the loss rate of the adversary is
lower than that of honest validators. The most effective one
is highlighted, where the adversary loses 5.1% of its incentive
awards to make honest validators suffer from 19.9% loss.

Q0 70

-0

slot 2

. Time

slot 0

slot 1

Figure 14: The message queues of three validators when
the basic pyrrhic victory attack is launched. Validator v is
Byzantine and applies the attack strategies in Figure All
attestations from the adversary are withheld forever.

Further experimentation and analysis. Based on the basic
strategies of the most effective attack instance we identified,
i.e., the highlighted point in Figure [I5a] we further fine-
tune the concrete attack parameters to explore more profitable
attack strategies. For example, we increase the delay time for
Byzantine validators. Accordingly, we generate another 2,010
new optimized attack instances. As shown in Figure [I5b] the
number of effective attacks has increased from 60.78% to
70.78% after the optimization.

We now discuss one effective example. As shown in Fig-
ure besides the attestations in slot 0 and slot 1, all attesta-
tions from the adversary are delayed forever. In addition, the
proposers for blocks from slot 31 and slot 32 are Byzantine.
Both b3 and b3, are withheld and released after four seconds
have elapsed in slot 32. Before b3; and b3y are released, only
the attestations from slot O to slot 30 are included in the
canonical chain. Let the source of the attestations be genesis
block and the target be by. After b3y and bsy are released, the
attestations in slot 32 have the wrong source and target, since
the correct source of the attestations should be by and the
target be bss. Therefore, the corresponding validators suffer
from attestation penalties. As the attestations from Byzantine
validators besides slot 0 are delayed forever, the adversary also
suffers from penalties as its attestations are not released. This
attack falls into metric II in our criteria.

000 0000

[] .

slot 0

000
|b31 < b3z | Time

slot 32

Figure 16: The message queues of an effective pyrrhic victory
attack. The adversary applies the attack strategies in Figure
All attestations in slot 1 to slot 31 from the adversary are
withheld forever. The adversary also delays block b3; in slot 31
and block b3, in slot 32 and releases them after four seconds
have elapsed in slot 32. After bs; and bsy are released, the
target and source of attestations from honest validators in slot
32 are set wrongly.



S Density
a .

% Effective Instances Sl

= 40 .o 40
> $.1,199), © .-

- o e

% 5 Oa ‘ e [ ]

=] o7 ’ e .- °

S 920 el ° 20
E @. 'o’ S .o F) . ) ° . o

S So

3 -7 .

< -7

~ 0 0
2 0 10 20 30 40 50

S Loss Rate of Adversary (%)

(a) Loss rate of adversary and honest validators before optimization.
) Density
a .

% Effective Instances Sl

3 -

§ 40 e, 40
®qo-°

- X i [ - 4

: 'f'. A

é 20 .{ de . 4 R . 20

5 e

2 8 .

& 0" 0

2 0 10 20 30 40 50

S Loss Rate of Adversary (%)

(b) Loss rate of adversary and honest validators after optimization.

Figure 15: The loss rate of the adversary and honest validators
under the Pyrrhic victory attack. The loss rate is calculated by
dividing the number of reward losses by the fair share. The
area above the dashed line represents effective attack instances
where honest validators suffer from higher incentive loss than
Byzantine validators. The ratio of effective attack instances
increases after optimization.

D. Implementation Vulnerability

Synchronization issues. During one of our experiments, we
encountered a deadlock issue for the synchronization module.
In Ethereum, the synchronization module is used to catch
up with the other validators when the validator realizes that
it falls behind. Specifically, when a validator falls behind,
it will not work until it finishes synchronization. When we
launch the staircase attack-II, all validators stop querying the
synchronization module. In particular, each validator maintains
two local parameters: its best epoch (based on the head block)
and others’ best epoch (representing other validators’ head
blocks). When a validator’s best epoch falls behind others’
best epoch, it queries the synchronization module to catch up.
Once the staircase attack-II is conducted, all honest validators
believe that they fall behind and no validator can complete the
synchronization.

After confirming the root cause, we believe this was an
implementation vulnerability of the synchronization module
in the Prysm codebase only (Golang implementation). Other

12

implementations of Ethereum (i.e., Teku) do not suffer from
such issues as block sync module is implemented differently.

Incorrect log. Another relatively minor finding we found
is an issue due to logging. In particular, the reorg logger
checks whether there is a reorganization in the canonical chain.
However, due to the inconsistent invocation of the outdated
functions, the reorg logger may be triggered in situations
where no reorg has happened, creating non-existent reorg logs.
While this does not affect the protocol, it does affect our state
analyzer component.

VI. OPTIMIZING THE ATTACKS USING STRATEGY
OPTIMIZER AND DISCUSSION

SO discovers strategies that significantly improve attack ef-
fectiveness compared to default approaches. Using our strategy
optimizer, we are able to optimize both selfish mining attack
and staircase attack-1I. We summarize our findings in Table
In this table, we compare the optimization results of the default
strategy and the RL-optimized strategy, where the default
strategy is defined as a staircase attack-II instance identified by
our state analyzer. To evaluate the incentives, we define three
metrics. The first metric is Byzantine Advantage (BA), which is
defined as the difference between the average reward obtained
by a Byzantine validator and that of an honest validator under
the same strategy: BA = Byzantine Reward —Honest Reward.

This metric reflects the difference between the expected
rewards in the attacks and the validators’ fair share. A higher
BA indicates that the attack is more profitable.

The second metric is BA Rate, which normalizes the ad-
vantage against a baseline (i.e., in our case, an incentive flaw
generated by our SG):

Byzantine Advantageg; o imi
BA Rate = y ZCRL optimized ]

Byzantine Advantagep.c,,i

The third metric is Attack Success Rate (ASR). ASR mea-
sures the success rate of a strategy when applied to the system,
where success is defined as the ability of the strategy to reduce
the rewards of honest nodes.

As shown in Table [[IIl the RL-optimized attack achieves a
BA of 27.2. In contrast, the default attack achieves a BA of
13.4. The BA Rate is approximately 2.03, i.e., the RL-based
optimization doubles the profit of the attack compared to the
default attack. Meanwhile, the attack success rate increases
from 35.0% to 97.0%. This indicates that the RL-optimized
attack is significantly more effective than the default attack.

A. Selfish Mining

Due to space limitation, we present the details of using
reinforcement learning to optimize the attack in Appendix [D]

In the default selfish mining strategy generated by SA, the
adversary adopts a static strategy: it tries to delay the block
in slot ¢ for 4 seconds and propose the block in slot ¢ + 2.

