
Ipotane: Balancing the Good and Bad Cases
of Asynchronous BFT

Xiaohai Dai∗, Chaozheng Ding∗, Hai Jin∗, Julian Loss†, and Ling Ren‡
∗National Engineering Research Center for Big Data Technology and System,

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and Technology

†CISPA Helmholtz Center for Information Security
‡University of Illinois at Urbana-Champaign

{xhdai, chaozhengding, hjin}@hust.edu.cn, loss@cispa.de, renling@illinois.edu

of these replicas, termed Byzantine replicas, may deviate
arbitrarily from the protocol.

BFT consensus protocols traditionally fall into three cat-
egories based on their network assumptions: asynchronous,
partially synchronous, and synchronous. Asynchronous pro-
tocols [7], [8], [9] ensure safety and liveness under ar-
bitrary network conditions, whereas (partially-)synchronous
protocols are prone to network attacks [10]. On the flip
side, asynchronous protocols are known to be inherently
randomized [11], which makes them less efficient and more
challenging to design than their synchronous and partially-
synchronous counterparts (e.g., PBFT [12] and HotStuff [13]),
which can be fully deterministic.

A. Asynchronous protocols with an optimistic path

To harness the strengths of both (partially-)synchronous
and asynchronous protocols, a line of research has proposed
incorporating an optimistic path into an asynchronous pro-
tocol [14], [15], [16], [17]. This typically involves using a
partially-synchronous protocol, like 2-chain HotStuff [18], as
the optimistic path, while an asynchronous protocol, often
Validated Asynchronous Byzantine Agreement (VABA), acts
as the pessimistic fall-back path.

This dual-path paradigm considers two situations: favorable
and unfavorable. A favorable situation is characterized by a
non-faulty leader on the optimistic path and good network
conditions, enabling the protocol to make progress through
the optimistic path. In contrast, an unfavorable situation arises
when we have a faulty leader or poor network conditions, in
which case the protocol will fall back to the pessimistic path to
achieve liveness. Formal definitions of favorable/unfavorable
situations are presented in Section V-D.

The ultimate goal in this dual-path paradigm is to match
the performance of a partially-synchronous protocol in favor-
able situations and that of a purely asynchronous protocol
in unfavorable ones. While many prior works have focused
on optimizing performance in favorable situations, it is also
critical to address performance in unfavorable situations, as
they can be common in real-world deployments. Specifically,
a leader may become temporarily inoperative, or the network
connecting to the leader might experience jitter, making such

Abstract—State-of-the-art asynchronous Byzantine Fault Toler-
ance (BFT) protocols integrate a partially-synchronous optimistic 
path. Their ultimate goal is to match the performance of a 
partially-synchronous protocol in favorable situations and that of 
a purely asynchronous protocol in unfavorable situations. While 
prior works have excelled in favorable situations, they fall short 
when conditions are unfavorable. To address these shortcomings, 
a recent work, Abraxas (CCS'23), retains stable throughput 
in all situations but incurs very high worst-case latency in 
unfavorable situations due to slow detection of optimistic path 
failures. Another recent work, ParBFT (CCS'23) ensures good 
latency in all situations but suffers from reduced throughput 
in unfavorable situations due to the use of extra Asynchronous 
Binary Agreement (ABA) instances.

We propose Ipotane, a protocol that attains performance 
comparable to partially-synchronous protocols in favorable situ-
ations and to purely asynchronous ones in unfavorable situations, 
in terms of both throughput and latency. Ipotane also runs 
two paths simultaneously: 2-chain HotStuff as the optimistic 
path and a new primitive Dual-functional Byzantine Agreement 
(DBA) for the pessimistic path. DBA packs the functionalities 
of biased ABA and Validated Asynchronous Byzantine Agreement 
(VABA). In Ipotane, each replica inputs 0 to DBA if its optimistic 
path is faster, and 1 if its pessimistic path is faster. DBA’s 
ABA functionality promptly signals the optimistic path’s failure 
by outputting 1, ensuring Ipotane’s low latency in unfavor-
able situations. Meanwhile, Ipotane executes DBA instances to 
continuously produce pessimistic blocks through their VABA 
functionality. Upon detecting a failure, Ipotane commits the last 
two pessimistic blocks to maintain high throughput. Moreover, 
Ipotane leverages DBA’s biased property to ensure the safety 
of committing pessimistic blocks. Extensive experiments validate 
Ipotane’s high throughput and low latency across all situations.

I. INTRODUCTION

The explosive popularity of blockchain technology [1], [2]
and Web3 ecosystem [3], [4] has reignited significant interest
in Byzantine Fault Tolerant (BFT) consensus over the past
decade [5], [6]. At its core, BFT consensus allows distributed
replicas to reach agreement even in scenarios where a subset

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230003
www.ndss-symposium.org



TABLE I: Performance comparison. δ and ∆ denote the actual
network delay and timer parameter. c represents the maximum
transaction count of a block, while λ is the lookback parameter
in Abraxas. Performance in unfavorable situations holds even
when the adversary mounts arbitrary attacks.

Favorable situations Unfavorable situations

Latency Throughput Latency Throughput

2-chain HotStuff [14] 5δ c/(2δ) / /

2-chain VABA [14] 10.5δ 2c/(7δ) 10.5δ c/(7δ)

Ditto [14] 5δ c/(2δ) 3∆ + 10.5δ c/(2∆ + 7δ)

Abraxas [17] 5δ c/(2δ) 3.5λδ + 14δ† c/(7δ)

ParBFT [16] 5δ c/(2δ) 22δ c/(22δ)

Ipotane 5δ c/(2δ) 18.5δ 3c/(23δ)

§Latency here refers to consensus latency—measured from block generation to being
committed—rather than end-to-end latency, following almost all works in the literature.
This distinction is made because end-to-end latency includes not only consensus
latency but also mempool queuing time, which is hard to quantify analytically.
†λ cannot be set too small, as this would make Abraxas resort to pessimistic paths too
often, degrading performance. The Abraxas paper recommends setting λ to 20 [17].

situations frequently occur. Furthermore, even a short period
of poor consensus performance, particularly those resulting
from unfavorable situations, can significantly degrade user
experience in upper-layer applications and should be diligently
avoided.

While existing protocols successfully achieve high perfor-
mance in favorable situations, a significant gap remains in un-
favorable situations. Specifically, earlier works like Ditto [14]
and BDT [15] follow a sequential-path design where the
pessimistic path is launched only after the optimistic path’s
failure is detected. This delay in launching the pessimistic path
results in poor efficiency in unfavorable situations. We give a
more thorough comparison with these and other existing works
in Section VII.

To deal with issues of sequential-path protocols, two recent
works ParBFT [16]1 and Abraxas [17], follow a parallel-path
design which operates two paths simultaneously. By continu-
ously running the pessimistic path in the background, parallel-
path protocols avoid much of the overhead encountered in the
sequential-path design during unfavorable situations.

In spite of these improvements, ParBFT and Abraxas still
fall short of fully matching the performance of asynchronous
protocols in unfavorable situations. Concretely, ParBFT em-
ploys an individual Asynchronous Binary Agreement (ABA)
instance at each height to detect the optimistic path’s failure.
This achieves low latency in unfavorable situations but intro-
duces an idle period where no new block is generated, resulting
in reduced throughput (i.e., number of committed blocks) com-
pared to purely asynchronous protocols. On the other hand,
Abraxas’s pessimistic path leverages consecutive VABA in-
stances to continuously generate blocks even during optimistic
periods. Since there is no idle time, Abraxas achieves essen-
tially the same throughput as purely asynchronous protocols.
The downside, however, is that blocks from the pessimistic

1In [16], two versions of ParBFT are proposed. Our focus is on the first
one, ParBFT1, which we simply refer to as ParBFT in this paper.

0 5 10 20 100
Leader failure (%)

0

25

50

75

100

125

Th
ro
ug
hp
ut
 (K

 tx
/s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(a) Throughput comparison

0 5 10 20 100
Leader failure (%)

0

2

4

6

8

La
te

nc
y 

(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(b) Latency comparison

Fig. 1: Performance under varying probabilities (ρ) of leader
failure. ρ=0 denotes a favorable situation where optimistic
paths operate smoothly. Conversely, ρ=100% denotes an un-
favorable situation where optimistic paths fail.

path can be committed only after an indicator transaction on
the pessimistic path confirms the optimistic path’s failure. This
indicator transaction is submitted after many communication
rounds (empirically, over 80 rounds). Thus, Abraxas might
incur very high latency in the worst case.

Therefore, we aim to design an asynchronous protocol
whose throughput and latency are on par with the state-of-
the-art of: 1) partially-synchronous protocols under favorable
situations, and 2) purely asynchronous protocols in unfavor-
able situations.

B. Our solution

We answer this question affirmatively by proposing Ipotane.
Ipotane combines the advantages of Abraxas and ParBFT.
More precisely, Ipotane delivers performance akin to that
of partially-synchronous protocols under favorable situations;
in unfavorable situations, Ipotane still offers throughput and
latency comparable to those of a purely asynchronous protocol.
In addition, in situations that fall between favorable and
unfavorable, Ipotane consistently maintains nearly the best
throughput and latency among existing protocols.

At a high level, Ipotane executes the optimistic and pes-
simistic paths in parallel, much like Abraxas and ParBFT.
The optimistic path runs the 2-chain HotStuff, whereas the
pessimistic path involves a sequence of asynchronous con-
sensus instances. These instances have dual functions: they
monitor whether the optimistic path works well like ABA,
and also facilitate the generation of new blocks reminiscent
of VABA. In addition, the 2-chain HotStuff’s committing rule
only ensures that t+1 non-faulty replicas acquire the lock data,
which is then taken as the input to the asynchronous instance.
Inputs from these t + 1 non-faulty replicas must force the
asynchronous instance to produce a matching output, calling
for a biased validity.

We introduce Dual-functional Byzantine Agreement (DBA),
a novel primitive to implement the asynchronous instance
discussed above, which combines the functionalities of biased
ABA and VABA. In addition to the validated block, as required

2



by standard VABA, the input for a DBA instance also includes
a binary value. The output is a pair comprising a binary value
and a block value, particularly ensuring biased validity for
the binary value. DBA can be constructed by adding merely
a single communication round prior to any existing VABA
protocol. Thus, its performance is similar to VABA.

With the DBA primitive defined, Ipotane executes con-
secutive DBA instances as the pessimistic path. The binary
decision from DBA indicates the success or failure of the
optimistic path. Upon detecting a failure in the optimistic path,
Ipotane promptly commits blocks on the pessimistic path, thus
promising low latency in unfavorable situations. Due to the
biased validity of DBA, if any non-faulty replica commits
a block through the optimistic path, the binary output from
DBA acknowledges this commit. This also instructs every
non-faulty replica to commit the same block through the pes-
simistic path if it has not yet committed, thus guaranteeing the
block consistency. Moreover, DBA instances are comparable
in efficiency to VABA, which helps Ipotane achieve good
throughput under unfavorable situations.

Experimental results to evaluate Ipotane are shown in Fig-
ure 1, where the x-axis represents the probability (ρ) of leader
failure on the optimistic path. It shows that under favorable
situations (ρ = 0), Ipotane achieves high throughput and low
latency, matching Ditto, which operates as a purely partially-
synchronous protocol in such situations. On the other hand,
when leaders are always faulty (ρ = 100%), Ipotane demon-
strates throughput and latency on par with 2-chain VABA, a
purely asynchronous protocol. Furthermore, as the probability
of leader failure varies between 0 and 100%, reflecting a mix
of favorable and unfavorable situations occurring randomly,
Ipotane consistently achieves almost the highest throughput
and lowest latency compared to other protocols.