After the optimization by SO, the agent learns a more
adaptive strategy. Namely, the agent dynamically adjusts its
block release time based on whether Byzantine validators
become proposers in the future. If so, the agent chooses to



further withhold their blocks. In this way, the adversary can
gain higher profit. Also, the agent dynamically changes the
attack strategy when the stake controlled by the adversary is
lower.

By applying SO, the optimized attack achieves a substan-
tially higher success rate. In our experiments, the success rate
is nearly 100%. In some experiments, the stake the adversary
needs to own to launch the attack drops by over 20%.

Minimum requirement for selfish mining. After further
manual analysis, we find that by controlling at least 13.4%
validators, the attack is already profitable, i.e., Byzantine
validators gain more rewards than their fair share, but honest
validators receive lower rewards. We now explain why 13.4%
is the threshold. Let 8 denote the ratio of the stake controlled
by the adversary. As the validators are randomly assigned to 32
slots in an epoch, the total weight (informally, the maximum
number of attestations) in a slot is 3—”2 and the ratio of the
adversarial stake in a slot is % As illustrated in Figure
after the adversary launches the attack, the weight of the chain
led by block b3 should be heavier than the weight of the
chain led by block b,. In particular, the chain led by block
bs consists of the adversary’s attestations from slots 2 and 3,
ie., 2% 3% In addition, block b3 receives a proposer boosting
weight [47], i.e., 0.4 X ;—2 As a result, the weight of the chain
led by b3 is g—g + Oz',%. Meanwhile, the weight of the chain
led by block bs consists of attestations from honest validators

in slots 2 and 3, i.e., 2 X (”;ﬁ). For the attack to succeed, we
require: 25 + %dn 2(%7;[3 By solving the inequality, we

have 3 > 1% ~ 13.4%.

The mitigation provided by Ethereum. We claimed in the
introduction that our selfish mining attack has been mitigated
in the recent update of the Prysm codebase, i.e., version v4.0.6
updated in May 2024E1 In version v4.0.6, Ethereum fixes the
problem using a REORG_PARENT_WEIGHT_THRESHOLD param-
eter that denotes whether attestations are released.

B. Staircase Attack-11

As summarized in Table the average rewards received
by honest validators are significantly reduced and the average
rewards received by the adversary are increased after the
optimization. In extreme cases, all honest validators in several
successive epochs are penalized and the adversary still receives
its fair share.

TABLE III: Optimization improvement for staircase attack-II.
*Default strategy refers to an attack instance that is identified
as a staircase attack-II by our state analyzer.

Attack Honest Byzantine  Byzantine Attack

Strategy Validator validator Advantage | Success Rate
Default* -48.1 -34.7 13.4 | 35.0 %
RL-optimized method -56.1 -28.9 27.2 ‘ 97.0 %

Note: Byzantine Advantage is defined as the difference between the reward
of the Byzantine node and the honest node. BA Rate is 27.2/13.4 ~ 2.02.

4Prysm v4.0.6: https://github.com/prysmaticlabs/prysm/releases/tag/v4.0.6

13

In the default staircase attack-II generated by SA, the
adversary strictly follows the same strategy. Namely, each
Byzantine validator withholds all its attestations. This makes
the adversary suffer from penalties if the withheld chain cannot
reorganize the canonical chain later.

In contrast, after the optimization by SO, the agent learns
a dynamic and state-aware strategy. In particular, instead of
withholding every attestation and delaying its block for two
epochs, the agent selectively chooses to withhold attestations
only when the first slot of an epoch is controlled by the
adversary. For instance, when the adversary does not control
the first slot of two successive epochs, the agent will follow the
protocol and will not withhold any attestations or delay blocks.
The agent uses the proposer duty vector and justification
state to determine its strategy. Also, the agent learns to
conditionally withhold some of the attestations to gain more
profit. Specifically, if an attestation is not included in the block,
the attestor will receive only 5/7 of its fair share. The agent
thus strictly controls the attestations that are withheld.

With these improvements, the learned strategy might delay

the justification of blocks for multiple epochs and improve the
profit of the attack. The rewards by honest validators are up to
30% lower than those under the default strategy! Additionally,
the cost of the adversary to conduct the attack decreases by
13%, dropping from 46.1% under the default strategy to 40.1%
with the optimized policy.
Analysis. Our staircase attack-II shares the same feature
as the staircase attack: Byzantine validators receive rewards
while honest validators suffer from penalties, although honest
validators strictly follow the specification of the protocol.
Therefore, this attack falls into Metric III in our criteria. The
probability of launching the attack is 1/9, as we require the
proposer in the first slot to be Byzantine. Unlike the staircase
attack, staircase attack-II cannot be continuously launched.
However, if the adversary controls 33% stake and launches
the attack whenever the attack can be launched, all honest
validators will incur penalties for the corresponding epochs.

VII. RELATED WORK

Penetration testing. Penetration testing is commonly used at
the later stage of a software development cycle [15]-[18].
Informally, given an application (typically a web application),
penetration testing allows ethical targeted attacks to be injected
into the application to confirm whether there exist any design
or implementation flaws. The targeted attacks can be generated
manually via human experts or by automated tools, e.g.,
machine learning or large language models [[16]-[18]]. Similar
to penetration testing, our framework injects some targeted
attacks into the system. Differently, penetration testing usually
injects the attacks at the client side, treating the application
in a black-box manner. In contrast, our framework injects the
attacks at Byzantine validators.

Fuzz testing. Fuzz testing aims to find software implemen-
tation vulnerabilities [21]-[23], [48], [49] by injecting non-
deterministic testing approaches. In blockchain consensus,
Tyr [21]], LOKI [22], MPFUZZ [24] and CONFUZZIUS [50]


https://github.com/prysmaticlabs/prysm/releases/tag/v4.0.6

are four recent fuzzing techniques. The idea is to trig-
ger abnormal behavior (e.g., sending meaningless messages),
sometimes at all nodes, to identify the software bugs. For
instance, LOKI [22] finds some common vulnerabilities and
exposures (CVEs) for Ethereum and Hyperledger Fabric. MP-
FUZZ [24] finds new asymmetric-DoS vulnerabilities on six
major Ethereum clients. In contrast, our workflow is inspired
by fuzz testing that injects failures to the codebase to find
uncovered issues. Compared to fuzz testing, our framework
targets design flaws rather than implementation flaws. As a
surprising finding, one of our attack instances also identifies
an implementation flaw.