Table I presents a more detailed and comprehensive com-
parison between Ipotane and existing protocols, corroborating
Ipotane’s good performance with theoretical analysis. δ de-
notes the actual network delay, and c represents the maximum
transaction count within a block. Ipotane demonstrates a low
latency of 5δ and a high throughput of c/(2δ) in favor-
able situations. This matches the performance of a partially-
synchronous protocol (specifically, 2-chain HotStuff). On the
other hand, in unfavorable situations, Ipotane manages to
maintain a latency of 18.5δ2 and a throughput of 3c/(23δ).
These are just slightly worse than a purely asynchronous
protocol (specifically, 2-chain VABA) but significantly better
than prior works Abraxas in terms of latency and ParBFT in
terms of throughput.

II. MODELS AND PRELIMINARIES

In this section, we begin by introducing the system model.
Building upon this model, we formally define State Machine
Replication (SMR), which is primarily achieved through the
use of asynchronous BFT consensus. Finally, we present

2All unfavorable latency metrics are measured in terms of expected and
average values. Specifically, we first compute the expected latency for each
block and then take the average across multiple blocks.

two preliminary protocols, Validated Asynchronous Byzantine
Agreement (VABA) and (biased) Asynchronous Binary Agree-
ment (ABA), which serve as a basis for our subsequent design.

A. Model

The system consists of n replicas, with up to t being Byzan-
tine, where n ≥ 3t+1. Each replica is identified by a unique
number and is denoted as pi (1 ≤ i ≤ n). Byzantine replicas
may deviate from the protocol arbitrarily and are presumed to
be under the control of an adaptive adversary. This adversary
can corrupt replicas as the protocol progresses and drop a
corrupted replica’s messages from the network a posteriori.
The remaining replicas, termed non-faulty, faithfully adhere
to the protocol. Each pair of replicas is connected through
a pairwise authenticated communication channel. The system
operates in an asynchronous network where no assumption is
made about network delays. The adversary is assumed to fully
control the network and can arbitrarily delay and reorder any
messages as long as it eventually delivers them.

A Public Key Infrastructure (PKI) is established across
the replicas, and digital signatures are used to ensure the
authenticity and integrity of transmitted messages. Addition-
ally, we employ two distinct instances of threshold signature
schemes [19], [20]: one with a threshold of n − t, and the
other with a threshold of t+1. The algorithm for generating a
threshold signature share is denoted as SignShr, while Comb
constructs a threshold signature from sufficient shares. To
simplify our notation, we omit the use of private or public keys
as parameters in SignShr or Comb. To differentiate between
the two threshold signature schemes, we use SignShrr and
Combr to denote calls to these algorithms with the threshold
parameter r. We assume the adversary is computationally
bounded and cannot break the security of (threshold) signa-
tures.

B. State machine replication

We focus on the State Machine Replication (SMR) problem.
Each replica pi in SMR locally maintains a growing chain,
denoted as Ci, which is modeled as a write-once array. An
object in the array is named a block, which consists of
multiple transactions. Transactions are continuously generated
by clients or upper-layer applications, and are inserted into a
buffer bufi of each replica i. Transactions cached in the buffer
are sorted based on the times they are received by the replica.
When a replica pi proposes a block, it selects a number of
transactions from its buffer bufi. Without loss of generality,
we assume the maximum number of transactions that can be
included in a block is c. Therefore, the block proposed by pi
consists of the first c transactions from the buffer bufi[: c].
Ci is initialized as empty—namely Ci[k] = ⊥ for each index

k (k ≥ 1). A block B is said to be committed by pi when it is
written to the chain Ci. All transactions in B are then deleted
from pi’s buffer bufi. In this paper, we focus on protocols that
commit blocks sequentially—i.e., if Ci[k] ̸= ⊥, then for every
k′ < k, Ci[k′] ̸= ⊥. SMR serves to maintain a consistent chain
among non-faulty replicas, whose definition is as follows:

3



Definition 1. Let Π be a protocol executed among replicas
p1, ..., pn, where each non-faulty replica holds a transaction
buffer bufi. We say that Π implements SMR if it satisfies the
following properties:

• Consistency: For two non-faulty replicas pi and pj , if
Ci[k] ̸= ⊥ and Cj [k] ̸= ⊥, then Ci[k] = Cj [k].

• Liveness: If a transaction tx is added to every non-
faulty replica’s buffer, then every non-faulty replica will
eventually commit a block containing tx.

• Completeness: For two non-faulty replicas pi and pj ,
if Ci[k] ̸= ⊥, then for each index k′ ≤ k, eventually
Cj [k′] ̸= ⊥.

C. Validated asynchronous byzantine agreement

The Validated Asynchronous Byzantine Agreement (VABA)
abstraction facilitates consensus on arbitrary values [21].
VABA introduces an external validation predicate Q, typically
defined by higher-layer applications. To be more specific,
VABA is defined as follows.

Definition 2. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds input vi and replicas termi-
nate upon generating output. We say that Π achieves VABA if it
satisfies the following properties in an asynchronous network
whenever at most t replicas are corrupt:

• Agreement: If two non-faulty replicas output values v
and v′, then v = v′.

• Termination: If all non-faulty replicas complete in-
putting, every non-faulty replica will eventually output.

• External validity: If a non-faulty replica outputs v, then
Q(v) must be True.

• Quality: If a non-faulty replica outputs v, then with
probability over 1/2, v is input by a non-faulty replica.

Various implementations of VABA [21], [22], [23], [24]
have been developed over the past decades. While the quality
property is not explicitly defined in [21], [24], both works
guarantee it.

D. (Biased) asynchronous binary agreement

The Asynchronous Binary Agreement (ABA) abstrac-
tion [25], [26] represents the most basic form of asynchronous
BFT consensus, which serves to agree on a binary value. To
be more specific, an ABA protocol is defined as follows:

Definition 3. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds a binary input bi and
generates an output. We say that Π achieves ABA if it satisfies
the following properties in an asynchronous network whenever,
at most t replicas are corrupt:

• Agreement: If two non-faulty replicas output values b and
b′, then b = b′.

• Termination: If all non-faulty replicas complete in-
putting, every non-faulty replica will eventually output.

• Validity: If all non-faulty replicas input the same bit b,
then each non-faulty replica outputs b.

In the VABA implementation proposed by Cachin et al. [21],
a binary version of the VABA protocol with a biased validity
property is introduced. This protocol closely resembles the
ABA protocol, and for presentation, we refer to it as biased
ABA. Biased ABA replaces the validity property in the ABA
protocol with external validity and biased validity properties.
The external validity property remains consistent with the
definition in VABA, where a validation predicate P is defined
over binary values, while the biased validity property is defined
as follows:

• Biased validity: If at least t+1 non-faulty replicas input
the bit 0, all non-faulty replicas will output 0.

Our design does not utilize a biased ABA directly. Instead,
we introduce a new abstraction named DBA that incorporates
properties akin to those in biased ABA, which is detailed in
Section III.

III. BUILDING BLOCK: DBA

A. Definition of DBA

We propose a new abstraction called Dual-functional Byzan-
tine Agreement (DBA), which simultaneously achieves consen-
sus on a binary value as well as an arbitrary value. Roughly
speaking, DBA combines the functionalities of biased ABA
and VABA. Initially, it may seem that VABA inherently fulfills
the functionality of biased ABA, making the definition of
DBA redundant. However, this is not the case, as biased ABA
has a variant of the validity property (i.e., biased validity)
from VABA. In the context of this paper, the arbitrary value
is typically a block. Therefore, within the remainder of this
paper, we will use the term block to represent the arbitrary
value in DBA. Formally, a DBA protocol is defined as follows:

Definition 4. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds a binary value bi, a proof
σ, plus a block Bi as input, and generates a binary value b
and a block B as output. Two external validation predicates, P
and Q, are introduced: Q validates the legitimacy of the block
value, similar to the validation in VABA, while P validates the
legitimacy of the binary value based on the proof. Replicas
terminate upon generating output. We say that Π achieves
DBA if it satisfies following properties whenever at most t
replicas are corrupt:

• Agreement: For any two non-faulty replicas outputting
⟨b, B⟩ and ⟨b′, B′⟩, then b = b′ and B = B′.

• Termination: If all non-faulty replicas complete in-
putting, every non-faulty replica will eventually output.

• Block-external validity: For any output ⟨∗, B⟩ from a
non-faulty replica, Q(B) = True.

• Quality: If a non-faulty replica outputs ⟨∗, B⟩, then with
probability over 1/2, B is input by a non-faulty replica.

• Biased validity. If at least t+1 non-faulty replicas input
⟨0, ∗⟩, then all non-faulty replicas will output ⟨0, ∗⟩.

4



Algorithm 1: AlgDBA with instance identity h (for pi)

1 Let ⟨bi, σi, Bi⟩ denote the input of pi.
2 if bi = 0 then
3 broadcast (h, 0, σi,SignShrt+1(h, 0))
4 else
5 broadcast (h, 1, σi,SignShrn−t(h, 1))

6 on receiving (h, 0, σj , ∗) s.t. P (σj) = True from pj:
// amplify the bit of 0

7 if pi has not broadcast 0 then
8 broadcast (h, 0, σj ,SignShrt+1(h, 0))
9 on receiving t+ 1 (h, 0, σj , ∗) that P (σj) = True:

10 S ← all the sig. shares from t+ 1 messages;
11 sig0 ← Combt+1(h, 0, S);
12 input ⟨0, sig0, Bi⟩ to VABAh if it has not input
13 on receiving n− t (h, 1, ∗, ∗):
14 S ← all the sig. shares from n− t messages;
15 sig1 ← Combn−t(h, 1, S);
16 input ⟨1, sig1, Bi⟩ to VABAh if it has not input
17 on outputting ⟨b, sig, B⟩ from VABAh:
18 output ⟨b, B⟩

• Binary-external validity: If a non-faulty replica outputs
⟨0, ∗⟩, at least one replica (Byzantine or non-faulty) must
have inputted ⟨0, σ, ∗⟩ with P (σ) = True.

To aid presentation, in the context of DBA’s input, b plus
σ is referred to as the binary input, while B is termed the
block input. Correspondingly, in the output ⟨b, B⟩, we refer to
b and B as the binary output and block output, respectively.
The block inputs of different replicas, like the input values in
VABA, do not have to be identical. The properties of biased
validity and binary-external validity specifically pertain to
DBA’s binary values, while quality and block-external validity
are applicable to the block values.

B. Construction of DBA: AlgDBA

Since the combination of binary input and block input
can be regarded as a single value, an initial approach to
constructing DBA might involve adapting a VABA protocol to
accept the combined inputs as a singular value. This approach
could fulfill most of the properties outlined in Definition 4,
but it falls short of meeting the biased validity requirement.
To solve this problem, we introduce a communication round
before executing the VABA protocol.

This protocol, as outlined in Algorithm 1, adds a round to
amplify the bit of 0 before executing VABA. Unless otherwise
specified, the term broadcast in the pseudocode refers to a
best-effort broadcast [27], a simple form of broadcast where
the broadcaster transmits data to other replicas, and these
replicas immediately deliver the data upon receipt. In this
additional round, each replica broadcasts its binary input
accompanied by a threshold signature share. If the binary input
is 0, the threshold parameter for the signature share is set to
t+1. Conversely, for a binary input of 1, the threshold is set

Fig. 2: The structure of an epoch in Ipotane

to n−t (see Lines 2-5). If a replica receives a valid message
containing 0, it will also broadcast 0 if it has not yet done so
(Lines 6-8), which amplifies the broadcast of 0.

At the end of this round, if a replica gathers t+1 messages
containing 0, it creates a complete threshold signature sig0
based on signature shares in these messages, certifying the bit
0. The replica then uses ⟨0, sig0, B⟩ as input to the VABA
instance, where B is the block input of AlgDBA (Lines 9-12).
Alternatively, if it receives n− t valid values of 1, it creates a
complete threshold signature sig1 for the value 1, leading to
the input ⟨1, sig1, B⟩ for the following VABA instance (Lines
13-16). Finally, VABA outputs one of these inputs, with the
bit and block values forming the output of AlgDBA (Lines
17-18). Within this construction, the predicate Q of VABA
must validate both the binary and block parts of an input.
In particular, validation of the binary part typically involves
verifying the bit’s threshold signature. For lack of space, the
correctness analysis of AlgDBA is deferred to Appendix A.

Relation to Cachin et al. [21]. Cachin et al. [21] first
introduced VABA and its variant, biased ABA. While we draw
inspiration from their work, our work is significantly different
from theirs. The end goal of Cachin et al. [21] is to construct
VABA that agrees on a block value, and they define and use
the biased ABA in that process. In contrast, our DBA is a new
primitive that simultaneously achieves agreement on a binary
value and a block value. To obtain DBA, we modify existing
VABA protocols and use them as building blocks.

IV. IPOTANE DESIGN

A. Overview and intuition

Ipotane operates in epochs, designated by incrementing
integer identifiers starting from 1. Each epoch comprises an
optimistic path and a pessimistic path in parallel, as depicted
in Figure 2. The optimistic path employs a structure of chain-
based blocks, where the Quorum Certificate (QC) for a block
is encapsulated within the next block. The pessimistic path
is implemented through consecutive DBA instances, each
producing a block and a binary value. Blocks generated
in the two paths are referred to as opt-blocks and pess-
blocks, respectively. Opt-blocks within an epoch are numbered
with heights starting from 1, denoted as Bh. Similar to a
partially-synchronous protocol, a leader is designated for each
height on the optimistic path, following a round-robin manner.
DBA instances and their outputted pess-blocks in an epoch
are also numbered starting from 1, denoted as DBAh and Ch,
respectively.

5



(a) Commit Bh through the two-chain rule.

(b) DBAh+1 outputs 0 indicating readiness to commit Bh.

(c) DBAh+1 outputs 1 indicating readiness to commit Ch and Ch+1.

Fig. 3: Examples to show the block committing rules. We omit
some elements in the figures for conciseness.

1) Design intuition: In the context of Ipotane, we make
a clear distinction between the terms certify and commit
concerning a block. An opt-block is deemed certified when the
corresponding QC is obtained, and a pess-block is considered
certified if it is outputted from a DBA instance. Taking
Figure 2 as an example, the opt-block Bh is certified, since
the QC for it is contained in Bh+1. Both pess-blocks Ch

and Ch+1 are certified, as they are outputted from DBAh

and DBAh+1, respectively. Due to the quorum intersection
argument, the opt-block at a given height will be unique.
Additionally, according to DBA’s consistency property, the
pess-block at a given height will also be unique. Conversely,
commit denotes that a block, either an opt-block or a pess-
block, is eligible to be written to the SMR chain C.

Within this parallel-path structure, it is possible to have two
certified blocks at the same height, h: an opt-block Bh and
a pess-block Ch. A primary task is to decide which block
to commit. This is precisely the reason why we augment
VABA to DBA to make a binary decision. In particular, we
leverage the binary output from the DBA instance at the next
height DBAh+1, to commit the block at height h. On the
other hand, to attain performance comparable to a partially-
synchronous protocol in favorable situations, Ipotane must be
capable of rapidly committing blocks through the optimistic
path, particularly employing the two-chain rule akin to 2-chain
HotStuff [14]. Thus, two distinct rules for block committing
co-exist: one using binary outputs on the pessimistic path, and
the other using the two-chain rule on the optimistic path.

The next challenge is to ensure consistency between these
two commit rules. Specifically, for a given height, if a replica
commits an opt-block using the two-chain rule, we must ensure
that another replica will also commit this opt-block even if it

follows the pessimistic path’s binary output. This consistency
is achieved through the biased-validity property of DBA. In
short, if a replica commits Bh via the two-chain rule, then
at least t+ 1 non-faulty replicas have inputted 0 to DBAh+1,
signaling their intention to commit Bh. Due to the biased-
validity property, DBAh+1 will output 0, which indicates
committing Bh.

2) Overall design: Each replica participates in both the
optimistic and pessimistic paths. The optimistic path, re-
sembling the 2-chain HotStuff, involves designated leaders
proposing opt-blocks, which are then voted on by replicas
using threshold signature shares. The pessimistic path, on the
other hand, consists of consecutive DBA instances. The input
for a DBA instance (DBAh+1) depends on which block at the
preceding height h—either opt-block Bh or pess-block Ch—
gets certified first. An opt-block is certified by a QC contained
in the subsequent opt-block, whereas a pess-block is certified
upon being outputted from DBA. Thus, a replica’s binary input
for DBAh+1 hinges on which of these two events occurs first:
(1) receipt of Bh+1 or (2) output from DBAh. If Bh+1 is
received earlier, it inputs 0 to DBAh+1; otherwise, it inputs 1.

Committing an opt-block or a pess-block is based on either
the two-chain rule or the output from DBA. As depicted in
Figure 3a, upon receiving an opt-block Bh+2, a replica can
immediately commit the opt-block from two heights prior (Bh)
via the two-chain rule. On the other hand, if a replica receives
0 from DBAh+1, as illustrated in Figure 3b, it can commit the
opt-block at the preceding height Bh. Otherwise (namely if
DBAh+1 outputs 1), the replica commits the pess-block at the
preceding height Ch, as shown in Figure 3c.

In addition, the 1 output from DBAh+1 indicates a failure
in the optimistic path. In this scenario, each replica concludes
the current epoch and progresses to the next. To enhance
throughput, the pess-block Ch+1 generated from DBAh+1

is also committed together with Ch. As demonstrated in
Figure 3c, both Ch and Ch+1 are committed when DBAh+1

outputs 1.
In favorable situations, Ipotane continuously commits

blocks through the two-chain rule, achieving performance
akin to partially-synchronous protocols. In contrast, under
unfavorable situations, Ipotane can commit blocks using the
pessimistic path, thereby ensuring liveness. Since DBA can
be effectively constructed based on a VABA protocol with
efficient modifications, DBA offers performance comparable
to VABA, enabling Ipotane to match the performance of purely
asynchronous protocols in unfavorable situations.

B. Data structures and utilities

We describe data structures and utilities in this section,
which are summarized as Algorithm 2. An opt-block Bh

on the optimistic path is characterized by the data structure
{h,QC, d}, where h represents its height number, QC is a
certificate for the preceding block Bh−1, and d denotes a
transaction batch from the buffer buf.

On the pessimistic path, each replica can generate a trans-
action batch at a height h, serving as the block input to the

6



Algorithm 2: Data structures & utilities for pi
1 struct Opt-Block:
2 {h,QC, d}
3 struct DBAInput:
4 {b, σ, C}
5 struct DBAOutput:
6 {b, C}

7 define GenOptBlk(h,QC):
8 d← GenTxBatch();
9 B.h← h; B.QC ← QC; B.d← d;

10 return B
11 define InvokeDBA(h, b, σ):
12 d← GenTxBatch();
13 I.b← b; I.σ ← σ; I.C ← d;
14 invoke DBAh with I
15 define GenTxBatch():
16 d← a batch of transactions from bufi;
17 return d
18 define Commit(blk):
19 len← Ci.len(); Ci[len+ 1]← blk;
20 delete tx from bufi for each tx ∈ blk

DBAh instance. From these block inputs, only one is outputted
from DBAh and is referred to as certified, denoted as Ch.
Consequently, a replica’s input I to the DBAh instance follows
the format {b, σ, C}, where b is a binary value indicating its
opinion on which block at height h − 1 is certified earlier,
and C denotes the block input. If b = 0, the replica believes
the opt-block Bh−1 is certified earlier, and σ is set to QC of
Bh−1. Otherwise (b = 1), the replica believes that the pess-
block Ch−1 is certified earlier, leaving σ = ⊥. The output
from DBAh is consistent across replicas, and has the format
{b, C}, where b is a bit indicating the agreed-upon result
regarding which block at height h − 1 is certified earlier.
C is a block output derived from one of the block inputs.
For convenience, we omit the height numbers in the data
structures of DBA inputs and outputs. Instead, their heights are
implied by the height numbers of DBA instances. For example,
“invoking DBAh with I” implies I has a height h, and “DBAh

outputs O” implies O has a height h.
We also define some utilities for Ipotane, including

GenOptBlk, InvokeDBA, and Commit. Both GenOptBlk
and Invoke-DBA need to extract a batch of transactions
from the replica’s transaction buffer buf, which is achieved
by calling the GenTxBatch function.

C. Detailed design when h > 1

Algorithm 3 outlines an epoch in Ipotane, which operates
in consecutive heights3. This subsection describes the general

3We put termination and invocation of DBA (Lines 17-18 of Algorithm 3)
as part of the optimistic path, as these actions are triggered by receiving an
opt-block. Similarly, we put committing an opt-block (Lines 24-25) as part of
the pessimistic path, as these actions are triggered by receiving a pess-block.

Fig. 4: Actions taken when t1 < t2 in Ipotane

protocol for heights greater than 1, with special considerations
for the first height discussed in the next subsection.

The binary-external validity function P in DBA is defined as
a (n− t)-threshold signature verification function. The binary
input or output in the DBA instance is 0 if the corresponding
opt-block is certified earlier than the pess-block, and is 1
otherwise. In other words, a replica inputs 0 if it believes the
optimistic path is functioning well and inputs 1 if it perceives a
lack of progress with the optimistic path. An output of 0 from
a DBA instance indicates agreement among replicas that the
optimistic path performs well, while an output of 1 indicates
agreement that the optimistic path has encountered a failure.

For a height, consider two time points for replica pi:
• t1: the time when the opt-block Bh is certified, indicated

by receiving an opt-block Bh+1

• t2: the time when the pess-block Ch is certified, indicated
by receiving the output from the DBAh instance.

If the optimistic path operates effectively, the DBA instance
DBAh will be launched upon the reception of the opt-block
Bh. Subsequently, it takes 2δ for Bh to be certified by the
QC contained in the subsequent opt-block Bh+1, whereas a
minimum of 7δ is required for DBAh to output the certified
pess-block Ch. Therefore, we should have t1 < t2 when the
optimistic path is functioning well. The comparison between t1
and t2, hence, serves as an indicator of whether the optimistic
path is working well. Replica pi takes different actions based
on this comparison.

1) Case 1: t1 < t2: In this case, pi receives Bh+1 earlier
than the output from DBAh, indicating that the optimistic path
works well as expected. Replica pi leverages the two-chain
rule to commit block Bh−1 (when h ≥ 2) and casts a vote for
the received block Bh+1, as described in Figure 4 and Lines
15-16 in Algorithm 3. Furthermore, pi stops participating in
the DBAh−1 (when h ≥ 2) instance (line 17). In addition,
pi inputs to DBAh+1 its opinion that Bh is certified earlier
than Ch. To be concrete, its binary input to DBAh+1 is 0
plus QC of Bh contained in Bh+1 (Line 18). We denote QC
of Bh as QCh. This ensures the consistency of committed
blocks. Intuitively, if a non-faulty replica commits Bh after
receiving Bh+2, at least t + 1 non-faulty replicas must have
received Bh+1 earlier and inputted 0 to DBAh+1. Therefore,
DBA’s biased validity guarantees that DBAh+1 will output 0,
directing any non-faulty replica to commit Bh if it has not
done so already. Moreover, pi will also broadcast Bh+1 to
make sure other replicas receive this block (Line 19).