Byzantine simulator. Byzantine simulators are used for
assessing the robustness of Byzantine fault-tolerant (BFT)
protocols by simulating malicious or unpredictable behavior
within the system. Twin [51]] develops a unit testing tool that
implements three Byzantine behaviors for assessing Byzantine
fault-tolerant (BFT) protocols. The tool assesses a BFT-based
system Diem [52]], and tries to verify whether the implementa-
tion is correct. It was shown that the tool can also be extended
to cover some known attacks on some BFT protocols. Similar
to Twin, we also inject Byzantine behaviors. Unlike Twin,
which mainly focuses on safety and liveness threats (which
are not supposed to happen if the implementation matches the
design of a provably secure protocol), our approach focuses
on incentive flaws.

Chaos engineering. Chaos engineering [53|] is an approach
that assesses whether a system can still operate normally under
errors [|[19]], [20], [54]. The errors are often invalid system
calls. By comparing the behavior of the system under and
without the injected system calls, the stability (sometimes
called resilience in the literature of chaos engineering) is
evaluated. For example, CHAOSETH [19] conducts a chaos
engineering approach to an Ethereum implementation and
identifies potential issues that may make the validators crash
under errors. In contrast, our approach does not aim to assess
whether the system can still operate correctly under errors but
rather to find incentive flaws.

RL-based tools. Several studies have employed reinforcement
learning to solve vulnerabilities in blockchain systems [55]—
[57]. The closest work of our strategy optimizer is one due
to SquirRL [55]. SquirRL builds a reinforcement learning
based framework to analyze selfish mining in Bitcoin and a
simplified version of Ethereum. The idea is to analyze whether
a Nash equilibrium can be reached under different adversarial
models. In contrast, we use RL to improve the attack strategies.

Known attacks to Ethereum. Many attacks have revealed
incentive flaws in Ethereum PoS. Zhang et al. proposed the
staircase attack [6]. In the attack, an adversary controlling
more than 29.6% of the stake can suppress attestation re-
wards for all honest validators. D’Amato et al. introduced
the sandwich reorg attack [10]. This attack allows collusion
between two Byzantine proposers to result in the orphaning
of blocks proposed by honest validators, thereby depriving
them of their rightful rewards. Potuz described the justification

14

withholding attack [12]. In this attack, validators privately cast
but withhold votes to delay finality. Asgaonkar et al. proposed
the unrealized justification attack [11]], where the adversary
withholds a justified checkpoint to gain more rewards.

Recently, Nero showed that validators can manipulate the
RANDAQO (i.e., the randomness used to select proposers and
attestors) to gain extra benefits such as rewards [58]]. Our
current work does not incorporate the strategies of RANDAO
manipulation, but it can be integrated into BunnyFinder to
possibly obtain new attacks. We leave it as future work.

Many attacks focus on goals beyond incentives. Yaish et
al. analyzed speculative denial-of-service (DoS) attacks [59].
In this attack, adversaries can craft malicious transactions to
clog blockchain actors’ mempools, forcing victims to produce
empty blocks. Li et al. introduced DETER mempool DoS
attacks [60]. The vulnerabilities allow adversaries to use
low-fee transactions to evict mempool transactions. Rodler
et al. presented EVMPatch [61f], a framework designed to
automatically and instantly patch vulnerabilities in Ethereum
smart contracts.

VIII. CONCLUSION

We present BunnyFinder, a framework designed to identify
incentive flaws in the Ethereum protocol. Inspired by software
testing technologies, BunnyFinder provides a framework that
automatically injects generated failures into a simulated net-
work, analyzes the incentives received by the validators, and
determines the presence of attacks. We have simulated 9,354
attacks generated by our framework. Our results show that
32.9% of the attacks belong to incentive flaws. By further
categorizing the flaws, our framework covers five known
incentive attacks and uncovers three new attacks. As a by-
product, it also reveals two implementation flaws.

ACKNOWLEDGMENT

We would like to thank Yu Jiang and Chao Zhang for
their helpful discussion on software testing tools. This work
was supported in part by the National Key R&D Program of
China under 2023YFB2704300, the National Natural Science
Foundation of China under 62502266, China Postdoctoral
Science Foundation under 2023M741949, a research grant
from the Ant Group, and Tsinghua Shuimu Scholar.

ETHICAL CONSIDERATIONS

Our experiments were conducted locally using open-source
libraries and public datasets, without access to any external
or live systems. These experiments do not involve animals,
humans, the environment, healthcare, or military applications.
We carefully followed the ethical principles of the Menlo
Report throughout our experimental design.

A. Research Ethics Considerations

We are committed to complying with all relevant research
ethics considerations. In particular, we are committed to the
following principles:



Respect for Persons: Our research does not involve human

subjects or personal data. We respect the work of other
researchers and properly cite all relevant prior work.

Beneficence: Our findings highlight a critical incentive

vulnerability in Ethereum.

Justice: We strive to ensure our proposed modifications do

not disproportionately impact or disadvantage any particular
group. We have already disclosed our findings to Ethereum
developers.

Respect for Law and Public Interest: No actions have

been taken to exploit the identified vulnerabilities; instead,
our research was conducted with the goal of improving the
Ethereum system.

[1]

[3

=

[4]

[5

[t}

[6

=

[7]
[8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, 2014.

V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and casper,” arXiv
preprint arXiv:2003.03052, 2020.

CoinMarketCap. (2025) Ethereum (eth) price, charts, and news.
[Online]. Available: https://coinmarketcap.com/currencies/ethereum/

M. Neuder, D. J. Moroz, R. Rao, and D. C. Parkes, “Low-cost
attacks on ethereum 2.0 by sub-1/3 stakeholders,” arXiv preprint
arXiv:2102.02247, 2021.

C. Schwarz-Schilling, J. Neu, B. Monnot, A. Asgaonkar, E. N. Tas, and
D. Tse, “Three attacks on proof-of-stake ethereum,” in FC, 2022, pp.
560-576.

M. Zhang, R. Li, and S. Duan, “Max attestation matters: Making honest
parties lose their incentives in ethereum pos,” in USENIX Security, 2024.
R. Nakamura, “Analysis of bouncing attack on ffg,” https://ethresear.ch/
t/analysis- of-bouncing-attack-on-ffg/6113, (accessed in Feb 2024).

S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Sok: Consensus in the age of blockchains,”
in Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 183-198.

V. Buterin, “Discouragement attacks,” 2018.

F. D’Amato and C. Schwarz-Schilling, “Proposer boost considerations,”
https://notes.ethereum.org/ @casparschwa/H1TOk7b85, (accessed in Feb
2024).

A. Asgaonkar, “Unrealized justification reorgs,” https://notes.ethereum.
org/ @adiasg/unrealized-justification, (accessed in Feb 2024).

Potuz,  “Justification  widtholding  attacks,”  https://hackmd.io/
09tGPQL2Q4iH3Mg7Mma9wQ, (accessed in Feb 2024).