7



Algorithm 3: An epoch in Ipotane for pi
1 Let Lh denote the leader of height h on opt. path.
2 h← 1, prevPessBlk ← ⊥.

// optimistic path
3 if pi is L1 then
4 B1 ← GenOptBlk(1,⊥); broadcast B1

// pessimistic path
5 InvokeDBA(1, 0,⊥)

// optimistic path
6 on receiving B1:
7 send SignShrn−t(B1) to L2

8 on receiving n-t sign. shares on Bk (denoted as S):
9 if pi is Lk+1 then

10 qc← Combn-t(Bk, S); Bk+1 ←
GenOptBlk(k+1, qc);

11 broadcast Bk+1

12 while the epoch is not concluded:
13 wait until Bh+1 is received or DBAh outputs O
14 if Bh+1 is received before DBAh outputs then

// optimistic path
15 Commit(Bh−1) if h ≥ 2;
16 send SignShrn−t(Bh+1) to Lh+2;
17 stop participating in DBAh−1 if h ≥ 2;
18 InvokeDBA(h+ 1, 0, Bh+1.QC);
19 broadcast Bh+1 if it has not broadcast yet
20 else

// pessimistic path
21 if O.b = 0 then
22 stop participating in the optimistic path;
23 InvokeDBA(h+ 1, 1,⊥);
24 if h ≥ 2 and Bh−1 isn’t committed then
25 wait to receive Bh−1 and Commit(Bh−1);
26 prevPessBlk ← O.C
27 else
28 Commit(prevPessBlk); Commit(O.C);
29 conclude the epoch
30 h← h+ 1

2) Case 2: t1 ≥ t2: In this case, DBAh outputs before
receiving Bh+1. When DBAh outputs 0, it indicates an agree-
ment that the optimistic path has been functioning well until
height h − 1. However, from this one replica’s perspective,
something is wrong with the optimistic path at height h.
So the replica conveys this opinion by inputting 1 to the
next DBA instance DBAh+1 and stops participating in the
optimistic path. Conversely, if DBAh outputs 1, signifying
agreement among replicas that a failure has occurred with
the optimistic path, the replica concludes the current epoch
after committing pess-blocks. To delve into more details, we
consider two sub-cases.

Case 2.1: DBAh outputs 0. As illustrated in Figure 5a
and detailed in Lines 21-22 of Algorithm 3, pi promptly stops

(a) DBAh outputs 0.

(b) DBAh outputs 1.

Fig. 5: Actions taken when t1 ≥ t2 in Ipotane

participating in the optimistic path of this epoch. Additionally,
it inputs 1 to the subsequent DBA instance, expressing its
opinion that the optimistic path has failed (Line 23). It can
also commit the block Bh−1 (when h ≥ 2). If it has not
received Bh−1 yet, it will wait for the reception of Bh−1 and
then commit Bh−1. The pseudocode for this case is described
in Lines 24-25. Furthermore, the pess-block Ch outputted
from DBAh, will be cached for now (Line 26) and will be
committed later if the subsequent DBA instance outputs 1.

Case 2.2: DBAh outputs 1. This sub-case indicates agree-
ment among replicas that the optimistic path has failed. Conse-
quently, every replica within this sub-case commits two pess-
blocks and then concludes the current epoch. Actions taken by
pi are presented in Figure 5b and Lines 27-29 of Algorithm 3.
After consecutively committing the opt-blocks until Bh−2, pi
commits two pess-blocks, Ch−1 and Ch. Notably, Ch−1 has
been cached in the variable prevPessBlk, and Ch is outputted
from DBAh. Subsequently, pi concludes its participation in the
current epoch and progresses to the next epoch.

D. Detailed design when h = 1

In the initial opt-block B1, QC for the preceding block is
set to an empty value ⊥ (Line 4 in Algorithm 3), following
the approach in 2-chain HotStuff [14]. The first DBA instance
DBA1 is invoked with a binary input of 0 and QC set to the
empty value ⊥, as outlined in Line 5. Any replica that receives
a message in the form of (0,⊥,SignShrt+1(0)) during the first
round of the DBA1 instance will straightforwardly recognize
this binary input of 0 as valid.

V. ANALYSIS OF IPOTANE

Our analysis of Ipotane covers two main aspects: correct-
ness and efficiency. Correctness analysis examines whether
Ipotane fulfills SMR’s three properties, namely consistency,
liveness, and completeness, which rely on some lemmas. Due

8



to space constraints, detailed proofs of these lemmas are
provided in Appendix B.

A. Consistency analysis

To aid presentation, we denote an iteration of the loop (Lines
13-29 in Algorithm 3) with the parameter h as iterh. Theorem
6 addresses the consistency property, supported by Lemmas 1,
2, 3, 4, and 5.

LEMMA 1. If a non-faulty replica concludes an epoch in
iteration iterh, all non-faulty replicas will also conclude that
epoch in iterh.

LEMMA 2. Within an epoch, if a non-faulty replica commits
an opt-block at height h and another non-faulty replica outputs
b from DBAh+1, then b must be 0.

LEMMA 3. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, then either both blocks
are opt-blocks, or both are pess-blocks.

LEMMA 4. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, these two blocks must
be identical.

LEMMA 5. If two non-faulty replicas conclude the same
epoch, they must commit the same number of blocks within
that epoch.

THEOREM 6 (CONSISTENCY). For two non-faulty replicas
pi and pj , if Ci[k] ̸= ⊥ and Cj [k] ̸= ⊥, then Ci[k] = Cj [k].

Proof. Lemma 5 states that the epoch in which pi commits
Ci[k] must be the same as the epoch where pj commits Cj [k].
Furthermore, within that epoch, the height at which pi commits
Ci[k] must be the same as the height where pj commits Cj [k].
In other words, pi and pj commit Ci[k] and Cj [k] at the same
height within the same epoch. According to Lemma 4, Ci[k]
and Cj [k] must be identical.

B. Liveness analysis

We say the protocol concludes an epoch if any non-faulty
replica concludes it. By Lemma 1, non-faulty replicas agree
on the number of iterations in each epoch. A transaction is
considered committed if it is included in a committed block.

As described in Section II-B, each replica’s buffer arranges
pending transactions in the order of their reception times.
Therefore, a unique index k, starting from 1, is assigned to
each transaction within bufi. Each time a block is committed,
any transaction included in this block will be removed from
bufi, and the indices of remaining transactions are adjusted
downwards. Recall that in Section II-B, the maximum trans-
action count in a block is denoted as c. For a given transaction
tx in replica pi’s buffer, the committing of pi’s newly proposed
block results in one of two outcomes for tx: either tx is
included within the block and becomes committed, or the
index of tx decreases by c. To unify the two cases, we define
tx as committed when tx’s index becomes 0 or negative.

Consider the moment when tx enters the buffer of every
non-faulty replica and suppose tx is placed at index ki in
replica pi’s buffer. Whenever an index ki falls to 0 or below,

tx is committed by pi. Let K represent the sum of tx’s indices
in the buffers of all non-faulty replicas, expressed as K =∑

pi∈H ki, where H is the set of non-faulty replicas. It follows
naturally that each time a block from a non-faulty replica is
committed, K decreases.

The liveness property is outlined in Theorem 8, whose proof
relies on Lemma 7.

LEMMA 7. If a non-faulty replica commits a block, every
non-faulty replica will eventually commit this block.

THEOREM 8 (LIVENESS). If a transaction tx is added to
every non-faulty replica’s buffer, every non-faulty replica will
eventually commit a block containing tx.

Proof. Let T0 denote the moment when tx is added to every
non-faulty replica’s buffer. Let u = ⌈K/c⌉. Two situations
unfold:

Situation 1: At least u non-faulty opt-blocks proposed
after T0 are committed within an epoch. Each time a
non-faulty opt-block is committed, K will be reduced by c.
Therefore, after u non-faulty opt-blocks are committed, K
will be reduced by c · u. Since u = ⌈K/c⌉, K − u · c ≤ 0.
As K represents the sum of all indices of tx in non-faulty
replicas’ buffers, at least one index is negative or 0, indicating
that tx is committed by some non-faulty replica. Denote this
non-faulty replica as pi, which commits a block B containing
tx. According to Lemma 7, each non-faulty replica will also
commit B.

Situation 2: Less than u non-faulty opt-blocks proposed
after T0 are committed within each epoch. In this situation,
each epoch is concluded after some opt-blocks and two pess-
blocks are committed. DBA’s quality property ensures that the
probability of the outputted pess-block being proposed by a
non-faulty replica is over 1/2. Similar to Situation 1, each
time a non-faulty pess-block is committed, K will be reduced
by c. As the epochs advance, the probability that at least u
non-faulty pess-blocks are committed will approach 1. In other
words, K will keep decreasing and eventually become negative
or 0. Thus, tx will eventually be committed by some non-
faulty replica. By Lemma 7, every non-faulty replica will also
commit tx.

C. Completeness analysis

THEOREM 9 (COMPLETENESS). For two non-faulty repli-
cas pi and pj , if Ci[k] ̸= ⊥, then for each index k′ ≤ k,
eventually Cj [k′] ̸= ⊥.

Proof. According to the sequential rule outlined in Sec-
tion II-B, for each index k′ (k′ ≤ k), it must hold that
Ci[k′] ̸= ⊥. If Ci[k′] is committed through the optimistic path,
based on Line 19 of Algorithm 3, pj will eventually commit a
block identical to Ci[k′]. Conversely, if Ci[k′] is committed via
the pessimistic path, the termination property of DBA ensures
that pj will also eventually commit a block identical to Ci[k′].

To sum up, pj will eventually commit k blocks. In other
words, for each index k′ (k′ ≤ k), Cj [k′] ̸= ⊥ will hold
eventually.

9



D. Efficiency analysis

Recall that δ denotes the actual network delay, while c and
L represent the maximum transaction count and block size
of a block, respectively. Additionally, we assume the size of
shares and signatures to all have length κ. Our analysis focuses
on the efficiency of Ipotane when employing sMVBA [24]
to construct AlgDBA. Inspired by AMS-VABA [28] and 2-
chain VABA [14], we introduce two improvements to sMVBA.
Firstly, we reduce its view-change phase from two com-
munication rounds to just one, in a manner akin to AMS-
VABA [28], effectively reducing its expected worst-case la-
tency to 10.5 rounds. Secondly, we require each replica to
broadcast a block within the second Provable Broadcast (PB)
instance. For clarity, we refer to these blocks as PB2-blocks.
Accordingly, original pess-blocks proposed in the first PB
instance are termed PB1-blocks. When a replica commits the
PB1-block proposed by the view leader (distinct from the
leader of Ipotane’s optimistic path), it must have received
a QC for this leader’s PB2-block. The replica will include
this QC in its PB1-block in the subsequent sMVBA/AlgDBA
instance, leading to a chain of blocks across sMVBA/AlgDBA
instances, similar to 2-chain VABA [14]. This way, committing
a PB1-block in an AlgDBA will also commit a PB2-block from
the preceding AlgDBA, thus improving DBA’s throughput.

Before analyzing the efficiency of the protocol, we first pro-
vide a rigorous definition of favorable/unfavorable situations.

1) Definitions of favorable/unfavorable situations: A favor-
able situation is defined by two conditions:

• The leader on the optimistic path is non-faulty, and
• the message delays on the optimistic path are bounded

relative to the pessimistic path. Specifically, if we de-
note the delay of pessimistic-path messages as δp, then
optimistic-path messages have delays of at most 3.5δp.

The second condition ensures that optimistic-path messages
are not substantially slower than their pessimistic-path counter-
parts, thereby preventing the pessimistic path from overtaking
the optimistic path.