P. Chaidos, A. Kiayias, and E. Markakis, “Blockchain participation
games,” in International Conference on Web and Internet Economics.
Springer, 2023, pp. 169-187.

S. Motepalli and H.-A. Jacobsen, “Reward mechanism for blockchains
using evolutionary game theory,” in 2021 3rd Conference on Blockchain
Research & Applications for Innovative Networks and Services
(BRAINS). IEEE, 2021, pp. 217-224.

B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,”
IEEE Security & Privacy, vol. 3, no. 1, pp. 84-87, 2005.

G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, and S. Rass, “PentestGPT: Evaluating and harnessing
large language models for automated penetration testing,” in USENIX
Security, 2024, pp. 847-864.

T. Lee, S. Wi, S. Lee, and S. Son, “Fuse: Finding file upload bugs via
penetration testing.” in NDSS, 2020.

G. Deng, Z. Zhang, Y. Li, Y. Liu, T. Zhang, Y. Liu, G. Yu, and D. Wang,
“NAUTILUS: Automated RESTful API vulnerability detection,” in
USENIX Security, 2023, pp. 5593-5609.

L. Zhang, J. Ron, B. Baudry, and M. Monperrus, “Chaos engineering
of ethereum blockchain clients,” Distributed Ledger Technologies: Re-
search and Practice, 2023.

S. Sondhi, S. Saad, K. Shi, M. Mamun, and I. Traore, “Chaos engi-
neering for understanding consensus algorithms performance in permis-
sioned blockchains,” in DASC/PiCom/CBDCom/CyberSciTech, 2021.

15

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]
[36]

[37]

[38]

(39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]
[47]

(48]

Y. Chen, F. Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun, “Tyr: Finding
consensus failure bugs in blockchain system with behaviour divergent
model,” in IEEE Symposium on Security and Privacy (SP). 1EEE, 2023,
pp. 2517-2532.

F. Ma, Y. Chen, M. Ren, Y. Zhou, Y. Jiang, T. Chen, H. Li, and
J. Sun, “LOKI: State-aware fuzzing framework for the implementation
of blockchain consensus protocols,” in NDSS, 2023.

Y. Yang, T. Kim, and B.-G. Chun, “Finding consensus bugs in Ethereum
via multi-transaction differential fuzzing,” in OSDI, 2021, pp. 349-365.
Y. Wang, Y. Tang, K. Li, W. Ding, and Z. Yang, “Understanding
ethereum mempool security under asymmetric DoS by symbolized
stateful fuzzing,” in USENIX Security, 2024, pp. 4747-4764.

Gartner, “Breach and attack simulation (bas) tools,” https://www.gartner.
com/reviews/market/breach-and-attack-simulation-bas-tools, (accessed
in Nov 2024).

R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
IEEE Trans. Neural Networks, vol. 9, pp. 1054-1054, 1998. [Online].
Available: https://api.semanticscholar.org/CorpusID:60035920

Offchain Labs, “Prysm consensus client v5.3.3,” hittps://github.com/
OffchainLabs/prysm/tree/v5.3.3, 2025.

ConsenSys, “Teku client v25.6.0,” https://github.com/Consensys/teku/
tree/25.6.0, 2025.

M. Zhang, R. Li, X. Lu, and S. Duan, “Available attestation: Towards
a reorg-resilient solution for ethereum proof-of-stake,” in USENIX
Security, 2025.

I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Communications of the ACM, vol. 61, no. 7, pp. 95-102,
2018.

J. Brown-Cohen, A. Narayanan, A. Psomas, and S. M. Weinberg, “For-
mal barriers to longest-chain proof-of-stake protocols,” in Proceedings
of the 2019 ACM Conference on Economics and Computation, 2019,
pp. 459-473.

M. V. Ferreira and S. M. Weinberg, “Proof-of-stake mining games with
perfect randomness,” in EC, 2021, pp. 433-453.

M. Neuder, D. J. Moroz, R. Rao, and D. C. Parkes, “Selfish behavior
in the tezos proof-of-stake protocol,” arXiv preprint arXiv:1912.02954,
2020.

E. Budish, A. Lewis-Pye, and T. Roughgarden, “The economic limits of
permissionless consensus,” in Proceedings of the 25th ACM Conference
on Economics and Computation, 2024, pp. 704-731.

V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in FC. Springer, 2015, pp. 507-527.

Y. Liu, Y. Lu, K. Nayak, F. Zhang, L. Zhang, and Y. Zhao, “Empirical
analysis of eip-1559: Transaction fees, waiting times, and consensus
security,” in CCS, 2022, pp. 2099-2113.

R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in PODC, 2017,
pp. 315-324.

Y. Huang, J. Tang, Q. Cong, A. Lim, and J. Xu, “Do the rich get richer?
fairness analysis for blockchain incentives,” in SIGMOD, 2021, pp. 790—
803.

J. Neu, E. N. Tas, and D. Tse, “Ebb-and-flow protocols: A resolution
of the availability-finality dilemma,” in SP, 2021, pp. 446—465.
“Prevention of bouncing attack on ffg,” |https://ethresear.ch/t/
prevention-of-bouncing-attack-on-ffg/6114, (accessed in Feb 2024).

V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

A. Graves and A. Graves, “Long short-term memory,” Supervised
sequence labelling with recurrent neural networks, pp. 37-45, 2012.

J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” Journal of the ACM, vol. 71, no. 4, pp. 1-49,
2024.

M. Sproul, “Allow honest validators to reorg late blocks,” https://github.
com/ethereum/consensus-specs/pull/3034, (accessed in Augest 2024).
“Proposer Imd score boosting #2730,” https://github.com/ethereum/
consensus-specs/pull/2730, (accessed in Feb 2024).

A. Sorniotti, M. Weissbacher, and A. Kurmus, “Go or no go: Differential
fuzzing of native and c libraries,” in 2023 IEEE Security and Privacy
Workshops (SPW). IEEE, 2023, pp. 349-363.


https://coinmarketcap.com/currencies/ethereum/
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://notes.ethereum.org/@casparschwa/H1T0k7b85
https://notes.ethereum.org/@adiasg/unrealized-justification
https://notes.ethereum.org/@adiasg/unrealized-justification
https://hackmd.io/o9tGPQL2Q4iH3Mg7Mma9wQ
https://hackmd.io/o9tGPQL2Q4iH3Mg7Mma9wQ
https://www.gartner.com/reviews/market/breach-and-attack-simulation-bas-tools
https://www.gartner.com/reviews/market/breach-and-attack-simulation-bas-tools
https://api.semanticscholar.org/CorpusID:60035920
https://github.com/OffchainLabs/prysm/tree/v5.3.3
https://github.com/OffchainLabs/prysm/tree/v5.3.3
https://github.com/Consensys/teku/tree/25.6.0
https://github.com/Consensys/teku/tree/25.6.0
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
https://github.com/ethereum/consensus-specs/pull/3034
https://github.com/ethereum/consensus-specs/pull/3034
https://github.com/ethereum/consensus-specs/pull/2730
https://github.com/ethereum/consensus-specs/pull/2730

[49] S. Sharma, S. R. Tanksalkar, S. Cherupattamoolayil, and A. Machiry,
“Fuzzing api error handling behaviors using coverage guided fault in-
jection,” in Proceedings of the 19th ACM Asia Conference on Computer
and Communications Security, 2024, pp. 1495-1509.

C. E. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” in 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). 1EEE, 2021,
pp. 103-119

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and
D. Malkhi, “Twins: Bft systems made robust,” in PODC, 2022.

Diem, “Diembft,” https://github.com/diem/diem, (accessed in Nov
2024).

A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 3541, 2016

T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
SIGMOD, 2017.

C. Hou, M. Zhou, Y. Ji, P. Daian, F. Tramer, G. Fanti, and A. Juels,
“Squirrl: Automating attack analysis on blockchain incentive mecha-
nisms with deep reinforcement learning.”

R. De Silva, W. Guo, N. Ruaro, I. Grishchenko, C. Kruegel, and
G. Vigna, “{GuideEnricher}: Protecting the anonymity of ethereum
mixing service users with deep reinforcement learning,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024, pp. 3549-3566.

W. Li, L. Xue, Z. Han, B. Chen, X. Zhang, and X. Zhou, “Autominer:
Reinforcement learning-based mining attack simulator,” in International
Conference on Algorithms and Architectures for Parallel Processing.
Springer, 2024, pp. 222-241.

Nero_eth, “Selfish mixing and randao manipulation,” Ethereum
Research post, Jul. 2023, accessed July 2025. [Online]. Available:
https://ethresear.ch/t/selfish- mixing-and-randao-manipulation/1608 1

A. Yaish, K. Qin, L. Zhou, A. Zohar, and A. Gervais, “Speculative
{Denial-of-Service} attacks in ethereum,” in 33rd USENIX security
symposium (USENIX Security 24), 2024, pp. 3531-3548.

K. Li, Y. Wang, and Y. Tang, “Deter: Denial of ethereum txpool
services,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 1645-1667.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “{EVMPatch}: Timely
and automated patching of ethereum smart contracts,” in 30th usenix
security symposium (USENIX Security 21), 2021, pp. 1289-1306.
Ethresearch,  “Selfish mining in pos,” |https://ethresear.ch/t/
selfish-mining-in-pos/15551, 2024, eTH Research.

martliln, “Staircase attack-ii in ethereum pos,” https://ethresear.ch/t/
staircase- attack-ii-in-ethereum- pos/22099/10, Apr. 2025, ethereum Re-
search Forum.

Martliln, “Deadlock in synchronization module under staircase attack-
ii,” |https://github.com/OffchainLabs/prysm/issues/15144, 2025, gitHub
Issue.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533-536, 1986.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[50]

[51]
[52]

[53]
[54]
[55]

[56]

(571

[58]
[59]
[60]
[61]

[62]

[63]
[64]
[65]
[66]
[67]

APPENDIX A
CURRENT STATUS OF VULNERABILITY

We summarize the current status of vulnerability found in
Table [Vl All of our findings are acknowledged by Ethereum.

APPENDIX B
SSF JSON FILE

Figures [I7} [I9 and [I§] display JSON files in the
Strategy Specification Format (SSF) for configuring at-
tack scenarios within our BunnyFinder framework. Each
JSON file defines specific actions at various slots, such as
exit,delayWithDuration, and modifyParentRoot,

Vulnerability Reported | Acknowledged| Addressed | Channel.
Selfish mining Yes Yes Yes CW [62]
Staircase
attack-II Yes Yes No CW [63]
Pyrrhic
Victory Attack Yes Yes No MT
Synchronization )y, Yes No CW [64]
issues

MT,
Incorrect log Yes Yes Yes EM

TABLE IV: Status of Discovered Vulnerabilities. “Reported”
indicates submission to Ethereum; “Addressed” indicates a fix
or mitigation; “Channel” indicates the form of disclosure, with
CW indicating through community websites, MT indicating
through meeting reports, and EM indicating email.

to simulate targeted behaviors in attacks like staircase attack-
II and two variants of the pyrrhic victory attack. These
configurations enable precise manipulation of validator actions
to analyze the impact on Ethereum PoS.

{
"slots": [{

"slot": "all",

"actions": {
"AttestBeforeBroadcast":"exit",

}I

"slot": "O",

"actions": {
"BlockBeforeBroadcast":"delayWithDuration:

I

"slot": "31",

"actions": {
"BlockGetNewAttestations":"true",
"BlockBeforeBroadcast":"delayWithDuration:192",

by

"slot": "32",

"actions": {
"BlockBeforeBroadcast":

}l

}]

"delayWithDuration:1",

}
Figure 17: The JSON file in SSF for the staircase attack-II.

"slots": [{
"slot": "1-31",
"actions": {
"AttestBeforeBroadcast":"exit",
}I
llslot“: H3l"’
"actions": {
"BlockBeforeBroadcast":"delayWithDuration:4",
by
"slot": "32",
"actions": {
"BlockGetNewParentRoot": "modifyParentRoot:31",
"BlockBeforeBroadcast":"delayWithDuration:1",
}I
}]
}

Figure 18: The JSON file in SSF for the second variant of
pyrrhic victory attack.

16


https://github.com/diem/diem
https://ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081
https://ethresear.ch/t/selfish-mining-in-pos/15551
https://ethresear.ch/t/selfish-mining-in-pos/15551
https://ethresear.ch/t/staircase-attack-ii-in-ethereum-pos/22099/10
https://ethresear.ch/t/staircase-attack-ii-in-ethereum-pos/22099/10
https://github.com/OffchainLabs/prysm/issues/15144

"slots":
"slot": "all",
"actions": {
"AttestBeforeBroadcast":"exit",
}
}]

[{

}

Figure 19: The JSON file in SSF for the first variant of pyrrhic
victory attack. The action exit means that the function of
broadcasting an attestation is directly terminated.