Conversely, a situation is considered unfavorable if either:
• The optimistic-path leader is faulty, or
• the optimistic-path message delays exceed 3.5δp.
2) Analysis of favorable situations: An opt-block gets

certified in just two communication rounds, while a pess-
block requires seven rounds. In a favorable situation, since
optimistic-path messages have delays at most 3.5 times larger
than those on the pessimistic path, opt-blocks always get cer-
tified earlier than their corresponding pess-blocks. As a result,
blocks are continuously committed through the optimistic path.

Every 2δ interval, a new opt-block is produced, and a block
from two heights prior is committed. This process results in
a throughput of c/(2δ) and a latency of 5δ. Even in this
favorable situation, both paths are executed. On the optimistic
path, each replica will send signature shares to leaders and
broadcast its received opt-block, leading to a communication
overhead of O(n2L + nκ). The pessimistic path consists of
consecutive AlgDBA instances, leading to an overhead of

O(n2L+ n2κ). Therefore, the total communication overhead
for Ipotane in a favorable situation is O(n2L + n2κ). While
protocols such as 2-chain HotStuff or Ditto have a lower,
linear communication overhead of O(nL+nκ) under favorable
situations, our experiments in Section VI demonstrate that
this linear communication does not materialize as practical
efficiency gains.

3) Analysis of unfavorable situations: In an unfavorable
scenario, pess-blocks are certified earlier than their corre-
sponding opt-blocks. Each non-faulty replica will input 1
to the second AlgDBA instance, subsequently producing an
output of 1 from it. Therefore, the replica commits blocks
outputted from the two AlgDBA instances. For clarity, we
refer to these instances as AlgDBA1 and AlgDBA2, respec-
tively. As AlgDBA is constructed as an extension of sMVBA
with an additional communication round, its expected worst-
case latency is 11.5 rounds. At the end of an epoch, three
blocks are committed: two PB1-blocks generated in AlgDBA1

and AlgDBA2, respectively, and one PB2-block generated
in AlgDBA1. Consequently, the throughput is calculated as
3c/(11.5δ · 2) = 3c/(23δ). The latency for the first PB1-
block is 23δ, corresponding to the duration of two AlgDBA
instances. The PB2-block, proposed two rounds later than the
first PB1-block, has a latency of 21δ. The second PB1-block,
committed immediately upon the output of AlgDBA2, has a
latency of 11.5δ. Therefore, the average latency across these
blocks is (23δ + 21δ + 11.5δ)/3, which equals 18.5δ. As
for the communication overhead, the optimistic path in the
unfavorable situation fails to make progress. Therefore, its
communication overhead is that of the pessimistic path, which
is also O(n2L+ n2κ).

VI. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of
Ipotane and conduct a comparison with other protocols. Our
chosen baselines include Abraxas and ParBFT, both of which
employ the parallel-path paradigm similar to Ipotane. We
include Ditto as another baseline that represents the sequential-
path paradigm. In favorable situations, Ditto’s performance
matches that of a partially-synchronous protocol. We also
include 2-chain VABA, a purely asynchronous protocol, as
a baseline for the evaluation of unfavorable situations.

A. Implementation and experimental setup

1) Implementation: We directly adopt the available open-
source codes of our baselines ParBFT4 and Abraxas5. 2-
chain VABA and Ditto share the same repository6. All these
implementations are built on the same code framework in Rust,
which typically includes a mempool to decouple transaction
transmission from consensus messages. Through mempool,
each replica continuously packages a batch of transactions
into a payload, which is then broadcast to others. In the
consensus message, a block contains only hashes of these

4https://github.com/ac-dcz/parbft-parbft1-rust
5https://github.com/sochsenreither/abraxas
6https://github.com/danielxiangzl/Ditto

10



0 50 100
Throughput (K tx/s)

0

2

5

8

10

12

La
te

nc
y 

(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(a) ρ = 0

0 20 40 60 80
Throughput (K tx/s)

0

5

10

15

La
te

nc
y 

(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(b) ρ = 10%

0 20 40 60 80
Throughput (K tx/s)

0

2

5

8

10

12

La
te

nc
y 

(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(c) ρ = 20%

0 20 40
Throughput (K tx/s)

0

2

4

6

8

10

La
te
nc

y 
(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(d) ρ = 100%

Fig. 6: Latency vs. throughput

payloads, effectively reducing the size of consensus messages
and enhancing performance.

To ensure a fair comparison, we implement Ipotane using
the same framework as the baselines, and make our imple-
mentation publicly available7. The VABA protocol employed
in DBA is instantiated with sMVBA [24]. To improve perfor-
mance, we introduce minor modifications to sMVBA. These
include adding a block in each PB instance and chaining
blocks across different sMVBA instances, a structure adopted
by 2-chain VABA [14]. In addition, the view-change phase
has been streamlined to a single round following AMS-
VABA [28].

2) Experimental setup: For all protocols, we set the size of
a transaction to 512 bytes. The size of a payload and the queue
capacity in the mempool are configured to be 500 kilobytes
and 100,000, respectively. The maximum number of payloads
contained in a block is limited to 32, and the minimum
interval to propose a payload is set to 100 milliseconds.
Following the configuration from the Ditto paper [14], we set
its timing parameter ∆ to 5 seconds. Similarly, we adopt the
settings from the Abraxas paper [17], configuring its lookback
parameter λ to 20.

Except for the 2-chain VABA, each protocol employs
predetermined leaders for optimistic paths. Depending on
the leader crash frequency, we consider the following three
scenarios, akin to those defined in Abraxas. Each scenario is
characterized by the parameter ρ, signifying the probability of
leader crashes.

1) ρ = 0: This implies that leaders operate without crashes.
In this scenario, all protocols, except 2-chain VABA, are
expected to commit blocks through optimistic paths.

2) ρ = 100%: In this scenario, leaders always crash, and
all protocols commit blocks through pessimistic paths.

3) ρ = 10% or ρ = 20%: Each leader has a 10% or 20%
probability of crashing in this scenario, representing an
intermediate point between the previous two scenarios.
Optimistic protocols commit blocks through their opti-
mistic paths intermittently.

7https://github.com/CGCL-codes/ipotane

Our experiments are conducted on AWS, where each replica
is deployed as an m5d.2xlarge instance. Each instance is
equipped with 8 vCPUs and 32GB of memory, running Ubuntu
20.04. Replicas are connected through a network link with up
to 10 Gbps bandwidth. These replicas are spread in a geo-
graphically distributed manner, uniformly across five regions:
N. Virginia, Stockholm, Tokyo, Sydney, and N. California.

3) Performance metrics: Our evaluation focuses on two
key metrics: end-to-end latency and throughput. End-to-end
latency is assessed as the average time taken for a transaction
to be committed, measured from the moment it is submitted
by the client to the moment it is committed. Throughput is
calculated as the number of committed transactions per second.
Each experiment is conducted over a duration of 5 minutes
to report a stable performance. We repeat each experiment
three times and utilize error bars or averages to mitigate
experimental errors.

B. Trade-off between throughput and latency

In all experiments in this section, we set the number of
replicas to 16. By progressively increasing the rate at which
clients submit transactions, the system eventually becomes
saturated. Plotting each pair of latency and throughput pro-
duces a figure that simultaneously demonstrates the latency
under unsaturated conditions and the peak throughput under
saturated conditions. Experimental results are illustrated in
Figure 6, with throughput and latency on the x-axis and y-axis,
respectively. Each data point in the figure is marked with an
error bar, representing both the average and standard deviation
of the experimental results.

As shown in Figure 6a, when the optimistic path always
operates well, Ipotane attains low latency and high throughput,
comparable to Ditto and ParBFT.8 Notably, Ditto matches
a partially-synchronous protocol’s performance, as it adopts
the sequential-path paradigm and only runs the optimistic
path in this scenario. Thus, in favorable situations, Ipotane’s
performance is on par with a partially-synchronous protocol.

At the other end of the spectrum, when the optimistic path
always fails, as shown in Figure 6d, Ipotane still maintains

8Abraxas reports lower performance than expected, possibly due to its
implementation being based on an earlier version of Ditto.

11



0 25 50 75 100
Time (s)

0

2

5

8

10

12

Tr
an
sa
ct
io
ns
 (M

)
Abraxas
ParBFT
Ipotane
2-chain VABA
Ditto

(a) ρ = 0

0 25 50 75 100
Time (s)

0

2

4

6

8

Tr
an

sa
ct
io
ns

 (M
)

Abraxas
ParBFT
Ipotane
2-chain VABA
Ditto

(b) ρ = 10%

0 25 50 75 100
Time (s)

0

2

4

6

8

Tr
an

sa
ct
io
ns

 (M
)

Abraxas
ParBFT
Ipotane
2-chain VABA
Ditto

(c) ρ = 20%

0 25 50 75 100
Time (s)

0

1

2

3

4

5

Tr
an

sa
ct

io
ns

 (M
)

Abraxas
ParBFT
Ipotane
2-chain VABA
Ditto

(d) ρ = 100%

Fig. 7: Throughput over time

0 50 100 150 200
Transaction sequence number (K)

0

1

2

3

4

5

La
te
nc

y 
(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(a) ρ = 0

0 50 100 150 200
Transaction sequence number (K)

0

2

4

6

8

10

La
te

nc
y 

(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(b) ρ = 10%

0 50 100 150 200
Transaction sequence number (K)

0.0

2.5

5.0

7.5

10.0

12.5

La
te
nc

y 
(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(c) ρ = 20%

0 50 100 150 200
Transaction sequence number (K)

0

2

4

6

8

10

La
te

nc
y 

(s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(d) ρ = 100%

Fig. 8: Latency over the transaction sequence numbers

good performance, slightly inferior to the purely asynchronous
protocol (2-chain VABA) but significantly better than Ditto or
ParBFT. In this scenario, Ditto takes a considerable amount
of time to switch between the failed optimistic path and
the pessimistic path, resulting in poor performance. While
ParBFT runs two paths concurrently, it requires additional
ABA instances to commit pess-blocks. These ABA instances
do not generate new blocks by themselves, leading to idle
periods and reduced performance. In contrast, Ipotane commits
pess-blocks by consecutively running DBA instances, which
can promptly detect the optimistic path’s failure without intro-
ducing extra consensus instances, thereby delivering superior
performance.

In the intermediate scenarios, a protocol with an optimistic
path intermittently commits blocks through this path, leading
to a blended result between the scenarios of ρ = 0 and
ρ = 100%. Regarding peak throughput, Ipotane consistently
outperforms others as illustrated in Figure 6b and Figure 6c.
In terms of latency, Ipotane and 2-chain VABA consistently
demonstrate the lowest among these protocols.

To sum up, across all scenarios, Ipotane consistently attains
the (near-)best performance among all protocols. Specifically,
it achieves performance on par with partially-synchronous
protocols in favorable situations and on par with purely
asynchronous ones in unfavorable situations.

C. Throughput stability

In this section, we continue to use 16 replicas. Our exper-
iments are specifically conducted at each system’s saturation

point, where a system achieves its peak throughput without
significant deterioration in latency. At this point, the system
can reliably sustain high throughput.

Starting from the moment the system reaches the satura-
tion point, we record the accumulated number of committed
transactions over time. More precisely, each time a new block
is committed, we record the current time and calculate the
number of committed transactions by counting in transactions
included in this block. We also explore four scenarios with
varying values of ρ, whose results are depicted in Figure 7.

In the ρ = 0 scenario, all protocols exhibit stable through-
put, as evidenced by the smooth curves in Figure 7a. This is
expected, as the 2-chain VABA continuously commits blocks
through the two-chain instances, while other protocols steadily
commit blocks through the optimistic path. On the other hand,
in the ρ = 100% scenario, 2-chain VABA, ParBFT, and
Ipotane can maintain stable throughput, as shown in Figure 7d.
However, Ditto and Abraxas display unstable throughput, as
indicated by the jagged curves. This instability arises from
the extended periods required for Ditto to complete the path
switch and for Abraxas to wait for a minimum of λ pess-
blocks, during which no blocks are being committed.

In the ρ = 10% or ρ = 20% scenario, all protocols
except VABA exhibit less stable throughput as they alternate
between committing blocks through the optimistic path and the
pessimistic path. Nevertheless, Ipotane continues to showcase
superior stability than Abraxas and Ditto.

12



7 16 40 80
Number of replicas

0

25

50

75

100

125

Th
ro

ug
hp

ut
 (K

 tx
/s

)
Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(a) ρ = 0

7 16 40 80
Number of replicas

0

20

40

60

80

Th
ro
ug

hp
ut
 (K

 tx
/s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(b) ρ = 10%

7 16 40 80
Number of replicas

0

20

40

60

80

Th
ro
ug

hp
ut
 (K

 tx
/s
)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(c) ρ = 20%

7 16 40 80
Number of replicas

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (K

 tx
/s

)

Abraxas
ParBFT

Ipotane
2-chain VABA

Ditto

(d) ρ = 100%

Fig. 9: Throughput vs. system size

D. Latency stability

Latency stability holds significant importance for upper-
layer applications, as unstable latency can result in poor user
experience. We evaluate latency stability by recording each
transaction’s latency. These experiments are also conducted
with 16 replicas and at each system’s saturation point.

Experimental results are depicted in Figure 8. In the ρ = 0
scenario (Figure 8a), all protocols exhibit stable latency. In the
ρ = 100% scenario (Figure 8d), Ipotane maintains relatively
stable latency by committing pess-blocks through successive
DBA instances. While Ipotane’s latency deviation is slightly
larger than that of 2-chain VABA, it is more stable than the
others. Ipotane’s slightly larger deviation than VABA can be
attributed to the fact that, within an epoch, pess-blocks gen-
erated in the second-to-last DBA instance are not committed
until the final DBA instance outputs, resulting in higher latency
for these pess-blocks. In contrast, Abraxas displays significant
latency fluctuations due to its lookback mechanism, where
blocks generated in the initial two-chain instance must wait
for the production of λ subsequent blocks. ParBFT and Ditto
both exhibit notable latency instability, because their respective
ABA instances and path-switch mechanisms introduce large
latency variations.

In the ρ = 10% (Figure 8b) and ρ = 20% (Figure 8c)
scenarios, Ipotane and VABA still maintain stable latency, with
fluctuation significantly lower than other protocols.

E. Scalability evaluation

We comprehensively evaluate scalability across various pro-
tocols, analyzing their throughput under varying numbers of
replicas: 7 replicas, 16 replicas, 40 replicas, and 80 replicas.
Throughput measurements are specifically taken at the sat-
uration point. Additionally, experiments are conducted with
different probabilities of leader replicas, whose results are
shown in Figure 9.

As depicted in Figure 9a, Ipotane, alongside ParBFT,
achieves a high throughput when leaders on the optimistic
path keep performing well. Notably, in the case of 40 or 80
replicas, they exhibit a slightly lower throughput compared to
Ditto, potentially attributed to their elevated communication
overhead O(n2), stemming from the parallel pessimistic path.

In scenarios where the optimistic path fails to function, as
illustrated in Figure 9d, Ipotane consistently maintains high
throughput comparable to 2-chain VABA, across different
replica counts. When leaders on the optimistic path fail
with a probability of 10% or 20%, Ipotane outperforms all
other protocols under varying system sizes, as evidenced by
Figure 9b or Figure 9c. In summary, Ipotane consistently
demonstrates excellent scalability across diverse probabilities
of leader failures.

VII. RELATED WORK

We summarize asynchronous BFT protocols in this section
and defer the discussion of (partially-)synchronous protocols
to Appendix C.

The simplest form of asynchronous BFT is ABA, which
reaches agreements on binary values [29], [30], [31], [32].
VABA and MVBA instead focus on agreeing on arbitrary
values [21], [22], [23], [33]. Building upon ABA or VABA,
Asynchronous Common Subset (ACS) and SMR can be con-
structed [10], [34], [35], [36].

Despite efforts to enhance the performance of asynchronous
protocols, a performance gap persists when compared to
partially-synchronous protocols. To address this gap, a se-
ries of works introduce an optimistic path to asynchronous
protocols, categorized into two paradigms: sequential-path
and parallel-path. The sequential-path paradigm executes the
optimistic and pessimistic paths in sequence [37], [38], [39],
necessitating path switches [14], [15]. These switches delay
the launch of the pessimistic path and affect performance
in unfavorable situations. To overcome this, the parallel-path
paradigm, exemplified by Abraxas [17] and ParBFT [16],
launches two paths simultaneously, avoiding the need for path
switches. However, while Abraxas achieves high throughput
in all situations, it suffers from high latency under unfavor-
able situations. In contrast, ParBFT consistently delivers low
latency but suffers from reduced throughput in unfavorable
situations. Ipotane proposed in this paper achieves both high
throughput and low latency in both favorable and unfavorable
situations.

Another class of protocols [40], [41], [42] leverages a Di-
rected Acyclic Graph (DAG)-based approach. These protocols,

13



however, inherently suffer from O(n2L+n3κ) communication
overhead, rendering them less scalable than many previously
discussed protocols. For instance, Ipotane requires a commu-
nication overhead of only O(n2L + n2κ). Moreover, these
approaches generally depend on multiple rounds of Reliable
Broadcast (RBC) to commit, resulting in high latency. For
instance, DAGRider and Tusk require latencies of 12δ and 9δ,
respectively, even under favorable situations. BullShark [43],
a noteworthy DAG-based protocol, also introduces an opti-
mistic path to enhance performance. In favorable situations, it
requires two sequential RBCs to commit, incurring a latency
of 6δ, which is slightly larger than 5δ offered by a partially-
synchronous protocol (e.g., 2-chain HotStuff) or our Ipotane.
However, it has a complex process of transitioning to the
pessimistic path in unfavorable situations, resulting in an
expected latency of 30δ due to 10 sequential RBCs. This is
significantly higher than 10.5δ typical of purely asynchronous
protocols (e.g., 2-chain VABA) or 18.5δ offered by Ipotane.

VIII. CONCLUSION

Existing dual-path asynchronous BFT protocols exhibit ei-
ther low throughput or high latency under unfavorable situ-
ations. To address this, we propose a novel protocol named
Ipotane, which executes consecutive DBA instances on the
pessimistic path. DBA operates as a fusion of biased ABA and
VABA, which can be implemented through low-cost modifica-
tions to existing VABA protocols. On one hand, DBA promptly
detects optimistic path failures, ensuring low latency under
unfavorable situations. On the other hand, Ipotane leverages
DBA instances to continuously produce blocks without idle
periods, thereby achieving high throughput in unfavorable sit-
uations. In summary, Ipotane attains performance on par with
partially-synchronous protocols under favorable situations and
comparable to purely asynchronous protocols in unfavorable
situations, as demonstrated by our experiments.

ACKNOWLEDGMENT

This work is supported by National Science and Technology
Major Project 2022ZD0115301. This work is also funded by
the European Union, ERC-2023-STG, Project ID: 101116713.
Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting
authority can be held responsible for them.

REFERENCES

[1] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business
& Information Systems Engineering, vol. 59, no. 3, pp. 183–187, 2017.

[2] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “Blockchain challenges
and opportunities: A survey,” International Journal of Web and Grid
Services, vol. 14, no. 4, pp. 352–375, 2018.

[3] Z. Wu, J. Liu, J. Wu, Z. Zheng, X. Luo, and T. Chen, “Know your
transactions: Real-time and generic transaction semantic representation
on blockchain & web3 ecosystem,” in Proceedings of the ACM Web
Conference. ACM, 2023, pp. 1918–1927.

[4] J. J. Si, T. Sharma, and K. Y. Wang, “Understanding user-perceived
security risks and mitigation strategies in the web3 ecosystem,” in
Proceedings of the CHI Conference on Human Factors in Computing
Systems. ACM, 2024, pp. 1–22.

[5] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[6] X. Wang, S. Duan, J. Clavin, and H. Zhang, “BFT in blockchains: From
protocols to use cases,” ACM Computing Surveys, vol. 54, no. 10, pp.
1–37, 2022.

[7] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: Asynchronous BFT made
practical,” in Proceedings of the 25th ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 2028–2041.

[8] L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse,
“DispersedLedger: High-throughput Byzantine consensus on variable
bandwidth networks,” in Proceedings of the 19th USENIX Symposium
on Networked Systems Design and Implementation. USENIX, 2022,
pp. 493–512.

[9] D. S. Antunes, A. N. Oliveira, A. Breda, M. G. Franco, H. Moniz,
and R. Rodrigues, “Alea-BFT: Practical asynchronous Byzantine fault
tolerance,” in Proceedings of the 21st USENIX Symposium on Networked
Systems Design and Implementation. USENIX, 2024, pp. 313–328.

[10] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 31–42.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[12] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the 3rd USENIX Symposium on Operating Systems
Design and Implementation. USENIX, 1999, pp. 173–186.

[13] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT consensus with linearity and responsiveness,” in Pro-
ceedings of the 38th ACM Symposium on Principles of Distributed
Computing. ACM, 2019, pp. 347–356.

[14] R. Gelashvili, L. Kokoris Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback,” in Proceedings of the 26th International
Conference on Financial Cryptography and Data Security. Springer,
2022, pp. 296–315.

[15] Y. Lu, Z. Lu, and Q. Tang, “Bolt-Dumbo transformer: Asynchronous
consensus as fast as the pipelined BFT,” in Proceedings of the 29th
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2022, pp. 2159–2173.

[16] X. Dai, B. Zhang, H. Jin, and L. Ren, “ParBFT: Faster asynchronous
BFT consensus with a parallel optimistic path,” in Proceedings of
the 30th ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2023, pp. 504–518.

[17] E. Blum, J. Katz, J. Loss, K. Nayak, and S. Ochsenreither, “Abraxas:
Throughput-efficient hybrid asynchronous consensus,” in Proceedings of
the 30th ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2023, pp. 519–533.

[18] M. M. Jalalzai, J. Niu, C. Feng, and F. Gai, “Fast-HotStuff: A fast and
robust BFT protocol for blockchains,” IEEE Transactions on Dependable
and Secure Computing, vol. 21, no. 4, pp. 2478–2493, 2023.

[19] B. Libert, M. Joye, and M. Yung, “Born and raised distributively: Fully
distributed non-interactive adaptively-secure threshold signatures with
short shares,” in Proceedings of the 33rd ACM Symposium on Principles
of Distributed Computing. ACM, 2014, pp. 303–312.

[20] R. Bacho and J. Loss, “On the adaptive security of the threshold BLS
signature scheme,” in Proceedings of the 29th ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2022, pp. 193–207.

[21] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in Proceedings of the 21st Annual
International Cryptology Conference. Springer, 2001, pp. 524–541.

[22] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren, “Synchronous
Byzantine agreement with expected O(1) rounds, expected communica-
tion, and optimal resilience,” in Proceedings of the 23rd International
Conference on Financial Cryptography and Data Security. Springer,
2019, pp. 320–334.

[23] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-MVBA: Optimal
multi-valued validated asynchronous Byzantine agreement, revisited,” in
Proceedings of the 39th ACM Symposium on Principles of Distributed
Computing. ACM, 2020, pp. 129–138.

[24] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding
Dumbo: Pushing asynchronous BFT closer to practice,” Cryptology
ePrint Archive, 2022.