APPENDIX C
EVALUATION DETAILS

Experimental setup. There are three types of nodes: beacon
nodes, execution nodes, and validator nodes. The beacon nodes
establish a peer-to-peer network (called the consensus layer)
via the “libp2p” protocoﬂ Execution nodes establish a peer-
to-peer network (called the execution layer) via the “devp2p”
protocoﬂ The beacon nodes communicate with the validator
nodes and the execution nodes via the “gRPC” protocol.

We show an example of the network topology in Figure 20]
This topology has two layers and includes beacon nodes,
execution nodes, and validator nodes. In our testnet, we
require some beacon nodes (highlighted in red in the figure)
to be modified to act as Byzantine nodes. This modification
introduces adversarial behavior while maintaining connections
with other nodes in the network.

Execution Layer

Consensus Layer

[:] execute node . beacon node [:] validator node

Figure 20: Overview of BunnyFinder network topology.

Experimental optimization. As discussed in Sec. each
slot allows modification of five data structures: parent,
attestations, head, source, and target, and sup-
ports two message types to delay: block and attestation. Any
combination of at least 7 strategies can be selected per slot,
with the total combinations given by ZZ:O Ck = 2" Thus,
each slot has 27 = 128 possible strategies. One attacking
instance requires 3 epochs (96 slots) to launch and we can
generate up to 128%® theoretical strategy combinations. Un-
der the current configuration, completing one instance takes

Slibp2p: https://blog.ipfs.tech/2020-06-09-1ibp2p-in-2020/
Sdevp2p: https://geth.ethereum.org/docs/tools/devp2p

17

approximately 19 minutes, making it impractical to explore
all combinations. To improve efficiency, we reduced the slot
time from 12 seconds to 3 seconds, cutting the average
time per experiment from 19 minutes to 4.8 minutes without
compromising result correctness.

APPENDIX D
REINFORCEMENT LEARNING DETAILS

In this section, we provide detailed implementations of our
reinforcement learning approach.

A. Environment

We summarize the environmental changes as follows:

e (Selfish mining) In this attack, the goal of the adversary
is to manipulate the fork choice rule. Finality mechanisms,
i.e., Casper FFG, are not directly involved, as the attack
does not aim to reverse finalized blocks. Thus, we remove
the Casper FFG in the environment. We adopt a simplified
finality heuristic where a block is considered finalized if
it remains on the canonical chain for eight slots. We use
eight slots because we observe that most reorganizations in
selfish mining attacks cannot last for longer than eight slots.
Rewards are computed based on this finality approximation.
(Staircase attack-II) The attack aims to delay the justifica-
tion of blocks and manipulate the canonical chain by honest
validators. The attack strategies do not involve modifying
the weight of the fork choice. We simplify the LMD-
GHOST logic by only keeping the pruning mechanism.
Furthermore, as the action does not involve a temporary
blockchain fork, we modify each action taken by the agent
as an epoch.

B. State and Action Space

A key component of the state space is the agent’s proposer
duty vector, which encodes whether the Byzantine validator
is scheduled to propose blocks in a fixed future time window.
Formally, this is represented as a binary vector of length t,
ie, duty € 0,1%, where each entry indicates whether the
agent is the designated proposer in the corresponding slot.
According to the current Ethereum system, the information
is known in advance. Proposer’s duty influences the agent’s
planning horizon: since the effectiveness of certain attacks
depends on when the adversary controls the proposer, having
visibility into upcoming proposer slots makes it easy to adjust
the attack strategies.

e (Selfish mining) We define the state observed from the
environment as s = [duty, Wpub, Wpriv|. Proposer duty
vector duty € {0,1}® indicates whether the adversary is
the block proposer in the next eight slots. Since the attack
is closed related to the slots with Byzantine proposers, this
state determines whether the agent should propose a block
or withhold the block. It also defines the “attack window”,
successful selfish mining hinges on well-timed block pro-
duction by the adversary. Let wp,, € N represents the weight
of the public chain. This weight reflects the accumulative
attestations of all validators (including honest ones) and is


https://blog.ipfs.tech/2020-06-09-libp2p-in-2020/
https://geth.ethereum.org/docs/tools/devp2p

the input to fork choice. For the attack to succeed, the private
chain must eventually exceed this weight. Let wyiy € N
be the weight of the private chain. This value tracks the
adversary’s progress in building the private chain. It informs
the agent when the attack becomes profitable.

(Staircase attack-II) Let s§*™®¢ = [duty, jpub, Jprivs Jelobal]
be the state. As in selfish mining, the proposer duty vector
duty € {0,1}%* indicates whether the adversary controls
the proposer in the current epoch and the next epoch. Let
Jpub be the last justified checkpoint on the public chain. The
adversary must monitor jnu, to adjust its strategy. Let jory
be the last justified checkpoint of the private chain. This
discrepancy of jpup and jpiy forms the basis of the staircase
attack, as mentioned in Sec.

The agent’s behavior consists of two decisions: a block
proposal strategy and an attesting strategy. Based on the
targets of the two attacks, we use the following actions in
the reinforcement learning:

o (Selfish mining) There are three actions for each Byzantine
proposer: propose a block according to the protocol, with-
hold the block, and release previously withheld block(s).
The first action is the behavior of an honest validator, so
taking this action does not yield a higher reward than the fair
share. The second and third actions are related to the profit
of the attack. Additionally, there are two attesting actions:
send the attestation according to the protocol; withhold
the attestation and release it later. Similar to the proposal
actions, the second action is related to the profit of the
attack.

(Staircase attack-II) The actions in the staircase attack
reinforcement learning model are Agyircase = [P1, P2, P3, 1),
where p; € {0,1}, p2 € {0,1}, and p3 € {0, 1} are proposal
actions and a; € {0,1} is attesting action. The p; action
determines whether the block is delayed. If so, the block is
delayed by four seconds. This disrupts the start of the voting
period and reduces the chances of successful justification.
The action py controls whether the last Byzantine proposer
delays its block. If so, the agent will include all attestations
from Byzantine validators in its block and withhold it.
The private chain will justify a higher checkpoint. The
action p3 determines whether to release the withheld blocks.
The action a; controls whether the adversary withholds
their attestations. Withholding the attestations might disrupt
justification of the public chain.

C. Reward Function

We design tailored reward functions for different attack
types to guide the RL agent toward behaviors that maximize
attack effectiveness.

e (Selfish mining) For selfish mining attacks, we focus on
causing block reorganizations. The reward function is de-
fined as Rselfish(t) = «- Nrem’g(t) + B : (Wadu(t) -
Whonest(t)), where Npeorg(t) is the number of honest
blocks reorganized at slot ¢, W4, and Wipnest are the
cumulative weights of adversarial and honest blocks respec-
tively, and «, 8 are weighting coefficients.