14



[25] M. Ben-Or, “Another advantage of free choice: Completely asyn-
chronous agreement protocols,” in Proceedings of the 2nd Annual ACM
Symposium on Principles of Distributed Computing. ACM, 1983, pp.
27–30.

[26] R. Friedman, A. Mostefaoui, and M. Raynal, “Simple and efficient
oracle-based consensus protocols for asynchronous Byzantine systems,”
IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 1,
pp. 46–56, 2005.

[27] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable and
secure distributed programming. Springer Science & Business Media,
2011.

[28] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous Byzantine agreement,” in Proceedings of the
38th ACM Symposium on Principles of Distributed Computing. ACM,
2019, pp. 337–346.

[29] M. O. Rabin, “Randomized Byzantine generals,” in Proceedings of the
24th Annual Symposium on Foundations of Computer Science. IEEE,
1983, pp. 403–409.

[30] S. Toueg, “Randomized Byzantine agreements,” in Proceedings of the
3rd Annual ACM Symposium on Principles of Distributed Computing.
ACM, 1984, pp. 163–178.

[31] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous Byzantine consensus with t < n/3 and O(n2) messages,” in
Proceedings of the 33rd ACM Symposium on Principles of Distributed
Computing. ACM, 2014, pp. 2–9.

[32] I. Abraham, N. Ben-David, and S. Yandamuri, “Efficient and adaptively
secure asynchronous binary agreement via binding crusader agreement,”
in Proceedings of the 41st ACM Symposium on Principles of Distributed
Computing. ACM, 2022, pp. 381–391.

[33] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-NG:
Fast asynchronous BFT consensus with throughput-oblivious latency,”
in Proceedings of the 29th ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2022, pp. 1187–1201.

[34] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2020,
pp. 803–818.

[35] H. Zhang and S. Duan, “PACE: Fully parallelizable BFT from repropos-
able Byzantine agreement,” in Proceedings of the 29th ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2022,
pp. 3151–3164.

[36] S. Duan, X. Wang, and H. Zhang, “Fin: Practical signature-free asyn-
chronous common subset in constant time,” in Proceedings of the 30th
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2023, pp. 815–829.

[37] K. Kursawe and V. Shoup, “Optimistic asynchronous atomic broadcast,”
in Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming. Springer, 2005, pp. 204–215.

[38] H. V. Ramasamy and C. Cachin, “Parsimonious asynchronous
Byzantine-fault-tolerant atomic broadcast,” in Proceedings of the
24th International Conference On Principles Of Distributed Systems.
Springer, 2005, pp. 88–102.

[39] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700
BFT protocols,” in Proceedings of the 5th European Conference on
Computer Systems. ACM, 2010, pp. 363–376.

[40] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you need
is DAG,” in Proceedings of the 40th ACM Symposium on Principles of
Distributed Computing. ACM, 2021, pp. 165–175.

[41] M. A. Schett and G. Danezis, “Embedding a deterministic BFT protocol
in a block DAG,” in Proceedings of the 40th ACM Symposium on
Principles of Distributed Computing. ACM, 2021, pp. 177–186.

[42] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Nar-
whal and Tusk: A DAG-based mempool and efficient BFT consensus,”
in Proceedings of the 17th European Conference on Computer Systems.
ACM, 2022, pp. 34–50.

[43] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: DAG BFT protocols made practical,” in Proceedings of
the 29th ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2022, pp. 2705–2718.

[44] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM, vol. 27, no. 2, pp. 228–234,
1980.

[45] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[46] D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch, and H. R. Strong,
“An efficient algorithm for Byzantine agreement without authentication,”
Information and Control, vol. 52, no. 3, pp. 257–274, 1982.

[47] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology overview
series, consensus system,” arXiv preprint arXiv:1805.04548, 2018.

[48] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync HotStuff:
Simple and practical synchronous state machine replication,” in Pro-
ceedings of the 41st IEEE Symposium on Security and Privacy. IEEE,
2020, pp. 106–118.

[49] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323,
1988.

[50] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine fault tolerance,” in Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles. ACM, 2007,
pp. 45–58.

[51] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzantine
consensus via hardware-assisted secret sharing,” IEEE Transactions on
Computers, vol. 68, no. 1, pp. 139–151, 2018.

[52] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D. A. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: A scalable and
decentralized trust infrastructure,” in Proceedings of the 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works. IEEE, 2019, pp. 568–580.

[53] X. Dai, L. Huang, J. Xiao, Z. Zhang, X. Xie, and H. Jin, “Trebiz:
Byzantine fault tolerance with Byzantine merchants,” in Proceedings of
the 38th Annual Computer Security Applications Conference. ACM,
2022, pp. 923–935.

[54] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[55] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[56] J. Niu, F. Gai, M. M. Jalalzai, and C. Feng, “On the performance of
pipelined HotStuff,” in Proceedings of the 40th Annual IEEE Conference
on Computer Communications. IEEE, 2021, pp. 1–10.

[57] N. Giridharan, F. Suri-Payer, M. Ding, H. Howard, I. Abraham, and
N. Crooks, “Beegees: stayin’alive in chained BFT,” in Proceedings of the
42nd ACM Symposium on Principles of Distributed Computing. ACM,
2023, pp. 233–243.

[58] N. Giridharan, F. Suri-Payer, I. Abraham, L. Alvisi, and N. Crooks, “Mo-
torway: Seamless high speed BFT,” arXiv preprint arXiv:2401.10369,
2024.

[59] M. J. Amiri, C. Wu, D. Agrawal, A. El Abbadi, B. T. Loo, and
M. Sadoghi, “The bedrock of Byzantine fault tolerance: A unified plat-
form for BFT protocols analysis, implementation, and experimentation,”
in Proceedings of the 21st USENIX Symposium on Networked Systems
Design and Implementation. USENIX, 2024, pp. 371–400.

APPENDIX A
CORRECTNESS ANALYSIS OF AlgDBA

In this section, we prove our AlgDBA construction adheres
to all the properties outlined in Section III-A.

1) Agreement, quality, and block-external validity: These
properties of AlgDBA are derived directly from VABA.

2) Termination: AlgDBA’s termination property is stated in
Theorem 11, supported by Lemma 10.

LEMMA 10. Every non-faulty replica will receive either t+1
values of 0 or n−t values of 1 during the first communication
round in AlgDBA.

Proof. This is established through two cases.
Case 1: At least one non-faulty replica has the binary

input of 0. In this case, each non-faulty replica will receive a
message containing 0. According to Lines 6-8 in Algorithm 1,
each non-faulty replica will also broadcast a message with 0

15



if it has not yet broadcast this message. Therefore, each non-
faulty replica will eventually receive t+ 1 values of 0 during
the first round.

Case 2: Every non-faulty replica has a binary input of 1.
Here, each non-faulty replica broadcasts a message containing
1, leading to each receiving n− t values of 1.

THEOREM 11. AlgDBA achieves termination.

Proof. Based on Lemma 10, every non-faulty replica can
generate a valid input for VABA. Following the termination
property of VABA, all non-faulty replicas will eventually
produce an output from VABA and thus from AlgDBA.

3) Binary-external validity: Suppose by contradiction a
non-faulty replica outputs ⟨0, ∗⟩, but no replica inputs 0 with
a valid proof σ. In such a case, no one can receive t + 1
messages containing 0 to create a valid signature sig0 or form
a valid input of 0 to VABA, as described in Lines 9-12 in
Algorithm 1. Thus, the binary output from VABA or AlgDBA
cannot be 0, contradicting the initial assumption.

4) Biased validity: If at least t + 1 non-faulty replicas
input ⟨0, ∗⟩, it implies that at most n − t − 1 replicas,
whether non-faulty or Byzantine, will input ⟨1, ∗⟩. Hence, the
condition in Line 13 of Algorithm 1 will not be met. Even a
Byzantine replica cannot forge a valid threshold signature on
1. Therefore, every replica, whether non-faulty or Byzantine,
can only input a tuple containing the bit 0 to VABA. This
ensures that the output from VABA and AlgDBA will contain
the bit 0, thus guaranteeing biased validity.

APPENDIX B
PROOF OF LEMMAS

LEMMA 1. If a non-faulty replica concludes an epoch in
iteration iterh, all non-faulty replicas will also conclude that
epoch in iterh.

Proof. If a non-faulty replica concludes an epoch in iterh,
it implies that DBAh outputs 1. According to DBA’s biased-
validity property, at least n−2t non-faulty replicas must have
inputted 1 to DBAh. Consequently, as per the rules of Case 2.1,
these n− 2t non-faulty replicas must have stopped voting for
the opt-block Bh. This means no valid QCh can be generated,
and no valid Bh+1 can be constructed, effectively stopping on
the optimistic path. On the other hand, a replica will input to
DBAh+1 only after DBAh outputs. Based on DBA’s agreement
property, every non-faulty replica will output 1 from DBAh

and consequently conclude the epoch in iterh.

LEMMA 2. Within an epoch, if a non-faulty replica commits
an opt-block at height h and another non-faulty replica outputs
b from DBAh+1, then b must be 0.

Proof. We assume these two non-faulty replicas to be pi and
pj where pi commits an opt-block Bh and pj receives b from
DBAh+1. Bh must be committed through the rules of either
Case 1 or Case 2.1 in Section IV-C. If it is Case 1, at least
n− t replicas, among which n− 2t are non-faulty, must have

voted for Bh+1. This implies that at least n − 2t non-faulty
replicas would use 0 as the binary input to DBAh+1. Since
n− 2t ≥ t+1, the biased validity ensures DBAh+1 outputs a
binary value of 0. If Bh is committed through Case 2.1, based
on DBA’s agreement property, pj would also receive a binary
output of 0 from DBAh+1.

LEMMA 3. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, then either both blocks
are opt-blocks, or both are pess-blocks.

Proof. We prove this lemma via contradiction. Without loss of
generality, assume two non-faulty replicas pi and pj commit
opt-block Bh and pess-block Ch, respectively. Based on
Lemma 2, pj will receive 0 from DBAh+1 if it receives
an output at all. According to the protocol described in
Section IV-C, pj must commit a pess-block Ch−1 or Ch+1.
We consider the following two situations:

Situation 1: pj commits Ch and Ch+1. Per the rules of
Case 2.2, pj must receive a binary output of 1 from DBAh+1,
contradicting the earlier conclusion that DBAh+1 outputs 0.

Situation 2: pj commits Ch−1 and Ch. Per the rules of
Case 2.2, pj must receive a binary output of 1 from DBAh.
With the biased-validity property, at least n − 2t non-faulty
replicas must have inputted 1 to DBAh. Thus, per the rules of
Case 2.1, these replicas would stop voting for the opt-block
Bh, preventing the generation of a valid QCh or Bh+1. This
makes it impossible for pi to commit Bh through Case 1.
Additionally, pj will conclude the current epoch in iteration
iterh. By Lemma 1, all non-faulty replicas will conclude
the epoch in iterh without inputting to DBAh+1, making
it impossible for pi to commit Bh through Case 2.1. This
contradicts the assumption that pi commits an opt-block Bh.

Therefore, it is impossible for one non-faulty replica to
commit an opt-block and the other to commit a pess-block
at the same height, establishing the lemma.

LEMMA 4. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, these two blocks must
be identical.

Proof. Per Lemma 3, either both blocks are opt-blocks, or
both are pess-blocks. If they are pess-blocks, then according to
DBA’s agreement property, these two blocks must be identical.
Now, we consider the situation where both are opt-blocks.