18

e (Staircase attack-II) For staircase attack-II, we aim to
discard honest attestations through chain reorganizations.
The reward function is defined as Rgtgircase(t) = 0 -
Ndiscm’ded(t) +e€- (Radv (t) - Rhonest (t))7 where Ndiscarded
is the number of honest attestations discarded from the
canonical chain, R,g4, and Rjonest are rewards received
by adversarial and honest validators, and d, ¢ are weighting
coefficients.

Given the multi-epoch nature of attacks, we use delayed
rewards Rioral(t) = S7_o7" - R(t + i), where 7 is the delay
time, vy is the discount factor, and R is the current rewards at
slot ¢. All rewards are normalized relative to honest protocol
baselines to ensure consistent learning across different stake
distributions.

D. Architecture of the Model

We adopt a recurrent actor-critic architecture to serve as
the agent’s predictive model, enabling memory-dependent
decision-making under partial observability and delayed feed-
back. The model is structured around three core components: a
feedforward feature encoder, a recurrent memory module, and
two output heads for action selection and value estimation.

In each step, the agent receives a structured state vector that
includes current chain features and the proposer duty vector.
This input is first passed through a feedforward encoder,
i.e., a multi-layer perceptron (MLP) [65] with one hidden
layer of 512 units and ReLU activation, which transforms the
raw state into a fixed-dimensional embedding. This encoded
representation is then processed by a two-layer Long Short-
Term Memory (LSTM) network, each layer containing 256
hidden units. The LSTM maintains temporal context over time,
allowing the agent to track multi-step attack dynamics, such
as private chain length, justification progression, or delayed
proposal release schedules. The recurrent design is essential
for capturing patterns in environments with partial observabil-
ity and delayed reward signals, where the consequences of an
action may unfold over several future steps.

The output of the LSTM is shared between two separate
linear heads. The actor head outputs unnormalized logits over
the discrete action space, which are converted into action
probabilities via a softmax function. These probabilities define
the agent’s stochastic policy, from which actions are sampled
during training and inference. The critic head produces a scalar
value estimate of the expected return from the current state,
which is used to compute advantage estimates during training.
Both outputs are optimized jointly.

The model is trained end-to-end using Proximal Policy
Optimization (PPO), with Generalized Advantage Estimation
(GAE) [66] to smooth temporal credit assignment. The PPO
loss consists of a clipped policy gradient term for stable
updates, a value regression term to train the critic, and an
entropy bonus to encourage exploration. We use the Adam
optimizer [67] with a learning rate of 3 x 10~%, gradient
clipping (max norm 0.5), and run updates over minibatches
sampled from trajectories collected in parallel environments.



APPENDIX E
ARTIFACT APPENDIX

A. Description & Requirements

We present BunnyFinder, a framework for finding incentive
flaws in Ethereum. Our artifact consists of the BunnyFinder
implementation.

1) How to access: The artifact can be accessed by down-
loading from Zenodo. All the scripts, container images, source
codes, and sample output files can be accessed via the URL:
https://doi.org/10.5281/zenodo.17042549.

2) Hardware dependencies: The experiments do not require

After running for six minutes, the experiment stops, and the

output is as follows:
[+] Running 17/17

— Container none-attackerl-1 Removed 0.7s
- Container none-validator4-1 Removed 12.0s
- Container none-executel-1 Removed 10.9s
- Network none_meta Removed 0.8s
result collect
[+] Running 2/2
Container case-ethmysqgl-1 Removed 2.2s
- Network case_default Removed 0.9s

D. Major Claims

any specialized hardware. Our test environment is a computer (C1): BunnyFinder can reproduce known incentive attacks. This

with an 8-core CPU, 16 GB of RAM, 100 GB of storage, and
a 100 Mbps network connection.

3) Software dependencies: Our experiments require a host (C2):

running Ubuntu 22.04 or higher, with Docker installed ac-
cording to the official documentation (Engine version 24.0.6

or higher), plus the docker-compose plugin| and the Kurtosis (C3):

framework.
4) Benchmarks: None

B. Artifact Installation & Configuration

After installing Docker, run the following steps:
. Download the repository zip file and unzi]ﬂ
curl -o bunnyfinder.zip https://zenodo.org/
records/17042549/files/bf_workspace.zip?download=1
&& unzip bunnyfinder.zip
Enter the repository directory (denote as $HOME):
cd bf_ workspace
3. Build the required Docker image in the repository root
directory:
./build.sh

2.

C. Experiment Workflow

After building the Docker image, run the basic test with the
command:
./attack.sh none
Our system does not support running multiple instances (using
attack.sh) in parallel, as they share the same working directory.

The following outputs are expected:
casetype is none

[+] Running 2/2

— Network case_default

- Container case-ethmysqgl-1

Created
Started

o O
o N

n n

(C4):

run strategy none

INFO[0000] Specified a chain config file: /root/confi
g/config.yml prefix=genesis

INFO[0000] No genesis time specified, defaulting to n
ow () prefix=genesis

INFO[0000] Delaying genesis 1752219566 by 15 seconds
INFO[0000] Command completed
prefix=genesis

[+] Running 17/17

- Network none_meta Created 0.2s

- Container none-execute3-1 Started 1.3s

- Container none-validator2-1 Started 3.5s

wait 360 seconds

7Please ensure install unzip in your environment.

19

is proven by experiment (El), as described in Section V
in the paper.

BunnyFinder can discover three previously unknown in-
centive flaws. This is proven by experiment (E2), which
reproduces the results in Section V in the paper.
BunnyFinder generates and evaluates attack instances
with high coverage. This is proven by experiment (E3),
which reproduces the results in Section V in the paper.
BunnyFinder can improve the attack effects using rein-
forcement learning. This is proven by experiment (E4),
which reproduces Table III in Section VI in the paper.

E. Evaluation

1) Experiment (El): [30 human-minutes + 3 compute-
hours]: Reproduce five known incentive attacks, such as ex-
ante reorg attack, sandwich reorg attack, and staircase attack.

[Preparation] If the test experiment is successful, no addi-
tional preparation is required.

[Execution] The experiments need to start each attack
manually. Each attack reproduction will run for one hour. The
output should be similar to that in the basic test. Run each
attack experiment under SHOME.

Run the exante reorg attack in Prysm 5.2.0 for one hour by:

./attack.sh exante

Run the sandwich reorg attack in Prysm 5.2.0 for one hour
by:

./attack.sh sandwich

Run the staircase attack in Prysm 4.0.5 for one hour by:

./attack.sh staircase

[Results] After completion, the output will be displayed as
follows:

[+] Running 17/17

- Container exante-validator5-1 Removed 12.7s

- Container exante-validator3-1 Removed 12.5s

- Container exante-executeb5-1 Removed 10.8s

- Network exante_meta Removed 0.8s
result collect
exante attack occurs reorganize blocks in slot 8-9.
exante attack occurs reorganize blocks in slot 23-24.

test finished and all nodes data in \$HOME/results/e
xXante

[+] Running 2/2
- Container case-ethmysgl-1 Removed 2.0s
- Network case_default Removed

The reorganization of blocks from honest validators indi-
cates that the attack has been successfully reproduced.


https://doi.org/10.5281/zenodo.17042549
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/linux/
https://docs.kurtosis.com/install/
https://docs.kurtosis.com/install/
https://zenodo.org/records/17042549/files/bf_workspace.zip?download=1
https://zenodo.org/records/17042549/files/bf_workspace.zip?download=1

2) Experiment (E2): [30 human-minutes + 3 compute-
hours]: Identify three new incentive attacks, including selfish
mining attack, staircase attack-II, and pyrrhic victory attack.

[Preparation] If the test experiment and experiment E1 are
successful, no additional preparation is required.

[Execution] The experiments need to start each attack
manually. Each attack reproduction will run for one hour. The
output should be similar to that in the basic test and experiment
El. Run each attack experiment in the $HOME directory.

Run the selfish mining attack in Prysm 5.2.0 for one hour
by:

./attack.sh selfish

Run the staircase attack-1I in Prysm 5.2.0 for one hour by:

./attack.sh staircase-ii

Run the pyrrhic victory attack in Prysm 5.2.0 for one hour
by:

./attack.sh pyrrhic-victory

[Results] After completion, the output will be displayed as
follows:

[+] Running 17/17

— Container staircaseii-validator5-1 Removed 12.7s
- Container staircaseii-validator3-1 Removed 12.5s
- Container staircaseii-executeb-1 Removed 10.8s
- Network staircaseii_meta Removed 0.8s
result collect

staircaseii attack occurs reorganize blocks in slot

152-216.

staircaseii attack occurs reorganize blocks in slot

542-595.
test finished and all nodes data in /home/ec2-user/
bf_workspace/results/staircaseii
[+] Running 2/2
- Container case-ethmysqgl-1
- Network case_default

Removed
Removed

The reorganization of blocks from honest validators indi-
cates that the attack has been successfully conducted.

3) Experiment (E3): [30 human-minutes]: Query and ana-
lyze attack instances from our attack database. The database
contains exactly 7,991 completed attack strategy records
shown in the paper. One can execute SQL statements to view
our attack database.

[Preparation] 1If the test experiment and experiments
E1&E?2 are successful, no additional preparation is required.

[Execution] Connect to the remote database and execute
SQL statements for querying attack strategies. Run each query
under $HOME.

Connect to the remote database by:

export MYSQL PASSWORD=j8P#zQ7@mV2kLIxxD

Use the script to connect to our remote database:

./tool/connect ndss.sh

Query the top 10 most effective attack strategies ordered by
honest validator loss rate:

SELECT uuid, category, honest _lose_rate_ avg,
attacker lose_ rate_ avg FROM t_ strategy ORDER BY
honest _lose_rate__avg DESC LIMIT 10;

Query detailed strategy content by a specific uuid:

SELECT content FROM t_strategy WHERE uuid

'your uuid_here’;

20

[Results] After completion, the output will be displayed in
Figure [21]

[Note] One can view all our attack instances by querying
uuid. Each attack instance is uniquely identified by its uuid
and contains metadata including attack strategies, timestamps,
the loss rate of honest validators and Byzantine validators.

mysgl> SELECT COUNT (1)
is_end=1;

FROM t_strategy where

1 row in set
mysqgl> SELECT

— uuid, category,honest_lose_rate_avg,attacker_lose_rate_avg
— FROM t_strategy ORDER BY honest_lose_rate_avg

— DESC LIMIT 10;

+o—— to—— Fo——— o ———— +

| uuid category

[ | honest_lose_rate_avg | attacker_lose_rate_avg

—

—————— R A B
| be0392e4-2af5-4328-ae73-75cb940183fb

— ext_unrealized | 2

— 2 |

| 8165a654 ext_withholding | 1.4351343907591927
- 0.4257843676895559

| 0908flal ext_withholding | 1.0404429370482193
- 0.36005933160736164 |

| 36917a9%9b ext_unrealized | 0.8446009559734197
— 0.23046993257190004 |

| 1d80817a ext_exante | 0.8082500263074806
— | 0.3611931605441617

| 04c85187 ext_exante | 0.8055164361051975
— | 0.21875258015687382 |

| 51939515 ext_withholding | 0.7923948105456591
- 0.21484450254575513

| a2l17afb6 ext_exante | 0.7872249249224978
— 0.28465754717886815

| 9592f814 ext_staircase | 0.7792295550392992
- | 0.21093986514380028

| 03332ad2 ext_withholding | 0.7660159949489652
- 0.2070317875326818

Fo——— o o o +

10 rows in set (0.19 sec)

Figure 21: The output of SQL results.

4) Experiment (E4): [30 human-minutes + 2 compute-
hours]: Compare extended staircase attack with RL-optimized
staircase attack.

[Preparation] If the test experiment and experiment E1 are
successful, no additional preparation is required.

[Execution] The experiments need to be started manually
by:

./attack.sh rl

[Results] After completion, the system outputs the hon-
est validators’ loss rate, the Byzantine validators’ loss rate,
Byzantine validators’ advantage, and the success rate, both
before and after reinforcement learning optimization. Notably,
due to the introduction of randomness, the exact values may
differ slightly from those reported in Table III of Section VI.
However, the overall trend remains consistent: reinforcement
learning increases the Byzantine advantage.



	Introduction
	Ethereum PoS and its Incentive
	Overview of BunnyFinder
	BunnyFinder in a Nutshell
	The Challenges and our Solutions

	The BunnyFinder Framework
	The Strategy Generator (SG)
	The Strategy Executor
	The State Analyzer
	The Strategy Optimizer

	The New Incentive Flaws
	Selfish Mining Attack
	Staircase Attack-II
	Pyrrhic Victory Attack
	Implementation Vulnerability

	Optimizing the Attacks using Strategy Optimizer and Discussion
	Selfish Mining
	Staircase Attack-II

	Related Work
	Conclusion
	Research Ethics Considerations

	References
	Appendix A: Current Status of Vulnerability
	Appendix B: SSF JSON File
	Appendix C: Evaluation Details
	Appendix D: Reinforcement Learning Details
	Environment
	State and Action Space
	Reward Function
	Architecture of the Model

	Appendix E: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)