As described in Section IV-C, an opt-block Bh is committed
through either Case 1 or Case 2.1. If Bh is committed through
Case 1, a QC for Bh must be generated. If Bh is committed
through Case 2.1, DBAh+1 must produce an output Oh+1

where Oh+1.b = 0 and Oh+1.d = Bh. By DBA’s binary-
external validity property, a replica must have input ⟨0, σ, ∗⟩
to DBAh+1, where σ is the QC for Bh. In short, if an opt-
block is committed, it must be certified by a QC.

Let the two committed opt-blocks be Bh and B′
h, certified

by QCh and QC ′
h, respectively. By a standard quorum inter-

section argument on QC and QC ′, we have Bh = B′
h.

16



LEMMA 5. If two non-faulty replicas conclude the same
epoch, they must commit the same number of blocks within
that epoch.

Proof. Based on Lemma 1, these two replicas must conclude
the epoch in the same iteration, which we denote as iterl.
According to Algorithm 3, both replicas must receive 1 from
DBAl. Since every non-faulty replica inputs 0 to DBA1 (as
stated in Line 5 of Algorithm 3), the biased-validity property
ensures that DBA1 will output 0. Consequently, l must be
equal to or greater than 2. Additionally, both replicas must
have received 0 from the preceding DBA instance DBAl−1.

At any height k, where 1 ≤ k ≤ l-2, both replicas commit
an opt-block Bk. At heights l-1 and l, they commit a pess-
block, Cl−1 or Cl, respectively. Therefore, these two replicas
commit the same number of blocks in that epoch.

LEMMA 7. If a non-faulty replica commits a block, every
non-faulty replica will eventually commit this block.

Proof. Without loss of generality, assume that a non-faulty
replica pi commits a block B. If B is a pess-block, it must
be committed through an output of 0 from DBA. By the
termination property of DBA, each non-faulty replica will
output 0 and commit B.

If B is an opt-block, assume pi commits B at height h
during an epoch. According to Line 19 in Algorithm 3, pi
will broadcast B, and each non-faulty replica will eventually
receive B. For another non-faulty replica pj , we consider the
following two cases. If pj receives Bh+2 before Ch+1, then
pj will also commit B through the two-chain rule. Otherwise,
namely if pj receives Ch+1 before Bh+2, it must receive a
binary output from DBAh+1. According to Lemma 2, this
binary output must be 0, which directs pj to commit B.

APPENDIX C
ADDITIONAL RELATED WORK

In this section, we summarize the additional related works
except in Section VII, specifically including the synchronous
BFT consensus and partially-synchronous BFT consensus.

1) Synchronous BFT consensus: Synchronous BFT consen-
sus protocols are designed under the network assumption that
each message can be delivered within a predefined period,
denoted as ∆, after its transmission. Representatives in this
category encompass many early works [44], [45], [46] as well
as some recent studies [47], [48]. However, protocols designed
for synchronous networks encounter a challenge in setting the
right value for ∆. If ∆ is set too small, the synchronous
assumption becomes fragile. Conversely, if ∆ is set too large,
the resulting protocol will be slow, as its performance must
directly depend on ∆ [48].

2) Partially-synchronous BFT consensus: Given the FLP
impossibility [11], which states that deterministic fault-tolerant
asynchronous consensus is impossible, Dwork et al. pro-
pose an intermediate network assumption called partial syn-
chrony [49]. The partial synchrony model assumes the network

to be synchronous after an unknown Global Stabilization Time
(GST), which has been the mainstream model for practical
systems for a long time.

One of the most notable works adopting the partially-
synchronous assumption is PBFT [12]. Building on PBFT,
subsequent works aim to reduce consensus latency by intro-
ducing a fast committing path [50], [51], [52], [53]. Drawing
inspiration from the flourishing blockchain technology [2],
structures like blocks and chains are incorporated into BFT
consensus to pipeline consecutive consensus instances, thereby
enhancing throughput. Example chained BFT consensus in-
clude Tendermint [54], Casper [55], and HotStuff [13]. Some
works [56], [57] address liveness issues in chained-BFT where
faulty leaders can prevent progress. Motorway constructs a
data dissemination layer to improve throughput during periods
of bad networks [58]. Amiri et al. propose a unified platform
named Bedrock for partially-synchronous BFT protocols anal-
ysis, implementation, and experimentation [59].

Despite its popularity, the partially-synchronous protocols
have raised concerns about their robustness [10], [7]. An ad-
versary with network manipulation capacities can compromise
the liveness of a partially-synchronous protocol. Consequently,
a recent line of work is revisiting the asynchronous network
in response to these concerns [34], [35], [36].

APPENDIX D
ARTIFACT APPENDIX

This appendix outlines the evaluation methodology for our
artifacts. In Section VI, we present experimental results by
deploying Ipotane on Amazon Web Service (AWS) with repli-
cas distributed across five geographically dispersed regions:
N.Virginia, Stockholm, Tokyo, Sydney, and N.California.
Since configuring AWS involves a relatively complex process,
we additionally provide local experimental instructions that
can be executed on a single machine, thereby enabling easy
validation of the code’s functionality.

A. Description & Requirements

1) How to access: Source codes of Ipotane are available
on Github9, with a permanent archival record at Zenodo10.
Detailed configuration and step-by-step execution instructions
are available in the README.md file in the repository.

2) Hardware dependencies: No special hardware require-
ments are required.

3) Software dependencies: Ubuntu 22.04 LTS is recom-
mended as the operating system. Other Linux distributions
can technically support deployment, as long as the operator
can complete the configuration of the environment dependen-
cies. The runtime environment mandates the installation of
Python 3.9 or later, Rust compiler version 1.50.0 or newer
(with full toolchain support), Clang compiler (with standard
library headers), and tmux terminal multiplexer for session
management.

9https://github.com/CGCL-codes/ipotane
10https://doi.org/10.5281/zenodo.17008411

17



4) Benchmarks: We select 2-chain VABA, Ditto, Abraxas,
and ParBFT as our benchmarks. Among these, 2-chain
VABA11 represents a purely asynchronous protocol, Ditto11

exemplifies a serial dual-path asynchronous protocol, while
both Abraxas12 and ParBFT13 serve as representatives of
parallel dual-path asynchronous protocols.

B. Artifact Installation & Configuration

Our repository can be downloaded using the git clone
https://github.com/CGCL-codes/ipotane com-
mand. We provide two ways to run our code: one is for local
testing, and the other is for running on AWS.

1) Local testing: We offer two options for installing depen-
dencies. The first is a ‘dockerfile’ that automatically generates
a Docker image with all dependencies installed. The second is
a manual installation method. To facilitate manual installation,
we also provide a build.sh script. We recommend using
the Docker approach for installation and execution. Detailed
installation and configuration instructions will be provided in
the [Preparation] part of Section D-D1.

2) Testing on AWS: After setting up AWS credentials and
SSH keys, you can configure the environment by running
commands such as fab create and fab install. For
specific details, please refer to the [Preparation] part of
Section D-D2.

C. Major Claims

• (C1): Ipotane is a novel dual-path asynchronous BFT con-
sensus protocol that matches the performance of partially-
synchronous protocols under favorable conditions while
maintaining throughput and latency comparable to purely
asynchronous protocols in unfavorable conditions.

• (C2): Under varying replica failure rates (ρ), Ipotane con-
sistently achieves near-optimal performance. Specifically,
when ρ=0, Ipotane performs on par with partially syn-
chronous protocols, while at ρ=100%, its performance
remains comparable to purely asynchronous protocols.
These are supported by experiments, whose results are
demonstrated in Section VI.B and VI.E, as well as
Figures 6 and 9.

• (C3): In favorable conditions, Ipotane can continuously
commit blocks by leveraging the 2-chain HotStuff pro-
tocol. In unfavorable conditions, it still achieves block
commitment through consecutive DBA instances. This
ensures stable throughput and latency across varying
conditions. Experimental results, presented in Sections
VI.C and VI.D as well as Figures 7 and 8, validate this
performance.

D. Evaluation

In this section, we present the workflows for running Ipotane
locally and on AWS.

11https://github.com/danielxiangzl/Ditto
12https://github.com/sochsenreither/abraxas
13https://github.com/ac-dcz/parbft-parbft1-rust

1) Local experiment process: Local deployment of Ipotane
is relatively simple to implement.

[Preparation] There are two options to set up the testing
environment.

Option 1: With Docker (Recommended). After chang-
ing to the project directory, execute the command below to
build the Docker image, which has installed all dependencies
required to run the experiment.

docker build -t ipotane

Then, execute the following command to launch a Docker
container instance and enter its shell.

docker run -it ipotane /bin/bash

Option 2: Without Docker. You may choose to manually
install the required dependencies, including:

• Rust 1.50.0+
• Python 3.9+
• tmux (for running processes in the background)
• Clang (dependency for RocksDB compilation)

For convenience, we include a build.sh script that auto-
mates the installation of all required dependencies.

[Execution] After successfully launching the Docker con-
tainer or completing the manual environment setup, you can
now perform the following operations:

git clone https://github.com/CGCL-codes/
ipotane
cd ipotane && cargo build
cd benchmark
pip install -r requirements.txt

These commands serve to clone the repository and install
the required Python libraries. Note that the initial cargo
build execution may take considerable time, as our im-
plementation utilizes RocksDB—which requires compilation
during this step.

To run the system, execute the fab local command
within the ipotane/benchmark directory. The benchmark pa-
rameters can be customized in fabfile.py. Key configura-
tion categories include:

[Benchmark parameters (bench params)]
• nodes: number of replicas to run (default: 4)
• duration: test duration in seconds (default: 30)
[Node parameters (node params)]
• random_ddos: whether to mount random DDos attacks

on the leaders (default: False)
• random_ddos_chance: the probability of mounting

random DDos attacks (default: 0)
[Results] When the fab local command completes, it

displays an execution summary in the console and automati-
cally saves detailed logs to the logs directory. You can use
fab logs to parse these logs again, generating formatted
results that match the console output and are saved to the
results directory.

18



Using the default parameters described above, the Ipotane
system will run locally with four replicas deployed on a single
machine. These replicas benefit from an optimized network
environment, resulting in significantly reduced latency mea-
surements. This differs from the results reported in Section VI
of our paper, which were obtained under Wide Area Network
(WAN) conditions.

2) AWS-Based experiment process: The key difference
between AWS and local deployments of Ipotane is in the
preparation phase.

[Preparation] To deploy Ipotane on AWS, the following
configuration steps must first be completed to set up the
experimental environment.

• Configure AWS credentials. Enable programmatic ac-
cess to your AWS account from your local machine.
These credentials will authorize your system to program-
matically create, modify, and delete EC2 instances.

• Add SSH public key. Manually add your SSH public
key to each AWS region you intend to use.

• Testbed Configuration The file settings.json lo-
cated in ipotane/benchmark contains all the config-
uration parameters of the testbed to deploy.

• Testbed configuration. Modify the settings.json
file located in ipotane/benchmark to configure your

testbed parameters.
• Testbed deployment. Execute fab create to provi-

sion new AWS instances. The creation logic is defined in
fabfile.py under the ‘create’ task.

• Dependency installation. Run fab install to: (1)
clone the repository on remote instances, and (2) install
Rust language prerequisites.

For routine maintenance:
• Use fab stop to gracefully shut down the testbed.
• Use fab start to restart the testbed without recreating

instances.
[Execution] After setting up the testbed, execute the proto-

col on AWS instances by running fab remote.
[Results] The fab remote command automatically col-

lects logs from all replicas, enabling the result aggregation and
log analysis similar to the local experiment workflow.

E. Customization

In addition to the parameters mentioned in Section D
(nodes, duration, ddoS, random_ddos), you can also
modify other parameters in fabfile.py, including:

• tx_size: transaction size in bytes (default: 512)
• rate: transactions input per second (default: 10,000)
• faults: Byzantine replicas to simulate (default: 0)

19


